WO2018066325A1 - 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク - Google Patents

蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク Download PDF

Info

Publication number
WO2018066325A1
WO2018066325A1 PCT/JP2017/032923 JP2017032923W WO2018066325A1 WO 2018066325 A1 WO2018066325 A1 WO 2018066325A1 JP 2017032923 W JP2017032923 W JP 2017032923W WO 2018066325 A1 WO2018066325 A1 WO 2018066325A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
deposition mask
support portion
long side
metal plate
Prior art date
Application number
PCT/JP2017/032923
Other languages
English (en)
French (fr)
Inventor
知加雄 池永
敬典 丸岡
幸代 松浦
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020227025054A priority Critical patent/KR20220104846A/ko
Priority to JP2017550655A priority patent/JP7301497B2/ja
Priority to KR1020197006625A priority patent/KR102424309B1/ko
Priority to EP17858164.1A priority patent/EP3524710B8/en
Publication of WO2018066325A1 publication Critical patent/WO2018066325A1/ja
Priority to US16/372,661 priority patent/US20190256965A1/en
Priority to US16/662,150 priority patent/US11313026B2/en
Priority to US17/218,609 priority patent/US20210214837A1/en
Priority to US17/655,388 priority patent/US11814719B2/en
Priority to JP2022156692A priority patent/JP2022191309A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/20Masking elements, i.e. elements defining uncoated areas on an object to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C21/00Accessories or implements for use in connection with applying liquids or other fluent materials to surfaces, not provided for in groups B05C1/00 - B05C19/00
    • B05C21/005Masking devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/143Masks therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a vapor deposition mask and a method for manufacturing the vapor deposition mask.
  • the present invention also relates to an intermediate product for producing a vapor deposition mask.
  • display devices used in portable devices such as smartphones and tablet PCs are required to have high definition, for example, a pixel density of 400 ppi or more.
  • the pixel density of the display device is required to be, for example, 800 ppi or more.
  • organic EL display devices are attracting attention because of their excellent responsiveness, low power consumption, and high contrast.
  • a method of forming pixels of an organic EL display device a method of forming pixels with a desired pattern using a vapor deposition mask in which through holes arranged in a desired pattern are formed is known. Specifically, first, a deposition mask is brought into intimate contact with a substrate for an organic EL display device, and then the deposited deposition mask and the substrate are both put into a deposition apparatus to deposit an organic material on the substrate. I do. As a result, a pixel containing an organic material can be formed on the substrate in a pattern corresponding to the pattern of the through hole of the vapor deposition mask.
  • the vapor deposition mask is fixed to a frame having a predetermined rigidity.
  • the vapor deposition mask has a pair of long sides and a pair of short sides, the vapor deposition mask is fixed to the frame while being pulled in the direction of the long sides. Thereby, it is possible to suppress the evaporation mask from being bent and to improve the dimensional accuracy and position accuracy of the pixels.
  • a method of forming a through hole in a metal plate by etching using a photolithography technique is known. For example, first, a first resist pattern is formed on the first surface of the metal plate by exposure / development processing, and a second resist pattern is formed on the second surface of the metal plate by exposure / development processing. Next, a region of the first surface of the metal plate that is not covered with the first resist pattern is etched to form a first opening in the first surface of the metal plate. Thereafter, a region of the second surface of the metal plate that is not covered with the second resist pattern is etched to form a second opening in the second surface of the metal plate. At this time, by performing etching so that the first opening and the second opening communicate with each other, a through-hole penetrating the metal plate can be formed.
  • a method for efficiently producing a vapor deposition mask first, a metal plate having an area corresponding to a plurality of vapor deposition masks is prepared, and then a large number of through holes to be formed in the plurality of vapor deposition masks are formed in the metal plate. Then, a method of extracting individual vapor deposition masks from the metal plate is known. For example, in patent document 1, the vapor deposition mask is extracted from the metal plate by cutting the metal plate along the breaking line. In Patent Document 1, the break line is a perforation formed on a metal plate in a pattern corresponding to the long side and the short side of the vapor deposition mask.
  • the vapor deposition mask When the perforation is broken, it is considered that the vapor deposition mask is pulled from the metal plate, thereby deforming the metal plate. For example, deformation such as a wavy shape may appear on the long side of the vapor deposition mask. As a result, the dimensional accuracy and position accuracy of the vapor deposition material that adheres to the substrate through the through-hole located in the vicinity of the long side of the vapor deposition mask is reduced.
  • An object of the present invention is to provide a method of manufacturing a vapor deposition mask that can effectively solve such problems.
  • the present invention is a method of manufacturing a vapor deposition mask including a pair of long sides and a pair of short sides and having a plurality of through holes, the step of preparing a metal plate, and the metal plate being a pair of long sides And a plurality of vapor deposition mask portions including a pair of short sides and having a plurality of through holes, and surrounding the plurality of vapor deposition mask portions and partially connected to the short sides of the plurality of vapor deposition mask portions.
  • the long side is a method for manufacturing a vapor deposition mask that is not connected to the support portion.
  • the present invention is a method of manufacturing a vapor deposition mask including a pair of long sides and a pair of short sides and having a plurality of through holes, the step of preparing a metal plate, and the metal plate being a pair of long sides And a plurality of vapor deposition mask portions including a pair of short sides and formed with a plurality of through holes, a support portion surrounding the plurality of vapor deposition mask portions and partially connected to the plurality of vapor deposition mask portions, And a separation step of separating the vapor deposition mask portion from the support portion to obtain the vapor deposition mask, and in the intermediate product, of the long sides of the vapor deposition mask portion It is a manufacturing method of a vapor deposition mask whose ratio of the place connected to the said support part is smaller than the ratio of the location connected to the said support part among the said short sides of the said vapor deposition mask part.
  • the ratio of the portions connected to the support portion among the long sides of the vapor deposition mask portion is obtained by dividing the total width of the portions connected to the support portion among the long sides by the length of the long side.
  • the ratio of the portions connected to the support portion of the short sides of the vapor deposition mask portion is calculated by the sum of the widths of the portions connected to the support portion of the short sides. May be calculated by dividing by the length of.
  • the ratio of the portions connected to the support portion among the long sides of the vapor deposition mask portion is obtained by dividing the number of portions connected to the support portion among the long sides by the length of the long side.
  • the ratio of the portions connected to the support portion of the short sides of the vapor deposition mask portion is calculated by calculating the number of portions connected to the support portion of the short sides as the length of the short side. You may calculate by dividing by.
  • the region that overlaps the through hole when the long side is viewed along the width direction of the intermediate product among the long sides of the vapor deposition mask portion, It is not connected to the support part. More preferably, the entire area of the long side of the vapor deposition mask portion is not connected to the support portion.
  • the short side of the vapor deposition mask portion includes a plurality of convex portions protruding toward the support portion and connected to the support portion. Also good.
  • the plurality of vapor deposition mask portions are arranged in a direction intersecting the long side, and between the long sides of two adjacent vapor deposition mask portions.
  • the support portion may not be present.
  • the processing step includes a step of etching the metal plate to form the through hole and a gap between the long side of the vapor deposition mask portion and the support portion. May be included.
  • the metal plate may be processed while conveying the metal plate along the long side direction of the vapor deposition mask portion.
  • the vapor deposition mask portion is separated from the support portion by breaking a portion of the short side of the vapor deposition mask portion that is connected to the support portion. May be.
  • the thickness of the metal plate may be 50 ⁇ m or less.
  • the present invention is a metal plate-like intermediate product including a pair of long sides and a pair of short sides and assigned with a vapor deposition mask in which a plurality of through holes are formed.
  • a vapor deposition mask portion including a short side and formed with a plurality of through holes; and a support portion surrounding the vapor deposition mask portion and partially connected to the short side of the vapor deposition mask portion.
  • the long side of the mask portion is an intermediate product that is not connected to the support portion.
  • the present invention is a metal plate-like intermediate product including a pair of long sides and a pair of short sides and assigned with a vapor deposition mask in which a plurality of through holes are formed.
  • a vapor deposition mask portion including a short side and having a plurality of through-holes formed thereon; and a support portion that surrounds the vapor deposition mask portion and is partially connected to the vapor deposition mask portion. It is an intermediate product in which the proportion of the long side connected to the support portion is smaller than the proportion of the short side of the vapor deposition mask portion connected to the support portion.
  • the ratio of the portions connected to the support portion among the long sides of the vapor deposition mask portion is obtained by dividing the total width of the portions connected to the support portion among the long sides by the length of the long side.
  • the ratio of the portions connected to the support portion of the short sides of the vapor deposition mask portion is calculated by the sum of the widths of the portions connected to the support portion of the short sides. May be calculated by dividing by the length of.
  • the ratio of the portions connected to the support portion among the long sides of the vapor deposition mask portion is obtained by dividing the number of portions connected to the support portion among the long sides by the length of the long side.
  • the ratio of the portions connected to the support portion of the short sides of the vapor deposition mask portion is calculated by calculating the number of portions connected to the support portion of the short sides as the length of the short side. You may calculate by dividing by.
  • a region of the long side of the vapor deposition mask portion that overlaps the through hole when the long side is viewed along the width direction of the intermediate product is in the support portion. Not connected. More preferably, the entire area of the long side of the vapor deposition mask portion is not connected to the support portion.
  • the short side of the vapor deposition mask portion may include a plurality of convex portions protruding toward the support portion and connected to the support portion.
  • the vapor deposition mask portion and the support portion may have a thickness of 50 ⁇ m or less.
  • the plurality of vapor deposition mask portions are arranged in a direction intersecting the long side, and the support portion exists between the long sides of the two adjacent vapor deposition mask portions. It does not have to be.
  • the present invention is a vapor deposition mask, comprising a metal plate-like base material including a pair of long sides and a pair of short sides, and a plurality of through holes formed in the base material. It is a vapor deposition mask in which a fracture surface partially exists on the short side of the material, while no fracture surface exists on the long side of the substrate.
  • the present invention is a vapor deposition mask, comprising a metal plate-like base material including a pair of long sides and a pair of short sides, and a plurality of through holes formed in the base material. It is a vapor deposition mask whose ratio of the torn surface in the said long side of material is smaller than the ratio of the torn surface in the said short side of the said base material.
  • the ratio of the fracture surface at the long side of the substrate is calculated by dividing the total width of the fracture surface existing at the long side by the length of the long side, and the fracture at the short side of the substrate.
  • the ratio of the cross section may be calculated by dividing the total width of the fracture surfaces existing on the short side by the length of the short side.
  • the ratio of the fracture surface on the long side of the substrate is calculated by dividing the number of fracture surfaces existing on the long side by the length of the long side, and the fracture on the short side of the substrate.
  • the ratio of the cross section may be calculated by dividing the number of the fracture surfaces existing on the short side by the length of the short side.
  • the fracture surface does not exist in a region overlapping with the through hole when the long side is viewed along the width direction of the vapor deposition mask. More preferably, the long side of the substrate does not have a fracture surface over the entire area.
  • the short side of the base material may include a plurality of convex portions protruding outward and having the fracture surface.
  • the shortest distance in the surface direction of the base material from the long side of the base material to the through hole may be 50 ⁇ m or less.
  • the base material has a first surface facing the substrate to which the vapor deposition material that has passed through the through-hole adheres, and a second surface located on the opposite side of the first surface.
  • the long side of the base material may have a cross-sectional shape that protrudes to the outermost side at a portion that intersects the first surface.
  • the thickness of the base material may be 50 ⁇ m or less.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line VI-VI in FIG. 4.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 4. It is sectional drawing which expands and shows the through-hole shown in FIG.
  • FIG. 16 is a diagram illustrating a second surface etching process following FIG. 15.
  • FIG. 25B It is a figure which shows a mode that the vapor deposition mask provided with the long side which has a cross-sectional shape shown to FIG. 25B has faced the organic electroluminescent board
  • FIGS. 1 to 22 are diagrams for explaining an embodiment of the present invention.
  • a method for manufacturing a vapor deposition mask used for patterning an organic material on a substrate in a desired pattern when manufacturing an organic EL display device will be described as an example.
  • the present invention can be applied to vapor deposition masks used for various purposes without being limited to such applications.
  • the terms “plate”, “sheet”, and “film” are not distinguished from each other based only on the difference in names.
  • the “plate” is a concept including a member that can be called a sheet or a film.
  • plate surface (sheet surface, film surface)
  • sheet surface means a target plate-like member (sheet-like) when the target plate-like (sheet-like, film-like) member is viewed as a whole and globally. It refers to the surface that coincides with the plane direction of the member or film-like member.
  • the normal direction used with respect to a plate-like (sheet-like, film-like) member refers to the normal direction with respect to the plate
  • the shape, geometric conditions and physical characteristics and their degree are specified, for example, terms such as “parallel”, “orthogonal”, “identical”, “equivalent”, lengths and angles
  • values of physical characteristics and the like are not limited to a strict meaning and are interpreted to include a range where a similar function can be expected.
  • the vapor deposition apparatus 90 which performs the vapor deposition process which vapor-deposits a vapor deposition material on a target object is demonstrated with reference to FIG.
  • the vapor deposition apparatus 90 includes a vapor deposition source (for example, a crucible 94), a heater 96, and a vapor deposition mask apparatus 10 therein.
  • the vapor deposition apparatus 90 further includes exhaust means for making the inside of the vapor deposition apparatus 90 a vacuum atmosphere.
  • the crucible 94 contains a vapor deposition material 98 such as an organic light emitting material.
  • the heater 96 heats the crucible 94 to evaporate the vapor deposition material 98 under a vacuum atmosphere.
  • the vapor deposition mask device 10 is disposed so as to face the crucible 94.
  • the vapor deposition mask device 10 includes a vapor deposition mask 20 and a frame 15 that supports the vapor deposition mask 20.
  • the frame 15 supports the vapor deposition mask 20 in a state of being pulled in the surface direction so that the vapor deposition mask 20 is not bent.
  • the vapor deposition mask device 10 is disposed in the vapor deposition device 90 so that the vapor deposition mask 20 faces a substrate, for example, an organic EL substrate 92, to which the vapor deposition material 98 is attached.
  • first surface 20a the surface on the organic EL substrate 92 side
  • second surface 20b the surface located on the opposite side of the first surface 20a
  • the vapor deposition mask device 10 may include a magnet 93 disposed on the surface of the organic EL substrate 92 opposite to the vapor deposition mask 20 as shown in FIG. By providing the magnet 93, the vapor deposition mask 20 can be brought close to the organic EL substrate 92 by attracting the vapor deposition mask 20 to the magnet 93 side by magnetic force.
  • FIG. 3 is a plan view showing the vapor deposition mask device 10 as viewed from the first surface 20a side of the vapor deposition mask 20.
  • the vapor deposition mask device 10 includes a plurality of vapor deposition masks 20.
  • Each vapor deposition mask 20 includes a pair of long sides 26 and a pair of short sides 27, and has, for example, a rectangular shape.
  • Each vapor deposition mask 20 is fixed to the frame 15 by, for example, spot welding at a pair of short sides 27 or in the vicinity thereof.
  • the vapor deposition mask 20 includes a metal plate-like base material in which a plurality of through holes 25 penetrating the vapor deposition mask 20 are formed.
  • the vapor deposition material 98 that has evaporated from the crucible 94 and reached the vapor deposition mask device 10 adheres to the organic EL substrate 92 through the through hole 25 of the vapor deposition mask 20. Thereby, the vapor deposition material 98 can be formed on the surface of the organic EL substrate 92 in a desired pattern corresponding to the position of the through hole 25 of the vapor deposition mask 20.
  • FIG. 2 is a cross-sectional view showing an organic EL display device 100 manufactured using the vapor deposition device 90 of FIG.
  • the organic EL display device 100 includes an organic EL substrate 92 and pixels including a vapor deposition material 98 provided in a pattern.
  • vapor deposition apparatuses 90 each equipped with a vapor deposition mask 20 corresponding to each color are prepared, and the organic EL substrate 92 is sequentially inserted into each vapor deposition apparatus 90.
  • an organic light emitting material for red, an organic light emitting material for green, and an organic light emitting material for blue can be sequentially deposited on the organic EL substrate 92.
  • the vapor deposition process may be performed inside the vapor deposition apparatus 90 which becomes a high temperature atmosphere.
  • the vapor deposition mask 20, the frame 15, and the organic EL substrate 92 held inside the vapor deposition apparatus 90 are also heated during the vapor deposition process.
  • the vapor deposition mask 20, the frame 15, and the organic EL substrate 92 exhibit dimensional change behavior based on their respective thermal expansion coefficients.
  • the thermal expansion coefficients of the vapor deposition mask 20 and the frame 15 and the organic EL substrate 92 are greatly different, a positional shift caused by a difference in their dimensional change occurs.
