WO2018066298A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2018066298A1
WO2018066298A1 PCT/JP2017/032400 JP2017032400W WO2018066298A1 WO 2018066298 A1 WO2018066298 A1 WO 2018066298A1 JP 2017032400 W JP2017032400 W JP 2017032400W WO 2018066298 A1 WO2018066298 A1 WO 2018066298A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimation coefficient
voltage
time
battery
estimation
Prior art date
Application number
PCT/JP2017/032400
Other languages
English (en)
French (fr)
Inventor
順一 波多野
俊雄 小田切
裕人 佐藤
真一 会沢
隆介 長谷
西垣 研治
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2018543793A priority Critical patent/JP6756372B2/ja
Priority to CN201780060350.9A priority patent/CN109791183B/zh
Priority to DE112017005089.8T priority patent/DE112017005089T5/de
Priority to US16/336,177 priority patent/US11095130B2/en
Publication of WO2018066298A1 publication Critical patent/WO2018066298A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device that estimates an open circuit voltage.
  • the open circuit voltage (OCV: Open CircuitageVoltage) and the charging rate (SOC: State Of) after the polarization elimination As a method for estimating (Charge), a difference is obtained by using a voltage V1 measured at time t1 set as a polarization elimination time and a voltage V2 measured at time t2 after time t1, and the amount of change is calculated.
  • a method is known in which an open circuit voltage after depolarization is estimated and the charge rate after depolarization is estimated using the estimated open circuit voltage.
  • Patent Document 1 There is a technique such as Patent Document 1 as a related technique.
  • the polarization elimination time becomes longer than the polarization elimination time when the open circuit voltage at the charge / discharge end time is larger than the predetermined voltage. Therefore, when the open circuit voltage at the charge / discharge end time is equal to or lower than the predetermined voltage, the polarization elimination time is extended. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time is larger than the predetermined voltage. It changes more slowly than the open circuit voltage. Then, the amount of change when the open circuit voltage at the charge / discharge end time is equal to or lower than the predetermined voltage is smaller than the amount of change when the open circuit voltage at the charge / discharge end time is larger than the predetermined voltage.
  • the open circuit voltage after depolarization depends on whether the open circuit voltage at the charge / discharge end time is equal to or lower than the predetermined voltage and when the open circuit voltage at the charge / discharge end time is larger than the predetermined voltage. If the estimation method is not changed, the estimation accuracy of the open circuit voltage decreases, and the estimated open circuit voltage after depolarization deviates from the actual open circuit voltage. In addition, when the charging rate is estimated using the open circuit voltage whose estimation accuracy is reduced, the estimation accuracy of the estimated charging rate is also reduced.
  • the estimation accuracy of the open circuit voltage similarly decreases due to the change of the polarization elimination time.
  • An object according to one aspect of the present invention is to provide a power storage device that improves the estimation accuracy of an open circuit voltage after depolarization.
  • a power storage device includes a battery and a control circuit that controls charging / discharging of the battery.
  • the control circuit performs the first measurement of the battery measured at the first time in the polarization elimination time from the charge / discharge end time of the battery to the polarization elimination time at which the charge / discharge of the battery is completed and the polarization of the battery is considered to have been eliminated.
  • the difference between the first voltage and the second voltage of the battery measured at the second time set after the first time is used as the amount of change, and the first voltage or the second voltage Multiply the amount of change by the voltage, the temperature of the battery body or the temperature around the battery, or an estimation coefficient that changes according to the degree of deterioration of the battery, add the multiplied value and the first voltage or the second voltage, Estimate the open circuit voltage after depolarizing the battery.
  • a power storage device includes a battery and a control circuit that controls charging / discharging of the battery.
  • the control circuit performs the first measurement of the battery measured at the first time in the polarization elimination time from the charge / discharge end time of the battery to the polarization elimination time at which the charge / discharge of the battery is completed and the polarization of the battery is considered to have been eliminated.
