WO2018066535A1 - オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体 - Google Patents

オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体 Download PDF

Info

Publication number
WO2018066535A1
WO2018066535A1 PCT/JP2017/035911 JP2017035911W WO2018066535A1 WO 2018066535 A1 WO2018066535 A1 WO 2018066535A1 JP 2017035911 W JP2017035911 W JP 2017035911W WO 2018066535 A1 WO2018066535 A1 WO 2018066535A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid catalyst
catalyst component
olefin polymerization
pore volume
group
Prior art date
Application number
PCT/JP2017/035911
Other languages
English (en)
French (fr)
Inventor
秀年 梅林
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to BR112019005837-0A priority Critical patent/BR112019005837B1/pt
Priority to RU2019111767A priority patent/RU2762191C2/ru
Priority to US16/338,517 priority patent/US11236189B2/en
Priority to CN201780061289.XA priority patent/CN109819654B/zh
Priority to JP2018543909A priority patent/JP7044710B2/ja
Priority to KR1020197011027A priority patent/KR102381124B1/ko
Priority to EP17858373.8A priority patent/EP3521324B1/en
Publication of WO2018066535A1 publication Critical patent/WO2018066535A1/ja
Priority to SA519401470A priority patent/SA519401470B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6546Pretreating with metals or metal-containing compounds with magnesium or compounds thereof organo-magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the present invention relates to a solid catalyst component for olefin polymerization, a method for producing a solid catalyst component for olefin polymerization, a catalyst for olefin polymerization, a method for producing an olefin polymer, a method for producing a propylene copolymer, and a propylene copolymer.
  • the present invention relates to a method for manufacturing coalescence.
  • olefins are polymerized in the presence of a solid catalyst component containing magnesium, titanium and halogen atoms as essential components and an olefin polymerization catalyst comprising an organoaluminum compound.
  • a solid catalyst component containing magnesium, titanium and halogen atoms as essential components and an olefin polymerization catalyst comprising an organoaluminum compound.
  • Control of the morphology (particle structure) of the solid catalyst component is important in obtaining an olefin polymer having desired characteristics, and many studies have been made.
  • Patent Document 1 JP-A-6-41217), Patent Document 2 (JP-A-6-65314), Patent Document 3 (JP-A-6-220117), Patent Document 4 (JP-A-7-300507).
  • Patent Document 5 Japanese Patent Publication No. 2003-502487
  • Patent Document 6 Japanese Patent Publication No. 2010-513625
  • a method for polymerizing olefins in the presence of a solid catalyst component prepared by treating with titanium or alkylaluminum and an olefin polymerization catalyst comprising an organoaluminum compound is disclosed.
  • Molecular weight distribution and bulk density of polymer, morphology stability in low molecular weight ethylene polymer, ethylene 1-butene Improving the comonomer uniformity of the copolymer have been proposed.
  • the control of the morphology of the solid catalyst component is important in the polymerization or copolymerization of propylene as well as ethylene as olefins.
  • copolymers of propylene and ethylene are used in a wide range of applications.
  • it since it tends to be sticky during production compared to a propylene homopolymer, it adheres to the inner wall of a polymerization reaction tank, piping, storage container, etc., easily causes clogging, etc.
  • the propylene copolymer particles obtained tend to be lowered in fluidity and particle size distribution.
  • propylene is obtained using a solid catalyst component obtained by contacting a dialkoxymagnesium containing or contacting an alcohol with a titanium halide compound.
  • a method of suppressing the generation of fine powder and coarse powder and reducing the volatile organic component can be mentioned.
  • the present invention results from stickiness (adhesiveness) of polymer particles when polymerizing olefins, particularly when copolymerizing propylene and ethylene, such as random copolymerization or block copolymerization.
  • Solid catalyst component for olefin polymerization capable of forming a polymer having extremely low adhesion and excellent fluidity and good particle size distribution, method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and propylene It aims at providing the manufacturing method of a copolymer.
  • the pore volume distribution measured by the mercury intrusion method including titanium, magnesium, halogen atoms and an internal electron donor is multimodal and fine.
  • the olefins are polymerized by using a solid catalyst component for polymerizing olefins having a ratio represented by a pore volume V2 derived from pores having a radius exceeding 1 ⁇ m and not exceeding 30 ⁇ m and having a ratio of 0.30 to 0.65.
  • the present inventors have found that the above technical problem can be solved by copolymerization, and have completed the present invention based on this finding.
  • the present invention (1) including titanium, magnesium, a halogen atom and an internal electron donor,
  • the pore volume distribution measured by mercury porosimetry is multimodal, and each has a peak top of 1 or more in a pore radius range of 0.002 ⁇ m to 1 ⁇ m and a pore radius of more than 1 ⁇ m and less than 30 ⁇ m,
  • the ratio expressed by the pore volume V1 derived from pores in the range of radius 0.002 ⁇ m to 1 ⁇ m and the pore volume V2 derived from pores in the range of radius exceeding 1 ⁇ m and not more than 30 ⁇ m is 0.30 to 0.65
  • a solid catalyst component for the polymerization of olefins (2) The solid catalyst component for olefin polymerization according to the above (1), wherein the total pore volume measured by a mercury intrusion method is 0.65 to 2.00 cm 3 / g, (3) The solid catalyst component for olefin polymerization according to the above (1), wherein the pore volume V1 derived
  • a method for producing a solid catalyst component for olefin polymerization characterized by adding continuously or intermittently over 2 hours, (8) The method for producing a solid catalyst component for olefin polymerization according to the above (7), wherein the magnesium compound having an alkoxy group is dialkoxymagnesium, (9) The magnesium compound having an alkoxy group has a spherical or ellipsoidal particle shape, has a multimodal pore volume distribution defined by a mercury intrusion method, and has a pore radius of 0.002 ⁇ m to 1 ⁇ m.
  • the magnesium compound having an alkoxy group has a pore volume of 0.3 cm 3 / g or more derived from pores having a pore radius in the range of 0.002 ⁇ m to 1 ⁇ m defined by a mercury intrusion method ( 7) A method for producing a solid catalyst component for olefin polymerization according to 7), (12) The magnesium compound having an alkoxy group has a pore volume of 0.5 to 2.0 cm 3 / g derived from pores having a pore radius of more than 1 ⁇ m and 30 ⁇ m or less as defined by the mercury intrusion method.
  • the solid catalyst component for olefin polymerization according to (1) above, the following general formula (I) R 1 p AlQ 3-p (I) (Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen atom, p is a real number of 0 ⁇ p ⁇ 3, and when a plurality of R 1 are present, 1 may be the same or different from each other, and when a plurality of Qs are present, each Q may be the same or different.)
  • the external electron donating compound is represented by the following general formula (II) R 2 q Si (OR 3 ) 4-q (II) (Wherein R 2 is an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group
  • R 3 Is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, an alkylamino group having 1 to 12 carbon atoms, a dialkylamino group having 1 to 12 carbon atoms, a vinyl group, an allyl group, or an aralkyl group.
  • q is an integer of 0 ⁇ q ⁇ 3) and the following general formula (III) (R 4 R 5 N) s SiR 6 4-s (III) (Wherein R 4 and R 5 are each a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a vinyl group, an allyl group, an aralkyl group, or a cyclohexane having 3 to 20 carbon atoms.
  • the olefin polymerization catalyst according to (16) above which is one or more organic silicon compounds selected from: (18) A method for producing an olefin polymer, comprising polymerizing an olefin in the presence of the olefin polymerization catalyst as described in (16) above, (19) A method for producing a propylene-based copolymer, wherein after propylene is polymerized using the olefin polymerization catalyst described in
  • Copolymer, (23) The propylene-based copolymer according to the above (20), wherein the total pore volume in the pore radius range of 1 to 20 ⁇ m is 0.09 to 0.21 cm 3 / g. Is to provide.
  • an olefin when an olefin is polymerized, particularly when a copolymerization reaction such as random copolymerization or block copolymerization of propylene and ethylene is performed, adhesion due to stickiness (adhesiveness) of polymer particles is caused.
  • a solid catalyst component for olefin polymerization that can produce a polymer having a very low particle size distribution and a good particle size distribution
  • a method for producing a solid catalyst component for olefin polymerization, a catalyst for olefin polymerization An olefin polymer production method, a propylene copolymer production method, and a propylene copolymer can be provided.
  • the solid catalyst component for olefin polymerization according to the present invention contains titanium, magnesium, a halogen atom and an internal electron donor, has a multi-modal pore volume distribution measured by a mercury intrusion method, and a pore radius of 0.002 ⁇ m.
  • each has a peak top of 1 or more, and the pore volume derived from pores in the range of radius of 0.002 ⁇ m to 1 ⁇ m exceeds V1 / radius of 1 ⁇ m
  • the ratio represented by the pore volume V2 derived from pores in the range of 30 ⁇ m or less is 0.30 to 0.65.
  • the solid catalyst component for olefin polymerization according to the present invention contains titanium, magnesium, a halogen atom and an internal electron donor.
  • the titanium and halogen atoms are preferably derived from a titanium halide compound described later.
  • Specific examples of the halogen atom include one or more selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably one or more selected from a chlorine atom, a bromine atom and an iodine atom, And one or more selected from iodine atoms are more preferred.
  • the magnesium is preferably derived from a magnesium compound having an alkoxy group described later.
  • the electron donating compound is preferably an organic compound containing an oxygen atom or a nitrogen atom.
  • organic compound containing an oxygen atom or a nitrogen atom for example, alcohols, phenols, acid halides, acid amides, nitriles, acid anhydrides, ether compounds , Organic acid esters, silicic acid esters, compounds having an ether group and an ester group, carbonic acid ester compounds having an ether group, aldehydes, ketones, carbonates, and the like.
  • One or more selected from ethers and carbonates are preferred.
  • ether compounds such as monoethers, diethers and ether carbonates, and esters such as monocarboxylic acid esters and polycarboxylic acid esters are preferable, and aromatic compounds such as aromatic dicarboxylic acid diesters are preferred.
  • aromatic compounds such as aromatic dicarboxylic acid diesters are preferred.
  • polycarboxylic acid esters, aliphatic polycarboxylic acid esters, alicyclic polycarboxylic acid esters, diethers, and ether carbonates are more preferable.
  • the electron donating compound examples include phthalic acid diesters such as diethyl phthalate and dibutyl phthalate, malonic acid diesters such as dimethyl malonate and diethyl malonate, dimethyl diisobutylmalonate, diethyl diisobutylmalonate, and benzylidene.
  • phthalic acid diesters such as diethyl phthalate and dibutyl phthalate
  • malonic acid diesters such as dimethyl malonate and diethyl malonate, dimethyl diisobutylmalonate, diethyl diisobutylmalonate, and benzylidene.
  • Hydrocarbon-substituted malonic acid diesters such as diethyl malonate, maleic acid diesters such as diethyl maleate and di-n-butyl maleate, ether groups such as (2-ethoxyethyl) methyl carbonate and (2-ethoxyethyl) methyl carbonate
  • ether groups such as (2-ethoxyethyl) methyl carbonate and (2-ethoxyethyl) methyl carbonate
  • the details of the electron donating compound are as described in the description of the
  • the composition of each component is not particularly limited as long as the object of the present invention can be achieved.
  • the content of magnesium (magnesium atom) in the solid catalyst component is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and further preferably 13 to 25% by mass.
  • the content of titanium (titanium atom) in the solid catalyst component is preferably 0.1 to 10% by mass, more preferably 0.5 to 8.0% by mass, and 1.0 to 5. More preferably, it is 0% by mass.
  • the content of halogen atoms in the solid catalyst component is preferably 20 to 89% by mass, more preferably 30 to 85% by mass, and further preferably 40 to 75% by mass.
  • the content of the internal electron donor in the solid catalyst component is preferably 0.5 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 2 to 25% by mass.
  • the solid catalyst component for olefin polymerization according to the present invention may further contain a reaction reagent containing a metal such as silicon, phosphorus, or aluminum in addition to the above components.
  • reaction reagent examples include organosilicon compounds having Si—O—C bonds, organosilicon compounds having Si—N—C bonds, phosphate compounds having PO bonds, trialkylaluminum, dialkoxyaluminum chloride, alkoxy One or more selected from organoaluminum compounds such as aluminum dihalide and trialkoxyaluminum and aluminum trihalides are preferred, organosilicon compounds having Si—O—C bonds, organosilicon compounds having Si—N—C bonds, and organic One or more selected from aluminum compounds are more preferable.
  • the solid catalyst component containing such a reaction reagent is subjected to polymerization of propylene or propylene and another olefin, the polymerization activity and stereoregularity can be easily improved.
  • the solid catalyst component for olefin polymerization according to the present invention preferably has an average particle size of 1 to 100 ⁇ m, more preferably 10 to 70 ⁇ m.
  • the average particle diameter of the solid catalyst component for olefin polymerization is an average particle diameter D50 (50 in the integrated particle size distribution in the volume integrated particle size distribution) when measured using a laser light scattering diffraction particle size analyzer. % Particle size).
  • the solid catalyst component for olefin polymerization according to the present invention has a multimodal pore volume distribution measured by a mercury intrusion method, a pore radius ranging from 0.002 ⁇ m to 1 ⁇ m, and a pore radius exceeding 1 ⁇ m and not exceeding 30 ⁇ m. Each of the ranges has one or more peak tops.
  • the solid catalyst component for olefin polymerization according to the present invention has one or more peak tops in a pore radius range of 0.002 ⁇ m to 1 ⁇ m, and one or more in a pore radius range of 0.01 ⁇ m to 0.5 ⁇ m.
  • the peak top is preferably one having a peak radius of 0.03 ⁇ m to 0.3 ⁇ m, and more preferably having one or more peak tops.
  • the solid catalyst component for olefin polymerization according to the present invention preferably has 1 to 4 peak tops in the pore radius range of 0.002 ⁇ m to 1 ⁇ m, and has 1 to 3 peak tops. More preferred are those having 1 to 2 peak tops, and still more preferred.
  • the solid catalyst component for olefin polymerization according to the present invention has one or more peak tops in the range of more than 1 ⁇ m pore radius and 30 ⁇ m or less, and one or more peak tops in the range of 2 to 15 ⁇ m pore radius. It is preferable to have one or more peak tops in the pore radius range of 3 ⁇ m to 10 ⁇ m.
  • the solid catalyst component for olefin polymerization according to the present invention preferably has 1 to 3 peak tops in the range of a pore radius of more than 1 ⁇ m and 30 ⁇ m or less, and has 1 to 2 peak tops. It is more preferable that it has one peak top.
  • the pore distribution of the solid catalyst component for olefin polymerization means that which is measured by a mercury intrusion method using a mercury intrusion porosimeter (manufactured by Micromeritics, Autopore III9420).
  • the solid catalyst component for olefin polymerization according to the present invention is a polymer having a high adhesion property due to the presence of pores having a peak top in the pore radius range of 0.002 ⁇ m to 1 ⁇ m and having a small opening diameter. It is thought that a polymer finely dispersed inside the particle is obtained, and the presence of large pores having a peak top in the range of the pore radius exceeding 1 ⁇ m and not more than 30 ⁇ m results in a small opening diameter. It is considered that a large amount of copolymer that does not stay in the pores or a copolymer having fluidity can be retained inside the polymer particle. For this reason, the stickiness of the copolymer particle (adhesiveness) It is considered that the adhesion of the polymer particles due to the above can be reduced.
  • the solid catalyst component for olefin polymerization according to the present invention has both the above-described small pore diameter and large pore diameter, for example, to perform a propylene-ethylene block copolymerization reaction.
  • the ethylene-propylene copolymer as a rubber component has a very small particle size around the propylene polymer particles (or in the matrix) and the propylene polymer particles.
  • Propylene polymer particles are further subdivided when the proportion of the rubber component is further increased, and the rubber component is generated in the gaps (between the subdivided propylene polymer particles).
  • the propylene block copolymer containing a rubber component at a very high ratio can be produced while reducing the adhesion of the polymer particles due to the stickiness (adhesiveness) of the copolymer particles. Conceivable.
  • the total pore volume of pores having a radius of 0.002 to 30 ⁇ m is preferably 0.65 to 2.0 cm 3 / g, and 0.70 to 1 more preferably .5cm 3 / g, still more preferably 0.75 ⁇ 1.2cm 3 / g.
  • the pore volume V1 derived from pores having a radius in the range of 0.002 ⁇ m to 1 ⁇ m is preferably 0.1 to 0.8 cm 3 / g, more preferably from .15 ⁇ 0.45cm 3 / g, further preferably from 0.20 ⁇ 0.40cm 3 / g, still more preferably 0.20 ⁇ 0.35cm 3 / g.
  • the pore volume V2 derived from pores having a radius of more than 1 ⁇ m and not more than 30 ⁇ m is preferably 0.3 to 1.5 cm 3 / g. 0.4 to 1.2 cm 3 / g is more preferable, and 0.5 to 0.9 cm 3 / g is still more preferable.
  • V1 / V2 is 0.30 to 0.65, preferably 0.30 to 0.60, and more preferably 0.30 to 0.55.
  • the solid catalyst component for olefin polymerization according to the present invention has a pore having a peak top in a pore radius range of 0.002 ⁇ m to 1 ⁇ m and a small peak diameter in a range exceeding 1 ⁇ m and a radius of 30 ⁇ m or less. It is considered that the adhesion of the polymer particles due to the stickiness (adhesiveness) of the copolymer particles can be effectively reduced by having the pores having a large opening diameter in the range of the pore volume ratio. .
  • the total pore volume, pore volume V1, and pore volume V2 are all measured by a mercury intrusion method using a mercury intrusion porosimeter (manufactured by Micromeritics, Autopore III9420). Value.
  • the solid catalyst component for olefin polymerization according to the present invention preferably has a specific surface area measured by BET method of 1 to 500 m 2 / g, more preferably 10 to 500 m 2 / g, more preferably 30 to 400m more preferably those which are 2 / g, it shall still more preferably 100 ⁇ 400m 2 / g.
  • the specific surface area means a value automatically measured by a BET method using a specific surface area measuring device (QUANTASORB QS-17 manufactured by QUANTA CHROME).
  • the resulting polymer When the specific surface area measured by the BET method of the solid catalyst component for olefin polymerization according to the present invention is within the above range, the resulting polymer also has moderate irregularities on the surface, and the resulting polymer Can be effectively reduced.
  • the adhesion due to stickiness (adhesiveness) of the polymer particles is extremely high. It is possible to provide a solid catalyst component for olefin polymerization that is low, excellent in fluidity, and capable of producing a polymer having a good particle size distribution.
  • the method for producing a solid catalyst component for olefin polymerization according to the present invention is a method for producing a solid catalyst component for olefin polymerization according to the present invention, A step of contacting a magnesium compound having an alkoxy group, a titanium halide compound and an internal electron donor, While contacting the magnesium compound having an alkoxy group and the titanium halide compound, while maintaining any one of the magnesium compound having the alkoxy group and the titanium halide compound at a temperature of 15 ° C. or less with respect to the other. It is characterized by being added continuously or intermittently over 2 hours or more.
  • the magnesium compound having an alkoxy group is preferably dialkoxymagnesium.
  • dialkoxymagnesium include one or more selected from diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium, dipentoxymagnesium, diisooctoxymagnesium, ethoxybutoxymagnesium and ethoxyisooctoxymagnesium, Diethoxymagnesium is preferred.
  • the said dialkoxy magnesium may be used individually by 1 type, or may be used together 2 or more types.
  • the magnesium compound having an alkoxy group has a secondary particle that is granular or powdery in a dry state, and its shape is usually spherical. However, it is not always necessary to have a true spherical shape, and may be an ellipsoidal shape.
  • the magnesium compound having an alkoxy group preferably has a ratio (l / w) of the major axis diameter l to the minor axis diameter w of the secondary particles of 3 or less, and preferably 1 or 2. More preferred is 1 to 1.5.
  • the magnesium compound having an alkoxy group has a multimodal pore volume distribution defined by the mercury intrusion method and a pore radius of 0.002 ⁇ m to 1 ⁇ m. It is preferable to have one or more peak tops in the range and in the range of more than 30 ⁇ m and less than the pore radius of 1 ⁇ m.
  • the magnesium compound having an alkoxy group has one or more peak tops in the pore radius range of 0.002 ⁇ m to 1 ⁇ m and one or more peak tops in the pore radius range of 0.01 ⁇ m to 0.5 ⁇ m. It is preferable that it has one or more peak tops in the pore radius range of 0.03 ⁇ m to 0.3 ⁇ m.
  • the magnesium compound having an alkoxy group preferably has 1 to 4 peak tops in the pore radius range of 0.002 ⁇ m to 1 ⁇ m, and preferably has 1 to 3 peak tops. More preferably, it has 1 to 2 peak tops.
  • the magnesium compound having an alkoxy group has one or more peak tops in the range of the pore radius exceeding 1 ⁇ m and not more than 30 ⁇ m, and having one or more peak tops in the pore radius range of 2 ⁇ m to 15 ⁇ m. It is more preferable to have one or more peak tops in the pore radius range of 3 ⁇ m to 10 ⁇ m.
  • the magnesium compound having an alkoxy group preferably has 1 to 3 peak tops in the range of a pore radius exceeding 1 ⁇ m and not more than 30 ⁇ m, and more preferably having 1 to 2 peak tops. Preferably, it has a single peak top.
  • the pore distribution of the magnesium compound having an alkoxy group means that measured by a mercury intrusion method using a mercury intrusion porosimeter (manufactured by Micromeritics, Autopore III 9420).
  • the magnesium compound having an alkoxy group functions as a carrier for the resulting solid catalyst component for olefin polymerization, has a multi-modal pore volume distribution defined by the mercury intrusion method, and has a pore radius of 0.002 ⁇ m.
  • a solid catalyst component for olefins polymerization having the same pore distribution can be easily obtained by having one or more peak tops in a range of ⁇ 1 ⁇ m and a pore radius exceeding 1 ⁇ m and not exceeding 30 ⁇ m. Can do.
  • the magnesium compound having an alkoxy group has a total pore volume of 1.3 to 3.0 cm 3 / g of pores having a radius of 0.002 to 30 ⁇ m. preferably not more, more preferably those which are 1.4 ⁇ 2.5cm 3 / g, more preferably those which are 1.5 ⁇ 2.2cm 3 / g.
  • the magnesium compound having an alkoxy group preferably has a pore volume derived from pores having a radius of 0.002 ⁇ m to 1 ⁇ m of 0.3 cm 3 / g or more, preferably 0.4 to 1.0 cm 3 / g. Some are more preferable, and 0.5 to 0.9 cm 3 / g is more preferable.
  • the magnesium compound having an alkoxy group preferably has a pore volume derived from pores having a radius of more than 1 ⁇ m and not more than 30 ⁇ m of 0.5 to 2.0 cm 3 / g, and 0.6 to 1.8 cm 3. / G is more preferred, 0.7 to 1.6 cm 3 / g is more preferred, and 0.8 to 1.5 cm 3 / g is even more preferred.
  • the total pore volume of the magnesium compound having an alkoxy group means a value measured by a mercury intrusion method using a mercury intrusion porosimeter (manufactured by Micromeritics, Autopore III9420).
  • the magnesium compound having an alkoxy group may contain an alcohol therein, and in this case, per 100 parts by mass of the magnesium compound having an alkoxy group. 0.1 to 1.5 parts by weight of alcohol is preferable, 0.2 to 1.2 parts by weight of alcohol is more preferable, and 0.4 to 1.0 part by weight of alcohol is preferably added. More preferably, it is included.
  • the magnesium compound having an alkoxy group preferably has a bulk specific gravity of 0.1 to 0.6 g / ml, preferably 0.2 to 0.5 g. / Ml is more preferred, and 0.25 to 0.40 g / ml is even more preferred.
  • examples of the halogenated titanium compound include one or more selected from titanium halide or alkoxy titanium halide.
  • Y is a halogen atom
  • R 7 is a linear or branched alkyl group having 1 to 7 carbon atoms
  • i is an integer of 1 to 4
  • each R 1 is They may be the same or different, and when there are a plurality of Y, each Y may be the same or different.
  • the tetravalent titanium compound represented by these can be mentioned.
  • examples of the halogen atom X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 7 is preferably a linear or branched alkyl group having 1 to 7 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, More preferably, it is an alkyl group having 1 to 4 carbon atoms.
  • R 7 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, and n-pentyl.
  • R 7 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, and n-pentyl.
  • titanium compound represented by the general formula (IV) examples include titanium tetrahalides (titanium tetrahalides) such as titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide, methoxy titanium trichloride, and ethoxy titanium.
  • titanium tetrahalides titanium tetrahalides
  • titanium tetrachloride titanium tetrabromide
  • titanium tetraiodide methoxy titanium trichloride
  • methoxy titanium trichloride methoxy titanium trichloride
  • ethoxy titanium titanium tetrahalides
  • titanium tetrahalide is preferable, and titanium tetrachloride is particularly preferable.