  • the dimensional accuracy and position accuracy of the vapor deposition material will decrease.
  • the thermal expansion coefficients of the vapor deposition mask 20 and the frame 15 are equal to the thermal expansion coefficient of the organic EL substrate 92.
  • an iron alloy containing nickel can be used as the main material of the vapor deposition mask 20 and the frame 15.
  • an iron alloy containing 30% by mass or more and 54% by mass or less of nickel can be used as the material of the base material constituting the vapor deposition mask 20.
  • the iron alloy containing nickel examples include an invar material containing nickel of 34% by mass or more and 38% by mass or less, a super invar material containing cobalt in addition to 30% by mass or more and 34% by mass or less of nickel, 38 Examples thereof include a low thermal expansion Fe—Ni-based plating alloy containing nickel of not less than mass% and not more than 54 mass%.
  • the thermal expansion coefficient of the vapor deposition mask 20 and the frame 15 is set to There is no need to make the values equivalent.
  • a material other than the above-described iron alloy may be used as a material constituting the vapor deposition mask 20.
  • an iron alloy other than the above-described iron alloy containing nickel such as an iron alloy containing chromium
  • an iron alloy called so-called stainless steel can be used.
  • alloys other than iron alloys such as nickel and nickel-cobalt alloys may be used.
  • the vapor deposition mask 20 includes a pair of ear portions (a first ear portion 17 a and a second ear portion 17 b) including a pair of short sides 27 of the vapor deposition mask 20, and a pair of ear portions 17 a and 17 b. And an intermediate portion 18 positioned therebetween.
  • the ears 17a and 17b are portions fixed to the frame 15 in the vapor deposition mask 20.
  • the ear portions 17 a and 17 b are configured integrally with the intermediate portion 18.
  • edge parts 17a and 17b may be comprised by the member different from the intermediate part 18.
  • FIG. in this case, the ear portions 17a and 17b are joined to the intermediate portion 18 by welding, for example.
  • the intermediate portion 18 includes at least one effective region 22 in which a through hole 25 extending from the first surface 20 a to the second surface 20 b is formed, and a surrounding region 23 surrounding the effective region 22.
  • the effective area 22 is an area facing the display area of the organic EL substrate 92 in the vapor deposition mask 20.
  • the intermediate portion 18 includes a plurality of effective regions 22 arranged at predetermined intervals along the long side 26 of the vapor deposition mask 20.
  • One effective area 22 corresponds to the display area of one organic EL display device 100. For this reason, according to the vapor deposition mask apparatus 10 shown in FIG. 1, the multi-surface vapor deposition of the organic EL display apparatus 100 is possible.
  • the effective region 22 has, for example, a substantially rectangular shape in a plan view, and more precisely, a substantially rectangular shape in a plan view.
  • each effective region 22 can have various shapes of contours according to the shape of the display region of the organic EL substrate 92.
  • each effective area 22 may have a circular outline.
  • FIG. 4 is an enlarged plan view showing the effective region 22 from the second surface 20 b side of the vapor deposition mask 20.
  • the plurality of through holes 25 formed in each effective region 22 are arranged at predetermined pitches along two directions orthogonal to each other in the effective region 22. Yes.
  • An example of the through hole 25 will be described in more detail with reference mainly to FIGS. 5 to 7 are sectional views taken along the VV direction to the VII-VII direction of the effective region 22 shown in FIG.
  • the plurality of through holes 25 extend along the normal direction N of the vapor deposition mask 20 from the first surface 20 a on one side along the normal direction N of the vapor deposition mask 20. It penetrates to the second surface 20b on the other side.
  • a first recess 30 is formed by etching on the first surface 21a of the base material 21 on one side in the normal direction N of the vapor deposition mask 20, and the vapor deposition mask 20
  • a second recess 35 is formed on the second surface 21 b of the base 21 that is the other side in the normal direction N.
  • the 1st recessed part 30 is connected to the 2nd recessed part 35, and is formed so that the 2nd recessed part 35 and the 1st recessed part 30 may mutually communicate by this.
  • the through hole 25 is configured by a second recess 35 and a first recess 30 connected to the second recess 35.
  • the plate of the vapor deposition mask 20 at each position along the normal direction N of the vapor deposition mask 20 from the second surface 20b side of the vapor deposition mask 20 toward the first surface 20a side.
  • the opening area of each second recess 35 in the cross section along the plane is gradually reduced.
  • the opening area of each first recess 30 in the cross section along the plate surface of the vapor deposition mask 20 at each position along the normal direction N of the vapor deposition mask 20 is from the first surface 20a side of the vapor deposition mask 20. It gradually becomes smaller toward the second surface 20b.
  • the wall surface 31 of the first recess 30 and the wall surface 36 of the second recess 35 are connected via a circumferential connecting portion 41.
  • the connection portion 41 the wall surface 31 of the first recess 30 inclined with respect to the normal direction N of the vapor deposition mask 20 and the wall surface 36 of the second recess 35 inclined with respect to the normal direction N of the vapor deposition mask 20 merge. It is defined by the ridgeline of the overhanging part.
  • the connection part 41 defines the penetration part 42 with which the opening area of the through-hole 25 becomes the minimum in the planar view of the vapor deposition mask 20.
  • two adjacent through holes 25 are formed on the other surface along the normal direction N of the vapor deposition mask 20, that is, on the first surface 20 a of the vapor deposition mask 20. They are separated from each other along the plate surface of the mask 20. That is, when the base 21 is etched from the side of the first surface 21 a of the base 21 that corresponds to the first surface 20 a of the vapor deposition mask 20 as in the manufacturing method described later, the first recess 30 is produced. The first surface 21 a of the base material 21 remains between the two adjacent first recesses 30.
  • two adjacent second concave portions on one side along the normal direction N of the vapor deposition mask 20, that is, on the second surface 20 b side of the vapor deposition mask 20. 35 may be separated from each other along the plate surface of the vapor deposition mask 20. That is, the second surface 21b of the base material 21 may remain between two adjacent second recesses 35.
  • a portion of the effective area 22 of the second surface 21 b of the base material 21 that remains without being etched is also referred to as a top portion 43.
  • the vapor deposition mask 20 is manufactured so that the width ⁇ of the top portion 43 does not become excessively large.
  • the width ⁇ of the top part 43 is preferably 2 ⁇ m or less.
  • the width ⁇ of the top portion 43 generally varies depending on the direction in which the vapor deposition mask 20 is cut.
  • the widths ⁇ of the top portions 43 shown in FIGS. 5 and 7 may be different from each other.
  • the vapor deposition mask 20 may be configured such that the width ⁇ of the top portion 43 is 2 ⁇ m or less when the vapor deposition mask 20 is cut in any direction.
  • etching may be performed so that two adjacent second recesses 35 are connected. That is, a place where the second surface 21 b of the base material 21 does not remain may exist between two adjacent second recesses 35. Although not shown, the etching may be performed so that two adjacent second recesses 35 are connected over the entire area of the second surface 21b.
  • the first surface 20 a of the vapor deposition mask 20 faces the organic EL substrate 92 as shown by a two-dot chain line in FIG. 5.
  • the second surface 20 b of the vapor deposition mask 20 is located on the crucible 94 side that holds the vapor deposition material 98. Therefore, the vapor deposition material 98 adheres to the organic EL substrate 92 through the second recess 35 whose opening area is gradually reduced.
  • FIG. 1 the first surface 20 a of the vapor deposition mask 20 faces the organic EL substrate 92 as shown by a two-dot chain line in FIG. 5.
  • the second surface 20 b of the vapor deposition mask 20 is located on the crucible 94 side that holds the vapor deposition material 98. Therefore, the vapor deposition material 98 adheres to the organic EL substrate 92 through the second recess 35 whose opening area is gradually reduced.
  • the deposition material 98 moves along the normal direction N of the organic EL substrate 92 from the crucible 94 toward the organic EL substrate 92 as indicated by an arrow from the second surface 20 b side to the first surface 20 a.
  • the organic EL substrate 92 may move in a direction greatly inclined with respect to the normal direction N of the organic EL substrate 92.
  • the thickness t of the vapor deposition mask 20 is reduced, thereby reducing the height of the wall surface 36 of the second recess 35 and the wall surface 31 of the first recess 30. It is considered preferable. That is, it can be said that it is preferable to use the base material 21 having a thickness t as small as possible within the range in which the strength of the vapor deposition mask 20 can be secured as the base material 21 for constituting the vapor deposition mask 20. Considering this point, in the present embodiment, the thickness t of the vapor deposition mask 20 is preferably set to 50 ⁇ m or less, for example, 5 ⁇ m or more and 50 ⁇ m or less.
  • the thickness t is the thickness of the surrounding region 23, that is, the thickness of the portion of the vapor deposition mask 20 where the first recess 30 and the second recess 35 are not formed. Accordingly, it can be said that the thickness t is the thickness of the substrate 21.
  • a straight line L ⁇ b> 1 that passes through the connection portion 41, which is a portion having the minimum opening area of the through-hole 25, and another arbitrary position of the wall surface 36 of the second recess 35 is a normal direction of the vapor deposition mask 20.
  • the minimum angle made with respect to N is represented by the symbol ⁇ 1.
  • the symbol ⁇ represents the width of a portion (hereinafter also referred to as a rib portion) remaining in the effective region 22 of the first surface 21 a of the base material 21 without being etched.
  • the width ⁇ of the rib part and the dimension r 2 of the through part 42 are appropriately determined according to the dimension of the organic EL display device and the number of display pixels.
  • the width ⁇ of the rib portion is not less than 5 ⁇ m and not more than 40 ⁇ m
  • the dimension r 2 of the through portion 42 is not less than 10 ⁇ m and not more than 60 ⁇ m.
  • the vapor deposition mask 20 according to the present embodiment is particularly effective when an organic EL display device having a pixel density of 450 ppi or more is manufactured.
  • an example of the dimensions of the vapor deposition mask 20 required for producing such an organic EL display device having a high pixel density will be described with reference to FIG.
  • FIG. 8 is an enlarged cross-sectional view of the through hole 25 of the vapor deposition mask 20 shown in FIG.
  • the distance from the first surface 20 a of the vapor deposition mask 20 to the connection portion 41 in the direction along the normal direction N of the vapor deposition mask 20, that is, the first concave portion. the height of the wall 31 of the 30 is represented by reference numeral r 1.
  • the first recess 30 dimensions of the first recess 30 in the portion connected to the second recess 35, i.e. the dimension of the through region 42 is represented by reference numeral r 2.
  • the angle formed by the straight line L2 connecting the connecting portion 41 and the leading edge of the first recess 30 on the first surface 21a of the base material 21 with respect to the normal direction N of the base material 21 is It is represented by the symbol ⁇ 2.
  • dimension r 2 of the penetrating part 42 is preferably set below and 60 ⁇ m or 10 [mu] m. Accordingly, it is possible to provide the vapor deposition mask 20 that can produce an organic EL display device having a high pixel density.
  • the height r 1 of the wall surface 31 of the first recess 30 is set to 6 ⁇ m or less.
  • the angle ⁇ 2 it is possible to suppress the vapor deposition material 98 that has come through at a large inclination angle and passed through the through portion 42 from adhering to the organic EL substrate 92. It can suppress that the vapor deposition material 98 adheres to a part outside the part which overlaps the penetration part 42 among these. That is, reducing the angle ⁇ 2 leads to suppression of variations in the area and thickness of the vapor deposition material 98 attached to the organic EL substrate 92. From such a viewpoint, for example, the through hole 25 is formed such that the angle ⁇ 2 is 45 degrees or less. In FIG.
  • the dimension of the first recess 30 in the first surface 21a that is, the opening dimension of the through hole 25 in the first surface 21a is larger than the dimension r2 of the first recess 30 in the connection part 41.
  • An example is shown. That is, the example in which the value of the angle ⁇ 2 is a positive value is shown.
  • the dimension r2 of the first recess 30 in the connection part 41 may be larger than the dimension of the first recess 30 in the first surface 21a. That is, the value of the angle ⁇ 2 may be a negative value.
  • the metal plate 64 for manufacturing a vapor deposition mask is prepared.
  • the metal plate 64 is prepared, for example, in the form of a roll obtained by winding a long metal plate.
  • a metal plate made of an iron alloy containing nickel is used as the metal plate 64.
  • the thickness of the metal plate 64 is, for example, 3 ⁇ m, may be 5 ⁇ m or more, and may be 10 ⁇ m or more. Further, the thickness of the metal plate 64 is, for example, 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • a rolling method, a plating film forming method, or the like can be employed as a method for producing the metal plate 64 having a desired thickness.
  • the metal plate 64 is processed to form a plurality of vapor deposition mask portions including the through holes 25 in the metal plate 64 (processing step). Thereafter, by separating the vapor deposition mask portion from the metal plate 64 (separation process), the sheet-like vapor deposition mask 20 can be obtained.
  • the step of processing the metal plate 64 includes a step of etching the long metal plate 64 using a photolithography technique to form the first recess 30 on the metal plate 64 from the first surface 64a side, and photolithography. Etching the metal plate 64 to form a second recess 35 on the metal plate 64 from the second surface 64b side. And the 1st recessed part 30 and the 2nd recessed part 35 which were formed in the metal plate 64 mutually communicate, and the through-hole 25 is produced in the metal plate 64.
  • the first recessed portion 30 forming step is performed before the second recessed portion 35 forming step, and between the first recessed portion 30 forming step and the second recessed portion 35 forming step, The process of sealing the produced 1st recessed part 30 is implemented.
  • the process of sealing the produced 1st recessed part 30 is implemented.
  • details of each process will be described.
  • FIG. 9 shows a manufacturing apparatus 60 for producing the vapor deposition mask 20.
  • a wound body 62 in which a metal plate 64 is wound around a core 61 is prepared. And by rotating this core 61 and unwinding the wound body 62, the metal plate 64 extended in strip shape is supplied as shown in FIG.
  • Supplied metal plate 64 is transported to processing device (etching means) 70 by transport roller 72.
  • processing device (etching means) 70 Each processing shown in FIGS. 10 to 17 is performed by the processing apparatus 70.
  • a plurality of vapor deposition masks 20 are allocated in the width direction of the metal plate 64.
  • the metal plate 64 is processed so that a plurality of later-described vapor deposition mask portions that are separated from the metal plate 64 and become the vapor deposition mask 20 are arranged in the width direction of the metal plate 64.
  • the plurality of vapor deposition masks 20 are allocated to the metal plate 64 so that the direction of the long side 26 of the vapor deposition mask portion, that is, the vapor deposition mask 20 coincides with the longitudinal direction of the long metal plate 64.
  • resist films 65 c and 65 d containing a negative photosensitive resist material are formed on the first surface 64 a and the second surface 64 b of the metal plate 64.
  • a coating liquid containing a negative photosensitive resist material is applied on the first surface 64a and the second surface 64b of the metal plate 64, and then the coating liquid is dried, whereby the resist films 65c and 65d are formed.
  • exposure masks 68a and 68b are prepared so as not to transmit light to the regions to be removed of the resist films 65c and 65d.
  • the exposure masks 68a and 68b are respectively formed on the resist films 65c and 65d as shown in FIG. To place.
  • As the exposure masks 68a and 68b for example, glass dry plates are used in which light is not transmitted to the regions to be removed of the resist films 65c and 65d. Thereafter, the exposure masks 68a and 68b are sufficiently adhered to the resist films 65c and 65d by vacuum adhesion.
  • the photosensitive resist material a positive type may be used. In this case, an exposure mask that transmits light to a region to be removed of the resist film is used as the exposure mask.
  • the resist films 65c and 65d are exposed through the exposure masks 68a and 68b (exposure process). Further, the resist films 65c and 65d are developed in order to form images on the exposed resist films 65c and 65d (development process).
  • the first resist pattern 65a is formed on the first surface 64a of the metal plate 64
  • the second resist pattern 65b is formed on the second surface 64b of the metal plate 64.
  • the developing process may include a resist heat treatment process for increasing the hardness of the resist films 65c and 65d or for causing the resist films 65c and 65d to adhere more firmly to the metal plate 64.
  • the resist heat treatment step can be performed, for example, at room temperature or higher and 400 ° C. or lower.
  • a first surface etching process is performed in which a region of the first surface 64a of the metal plate 64 that is not covered with the first resist pattern 65a is etched using a first etching solution.
  • the first etching solution is sprayed toward the first surface 64a of the metal plate 64 from the nozzle disposed on the side facing the first surface 64a of the metal plate 64 to be conveyed through the first resist pattern 65a.
  • erosion by the first etching solution proceeds in a region of the metal plate 64 that is not covered with the first resist pattern 65a.
  • a large number of first recesses 30 are formed in the first surface 64 a of the metal plate 64.
  • the first etching solution for example, a solution containing a ferric chloride solution and hydrochloric acid is used.
  • the first recess 30 is covered with a resin 69 having resistance to the second etching solution used in the subsequent second surface etching step. That is, the first recess 30 is sealed with a resin 69 having resistance to the second etching solution.
  • a film of resin 69 is formed so as to cover not only the formed first recess 30 but also the first surface 64a (first resist pattern 65a).
  • the second surface 64 b of the metal plate 64 is etched on the region not covered with the second resist pattern 65 b to form the second recess 35 on the second surface 64 b.
  • An etching process is performed.
  • the second surface etching process is performed until the first recess 30 and the second recess 35 communicate with each other, thereby forming the through hole 25.
  • the second etching solution for example, a solution containing a ferric chloride solution and hydrochloric acid is used in the same manner as the first etching solution.
  • the erosion by the second etching solution is performed on the portion of the metal plate 64 that is in contact with the second etching solution. Therefore, erosion does not proceed only in the normal direction N (thickness direction) of the metal plate 64 but also proceeds in a direction along the plate surface of the metal plate 64.
  • N thickness direction
  • two second recesses 35 respectively formed at positions facing two adjacent holes 66a of the second resist pattern 65b are positioned between the two holes 66a. It ends before joining at the back side of the bridge portion 67a. Thereby, as shown in FIG. 16, the above-described top portion 43 can be left on the second surface 64 b of the metal plate 64.
  • the resin 69 is removed from the metal plate 64 as shown in FIG.
  • the resin 69 can be removed by using, for example, an alkaline stripping solution.
  • an alkaline stripping solution is used, the resist patterns 65a and 65b are removed simultaneously with the resin 69, as shown in FIG.