  • the difference between the first voltage and the second voltage of the battery measured at the second time set after the first time is determined as the amount of change, and the amount of change corresponds to the first voltage.
  • Multiply the first charging rate or the estimation coefficient that changes according to the second charging rate corresponding to the second voltage add the multiplied value and the first voltage or the second voltage, Estimate the open circuit voltage after depolarization.
  • FIG. 1 is a diagram illustrating an embodiment of a power storage device 1.
  • the power storage device 1 shown in FIG. 1 may be mounted on a vehicle, for example, with a battery pack.
  • the power storage device 1 measures the current flowing through the assembled battery 2, the assembled battery 2 having one or more batteries 4, the control circuit 3 that controls the power storage device 1, the voltmeter 5 that measures the voltage of the battery 4. It has an ammeter 6, a battery 4 body, or a thermometer 7 that measures the temperature around the battery 4.
  • the battery 4 included in the assembled battery 2 is, for example, a secondary battery such as a nickel metal hydride battery or a lithium ion battery, or a storage element.
  • the assembled battery 2 is connected to a charger and charged by the charger. Alternatively, when a load is connected to the assembled battery 2 and power is supplied from the assembled battery 2 to the load, the assembled battery 2 is discharged.
  • the control circuit 3 estimates the open circuit voltage and the charging rate in the charge / discharge control of the power storage device 1 and the battery 4 and the polarization elimination time up to the polarization elimination time that can be considered that the polarization after the completion of the charge / discharge is eliminated.
  • the control circuit 3 may be, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device), etc.).
  • the control circuit 3 includes a storage unit provided inside or outside, and reads and executes a program for controlling each unit of the power storage device 1 stored in the storage unit.
  • the control circuit 3 may be, for example, one or more ECUs (Electronic Control Unit) mounted on the vehicle.
  • the change amount is multiplied by an estimation coefficient a that changes depending on the degree of deterioration of the battery, and the multiplied value and the voltage V1 are added to estimate the open circuit voltage OCV1 after the polarization of the battery 4 is eliminated. See Equation 1.
  • OCV1 V1 + (V2-V1) ⁇ a (Formula 1)
  • the control circuit 3 divides the value obtained by subtracting the voltage V1 from the open circuit voltage OCV1 after the polarization of the battery 4 is depolarized by the value obtained by subtracting the voltage V1 from the voltage V2 at the polarization elimination time t3.
  • You may comprise so that it may be set as the estimation coefficient a used at the time of estimation of an open circuit voltage. See Equation 2.
  • the open circuit voltage OCV1 after the polarization of the battery 4 is eliminated may be estimated. See Equation 1 ′.
  • OCV1 V2 + (V2-V1) ⁇ a (Formula 1 ′)
  • the control circuit 3 divides the value obtained by subtracting the voltage V2 from the open circuit voltage OCV1 after the polarization elimination of the battery 4 by the value obtained by subtracting the voltage V1 from the voltage V2 at the polarization elimination time t3. You may comprise so that it may be set as the estimation coefficient a used at the time of estimation of an open circuit voltage. See Equation 2 ′.
  • the polarization elimination time when the open circuit voltage at the charge / discharge end time t0 is small is longer than the polarization elimination time when the open circuit voltage at the charge / discharge end time t0 is large. Therefore, when the open circuit voltage at the charge / discharge end time t0 is small, the polarization elimination time is extended. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time is the open circuit voltage when the open circuit voltage at the charge / discharge end time t0 is large. It will be moderate compared to That is, the change amount when the open circuit voltage at the charge / discharge end time t0 is small is smaller than the change amount when the open circuit voltage at the charge / discharge end time t0 is large.
  • the estimation coefficient a is set to a larger value as the voltage V1 or the voltage V2 is smaller, and is set to a smaller value as the voltage V1 or the voltage V2 is larger.