  • i is an integer of 1 to 4, and preferably 2 to 4.
  • the titanium compounds represented by the general formula (IV) may be used alone or in combination of two or more. Further, the titanium compound represented by the general formula (IV) may be diluted with a hydrocarbon compound or a halogenated hydrocarbon compound.
  • the electron donating compound is preferably an organic compound containing an oxygen atom or a nitrogen atom, such as alcohols, phenols, acid halides. , Acid amides, nitriles, acid anhydrides, ether compounds, organic acid esters, silicate esters, compounds having ether groups and ester groups, carbonate compounds having ether groups, aldehydes, ketones, carbonates One or more selected from the group consisting of esters, ethers and carbonates are preferred.
  • ether compounds such as monoethers, diethers and ether carbonates, and esters such as monocarboxylic acid esters and polycarboxylic acid esters are preferable, and aromatic compounds such as aromatic dicarboxylic acid diesters are preferred.
  • aromatic compounds such as aromatic dicarboxylic acid diesters are preferred.
  • polycarboxylic acid esters, aliphatic polycarboxylic acid esters, alicyclic polycarboxylic acid esters, diethers, and ether carbonates are more preferable.
  • Examples of the electron donating compound include phthalic acid ester, malonic acid ester, succinic acid ester, diether, cycloalkane carboxylic acid ester, cycloalkene carboxylic acid ester, carbonate ether, 1,3-diether, and the like.
  • phthalic acid diesters such as diethyl phthalate and dibutyl phthalate
  • malonic acid diesters such as dimethyl malonate and diethyl malonate
  • hydrocarbons such as dimethyl diisobutylmalonate, diethyl diisobutylmalonate and diethyl benzylidenemalonate
  • maleic acid diesters such as diethyl maleate and di-n-butyl maleate
  • carbonates having ether groups such as (2-ethoxyethyl) methyl carbonate and (2-ethoxyethyl) methyl carbonate
  • cycloalkane dicarboxylic acid diesters such as cyclohexane-1,2-dicarboxylic acid dimethyl, 1,1-norbornyl dicarboxylic acid diester
  • cycloalkenes such as 1-cyclohexene-1,2-dicarboxylic acid di-n-but
  • the method for producing a solid catalyst component for olefin polymerization comprises a step of contacting the magnesium compound having an alkoxy group, a titanium halide compound and an internal electron donor, and the magnesium compound having an alkoxy group and a halogen.
  • the titanium halide compound is brought into contact, either one of the magnesium compound having an alkoxy group and the titanium halide compound is continuously taken over 2 hours while maintaining a temperature of 15 ° C. or lower with respect to the other. Add intermittently or intermittently.
  • a magnesium compound having an alkoxy group is continuously added to a titanium halide compound over 2 hours while maintaining a temperature of 15 ° C. or lower. It is preferable to add intermittently.
  • a magnesium compound having an alkoxy group, a titanium halide compound and an internal electron donor may be contacted in the presence of an inert organic solvent.
  • the inert organic solvent is not particularly limited.
  • mineral Saturated hydrocarbon compounds such as oil
  • aromatic hydrocarbon compounds such as benzene, toluene, xylene and ethylbenzene
  • halogenated hydrocarbon compounds such as orthodichlorobenzene, methylene chloride, 1,2-dichlorobenz
  • saturated hydrocarbon compounds or aromatic hydrocarbon compounds which have a boiling point of about 50 to 200 ° C. and are liquid at room temperature are preferably used.
  • saturated hydrocarbon compounds or aromatic hydrocarbon compounds which have a boiling point of about 50 to 200 ° C. and are liquid at room temperature are preferably used.
  • One or more selected from toluene, xylene, and ethylbenzene are preferable, and one or more selected from hexane, heptane, ethylcyclohexane, and toluene are more preferable.
  • the magnesium compound having an alkoxy group when the magnesium compound having an alkoxy group, the titanium halide compound and the internal electron donor are brought into contact with each other, (i) the magnesium compound having an alkoxy group is continuously added.
  • an internal electron donor may be added to the resulting mixture, or (ii) a magnesium compound having an alkoxy group continuously or intermittently with the titanium halide compound Then, an internal electron donor may be added to the resulting mixture.
  • a magnesium compound having an alkoxy group and an internal electron donor may be continuously or intermittently added to the titanium halide compound, or (iv) the titanium halide compound and the internal electron donor are continuously added. Or you may add to the magnesium compound which has an alkoxy group intermittently. Further, (v) a part of the internal electron donor may be added to the magnesium compound having an alkoxy group, and after contacting with the titanium halide compound, the remaining internal electron donor may be added. As described above, when the internal electron donor is added separately before and after contacting the magnesium compound having an alkoxy group and the titanium halide compound, a solid catalyst component having a large pore volume can be easily obtained.
  • the internal electron donor may be added continuously, or may be added in small portions dividedly.
  • the magnesium compound having an alkoxy group and the titanium halide compound are brought into contact with each other, and then the internal electron donor is divided and added intermittently, that is, the magnesium compound having an alkoxy group and the titanium halide compound
  • the contact number of the internal electron donor is preferably 2 to 8 times, more preferably 2 to 6 times, and further preferably 2 to 4 times.
  • preferred contact forms of the magnesium compound having an alkoxy group, the titanium halide compound and the internal electronic compound are the following forms (1) to (4): Can be mentioned.
  • the contact may be performed in the presence of another reaction reagent such as silicon, phosphorus, aluminum, or a surfactant.
  • a magnesium compound having an alkoxy group is suspended in a hydrocarbon solvent, and then contacted with a titanium halide compound, followed by heating and contact with an internal electron donor to obtain a solid product.
  • a method for preparing a solid catalyst component for olefin polymerization according to the present invention by washing a product with a hydrocarbon solvent and then contacting with a titanium halide compound again in the presence of the hydrocarbon solvent. At this time, the solid component can be heat-treated in the presence or absence of a hydrocarbon solvent.
  • a titanium halide compound and an internal electron donor are contacted sequentially or simultaneously to obtain a solid product, and the solid product is inactivated.
  • a method for obtaining a solid catalyst component for olefin polymerization according to the present invention by washing with an organic solvent and then contacting and reacting with a titanium halide compound again in the presence of a hydrocarbon solvent. In this case, the solid component and the titanium halide compound can be contacted twice or more.
  • a magnesium compound having an alkoxy group and an internal electron donor are suspended in a hydrocarbon solvent, and the resulting suspension is contacted with and reacted with a titanium halide compound to obtain a solid product. Is washed with a hydrocarbon solvent, and further contacted with a titanium halide compound in the presence of a hydrocarbon solvent to obtain a solid catalyst component for olefin polymerization according to the present invention.
  • a magnesium compound having an alkoxy group is suspended in a hydrocarbon solvent, brought into contact with a titanium halide compound, heated, and contacted with an internal electron donor to obtain a solid product. Is washed with a hydrocarbon solvent and then contacted with a titanium halide compound again in the presence of the hydrocarbon solvent to prepare a solid catalyst component, in any of the steps of suspension, contact and catalytic reaction.
  • a method for preparing a solid catalyst component for olefin polymerization according to the present invention by contacting aluminum chloride.
  • the obtained product is made into a powdery solid catalyst component by removing the remaining solvent until the mass ratio with respect to the solid catalyst component is 1/3 or less, preferably 1/20 to 1/6. It is preferable to remove fine powder having a particle size of 11 ⁇ m or less mixed in the powdered solid catalyst component by means.
  • the magnesium compound having an alkoxy group and the titanium halide compound are brought into contact with each other, either the magnesium compound having an alkoxy group or the titanium halide compound is used. Is added continuously or intermittently over 2 hours while maintaining a temperature of 15 ° C. or lower.
  • the temperature (contact temperature) at the time of adding the magnesium compound or the titanium halide compound having the alkoxy group is 15 ° C. or less, preferably 10 ° C. or less, and more preferably 5 ° C. or less.
  • the lower limit of the addition temperature (contact temperature) is not particularly limited, but is usually ⁇ 20 ° C. or higher.
  • the addition time of the magnesium compound or titanium halide compound having an alkoxy group is 2 hours or more, preferably 2.5 hours or more, and more preferably 3 hours or more.
  • the upper limit of the addition time is not particularly limited, but is usually 10 hours or less.
  • the addition time is shorter than 2 hours, the pore volume of the resulting solid catalyst component for olefin polymerization is too small, the amount of coarse powder in the obtained solid catalyst component is likely to increase, and the particle size distribution is It becomes easy to get worse and the bulk specific gravity tends to be small.
  • the addition time is either one of the magnesium compound having an alkoxy group and the titanium halide compound. Means the sum of the actual addition times.
  • the amount of each component used in the preparation of the solid catalyst component for olefin polymerization varies depending on the preparation method, and thus cannot be specified unconditionally.
  • the amount of the halogenated titanium compound used per mole of the magnesium compound having an alkoxy group is 0.5 to 100 moles, preferably 0.5 to 50 moles, more preferably 1 to 10 moles, and a magnesium compound having an internal electron donor and an alkoxy group. Is preferably 0.01 to 10 mol, more preferably 0.01 to 1 mol, still more preferably 0.02 to 0.6 mol, and The amount used is preferably 0.001 to 500 mol, more preferably 0.001 to 100 mol, and 0.005 to 10 mol. More preferably a Le.
  • the adhesion due to stickiness (adhesiveness) of the polymer particles is extremely high. It is possible to provide a method for easily producing a solid catalyst component for olefin polymerization which is low and excellent in fluidity and capable of producing a polymer having a good particle size distribution.
  • the catalyst for olefin polymerization according to the present invention is a solid catalyst component for olefin polymerization according to the present invention, represented by the following general formula (I): R 1 p AlQ 3-p (I) (Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen atom, p is a real number of 0 ⁇ p ⁇ 3, and when a plurality of R 1 are present, 1 may be the same or different from each other, and when a plurality of Qs are present, each Q may be the same or different.) It consists of the contact material of the organoaluminum compound represented by these, and an external electron-donating compound.
  • organoaluminum compounds include trialkylaluminum such as triethylaluminum, triisopropylaluminum, tri-n-butylaluminum and triisobutylaluminum, alkylaluminum halide such as diethylaluminum chloride and diethylaluminum bromide, diethyl
  • alkylaluminum halide such as diethylaluminum chloride and diethylaluminum bromide
  • diethyl One or more selected from aluminum hydride and the like can be mentioned.
  • alkyl aluminum halides such as diethylaluminum chloride or trialkylaluminum such as triethylaluminum, tri-n-butylaluminum and triisobutylaluminum.
  • triethylaluminum and triisobutylaluminum Ri preferred.
  • the external electron donating compound is preferably a known external electron donating compound containing an oxygen atom or a nitrogen atom.
  • the external electron donating compound may be represented by the following general formula (II): R 2 q Si (OR 3 ) 4-q (II) (Wherein R 2 is an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group, a vinyl group, an allyl group, or an aralkyl group, which may be the same or different.
  • R 3 Is an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, an alkylamino group having 1 to 12 carbon atoms, a dialkylamino group having 1 to 12 carbon atoms, a vinyl group, an allyl group, or an aralkyl group. And may be the same or different, and q is an integer of 0 ⁇ q ⁇ 3).
  • organosilicon compound examples include phenylalkoxysilane, alkylalkoxysilane, phenyl (alkyl) alkoxysilane, cycloalkylalkoxysilane, cycloalkyl (alkyl) alkoxysilane, (alkylamino) alkoxysilane, alkyl (alkylamino) alkoxysilane, Examples include alkyl (dialkylamino) alkoxysilanes, cycloalkyl (alkylamino) alkoxysilanes, (polycyclic amino) alkoxysilanes, among others, di-n-propyldimethoxysilane, diisopropyldimethoxysilane, di-n-butyl.
  • the external electron donating compound may be represented by the following general formula (III): (R 4 R 5 N) s SiR 6 4-s (III) (Wherein R 4 and R 5 are each a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a vinyl group, an allyl group, an aralkyl group, or a cyclohexane having 3 to 20 carbon atoms.
  • R 6 is a straight chain having 1 to 20 carbon atoms or 3 carbon atoms; branched alkyl groups of to 20, a vinyl group, an allyl group, an aralkyl group, a cycloalkyl group or an aryl group having a carbon number of 3 to 20, if R 6 is plural, R 6 may be the same or different S is an integer of 1 to 3), and may be at least one selected from organic silicon compounds (aminosilane compounds).
  • organosilicon compound examples include alkyltris (alkylamino) silane, dialkylbis (alkylamino) silane, and trialkyl (alkylamino) silane. Specifically, bis (ethylamino) methylethylsilane And at least one selected from t-butylmethylbis (ethylamino) silane, bis (ethylamino) dicyclohexylsilane, dicyclopentylbis (ethylamino) silane, bis (methylamino) (methylcyclopentylamino) methylsilane, and the like.
  • t-butylmethylbis (ethylamino) silane bis (ethylamino) dicyclohexylsilane, dicyclopentylbis (ethylamino) silane and the like are preferable.
  • the external electron donating compound one or more selected from the organic silicon compounds represented by the above general formula (II) and the above general formula (III) may be used.
  • an olefin polymer By polymerizing olefins in the presence of the olefin polymerization catalyst according to the present invention, an olefin polymer can be obtained.
  • the polymerization of olefins may be homopolymerization or copolymerization.
  • the olefins used for polymerization include one or more selected from ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane, and the like.
  • One or more selected from butenes are preferred, and ethylene and propylene are more preferred.
  • the olefins used for copolymerization with propylene include ethylene, 1-butene, One or more selected from 1-pentene, 4-methyl-1-pentene, vinylcyclohexane and the like can be mentioned, and ethylene or 1-butene is preferred.
  • the organoaluminum compound represented by the general formula (I) is 1 to 2000 per 1 mole of titanium atom in the solid catalyst component for olefin polymerization. It is used in the range of mol, preferably 50 to 1000 mol.
  • the external electron donating compound is 0.002 to 10 mol, preferably 0.01 to 2 mol, particularly preferably 0.01 to 0.00 mol, per mol of the organoaluminum compound represented by the general formula (I). It is used in the range of 5 moles.
  • the contacting order of the above components is arbitrary, but the organoaluminum compound represented by the general formula (I) is first charged into the polymerization system, and then the external electron donating compound is contacted. It is desirable to contact the catalyst component.
  • Polymerization of olefins can be carried out in the presence or absence of an organic solvent, and olefin monomers such as propylene can be used in either a gas or liquid state.
  • a method for polymerizing olefins a homopolymerization method or a copolymerization method
  • a conventionally known method used for polymerization of 1-olefins having 2 to 10 carbon atoms can be used.
  • gas or Examples include slurry polymerization in which liquid monomer is supplied for polymerization, bulk polymerization in which polymerization is performed in the presence of a liquid monomer such as liquefied propylene, and gas phase polymerization in which polymerization is performed in the presence of a gaseous monomer.
  • a polymerization reaction can be carried out, and polymerization by gas phase polymerization is preferred.
  • each said polymerization method can be performed by either a batch type or a continuous type.
  • the polymerization reaction may be performed in one stage or in two or more stages.
  • examples of the polymerization reactor include reactors such as an autoclave with a stirrer and a fluidized tank. In this reactor, a granular or powdery polymer is accommodated as a stationary phase, and a motion can be given using a stirrer or a fluidized bed.
  • the molecular weight of the polymer to be obtained can be adjusted and set over a wide range by adding a regulator commonly used in the polymerization technique, for example, hydrogen. Further, as a copolymerization reaction, for example, when copolymerization of propylene and another comonomer is performed, the incorporation of the comonomer into the polymer chain is adjusted by appropriately adding an alkanol having 1 to 8 carbon atoms, particularly isopropanol. be able to. In order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or butane may be supplied and vaporized in the polymerization zone.
  • a regulator commonly used in the polymerization technique for example, hydrogen.
  • a copolymerization reaction for example, when copolymerization of propylene and another comonomer is performed, the incorporation of the comonomer into the polymer chain is adjusted by appropriately adding an alkanol having 1 to 8 carbon atoms, particularly isopropanol
  • the polymerization temperature is preferably 200 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 50 to 90 ° C.
  • the polymerization pressure is preferably from normal pressure to 10 MPa, more preferably from normal pressure to 5 MPa, and even more preferably from 1 to 4 MPa.
  • the copolymerization reaction for example, when copolymerizing propylene and other comonomer, it is preferable to adjust the partial pressure of propylene and comonomer to be 1:99 to 99: 1. More preferably, the pressure is adjusted to be 50:50 to 99: 1.
  • olefins other than propylene and propylene are copolymerized using the olefin polymerization catalyst according to the present invention
  • two or more olefins are continuously used. It is preferable to produce a propylene-based copolymer by copolymerizing the polymer.
  • the combination of two or more olefins is preferably a combination of propylene and an olefin other than propylene.
  • the olefins other than propylene include ethylene, 1-butene, 1-pentene, and 4-methyl-1-pentene. And one or more selected from vinylcyclohexane and the like, and ethylene or 1-butene is preferred.
  • the catalytic activity, stereoregularity, and particle properties of the resulting polymer are further improved. Therefore, it is desirable to perform prepolymerization prior to the main polymerization.
  • the same olefins as in the main polymerization or monomers such as styrene can be used.
  • the order of contacting the components and monomers constituting the olefin polymerization catalyst according to the present invention is arbitrary, but preferably in a prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere,
  • an organoaluminum compound represented by the general formula (I) is charged, and after contact with a solid catalyst component for olefin polymerization, an olefin such as propylene and / or one or more other olefins.
  • an organoaluminum compound represented by the general formula (I) is first charged into a prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere, and then A method in which an external electron donating compound is contacted and a solid catalyst component for olefin polymerization is further contacted, and then an olefin such as propylene and / or one or other two or more olefins is contacted is desirable.
  • the olefins are homopolymerized or copolymerized using the olefin polymerization catalyst according to the present invention, and in particular, propylene and ethylene are randomly copolymerized or blocked.
  • copolymerizing such as copolymerization it is possible to produce a polymer having extremely low adhesion due to stickiness (adhesiveness) of polymer particles, excellent fluidity, and good particle size distribution.
  • the propylene-based copolymer according to the present invention is characterized in that the pore volume measured by mercury porosimetry is 0.10 to 0.23 cm 3 / g.
  • a polymer such as a propylene polymer and a propylene-based copolymer mean polymer particles obtained by a polymerization reaction of olefins, that is, a reactor powder before processing of pelletizing or the like. .
  • the propylene-based copolymer according to the present invention is preferably a polymer of olefins containing propylene in the presence of the olefin polymerization catalyst according to the present invention.
  • the propylene-based copolymer according to the present invention is preferably obtained by multistage polymerization of two or more stages, and propylene is polymerized in the first stage polymerization, and then propylene and propylene in the subsequent stage (second stage or later) polymerization. More preferable is a copolymer obtained by copolymerizing one or more olefins selected from olefins other than propylene.
  • propylene is homopolymerized in the first stage polymerization (the second stage and subsequent stages). More preferably, the polymerization is performed by copolymerizing propylene and one or more olefins selected from olefins other than propylene, and propylene is homopolymerized in the first stage polymerization (homo stage), and then propylene and ethylene or More preferred is a copolymer obtained by copolymerizing one or more olefins selected from 1-butene. That's right.
  • the propylene copolymer according to the present invention is a pore volume measured by a mercury intrusion method of an olefin polymer obtained after the first stage polymerization (for example, propylene homopolymerization) in two or more stages of multistage polymerization. Is preferably in the range of 0.12 to 0.36 cm 3 / g, more preferably in the range of 0.13 to 0.35 cm 3 / g, and 0.18 to 0.26 cm 3 / g. Those in the range are more preferred.
  • the pore volume of the resulting propylene polymer is easily within the above range.
  • the target copolymer can be easily obtained by subsequently copolymerizing olefins other than propylene and propylene in a system in which such propylene polymer exists.
  • the pore volume of the propylene homopolymer produced in the previous step is within the above range, the ethylene-propylene copolymer produced in the subsequent step is easily taken into the pores of the propylene homopolymer, and the stickiness is reduced. A copolymer excellent in fluidity can be obtained while being suppressed.
  • the pore volume of the said propylene homopolymer means the value measured by the mercury intrusion method.
  • the propylene copolymer according to the present invention is a propylene copolymer obtained after the second and subsequent polymerizations (for example, copolymerization of propylene and other olefins other than propylene) in two or more stages of multistage polymerization.
  • the combined pore volume measured by mercury porosimetry is in the range of 0.10 to 0.23 cm 3 / g, and preferably in the range of 0.12 to 0.20 cm 3 / g. More preferably, it is in the range of 0.13 to 0.20 cm 3 / g.
  • the component causing the stickiness of the particle surface is likely to stay inside the pores of the polymer particle, and the flowability of the copolymer particle is improved.
  • the propylene-based copolymer according to the present invention preferably has pores having a pore radius of 0.1 to 40 ⁇ m, more preferably 1 to 20 ⁇ m, as measured by mercury porosimetry. Those having pores of ⁇ 10 ⁇ m are more preferable.
  • the propylene-based copolymer according to the present invention has a large number of pores having the above pore radii, so that a polymer produced in the second and subsequent polymerization steps is obtained by the first polymerization (for example, Propylene homopolymer) is easily taken into the pores, stickiness of the surface of the obtained copolymer is suppressed, and excellent fluidity can be easily exhibited.
  • the propylene-based copolymer according to the present invention is obtained by multistage polymerization of two or more stages, and the polymerization after the second stage (at any stage) with respect to the pore volume of the polymer obtained after the first stage polymerization.
  • Volume ratio of the pore volume of the olefin polymer obtained later ⁇ (the pore volume of the olefin polymer obtained after the polymerization after the second stage (in any stage) / the polymer obtained after the first stage polymerization) (Pore volume) ⁇ 100 ⁇ is preferably in the range of 30 to 99%, more preferably in the range of 35 to 95%, still more preferably in the range of 40 to 90%, and 50 to 90%. % Is more preferable.
  • polymerization after the second stage relative to the pore volume of the polymer obtained after the first stage polymerization for example, homopolymerization of propylene
  • polymerization after the second stage relative to the pore volume of the polymer obtained after the first stage polymerization for example, homopolymerization of propylene
  • olefins other than propylene and propylene for example, of olefins other than propylene and propylene
  • the volume ratio of the pore volume of the propylene-based copolymer obtained after copolymerization is within the above range, so that the content of the polymer (for example, copolymer component) produced in the second and subsequent polymerizations is more Even under polymerization conditions such as a large amount, the polymer produced in the second and subsequent polymerization steps can be easily taken into the pores of the polymer obtained by the first polymerization (for example, a homopolymer of propylene), Since stickiness of the surface of the obtained copolymer is suppressed, a copolymer having excellent fluidity can be obtained.
  • the first polymerization for example, a homopolymer of propylene
  • the propylene-based copolymer particles according to the present invention preferably have at least one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m in the pore volume distribution measured by mercury porosimetry. Those having at least one peak top in the range of radius 1 ⁇ m to 20 ⁇ m are more preferable, those having at least one peak top in the range of pore radius 1 ⁇ m to 10 ⁇ m are more preferable, and range of pore radius 1.5 ⁇ m to 5 ⁇ m Those having at least one peak top are more preferred.