  • the resist patterns 65a and 65b may be removed separately from the resin 69 by using a remover different from the remover for removing the resin 69.
  • FIG. 18 is a plan view showing the intermediate product 50 obtained by processing the vapor deposition mask 20 to form the through holes 25 as described above.
  • the vapor deposition mask 20 is assigned to the intermediate product 50.
  • the intermediate product 50 includes a plurality of vapor deposition mask portions 51 and support portions 56.
  • the symbol T ⁇ b> 1 represents the conveyance direction of the metal plate 64 in the manufacturing process of the vapor deposition mask 20
  • the symbol T ⁇ b> 2 represents a direction orthogonal to the conveyance direction T ⁇ b> 1 (hereinafter also referred to as the width direction).
  • the transport direction T1 coincides with the longitudinal direction of the long metal plate 64.
  • the vapor deposition mask portion 51 is a portion of the metal plate 64 that becomes the vapor deposition mask 20 by being separated.
  • the vapor deposition mask portion 51 includes a pair of long sides 52 and a pair of short sides 53 corresponding to the pair of long sides 26 and the pair of short sides 27 of the vapor deposition mask 20.
  • a plurality of through holes 25 are formed in the vapor deposition mask portion 51.
  • the vapor deposition mask portion 51 includes an effective region 22 in which a plurality of through holes 25 are formed, and a surrounding region 23 surrounding the effective region 22.
  • the plurality of vapor deposition mask portions 51 are arranged in a direction intersecting the long side 52.
  • the long side 52 is parallel to the transport direction T1
  • the direction in which the plurality of vapor deposition mask portions 51 are arranged is parallel to the width direction T2.
  • the support portion 56 is a portion that surrounds the plurality of vapor deposition mask portions 51 in a plan view and is partially connected to the vapor deposition mask portion 51. In the example shown in FIG. 18, the support portion 56 is a portion other than the vapor deposition mask portion 51 in the metal plate 64.
  • FIG. 19 is an enlarged view showing a region surrounded by a dotted line with the symbol XIX in the intermediate product 50 in FIG.
  • the short side 53 of the vapor deposition mask portion 51 is partially connected to the support portion 56.
  • the short side 53 of the vapor deposition mask portion 51 includes a plurality of convex portions 53 a that protrude toward the support portion 56 and are connected to the support portion 56.
  • the long side 52 of the vapor deposition mask portion 51 is not connected to the support portion 56.
  • a gap 55 exists across the entire long side 52 between the long side 52 of the vapor deposition mask portion 51 and the support portion 56. Moreover, the support part 56 does not exist between the long sides 52 of the two adjacent vapor deposition mask parts 51. In other words, a gap 55 exists across the entire long side 52 between the long sides 52 of the two adjacent vapor deposition mask portions 51.
  • the gap 55 can be formed simultaneously with the through hole 25 in the above-described processing step.
  • the resist films 65c and 65d are exposed and developed so that the resist patterns 65a and 65b do not remain in the portion of the metal plate 64 where the gap 55 is to be formed.
  • regions of the metal plate 64 that are not covered with the resist patterns 65a and 65b are removed by etching. Accordingly, the gap 55 shown in FIGS. 18 and 19 can be formed in the metal plate 64 simultaneously with the plurality of through holes 25.
  • the etching for forming the gap 55 may be performed on both sides of the first surface 64a and the second surface 64b of the metal plate 64 (Example 1), respectively, and the first surface 64a and the second surface of the metal plate 64 may be performed. It may be implemented only on one side of the surface 64b (Example 2).
  • the resist film 65c is exposed and developed so that the resist pattern 65a does not remain in the portion of the first surface 64a of the metal plate 64 where the gap 55 is to be formed (hereinafter also referred to as a gap-predicted portion). To do. Further, the resist film 65d is exposed and developed so that the resist pattern 65b does not remain in the planned gap portion of the second surface 64b of the metal plate 64. Subsequently, the metal plate 64 is etched from the first surface 64a side.
  • the first concave portion 30 is formed in the portion of the first surface 64a of the metal plate 64 that should be the effective region 22 of the vapor deposition mask 20, and at the same time, the first concave portion 30 is formed in the planned gap portion of the first surface 64a.
  • the first recess 30 is covered with the resin 69.
  • the metal plate 64 is etched from the second surface 64b side.
  • the second concave portion 35 is formed in the portion of the second surface 64b of the metal plate 64 that should be the effective region 22 of the vapor deposition mask 20, and at the same time, the second concave portion 35 is formed in the planned gap portion of the second surface 64b.
  • the gap 55 can be formed simultaneously with the through hole 25.
  • the resist film 65d is exposed and developed so that the resist pattern 65b does not remain in the planned gap portion of the second surface 64b of the metal plate 64.
  • the resist film 65 c is exposed and developed so that the resist pattern 65 a remains in the planned gap portion of the first surface 64 a of the metal plate 64.
  • the metal plate 64 is etched from the first surface 64a side, and the first concave portion 30 is formed in a portion of the metal plate 64 that should be the effective region 22 of the vapor deposition mask 20.
  • the first recess 30 is not formed in the planned clearance portion of the first surface 64a.
  • the first recess 30 is covered with the resin 69.
  • the planned clearance portion of the first surface 64 a is also covered with the resin 69.
  • the metal plate 64 is etched from the second surface 64b side.
  • the second concave portion 35 is formed in the portion of the second surface 64b of the metal plate 64 that should be the effective region 22 of the vapor deposition mask 20, and at the same time, the second concave portion 35 is formed in the planned gap portion of the second surface 64b.
  • the gap 55 can be formed in the planned gap.
  • Example 2 during the first etching step for forming the first recess 30, half etching is not performed on the planned gap portion of the first surface 64 a of the metal plate 64. For this reason, even if it is a case where the thickness of the metal plate 64 is small, it can suppress that a gap
  • the dimension of the gap 55 is set so that the vapor deposition mask portion 51 does not come into contact with the support portion 56 or another vapor deposition mask portion 51 when the intermediate product 50 is conveyed.
  • a dimension S1 in the width direction T2 of the gap 55 between the vapor deposition mask portion 51 and the support portion 56 is, for example, not less than 0.1 mm and not more than 5 mm.
  • the dimension S2 in the width direction T2 of the gap 55 between two adjacent vapor deposition mask portions 51 is, for example, not less than 0.1 mm and not more than 5 mm.
  • the dimension S3 in the transport direction T1 between the short side 53 of the vapor deposition mask portion 51 and the support portion 56 is, for example, 30 ⁇ m or more and 100 ⁇ m or less.
  • the pitch P of the convex part 53a in the direction of the short side 53 is 200 micrometers or more and 400 micrometers or less, for example.
  • a separation step of separating the vapor deposition mask portion 51 from the support portion 56 in the above-described intermediate product 50 is performed.
  • the intermediate product 50 obtained by processing the metal plate 64 is conveyed to a separation device 73 for performing a separation step.
  • the intermediate product 50 is conveyed to the separation device 73 by the conveying rollers 72 and 72 that rotate while being held.
  • a suppression unit that suppresses shaking and bending of the vapor deposition mask portion 51 may be provided in the intermediate product 50, the transport roller 72, or the transport path.
  • the suppression means includes a pair of films provided on the first surface side and the second surface side of the intermediate product 50.
  • FIG. 20 is a diagram showing a separation process for separating the vapor deposition mask portion 51 from the support portion 56.
  • the long side 52 of the vapor deposition mask portion 51 and the support portion 56 are not connected.
  • the vapor deposition mask 20 can be obtained by separating the vapor deposition mask portion 51 from the support portion 56 by breaking the connection portion 54 between the vapor deposition mask portion 51 and the support portion 56 at the short side 53.
  • FIG. 21 is an enlarged plan view showing the vapor deposition mask 20 obtained from the intermediate product 50.
  • the separation step includes, for example, a breaking step of breaking the connection portion 54 connected to the support portion 56 in the short side 53 of the vapor deposition mask portion 51.
  • a portion of the vapor deposition mask 20 where the connection portion 54 is broken for example, the tip of the convex portion 53a of the short side 53 becomes a fracture surface 27b.
  • the fracture surface 27 b partially exists on the short side 27 of the vapor deposition mask 20.
  • FIG. 22 is a side view showing a case where the fracture surface 27b of the convex portion 27a of the short side 27 of the vapor deposition mask 20 is viewed from the direction of the arrow XXII in FIG.
  • the connection portion 54 between the short side 53 of the vapor deposition mask portion 51 and the support portion 56 is broken by pulling the vapor deposition mask portion 51 upward, for example, in FIG.
  • a burr 27c resulting from the force received from the support portion 56 at the time of fracture may occur on the fracture surface 27b of the convex portion 27a.
  • the burr 27c extends in the direction of the force received from the support portion 56 at the time of breaking (downward in FIG. 22).
  • the fracture surface 27b can be defined as a surface on which such a burr 27c exists.
  • the long side 52 of the vapor deposition mask portion 51 is not connected to the support portion 56, the long side 26 of the vapor deposition mask 20 has no fracture surface.
  • FIG. 23A and FIG. 23B respectively show the results of observing the region of the long side 26 surrounded by the dotted line with the symbol XXIII in the vapor deposition mask 20 of FIG. 22 from the first surface 20a side and the second surface 20b side.
  • FIG. 24A and 24B the region of the short side 27 surrounded by the dotted line with the symbol XXIV in the vapor deposition mask 20 of FIG. 22 was observed from the first surface 20a side and the second surface 20b side, respectively. It is a figure which shows a result.
  • the magnification at the time of observation is 10 times.
  • a black portion (hereinafter also referred to as a dark portion) 27x was observed at the tip of the convex portion 27a of the short side 27.
  • the width of the dark part 27x was 13.8 ⁇ m.
  • the same dark portion 27y was also observed when observed from the second surface 20b side of the vapor deposition mask 20.
  • FIG. 25A is a diagram schematically showing the cross-sectional shape of the long side 26 of the vapor deposition mask 20, that is, the region surrounded by the dotted line with the symbol XXIII in the vapor deposition mask 20 of FIG. 22.
  • FIG. 25B is a diagram showing a modification of the cross-sectional shape of the long side 26.
  • the long side 26 of the vapor deposition mask 20 has a shape that protrudes inward due to side etching that occurs during the etching process that is performed to form the through hole 25. A curved surface may be formed.
  • FIG. 25A is a diagram schematically showing the cross-sectional shape of the long side 26 of the vapor deposition mask 20, that is, the region surrounded by the dotted line with the symbol XXIII in the vapor deposition mask 20 of FIG. 22.
  • FIG. 25B is a diagram showing a modification of the cross-sectional shape of the long side 26.
  • the long side 26 of the vapor deposition mask 20 has a shape
  • FIG. 25A is a diagram illustrating an example of a cross-sectional shape of the long side 26 when the gap 55 is formed by etching only from the second surface 64 b of the metal plate 64.
  • FIG. 25B is a diagram illustrating an example of a cross-sectional shape of the long side 26 when the gap 55 is formed by etching from both sides of the first surface 64a and the second surface 64b of the metal plate 64.
  • the cross-sectional shape corresponding to the planar photographs shown in FIGS. 23A and 23B is that of FIG. 25A.
  • the long side 26 spreads outward as it goes from the second surface 20b side to the first surface 20a side, as shown in FIG. 25A.
  • a curved surface is formed. This curved surface is visible when the long side 26 is observed from the second surface 20b side, but is not visible when the long side 26 is observed from the first surface 20a side.
  • the long side 26 has a cross-sectional shape that protrudes to the outermost side at a portion that intersects the first surface 20a.
  • the dark portion 26y confirmed when the long side 26 is observed from the second surface 20b side is considered to be caused by light scattering on the curved surface.
  • the first side 20a is located on the long surface 26 as shown in FIG. 25B.
  • a curved surface resulting from side etching when forming the concave portion 30 and a curved surface resulting from side etching when forming the second concave portion 35 located on the second surface 20b side are formed.
  • the long side 26 has a cross-sectional shape that protrudes outwardly at a portion where the curved surface on the first surface 20a side and the curved surface on the second surface 20b side intersect.
  • the degree of side etching is also on the second surface 20b side. Will be bigger.
  • the curved surface formed on the long side 26 is also larger on the second surface 20b side. Therefore, the width of the dark part confirmed when the long side 26 is observed from the second surface 20b side is also considered to be larger than the width of the dark part confirmed when the long side 26 is observed from the first surface 20a side. .
  • FIG. 25C is a diagram illustrating a state in which the vapor deposition mask 20 having the long side 26 having the cross-sectional shape illustrated in FIG. 25A is facing the organic EL substrate 92.
  • FIG. 25D is a diagram showing a state where the vapor deposition mask 20 having the long side 26 having the cross-sectional shape shown in FIG. 25B faces the organic EL substrate 92.
  • the plurality of vapor deposition masks 20 are arranged so as to be arranged at a predetermined interval M in the direction of the short side 27.
  • the interval M is set to be equal to or greater than a predetermined separation distance so as to prevent the long sides 26 of the two adjacent vapor deposition masks 20 from contacting each other.
  • interval M is a space
  • FIG. 25C the vapor deposition mask 20 is arranged so that the interval M at the portion of the long side 26 that intersects the first surface 20a is equal to or greater than a predetermined separation distance.
  • the vapor deposition mask 20 is set such that the interval M at the portion of the long side 26 where the curved surface on the first surface 20a side and the curved surface on the second surface 20b side intersect is equal to or greater than a predetermined separation distance. Are arranged.
  • the contact area with respect to the organic EL substrate 92 is larger in the example shown in FIG. 25C.
  • the example shown in FIG. 25C is more advantageous in terms of adhesion to the organic EL substrate 92.
  • the improvement of the adhesion to the organic EL substrate 92 and the reduction of the contact risk between the two adjacent vapor deposition masks 20 are in a trade-off relationship.
  • two requests in a trade-off relationship can be satisfied at a higher level than in the example shown in FIG. 25D.
  • the vapor deposition mask 20 when the vapor deposition masks 20 come into contact with each other, the vapor deposition mask 20 is damaged or deformed.
  • the contact area of the first surface 20a of the vapor deposition mask 20 with respect to the organic EL substrate 92 decreases, and the adhesion with respect to the organic EL substrate 92 decreases.
  • excessively reducing the distance between the two adjacent vapor deposition masks 20 may cause a decrease in adhesion to the organic EL substrate 92.
  • FIG. 26 is a cross-sectional view schematically showing a region surrounded by a dotted line labeled XXIV in the vapor deposition mask 20 of FIG.
  • the short side 27 of the vapor deposition mask 20 has the second surface 20b due to the short side 27 being pulled from the support portion 56 to the first surface 20a side during the above-described breaking process.
  • a curved surface having a convex shape on the outside may be formed on the side.
  • the dark part 27y confirmed when the short side 27 is observed from the second surface 20b side is caused by light scattering on the curved surface.
  • flash 27c which protruded from the 1st surface 20a may be formed in the 1st surface 20a side.
  • the dark part 27x confirmed when the short side 27 is observed from the first surface 20a side is considered to be caused by light scattering in the burr 27c.
  • the shortest distance S4 (see FIG. 21) in the surface direction of the base material 21 from the long side 26 to the through hole 25 of the vapor deposition mask 20 is generally in the surface direction of the base material 21 from the short side 27 to the through hole 25. Small compared to the shortest distance. For this reason, when a deformation such as a wavy shape appears on the long side 26, the dimensional accuracy and the positional accuracy of the vapor deposition material 98 attached to the organic EL substrate 92 through the through hole 25 located in the vicinity of the long side 26 are lowered. End up.
  • the vapor deposition mask portion 51 of the intermediate product 50 is not connected to the support portion 56.
  • the long side 52 does not receive the force from the support part 56 in the separation process which isolate
  • the region of the long side 52 of the vapor deposition mask portion 51 that overlaps the through hole 25 when the long side 52 is viewed along the width direction T ⁇ b> 2 of the intermediate product 50 is not connected to the support portion 56. It is preferable.
  • the long side 26 is viewed in the width direction of the vapor deposition mask 20
  • a fracture surface may exist in a region that does not overlap with the through hole 25 when the long side 26 is viewed in the width direction of the vapor deposition mask 20.
  • the ratio of the portion connected to the support portion 56 in the long side 52 of the vapor deposition mask portion 51 is the portion connected to the support portion 56 in the short side 53 of the vapor deposition mask portion 51.
  • the ratio of the fracture surface at the long side 26 is smaller than the ratio of the fracture surface at the short side 27.
  • the ratio of the portion connected to the support portion 56 in the short side 53 of the vapor deposition mask portion 51 is, for example, the sum of the widths K4 (see FIG. 19) of the portion connected to the support portion 56 in the short side 53. It is calculated by dividing by the length K2 of the short side 53 (see FIG. 18). For example, as shown in FIG. 19, the width K ⁇ b> 4 is the width of the narrowest portion of the convex portions 53 a connected to the support portion 56. Similarly, the ratio of the portions connected to the support portion 56 among the long sides 52 of the vapor deposition mask portion 51 is, for example, the sum of the widths of the portions connected to the support portion 56 among the long sides 52. Is divided by the length K1 (see FIG. 18).
  • the ratio of the fracture surface 27b on the short side 27 of the vapor deposition mask 20 is, for example, the sum of the widths K6 (see FIG. 21) of the fracture surface 27b existing on the short side 27 and the length K5 of the short side 27 (see FIG. 21). ) Divided by.
  • the ratio of the fracture surface at the long side 26 of the vapor deposition mask 20 is calculated, for example, by dividing the total width of the fracture surfaces existing at the long side 26 by the length of the long side 26.
  • the ratio of the portions connected to the support portion 56 in the short side 53 of the vapor deposition mask portion 51 is the number of portions of the short side 53 connected to the support portion 56 by the length K2 of the short side 53. It may be calculated by dividing. In the example shown in FIG. 19, the number of portions connected to the support portion 56 in the short side 53 is four. Similarly, the ratio of the portion connected to the support portion 56 in the long side 52 of the vapor deposition mask portion 51 is the number of portions connected to the support portion 56 in the long side 52. It may be calculated by dividing by.
  • the ratio of the fracture surface 27b on the short side 27 of the vapor deposition mask 20 may be calculated by dividing the number of fracture surfaces 27b existing on the short side 27 by the length K5 of the short side 27.
  • the ratio of the fracture surface on the long side 26 of the vapor deposition mask 20 may be calculated by dividing the number of fracture surfaces existing on the long side 26 by the length of the long side 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