  • A2 The control circuit 3 sets the estimation coefficient a to a larger value as the change amount is smaller. Further, the control circuit 3 sets the estimation coefficient a to a smaller value as the change amount is larger.
  • the larger the value of / charging rate change amount (V2 ⁇ V1) / (SOC2 ⁇ SOC1)), the larger the estimation coefficient a is set. Further, the control circuit 3 sets the estimation coefficient a to a smaller value as the inclination is smaller.
  • FIG. 2 is a diagram showing an example of the OCV-SOC characteristic, and shows the relationship between the open circuit voltage OCV and the charging rate SOC corresponding to the open circuit voltage OCV.
  • the slope of the OCV-SOC characteristic curve is a range where the open circuit voltage and the charging rate are small (the open circuit voltage OCV is from 2.9 [V] to 3.4 [V] and the charging rate is 0).
  • the control circuit 3 estimates the estimation coefficient as the estimation coefficient a2 (first estimation coefficient) when the voltage V1 or the voltage V2 is equal to or less than the voltage threshold Vth, and estimates when the voltage V1 or the voltage V2 is greater than the voltage threshold Vth.
  • the coefficient may be an estimated coefficient a1 (second estimated coefficient) smaller than the estimated coefficient a2.
  • the polarization elimination time T1d when the open circuit voltage at the discharge end time t0 is equal to or lower than the voltage threshold Vth (B in FIG. 3).
  • the open circuit voltage at the discharge end time t0 is longer than the polarization elimination time T1d when the open circuit voltage is larger than the voltage threshold Vth (A in FIG. 3). Therefore, when the open circuit voltage at the discharge end time t0 is equal to or lower than the voltage threshold Vth, the polarization elimination time T1d ′ is longer than the polarization elimination time T1d.
  • the transition is gentle.
  • the estimation coefficient is the estimation coefficient a2 when the voltage V1 or the voltage V2 is equal to or lower than the voltage threshold Vth, and the estimation coefficient is smaller than the estimation coefficient a2 when the voltage V1 or the voltage V2 is greater than the voltage threshold Vth.
  • FIG. 3 is a diagram showing an example of voltage transition in the discharge period and the polarization elimination time after the end of discharge.
  • FIG. 3A shows the discharge period and the polarization elimination time T1d after the end of discharge (from time t0 to time when the open circuit voltage at the discharge end time t0 is greater than the voltage threshold Vth and the voltages V1 and V2 are greater than the voltage threshold Vth.
  • the voltage transition of t3d) is shown.
  • the discharge period when the voltages V1 and V2 are larger than 3.4 [V] of the voltage threshold Vth shown in FIG. 2 (3.4 [V] ⁇ V1, V2 ⁇ 3.95 [V]).
  • finish of discharge is shown.
  • FIG. 3A shows the discharge period and the polarization elimination time T1d after the end of discharge (from time t0 to time when the open circuit voltage at the discharge end time t0 is greater than the voltage threshold Vth and the voltages V1 and V2 are greater than the voltage threshold Vth.
  • 3B shows the discharge period and the polarization elimination time T1d ′ after the end of the discharge when the open circuit voltage at the discharge end time t0 is equal to or lower than the voltage threshold Vth and the voltages V1 and V2 are equal to or lower than the voltage threshold Vth (from time t0).
  • the voltage transition at time t3d ') is shown.
  • finish of discharge is shown.
  • the polarization elimination time T1c ′ when the open circuit voltage at the charging end time t0 is equal to or lower than the voltage threshold Vth (B in FIG. 4) is the open circuit at the charging end time t0. It becomes longer than the polarization elimination time T1c when the voltage is larger than the voltage threshold Vth (A in FIG. 4). Therefore, when the open circuit voltage at the charging end time t0 is equal to or lower than the voltage threshold Vth, the polarization elimination time T1c ′ is longer than the polarization elimination time T1c. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time T1c ′ is at the charging termination time t0.