  • the propylene-based copolymer By having at least one peak top in the above range in the pore volume distribution measured by the mercury intrusion method, the propylene-based copolymer (causing stickiness) tends to stay inside the pores of the polymer particles, Since the particle surface is less sticky, the flowability of the copolymer is easily improved.
  • the propylene-based copolymer according to the present invention has a half-value width ( ⁇ m) of the pore volume distribution peak with respect to a peak top pore radius ( ⁇ m) of the pore volume distribution in at least one peak having the peak top.
  • Ratio full width at half maximum of pore volume distribution peak ( ⁇ m) / peak top pore radius of pore volume distribution ( ⁇ m) is preferably 2.0 or less, and preferably 1.9 or less. More preferred is 0.5 to 1.8.
  • the ratio represented by the half-value width ( ⁇ m) of the above-mentioned pore volume distribution peak / peak top pore radius ( ⁇ m) of the pore volume distribution is 2.0 or less, an appropriate amount dispersed throughout the polymer particles
  • the propylene-based copolymer tends to stay inside the pores having a pore size and volume, the particle surface is less sticky, and the flowability of the copolymer particles is easily improved.
  • the peak top pore radius of the pore volume distribution means the pore volume distribution for each pore radius when the pore volume of the obtained copolymer is automatically measured by the mercury intrusion method. It means the pore radius ( ⁇ m) indicating the peak top, and the half width of the pore volume distribution peak is the pore radius at two points at half the height of the peak indicating the peak top of the pore volume distribution. Means the absolute value of the difference.
  • the total pore volume in the range of pore radius 1 ⁇ 20 [mu] m as measured by mercury porosimetry is 0.09 ⁇ 0.21cm 3 / g , more preferably those which are 0.09 ⁇ 0.18cm 3 / g, more preferably those which are 0.10 ⁇ 0.17cm 3 / g.
  • the total pore volume in the pore radius range of 1 to 20 ⁇ m measured by the mercury intrusion method is within the above range, the content of the olefin copolymer obtained after the second and subsequent polymerizations is larger. Under such polymerization conditions, the copolymer produced in the second and subsequent polymerization steps is easily taken into the pores of the copolymer particles, and the resulting copolymer surface is prevented from stickiness, Excellent fluidity can be easily exhibited.
  • the propylene-based copolymer according to the present invention preferably has a polymer fluidity represented by a polymer falling amount per second (g / sec) of 12.0 or more, and is 12.5 or more. More preferably, it is more preferably 13.0 or more.
  • the polymer fluidity of the propylene-based copolymer is represented by the amount of polymer falling per second (g / sec), and a damper 2 is provided at the outlet position as shown in FIG.
  • the intervening funnel 1 (upper caliber: 91 mm, damper position caliber: 8 mm, tilt angle: 20 °, height to the damper position; 114 mm) is set at the upper part, and the lower part of the damper 2 is spaced by 38 mm.
  • a container-like receiver 3 inner diameter: 40 mm, height: 81 mm
  • 50 g of propylene copolymer was introduced into the funnel 1, and the damper 2 was opened at room temperature (20 ° C.).
  • a propylene-based copolymer having excellent powder fluidity can be easily adhered to the reactor and piping during polymerization and during transportation after polymerization. Can be manufactured.
  • the particle size distribution index (SPAN) of the propylene copolymer according to the present invention is preferably 1 or less, more preferably 0.96 or less, and even more preferably 0.93 or less.
  • the particle size distribution index (SPAN) of the propylene-based copolymer is the value of the copolymer obtained using a digital image analysis type particle size distribution measuring device (Camsizer, manufactured by Horiba, Ltd.).
  • the volume-based cumulative particle size means a value calculated by the following formula based on a particle size of 10% (D 10 ), a particle size of 50% (D 50 ), and a particle size of 90% (D 90 ).
  • Particle size distribution index (SPAN) (90% particle size by volume-based cumulative particle size (D 90 ) ⁇ 10% particle size by volume-based cumulative particle size (D 10 )) / 50% particle size by volume-based cumulative particle size ( D 50)
  • the resulting propylene polymer has high stereoregularity.
  • the xylene soluble content (XS) of the homo PP is preferably 1.5% by mass or less, and more preferably 1.0% by mass or less.
  • xylene solubles means 4.0 g of the obtained polymer and 200 ml of p-xylene in a flask equipped with a stirrer, and the external temperature is xylene.
  • XS xylene solubles
  • the obtained diethoxymagnesium has ethanol content, bulk specific gravity, average particle size, radius in the range of 0.002 ⁇ m to 1 ⁇ m, presence / absence of peak top in the range of more than 1 ⁇ m and not more than 30 ⁇ m, and peaks in each of the above radius ranges.
  • the pore volume and total pore volume of the pores were measured.
  • the ethanol content was 0% by mass
  • the bulk specific gravity was 0.27 g / ml
  • the average particle size was 27.8 ⁇ m
  • the number of peak tops in the radius range of 0.002 ⁇ m to 1 ⁇ m measured by the mercury intrusion method was one.
  • the peak top position is 0.15 ⁇ m
  • the pore volume v1 in such a range is 0.78 cm 3 / g
  • the number of peak tops in the range of more than 30 ⁇ m in radius is 1 ⁇ m
  • the peak top position is 3.8 ⁇ m.
  • the total pore volume of pores having a pore volume v2 of 1.21 cm 3 / g and a radius of 0.002 ⁇ m to 30 ⁇ m was 1.99 cm 3 / g.
  • the volume ratio represented by the pore volume v1 / pore volume v2 was 0.64. The results are shown in Table 1.
  • the ethanol content, bulk density, average particle diameter, pore volume and porosity were measured by the following methods.
  • the ethanol content of diethoxymagnesium is based on the weight loss when a eggplant type flask is filled with a 20 g sample and dried at room temperature for 1 hour, further at 50 ° C. for 2 hours, and at a reduced pressure of 0.02 to 0.05 mmHg. Asked.
  • Average particle size As the average particle size of alkoxymagnesium, a particle size corresponding to an integrated volume particle size of 50%, ethanol as a dispersion solvent, and a laser diffraction particle size distribution measuring device (MICROTRAC HRA Model No. 9320-X100 manufactured by Nikkiso Co., Ltd.) And measured.
  • the average particle size of the solid catalyst component is a particle size corresponding to an accumulated volume particle size of 50%, n-heptane is used as a dispersion solvent, and a laser diffraction particle size distribution analyzer (MICROTRAC MT3300EXII manufactured by Nikkiso Co., Ltd.) is used. Measured.
  • the pore volume of the alkoxymagnesium and the solid catalyst component was automatically determined by using a mercury intrusion method porosimeter (manufactured by Micromeritics, Autopore III9420) and filling a 5 ml powder sample with 0.1 to 0.2 g of the sample. Obtained by measuring. At this time, the measurement range was between a pore radius of 0.002 to 30 ⁇ m.
  • the number of peak tops in the radius range of 0.002 ⁇ m to 1 ⁇ m measured by 1 is one, the peak top position is 0.10 ⁇ m, the pore volume v1 in such a range is 0.69 cm 3 / g, the radius is over 1 ⁇ m and the range is less than 30 ⁇ m 1 has a peak top number of 1, a peak top position of 3.8 ⁇ m, a pore volume v2 in such a range is 1.09 cm 3 / g, and a total pore volume of pores having a radius of 0.002 ⁇ m to 30 ⁇ m is 1.78 cm 3. / G.
  • the volume ratio represented by the pore volume v1 / pore volume v2 was 0.63. The results are shown in Table 1.
  • Example 1 Preparation of solid catalyst component> A 200 ml round bottom flask equipped with a stirrer and fully substituted with nitrogen gas was charged with 10 g of the spherical diethoxymagnesium powder obtained in Production Example 1, 50 ml of toluene and 3.6 ml of di-n-butyl phthalate. And suspended. Then, the suspension solution was placed in a mixed solution of 26 ml of toluene and 24 ml of titanium tetrachloride previously charged in a 500 ml round bottom flask equipped with a stirrer and sufficiently substituted with nitrogen gas inside. It was added over time.
  • the temperature of the reaction system was maintained in the range of ⁇ 7 to ⁇ 2 ° C. After completion of the addition, the temperature was raised to 90 ° C., and a contact reaction was carried out over 1 hour with stirring. After completion of the reaction, the reaction product was washed twice with 100 ml of toluene at 100 ° C., 24 ml of titanium tetrachloride and 76 ml of toluene were further added, and contact reaction was conducted with stirring at 110 ° C. for 2 hours. The produced solid component was washed 10 times with 200 ml of n-heptane at 40 ° C.
  • the BET specific surface area (BET method N 2 SA) was measured by the same method as in Production Example 1, and the BET specific surface area (BET method N 2 SA) was measured by the following method.
  • the BET method has a specific surface area (N 2 SA) of 113 m 2 / g, an average particle diameter of 31.2 ⁇ m, and a peak top number of 2 in the radius range of 0.002 ⁇ m to 1 ⁇ m measured by the mercury intrusion method.
  • the top position is 0.007 ⁇ m and 0.15 ⁇ m
  • the pore volume V1 in such a range is 0.28 cm 3 / g
  • the number of peak tops in the range of more than 1 ⁇ m radius and 30 ⁇ m or less is one
  • the peak top position is 5.1 ⁇ m
  • the pore volume V2 was 0.75 cm 3 / g
  • the total pore volume of pores having a radius of 0.002 ⁇ m to 30 ⁇ m was 1.03 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.37.
  • the results are shown in Table 2.
  • the BET specific surface area was measured by the following method.
  • the BET specific surface area of the solid catalyst component was determined by automatically measuring a sample filled with 0.05 to 0.1 g in a sample cell using a specific surface area measuring device (QUANTASORB QS-17 manufactured by QUANTA CHROME).
  • PP polymerization activity per gram of solid catalyst component The PP polymerization activity (g-pp / g-catalyst) per gram of the solid catalyst component was determined by the following calculation formula.
  • PP polymerization activity (g-pp / g-catalyst) mass of propylene polymer (PP) obtained (g) / mass of solid catalyst component contained in olefin polymerization catalyst (g)
  • ⁇ Polymer pore volume of polymer> The pore volume of the homostage polymer (PP) was measured by using a mercury porosimeter (manufactured by Micromeritics, Autopore IV9505), filling a 5 ml powder sample with 0.4 to 0.6 g of the sample, and injecting the mercury.
  • the pore volume of the polymer was determined by automatic measurement by the method. At this time, the measurement range was between a pore radius of 0.1 to 40 ⁇ m.
  • ethylene / propylene was introduced into the autoclave (reactor) so that the molar ratio was 1.0 / 1.0, and then the temperature was raised to 70 ° C., and ethylene / propylene / hydrogen were By introducing the gas supply rate per liter (liter / minute) at a rate of 2/2 / 0.086, the reaction was carried out under the conditions of 1.2 MPa, 70 ° C., 60 minutes, thereby producing ethylene-propylene. A copolymer was obtained.
  • I (g) is autoclave mass (g) after completion of the copolymerization reaction
  • G (g) is autoclave mass (g) after removal of the unreacted monomer after completion of the homo PP polymerization reaction.
  • EPR content (mass%) [C (g) / ⁇ B (g) + C (g) ⁇ ] ⁇ 100
  • the funnel 1 (upper diameter: 91 mm, damper position diameter: 8 mm, inclination angle: 20 °, height to the damper position; 114 mm) with a damper 2 interposed at the outlet position is set at the top.
  • a container-like receiver 3 inner diameter: 40 mm, height: 81 mm
  • 50 g of the polymer is introduced into the upper funnel 1 Under (20 ° C.)
  • the damper 2 was opened, the polymer was dropped into the receiver 3, and the time for all the polymers to drop was measured.
  • ⁇ Peak top pore radius of pore volume distribution and half width of pore volume distribution peak The pore volume of the obtained homostage polymer (PP) and copolymer (ICP) in the pore radius range of 0.1 ⁇ m to 40 ⁇ m is automatically measured by the mercury intrusion method, and the pores corresponding to the respective pore radii are measured.
  • the pore radius ( ⁇ m) showing the peak top in the volume distribution was defined as the peak top pore radius of the pore volume distribution.
  • the half-value width of the pore volume distribution peak was the absolute value of the difference between the pore radii at two points at the half height of the peak showing the peak top in the pore volume distribution of the copolymer.
  • Example 2 When a suspension of diethoxymagnesium, toluene and di-n-butylphthalate is added to a mixed solution of toluene and titanium tetrachloride, the reaction system is maintained at a temperature ranging from ⁇ 7 to ⁇ 2 ° C. to 3 to 8 ° C.
  • a solid catalyst component was prepared in the same manner as in Example 1 except that the temperature was changed to the range of ° C.
  • the specific surface area (N 2 SA) by BET method was 66 m 2 / g, the average particle size was 28.2 ⁇ m, the mercury intrusion method.
  • the number of peak tops in the range of radius 0.002 ⁇ m to 1 ⁇ m measured by 2 is two, the peak top position is 0.008 ⁇ m and 0.24 ⁇ m, and the pore volume V1 in such a range exceeds 0.30 cm 3 / g, radius 1 ⁇ m
  • the number of peak tops in a range of 30 ⁇ m or less is one, the peak top position is 5.1 ⁇ m, the pore volume V2 in such a range is 0.75 cm 3 / g, and the total pore volume of pores having a radius of 0.002 ⁇ m to 30 ⁇ m is It was 1.05 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.40. The results are shown in Table 2.
  • Example 2 In the same manner as in Example 1 except that the solid catalyst component was used, preparation of an olefin polymerization catalyst and an ethylene / propylene block copolymerization catalyst, propylene polymerization and ethylene / propylene block copolymerization were performed, and various physical properties were measured. .
  • the results are shown in Table 3, Table 4 and Table 5.
  • the obtained ethylene-propylene copolymer had one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m.
  • the number of peak tops in the range of radius 0.002 ⁇ m to 1 ⁇ m measured by 2 is two, the peak top position is 0.007 ⁇ m and 0.15 ⁇ m, and the pore volume V1 in such a range exceeds 0.44 cm 3 / g, radius 1 ⁇ m
  • the number of peak tops in a range of 30 ⁇ m or less is one, the peak top position is 3.8 ⁇ m, the pore volume V2 in such a range is 0.64 cm 3 / g, and the total pore volume of pores having a radius of 0.002 ⁇ m to 30 ⁇ m is It was 1.08 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.69. The results are shown in Table 2.
  • Example 3 Preparation of solid catalyst component> A 200 ml round bottom flask equipped with a stirrer and fully substituted with nitrogen gas was charged with 10 g of spherical diethoxymagnesium powder prepared in Preparation Example 2, 50 ml of toluene and 3.6 ml of di-n-butyl phthalate. Into a suspended state. The suspension was then added over a period of 4 hours to a solution of 26 ml toluene and 24 ml titanium tetrachloride pre-charged in a 500 ml round bottom flask equipped with a stirrer and thoroughly substituted with nitrogen gas. .
  • the temperature of the reaction system was maintained in the range of ⁇ 7 to ⁇ 2 ° C.
  • the mixed solution was stirred for 1 hour while maintaining at ⁇ 5 ° C., then heated to 100 ° C. over 4 hours, and reacted for 2 hours with stirring.
  • the product was washed four times with 100 ml of toluene at 100 ° C., 24 ml of titanium tetrachloride and 76 ml of toluene were further added, and contact reaction was carried out for 2 hours while stirring at a temperature of 80 ° C.
  • the product was washed 7 times with 40 ° C. heptane, filtered and dried to obtain a powdery solid catalyst component.
  • the various physical properties of the obtained solid catalyst component were measured by the same method as in Example 1.
  • the average particle size was 23.3 ⁇ m, and the peak top number in the radius range of 0.002 ⁇ m to 1 ⁇ m measured by the mercury intrusion method.
  • the peak top position is 0.006 ⁇ m and 0.10 ⁇ m
  • the pore volume V1 in such a range is 0.21 cm 3 / g
  • the number of peak tops in the range of more than 1 ⁇ m radius and 30 ⁇ m or less is one
  • the peak top position is
  • the pore volume V2 in such a range was 0.61 cm 3 / g
  • the total pore volume of pores having a radius of 0.002 to 30 ⁇ m was 0.82 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.34.
  • the results are shown in Table 2.
  • the results are shown in Table 3, Table 4 and Table 5.
  • the obtained ethylene-propylene copolymer had one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m.
  • the specific surface area (N 2 SA) by the BET method was 2.0 m 2 / g, the average particle size was 23.3 ⁇ m, mercury
  • the number of peak tops in the radius range of 0.002 ⁇ m to 1 ⁇ m measured by the press-fitting method is 2, the peak top positions are 0.006 ⁇ m and 0.10 ⁇ m, the pore volume V1 in such a range is 0.19 cm 3 / g, and the radius is 1 ⁇ m. 1 and the peak top position is 5.1 ⁇ m, and the pore volume V2 is 0.65 cm 3 / g and the radius is 0.002 ⁇ m to 30 ⁇ m.
  • the volume was 0.84 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.29.
  • the results are shown in Table 2.
  • the results are shown in Table 3, Table 4 and Table 5.
  • Example 4 A solid catalyst component was prepared in the same manner as in Example 3 except that 75 microliters of ethanol was added to 10 g of diethoxymagnesium when diethoxymagnesium powder, toluene and di-n-butylphthalate were brought into contact with each other. The various physical properties of the obtained solid catalyst component were measured in the same manner as in Example 1. As a result, the average particle size was 27.2 ⁇ m, and the peak top number was 2 in the range of radius 0.002 ⁇ m to 1 ⁇ m measured by mercury porosimetry.
  • the peak top position is 0.006 ⁇ m and 0.10 ⁇ m
  • the pore volume V1 in such a range is 0.23 cm 3 / g
  • the number of peak tops in the range of more than 30 ⁇ m in radius is 1 ⁇ m
  • the peak top position is 5
  • the pore volume V2 was 0.69 cm 3 / g
  • the total pore volume of pores having a radius of 0.002 to 30 ⁇ m was 0.92 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.33. The results are shown in Table 2.
  • Example 5 Instead of putting 10 g of spherical diethoxymagnesium powder, 50 ml of toluene and 3.6 ml of di-n-butyl phthalate into a suspended state, 10 g of spherical diethoxymagnesium powder, 50 ml of toluene and di-phthalate Example 3 was carried out except that 1.8 ml of n-butyl was charged and the mixed solution was heated to 100 ° C. over 4 hours, except that 1.8 ml of di-n-butyl phthalate was added at 60 ° C. In the same manner as described above, a solid catalyst component was prepared. The various physical properties of the obtained solid catalyst component were measured by the same method as in Example 1.
  • the average particle size was 25.4 ⁇ m, and the peak top number in the radius range of 0.002 ⁇ m to 1 ⁇ m was measured by the mercury intrusion method.
  • the peak top position is 0.006 ⁇ m and 0.08 ⁇ m
  • the pore volume V1 in such a range is 0.27 cm 3 / g
  • the number of peak tops in the range of more than 1 ⁇ m radius and 30 ⁇ m or less is one
  • the peak top position is
  • the pore volume V2 in the above range was 0.67 cm 3 / g
  • the total pore volume of pores having a radius of 0.002 to 30 ⁇ m was 0.94 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.40.
  • Example 6 Using the solid catalyst component obtained in Example 5, the copolymerization reaction was further carried out under the conditions of 1.2 MPa, 70 ° C. and 100 minutes instead of the copolymerization reaction under the conditions of 1.2 MPa, 70 ° C. and 60 minutes. Except for the above, the preparation of an ethylene / propylene block copolymerization catalyst and the ethylene / propylene block copolymerization were carried out in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 4 and Table 5. The obtained ethylene-propylene copolymer had one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m.
  • Example 7 In the preparation of the solid catalyst component described in Example 1, 10 g of the spherical diethoxymagnesium powder obtained in Production Example 2 was used instead of 10 g of the spherical diethoxymagnesium powder obtained in Production Example 1, and di-n-phthalate was used. Instead of charging 3.6 ml of butyl, 150 ⁇ l of absolute ethanol and 1.8 ml of di-n-butyl phthalate were charged. After the addition of the suspension solution, the temperature was raised to 90 ° C. while stirring. Instead of carrying out contact reaction over time, the mixture was stirred for 1 hour while being kept in the range of 3 to 7 ° C., then heated to 110 ° C.
  • Example 1 a powdery solid catalyst component was obtained in the same manner as in Example 1 except that the contact reaction was carried out over 2 hours with stirring at 110 ° C.
  • Various physical properties of the obtained solid catalyst component were measured in the same manner as in Example 1.
  • the formation of an olefin polymerization catalyst and propylene polymerization were carried out in the same manner as in Example 1 except that the solid catalyst component was used.
  • diethylamino was used instead of cyclohexylmethyldimethoxysilane.
  • the pore volume V1 in such a range is 0.33 cm 3 / g
  • the number of peak tops in the range of more than 30 ⁇ m in radius is 1 ⁇ m
  • the peak top position is 5.1 ⁇ m
  • the pore volume V2 in such a range is 0
  • the total pore volume of pores having a diameter of .70 cm 3 / g and a radius of 0.002 ⁇ m to 30 ⁇ m was 1.03 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.47.
  • the obtained ethylene-propylene copolymer had one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m.
  • Example 8 In the preparation of the solid catalyst component described in Example 1, instead of charging 10 g of the spherical diethoxymagnesium powder obtained in Production Example 1, 50 ml of toluene and 3.6 ml of di-n-butyl phthalate, 10 g of the obtained spherical diethoxymagnesium powder and 30 ml of toluene were charged, and the suspension was kept in a mixed solution of 26 ml of toluene and 24 ml of titanium tetrachloride while maintaining the temperature of the reaction system in the range of ⁇ 7 to ⁇ 2 ° C.
  • the suspension was kept in a mixed solution of 26 ml of toluene and 24 ml of titanium tetrachloride while keeping the temperature of the reaction system in the range of ⁇ 8 to ⁇ 4 ° C.
  • the temperature was raised to 90 ° C., and instead of carrying out the contact reaction with stirring for 1 hour, the temperature was kept in the range of ⁇ 8 to ⁇ 4 ° C. for 1 hour.
  • Example 1 After stirring, 3.2 ml of 2-ethoxyethyl-1-ethyl carbonate and 1.4 ml of 2-isopropyl 2-isopentyl-1,3-dimethoxypropane were added, the temperature was raised to 100 ° C., and the mixture was stirred at 100 ° C. for 2 hours.
  • a powdered solid catalyst component was obtained in the same manner as in Example 1 except that the contact reaction was carried out.
  • Various physical properties of the obtained solid catalyst component were measured in the same manner as in Example 1. Further, the formation of an olefin polymerization catalyst and propylene polymerization were carried out in the same manner as in Example 1 except that the above solid catalyst component was used.
  • Example 6 in the same manner as in Example 6 except that the solid catalyst component obtained above was used. Preparation of ethylene / propylene block copolymerization catalyst and ethylene / propylene block copolymerization were carried out, and various physical properties were measured. The results are shown in Table 2, Table 3, Table 4, and Table 5.
  • the obtained solid catalyst component had an average particle diameter of 27.8 ⁇ m, two peak tops in a radius range of 0.002 ⁇ m to 1 ⁇ m measured by mercury porosimetry, a peak top position of 0.01 ⁇ m, and a.
  • the pore volume V1 in this range is 0.40 cm 3 / g
  • the number of peak tops in the range of more than 1 ⁇ m radius and 30 ⁇ m or less is one
  • the peak top position is 5.1 ⁇ m
  • the pore volume V2 in this range is 0
  • the total pore volume of pores having a radius of .77 cm 3 / g and a radius of 0.002 ⁇ m to 30 ⁇ m was 1.17 cm 3 / g.
  • the volume ratio represented by the pore volume V1 / pore volume V2 was 0.52.
  • the obtained ethylene-propylene copolymer had one peak top in the pore radius range of 0.1 ⁇ m to 40 ⁇ m.
  • the solid catalyst component for olefin polymerization contains titanium, magnesium, a halogen atom and an internal electron donor, and is measured by a mercury intrusion method.
  • the pore volume distribution is multimodal, each having a peak radius of 0.002 ⁇ m to 1 ⁇ m and a pore radius of 0.002 ⁇ m to 1 ⁇ m and a pore radius of more than 1 ⁇ m and less than 30 ⁇ m.
  • the ratio represented by the pore volume V2 derived from pores in the range of pores V1 / the pore volume V2 derived from pores in the range of radius exceeding 1 ⁇ m and not more than 30 ⁇ m is 0.30 to 0.65.
  • the olefin polymerization solid catalyst component obtained in Comparative Example 1 and Comparative Example 2 has a pore volume V1 derived from pores having a radius in the range of 0.002 ⁇ m to 1 ⁇ m. / Because the ratio represented by the pore volume V2 derived from pores in the range of radius greater than 1 ⁇ m and less than 30 ⁇ m is outside the range of 0.30 to 0.65, the amount of fines is large and the particle size distribution is low It can be seen that the amount of coarse powder is large (Comparative Example 1) (Comparative Example 2) and the fluidity of the polymer is poor.
  • adhesion due to stickiness (adhesiveness) of polymer particles when polymerizing olefins, particularly when carrying out a copolymerization reaction such as random copolymerization or block copolymerization of propylene and ethylene, adhesion due to stickiness (adhesiveness) of polymer particles.
  • a solid catalyst component for olefin polymerization capable of producing a polymer having an extremely low flow rate, excellent fluidity and good particle size distribution, and a method for producing a solid catalyst component for olefin polymerization, and a catalyst for olefin polymerization.
  • a method for producing a propylene-based copolymer can be provided.
  • the propylene-based copolymer according to the present invention is a propylene-based block copolymer (ICP) having a high propylene / ethylene copolymer (EPR) content, in particular, a large molded article having excellent rigidity and impact resistance is obtained. Since it can be provided with high quality and at low cost, it is very useful in fields such as automobile parts and home appliance parts that require high rigidity and high impact resistance.
  • ICP propylene-based block copolymer
  • EPR ethylene copolymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合反応を行う際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を提供する。 チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65であることを特徴とするオレフィン類重合用固体触媒成分である。