[課題]長辺の変形が抑制された蒸着マスクを製造する。 [解決手段]蒸着マスクの製造方法は、金属板を準備する工程と、金属板を、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された複数の蒸着マスク部分と、複数の蒸着マスク部分を囲むとともに複数の蒸着マスク部分の短辺に部分的に接続されている支持部分と、を備える中間製品に加工する加工工程と、蒸着マスク部分を支持部分から分離して蒸着マスクを得る分離工程と、を備える。中間製品において、蒸着マスク部分の長辺は、支持部分に接続されていない。

Description

蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク
 本発明は、蒸着マスク及び蒸着マスクの製造方法に関する。また、本発明は、蒸着マスクを作製するための中間製品に関する。
 近年、スマートフォンやタブレットPC等の持ち運び可能なデバイスで用いられる表示装置に対して、高精細であること、例えば画素密度が400ppi以上であることが求められている。また、持ち運び可能なデバイスにおいても、ウルトラフルハイビジョンに対応することへの需要が高まっており、この場合、表示装置の画素密度が例えば800ppi以上であることが求められる。
 表示装置の中でも、応答性の良さ、消費電力の低さやコントラストの高さのため、有機EL表示装置が注目されている。有機EL表示装置の画素を形成する方法として、所望のパターンで配列された貫通孔が形成された蒸着マスクを用い、所望のパターンで画素を形成する方法が知られている。具体的には、はじめに、有機EL表示装置用の基板に対して蒸着マスクを密着させ、次に、密着させた蒸着マスクおよび基板を共に蒸着装置に投入し、有機材料を基板に蒸着させる蒸着工程を行う。これによって、蒸着マスクの貫通孔のパターンに対応したパターンで、基板上に、有機材料を含む画素を形成することができる。
 蒸着工程において、蒸着マスクは、所定の剛性を有するフレームに固定されている。例えば、蒸着マスクが一対の長辺及び一対の短辺を有する場合、蒸着マスクは、長辺の方向に引っ張られた状態でフレームに固定される。これによって、蒸着マスクが撓むことを抑制し、画素の寸法精度や位置精度を高めることができる。
 蒸着マスクの製造方法としては、例えば特許文献1に開示されているように、フォトリソグラフィー技術を用いたエッチングによって金属板に貫通孔を形成する方法が知られている。例えば、はじめに、金属板の第1面上に露光・現像処理によって第1レジストパターンを形成し、また金属板の第2面上に露光・現像処理によって第2レジストパターンを形成する。次に、金属板の第1面のうち第1レジストパターンによって覆われていない領域をエッチングして、金属板の第1面に第1開口部を形成する。その後、金属板の第2面のうち第2レジストパターンによって覆われていない領域をエッチングして、金属板の第2面に第2開口部を形成する。この際、第1開口部と第2開口部とが通じ合うようにエッチングを行うことにより、金属板を貫通する貫通孔を形成することができる。
 蒸着マスクを効率的に製造する方法として、まず、複数の蒸着マスクに相当する面積を有する金属板を準備し、次に、複数の蒸着マスクに形成されるべき多数の貫通孔を金属板に形成し、その後、金属板から個々の蒸着マスクを抜き出す、という方法が知られている。例えば特許文献1においては、破断線に沿って金属板を切断することによって、金属板から蒸着マスクを抜き出している。特許文献1において、破断線は、蒸着マスクの長辺及び短辺に対応するパターンで金属板に形成されたミシン目である。
特開2015-55007号公報
 ミシン目を破断させるとき、蒸着マスクが金属板から引っ張られ、これによって金属板が変形してしまうことが考えられる。例えば、蒸着マスクの長辺に波打ち形状などの変形が現れ得る。この結果、蒸着マスクの長辺の近傍に位置する貫通孔を通って基板に付着する蒸着材料の寸法精度や位置精度が低下してしまう。
 本発明は、このような課題を効果的に解決し得る蒸着マスクの製造方法を提供することを目的とする。
 本発明は、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクの製造方法であって、金属板を準備する工程と、前記金属板を、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された複数の蒸着マスク部分と、前記複数の蒸着マスク部分を囲むとともに前記複数の蒸着マスク部分の前記短辺に部分的に接続されている支持部分と、を備える中間製品に加工する加工工程と、前記蒸着マスク部分を前記支持部分から分離して前記蒸着マスクを得る分離工程と、を備え、前記中間製品において、前記蒸着マスク部分の前記長辺は、前記支持部分に接続されていない、蒸着マスクの製造方法である。
 本発明は、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクの製造方法であって、金属板を準備する工程と、前記金属板を、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された複数の蒸着マスク部分と、前記複数の蒸着マスク部分を囲むとともに前記複数の蒸着マスク部分に部分的に接続されている支持部分と、を備える中間製品に加工する加工工程と、前記蒸着マスク部分を前記支持部分から分離して前記蒸着マスクを得る分離工程と、を備え、前記中間製品において、前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率が、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率よりも小さい、蒸着マスクの製造方法である。
 前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の幅の総和を前記長辺の長さで割ることにより算出され、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の幅の総和を前記短辺の長さで割ることにより算出されてもよい。
 若しくは、前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の個数を前記長辺の長さで割ることにより算出され、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の個数を前記短辺の長さで割ることにより算出されてもよい。
 本発明による蒸着マスクの製造方法において、好ましくは、前記蒸着マスク部分の前記長辺のうち、前記中間製品の幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域は、前記支持部分に接続されていない。より好ましくは、前記蒸着マスク部分の前記長辺の全域が前記支持部分に接続されていない。
 本発明による蒸着マスクの製造方法において、前記中間製品において、前記蒸着マスク部分の前記短辺は、前記支持部分に向かって突出し、且つ前記支持部分に接続されている複数の凸部を含んでいてもよい。
 本発明による蒸着マスクの製造方法において、前記中間製品において、前記複数の蒸着マスク部分は、前記長辺に交差する方向に並んでおり、隣り合う2つの前記蒸着マスク部分の前記長辺の間には、前記支持部分が存在しなくてもよい。
 本発明による蒸着マスクの製造方法において、前記加工工程は、前記金属板をエッチングして、前記貫通孔、及び、前記蒸着マスク部分の前記長辺と前記支持部分との間の隙間を形成する工程を含んでいてもよい。
 本発明による蒸着マスクの製造方法の前記加工工程において、前記蒸着マスク部分の前記長辺の方向に沿って前記金属板を搬送しながら前記金属板を加工してもよい。
 本発明による蒸着マスクの製造方法の前記分離工程において、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所を破断させることによって、前記蒸着マスク部分を前記支持部分から分離してもよい。
 本発明による蒸着マスクの製造方法において、前記金属板の厚みが、50μm以下であってもよい。
 本発明は、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクが割り付けられた、金属製の板状の中間製品であって、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスク部分と、前記蒸着マスク部分を囲むとともに前記蒸着マスク部分の前記短辺に部分的に接続されている支持部分と、を備え、前記蒸着マスク部分の前記長辺は、前記支持部分に接続されていない、中間製品である。
 本発明は、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクが割り付けられた、金属製の板状の中間製品であって、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスク部分と、前記蒸着マスク部分を囲むとともに前記蒸着マスク部分に部分的に接続されている支持部分と、を備え、前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率が、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率よりも小さい、中間製品である。
 前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の幅の総和を前記長辺の長さで割ることにより算出され、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の幅の総和を前記短辺の長さで割ることにより算出されてもよい。
 若しくは、前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の個数を前記長辺の長さで割ることにより算出され、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の個数を前記短辺の長さで割ることにより算出されてもよい。
 本発明による中間製品において、好ましくは、前記蒸着マスク部分の前記長辺のうち、前記中間製品の幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域は、前記支持部分に接続されていない。より好ましくは、前記蒸着マスク部分の前記長辺の全域が前記支持部分に接続されていない。
 本発明による中間製品において、前記蒸着マスク部分の前記短辺は、前記支持部分に向かって突出し、且つ前記支持部分に接続されている複数の凸部を含んでいてもよい。
 本発明による中間製品において、前記蒸着マスク部分及び前記支持部分の厚みが、50μm以下であってもよい。
 本発明による中間製品において、前記複数の蒸着マスク部分は、前記長辺に交差する方向に並んでおり、隣り合う2つの前記蒸着マスク部分の前記長辺の間には、前記支持部分が存在しなくてもよい。
 本発明は、蒸着マスクであって、一対の長辺及び一対の短辺を含む、金属製の板状の基材と、前記基材に形成された複数の貫通孔と、を備え、前記基材の前記短辺には部分的に破断面が存在し、一方、前記基材の前記長辺には破断面が存在しない、蒸着マスクである。
 本発明は、蒸着マスクであって、一対の長辺及び一対の短辺を含む、金属製の板状の基材と、前記基材に形成された複数の貫通孔と、を備え、前記基材の前記長辺における破断面の比率が、前記基材の前記短辺における破断面の比率よりも小さい、蒸着マスクである。
 前記基材の前記長辺における破断面の比率は、前記長辺に存在する前記破断面の幅の総和を前記長辺の長さで割ることにより算出され、前記基材の前記短辺における破断面の比率は、前記短辺に存在する前記破断面の幅の総和を前記短辺の長さで割ることにより算出されてもよい。
 若しくは、前記基材の前記長辺における破断面の比率は、前記長辺に存在する前記破断面の個数を前記長辺の長さで割ることにより算出され、前記基材の前記短辺における破断面の比率は、前記短辺に存在する前記破断面の個数を前記短辺の長さで割ることにより算出されてもよい。
 本発明による蒸着マスクにおいて、好ましくは、前記破断面は、前記蒸着マスクの幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域には存在しない。より好ましくは、前記基材の前記長辺には全域にわたって破断面が存在しない。
 本発明による蒸着マスクにおいて、前記基材の前記短辺は、外方に突出するとともに前記破断面を有する複数の凸部を含んでいてもよい。
 本発明による蒸着マスクにおいて、前記基材の前記長辺から前記貫通孔までの、前記基材の面方向における最短距離が、50μm以下であってもよい。
 本発明による蒸着マスクにおいて、前記基材は、前記貫通孔を通った蒸着材料が付着する基板に対面する第1面と、前記第1面の反対側に位置する第2面と、を有し、前記基材の前記長辺は、前記第1面と交わる部分において最も外側に突出した断面形状を有していてもよい。
 本発明による蒸着マスクにおいて、前記基材の厚みが、50μm以下であってもよい。
 本発明によれば、長辺の変形が抑制された蒸着マスクを製造することができる。
本発明の一実施形態による蒸着マスク装置を備えた蒸着装置を示す図である。 図1に示す蒸着マスク装置を用いて製造した有機EL表示装置を示す断面図である。 本発明の一実施形態による蒸着マスク装置を示す平面図である。 図3に示された蒸着マスクの有効領域を示す部分平面図である。 図4のV-V線に沿った断面図である。 図4のVI-VI線に沿った断面図である。 図4のVII-VII線に沿った断面図である。 図5に示す貫通孔およびその近傍の領域を拡大して示す断面図である。 蒸着マスクの製造方法の一例を全体的に説明するための模式図である。 金属板上にレジスト膜を形成する工程を示す図である。 レジスト膜に露光マスクを密着させる工程を示す図である。 レジスト膜を現像する工程を示す図である。 第1面エッチング工程を示す図である。 第1凹部を樹脂によって被覆する工程を示す図である。 第2面エッチング工程を示す図である。 図15に続く第2面エッチング工程を示す図である。 金属板から樹脂及びレジストパターンを除去する工程を示す図である。 金属板を加工することによって得られた中間製品を示す平面図である。 図18の中間製品のうち符号XIXが付された点線で囲われた領域を拡大して示す図である。 蒸着マスク部分を支持部分から分離する工程を示す図である。 中間製品から得られた蒸着マスクを拡大して示す平面図である。 図21の蒸着マスクの短辺を矢印XXIIの方向から見た場合を示す側面図である。 図21の蒸着マスクのうち符号XXIIIが付された点線で囲われた領域を第1面側から観察した結果を示す図である。 図21の蒸着マスクのうち符号XXIIIが付された点線で囲われた領域を第2面側から観察した結果を示す図である。 図21の蒸着マスクのうち符号XXIVが付された点線で囲われた領域を第1面側から観察した結果を示す図である。 図21の蒸着マスクのうち符号XXIVが付された点線で囲われた領域を第2面側から観察した結果を示す図である。 図21の蒸着マスクのうち符号XXIIIが付された点線で囲われた領域を模式的に示す断面図である。 蒸着マスクの長辺の断面形状の一変形例を示す図である。 図25Aに示す断面形状を有する長辺を備えた蒸着マスクが有機EL基板に対面している様子を示す図である。 図25Bに示す断面形状を有する長辺を備えた蒸着マスクが有機EL基板に対面している様子を示す図である。 図21の蒸着マスクのうち符号XXIVが付された点線で囲われた領域を模式的に示す断面図である。 中間製品の一変形例を示す平面図である。