  • the transition is gentle. That is, the amount of change when the open circuit voltage at the charging end time t0 is equal to or lower than the voltage threshold Vth is smaller than the amount of change when the open circuit voltage at the charging end time t0 is greater than the voltage threshold Vth. Therefore, the estimation coefficient is the estimation coefficient a2 when the voltage V1 or the voltage V2 is equal to or lower than the voltage threshold Vth, and the estimation coefficient a1 that is smaller than the estimation coefficient a2 when the voltages V1 and V2 are larger than the voltage threshold Vth.
  • FIG. 4 is a diagram showing an example of voltage transition in the charging period and the polarization elimination time after the end of charging.
  • FIG. 4A shows the charging period and the polarization elimination time T1c after the end of charging (time from time t0) when the open circuit voltage at the charging end time t0 is larger than the voltage threshold Vth and the voltages V1 and V2 are larger than the voltage threshold Vth.
  • the voltage transition of t3c) is shown.
  • the charging period when the voltages V1 and V2 are higher than the voltage threshold value Vth shown in FIG. 2 (3.4 [V] ⁇ V1, V2 ⁇ 3.95 [V]).
  • finish of charge is shown.
  • FIG. 4A shows the charging period and the polarization elimination time T1c after the end of charging (time from time t0) when the open circuit voltage at the charging end time t0 is larger than the voltage threshold Vth and the voltages V1 and V2 are larger than the voltage threshold V
  • FIG. 4B shows the charging period and the polarization elimination time T1c ′ after the end of charging T1c ′ (from time t0) when the open circuit voltage at the charging end time t0 is equal to or lower than the voltage threshold Vth and the voltages V1 and V2 are equal to or lower than the voltage threshold Vth.
  • the voltage transition at time t3c ′) is shown. For example, charging when the voltages V1 and V2 are included in the value (2.9 [V] ⁇ V1, V2 ⁇ 3.4 [V]) of the voltage threshold Vth shown in FIG.
  • finish of charge is shown.
  • the voltage threshold Vth is, for example, the open circuit voltage OCV3.4 [V] shown in FIG.
  • the voltage threshold Vth may be divided into a voltage threshold Vth1 (first voltage threshold) to be compared with the voltage V1 and a voltage threshold Vth2 (second voltage threshold ⁇ voltage threshold Vth1) to be compared with the voltage V2.
  • the control circuit 3 sets the estimation coefficient as the estimation coefficient a2 when the voltage V1 is equal to or lower than the voltage threshold Vth1, and sets the estimation coefficient as the estimation coefficient a1 smaller than the estimation coefficient a2 when the voltage V1 is higher than the voltage threshold Vth1.
  • the control circuit 3 sets the estimation coefficient as the estimation coefficient a2 when the voltage V2 is equal to or lower than the voltage threshold Vth2, and sets the estimation coefficient as the estimation coefficient a1 smaller than the estimation coefficient a2 when the voltage V2 is higher than the voltage threshold Vth2.
  • the control circuit 3 may set the estimation coefficient as the estimation coefficient a2 when the change amount is equal to or smaller than the change amount threshold, and may set the estimation coefficient as the estimation coefficient a1 smaller than the estimation coefficient a2 when the change amount is larger than the change amount threshold.
  • the estimation coefficient a is set to the estimation coefficient a2 when the change amount is equal to or smaller than the change amount threshold, and is set to the estimation coefficient a1 smaller than the estimation coefficient a2 when the change amount is larger than the change amount threshold.
  • the change amount threshold value is obtained by experiment or simulation. For example, when the open circuit voltage at the charging / discharging end time t0 is 3.4 [V], the voltages V1 and V2 may be acquired, the amount of change may be obtained based on the acquired voltages V1 and V2, and the amount of change may be set as a threshold value.
  • the control circuit 3 estimates the estimation coefficient a2 when the inclination calculated based on the change amount and the change rate of the charging rate is larger than the inclination threshold, and estimates the estimation coefficient when the inclination is equal to or less than the inclination threshold.