Description

オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体
 本発明は、オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体の製造方法に関する。
 従来より、オレフィン類を重合もしくは共重合させるオレフィン類の重合方法として、マグネシウム、チタン及びハロゲン原子を必須成分として含有する固体触媒成分および有機アルミニウム化合物からなるオレフィン類重合用触媒の存在下に、オレフィン類を重合もしくは共重合させる方法が数多く提案されている。
 所望特性を有するオレフィン類重合体を得る上で、上記固体触媒成分のモフォロジー(粒子構造)の制御は重要であり、多くの検討がなされている。
 例えば、特許文献1(特開平6-41217号公報)、特許文献2(特開平6-65314号公報)、特許文献3(特開平6-220117号公報)、特許文献4(特開平7-300507号公報)、特許文献5(特表2003-502487号公報)および特許文献6(特表2010-513625号公報)には、アルコール含有率を制御した塩化マグネシウムのアルコール付加物を用い、さらに四塩化チタンやアルキルアルミニウムで処理することによって調製された固体触媒成分と、有機アルミニウム化合物よりなるオレフィン類重合用触媒の存在下で、オレフィン類を重合する方法が開示されており、上記固体触媒成分によってエチレン重合体の分子量分布や嵩密度、低分子量エチレン重合体での形態安定性、エチレン・1-ブテン共重合体のコモノマー均一性を改善することが提案されている。
特開平6-41217号公報 特開平6-65314号公報 特開平6-220117号公報 特開平7-300507号公報 特表2003-502487号公報 特表2010-513625号公報
 上述したとおり、オレフィン類としてエチレンはもちろん、プロピレンを重合もしくは共重合する上でも、上記固体触媒成分のモフォロジーの制御は重要であり、ここでプロピレンおよびエチレンの共重合体は、幅広い用途で使用されている一方で、プロピレン単独重合体に比較して製造時にべたつきを生じやすいため、重合反応槽、配管、貯蔵容器などの内壁に付着し、閉塞等を引き起こし易く、また、上記付着に伴って、得られるプロピレン共重合体粒子の流動性や粒度分布の低下を招き易くなる。
 上記オレフィン類の重合または共重合時におけるオレフィン類重合体の付着や付着に伴う配管等の閉塞等を解決する方法として、例えば固体触媒成分の細孔容積や細孔径を制御することにより、プロピレン共重合体粒子の付着性等を改善する方法が挙げられる。
 また、上記プロピレン共重合体粒子の流動性や粒度分布の低下を解決する方法として、アルコールを含有ないし接触させたジアルコキシマグネシウムと、ハロゲン化チタン化合物を接触させてなる固体触媒成分を用いてプロピレン共重合体粒子を得ることによって、微粉や粗粉の発生を抑制し、揮発性有機成分を低減させる方法が挙げられる。
 しかしながら、上述した方法によっても、必ずしもオレフィン類重合体のべたつき(粘着性)を抑制することができず、流動性が高く、粒度分布の良好なプロピレン共重合体粒子を製造する上では、充分に満足できるものではなかった。
 上記粒度分布を改善する方法として、事後的に微粉除去処理を施し、界面活性剤で処理する方法も挙げられるが、この場合、固体触媒成分の製造工程が煩雑になり、歩留りが低下する等、固体触媒成分の生産性が低下してしまう。
 このような状況下、本発明は、オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合する際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびプロピレン系共重合体の製造方法を提供することを目的とするものである。
 上記技術課題を解決するために本発明者等が鋭意検討した結果、チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65であるオレフィン類重合用固体触媒成分を使用して、オレフィン類を重合または共重合すれば、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、
 水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、
半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65である
ことを特徴とするオレフィン類重合用固体触媒成分、
(2)水銀圧入法により測定される全細孔容積が0.65~2.00cm/gである上記(1)に記載のオレフィン類重合用固体触媒成分、
(3)前記半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1が0.1~0.8cm/gである上記(1)に記載のオレフィン類重合用固体触媒成分、
(4)前記半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2が0.3~1.5cm/gである上記(1)に記載のオレフィン類重合用固体触媒成分、
(5)BET法により測定される比表面積が1~500m/gである上記(1)に記載のオレフィン類重合用固体触媒成分、
(6)前記内部電子供与体が、エステル化合物、エーテル化合物およびカーボネート化合物から選ばれる一種以上である上記(1)に記載のオレフィン類重合用固体触媒成分、
(7)上記(1)に記載のオレフィン類重合用固体触媒成分を製造する方法であって、
 アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる工程を有し、
 前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物を接触させる際に、前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を、他方に対して、15℃以下の温度を保持しながら、2時間以上をかけて、連続的あるいは断続的に添加する
ことを特徴とするオレフィン類重合用固体触媒成分の製造方法、
(8)前記アルコキシ基を有するマグネシウム化合物が、ジアルコキシマグネシウムである上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(9)前記アルコキシ基を有するマグネシウム化合物が、球状又は楕円体状の粒子形状を有し、水銀圧入法により規定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有する上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(10)前記アルコキシ基を有するマグネシウム化合物の水銀圧入法により規定される全細孔容積が1.3~3.0cm/gである、上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(11)前記アルコキシ基を有するマグネシウム化合物は、水銀圧入法により規定される細孔半径0.002μm~1μmの範囲の細孔に由来する細孔容積が0.3cm/g以上である上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(12)前記アルコキシ基を有するマグネシウム化合物は、水銀圧入法により規定される細孔半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積が0.5~2.0cm/gである上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(13)前記アルコキシ基を有するマグネシウム化合物が、アルコキシ基を有するマグネシウム化合物100質量部あたり0.1~1.5質量部のアルコールを含むものである上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(14)前記アルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物を接触させる工程において、ハロゲン化チタン化合物に、アルコキシ基を有するマグネシウム化合物を、15℃以下の温度を保持しながら、2時間以上をかけて連続的あるいは断続的に添加する、上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(15)アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物またはアルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物の混合物に対し、内部電子供与体を2回以上接触させる上記(7)に記載のオレフィン類重合用固体触媒成分の製造方法、
(16)上記(1)に記載のオレフィン類重合用固体触媒成分、下記一般式(I)
  R AlQ3-p    (I)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは同一であっても異なっていてもよい。)
で表される有機アルミニウム化合物および外部電子供与性化合物の接触物からなることを特徴とするオレフィン類重合用触媒、
(17)外部電子供与性化合物が、下記一般式(II)
 R Si(OR4-q     (II)
(式中、Rは炭素数1~12のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。Rは炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、フェニル基、炭素数1~12のアルキルアミノ基、炭素数1~12のジアルキルアミノ基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。qは0≦q≦3の整数である。)および下記一般式(III)
 (RN)SiR 4-s    (III)
(式中、RとRは水素原子、炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基、アリール基であり、同一でも異なってもよく、またRとRが互いに結合して環を形成してもよい。Rは炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基またはアリール基であり、Rが複数ある場合、複数のRは同一でも異なってもよい。sは1から3の整数である。)から選ばれる一種以上の有機ケイ素化合物である上記(16)に記載のオレフィン類重合用触媒、
(18)上記(16)に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法、
(19)上記(16)に記載のオレフィン類重合用触媒を用いてプロピレンを重合させた後、引き続き2種以上のオレフィン類を共重合させることを特徴とするプロピレン系共重合体の製造方法、
(20)水銀圧入法により測定される細孔容積が0.10~0.23cm/gであることを特徴とするプロピレン系共重合体、
(21)2段階以上の多段重合によって得られ、
 1段目の重合後に得られる重合体の細孔容積に対する2段目以降の重合後に得られるオレフィン重合体の細孔容積の容積割合が、30~99%の範囲にある、上記(20)に記載のプロピレン系共重合体、
(22)水銀圧入法により測定される細孔容積分布において細孔半径0.1μm~40μmの範囲に少なくとも1つのピークトップを有し、かつ、
 前記ピークトップを有する少なくとも1つのピークにおいて、細孔容積分布のピークトップ細孔半径に対する、上記細孔容積分布ピークの半値幅の比が2.0以下である上記(20)に記載のプロピレン系共重合体、
(23)細孔半径1~20μmの範囲における細孔容積の合計が0.09~0.21cm/gである上記(20)に記載のプロピレン系共重合体、
を提供するものである。
 本発明によれば、オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合反応を行う場合に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を提供できるとともに、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体を提供することができる。
本発明の実施例および比較例で使用したプロピレンブロック共重合体の高温粉体流動性を測定する装置の概略説明図である。
 本発明に係るオレフィン類重合用固体触媒成分は、チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65であることを特徴とするものである。
 本発明に係るオレフィン類重合用固体触媒成分は、チタン、マグネシウム、ハロゲン原子および内部電子供与体を含む。
 上記チタンおよびハロゲン原子としては、後述するハロゲン化チタン化合物に由来するものであることが好ましい。
 ハロゲン原子として、具体的には、フッ素原子、塩素原子、臭素原子およびヨウ素原子から選ばれる一種以上を挙げることができ、塩素原子、臭素原子おおよびヨウ素原子から選ばれる一種以上が好ましく、塩素原子およびヨウ素原子から選ばれる一種以上がより好ましい。
 また、上記マグネシウムとしては、後述するアルコキシ基を有するマグネシウム化合物に由来するものであることが好ましい。
 上記電子供与性化合物としては、酸素原子あるいは窒素原子を含有する有機化合物であることが好ましく、例えば、アルコール類、フェノール類、酸ハライド類、酸アミド類、ニトリル類、酸無水物、エーテル化合物類、有機酸エステル類、ケイ酸エステル類、エーテル基とエステル基を有する化合物、エーテル基を有する炭酸エステル化合物、アルデヒド類、ケトン類、カーボネート類から選ばれる一種以上を挙げることができ、エステル類、エーテル類およびカーボネート類から選ばれる一種以上が好ましい。
 内部電子供与体としては、モノエーテル類、ジエーテル類、エーテルカーボネート類等のエーテル化合物や、モノカルボン酸エステル類、ポリカルボン酸エステル類などのエステル類が好ましく、芳香族ジカルボン酸ジエステル等の芳香族ポリカルボン酸エステル類、脂肪族ポリカルボン酸エステル類、脂環族ポリカルボン酸エステル類、ジエーテル類、およびエーテルカーボネート類から選ばれる一種以上がより好ましい。
 上記電子供与性化合物として、具体的には、フタル酸ジエチル、フタル酸ジブチルなどのフタル酸ジエステル類、マロン酸ジメチル、マロン酸ジエチルなどのマロン酸ジエステル、ジイソブチルマロン酸ジメチル、ジイソブチルマロン酸ジエチル、ベンジリデンマロン酸ジエチルなどの炭化水素置換マロン酸ジエステル、マレイン酸ジエチル、マレイン酸ジ-n-ブチルなどのマレイン酸ジエステル、炭酸(2-エトキシエチル)メチル、炭酸(2-エトキシエチル)メチル等のエーテル基を有する炭酸エステル化合物、シクロヘキサン-1,2-ジカルボン酸ジメチル、1,1-ノルボルニルジカルボン酸ジエステルなどのシクロアルカンジカルボン酸ジエステルおよび、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレン等の1,3-ジエーテルから選ばれる一種以上を挙げることができる。
 上記電子供与性化合物の詳細については、後述する本発明に係るオレフィン類重合用固体触媒成分の製造方法の説明で述べるとおりである。
 本発明に係るオレフィン類重合用固体触媒成分において、本発明の目的を達成し得る限り、各成分の組成は特に限定されない。
 固体触媒成分中のマグネシウム(マグネシウム原子)の含有量は、10~40質量%であることが好ましく、10~30質量%であることがより好ましく、13~25質量%であることがさらに好ましい。
固体触媒成分中のチタン(チタン原子)の含有量は、0.1~10質量%であることが好ましく、0.5~8.0質量%であることがより好ましく、1.0~5.0質量%であることがさらに好ましい。
 固体触媒成分中のハロゲン原子の含有量は、20~89質量%であることが好ましく、30~85質量%であることがより好ましく、40~75質量%であることがさらに好ましい。
 固体触媒成分中の内部電子供与体の含有量は、0.5~40質量%であることが好ましく、1~30質量%であることがより好ましく、2~25質量%であることがさらに好ましい。
なお、本発明に係るオレフィン類重合用固体触媒成分は、上記各成分の他、さらに、ケイ素やリン、アルミニウム等の金属を含む反応試剤を含有するものであってもよい。
 上記反応試剤としては、Si-O-C結合を有する有機ケイ素化合物、Si-N-C結合を有する有機ケイ素化合物、P-O結合を有するリン酸化合物、トリアルキルアルミニウム、ジアルコキシアルミニウムクロライド、アルコキシアルミニウムジハライド、トリアルコキシアルミニウム等の有機アルミニウム化合物およびアルミニウムトリハライド等から選ばれる一種以上が好ましく、Si-O-C結合を有する有機ケイ素化合物、Si-N-C結合を有する有機ケイ素化合物および有機アルミニウム化合物から選ばれる一種以上がより好ましい。
 このような反応試剤を含む固体触媒成分は、プロピレンやプロピレンと他のオレフィンとの重合に供した際に、重合活性や立体規則性を容易に向上させることができる。
 本発明に係るオレフィン類重合用固体触媒成分は、平均粒径が、1~100μmであることが好ましく、10~70μmであることがより好ましい。
 なお、本出願書類において、オレフィン類重合用固体触媒成分の平均粒径は、レーザー光散乱回折法粒度測定機を用いて測定したときの、平均粒子径D50(体積積算粒度分布における積算粒度で50%の粒径)を意味する。
 本発明に係るオレフィン類重合用固体触媒成分は、水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有するものである。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径0.002μm~1μmの範囲に1以上のピークトップを有するものであり、細孔半径0.01μm~0.5μmの範囲に1以上のピークトップを有するものであることが好ましく、細孔半径0.03μm~0.3μmの範囲に1以上のピークトップを有するものであることがより好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径0.002μm~1μmの範囲に、1~4本のピークトップを有するものであることが好ましく、1~3本のピークトップを有するものであることがより好ましく、1~2本のピークトップを有するものであることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径1μmを超え30μm以下の範囲に1以上のピークトップを有するものであり、細孔半径2μm~15μmの範囲に1以上のピークトップを有するものであることが好ましく、細孔半径3μm~10μmの範囲に1以上のピークトップを有するものであることがより好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径1μmを超え30μm以下の範囲に1~3本のピークトップを有するものであることが好ましく、1~2本のピークトップを有するものであることがより好ましく、1本のピークトップを有するものであることがさらに好ましい。
 なお、本出願書類において、オレフィン類重合用固体触媒成分の細孔分布は、水銀圧入ポロシメーター(マイクロメリティックス社製、オートポアIII9420)を用い、水銀圧入法により測定されるものを意味する。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径0.002μm~1μmの範囲にピークトップを有する開口径の小さな細孔が存在することにより、付着性の高い共重合体を重合体粒子内部に微分散させた重合物が得られると考えられ、また、細孔半径1μmを超え30μm以下の範囲にピークトップを有する開口径の大きな細孔が存在することにより、上記開口径の小さな細孔に留まりきらない大量の共重合体や、流動性を有する共重合体を重合体粒子内部に留めておくことができると考えられ、このために、共重合体粒子のべたつき(粘着性)に起因する重合体粒子の付着性を低減し得ると考えられる。
 より具体的には、本発明に係るオレフィン類重合用固体触媒成分が、上述した開口径の小さな細孔と開口径の大きな細孔を両方有することにより、例えばプロピレン-エチレンブロック共重合反応を行う場合に、プロピレン重合工程に続くエチレン-プロピレン共重合工程において、プロピレン重合体粒子の周辺(あるいはマトリックス中)にゴム成分であるエチレン-プロピレン共重合体が非常に小さい粒径でかつプロピレン重合体粒子中に微分散した形態で生成すると考えられ、さらにゴム成分の割合を高めるとプロピレン重合体粒子がさらに細分化され、その隙間(細分化されたプロピレン重合体粒子間)にゴム成分が生成していき、重合後にゴム成分が移動しても、重合体粒子内部に留まり、重合体粒子表面にまで移動することが少ないと考えられることから、共重合体粒子のべたつき(粘着性)に起因する重合体粒子の付着性を低減しつつ非常に高い割合でゴム成分を含有するプロピレンブロック共重合体を製造し得ると考えられる。
 本発明に係るオレフィン類重合用固体触媒成分は、半径0.002μm~30μmの細孔の全細孔容積が、0.65~2.0cm/gであることが好ましく、0.70~1.5cm/gであることがより好ましく、0.75~1.2cm/gであることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分において、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1が、0.1~0.8cm/gであることが好ましく、0.15~0.45cm/gであることがより好ましく、0.20~0.40cm/gであることがさらに好ましく、0.20~0.35cm/gであることがさらに好ましい。
 また、本発明に係るオレフィン類重合用固体触媒成分において、半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2が、0.3~1.5cm/gであることが好ましく、0.4~1.2cm/gであることがより好ましく、0.5~0.9cm/gであることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分において、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比(V1/V2)は、0.30~0.65であり、0.30~0.60であることが好ましく、0.30~0.55であることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、細孔半径0.002μm~1μmの範囲にピークトップを有する開口径の小さな細孔と、細孔半径1μmを超え30μm以下の範囲にピークトップを有する開口径の大きな細孔とを上記細孔容積比の範囲で有することにより、共重合体粒子のべたつき(粘着性)に起因する重合体粒子の付着性を効果的に低減し得ると考えられる。
 なお、本出願書類において、上記全細孔容積、細孔容積V1、細孔容積V2は、いずれも、水銀圧入ポロシメーター(マイクロメリティックス社製、オートポアIII9420)を用い、水銀圧入法により測定される値を意味する。
 本発明に係るオレフィン類重合用固体触媒成分は、BET法により測定される比表面積が、1~500m/gであるものが好ましく、10~500m/gであるものがより好ましく、30~400m/gであるものがさらに好ましく、100~400m/gであるものが一層好ましい。
 なお、本出願書類において、比表面積は、BET法により、比表面積測定機(QUANTA CHROME社製QUANTASORB QS-17)を用いて自動測定される値を意味する。
 本発明に係るオレフィン類重合用固体触媒成分のBET法により測定される比表面積が上記範囲内にあるものであることにより、得られる重合体も表面に適度な凹凸を有し、得られる重合体の付着性を効果的に低減することができる。
 本発明によれば、オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合する際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を提供することができる。
 次に、本発明に係るオレフィン類重合用固体触媒成分の製造方法について説明する。
本発明に係るオレフィン類重合用固体触媒成分の製造方法は、本発明に係るオレフィン類重合用固体触媒成分を製造する方法であって、
 アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる工程を有し、
 前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物を接触させる際に、前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を、他方に対して、15℃以下の温度を保持しながら、2時間以上をかけて、連続的あるいは断続的に添加する
ことを特徴とするものである。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物としては、ジアルコキシマグネシウムが好ましい。