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
 図1~図22は、本発明の一実施の形態を説明するための図である。以下の実施の形態およびその変形例では、有機EL表示装置を製造する際に有機材料を所望のパターンで基板上にパターニングするために用いられる蒸着マスクの製造方法を例にあげて説明する。ただし、このような適用に限定されることなく、種々の用途に用いられる蒸着マスクに対し、本発明を適用することができる。
 なお、本明細書において、「板」、「シート」、「フィルム」の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「板」はシートやフィルムと呼ばれ得るような部材も含む概念である。
 また、「板面(シート面、フィルム面)」とは、対象となる板状(シート状、フィルム状)の部材を全体的かつ大局的に見た場合において対象となる板状部材(シート状部材、フィルム状部材)の平面方向と一致する面のことを指す。また、板状(シート状、フィルム状)の部材に対して用いる法線方向とは、当該部材の板面(シート面、フィルム面)に対する法線方向のことを指す。
 さらに、本明細書において用いる、形状や幾何学的条件および物理的特性並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」、「同等」等の用語や長さや角度並びに物理的特性の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
 (蒸着装置)
 まず、対象物に蒸着材料を蒸着させる蒸着処理を実施する蒸着装置90について、図1を参照して説明する。図1に示すように、蒸着装置90は、その内部に、蒸着源(例えばるつぼ94)、ヒータ96、及び蒸着マスク装置10を備える。また、蒸着装置90は、蒸着装置90の内部を真空雰囲気にするための排気手段を更に備える。るつぼ94は、有機発光材料などの蒸着材料98を収容する。ヒータ96は、るつぼ94を加熱して、真空雰囲気の下で蒸着材料98を蒸発させる。蒸着マスク装置10は、るつぼ94と対向するよう配置されている。
 (蒸着マスク装置)
 以下、蒸着マスク装置10について説明する。図1に示すように、蒸着マスク装置10は、蒸着マスク20と、蒸着マスク20を支持するフレーム15と、を備える。フレーム15は、蒸着マスク20が撓んでしまうことがないように、蒸着マスク20をその面方向に引っ張った状態で支持する。蒸着マスク装置10は、図1に示すように、蒸着マスク20が、蒸着材料98を付着させる対象物である基板、例えば有機EL基板92に対面するよう、蒸着装置90内に配置される。以下の説明において、蒸着マスク20の面のうち、有機EL基板92側の面を第1面20aと称し、第1面20aの反対側に位置する面を第2面20bと称する。
 蒸着マスク装置10は、図1に示すように、有機EL基板92の、蒸着マスク20と反対の側の面に配置された磁石93を備えていてもよい。磁石93を設けることにより、磁力によって蒸着マスク20を磁石93側に引き寄せて、蒸着マスク20を有機EL基板92に密着させることができる。
 図3は、蒸着マスク装置10を蒸着マスク20の第1面20a側から見た場合を示す平面図である。図3に示すように、蒸着マスク装置10は、複数の蒸着マスク20を備える。各蒸着マスク20は、一対の長辺26及び一対の短辺27を含んでおり、例えば矩形状の形状を有している。各蒸着マスク20は、一対の短辺27又はその近傍の部分において、例えばスポット溶接によってフレーム15に固定されている。
 蒸着マスク20は、蒸着マスク20を貫通する複数の貫通孔25が形成された、金属製の板状の基材を含む。るつぼ94から蒸発して蒸着マスク装置10に到達した蒸着材料98は、蒸着マスク20の貫通孔25を通って有機EL基板92に付着する。これによって、蒸着マスク20の貫通孔25の位置に対応した所望のパターンで、蒸着材料98を有機EL基板92の表面に成膜することができる。
 図2は、図1の蒸着装置90を用いて製造した有機EL表示装置100を示す断面図である。有機EL表示装置100は、有機EL基板92と、パターン状に設けられた蒸着材料98を含む画素と、を備える。
 なお、複数の色によるカラー表示を行いたい場合には、各色に対応する蒸着マスク20が搭載された蒸着装置90をそれぞれ準備し、有機EL基板92を各蒸着装置90に順に投入する。これによって、例えば、赤色用の有機発光材料、緑色用の有機発光材料および青色用の有機発光材料を順に有機EL基板92に蒸着させることができる。
 ところで、蒸着処理は、高温雰囲気となる蒸着装置90の内部で実施される場合がある。この場合、蒸着処理の間、蒸着装置90の内部に保持される蒸着マスク20、フレーム15および有機EL基板92も加熱される。この際、蒸着マスク20、フレーム15および有機EL基板92は、各々の熱膨張係数に基づいた寸法変化の挙動を示すことになる。この場合、蒸着マスク20やフレーム15と有機EL基板92の熱膨張係数が大きく異なっていると、それらの寸法変化の差異に起因した位置ずれが生じ、この結果、有機EL基板92上に付着する蒸着材料の寸法精度や位置精度が低下してしまう。
 このような課題を解決するため、蒸着マスク20およびフレーム15の熱膨張係数が、有機EL基板92の熱膨張係数と同等の値であることが好ましい。例えば、有機EL基板92としてガラス基板が用いられる場合、蒸着マスク20およびフレーム15の主要な材料として、ニッケルを含む鉄合金を用いることができる。例えば、蒸着マスク20を構成する基材の材料として、30質量%以上且つ54質量%以下のニッケルを含む鉄合金を用いることができる。ニッケルを含む鉄合金の具体例としては、34質量%以上且つ38質量%以下のニッケルを含むインバー材、30質量%以上且つ34質量%以下のニッケルに加えてさらにコバルトを含むスーパーインバー材、38質量%以上且つ54質量%以下のニッケルを含む低熱膨張Fe-Ni系めっき合金などを挙げることができる。
 なお蒸着処理の際に、蒸着マスク20、フレーム15および有機EL基板92の温度が高温には達しない場合は、蒸着マスク20およびフレーム15の熱膨張係数を、有機EL基板92の熱膨張係数と同等の値にする必要は特にない。この場合、蒸着マスク20を構成する材料として、上述の鉄合金以外の材料を用いてもよい。例えば、クロムを含む鉄合金など、上述のニッケルを含む鉄合金以外の鉄合金を用いてもよい。クロムを含む鉄合金としては、例えば、いわゆるステンレスと称される鉄合金を用いることができる。また、ニッケルやニッケル-コバルト合金など、鉄合金以外の合金を用いてもよい。
 (蒸着マスク)
 次に、蒸着マスク20について詳細に説明する。図3に示すように、蒸着マスク20は、蒸着マスク20の一対の短辺27を含む一対の耳部(第1耳部17a及び第2耳部17b)と、一対の耳部17a,17bの間に位置する中間部18と、を備えている。
 (耳部)
 まず、耳部17a,17bについて詳細に説明する。耳部17a,17bは、蒸着マスク20のうちフレーム15に固定される部分である。本実施の形態において、耳部17a,17bは、中間部18と一体的に構成されている。なお、耳部17a,17bは、中間部18とは別の部材によって構成されていてもよい。この場合、耳部17a,17bは、例えば溶接によって中間部18に接合される。
 (中間部)
 次に、中間部18について説明する。中間部18は、第1面20aから第2面20bに至る貫通孔25が形成された、少なくとも1つの有効領域22と、有効領域22を取り囲む周囲領域23と、を含む。有効領域22は、蒸着マスク20のうち、有機EL基板92の表示領域に対面する領域である。
 図3に示す例において、中間部18は、蒸着マスク20の長辺26に沿って所定の間隔を空けて配列された複数の有効領域22を含む。一つの有効領域22は、一つの有機EL表示装置100の表示領域に対応する。このため、図1に示す蒸着マスク装置10によれば、有機EL表示装置100の多面付蒸着が可能である。
 図3に示すように、有効領域22は、例えば、平面視において略四角形形状、さらに正確には平面視において略矩形状の輪郭を有する。なお図示はしないが、各有効領域22は、有機EL基板92の表示領域の形状に応じて、様々な形状の輪郭を有することができる。例えば各有効領域22は、円形状の輪郭を有していてもよい。
 以下、有効領域22について詳細に説明する。図4は、蒸着マスク20の第2面20b側から有効領域22を拡大して示す平面図である。図4に示すように、図示された例において、各有効領域22に形成された複数の貫通孔25は、当該有効領域22において、互いに直交する二方向に沿ってそれぞれ所定のピッチで配列されている。貫通孔25の一例について、図5~図7を主に参照して更に詳述する。図5~図7はそれぞれ、図4の有効領域22のV-V方向~VII-VII方向に沿った断面図である。
 図5~図7に示すように、複数の貫通孔25は、蒸着マスク20の法線方向Nに沿った一方の側となる第1面20aから、蒸着マスク20の法線方向Nに沿った他方の側となる第2面20bへ貫通している。図示された例では、後に詳述するように、蒸着マスク20の法線方向Nにおける一方の側となる基材21の第1面21aに第1凹部30がエッチングによって形成され、蒸着マスク20の法線方向Nにおける他方の側となる基材21の第2面21bに第2凹部35が形成される。第1凹部30は、第2凹部35に接続され、これによって第2凹部35と第1凹部30とが互いに通じ合うように形成される。貫通孔25は、第2凹部35と、第2凹部35に接続された第1凹部30とによって構成されている。
 図5~図7に示すように、蒸着マスク20の第2面20bの側から第1面20aの側へ向けて、蒸着マスク20の法線方向Nに沿った各位置における蒸着マスク20の板面に沿った断面での各第2凹部35の開口面積は、しだいに小さくなっていく。同様に、蒸着マスク20の法線方向Nに沿った各位置における蒸着マスク20の板面に沿った断面での各第1凹部30の開口面積は、蒸着マスク20の第1面20aの側から第2面20bの側へ向けて、しだいに小さくなっていく。
 図5~図7に示すように、第1凹部30の壁面31と、第2凹部35の壁面36とは、周状の接続部41を介して接続されている。接続部41は、蒸着マスク20の法線方向Nに対して傾斜した第1凹部30の壁面31と、蒸着マスク20の法線方向Nに対して傾斜した第2凹部35の壁面36とが合流する張り出し部の稜線によって、画成されている。そして、接続部41は、蒸着マスク20の平面視において貫通孔25の開口面積が最小になる貫通部42を画成する。
 図5~図7に示すように、蒸着マスク20の法線方向Nに沿った他方の側の面、すなわち、蒸着マスク20の第1面20a上において、隣り合う二つの貫通孔25は、蒸着マスク20の板面に沿って互いから離間している。すなわち、後述する製造方法のように、蒸着マスク20の第1面20aに対応するようになる基材21の第1面21a側から当該基材21をエッチングして第1凹部30を作製する場合、隣り合う二つの第1凹部30の間に基材21の第1面21aが残存するようになる。
 同様に、図5及び図7に示すように、蒸着マスク20の法線方向Nに沿った一方の側、すなわち、蒸着マスク20の第2面20bの側においても、隣り合う二つの第2凹部35が、蒸着マスク20の板面に沿って互いから離間していてもよい。すなわち、隣り合う二つの第2凹部35の間に基材21の第2面21bが残存していてもよい。以下の説明において、基材21の第2面21bの有効領域22のうちエッチングされずに残っている部分のことを、トップ部43とも称する。このようなトップ部43が残るように蒸着マスク20を作製することにより、蒸着マスク20に十分な強度を持たせることができる。このことにより、例えば搬送中などに蒸着マスク20が破損してしまうことを抑制することができる。なおトップ部43の幅βが大きすぎると、蒸着工程においてシャドーが発生し、これによって蒸着材料98の利用効率が低下することがある。従って、トップ部43の幅βが過剰に大きくならないように蒸着マスク20が作製されることが好ましい。例えば、トップ部43の幅βが2μm以下であることが好ましい。なおトップ部43の幅βは一般に、蒸着マスク20を切断する方向に応じて変化する。例えば、図5及び図7に示すトップ部43の幅βは互いに異なることがある。この場合、いずれの方向で蒸着マスク20を切断した場合にもトップ部43の幅βが2μm以下になるよう、蒸着マスク20が構成されていてもよい。
 なお図6に示すように、場所によっては隣り合う二つの第2凹部35が接続されるようにエッチングが実施されてもよい。すなわち、隣り合う二つの第2凹部35の間に、基材21の第2面21bが残存していない場所が存在していてもよい。また、図示はしないが、第2面21bの全域にわたって隣り合う二つの第2凹部35が接続されるようにエッチングが実施されてもよい。
 図1に示すようにして蒸着マスク装置10が蒸着装置90に収容された場合、図5に二点鎖線で示すように、蒸着マスク20の第1面20aが、有機EL基板92に対面し、蒸着マスク20の第2面20bが、蒸着材料98を保持したるつぼ94側に位置する。したがって、蒸着材料98は、次第に開口面積が小さくなっていく第2凹部35を通過して有機EL基板92に付着する。図5において第2面20b側から第1面20aへ向かう矢印で示すように、蒸着材料98は、るつぼ94から有機EL基板92に向けて有機EL基板92の法線方向Nに沿って移動するだけでなく、有機EL基板92の法線方向Nに対して大きく傾斜した方向に移動することもある。このとき、蒸着マスク20の厚みが大きいと、斜めに移動する蒸着材料98の多くは、貫通孔25を通って有機EL基板92に到達するよりも前に、第2凹部35の壁面36に到達して付着する。従って、蒸着材料98の利用効率を高めるためには、蒸着マスク20の厚みtを小さくし、これによって、第2凹部35の壁面36や第1凹部30の壁面31の高さを小さくすることが好ましいと考えられる。すなわち、蒸着マスク20を構成するための基材21として、蒸着マスク20の強度を確保できる範囲内で可能な限り厚みtの小さな基材21を用いることが好ましいと言える。この点を考慮し、本実施の形態において、好ましくは蒸着マスク20の厚みtは、50μm以下に、例えば5μm以上且つ50μm以下に設定される。なお厚みtは、周囲領域23の厚み、すなわち蒸着マスク20のうち第1凹部30および第2凹部35が形成されていない部分の厚みである。従って厚みtは、基材21の厚みであると言うこともできる。
 図5において、貫通孔25の最小開口面積を持つ部分となる接続部41と、第2凹部35の壁面36の他の任意の位置と、を通過する直線L1が、蒸着マスク20の法線方向Nに対してなす最小角度が、符号θ1で表されている。斜めに移動する蒸着材料98を、壁面36に到達させることなく可能な限り有機EL基板92に到達させるためには、角度θ1を大きくすることが有利となる。角度θ1を大きくする上では、蒸着マスク20の厚みtを小さくすることの他にも、上述のトップ部43の幅βを小さくすることも有効である。
 図7において、符号αは、基材21の第1面21aの有効領域22のうちエッチングされずに残っている部分(以下、リブ部とも称する)の幅を表している。リブ部の幅αおよび貫通部42の寸法rは、有機EL表示装置の寸法および表示画素数に応じて適宜定められる。例えば、リブ部の幅αは5μm以上且つ40μm以下であり、貫通部42の寸法rは10μm以上且つ60μm以下である。