  • the estimated coefficient a1 is smaller than the coefficient a2.
  • the reason is the same as the reason of (A3). Therefore, when the slope (change amount / charge rate change amount) is larger than the slope threshold value, the voltages V1 and V2 are in the range where the open circuit voltage is small, and therefore the estimation coefficient is assumed to be the estimation coefficient a2. On the other hand, when the slope is equal to or smaller than the slope threshold, the voltages V1 and V2 are in the range where the open circuit voltage is large, so the estimation coefficient is set to an estimation coefficient a1 smaller than the estimation coefficient a2.
  • the slope threshold is obtained using experiments and simulations. For example, the change amount (3.4 [V] -2.9 [V]) of the open circuit voltage OCV and the charge rate change amount (10 [%]-0 [%]) of the charging rate shown in FIG. An inclination determined based on the inclination may be used as an inclination threshold value.
  • the estimation coefficient a1 may be calculated by setting the estimation coefficient a1 as a fixed value and multiplying the estimation coefficient a1 by the weighting coefficient b.
  • the control circuit 3 changes the estimation coefficient a according to the temperature of the battery 4 main body or the battery 4 (the temperature of the battery 4). That is, the control circuit 3 sets the estimation coefficient a to a larger value as the temperature of the battery 4 is lower. Alternatively, the control circuit 3 sets the estimation coefficient a to a smaller value as the temperature of the battery 4 is higher.
  • the reason for changing the estimation coefficient a according to the temperature of the battery 4 is, for example, when the temperature of the battery 4 is different even when the open circuit voltage at the charge / discharge end time t0 is the same, the temperature of the battery 4 is lower than the reference temperature (for example, room temperature). This is because the polarization elimination time at a temperature lower than the reference temperature is longer than the polarization elimination time at the reference temperature. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time is more gradual in the transition at a temperature lower than the reference temperature than in the transition at the reference temperature.
  • the reference temperature for example, room temperature
  • the estimation coefficient a at a temperature lower than the reference temperature is set to a value larger than the estimation coefficient a at the reference temperature.
  • the polarization elimination time at a temperature higher than the reference temperature is shorter than the polarization elimination time at the reference temperature. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time is steeper in the transition at a temperature higher than the reference temperature than in the transition at the reference temperature. Therefore, since the amount of change at a temperature higher than the reference temperature is larger than the amount of change at the reference temperature, the estimation coefficient a for the temperature higher than the reference temperature is set to a value smaller than the estimation coefficient a for the reference temperature.
  • the estimation accuracy of the open circuit voltage after the polarization elimination time can be improved. Moreover, since the estimation accuracy of the open circuit voltage can be improved, the estimation accuracy of the charging rate after the polarization elimination time can also be improved.
  • the temperature of the battery 4 is, for example, the temperature measured at the charge / discharge end time t0, the temperature measured at the time t1, or the temperature measured at the time t2, or between the charge / discharge end time t0 and the time t2. Use the temperature measured in.
  • the temperature of the battery 4 may be an average temperature measured at time t1 and time t2.
  • the control circuit 3 can measure the temperature measured at the charge / discharge end time t0, the temperature measured at the time t1 (first time), or the temperature measured at the time t2 (second time), or the time.
  • the estimated coefficient a is set as the first estimated coefficient, and the temperature measured at the charge / discharge end time t0 or measured at time t1. If any one of the temperature, the temperature measured at time t2, or the average temperature of the temperatures measured at time t1 and time t2 is larger than the temperature threshold, the second estimation coefficient a is smaller than the first estimation coefficient. Estimated coefficient.
  • the control circuit 3 sets the estimation coefficient a according to the voltage V1 and the temperature.
  • the control circuit 3 sets the estimation coefficient a according to the voltage V2 and the temperature. That is, the estimation coefficient a is set by combining the setting of the estimation coefficient a described in (A1) and the setting of the estimation coefficient a corresponding to the temperature of the battery 4 described in (A7).