 ジアルコキシマグネシウムとしては、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、ジペントキシマグネシウム、ジイソオクトキシマグネシウム、エトキシブトキシマグネシウムおよびエトキシイソオクトキシマグネシウム等から選ばれる一種以上を挙げることができ、ジエトキシマグネシウムであることが好ましい。
なお、上記ジアルコキシマグネシウムは1種単独で用いても、2種以上併用してもよい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物は、その二次粒子が、乾燥状態では顆粒状又は粉末状であり、その形状は通常球形状であるが、必ずしも真球形状である必要はなく、楕円体形状であってもよい。
 具体的には、アルコキシ基を有するマグネシウム化合物は、二次粒子の長軸径lと短軸径wとの比(l/w)が3以下であるものが好ましく、1~2であるものがより好ましく、1~1.5であるものがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物は、水銀圧入法により規定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有することが好ましい。
 アルコキシ基を有するマグネシウム化合物は、細孔半径0.002μm~1μmの範囲に1以上のピークトップを有するものであり、細孔半径0.01μm~0.5μmの範囲に1以上のピークトップを有するものであることが好ましく、細孔半径0.03μm~0.3μmの範囲に1以上のピークトップを有するものであることがより好ましい。
 アルコキシ基を有するマグネシウム化合物は、細孔半径0.002μm~1μmの範囲に、1~4本のピークトップを有するものであることが好ましく、1~3本のピークトップを有するものであることがより好ましく、1~2本のピークトップを有するものであることがさらに好ましい。
 アルコキシ基を有するマグネシウム化合物は、細孔半径1μmを超え30μm以下の範囲に1以上のピークトップを有するものであり、細孔半径2μm~15μmの範囲に1以上のピークトップを有するものであることが好ましく、細孔半径3μm~10μmの範囲に1以上のピークトップを有するものであることがより好ましい。
 アルコキシ基を有するマグネシウム化合物は、細孔半径1μmを超え30μm以下の範囲に1~3本のピークトップを有するものであることが好ましく、1~2本のピークトップを有するものであることがより好ましく、1本のピークトップを有するものであることがさらに好ましい。
 なお、本出願書類において、アルコキシ基を有するマグネシウム化合物の細孔分布は、水銀圧入ポロシメーター(マイクロメリティックス社製、オートポアIII 9420)を用い、水銀圧入法により測定されるものを意味する。
 アルコキシ基を有するマグネシウム化合物は、得られるオレフィン類重合用固体触媒成分の担体として機能するものであって、水銀圧入法により規定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有するものであることにより、同様の細孔分布を有するオレフィン類重合用固体触媒成分を容易に得ることができる。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物は、半径0.002μm~30μmの細孔の全細孔容積が、1.3~3.0cm/gであるものが好ましく、1.4~2.5cm/gであるものがより好ましく、1.5~2.2cm/gであるものがさらに好ましい。
 上記アルコキシ基を有するマグネシウム化合物は、半径0.002μm~1μmの細孔に由来する細孔容積が、0.3cm/g以上であるものが好ましく、0.4~1.0cm/gであるものがより好ましく、0.5~0.9cm/gであるものがさらに好ましい。
 上記アルコキシ基を有するマグネシウム化合物は、半径1μmを超え30μm以下の細孔に由来する細孔容積が、0.5~2.0cm/gであるものが好ましく、0.6~1.8cm/gであるものがより好ましく、0.7~1.6cm/gであるものがさらに好ましく、0.8~1.5cm/gであるものが一層好ましい。
 本出願書類において、上記アルコキシ基を有するマグネシウム化合物の全細孔容積、半径0.002μm~1μmの範囲の細孔に由来する細孔容積、半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積は、いずれも、水銀圧入ポロシメーター(マイクロメリティックス社製、オートポアIII9420)を用い、水銀圧入法により測定される値を意味する。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物は、内部にアルコールを含有するものであってもよく、この場合、アルコキシ基を有するマグネシウム化合物100質量部あたり、0.1~1.5質量部のアルコールを含むものであることが好ましく、0.2~1.2質量部のアルコールを含むものであることがより好ましく、0.4~1.0質量部のアルコールを含むものであることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物は、嵩比重が、0.1~0.6g/mlであるものが好ましく、0.2~0.5g/mlであるものがより好ましく、0.25~0.40g/mlであるものがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、ハロゲン化チタン化合物としては、チタンハライドもしくはアルコキシチタンハライドから選ばれる一種以上を挙げることができ、例えば、下記一般式(IV)
  TiY(OR4-i         (IV)
(式中Yはハロゲン原子、Rは炭素数1~7の直鎖状または分岐鎖状のアルキル基、iは1~4の整数であり、Rが複数存在する場合、各Rは同一であっても異なっていてもよく、またYが複数存在する場合、各Yは同一であっても異なっていてもよい。)
で表される四価のチタン化合物を挙げることができる。
 一般式(IV)で表わされるチタン化合物において、ハロゲン原子Xとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 一般式(IV)で表わされるチタン化合物において、Rは、炭素数1~7の直鎖状または分岐状のアルキル基であって、炭素数が1~5のアルキル基であることが好ましく、炭素数が1~4のアルキル基であることがより好ましい。
 一般式(IV)で表わされるチタン化合物において、Rの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基等を挙げることができる。
 一般式(IV)で表わされるチタン化合物として、具体的には、四塩化チタン、四臭化チタン、四ヨウ化チタン等の四ハロゲン化チタン(チタンテトラハライド)や、メトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジブトキシチタンジクロライド、トリメトキシチタンクロライド、エトキシチタントリクロライド、トリプロポキシチタンクロライド、トリブトキシチタンクロライド等のアルコキシチタンハライド等が挙げられる。
 一般式(IV)で表わされるチタン化合物としては、四ハロゲン化チタンが好ましく、中でも四塩化チタンが特に好ましい。
 一般式(IV)で表わされるチタン化合物において、iは1~4の整数であり、2~4であることが好ましい。
 一般式(IV)で表わされるチタン化合物は単独で用いてもよいし、2種以上併用してもよい。
 さらに、一般式(IV)で表わされるチタン化合物は、炭化水素化合物あるいはハロゲン化炭化水素化合物で希釈されてなるものであってもよい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、電子供与性化合物としては、酸素原子あるいは窒素原子を含有する有機化合物であることが好ましく、例えば、アルコール類、フェノール類、酸ハライド類、酸アミド類、ニトリル類、酸無水物、エーテル化合物類、有機酸エステル類、ケイ酸エステル類、エーテル基とエステル基を有する化合物、エーテル基を有する炭酸エステル化合物、アルデヒド類、ケトン類、カーボネート類から選ばれる一種以上を挙げることができ、エステル類、エーテル類およびカーボネート類から選ばれる一種以上が好ましい。
 内部電子供与体としては、モノエーテル類、ジエーテル類、エーテルカーボネート類等のエーテル化合物や、モノカルボン酸エステル類、ポリカルボン酸エステル類などのエステル類が好ましく、芳香族ジカルボン酸ジエステル等の芳香族ポリカルボン酸エステル類、脂肪族ポリカルボン酸エステル類、脂環族ポリカルボン酸エステル類、ジエーテル類、およびエーテルカーボネート類から選ばれる一種以上がより好ましい。
 上記電子供与性化合物として、例えば、フタル酸エステル、マロン酸エステル、コハク酸エステル、ジエーテル、シクロアルカンカルボン酸エステル、シクロアルケンカルボン酸エステル、カーボネートエーテル、1,3-ジエーテル等を挙げることができ、具体的には、フタル酸ジエチル、フタル酸ジブチルなどのフタル酸ジエステル類、マロン酸ジメチル、マロン酸ジエチルなどのマロン酸ジエステル、ジイソブチルマロン酸ジメチル、ジイソブチルマロン酸ジエチル、ベンジリデンマロン酸ジエチルなどの炭化水素置換マロン酸ジエステル、マレイン酸ジエチル、マレイン酸ジ-n-ブチルなどのマレイン酸ジエステル、炭酸(2-エトキシエチル)メチル、炭酸(2-エトキシエチル)メチル等のエーテル基を有する炭酸エステル化合物、シクロヘキサン-1,2-ジカルボン酸ジメチル、1,1-ノルボルニルジカルボン酸ジエステルなどのシクロアルカンジカルボン酸ジエステル、1-シクロヘキセン-1,2-ジカルボン酸ジ-n-ブチル等のシクロアルケンジカルボン酸ジエステル、2-エトキシエチル-1-フェニルカーボネート等のカーボネートエーテル、9,9-ビス(メトキシメチル)フルオレン等の1,3-ジエーテルおよび、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパンから選ばれる一種以上を挙げることができる。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法は、上記アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる工程を有し、上記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物を接触させる際に、上記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を、他方に対して、15℃以下の温度を保持しながら、2時間以上をかけて、連続的あるいは断続的に添加する。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法においては、ハロゲン化チタン化合物に、アルコキシ基を有するマグネシウム化合物を、15℃以下の温度を保持しながら、2時間以上をかけて連続的あるいは断続的に添加することが好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、上記アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる際、アルコキシ基を有するマグネシウム化合物にアルコールを含有させてもよい。アルコキシ基を有するマグネシウム化合物にアルコールを含有させることによって、得られる固体触媒成分の細孔容積をさらに増大させることができる。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法においては、アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を不活性有機溶媒の共存下に、接触させてもよい。
 この場合、不活性有機溶媒としては、特に制限されないが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2-ジエチルシクロヘキサン、メチルシクロヘキセン、デカリン、ミネラルオイル等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、1,2-ジクロロベンゼン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物等から選ばれる一種以上を挙げることができる。
 上記不活性有機溶媒としては、沸点が50~200℃程度の、常温で液状の飽和炭化水素化合物あるいは芳香族炭化水素化合物が好ましく用いられ、中でも、ヘキサン、ヘプタン、オクタン、エチルシクロヘキサン、ミネラルオイル、トルエン、キシレン、エチルベンゼンから選ばれる一種以上が好ましく、ヘキサン、ヘプタン、エチルシクロヘキサンおよびトルエンから選ばれるいずれか一種以上がより好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、上記アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる場合、(i)アルコキシ基を有するマグネシウム化合物を連続的あるいは断続的にハロゲン化チタン化合物に添加した後、得られた混合物に内部電子供与体を添加してもよいし、(ii)ハロゲン化チタン化合物を連続的あるいは断続的にアルコキシ基を有するマグネシウム化合物に添加した後、得られた混合物に内部電子供与体を添加してもよい。
 また、(iii)アルコキシ基を有するマグネシウム化合物および内部電子供与体を連続的あるいは断続的にハロゲン化チタン化合物に添加してもよいし、(iv)ハロゲン化チタン化合物および内部電子供与体を連続的あるいは断続的にアルコキシ基を有するマグネシウム化合物に添加してもよい。
さらに、(v)内部電子供与体の一部をアルコキシ基を有するマグネシウム化合物に添加し、次いでハロゲン化チタン化合物と接触させた後、残りの内部電子供与体を添加してもよい。このように内部電子供与体をアルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物とを接触させる前後に分割して添加した場合には、細孔容積の大きな固体触媒成分を容易に得ることができる。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法においては、内部電子供与体を連続的に添加してもよいし、少量ずつ分割して断続的に添加してもよい。
 アルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物とを接触させた後、内部電子供与体を少量ずつ分割して断続的に添加する場合、すなわち、アルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物との混合物に対し、内部電子供与体を2回以上接触させる場合、内部電子供与体の接触回数は、2~8回が好ましく、2~6回がより好ましく、2~4回がさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法において、アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子化合物の好適な接触形態としては、以下の(1)~(4)の形態を挙げることができる。
 なお、本発明に係るオレフィン類重合用固体触媒成分の製造方法においては、上記接触は、例えば、ケイ素、リン、アルミニウム等の他の反応試剤や界面活性剤の共存下に行ってもよい。
(1)アルコキシ基を有するマグネシウム化合物を炭化水素溶媒に懸濁させた後、ハロゲン化チタン化合物と接触させ、次いで昇温し、内部電子供与体と接触させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタン化合物と接触させて本発明に係るオレフィン類重合用固体触媒成分を調製する方法。
 なおこの際、上記固体成分を、炭化水素溶媒の存在下又は不存在下で加熱処理することもできる。
(2)アルコキシ基を有するマグネシウム化合物を炭化水素溶媒に懸濁させた後、ハロゲン化チタン化合物および内部電子供与体を順次あるいは同時に接触反応させて固体生成物を得、該固体生成物を不活性有機溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタン化合物と接触・反応させて本発明に係るオレフィン類重合用固体触媒成分を得る方法。
 なおこの際、上記固体成分とハロゲン化チタン化合物とを2回以上接触させることもできる。
(3)アルコキシ基を有するマグネシウム化合物および内部電子供与体を炭化水素溶媒に懸濁させ、得られた懸濁液をハロゲン化チタン化合物と接触、反応させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄後、さらに炭化水素溶媒の存在下、ハロゲン化チタン化合物を接触させて本発明に係るオレフィン類重合用固体触媒成分を得る方法。
(4)アルコキシ基を有するマグネシウム化合物を炭化水素溶媒に懸濁させ、ハロゲン化チタン化合物と接触させた後昇温し、内部電子供与体と接触反応させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタン化合物と接触させて固体触媒成分を調製する方法であって、上記懸濁・接触並びに接触反応のいずれかの段階において、塩化アルミニウムを接触させて本発明に係るオレフィン類重合用固体触媒成分を調製する方法。
 得られた生成物は、該固体触媒成分に対する質量比で1/3以下、好ましくは1/20~1/6になるまで残留する溶媒を除くことで粉末状固体触媒成分とし、気流分級等の手段により該粉末固体触媒成分に混在する粒径11μm以下の微粉を除去することが好ましい。
 本発明に係るオレフィン類重合用固体触媒成分の製造方法においては、アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物を接触させる際に、上記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を、他方に対して、15℃以下の温度を保持しながら、2時間以上をかけて、連続的あるいは断続的に添加する。
 上記アルコキシ基を有するマグネシウム化合物またはハロゲン化チタン化合物の添加時の温度(接触温度)は、15℃以下であり、10℃以下が好ましく、5℃以下がより好ましい。上記添加温度(接触温度)の下限は特に制限されないが、通常、-20℃以上である。
 上記添加時の温度(接触温度)が15℃よりも高くなると、得られるオレフィン類重合用固体触媒成分の細孔容積と嵩比重のバランスが低下し易くなり、得られる固体触媒成分中の微粉量も増加し易くなる。
 上記アルコキシ基を有するマグネシウム化合物またはハロゲン化チタン化合物の添加時間は、2時間以上であり、2.5時間以上が好ましく、3時間以上がより好ましい。上記添加時間の上限は特に制限されないが、通常、10時間以下である。
 上記添加時間が2時間より短くなると、得られるオレフィン類重合用固体触媒成分の細孔容積が小さくなり過ぎ、また、得られる固体触媒成分中の粗粉量が増加し易くなるとともに、粒度分布が悪化し易くなって、嵩比重が小さくなり易くなる。
 なお、上記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を他方に対して断続的に添加する場合、上記添加時間は、アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を実際に添加する時間の合計を意味する。
 オレフィン類重合用固体触媒成分を調製する際の各成分の使用量は、調製法により異なるため一概には規定できないが、例えばアルコキシ基を有するマグネシウム化合物1モルあたり、ハロゲン化チタン化合物の使用量が、0.5~100モルであることが好ましく、0.5~50モルであることがより好ましく、1~10モルであることがさらに好ましく、また、内部電子供与体およびアルコキシ基を有するマグネシウム化合物の合計使用量は、0.01~10モルであることが好ましく、0.01~1モルであることがより好ましく、0.02~0.6モルであることがさらに好ましく、さらに、溶媒の使用量は、0.001~500モルであることが好ましく、0.001~100モルであることがより好ましく、0.005~10モルであることがさらに好ましい。
 本発明によれば、オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合する際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を簡便に製造する方法を提供することができる。
 次に、本発明に係るオレフィン類重合用触媒について説明する。
 本発明に係るオレフィン類重合用触媒は、本発明に係るオレフィン類重合用固体触媒成分、下記一般式(I)
  R AlQ3-p    (I)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは同一であっても異なっていてもよい。)
で表される有機アルミニウム化合物および外部電子供与性化合物の接触物からなることを特徴とするものである。
 上記一般式(I)で表される有機アルミニウム化合物としては、特に制限されないが、Rとしては、エチル基およびイソブチル基から選ばれる一種以上を挙げることができ、Qとしては、水素原子、塩素原子および臭素原子から選ばれる一種以上を挙げることができ、pは、2、2.5又は3が好ましく、3であることが特に好ましい。
 このような有機アルミニウム化合物の具体例としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイドなどのハロゲン化アルキルアルミニウム、ジエチルアルミニウムハイドライド等から選ばれる一種以上を挙げることができ、中でもジエチルアルミニウムクロライドなどのハロゲン化アルキルアルミニウム、またはトリエチルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム等から選ばれる一種以上が好ましく、トリエチルアルミニウムおよびトリイソブチルアルミニウムから選ばれる一種以上がより好ましい。
  本発明に係るオレフィン類重合用触媒において、外部電子供与性化合物としては、公知の外部電子供与性化合物のうち酸素原子あるいは窒素原子を含有するものが好ましい。
 本発明に係るオレフィン類重合用触媒において、外部電子供与性化合物としては、下記一般式(II)
 R Si(OR4-q     (II)
(式中、Rは炭素数1~12のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。Rは炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、フェニル基、炭素数1~12のアルキルアミノ基、炭素数1~12のジアルキルアミノ基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。qは0≦q≦3の整数である。)で表される有機ケイ素化合物から選ばれる一種以上を挙げることができる。
 上記有機ケイ素化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニル(アルキル)アルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキル(アルキル)アルコキシシラン、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、アルキル(ジアルキルアミノ)アルコキシシラン、シクロアルキル(アルキルアミノ)アルコキシシラン、(多環状アミノ)アルコキシシラン等を挙げることができ、中でも、ジ-n-プロピルジメトキシシラン、ジイソプロピルジメトキシシラン、ジ-n-ブチルジメトキシシラン、ジイソブチルジメトキシシラン、ジ-t-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、t-ブチルトリメトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、3-メチルシクロヘキシルシクロペンチルジメトキシシラン、4-メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5-ジメチルシクロヘキシル(シクロペンチル)ジメトキシシラン、ジエチルアミノトリエトキシシラン、ビス(シクロヘキシルアミノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシランおよびエチル(イソキノリノ)ジメトキシシランから選ばれる一種以上が好ましい。
 また、本発明に係るオレフィン類重合用触媒において、外部電子供与性化合物としては、下記一般式(III)
 (RN)SiR 4-s    (III)
(式中、RとRは水素原子、炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基、アリール基であり、同一でも異なってもよく、またRとRが互いに結合して環を形成してもよい。Rは炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基またはアリール基であり、Rが複数ある場合、複数のRは同一でも異なってもよい。sは1から3の整数である。)で表される有機ケイ素化合物(アミノシラン化合物)から選ばれる一種以上を挙げることができる。