 限定はされないが、本実施の形態による蒸着マスク20は、450ppi以上の画素密度の有機EL表示装置を作製する場合に特に有効なものである。以下、図8を参照して、そのような高い画素密度の有機EL表示装置を作製するために求められる蒸着マスク20の寸法の一例について説明する。図8は、図5に示す蒸着マスク20の貫通孔25およびその近傍の領域を拡大して示す断面図である。
 図8においては、貫通孔25の形状に関連するパラメータとして、蒸着マスク20の第1面20aから接続部41までの、蒸着マスク20の法線方向Nに沿った方向における距離、すなわち第1凹部30の壁面31の高さが符号rで表されている。さらに、第1凹部30が第2凹部35に接続する部分における第1凹部30の寸法、すなわち貫通部42の寸法が符号rで表されている。また図8において、接続部41と、基材21の第1面21a上における第1凹部30の先端縁と、を結ぶ直線L2が、基材21の法線方向Nに対して成す角度が、符号θ2で表されている。
 450ppi以上の画素密度の有機EL表示装置を作製する場合、貫通部42の寸法rは、好ましくは10μm以上且つ60μm以下に設定される。これによって、高い画素密度の有機EL表示装置を作製することができる蒸着マスク20を提供することができる。好ましくは、第1凹部30の壁面31の高さrは、6μm以下に設定される。
 次に、図8に示す上述の角度θ2について説明する。角度θ2は、基材21の法線方向Nに対して傾斜するとともに接続部41近傍で貫通部42を通過するように飛来した蒸着材料98のうち、有機EL基板92に到達することができる蒸着材料98の傾斜角度の最大値に相当する。なぜなら、接続部41を通って角度θ2よりも大きな傾斜角度で飛来した蒸着材料98は、有機EL基板92に到達するよりも前に第1凹部30の壁面31に付着するからである。従って、角度θ2を小さくすることにより、大きな傾斜角度で飛来して貫通部42を通過した蒸着材料98が有機EL基板92に付着することを抑制することができ、これによって、有機EL基板92のうち貫通部42に重なる部分よりも外側の部分に蒸着材料98が付着してしまうことを抑制することができる。すなわち、角度θ2を小さくすることは、有機EL基板92に付着する蒸着材料98の面積や厚みのばらつきの抑制を導く。このような観点から、例えば貫通孔25は、角度θ2が45度以下になるように形成される。なお図8においては、第1面21aにおける第1凹部30の寸法、すなわち、第1面21aにおける貫通孔25の開口寸法が、接続部41における第1凹部30の寸法r2よりも大きくなっている例を示した。すなわち、角度θ2の値が正の値である例を示した。しかしながら、図示はしないが、接続部41における第1凹部30の寸法r2が、第1面21aにおける第1凹部30の寸法よりも大きくなっていてもよい。すなわち、角度θ2の値は負の値であってもよい。
 蒸着マスクの製造方法
 次に、蒸着マスク20を製造する方法について説明する。
 (金属板の準備)
 はじめに、蒸着マスクを製造するための金属板64を準備する。金属板64は、例えば、長尺状の金属板を巻き取ることにより得られるロールの形態で準備される。金属板64としては、例えば、ニッケルを含む鉄合金から構成された金属板を用いる。金属板64の厚みは、例えば3μmであり、5μm以上であってもよく、10μm以上であってもよい。また、金属板64の厚みは、例えば50μm以下であり、30μm以下であってもよく、20μm以下であってもよい。所望の厚みを有する金属板64を作製する方法としては、圧延法、めっき成膜法などを採用することができる。
 次に、金属板64を用いて蒸着マスク20を製造する方法について、主に図9~図22を参照して説明する。以下に説明する蒸着マスク20の製造方法では、図9に示すように、金属板64を加工して、金属板64に、貫通孔25を含む複数の蒸着マスク部分を形成し(加工工程)、その後、蒸着マスク部分を金属板64から分離する(分離工程)ことによって、枚葉状の蒸着マスク20を得ることができる。
 (加工工程)
 金属板64を加工する工程は、フォトリソグラフィー技術を用いたエッチングを長尺の金属板64に施して、金属板64に第1面64aの側から第1凹部30を形成する工程と、フォトリソグラフィー技術を用いたエッチングを金属板64に施して、金属板64に第2面64bの側から第2凹部35を形成する工程と、を含んでいる。そして、金属板64に形成された第1凹部30と第2凹部35とが互いに通じ合うことによって、金属板64に貫通孔25が作製される。以下に説明する例では、第1凹部30の形成工程を、第2凹部35の形成工程の前に実施し、且つ、第1凹部30の形成工程と第2凹部35の形成工程の間に、作製された第1凹部30を封止する工程を実施する。以下、各工程の詳細を説明する。
 図9には、蒸着マスク20を作製するための製造装置60が示されている。図9に示すように、まず、金属板64をコア61に巻き取った巻き体62を準備する。そして、このコア61を回転させて巻き体62を巻き出すことにより、図9に示すように帯状に延びる金属板64を供給する。
 供給された金属板64は、搬送ローラー72によって、加工装置(エッチング手段)70に搬送される。加工装置70によって、図10~図17に示された各処理が施される。なお本実施の形態においては、金属板64の幅方向に複数の蒸着マスク20を割り付ける。言い換えると、金属板64から分離されて蒸着マスク20となる後述する蒸着マスク部分が、金属板64の幅方向に複数並ぶように、金属板64を加工する。この場合、好ましくは、蒸着マスク部分すなわち蒸着マスク20の長辺26の方向が、長尺状の金属板64の長手方向に一致するよう、複数の蒸着マスク20を金属板64に割り付ける。
 まず、図10に示すように、金属板64の第1面64a上および第2面64b上にネガ型の感光性レジスト材料を含むレジスト膜65c、65dを形成する。例えば、金属板64の第1面64a上および第2面64b上に、ネガ型の感光性レジスト材料を含む塗布液を塗布し、その後、塗布液を乾燥させることにより、レジスト膜65c、65dを形成する。
 次に、レジスト膜65c、65dのうちの除去したい領域に光を透過させないようにした露光マスク68a、68bを準備し、露光マスク68a、68bをそれぞれ図11に示すようにレジスト膜65c、65d上に配置する。露光マスク68a、68bとしては、例えば、レジスト膜65c、65dのうちの除去したい領域に光を透過させないようにしたガラス乾板を用いる。その後、真空密着によって露光マスク68a、68bをレジスト膜65c、65dに十分に密着させる。
 なお感光性レジスト材料として、ポジ型のものが用いられてもよい。この場合、露光マスクとして、レジスト膜のうちの除去したい領域に光を透過させるようにした露光マスクを用いる。
 その後、レジスト膜65c、65dを露光マスク68a、68b越しに露光する(露光工程)。さらに、露光されたレジスト膜65c、65dに像を形成するためにレジスト膜65c、65dを現像する(現像工程)。以上のようにして、図12に示すように、金属板64の第1面64a上に第1レジストパターン65aを形成し、金属板64の第2面64b上に第2レジストパターン65bを形成することができる。なお現像工程は、レジスト膜65c、65dの硬度を高めるための、または金属板64に対してレジスト膜65c、65dをより強固に密着させるためのレジスト熱処理工程を含んでいてもよい。レジスト熱処理工程は、例えば室温以上且つ400℃以下で実施され得る。
 次に、図13に示すように、金属板64の第1面64aのうち第1レジストパターン65aによって覆われていない領域を、第1エッチング液を用いてエッチングする第1面エッチング工程を実施する。例えば、第1エッチング液を、搬送される金属板64の第1面64aに対面する側に配置されたノズルから、第1レジストパターン65a越しに金属板64の第1面64aに向けて噴射する。この結果、図13に示すように、金属板64のうちの第1レジストパターン65aによって覆われていない領域で、第1エッチング液による浸食が進む。これによって、金属板64の第1面64aに多数の第1凹部30が形成される。第1エッチング液としては、例えば塩化第2鉄溶液及び塩酸を含むものを用いる。
 その後、図14に示すように、後の第2面エッチング工程において用いられる第2エッチング液に対する耐性を有した樹脂69によって、第1凹部30を被覆する。すなわち、第2エッチング液に対する耐性を有した樹脂69によって、第1凹部30を封止する。図14に示す例においては、樹脂69の膜を、形成された第1凹部30だけでなく、第1面64a(第1レジストパターン65a)も覆うように形成する。
 次に、図15に示すように、金属板64の第2面64bのうち第2レジストパターン65bによって覆われていない領域をエッチングし、第2面64bに第2凹部35を形成する第2面エッチング工程を実施する。第2面エッチング工程は、第1凹部30と第2凹部35とが互いに通じ合い、これによって貫通孔25が形成されるようになるまで実施される。第2エッチング液としては、上述の第1エッチング液と同様に、例えば塩化第2鉄溶液及び塩酸を含むものを用いる。
 なお第2エッチング液による浸食は、金属板64のうちの第2エッチング液に触れている部分において行われていく。従って、浸食は、金属板64の法線方向N(厚み方向)のみに進むのではなく、金属板64の板面に沿った方向にも進んでいく。ここで好ましくは、第2面エッチング工程は、第2レジストパターン65bの隣り合う二つの孔66aに対面する位置にそれぞれ形成された二つの第2凹部35が、二つの孔66aの間に位置するブリッジ部67aの裏側において合流するよりも前に終了される。これによって、図16に示すように、金属板64の第2面64bに上述のトップ部43を残すことができる。
 その後、図17に示すように、金属板64から樹脂69を除去する。樹脂69は、例えばアルカリ系剥離液を用いることによって、除去することができる。アルカリ系剥離液が用いられる場合、図17に示すように、樹脂69と同時にレジストパターン65a,65bも除去される。なお、樹脂69を除去した後、樹脂69を剥離させるための剥離液とは異なる剥離液を用いて、樹脂69とは別途にレジストパターン65a,65bを除去してもよい。
 図18は、上述のようにして蒸着マスク20を加工して貫通孔25を形成することによって得られた中間製品50を示す平面図である。中間製品50には、蒸着マスク20が割り付けられている。言い換えると、中間製品50は、複数の蒸着マスク部分51と支持部分56とを備える。図18において、符号T1は、蒸着マスク20の製造工程における金属板64の搬送方向を表し、符号T2は、搬送方向T1に直交する方向(以下、幅方向とも称する)を表す。搬送方向T1は、長尺状の金属板64の長手方向に一致する。
 蒸着マスク部分51は、金属板64のうち、分離されることによって蒸着マスク20となる部分である。蒸着マスク部分51は、蒸着マスク20の一対の長辺26及び一対の短辺27に対応する一対の長辺52及び一対の短辺53を含む。また、蒸着マスク部分51には、複数の貫通孔25が形成されている。例えば、蒸着マスク部分51は、複数の貫通孔25が形成された有効領域22と、有効領域22を取り囲む周囲領域23と、を含む。
 図18に示すように、複数の蒸着マスク部分51は、長辺52に交差する方向に並んでいる。例えば、長辺52は搬送方向T1に平行であり、複数の蒸着マスク部分51が並ぶ方向は幅方向T2に平行である。
 支持部分56は、平面視において複数の蒸着マスク部分51を囲むとともに蒸着マスク部分51に部分的に接続されている部分である。図18に示す例において、支持部分56は、金属板64のうち蒸着マスク部分51以外の部分である。
 以下、蒸着マスク部分51と支持部分56との間の接続箇所54について説明する。図19は、図18の中間製品50のうち符号XIXが付された点線で囲われた領域を拡大して示す図である。図18及び図19に示す例において、蒸着マスク部分51の短辺53は、支持部分56に部分的に接続されている。例えば、図19に示すように、蒸着マスク部分51の短辺53は、支持部分56に向かって突出し、且つ支持部分56に接続されている複数の凸部53aを含んでいる。一方、蒸着マスク部分51の長辺52は、支持部分56に接続されていない。言い換えると、蒸着マスク部分51の長辺52と支持部分56との間には、長辺52の全域にわたって隙間55が存在している。また、隣り合う2つの蒸着マスク部分51の長辺52の間にも、支持部分56が存在していない。言い換えると、隣り合う2つの蒸着マスク部分51の長辺52の間には、長辺52の全域にわたって隙間55が存在している。
 隙間55は、上述の加工工程において貫通孔25と同時に形成され得る。例えば、上述の加工工程において、金属板64のうち隙間55が形成されるべき部分にはレジストパターン65a、65bが残らないように、レジスト膜65c、65dを露光及び現像する。続いて、金属板64のうちレジストパターン65a、65bによって覆われていない領域を、エッチングによって除去する。これによって、複数の貫通孔25と同時に、図18及び図19に示す隙間55を金属板64に形成することができる。
 なお、隙間55を形成するためのエッチングは、金属板64の第1面64a及び第2面64bの両側でそれぞれ実施されてもよく(例1)、金属板64の第1面64a及び第2面64bのいずれか一方の側のみで実施されてもよい(例2)。
 例1の場合、金属板64の第1面64aのうち隙間55が形成されるべき部分(以下、隙間予定部とも称する)にはレジストパターン65aが残らないように、レジスト膜65cを露光及び現像する。また、金属板64の第2面64bの隙間予定部にもレジストパターン65bが残らないように、レジスト膜65dを露光及び現像する。続いて、金属板64を第1面64a側からエッチングする。これによって、金属板64の第1面64aのうち蒸着マスク20の有効領域22となるべき部分に第1凹部30を形成し、同時に、第1面64aの隙間予定部に第1凹部30を形成する。次に、樹脂69によって第1凹部30を被覆する。その後、金属板64を第2面64b側からエッチングする。これによって、金属板64の第2面64bのうち蒸着マスク20の有効領域22となるべき部分に第2凹部35を形成し、同時に、第2面64bの隙間予定部に第2凹部35を形成する。これによって、貫通孔25と同時に隙間55を形成することができる。
 例2の場合、例えば、金属板64の第2面64bの隙間予定部にはレジストパターン65bが残らないように、レジスト膜65dを露光及び現像する。一方、金属板64の第1面64aの隙間予定部にはレジストパターン65aが残るように、レジスト膜65cを露光及び現像する。続いて、金属板64を第1面64a側からエッチングし、金属板64のうち蒸着マスク20の有効領域22となるべき部分に第1凹部30を形成する。この際、第1面64aの隙間予定部には第1凹部30が形成されない。次に、樹脂69によって第1凹部30を被覆する。この際、第1面64aの隙間予定部も樹脂69によって被覆される。その後、金属板64を第2面64b側からエッチングする。これによって、金属板64の第2面64bのうち蒸着マスク20の有効領域22となるべき部分に第2凹部35を形成し、同時に、第2面64bの隙間予定部に第2凹部35を形成する。この際、第2凹部35が第1面64a側にまで達するようにエッチングを実施することにより、隙間予定部に隙間55を形成することができる。
 例2の場合、第1凹部30を形成する第1のエッチング工程の際に、金属板64の第1面64aの隙間予定部にハーフエッチングが施されない。このため、金属板64の厚みが小さい場合であっても、第1のエッチング工程の後に金属板64の隙間予定部に折れが生じてしまうことを抑制することができる。