  • the estimation coefficient a is set using only the voltage V1 or the voltage V2 for one temperature (for example, only the reference temperature).
  • the temperature of the battery 4 and the voltage V1 corresponding to that temperature or The estimation coefficient a is set using the voltage V2.
  • FIG. 5 is a diagram showing the relationship between the estimation coefficient a and the voltage for each temperature, or the relationship between the estimation coefficient a and the charging rate for each temperature.
  • the reference temperature is 25 [° C.]
  • the temperature lower than the reference temperature is 0 [° C.]
  • the temperature higher than the reference temperature is 40 [° C.].
  • a curve 51 shows a transition of the estimation coefficient a when the temperature is 25 [° C.]
  • a curve 52 shows a transition of the estimation coefficient a when the temperature is 0 [° C.]
  • a curve 53 shows the transition of the temperature 40 [° C.].
  • the transition of the estimation coefficient a in the case is shown.
  • 25 [° C.], 0 [° C.], and 40 [° C.] are used to simplify the description, but the temperature is not limited to three temperatures.
  • FIG. 5 shows the relationship between the estimation coefficient a and the voltage V1 for each temperature
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the voltage V1 [V]. That is, as shown in FIG. 5, when the voltage V1 is the same voltage (P in FIG.
  • the estimation coefficient a is 25 [ If the estimation coefficient a0 corresponding to 0 [° C] larger than the estimation coefficient a25 corresponding to [° C] is set, and the temperature of the battery 4 is 40 [° C] higher than the reference temperature 25 [° C], the estimation coefficient is 25 [ The estimation coefficient a40 corresponding to 40 [° C] smaller than the estimation coefficient a25 corresponding to [° C] is set.
  • FIG. 5 is a diagram showing the relationship between the estimation coefficient a and the voltage V2 for each temperature
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the voltage V2 [V]. That is, when the voltage V2 is the same voltage (P in FIG. 5) as shown in FIG.
  • the estimation coefficient a is 25 [ If the estimation coefficient a0 corresponding to 0 [° C] larger than the estimation coefficient a25 corresponding to [° C] is set and the temperature of the battery 4 is 40 [° C] higher than the reference temperature 25 [° C], the estimation coefficient a is 25 An estimation coefficient a40 corresponding to 40 [° C] smaller than the estimation coefficient a25 corresponding to [° C] is set.
  • control circuit 3 may set the estimation coefficient a according to “change amount and temperature”, “slope and temperature”, or “slope and slope threshold”.
  • the control circuit 3 sets the estimation coefficients a1 and a2 according to “voltage V1 and voltage threshold Vth1 and temperature”, “voltage V2 and voltage threshold Vth2 and temperature”, or “change amount and change amount threshold”. May be. (A8)
  • the control circuit 3 changes the estimation coefficient a according to the degree of deterioration. That is, the control circuit 3 sets the estimation coefficient a to a larger value as the deterioration degree at the start of charging is larger. Alternatively, the control circuit 3 sets the estimation coefficient a to a smaller value as the deterioration degree at the start of charging is smaller.
  • the control circuit 3 sets the estimation coefficient a as the first estimation coefficient, and the deterioration level at the start of charging is larger than the first deterioration level threshold.
  • the estimation coefficient a is a second estimation coefficient that is larger than the first estimation coefficient.
  • the degree of deterioration at the start of charging is, for example, the internal resistance obtained using the voltage difference between the voltage measured before the charge start time and the voltage measured after the charge start time, and the current measured after the charge start time. It is. Further, the rate of increase in internal resistance may be used as the degree of deterioration.