 上記有機ケイ素化合物としては、アルキルトリス(アルキルアミノ)シラン、ジアルキルビス(アルキルアミノ)シラン、トリアルキル(アルキルアミノ)シラン等を挙げることができ、具体的には、ビス(エチルアミノ)メチルエチルシラン、t-ブチルメチルビス(エチルアミノ)シラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(メチルアミノ)(メチルシクロペンチルアミノ)メチルシラン等から選ばれる一種以上を挙げることができ、中でも、t-ブチルメチルビス(エチルアミノ)シラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン等から選ばれる一種以上が好ましい。
 本発明に係るオレフィン類重合用触媒において、外部電子供与性化合物としては、上記一般式(II)および上記一般式(III)で表される有機ケイ素化合物から選ばれる一種以上を用いてもよい。
  本発明に係るオレフィン類重合用触媒の存在下にオレフィン類の重合を行うことにより、オレフィン類重合体を得ることができる。
 オレフィン類の重合は、単独重合であってもよいし共重合であってもよい。
 重合に供されるオレフィン類としては、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテンおよびビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、エチレン、プロピレンおよび1-ブテンから選ばれる一種以上が好適であり、エチレンおよびプロピレンがより好適である。
  本発明に係るオレフィン類重合用触媒を用いて、プロピレンを重合する際、他のオレフィン類との共重合を行う場合、プロピレンとの共重合に用いられるオレフィン類としては、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテンおよびビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、エチレンまたは1-ブテンが好適である。
 本発明に係るオレフィン類重合用触媒を用いてオレフィン類を重合する(単独重合または共重合する)場合、オレフィン類重合用触媒を構成する各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、一般式(I)で表される有機アルミニウム化合物は、オレフィン類重合用固体触媒成分中のチタン原子1モル当たり、1~2000モル、好ましくは50~1000モルの範囲で用いられる。また、外部電子供与性化合物は、一般式(I)で表される有機アルミニウム化合物1モル当たり、0.002~10モル、好ましくは0.01~2モル、特に好ましくは0.01~0.5モルの範囲で用いられる。
 上記各成分の接触順序は任意であるが、重合系内にまず一般式(I)で表される有機アルミニウム化合物を装入し、次いで外部電子供与性化合物を接触させ、更にオレフィン類重合用固体触媒成分を接触させることが望ましい。オレフィン類の重合は、有機溶媒の存在下でも不存在下でも行うことができ、またプロピレン等のオレフィン単量体は、気体及び液体のいずれの状態でも用いることができる。
  オレフィン類の重合方法(単独重合または共重合方法)としては、炭素数2~10の1-オレフィンの重合に用いられる従来公知の方法を用いることができ、例えば、有機溶媒の存在下、気体または液体のモノマーを供給し重合を行なうスラリー重合、液化プロピレンなど液体のモノマー存在下に重合を行なうバルク重合、気体状のモノマー存在下に重合を行う気相重合等が挙げられ、これ等何れの方法であっても重合反応を行うことができ、気相重合による重合が好ましい。
 また、例えば特許2578408号公報に記載の方法や、特許第4392064号公報、特開2009-292964号公報等に記載の連続的気相重合法や、特許第2766523号公報に記載の重合法も適用することが可能である。なお、上記各重合法は、バッチ式または連続式のいずれでも行うことができる。更に、重合反応を1段で行ってもよいし、2段以上で行ってもよい。
 本発明に係るオレフィン類重合用触媒を用いてオレフィン類を重合する(単独重合または共重合する)場合、重合反応器としては、例えば、攪拌機付オートクレーブ、流動槽などの反応器を挙げることができ、この反応器中に粒状又は粉末状の重合体を固定相で収容し、攪拌装置あるいは流動床を用いて動きを与えることができる。
 得ようとする重合体の分子量は、重合技術において慣用の調整剤、例えば水素を添加することにより広範囲に調整し、設定することができる。また、共重合反応として、例えばプロピレンと、その他のコモノマーとの共重合を行なう際、コモノマーの重合体鎖への組み込みは、炭素数1~8のアルカノール、特にイソプロパノールを適宜添加することにより調整することができる。
 なお、重合熱を除去するために液状の易揮発性炭化水素、たとえばプロパンやブタンを供給し、重合帯域中で気化させてもよい。
  重合温度は、200℃以下が好ましく、100℃以下がより好ましく、50~90℃がさらに好ましい。
 重合圧力は、常圧~10MPaが好ましく、常圧~5MPaがより好ましく、1~4MPaがさらに好ましい。
 なお、共重合反応として、例えばプロピレンとその他のコモノマーとの共重合を行なう際、プロピレンとコモノマーの分圧が1:99~99:1となるように調節することが好ましく、プロピレンとコモノマーの分圧が50:50~99:1となるように調節することがより好ましい。
 本発明に係るオレフィン類重合用触媒を用いてプロピレンおよびプロピレン以外のオレフィン類を共重合する場合、本発明に係るオレフィン類重合用触媒を用いてプロピレンを重合させた後、引き続き2種以上のオレフィン類を共重合させることによりプロピレン系共重合体を製造することが好ましい。
 上記2種以上のオレフィン類の組み合わせとしては、プロピレンとプロピレン以外のオレフィン類との組合せが好ましく、プロピレン以外のオレフィン類としては、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテンおよびビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、エチレンまたは1-ブテンが好適である。
  さらに、本発明に係るオレフィン類重合用触媒を用いてオレフィン類を単独重合または共重合する場合(本重合を行う場合)、触媒活性、立体規則性及び生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行うことが望ましい。予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。
  予備重合を行うに際して、本発明に係るオレフィン類重合用触媒を構成する各成分及びモノマーの接触順序は任意であるが、好ましくは不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内に、先ず一般式(I)で表される有機アルミニウム化合物を装入し、次いでオレフィン類重合用固体触媒成分を接触させた後、プロピレン等のオレフィンおよび/または1種あるいは2種以上の他のオレフィン類を接触させる。外部電子供与性化合物を組み合わせて予備重合を行う場合は、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内にまず一般式(I)で表される有機アルミニウム化合物を装入し、次いで外部電子供与性化合物を接触させ、更にオレフィン類重合用固体触媒成分を接触させた後、プロピレン等のオレフィン及び/または1種あるいはその他の2種以上のオレフィン類を接触させる方法が望ましい。
 本発明に係るプロピレン系共重合体の製造方法においては、本発明に係るオレフィン類重合用触媒を用いてオレフィン類を単独重合または共重合することにより、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合する際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成することができる。
 本発明に係るプロピレン系共重合体は、水銀圧入法により測定される細孔容積が0.10~0.23cm/gであることを特徴とするものである。
 なお、本出願書類において、プロピレン重合体等の重合体およびプロピレン系共重合体は、オレフィン類の重合反応にて得られた重合体粒子、すなわちペレタイズなどの加工を施す前のリアクターパウダーを意味する。
 本発明に係るプロピレン系共重合体は、本発明に係るオレフィン類重合触媒の存在下におけるプロピレンを含むオレフィン類の重合物であることが好ましい。
 本発明に係るプロピレン系共重合体は、2段階以上の多段重合によって得られるものが好ましく、1段目の重合においてプロピレンを重合させ、次いで後段の(2段目以降の)重合においてプロピレンおよびプロピレン以外のオレフィン類から選択される一種以上のオレフィン類を共重合させてなるものがより好ましく、1段目の重合においてプロピレンを単独重合させ(ホモ段)、次いで後段の(2段目以降の)重合においてプロピレンおよびプロピレン以外のオレフィン類から選択される一種以上のオレフィン類を共重合させてなるものがさらに好ましく、1段目の重合においてプロピレンを単独重合させ(ホモ段)、次いでプロピレンとエチレンまたは1-ブテンから選択される1種以上のオレフィン類とを共重合させてなるものが一層好ましい。
 また、本発明に係るプロピレン系共重合体としては、2段階以上の多段重合において1段目の重合(例えばプロピレン単独重合)後に得られるオレフィン重合体の、水銀圧入法により測定される細孔容積が、0.12~0.36cm/gの範囲にあるものが好ましく、0.13~0.35cm/gの範囲にあるものがより好ましく、0.18~0.26cm/gの範囲にあるものがさらに好ましい。
 特に、上記1段目の重合後に得られる重合物が、本発明に係るオレフィン類重合触媒の存在下におけるプロピレン重合物である場合、得られるプロピレン重合体の細孔容積を容易に上記範囲内に制御することができ、係るプロピレン重合体の存在する系内において、引き続きプロピレンおよびプロピレン以外のオレフィンを共重合させることにより、目的とする共重合体を容易に得ることができる。
 前工程で生成するプロピレン単独重合体の細孔容積が上記範囲内にあることにより、後工程で生成するエチレン-プロピレン共重合体がプロピレン単独重合体の細孔内に取り込まれ易くなり、べたつきを抑制しつつ流動性に優れた共重合体を得ることができる。
 なお、上記プロピレン単独重合体の細孔容積は、水銀圧入法により測定した値を意味する。
 また、本発明に係るプロピレン系共重合体としては、2段階以上の多段重合において、2段目以降の重合(例えばプロピレンとプロピレン以外の他のオレフィン類の共重合)後に得られるプロピレン系共重合体の、水銀圧入法により測定される細孔容積が、0.10~0.23cm/gの範囲にあるものであり、0.12~0.20cm/gの範囲にあるものが好ましく、0.13~0.20cm/gの範囲にあるものがより好ましい。
 1段目(ホモ段)重合後に得られるオレフィン重合体および2段目以降の重合後に得られるオレフィン重合体の細孔容積分布が、それぞれ上記の範囲にあることにより、得られるプロピレン系共重合体の粒子表面のべたつきの原因となる成分が重合体粒子の細孔内部に留まりやすなり、共重合体粒子の流れ性が向上する。
 本発明に係るプロピレン系共重合体は、水銀圧入法により測定される細孔半径が0.1~40μmの細孔を有するものが好ましく、1~20μmの細孔を有するものがより好ましく、2~10μmの細孔を有するものがさらに好ましい。
 本発明に係るプロピレン系共重合体は、上記細孔半径を有する細孔を多数有することにより、2段目以降の重合工程で生成する重合体が1段目の重合で得られる重合体(例えばプロピレンの単独重合体)の細孔内に取り込まれ易くなり、得られる共重合体表面のべたつきが抑制され、優れた流動性を容易に発揮することができる。
 本発明に係るプロピレン系共重合体としては、2段階以上の多段重合によって得られ、1段目の重合後に得られる重合体の細孔容積に対する2段目以降の(何れかの段階における)重合後に得られるオレフィン重合体の細孔容積の容積割合{(2段目以降の(何れかの段階における)重合後に得られるオレフィン重合体の細孔容積/1段目の重合後に得られる重合体の細孔容積)×100}が、30~99%の範囲にあるものが好ましく、35~95%の範囲にあるものがより好ましく、40~90%の範囲にあるものがさらに好ましく、50~90%の範囲にあるものが一層好ましい。
 本発明に係るプロピレン共重合体において、1段目の重合(例えばプロピレンの単独重合)後に得られる重合体の細孔容積に対する2段目以降の重合(例えばプロピレンとプロピレン以外の他のオレフィン類の共重合)後に得られるプロピレン系共重合体の細孔容積の容積割合が上記範囲内にあることにより、2段目以降の重合で生成する重合体(例えば共重合体成分)の含有量がより多量になるような重合条件においても2段目以降の重合工程で生成する重合体が1段目の重合で得られる重合体(例えばプロピレンの単独重合体)の細孔内に取り込まれ易くなり、得られる共重合体表面のべたつきが抑制されるので、流動性に優れた共重合体を得ることができる。
 本発明に係るプロピレン系共重合体粒子としては、水銀圧入法により測定される細孔容積分布において、細孔半径0.1μm~40μmの範囲に少なくとも1つのピークトップを有するものが好ましく、細孔半径1μm~20μmの範囲に少なくとも1つのピークトップを有するものがより好ましく、細孔半径1μm~10μmの範囲に少なくとも1つのピークトップを有するものがさらに好ましく、細孔半径1.5μm~5μmの範囲に少なくとも1つのピークトップを有するものが一層好ましい。
 水銀圧入法により測定される細孔容積分布において上記範囲に少なくとも1つのピークトップを有することで、(べたつきの原因となる)プロピレン系共重合体が重合体粒子の細孔内部に留まりやすくなり、粒子表面のべたつきが少なくなるために、共重合体の流れ性が向上し易くなる。
 さらに、本発明に係るプロピレン系共重合体は、上記ピークトップを有する少なくとも1つのピークにおいて、細孔容積分布のピークトップ細孔半径(μm)に対する、上記細孔容積分布ピークの半値幅(μm)の比(細孔容積分布ピークの半値幅(μm)/細孔容積分布のピークトップ細孔半径(μm))が、2.0以下であるものが好ましく、1.9以下であるものがより好ましく、0.5~1.8であるものがさらに好ましい。
 上記細孔容積分布ピークの半値幅(μm)/細孔容積分布のピークトップ細孔半径(μm)で表される比が2.0以下であることにより、重合体粒子全体に分散した適度な孔径と容積を有する細孔内部にプロピレン系共重合体が留まりやすくなり、粒子表面のべたつきが少なく、共重合体粒子の流れ性が向上し易くなる。
 なお、本出願書類において、細孔容積分布のピークトップ細孔半径とは、得られた共重合体の細孔容積を水銀圧入法により自動測定した際に各細孔半径に対する細孔容積分布においてピークトップを示す細孔半径(μm)を意味し、また、細孔容積分布ピークの半値幅とは、上記細孔容積分布のピークトップを示すピークの半分の高さにおける2点の細孔半径の差分の絶対値を意味する。
 また、本発明に係るプロピレン系重合体としては、水銀圧入法により測定される細孔半径1~20μmの範囲における細孔容積の合計が、0.09~0.21cm/gであるものが好ましく、0.09~0.18cm/gであるものがより好ましく、0.10~0.17cm/gであるものがさらに好ましい。
 水銀圧入法により測定される細孔半径1~20μmの範囲における細孔容積の合計が上記範囲内にあることにより、2段目以降の重合後に得られるオレフィン類共重合体の含有量がより多量になるような重合条件においても、2段目以降の重合工程で生成する共重合体が共重合体粒子中の細孔内に取り込まれ易くなり、得られる共重合体表面のべたつきが抑制され、優れた流動性を容易に発揮することができる。
 また、本発明に係るプロピレン系共重合体は、1秒あたりの重合体落下量(g/sec)で表される重合体流動性が12.0以上であることが好ましく、12.5以上であることがより好ましく、13.0以上であることがさらに好ましい。
 なお、本出願書類において、プロピレン系共重合体の重合体流動性とは、1秒あたりの重合体落下量(g/sec)で表され、図1に示すような、出口位置にダンパー2を介設した漏斗1(上部口径;91mm、ダンパー位置口径;8mm、傾斜角;20°、ダンパー位置までの高さ;114mm)を上部にセットし、前記ダンパー2の下部に38mmの間隔を置いて容器状の受器3(内径;40mm、高さ;81mm)を設置した装置を用い、漏斗1にプロピレン系共重合体50gを投入後、室温(20℃)下において、ダンパー2を開口して漏斗内部の重合体を受器3に落下させ、全ての重合体が落下するまでの時間T(秒)を計測し、プロピレン系共重合体50gの落下時間T(秒)から下記の式により算出した、1秒あたりの重合体落下量(g/sec)を指す。
重合体流動性(1秒あたりの重合体落下量(g/sec))=50÷T
 共重合体の流動性が上記範囲内にあることにより、重合時および重合後の輸送中に、反応器や配管などへ付着しにくく、粉体流動性に優れたプロピレン系共重合体を容易に製造することができる。
 また、本発明に係るプロピレン系共重合体の粒度分布指数(SPAN)は1以下が好ましく、0.96以下がより好ましく、0.93以下がさらに好ましい。
 なお、本出願書類において、プロピレン系共重合体の粒度分布指数(SPAN)は、デジタル画像解析式粒子径分布測定装置(カムサイザー、(株)堀場製作所製)を用いて得られた共重合体の体積基準積算粒度で、10%の粒径(D10)、50%の粒径(D50)および90%の粒径(D90)に基づいて、下記式により算出される値を意味する。
 粒度分布指数(SPAN)=(体積基準積算粒度で90%の粒径(D90)-体積基準積算粒度で10%の粒径(D10))/体積基準積算粒度で50%の粒径(D50
 また、本発明に係るプロピレン系共重合体が、最初にプロピレンのみを1段ないし複数段単独重合してなるものである場合、得られるプロピレン重合体(ホモPP)の立体規則性は、高いことが望ましく、上記ホモPPのキシレン可溶分(XS)が1.5質量%以下であることが好ましく、1.0質量%以下であることがさらに好ましい。
プロピレンを単独重合した段階(ホモ段)で得られるプロピレン重合体(ホモPP)の立体規則性が上記の範囲にあることにより、高剛性でかつ耐衝撃性に優れたプロピレン系共重合体が得られる。
 なお、本出願書類において、キシレン可溶分(XS)とは、 攪拌装置を具備したフラスコ内に、得られた重合体4.0gと、200mlのp-キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137~138℃)に維持し、2時間かけて重合体を溶解した後23℃まで冷却し、不溶解成分と溶解成分とを濾過分別して得られた上記溶解成分を、加熱減圧乾燥によりp-キシレンを留去して得た残留物の質量を測定したときの、測定対象として使用した重合体(ポリプロピレン)に対する上記残留物の質量割合(質量%)を意味する。
 本発明によれば、べたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好なプロピレン系共重合体を提供することができる。
(実施例)
 次に、実施例を挙げて本発明を更に具体的に説明するが、本発明は以下の実施例により何ら制限されるものではない。
(製造例1)
<ジエトキシマグネシウムの調製>
 窒素ガスで十分置換され、攪拌器および還流冷却器を具備した容量10リットルの円筒形フラスコ内に、無水エタノール1000mlおよびヨウ素30gを装入し、加熱して沸騰還流させた。この中に、金属マグネシウム合計500gおよび無水エタノール7600mlのスラリーを1時間かけて連続的に添加し、還流下で反応させた。
 その後、水素発生が停止するまで還流下、3時間熟成反応させ、得られた固形物を無水エタノールで洗浄し、減圧乾燥して球状のジエトキシマグネシウム粉末を得た。
 得られたジエトキシマグネシウムについて、エタノール含有率、嵩比重、平均粒径、半径0.002μm~1μmの範囲と半径1μmを超え30μm以下の範囲におけるピークトップの有無、上記各半径範囲にピークを有する細孔の細孔容積および全細孔容積を測定した。
 その結果、エタノール含有率が0質量%、嵩比重が0.27g/ml、平均粒径が27.8μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が1つ、ピークトップ位置が0.15μm、係る範囲における細孔容積v1が0.78cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が3.8μm、係る範囲における細孔容積v2が1.21cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.99cm/gであった。
また、上記細孔容積v1/細孔容積v2で表される容積比が、0.64であった。
結果を表1に示す。
 なお、エタノール含有率、嵩密度、平均粒径および、細孔容積および多孔度(水銀圧入法)の測定は以下の方法で行った。
(エタノール含有率)
 ジエトキシマグネシウムのエタノール含有量は、ナス型フラスコに20gの試料を充填し、室温で1時間、更に50℃で2時間、減圧度0.02~0.05mmHgで減圧乾燥した時の質量減少分から求めた。
(嵩比重)
 ジエトキシマグネシウムおよび固体触媒成分の嵩密度(BD)は、乾燥窒素ガス雰囲気下、JIS K-6721:1997に従って測定した。
(平均粒径)
 アルコキシマグネシウムの平均粒径として、積算体積粒度50%に該当する粒径を、分散溶媒としてエタノールを用い、レーザー回折式粒度分布測定装置(MICROTRAC HRA Model No.9320-X100 日機装(株)製)を用いて測定した。
 また、固体触媒成分の平均粒径として、積算体積粒度50%に該当する粒径を、分散溶媒としてn-ヘプタンを用い、レーザー回折式粒度分布測定装置(MICROTRAC MT3300EXII 日機装(株)製)を用いて測定した。
(ピークトップ数、ピークトップ位置および細孔容積)
 アルコキシマグネシウムおよび固体触媒成分の細孔容積は、水銀圧入法ポロシメーター(マイクロメリティックス社製、オートポアIII9420)を用い、5ml粉体用サンプルに、試料0.1~0.2gを充填して自動測定することにより求めた。
 この時、測定範囲は、細孔半径0.002~30μmの間とした。
(製造例2)
<ジエトキシマグネシウムの調製>
 ヨウ素30gに代えて、ヨウ素100gを使用した以外は、製造例1と同様にして、球状のジエトキシマグネシウム粉末を調製した。 
 得られたジエトキシマグネシウムについて、製造例1と同様の方法で物性を測定した結果、エタノール含有率が0質量%、嵩比重が0.29g/ml、平均粒径が26.6μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が1つ、ピークトップ位置が0.10μm、係る範囲における細孔容積v1が0.69cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が3.8μm、係る範囲における細孔容積v2が1.09cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.78cm/gであった。
 また、上記細孔容積v1/細孔容積v2で表される容積比が、0.63であった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
<固体触媒成分の調製>
 攪拌機を具備し窒素ガスで充分に置換された容量200mlの丸底フラスコに、製造例1で得られた球状のジエトキシマグネシウム粉末10g、トルエン50mlおよびジ-n-ブチルフタレート3.6mlを装入し、懸濁状態とした。次いで、該懸濁溶液を、撹拌機を装備し内部を窒素ガスで充分に置換された容量500mlの丸底フラスコ中に予め装入されたトルエン26ml及び四塩化チタン24mlの混合溶液中に、4時間を費やして添加した。その際、反応系の温度を-7~-2℃の範囲で保持した。添加終了後、90℃に昇温して撹拌しながら1時間かけて接触反応させた。反応終了後、反応生成物を100℃のトルエン100mlで2回洗浄し、更に四塩化チタン24mlおよびトルエン76mlを加え、110℃で2時間撹拌しながら接触反応させた。生成した固体成分を40℃のn-ヘプタン200mlで10回洗浄処理したのち、ヘプタン残存率が20質量%以下になるまで乾燥して粉末状固体触媒成分を得た。
 得られた固体触媒成分について、BET比表面積(BET法NSA)、平均粒径、半径0.002μm~1μmの範囲のピークトップおよび半径1μmを超え30μm以下の範囲におけるピークトップの有無並びに上記各半径範囲にピークを有する細孔の細孔容積および全細孔容積を製造例1と同様の方法で、また、BET比表面積(BET法NSA)を以下の方法により測定した。
その結果、BET法による比表面積(N2SA)が113m2/g、平均粒径が31.2μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.007μmおよび0.15μm、係る範囲における細孔容積V1が0.28cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.75cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.03cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比が、0.37であった。