 隙間55の寸法は、中間製品50の搬送などの際に蒸着マスク部分51が支持部分56や他の蒸着マスク部分51に接触しないよう、設定される。蒸着マスク部分51と支持部分56との間の隙間55の、幅方向T2における寸法S1は、例えば0.1mm以上且つ5mm以下である。また、隣り合う2つの蒸着マスク部分51の間の隙間55の、幅方向T2における寸法S2は、例えば0.1mm以上且つ5mm以下である。また、蒸着マスク部分51の短辺53と支持部分56との間の、搬送方向T1における寸法S3は、例えば30μm以上且つ100μm以下である。また、短辺53の方向における凸部53aのピッチPは、例えば200μm以上且つ400μm以下である。
 (分離工程)
 続いて、上述の中間製品50において蒸着マスク部分51を支持部分56から分離する分離工程を実施する。まず、図9に示すように、金属板64を加工することによって得られた中間製品50を、分離工程を実施するための分離装置73へ搬送する。例えば、中間製品50を狭持した状態で回転する搬送ローラー72,72により、分離装置73へ搬送する。ところで、上述のように中間製品50において蒸着マスク部分51の長辺52が支持部分56に接続されていない場合、搬送時に蒸着マスク部分51が揺れたり撓んだりし易いと考えられる。この点を考慮し、蒸着マスク部分51の揺れや撓みを抑制する抑制手段を、中間製品50、搬送ローラー72又は搬送路に設けてもよい。例えば、抑制手段は、中間製品50の第1面側及び第2面側に設けられた一対のフィルムを含む。中間製品50を一対のフィルムで挟んだ状態で中間製品50を73へ搬送することにより、蒸着マスク部分51が揺れたり撓んだりすることを抑制することができる。
 図20は、蒸着マスク部分51を支持部分56から分離する分離工程を示す図である。上述のように、蒸着マスク部分51の長辺52と支持部分56とは接続されていない。このため、短辺53において蒸着マスク部分51と支持部分56との間の接続箇所54を破断させることにより、蒸着マスク部分51を支持部分56から分離して蒸着マスク20を得ることができる。図21は、中間製品50から得られた蒸着マスク20を拡大して示す平面図である。
 分離工程は、例えば、蒸着マスク部分51の短辺53のうち支持部分56に接続されている接続箇所54を破断させる破断工程を含む。この場合、図21に示すように、蒸着マスク20のうち接続箇所54が破断された箇所、例えば短辺53の凸部53aの先端が、破断面27bとなる。このように、蒸着マスク20の短辺27には部分的に破断面27bが存在する。図22は、図21の矢印XXIIの方向から蒸着マスク20の短辺27の凸部27aの破断面27bを見た場合を示す側面図である。
 破断工程においては、蒸着マスク部分51を支持部分56に対して例えば図22の上方向に引っ張ることによって、蒸着マスク部分51の短辺53と支持部分56との間の接続箇所54を破断させる。この場合、凸部27aの破断面27bには、図22に示すように、破断時に支持部分56から受けた力に起因するバリ27cが生じることがある。バリ27cは、破断時に支持部分56から受けた力の方向(図22においては下方向)に向かって延びている。破断面27bは、このようなバリ27cが存在する面として定義され得る。一方、蒸着マスク部分51の長辺52は支持部分56に接続されていないので、蒸着マスク20の長辺26には破断面が存在しない。
 図23A及び図23Bはそれぞれ、図22の蒸着マスク20のうち符号XXIIIが付された点線で囲われた長辺26の領域を、第1面20a側及び第2面20b側から観察した結果を示す図である。また、図24A及び図24Bはそれぞれ、図22の蒸着マスク20のうち符号XXIVが付された点線で囲われた短辺27の領域を、第1面20a側及び第2面20b側から観察した結果を示す図である。図23A、図23B、図24A及び図24Bのいずれにおいても、観察時の倍率は10倍である。
 図24Aに示すように、短辺27の凸部27aの先端には、黒く見える部分(以下、暗部とも称する)27xが観察された。暗部27xの幅は、13.8μmであった。図24Bに示すように、蒸着マスク20の第2面20b側から観察した場合にも同様の暗部27yが確認された。
 一方、長辺26の領域には、暗部が確認されなかったか、若しくは、短辺27の場合よりも小さな厚みを有する暗部が確認された。例えば図23Bに示すように、第2面20b側から見た場合に、5.1μmの幅の暗部26yが確認された。
 図25Aは、図22の蒸着マスク20のうち符号XXIIIが付された点線で囲われた領域、すなわち蒸着マスク20の長辺26の断面形状を模式的に示す図である。また、図25Bは、長辺26の断面形状の一変形例を示す図である。図25A及び図25Bに示すように、蒸着マスク20の長辺26には、貫通孔25を形成するために実施するエッチング工程の際に生じるサイドエッチングに起因して、内側に凸となる形状の湾曲面が形成されることがある。図25Aは、金属板64の第2面64bのみからのエッチングによって隙間55を形成する場合の、長辺26の断面形状の一例を示す図である。また、図25Bは、金属板64の第1面64a及び第2面64bの両側からのエッチングによって隙間55を形成する場合の、長辺26の断面形状の一例を示す図である。図23A及び図23Bに示す平面写真に対応する断面形状は、図25Aの方である。
 金属板64の第2面64bのみからのエッチングによって隙間55を形成する場合、長辺26には、図25Aに示すように、第2面20b側から第1面20a側に向かうにつれて外側に広がる湾曲面が形成される。この湾曲面は、長辺26を第2面20b側から観察した場合には視認されるが、長辺26を第1面20a側から観察した場合には視認されない。言い換えると、長辺26は、第1面20aと交わる部分において最も外側に突出した断面形状を有する。長辺26を第2面20b側から観察した場合に確認された暗部26yは、湾曲面における光の散乱に起因していると考えられる。
 金属板64の第1面64a及び第2面64bの両側からのエッチングによって隙間55を形成する場合、長辺26には、図25Bに示すように、第1面20a側に位置する、第1凹部30を形成する際のサイドエッチングに起因する湾曲面と、第2面20b側に位置する、第2凹部35を形成する際のサイドエッチングに起因する湾曲面とが形成される。この場合、長辺26は、第1面20a側の湾曲面と第2面20b側の湾曲面とが交わる部分において最も外側に突出した断面形状を有する。第2面20b側の第2凹部35の寸法の方が第1面20a側の第1凹部30の寸法よりも大きいので(図5~7参照)、サイドエッチングの程度も第2面20b側の方が大きくなる。このため、長辺26に形成される湾曲面も、第2面20b側の方が大きくなる。従って、長辺26を第2面20b側から観察した場合に確認される暗部の幅も、長辺26を第1面20a側から観察した場合に確認される暗部の幅よりも大きくなると考えられる。
 図25Cは、図25Aに示す断面形状を有する長辺26を備えた蒸着マスク20が有機EL基板92に対面している様子を示す図である。また、図25Dは、図25Bに示す断面形状を有する長辺26を備えた蒸着マスク20が有機EL基板92に対面している様子を示す図である。図25C及び図25Dに示す例においては、複数の蒸着マスク20が短辺27の方向に所定の間隔Mを空けて並ぶように配列されている。間隔Mは、隣接する2つの蒸着マスク20の長辺26同士が接触することを防ぐよう、所定の離間距離以上に設定されている。間隔Mは、隣接する2つの蒸着マスク20の長辺26のうち外側に最も突出している部分の間の間隔である。図25Cに示す例においては、長辺26のうち第1面20aと交わる部分における間隔Mが所定の離間距離以上になるよう、蒸着マスク20が配列される。図25Dに示す例においては、長辺26のうち第1面20a側の湾曲面と第2面20b側の湾曲面とが交わる部分における間隔Mが所定の離間距離以上になるよう、蒸着マスク20が配列される。
 図25Cに示す例と図25Dに示す例を比較すると、図25Cに示す例の方が、有機EL基板92に対する接触面積が大きくなる。このため、有機EL基板92に対する密着性という点で、図25Cに示す例の方が有利である。
 なお、仮に図25Dに示す例において、有機EL基板92に対する蒸着マスク20の第1面20aの接触面積を図25Cに示す例の場合と同等にしようとすると、隣接する2つの蒸着マスク20の長辺26の間の距離が小さくなり、蒸着マスク20同士が接触するリスクが高くなる。
 このように、有機EL基板92に対する密着性の向上と、隣接する2つの蒸着マスク20同士の接触リスクの低減は、互いにトレードオフの関係にある。図25Cに示す例によれば、トレードオフの関係にある2つの要求を、図25Dに示す例の場合に比べて高いレベルで満たすことができる。
 なお、蒸着マスク20同士が接触すると、蒸着マスク20の損傷や変形が生じてしまう。蒸着マスク20が変形すると、有機EL基板92に対する蒸着マスク20の第1面20aの接触面積が減少し、有機EL基板92に対する密着性が低下してしまう。このように、隣接する2つの蒸着マスク20の間の距離を過剰に縮めることは、有機EL基板92に対する密着性の低下を生じさせ得る。
 図26は、図22の蒸着マスク20のうち符号XXIVが付された点線で囲われた領域を模式的に示す断面図である。図26に示すように、蒸着マスク20の短辺27には、上述の破断工程の際に短辺27が支持部分56から第1面20a側へ引っ張られることに起因して、第2面20b側に、外側に凸となる形状の湾曲面が形成されることがある。短辺27を第2面20b側から観察した場合に確認された暗部27yは、湾曲面における光の散乱に起因していると考えられる。また、第1面20a側には、第1面20aから突出したバリ27cが形成されることがある。短辺27を第1面20a側から観察した場合に確認された暗部27xは、バリ27cにおける光の散乱に起因していると考えられる。
 (本実施の形態の作用)
 蒸着マスク20の長辺26から貫通孔25までの、基材21の面方向における最短距離S4(図21参照)は、一般に、短辺27から貫通孔25までの、基材21の面方向における最短距離に比べて小さい。このため、長辺26に波打ち形状などの変形が現れると、長辺26の近傍に位置する貫通孔25を通って有機EL基板92に付着する蒸着材料98の寸法精度や位置精度が低下してしまう。ここで本実施の形態においては、中間製品50の蒸着マスク部分51が支持部分56に接続されていない。このため、蒸着マスク部分51を支持部分56から分離する分離工程の際に、長辺52は、支持部分56からの力を受けないので、長辺26に波打ち形状などの変形が現れることを抑制することができる。これによって、高い寸法精度や位置精度で有機EL基板92に蒸着材料98を付着させることができる。
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。
 (接続箇所及び破断面の変形例)
 上述の実施の形態においては、中間製品50の蒸着マスク部分51の長辺52の全域が支持部分56に接続されていない例を示した。しかしながら、これに限られることはなく、貫通孔25の位置精度に影響を及ぼさない範囲内で、中間製品50の蒸着マスク部分51の長辺52が支持部分56に接続されていてもよい。例えば、長辺52のうち、中間製品50の幅方向T2に沿って長辺52を見た場合に貫通孔25と重ならない領域において、長辺52が支持部分56に接続されていてもよい。言い換えると、蒸着マスク部分51の長辺52のうち、少なくとも、中間製品50の幅方向T2に沿って長辺52を見た場合に貫通孔25と重なる領域は、支持部分56に接続されていないことが好ましい。この場合、蒸着マスク20の幅方向において長辺26を見た場合に貫通孔25と重なる領域には破断面が存在しない。言い換えると、蒸着マスク20の幅方向において長辺26を見た場合に貫通孔25と重ならない領域には、破断面が存在していてもよい。蒸着マスク部分51の長辺52のうち幅方向T2において貫通孔25と重なる領域を支持部分56に接続しないことにより、蒸着マスク部分51を支持部分56から分離する際に蒸着マスク部分51に生じる変形が貫通孔25の位置精度に影響を及ぼすことを抑制することができる。
 好ましくは、中間製品50において、蒸着マスク部分51の長辺52のうち支持部分56に接続されている箇所の比率が、蒸着マスク部分51の短辺53のうち支持部分56に接続されている箇所の比率よりも小さくなるようにする。これによって、破断時の長辺52の変形に起因して蒸着工程の精度が低下してしまうことを抑制することができる。この場合、分離工程によって得られる蒸着マスク20において、長辺26における破断面の比率が、短辺27における破断面の比率よりも小さくなる。
 蒸着マスク部分51の短辺53のうち支持部分56に接続されている箇所の比率は、例えば、短辺53のうち支持部分56に接続されている部分の幅K4(図19参照)の総和を短辺53の長さK2(図18参照)で割ることにより算出される。幅K4は、例えば図19に示すように、支持部分56に接続されている凸部53aのうち最も狭い部分の幅である。同様に、蒸着マスク部分51の長辺52のうち支持部分56に接続されている箇所の比率は、例えば、長辺52のうち支持部分56に接続されている部分の幅の総和を長辺52の長さK1(図18参照)で割ることにより算出される。
 また、蒸着マスク20の短辺27における破断面27bの比率は、例えば、短辺27に存在する破断面27bの幅K6(図21参照)の総和を短辺27の長さK5(図21参照)で割ることにより算出される。同様に、蒸着マスク20の長辺26における破断面の比率は、例えば、長辺26に存在する破断面の幅の総和を長辺26の長さで割ることにより算出される。
 若しくは、蒸着マスク部分51の短辺53のうち支持部分56に接続されている箇所の比率は、短辺53のうち支持部分56に接続されている部分の個数を短辺53の長さK2で割ることにより算出されてもよい。図19に示す例において、短辺53のうち支持部分56に接続されている部分の個数は4である。同様に、蒸着マスク部分51の長辺52のうち支持部分56に接続されている箇所の比率は、長辺52のうち支持部分56に接続されている部分の個数を長辺52の長さK1で割ることにより算出されてもよい。
 同様に、蒸着マスク20の短辺27における破断面27bの比率は、短辺27に存在する破断面27bの個数を短辺27の長さK5で割ることにより算出されてもよい。同様に、蒸着マスク20の長辺26における破断面の比率は、長辺26に存在する破断面の個数を長辺26の長さで割ることにより算出されてもよい。
 (支持部分の変形例)
 上述の実施の形態においては、隣り合う2つの蒸着マスク部分51の長辺52の間に支持部分56が存在しない例を示した。しかしながら、これに限られることはなく、図27に示すように、隣り合う2つの蒸着マスク部分51の長辺52の間に、搬送方向T1に延び、且つ蒸着マスク部分51の長辺52に接続されていない支持部分56が存在していてもよい。
10 蒸着マスク装置
15 フレーム
20 蒸着マスク
21 基材
22 有効領域
23 周囲領域
25 貫通孔
26 長辺
27 短辺
27a 凸部
27b 破断面
27c バリ
30 第1凹部
31 壁面
35 第2凹部
36 壁面
41 接続部
43 トップ部
50 中間製品
51 蒸着マスク部分
52 長辺
53 短辺
53a 凸部
54 接続箇所
55 隙間
56 支持部分
64 金属板
65a 第1レジストパターン
65b 第2レジストパターン
65c 第1レジスト膜
65d 第2レジスト膜
70 加工装置
72 搬送ローラー
73 分離装置
90 蒸着装置
92 有機EL基板
98 蒸着材料

Claims (28)

  1.  一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクの製造方法であって、
     金属板を準備する工程と、
     前記金属板を、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された複数の蒸着マスク部分と、前記複数の蒸着マスク部分を囲むとともに前記複数の蒸着マスク部分の前記短辺に部分的に接続されている支持部分と、を備える中間製品に加工する加工工程と、
     前記蒸着マスク部分を前記支持部分から分離して前記蒸着マスクを得る分離工程と、を備え、
     前記中間製品において、前記蒸着マスク部分の前記長辺は、前記支持部分に接続されていない、蒸着マスクの製造方法。
  2.  一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクの製造方法であって、
     金属板を準備する工程と、
     前記金属板を、一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された複数の蒸着マスク部分と、前記複数の蒸着マスク部分を囲むとともに前記複数の蒸着マスク部分に部分的に接続されている支持部分と、を備える中間製品に加工する加工工程と、
     前記蒸着マスク部分を前記支持部分から分離して前記蒸着マスクを得る分離工程と、を備え、
     前記中間製品において、前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率が、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率よりも小さい、蒸着マスクの製造方法。
  3.  前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の幅の総和を前記長辺の長さで割ることにより算出され、
     前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の幅の総和を前記短辺の長さで割ることにより算出される、請求項2に記載の蒸着マスクの製造方法。
  4.  前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の個数を前記長辺の長さで割ることにより算出され、
     前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の個数を前記短辺の長さで割ることにより算出される、請求項2に記載の蒸着マスクの製造方法。
  5.  前記中間製品において、前記蒸着マスク部分の前記長辺のうち、前記中間製品の幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域は、前記支持部分に接続されていない、請求項2に記載の蒸着マスクの製造方法。
  6.  前記中間製品において、前記蒸着マスク部分の前記短辺は、前記支持部分に向かって突出し、且つ前記支持部分に接続されている複数の凸部を含む、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  7.  前記中間製品において、前記複数の蒸着マスク部分は、前記長辺に交差する方向に並んでおり、
     隣り合う2つの前記蒸着マスク部分の前記長辺の間には、前記支持部分が存在しない、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  8.  前記加工工程は、前記金属板をエッチングして、前記貫通孔、及び、前記蒸着マスク部分の前記長辺と前記支持部分との間の隙間を形成する工程を含む、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  9.  前記加工工程において、前記蒸着マスク部分の前記長辺の方向に沿って前記金属板を搬送しながら前記金属板を加工する、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  10.  前記分離工程において、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所を破断させることによって、前記蒸着マスク部分を前記支持部分から分離する、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  11.  前記金属板の厚みが、50μm以下である、請求項1乃至5のいずれか一項に記載の蒸着マスクの製造方法。
  12.  一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクが割り付けられた、金属製の板状の中間製品であって、
     一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスク部分と、
     前記蒸着マスク部分を囲むとともに前記蒸着マスク部分の前記短辺に部分的に接続されている支持部分と、を備え、
     前記蒸着マスク部分の前記長辺は、前記支持部分に接続されていない、中間製品。
  13.  一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスクが割り付けられた、金属製の板状の中間製品であって、
     一対の長辺及び一対の短辺を含むとともに複数の貫通孔が形成された蒸着マスク部分と、
     前記蒸着マスク部分を囲むとともに前記蒸着マスク部分に部分的に接続されている支持部分と、を備え、
     前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率が、前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率よりも小さい、中間製品。
  14.  前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の幅の総和を前記長辺の長さで割ることにより算出され、
     前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の幅の総和を前記短辺の長さで割ることにより算出される、請求項13に記載の中間製品。
  15.  前記蒸着マスク部分の前記長辺のうち前記支持部分に接続されている箇所の比率は、前記長辺のうち前記支持部分に接続されている部分の個数を前記長辺の長さで割ることにより算出され、
     前記蒸着マスク部分の前記短辺のうち前記支持部分に接続されている箇所の比率は、前記短辺のうち前記支持部分に接続されている部分の個数を前記短辺の長さで割ることにより算出される、請求項13に記載の中間製品。
  16.  前記蒸着マスク部分の前記長辺のうち、前記中間製品の幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域は、前記支持部分に接続されていない、請求項13に記載の中間製品。
  17.  前記蒸着マスク部分の前記短辺は、前記支持部分に向かって突出し、且つ前記支持部分に接続されている複数の凸部を含む、請求項12乃至16のいずれか一項に記載の中間製品。
  18.  前記蒸着マスク部分及び前記支持部分の厚みが、50μm以下である、請求項12乃至16のいずれか一項に記載の中間製品。
  19.  前記複数の蒸着マスク部分は、前記長辺に交差する方向に並んでおり、
     隣り合う2つの前記蒸着マスク部分の前記長辺の間には、前記支持部分が存在しない、請求項12乃至16のいずれか一項に記載の中間製品。
  20.  蒸着マスクであって、
     一対の長辺及び一対の短辺を含む、金属製の板状の基材と、
     前記基材に形成された複数の貫通孔と、を備え、
     前記基材の前記短辺には部分的に破断面が存在し、一方、前記基材の前記長辺には破断面が存在しない、蒸着マスク。
  21.  蒸着マスクであって、
     一対の長辺及び一対の短辺を含む、金属製の板状の基材と、
     前記基材に形成された複数の貫通孔と、を備え、
     前記基材の前記長辺における破断面の比率が、前記基材の前記短辺における破断面の比率よりも小さい、蒸着マスク。
  22.  前記基材の前記長辺における破断面の比率は、前記長辺に存在する前記破断面の幅の総和を前記長辺の長さで割ることにより算出され、
     前記基材の前記短辺における破断面の比率は、前記短辺に存在する前記破断面の幅の総和を前記短辺の長さで割ることにより算出される、請求項21に記載の蒸着マスク。
  23.  前記基材の前記長辺における破断面の比率は、前記長辺に存在する前記破断面の個数を前記長辺の長さで割ることにより算出され、
     前記基材の前記短辺における破断面の比率は、前記短辺に存在する前記破断面の個数を前記短辺の長さで割ることにより算出される、請求項21に記載の蒸着マスク。
  24.  前記破断面は、前記蒸着マスクの幅方向に沿って前記長辺を見た場合に前記貫通孔と重なる領域には存在しない、請求項21に記載の蒸着マスク。
  25.  前記基材の前記短辺は、外方に突出するとともに前記破断面を有する複数の凸部を含む、請求項20乃至24のいずれか一項に記載の蒸着マスク。
  26.  前記基材の前記長辺から前記貫通孔までの、前記基材の面方向における最短距離が、50μm以下である、請求項20乃至24のいずれか一項に記載の蒸着マスク。
  27.  前記基材は、前記貫通孔を通った蒸着材料が付着する基板に対面する第1面と、前記第1面の反対側に位置する第2面と、を有し、
     前記基材の前記長辺は、前記第1面と交わる部分において最も外側に突出した断面形状を有する、請求項20乃至24のいずれか一項に記載の蒸着マスク。
  28.  前記基材の厚みが、50μm以下である、請求項20乃至24のいずれか一項に記載の蒸着マスク。
PCT/JP2017/032923 2016-10-07 2017-09-12 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク WO2018066325A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020227025054A KR20220104846A (ko) 2016-10-07 2017-09-12 증착 마스크의 제조 방법, 증착 마스크가 배치된 중간 제품 및 증착 마스크
JP2017550655A JP7301497B2 (ja) 2016-10-07 2017-09-12 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク
KR1020197006625A KR102424309B1 (ko) 2016-10-07 2017-09-12 증착 마스크의 제조 방법, 증착 마스크가 배치된 중간 제품 및 증착 마스크
EP17858164.1A EP3524710B8 (en) 2016-10-07 2017-09-12 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask
US16/372,661 US20190256965A1 (en) 2016-10-07 2019-04-02 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask
US16/662,150 US11313026B2 (en) 2016-10-07 2019-10-24 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask
US17/218,609 US20210214837A1 (en) 2016-10-07 2021-03-31 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask
US17/655,388 US11814719B2 (en) 2016-10-07 2022-03-18 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask
JP2022156692A JP2022191309A (ja) 2016-10-07 2022-09-29 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016199420 2016-10-07
JP2016-199420 2016-10-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/372,661 Continuation US20190256965A1 (en) 2016-10-07 2019-04-02 Method of manufacturing deposition mask, intermediate product to which deposition mask is allocated, and deposition mask

Publications (1)

Publication Number Publication Date
WO2018066325A1 true WO2018066325A1 (ja) 2018-04-12

Family

ID=61831402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032923 WO2018066325A1 (ja) 2016-10-07 2017-09-12 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク

Country Status (7)

Country Link
US (4) US20190256965A1 (ja)
EP (1) EP3524710B8 (ja)
JP (2) JP7301497B2 (ja)
KR (2) KR20220104846A (ja)
CN (2) CN107916396B (ja)
TW (2) TWI778977B (ja)
WO (1) WO2018066325A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050398A1 (ja) * 2018-09-07 2020-03-12 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
CN111621742A (zh) * 2020-05-19 2020-09-04 武汉华星光电半导体显示技术有限公司 一种掩膜板及其应用方法、封装层的制备方法
WO2021045137A1 (ja) * 2019-09-06 2021-03-11 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
WO2021157463A1 (ja) * 2020-02-05 2021-08-12 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、マスク装置、および、蒸着マスクの製造方法
JP2021123796A (ja) * 2020-02-05 2021-08-30 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、マスク装置、および、蒸着マスクの製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10964889B2 (en) * 2016-09-22 2021-03-30 Samsung Display Co., Ltd. Deposition mask, deposition apparatus using the same, and method of manufacturing display apparatus using the same
KR20220104846A (ko) 2016-10-07 2022-07-26 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법, 증착 마스크가 배치된 중간 제품 및 증착 마스크
KR102520811B1 (ko) * 2018-07-09 2023-04-12 다이니폰 인사츠 가부시키가이샤 증착 마스크의 양부 판정 방법, 증착 마스크의 제조 방법, 증착 마스크 장치의 제조 방법, 증착 마스크의 선정 방법 및 증착 마스크
TWI682565B (zh) * 2018-08-07 2020-01-11 財團法人工業技術研究院 有機電激發光元件的製造方法
JP7487481B2 (ja) 2019-02-06 2024-05-21 大日本印刷株式会社 蒸着マスク装置、マスク支持機構及び蒸着マスク装置の製造方法
WO2021065981A1 (ja) * 2019-10-04 2021-04-08 凸版印刷株式会社 蒸着マスク、蒸着マスクの製造方法、および、表示装置の製造方法
US12037678B2 (en) * 2019-11-12 2024-07-16 Chengdu Boe Optoelectronics Technology Co., Ltd. Mask
US11805678B2 (en) * 2019-11-21 2023-10-31 Samsung Display Co., Ltd. Display device, mask assembly, method of manufacturing the mask assembly, apparatus for manufacturing the display device, and method of manufacturing the display device
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
KR102358270B1 (ko) * 2020-05-25 2022-02-07 주식회사 오럼머티리얼 Oled 화소 형성용 마스크, 마스크 지지 템플릿 및 프레임 일체형 마스크
WO2022092846A1 (ko) * 2020-10-30 2022-05-05 에이피에스홀딩스 주식회사 증착 마스크 스틱 중간체
CN112458462A (zh) * 2020-11-18 2021-03-09 匠博先进材料科技(广州)有限公司 蒸镀掩模制造方法、蒸镀掩模、组件、装置及显示装置
CN112323019A (zh) * 2020-11-18 2021-02-05 匠博先进材料科技(广州)有限公司 一种蒸镀掩模、组件、装置及有机显示装置
CN112501551A (zh) * 2020-11-18 2021-03-16 匠博先进材料科技(广州)有限公司 蒸镀掩模、蒸镀掩模组件、蒸镀掩模装置及显示装置
KR20220140423A (ko) * 2021-04-09 2022-10-18 다이니폰 인사츠 가부시키가이샤 증착 마스크, 증착 마스크 장치, 증착 장치 및 유기 디바이스의 제조 방법
TWI810563B (zh) * 2021-05-14 2023-08-01 達運精密工業股份有限公司 遮罩的製造方法及遮罩製造裝置
TWI828015B (zh) * 2021-12-01 2024-01-01 達運精密工業股份有限公司 精密金屬遮罩的製造方法
US20230296539A1 (en) 2022-03-18 2023-09-21 Rigaku Corporation Correction apparatus, system, method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013601A1 (en) * 2009-12-15 2015-01-15 Samsung Display Co., Ltd. Mask frame assembly for thin layer deposition and organic light emitting display device
US20160144393A1 (en) * 2014-11-24 2016-05-26 Samsung Display Co., Ltd. Mask assembly for thin film deposition and method of manufacturing the mask assembly
JP2016148111A (ja) * 2015-02-10 2016-08-18 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255380A (ja) * 1987-04-09 1988-10-21 Dainippon Printing Co Ltd シヤドウマスクの製造方法
KR100490534B1 (ko) * 2001-12-05 2005-05-17 삼성에스디아이 주식회사 유기 전자 발광 소자의 박막 증착용 마스크 프레임 조립체
US6897164B2 (en) * 2002-02-14 2005-05-24 3M Innovative Properties Company Aperture masks for circuit fabrication
CN100464440C (zh) * 2002-06-03 2009-02-25 三星移动显示器株式会社 用于有机电致发光装置的薄层真空蒸发的掩模框组件
JP4170179B2 (ja) 2003-01-09 2008-10-22 株式会社 日立ディスプレイズ 有機elパネルの製造方法および有機elパネル
JP5455059B2 (ja) * 2010-03-31 2014-03-26 宇部興産機械株式会社 電動押出装置
US8508947B2 (en) * 2010-10-01 2013-08-13 Intel Corporation Flex cable and method for making the same
JP5285187B2 (ja) * 2010-12-27 2013-09-11 シャープ株式会社 蒸着装置及び蒸着方法
KR20120085042A (ko) * 2011-01-21 2012-07-31 (주)에스이피 박막증착용 쉐도우마스크 제조 방법
KR20120123918A (ko) * 2011-05-02 2012-11-12 삼성디스플레이 주식회사 분할 마스크 및 이를 이용한 마스크 프레임 조립체의 조립방법
JP2013055039A (ja) * 2011-08-11 2013-03-21 Canon Inc El発光装置の製造方法および蒸着装置
CN102492920A (zh) * 2011-12-21 2012-06-13 信利半导体有限公司 一种制作掩膜板的方法和掩膜板
KR101439218B1 (ko) 2012-01-12 2014-09-12 다이니폰 인사츠 가부시키가이샤 증착 마스크, 증착 마스크 장치의 제조 방법, 및 유기 반도체 소자의 제조 방법
JP6050642B2 (ja) * 2012-09-19 2016-12-21 矢崎総業株式会社 コネクタの製造方法
JP5382257B1 (ja) 2013-01-10 2014-01-08 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5812139B2 (ja) * 2013-03-26 2015-11-11 大日本印刷株式会社 蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP6035548B2 (ja) * 2013-04-11 2016-11-30 株式会社ブイ・テクノロジー 蒸着マスク
JP5455099B1 (ja) 2013-09-13 2014-03-26 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
JP5641462B1 (ja) 2014-05-13 2014-12-17 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いてマスクを製造する方法
JP6515520B2 (ja) * 2014-12-15 2019-05-22 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板および蒸着マスク
KR102366570B1 (ko) * 2015-06-19 2022-02-25 삼성디스플레이 주식회사 마스크 프레임 조립체 및 그 제조방법
KR20220104846A (ko) * 2016-10-07 2022-07-26 다이니폰 인사츠 가부시키가이샤 증착 마스크의 제조 방법, 증착 마스크가 배치된 중간 제품 및 증착 마스크

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013601A1 (en) * 2009-12-15 2015-01-15 Samsung Display Co., Ltd. Mask frame assembly for thin layer deposition and organic light emitting display device
US20160144393A1 (en) * 2014-11-24 2016-05-26 Samsung Display Co., Ltd. Mask assembly for thin film deposition and method of manufacturing the mask assembly
JP2016148111A (ja) * 2015-02-10 2016-08-18 大日本印刷株式会社 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板およびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112639157A (zh) * 2018-09-07 2021-04-09 凸版印刷株式会社 蒸镀掩模中间体、蒸镀掩膜及蒸镀掩模的制造方法
TWI784196B (zh) * 2018-09-07 2022-11-21 日商凸版印刷股份有限公司 蒸鍍遮罩中間體、蒸鍍遮罩、及蒸鍍遮罩的製造方法
JPWO2020050398A1 (ja) * 2018-09-07 2020-09-10 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
WO2020050398A1 (ja) * 2018-09-07 2020-03-12 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
CN112639157B (zh) * 2018-09-07 2022-04-29 凸版印刷株式会社 蒸镀掩模中间体、蒸镀掩膜及蒸镀掩模的制造方法
WO2021045137A1 (ja) * 2019-09-06 2021-03-11 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
JP7010410B2 (ja) 2019-09-06 2022-01-26 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、および、蒸着マスクの製造方法
JPWO2021045137A1 (ja) * 2019-09-06 2021-03-11
TWI819236B (zh) * 2019-09-06 2023-10-21 日商凸版印刷股份有限公司 蒸鍍遮罩中間體、蒸鍍遮罩及蒸鍍遮罩的製造方法
WO2021157463A1 (ja) * 2020-02-05 2021-08-12 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、マスク装置、および、蒸着マスクの製造方法
JP2021123796A (ja) * 2020-02-05 2021-08-30 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、マスク装置、および、蒸着マスクの製造方法
JP7099512B2 (ja) 2020-02-05 2022-07-12 凸版印刷株式会社 蒸着マスク中間体、蒸着マスク、マスク装置、および、蒸着マスクの製造方法
CN111621742A (zh) * 2020-05-19 2020-09-04 武汉华星光电半导体显示技术有限公司 一种掩膜板及其应用方法、封装层的制备方法

Also Published As

Publication number Publication date
TWI783447B (zh) 2022-11-11
CN107916396A (zh) 2018-04-17
KR102424309B1 (ko) 2022-07-25
TWI778977B (zh) 2022-10-01
KR20220104846A (ko) 2022-07-26
US20210214837A1 (en) 2021-07-15
EP3524710A4 (en) 2020-06-10
US20200056279A1 (en) 2020-02-20
JP2022191309A (ja) 2022-12-27
EP3524710B8 (en) 2024-01-24
US11313026B2 (en) 2022-04-26
TW202129033A (zh) 2021-08-01
EP3524710B1 (en) 2023-12-20
US20190256965A1 (en) 2019-08-22
JP7301497B2 (ja) 2023-07-03
CN107916396B (zh) 2020-07-07
US20220205077A1 (en) 2022-06-30
EP3524710A1 (en) 2019-08-14
TW201816148A (zh) 2018-05-01
JPWO2018066325A1 (ja) 2019-07-18
KR20190060760A (ko) 2019-06-03
CN207313683U (zh) 2018-05-04
US11814719B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2018066325A1 (ja) 蒸着マスクの製造方法、蒸着マスクが割り付けられた中間製品及び蒸着マスク
JP6428903B2 (ja) 蒸着マスク及び蒸着マスクの製造方法
TWI826677B (zh) 蒸鍍罩及蒸鍍罩之製造方法
WO2018135255A1 (ja) 蒸着マスク及び蒸着マスクの製造方法
JP6548085B2 (ja) 蒸着マスクの製造方法
JP6372755B2 (ja) 蒸着マスクの製造方法、蒸着マスクを作製するために用いられる金属板および蒸着マスク
JP2018059130A (ja) 蒸着マスクの製造方法、及び蒸着マスクを製造するために用いられる金属板の製造方法
JP2019081962A (ja) 蒸着マスク
JP7104902B2 (ja) 蒸着マスクの製造方法、及び蒸着マスクを製造するために用いられる金属板の製造方法
JP2017206741A (ja) 蒸着マスク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550655

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006625

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017858164

Country of ref document: EP

Effective date: 20190507