結果を表2に示す。
 なお、BET比表面積の測定は以下の方法で行った。
(BET比表面積)
 固体触媒成分のBET比表面積は、比表面積測定機(QUANTA CHROME社製QUANTASORB QS-17)を用い、サンプルセルに0.05~0.1g充填した試料を自動測定することにより求めた。
<オレフィン類重合用触媒の調製>
 窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム0.92ミリモル、シクロヘキシルメチルジメトキシシラン0.092ミリモルおよび上記で得た固体触媒成分をチタン原子換算で0.0018ミリモル装入し、オレフィン類重合用触媒を調製した。
(プロピレン重合(PP重合))
 上記で調製したオレフィン類重合用触媒を含む攪拌機付オートクレーブに対し、水素ガス1.6リットルと液化プロピレン1.0リットルを装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で1時間重合反応を行うことにより、プロピレン重合体(PP)を製造した。
 得られた重合体において、以下の方法により、固体触媒成分1g当たりの重合活性(PP重合活性)、得られた重合体のキシレン可溶分(XS)、得られた重合体の細孔容積、平均粒径、微粉量、粗粉量、粒度分布指数(SPAN)、嵩密度を測定した。結果を表3に示す。
(固体触媒成分1g当たりのPP重合活性)
 固体触媒成分1g当たりのPP重合活性(g-pp/g-触媒)は、下記計算式により求めた。
 PP重合活性(g-pp/g-触媒)=得られたプロピレン重合体(PP)の質量(g)/オレフィン類重合用触媒に含まれる固体触媒成分の質量(g)
(重合体のキシレン可溶分(XS))
 攪拌装置を具備したフラスコ内に、得られた重合体4.0gと、200mlのp-キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137~138℃)に維持しつつ、2時間かけて重合体を溶解した。
 その後23℃まで冷却し、不溶解成分と溶解成分とを濾過分別した。上記溶解成分の溶液を採取し、加熱減圧乾燥によりp-キシレンを留去して得た残留物をキシレン可溶分(XS)とし、その質量から、重合体(ポリプロピレン)に対する相対値(質量%)を求めた。
<重合体の細孔容積>
 ホモ段重合体(PP)の細孔容積は、水銀ポロシメーター(マイクロメリティックス社製、オートポアIV9505)を用い、5ml粉体用サンプルに、試料0.4~0.6gを充填し、水銀圧入法による自動測定を行うことにより重合体の細孔容積を求めた。この時、測定範囲は、細孔半径0.1~40μmの間とした。
(重合体の粒度分布、微粉量、粗粉量、平均粒径および粒度分布指数(SPAN))
 デジタル画像解析式粒子径分布測定装置(カムサイザー、(株)堀場製作所製)を用い、得られた重合体の体積基準積算粒度分布の自動測定を下記の測定条件において行い、粒径75μm未満の微粉量(質量(wt)%)、粒径1700μmを超える粗粉量(質量(wt)%)、体積基準積算粒度で50%の粒径(平均粒径D50)および粒度分布指数(SPAN)を測定した。
(測定条件)
 ファネル位置       :6mm
 カメラのカバーエリア   :ベーシックカメラ3%未満、ズームカメラ10%未満
 目標カバーエリア     :0.5%
 フィーダ幅        :40mm
 フィーダコントロールレベル:57、40秒
 測定開始レベル      :47
 最大コントロールレベル  :80
 コントロールの基準    :20
 画像レート        :50%(1:2)
 粒子径定義         :粒子1粒ごとにn回測定したマーチン径の最小値
 SPHT(球形性)フィッティング:1
 クラス上限値       :対数目盛とし32μm~4000μmの範囲で50点を選択
 なお、粒度分布指数(SPAN)は、以下の算出式により算出した。
 粒度分布指数(SPAN)=(体積基準積算粒度で90%の粒径-体積基準積算粒度で10%の粒径)/体積基準積算粒度で50%の粒径(平均粒径D50
(嵩密度(BD))
 得られた重合体の嵩密度(BD)は、JIS K-6721:1997に従って測定した。
<エチレン-プロピレン共重合触媒の調製>
 窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム2.4ミリモル、シクロヘキシルメチルジメトキシシラン0.24ミリモルおよび上記で得た固体触媒成分6mgを装入し、エチレン-プロピレン共重合触媒を調製した。
<エチレン-プロピレン共重合>
 上記で調製したエチレン-プロピレン共重合触媒を含む攪拌機付オートクレーブに、液化プロピレン15モル(1.2リットル)および水素ガス0.20MPa(分圧)を装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で45分間、1段目のプロピレンホモ重合反応(ホモ段重合)を行なった後、常圧に戻し、次いでオートクレーブ内(リアクター内)を窒素置換してからオートクレーブの計量を行ない、オートクレーブの風袋質量を差し引いてホモ段(1段目)の重合活性(ホモ活性、g-PP/g-cat)を算出した。
 重合性能及びポリマー物性(細孔容積)の評価用として、生成した一部のポリマーを分取した。
 次に、エチレン/プロピレンを、それぞれモル比が1.0/1.0となるように上記オートクレーブ内(リアクター内)に投入した後、70℃まで昇温し、エチレン/プロピレン/水素を、それぞれ1分あたりのガス供給量(リットル/分)が2/2/0.086の割合となるように導入しつつ、1.2MPa、70℃、60分間の条件で反応させることにより、エチレン-プロピレン共重合体を得た。
 得られたエチレン-プロピレン共重合体において、共重合(ICP)活性(g-ICP/g-cat・時間)、EPR含有率(質量%)、細孔容積、エチレン・プロピレンブロック共重合体の流動性、重合体の細孔容積、細孔容積分布のピークトップ細孔半径および細孔容積分布ピークの半値幅を、以下の方法により測定した。
 結果を表4および表5に示す(対比のために、上記ホモ段重合体(PP)についても細孔容積分布のピークトップ細孔半径および細孔容積分布ピークの半値幅同様の方法で求めた結果を、表5に併記する)。
なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
<共重合(ICP)活性(g-ICP/g-cat・時間)>
 エチレン・プロピレンブロック共重合体形成時における共重合(ICP)活性は、以下の式により算出した。
 共重合(ICP)活性(g-ICP/g-cat・時間)=((I(g)-G(g))/オレフィン類重合用触媒に含まれる固体触媒成分の質量(g))/反応時間(時間)
 ここで、I(g)は共重合反応終了後のオートクレーブ質量(g)、G(g)はホモPP重合反応終了後、未反応モノマーを除去した後のオートクレーブ質量(g)である。
<EPR含有率>
 攪拌機および冷却管を具備した1リッターのフラスコに、共重合体を約2.5g 、2,6-ジ-t-ブチル-p-クレゾール8mg、p-キシレン250mlを投入し、沸点下で、共重合体が完全に溶解するまで攪拌した。次に、フラスコを室温まで冷却し、15時間放置し、固形物を析出させ、これを遠心分離機により固形物と液相部分とに分離した後、分離した固形物をビーカーにとり、アセトン500mlを注入して室温で15時間攪拌後、固形物を濾過して乾燥させ、乾燥質量を測定した(この質量をB(g)とする)。また分離した液相部分についても同様の操作を行い、固形物を析出後に乾燥させ、その乾燥質量を測定し(この質量をC(g)とする)、以下の式により、共重合体中のエチレン-プロピレンゴム成分(EPR)含有率を算出した。
EPR含有率(質量%)=[C(g)/{B(g)+C(g)}]×100
<エチレン・プロピレンブロック共重合体の流動性>
 図1に示すように、出口位置にダンパー2を介設した漏斗1(上部口径;91mm、ダンパー位置口径;8mm、傾斜角;20°、ダンパー位置までの高さ;114mm)を上部にセットし、前記ダンパー2の下部に38mmの間隔を置いて容器状の受器3(内径;40mm、高さ;81mm)を設置した装置を用い、先ず上部の漏斗1に重合体50gを投入後、室温(20℃)下において、ダンパー2を開口して重合体を受器3に落下させ、全ての重合体が落下する時間を計測した。
 上記操作により計測した、エチレン・プロピレンブロック共重合体50gの落下時間T(秒間)から、下記の式により1秒あたりの重合体落下量(g/sec)を算出し、重合体流動性の評価指標とした。
重合体流動性(1秒あたりの重合体落下量(g/sec))=50÷T
<重合体の細孔容積>
 ホモ段重合体(PP)および共重合体(ICP)の細孔容積は、水銀ポロシメーター(マイクロメリティックス社製、オートポアIV9505)を用い、5ml粉体用サンプルに、試料0.4~0.6gを充填し、水銀圧入法による自動測定を行うことにより求めた。この時、測定範囲は、細孔半径0.1~40μmの間とした。
<細孔容積分布のピークトップ細孔半径および細孔容積分布ピークの半値幅>
 得られたホモ段重合体(PP)および共重合体(ICP)の細孔半径0.1μm~40μmの範囲における細孔容積を各々上記水銀圧入法により自動測定し、各細孔半径に対する細孔容積分布においてピークトップを示す細孔半径(μm)を細孔容積分布のピークトップ細孔半径とした。
 また、細孔容積分布ピークの半値幅は、上記共重合体の細孔容積分布においてピークトップを示すピークの半分の高さにおける2点の細孔半径の差分の絶対値とした。
(実施例2)
 トルエンと四塩化チタンの混合溶液に、ジエトキシマグネシウム、トルエンおよびジ-n-ブチルフタレートの懸濁液を添加する際、反応系の保持温度を、-7~-2℃の範囲から3~8℃の範囲に変更した以外は、実施例1と同様にして、固体触媒成分を調製した。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した結果、BET法による比表面積(N2SA)が66m2/g、平均粒径が28.2μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.008μmおよび0.24μm、係る範囲における細孔容積V1が0.30cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.75cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.05cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比が、0.40であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い各種物性を測定した。結果を表3、表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(比較例1)
 トルエンと四塩化チタンの混合溶液に、ジエトキシマグネシウム、トルエンおよびジ-n-ブチルフタレートの懸濁液を添加する際、反応系の保持温度を、-7~-2℃の範囲から20~25℃の範囲に変更した以外は実施例1と同様にして、固体触媒成分を調製した。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した結果、BET法による比表面積(N2SA)が18m2/g、平均粒径が23.4μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.007μmおよび0.15μm、係る範囲における細孔容積V1が0.44cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が3.8μm、係る範囲における細孔容積V2が0.64cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.08cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比が、0.69であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。結果を表3、表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(実施例3)
<固体触媒成分の調製>
 攪拌機を具備し窒素ガスで充分に置換された容量200mlの丸底フラスコに、前記製造例2で調整した球状のジエトキシマグネシウム粉末10g 、トルエン50ml及びフタル酸ジ-n-ブチル3.6mlを装入し、懸濁状態とした。
 次いで、該懸濁溶液を、攪拌機を具備し窒素ガスで充分に置換された容量500mlの丸底フラスコ中に予め装入されたトルエン26ml及び四塩化チタン24mlの溶液中に4時間かけて添加した。その際、反応系の温度を-7~-2℃の範囲で保持した。上記混合溶液を-5℃に保持したまま1時間攪拌した後、100℃まで4時間かけて昇温し、攪拌しながら2時間反応させた。
反応終了後、生成物を100℃のトルエン100mlで4回洗浄し、更に四塩化チタン24mlおよびトルエン76mlを加え、80℃の温度を維持して攪拌しながら2時間接触反応させた。次いで、生成物を40℃のヘプタンで7回洗浄し、濾過、乾燥して粉末状の固体触媒成分を得た。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した結果、平均粒径が23.3μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.006μmおよび0.10μm、係る範囲における細孔容積V1が0.21cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が4.2μm、係る範囲における細孔容積V2が0.61cm/g、半径0.002μm~30μmの細孔の全細孔容積が0.82cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比が、0.34であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。結果を表3、表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(比較例2)
 トルエンと四塩化チタンの混合溶液に、ジエトキシマグネシウム、トルエンおよびフタル酸ジ-n-ブチルの懸濁液を添加する際、懸濁液の添加時間を4時間から1時間に変更した以外は、実施例3と同様にして、固体触媒成分を調製した。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した結果、BET法による比表面積(N2SA)が2.0m2/g、平均粒径が23.3μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.006μmおよび0.10μm、係る範囲における細孔容積V1が0.19cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.65cm/g、半径0.002μm~30μmの細孔の全細孔容積が0.84cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比が、0.29であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。結果を表3、表4および表5に示す。
(実施例4)
 ジエトキシマグネシウム粉末、トルエンおよびジ-n-ブチルフタレートを接触させる際、ジエトキシマグネシウム10gに対し、エタノール75マイクロリットルを添加した以外は、実施例3と同様にして、固体触媒成分を調製した。
 得られた固体触媒成分の各種物性について実施例1と同様の方法で測定した結果、平均粒径が27.2μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.006μmおよび0.10μm、係る範囲における細孔容積V1が0.23cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.69cm/g、半径0.002μm~30μmの細孔の全細孔容積が0.92cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比は、0.33であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。結果を表3、表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(実施例5)
 球状のジエトキシマグネシウム粉末10g 、トルエン50ml及びフタル酸ジ-n-ブチル3.6mlを装入し、懸濁状態とする事に代えて球状のジエトキシマグネシウム粉末10g 、トルエン50ml及びフタル酸ジ-n-ブチル1.8mlを装入し、また、混合溶液を100℃まで4時間かけて昇温する際、60℃においてフタル酸ジ-n-ブチル1.8mlを添加した以外は、実施例3と同様にして、固体触媒成分を調製した。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した結果、平均粒径が25.4μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.006μmおよび0.08μm、係る範囲における細孔容積V1が0.27cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が4.2μm、係る範囲における細孔容積V2が0.67cm/g、半径0.002μm~30μmの細孔の全細孔容積が0.94cm/gであった。また、上記細孔容積V1/細孔容積V2で表される容積比は、0.40であった。結果を表2に示す。
 上記固体触媒成分を用いた以外は実施例1と同様にして、オレフィン類重合用触媒およびエチレン・プロピレンブロック共重合用触媒の調製、プロピレン重合およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。結果を表3、表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(実施例6)
 実施例5で得られた固体触媒成分を用い、さらに、1.2MPa、70℃、60分間の条件で共重合反応させる代わりに1.2MPa、70℃、100分間の条件で共重合反応させた以外は実施例1と同様にして、エチレン・プロピレンブロック共重合用触媒の調製およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。
 結果を表4および表5に示す。
 なお、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(実施例7)
 実施例1記載の固体触媒成分の調製において、製造例1で得られた球状ジエトキシマグネシウム粉末10gに代えて製造例2で得られた球状ジエトキシマグネシウム粉末10gを用い、フタル酸ジ-n-ブチル3.6mlを装入することに代えて無水エタノール150μlおよびフタル酸ジ-n-ブチル1.8mlを装入し、懸濁溶液の添加終了後、90℃に昇温して撹拌しながら1時間かけて接触反応させることに代えて、3~7℃の範囲で保持したまま1時間攪拌した後、110℃まで4時間かけて昇温し、昇温途中でフタル酸ジ-n-ブチル1.8mlを添加後、110℃で攪拌しながら2時間かけて接触反応させた以外は、実施例1と同様にして粉末状の固体触媒成分を得た。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した。
 また、上記固体触媒成分を用いた以外は実施例1と同様にしてオレフィン類重合用触媒の形成およびプロピレン重合を行い、さらに、上記固体触媒成分を用い、かつ、シクロヘキシルメチルジメトキシシランに代えてジエチルアミノトリエトキシシランを用いた以外は実施例6と同様にしてエチレン・プロピレンブロック共重合用触媒の調製およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。
 結果を表2、表3、表4および表5に示す。
 なお、得られた固体触媒成分は、平均粒径が27.4μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.006μmおよび0.09μm、係る範囲における細孔容積V1が0.33cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.70cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.03cm/gであるものであった。また、上記細孔容積V1/細孔容積V2で表される容積比は、0.47であった。さらに、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
(実施例8)
 実施例1記載の固体触媒成分の調製において、製造例1で得られた球状ジエトキシマグネシウム粉末10g、トルエン50mlおよびジ-n-ブチルフタレート3.6mlを装入することに代えて製造例2で得られた球状ジエトキシマグネシウム粉末10gおよびトルエン30mlを装入し、反応系の温度を-7~-2℃の範囲で保持しつつ、懸濁液をトルエン26ml及び四塩化チタン24mlの混合溶液中に4時間を費やし添加することに代えて反応系の温度を-8~-4℃の範囲で保持しつつ、該懸濁液をトルエン26ml及び四塩化チタン24mlの混合溶液中に2時間を費やして添加し、該懸濁溶液の添加終了後、90℃に昇温して撹拌しながら1時間かけて接触反応させることに代えて、-8~-4℃の範囲で保持したまま1時間攪拌し、2-エトキシエチル-1-エチルカーボネート3.2mlおよび2-イソプロピル2-イソペンチル-1,3-ジメトキシプロパン1.4mlを添加後に100℃まで昇温し、100℃で攪拌しながら2時間かけて接触反応させた以外は、実施例1と同様にして粉末状の固体触媒成分を得た。
 得られた固体触媒成分の各種物性について、実施例1と同様の方法で測定した。
 また、上記固体触媒成分を用いる以外は実施例1と同様にしてオレフィン類重合用触媒の形成およびプロピレン重合を行い、さらに、上記で得られた固体触媒成分を用いた以外は実施例6と同様にしてエチレン・プロピレンブロック共重合用触媒の調製およびエチレン・プロピレンブロック共重合を行い、各種物性を測定した。
 結果を表2、表3、表4および表5に示す。
 なお、得られた固体触媒成分は、平均粒径が27.8μm、水銀圧入法により測定した半径0.002μm~1μmの範囲におけるピークトップ数が2つ、ピークトップ位置が0.01μmおよび0.06μm、係る範囲における細孔容積V1が0.40cm/g、半径1μmを超え30μm以下の範囲におけるピークトップ数が1つ、ピークトップ位置が5.1μm、係る範囲における細孔容積V2が0.77cm/g、半径0.002μm~30μmの細孔の全細孔容積が1.17cm/gであるものであった。また、上記細孔容積V1/細孔容積V2で表される容積比は、0.52であった。さらに、得られたエチレン-プロピレン共重合体は、細孔半径0.1μm~40μmの範囲に1つのピークトップを有するものであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3、表4および表5より、実施例1~実施例6においては、オレフィン類重合用固体触媒成分が、チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65であることから、オレフィン類を重合する際、特にプロピレンとエチレンとを共重合する際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れるとともに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を提供できることが分かる。
 一方、表3、表4および表5より、比較例1および比較例2で得られたオレフィン類重合用固体触媒成分が、半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65の範囲外にあるものであることから、微粉量が多く粒度分布が低いものであったり(比較例1)、粗粉量が多いものであり(比較例2)、重合体の流動性に劣るものであることが分かる。
 本発明によれば、オレフィン類を重合する際、特にプロピレンとエチレンとをランダム共重合やブロック共重合等の共重合反応を行う際に、重合体粒子のべたつき(粘着性)に起因する付着性が極めて低く、流動性に優れ、さらに、粒度分布の良好な重合体を生成し得るオレフィン類重合用固体触媒成分を提供できるとともに、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびプロピレン系共重合体の製造方法を提供することができる。
本発明に係るプロピレン系共重合体が、特に、プロピレン・エチレン共重合体(EPR)含有率が高いプロピレン系ブロック共重合体(ICP)である場合、剛性および耐衝撃性に優れる大型成形品を高品質かつ安価に提供することができるため、高剛性・高耐衝撃性が必要とされる自動車部品や家電部品などの分野において、非常に有益である。

Claims (23)

  1.  チタン、マグネシウム、ハロゲン原子および内部電子供与体を含み、
     水銀圧入法により測定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有し、
     半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1/半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2で表わされる比が0.30~0.65であることを特徴とするオレフィン類重合用固体触媒成分。
  2.  水銀圧入法により測定される全細孔容積が0.65~2.00cm/gである請求項1に記載のオレフィン類重合用固体触媒成分。
  3.  前記半径0.002μm~1μmの範囲の細孔に由来する細孔容積V1が0.1~0.8cm/gである請求項1に記載のオレフィン類重合用固体触媒成分。
  4.  前記半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積V2が0.3~1.5cm/gである請求項1に記載のオレフィン類重合用固体触媒成分。
  5.  BET法により測定される比表面積が1~500m/gである請求項1に記載のオレフィン類重合用固体触媒成分。
  6.  前記内部電子供与体が、エステル化合物、エーテル化合物およびカーボネート化合物から選ばれる一種以上である請求項1に記載のオレフィン類重合用固体触媒成分。
  7.  請求項1に記載のオレフィン類重合用固体触媒成分を製造する方法であって、
     アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物および内部電子供与体を接触させる工程を有し、
     前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物を接触させる際に、前記アルコキシ基を有するマグネシウム化合物およびハロゲン化チタン化合物のいずれか一方を、他方に対して、15℃以下の温度を保持しながら、2時間以上をかけて、連続的あるいは断続的に添加する
    ことを特徴とするオレフィン類重合用固体触媒成分の製造方法。
  8.  前記アルコキシ基を有するマグネシウム化合物が、ジアルコキシマグネシウムである請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  9.  前記アルコキシ基を有するマグネシウム化合物が、球状又は楕円体状の粒子形状を有し、水銀圧入法により規定される細孔容積分布が多峰性で、細孔半径0.002μm~1μmの範囲および細孔半径1μmを超え30μm以下の範囲に、それぞれ1以上のピークトップを有する請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  10.  前記アルコキシ基を有するマグネシウム化合物の水銀圧入法により規定される全細孔容積が1.3~3.0cm/gである、請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  11.  前記アルコキシ基を有するマグネシウム化合物は、水銀圧入法により規定される細孔半径0.002μm~1μmの範囲の細孔に由来する細孔容積が0.3cm/g以上である請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  12.  前記アルコキシ基を有するマグネシウム化合物は、水銀圧入法により規定される細孔半径1μmを超え30μm以下の範囲の細孔に由来する細孔容積が0.5~2.0cm/gである請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  13.  前記アルコキシ基を有するマグネシウム化合物が、アルコキシ基を有するマグネシウム化合物100質量部あたり0.1~1.5質量部のアルコールを含むものである請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  14.  前記アルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物を接触させる工程において、ハロゲン化チタン化合物に、アルコキシ基を有するマグネシウム化合物を、15℃以下の温度を保持しながら、2時間以上をかけて連続的あるいは断続的に添加する、請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  15.  アルコキシ基を有するマグネシウム化合物、ハロゲン化チタン化合物またはアルコキシ基を有するマグネシウム化合物とハロゲン化チタン化合物の混合物に対し、内部電子供与体を2回以上接触させる請求項7に記載のオレフィン類重合用固体触媒成分の製造方法。
  16.  請求項1に記載のオレフィン類重合用固体触媒成分、下記一般式(I)
      R AlQ3-p    (I)
    (式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは同一であっても異なっていてもよい。)で表される有機アルミニウム化合物および外部電子供与性化合物の接触物からなることを特徴とするオレフィン類重合用触媒。
  17.  外部電子供与性化合物が、下記一般式(II)
     R Si(OR4-q     (II)
    (式中、Rは炭素数1~12のアルキル基、炭素数3~12のシクロアルキル基、フェニル基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。Rは炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、フェニル基、炭素数1~12のアルキルアミノ基、炭素数1~12のジアルキルアミノ基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。qは0≦q≦3の整数である。)および下記一般式(III)
     (RN)SiR 4-s    (III)
    (式中、RとRは水素原子、炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基、アリール基であり、同一でも異なってもよく、またRとRが互いに結合して環を形成してもよい。Rは炭素数1~20の直鎖状または炭素数3~20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3~20のシクロアルキル基またはアリール基であり、Rが複数ある場合、複数のRは同一でも異なってもよい。sは1から3の整数である。)から選ばれる一種以上の有機ケイ素化合物である請求項16に記載のオレフィン類重合用触媒。
  18.   請求項16に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法。
  19.  請求項16に記載のオレフィン類重合用触媒を用いてプロピレンを重合させた後、引き続き2種以上のオレフィン類を共重合させることを特徴とするプロピレン系共重合体の製造方法。
  20.  水銀圧入法により測定される細孔容積が0.10~0.23cm/gであることを特徴とするプロピレン系共重合体。
  21.  2段階以上の多段重合によって得られ、
     1段目の重合後に得られる重合体の細孔容積に対する2段目以降の重合後に得られるオレフィン重合体の細孔容積の容積割合が、30~99%の範囲にある、
    請求項20に記載のプロピレン系共重合体。
  22.  水銀圧入法により測定される細孔容積分布において細孔半径0.1μm~40μmの範囲に少なくとも1つのピークトップを有し、かつ、
     前記ピークトップを有する少なくとも1つのピークにおいて、細孔容積分布のピークトップ細孔半径に対する、上記細孔容積分布ピークの半値幅の比が2.0以下である
    請求項20に記載のプロピレン系共重合体。
  23.  細孔半径1~20μmの範囲における細孔容積の合計が0.09~0.21cm/gである請求項20に記載のプロピレン系共重合体。
PCT/JP2017/035911 2016-10-03 2017-10-03 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体 WO2018066535A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112019005837-0A BR112019005837B1 (pt) 2016-10-03 2017-10-03 Componente catalisador sólido para polimerização de olefinas, métodos para produção de um componente catalisador sólido para polimerização de olefinas, para produção de um polímero de uma olefina e para produção de um copolímero de propileno, e, catalisador para polimerização de olefinas
RU2019111767A RU2762191C2 (ru) 2016-10-03 2017-10-03 Твердый каталитический компонент для полимеризации олефинов, способ получения твердого каталитического компонента для полимеризации олефинов, катализатор полимеризации олефинов, способ получения полимера олефина, способ получения сополимера пропилена и сополимер пропилена
US16/338,517 US11236189B2 (en) 2016-10-03 2017-10-03 Solid catalyst component for polymerization of olefins, method for producing solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, method for producing polymer of olefin, method for producing polymer propylene copolymer and propylene copolymer
CN201780061289.XA CN109819654B (zh) 2016-10-03 2017-10-03 烯烃类聚合用固体催化剂成分及其制造方法、烯烃类聚合物的制造方法
JP2018543909A JP7044710B2 (ja) 2016-10-03 2017-10-03 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体
KR1020197011027A KR102381124B1 (ko) 2016-10-03 2017-10-03 올레핀류 중합용 고체 촉매 성분, 올레핀류 중합용 고체 촉매 성분의 제조 방법, 올레핀류 중합용 촉매, 올레핀류 중합체의 제조 방법, 프로필렌계 공중합체의 제조 방법 및 프로필렌계 공중합체
EP17858373.8A EP3521324B1 (en) 2016-10-03 2017-10-03 Solid catalyst component for polymerization of olefins, method for producing solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, method for producing polymer of olefin, method for producing propylene copolymer
SA519401470A SA519401470B1 (ar) 2016-10-03 2019-04-02 مكون محفز صلب لبلمرة الألفينات

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-195482 2016-10-03
JP2016195482 2016-10-03

Publications (1)

Publication Number Publication Date
WO2018066535A1 true WO2018066535A1 (ja) 2018-04-12

Family

ID=61831791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035911 WO2018066535A1 (ja) 2016-10-03 2017-10-03 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体

Country Status (11)

Country Link
US (1) US11236189B2 (ja)
EP (1) EP3521324B1 (ja)
JP (1) JP7044710B2 (ja)
KR (1) KR102381124B1 (ja)
CN (1) CN109819654B (ja)
BR (1) BR112019005837B1 (ja)
RU (1) RU2762191C2 (ja)
SA (1) SA519401470B1 (ja)
SG (1) SG10201912855UA (ja)
TW (1) TWI735673B (ja)
WO (1) WO2018066535A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111631A (ja) * 2019-01-08 2020-07-27 東邦チタニウム株式会社 ジアルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒、及びオレフィン類重合体の製造方法
WO2021220644A1 (ja) * 2020-04-28 2021-11-04 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分およびその製造方法、オレフィン類重合用触媒およびその製造方法ならびにオレフィン類重合体の製造方法
WO2022091867A1 (ja) * 2020-10-28 2022-05-05 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体粒子の製造方法およびオレフィン類重合体粒子
WO2023171433A1 (ja) * 2022-03-11 2023-09-14 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230174684A1 (en) * 2020-04-28 2023-06-08 Toho Titanium Co., Ltd. Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing polymer of olefin
US20230391902A1 (en) * 2020-10-15 2023-12-07 China Petroleum & Chemical Corporation Magnesium-based solid and catalyst component having multimodal pore distribution, and preparation methods therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362805A (ja) * 1989-04-28 1991-03-18 Himont Inc オレフィンの重合用成分および触媒
JPH0641217A (ja) * 1992-01-31 1994-02-15 Spherilene Srl オレフィンの重合用成分及び触媒
JPH0820606A (ja) * 1994-07-07 1996-01-23 Mitsubishi Chem Corp α‐オレフィン重合用触媒およびそれを用いたα‐オレフィン重合体の製造法
JPH1060041A (ja) * 1996-06-10 1998-03-03 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分およびその製造方法ならびにこの触媒成分を含むオレフィン重合用触媒およびこの触媒を用いるオレフィンの重合方法
JP2003105018A (ja) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2007106846A (ja) * 2005-10-12 2007-04-26 Japan Polypropylene Corp オレフィン重合用触媒担体並びにそれを用いたオレフィン重合用触媒成分
JP2007146065A (ja) * 2005-11-30 2007-06-14 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒並びにこれを用いたオレフィン類重合体の重合方法
JP2008074948A (ja) * 2006-09-21 2008-04-03 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分、重合用触媒およびオレフィン類重合体の製造法
JP2012158640A (ja) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA91117B (en) * 1990-01-26 1991-12-24 Himont Inc Method of producing olefin polymer graft copolymers
US5159678A (en) 1990-06-11 1992-10-27 Supercomputer Systems Limited Partnership Method for efficient non-virtual main memory management
IT1262934B (it) 1992-01-31 1996-07-22 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione di olefine
JPH06220117A (ja) 1992-12-11 1994-08-09 Spherilene Srl 広範な分子量分布を有するエチレンの(コ)ポリマーの製造方法
IT1256648B (it) 1992-12-11 1995-12-12 Montecatini Tecnologie Srl Componenti e catalizzatori per la polimerizzazione delle olefine
IT1273660B (it) 1994-07-20 1997-07-09 Spherilene Srl Procedimento per la preparazione di polimeri amorfi del propilene
JP4163220B2 (ja) 1996-06-10 2008-10-08 三井化学株式会社 オレフィン重合用触媒およびこの触媒を用いるオレフィンの重合方法
JP2000143731A (ja) 1998-09-01 2000-05-26 Idemitsu Petrochem Co Ltd プロピレン系ランダム共重合体及びそれからなるフィルム
ES2293907T3 (es) 1999-06-18 2008-04-01 Basell Poliolefine Italia S.R.L. Componentes cataliticos para la polimerizacion de olefinas y catalizadores obtenidos con estos componentes.
KR100531543B1 (ko) * 2001-03-30 2005-11-28 도호 캐털리스트 가부시키가이샤 올레핀 중합용 고체 촉매 성분 및 촉매, 및 프로필렌 블록공중합체
EP2094744A1 (en) 2006-12-20 2009-09-02 Basell Poliolefine Italia S.R.L. Catalyst components for the polymerization of olefins and catalysts therefrom obtained
CN101173015B (zh) * 2007-10-19 2010-06-16 任丘市利和科技发展有限公司 一种用于乙烯聚合或共聚合的催化剂组分、其制备方法及其催化剂
US20130030134A1 (en) * 2011-07-31 2013-01-31 Petrochemical Research And Technology Company Ziegler catalyst and method of synthesizing the same
CN103214603A (zh) * 2012-01-18 2013-07-24 中国石油天然气股份有限公司 一种乙氧基镁/蒙脱土/四氯化钛聚乙烯催化剂及其制备和应用
SG11201408147TA (en) * 2012-07-18 2015-02-27 Toho Titanium Co Ltd Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
US9683059B2 (en) 2012-09-28 2017-06-20 Toho Titanium Co., Ltd. Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
KR101495780B1 (ko) * 2012-10-25 2015-02-25 롯데케미칼 주식회사 올레핀 중합용 촉매의 제조방법, 이로부터 제조된 올레핀 중합용 촉매 및 이를 이용하는 올레핀 중합체의 제조방법
CN103788259B (zh) * 2012-10-30 2017-05-31 中国石油化工股份有限公司 一种分子量窄分布聚丙烯
KR101699590B1 (ko) * 2014-11-28 2017-01-24 한화토탈 주식회사 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362805A (ja) * 1989-04-28 1991-03-18 Himont Inc オレフィンの重合用成分および触媒
JPH0641217A (ja) * 1992-01-31 1994-02-15 Spherilene Srl オレフィンの重合用成分及び触媒
JPH0820606A (ja) * 1994-07-07 1996-01-23 Mitsubishi Chem Corp α‐オレフィン重合用触媒およびそれを用いたα‐オレフィン重合体の製造法
JPH1060041A (ja) * 1996-06-10 1998-03-03 Mitsui Petrochem Ind Ltd オレフィン重合用固体状チタン触媒成分およびその製造方法ならびにこの触媒成分を含むオレフィン重合用触媒およびこの触媒を用いるオレフィンの重合方法
JP2003105018A (ja) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2007106846A (ja) * 2005-10-12 2007-04-26 Japan Polypropylene Corp オレフィン重合用触媒担体並びにそれを用いたオレフィン重合用触媒成分
JP2007146065A (ja) * 2005-11-30 2007-06-14 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒並びにこれを用いたオレフィン類重合体の重合方法
JP2008074948A (ja) * 2006-09-21 2008-04-03 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分、重合用触媒およびオレフィン類重合体の製造法
JP2012158640A (ja) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521324A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111631A (ja) * 2019-01-08 2020-07-27 東邦チタニウム株式会社 ジアルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒、及びオレフィン類重合体の製造方法
JP7324584B2 (ja) 2019-01-08 2023-08-10 東邦チタニウム株式会社 ジアルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法及びオレフィン類重合体の製造方法
WO2021220644A1 (ja) * 2020-04-28 2021-11-04 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分およびその製造方法、オレフィン類重合用触媒およびその製造方法ならびにオレフィン類重合体の製造方法
WO2022091867A1 (ja) * 2020-10-28 2022-05-05 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体粒子の製造方法およびオレフィン類重合体粒子
WO2023171433A1 (ja) * 2022-03-11 2023-09-14 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体

Also Published As

Publication number Publication date
US11236189B2 (en) 2022-02-01
EP3521324A4 (en) 2020-09-09
BR112019005837B1 (pt) 2023-01-17
BR112019005837A2 (pt) 2019-06-18
EP3521324B1 (en) 2023-03-08
JPWO2018066535A1 (ja) 2019-07-18
SA519401470B1 (ar) 2022-10-18
JP7044710B2 (ja) 2022-03-30
RU2019111767A (ru) 2020-11-06
TWI735673B (zh) 2021-08-11
SG10201912855UA (en) 2020-02-27
TW201821450A (zh) 2018-06-16
RU2762191C2 (ru) 2021-12-16
US20190233569A1 (en) 2019-08-01
CN109819654B (zh) 2021-11-16
RU2019111767A3 (ja) 2021-06-04
EP3521324A1 (en) 2019-08-07
KR102381124B1 (ko) 2022-03-31
KR20190066020A (ko) 2019-06-12
CN109819654A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2018066535A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法、プロピレン系共重合体の製造方法およびプロピレン系共重合体
JP6577964B2 (ja) オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
US9683059B2 (en) Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
JP5253911B2 (ja) アルコキシマグネシウムの合成方法
US10472436B2 (en) Olefin-polymerization solid catalytic component, production method for olefin-polymerization catalyst, and production method for olefin polymer
JP5771462B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP4624115B2 (ja) オレフィン類重合用固体触媒成分および触媒並びにオレフィン類重合体の製造方法
JP5886000B2 (ja) アルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法並びにオレフィン類重合体の製造方法
JP6067299B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
US11225536B1 (en) Method for producing solid catalyst component for polymerization of olefin, solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, method for producing catalyst for polymerization of olefin and method for producing polymer of olefin
JP2020111631A (ja) ジアルコキシマグネシウムの製造方法、オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒、及びオレフィン類重合体の製造方法
WO2022250034A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒、オレフィン類重合体の製造方法、オレフィン類重合体、プロピレン系ブロック共重合体の製造方法及びプロピレン系ブロック共重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543909

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005837

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011027

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017858373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112019005837

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190325