  • the reason for changing the estimation coefficient a in accordance with the degree of deterioration is that, even when the open circuit voltage at the charge / discharge end time t0 is the same, but the degree of deterioration of the battery 4 is different, if the degree of deterioration of the battery 4 is large, the polarization elimination time becomes long. This is because when the degree of deterioration of 4 is small, the polarization elimination time is shortened. Therefore, the transition of the open circuit voltage with respect to the polarization elimination time is more gradual when the degree of deterioration is larger than when the degree of deterioration is small.
  • the estimation coefficient a when the degree of deterioration is large is set to a value larger than the estimation coefficient a when the degree of deterioration is small. To do.
  • the estimation coefficient As described above, by setting the estimation coefficient according to the degree of deterioration, it is possible to improve the estimation accuracy of the open circuit voltage after the polarization elimination time. Moreover, since the estimation accuracy of the open circuit voltage can be improved, the estimation accuracy of the charging rate after the polarization elimination time can also be improved.
  • control circuit 3 sets the estimation coefficient a to a larger value as the deterioration degree at the end of charge / discharge is larger. Alternatively, the control circuit 3 sets the estimation coefficient a to a smaller value as the deterioration degree at the end of charge / discharge is smaller. Alternatively, when the deterioration level at the end of charging / discharging is equal to or lower than the second deterioration level threshold value, the control circuit 3 sets the estimation coefficient a as the first estimation coefficient and the deterioration level at the end of charging / discharging is the second deterioration level threshold value. If larger, the estimation coefficient a is set as a second estimation coefficient larger than the first estimation coefficient.
  • the degree of deterioration at the end of charge / discharge uses, for example, the voltage difference between the voltage measured before the charge / discharge end time and the voltage measured after the charge / discharge end time, and the current measured before the charge / discharge end time. This is the internal resistance obtained. Further, the rate of increase in internal resistance may be used as the degree of deterioration.
  • the reason for using the degree of deterioration at the end of charge / discharge is that the degree of deterioration obtained at the end of charge / discharge is more accurate than the degree of deterioration obtained at the start of charge.
  • the control circuit 3 sets the estimation coefficient a according to the voltage V1 and the degree of deterioration at the start of charging or at the end of charging / discharging.
  • the control circuit 3 sets the estimation coefficient a according to the voltage V2 and the degree of deterioration at the start of charging or at the end of charging / discharging. That is, the estimation coefficient a is set by combining the setting of the estimation coefficient a described in (A1) and the setting of the estimation coefficient a according to the degree of deterioration of the battery 4 described in (A8).
  • the estimation coefficient a is set using only the voltage V1 or the voltage V2 for one deterioration degree (for example, only the initial internal resistance deterioration degree), but in (A8-1), the deterioration degree of the battery 4 is The estimation coefficient a is set using the voltage V1 or the voltage V2 corresponding to the degree of deterioration.
  • FIG. 6 is a diagram illustrating the relationship between the estimation coefficient a and the voltage for each degree of deterioration, or the relationship between the estimation coefficient a and the charge rate for each degree of deterioration.
  • an internal resistance increase rate of 1.0 [times] (an increase rate with respect to the initial internal resistance), 1.5 [times], and 2.0 [times] are used as the degree of deterioration.
  • a curve 61 shows a transition of the estimation coefficient a at an internal resistance increase rate of 1.0 [times]
  • a curve 62 shows a transition of the estimation coefficient a at an internal resistance increase rate of 1.5 [times]
  • a curve 63 represents The transition of the estimation coefficient a when the internal resistance increase rate is 2.0 [times] is shown.
  • the internal resistance increase rates of 1.0 [times], 1.5 [times], and 2.0 [times] are used to simplify the description. It is not limited to.
  • FIG. 6 is a diagram showing the relationship between the estimation coefficient a and the voltage V1 for each degree of deterioration
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the voltage V1 [V]. That is, when the voltage V1 is the same voltage (P in FIG. 6) as shown in FIG. 6, if the degree of deterioration of the battery 4 is an internal resistance increase rate of 1.0 [times], the estimation coefficient a is an increase in internal resistance. Estimated coefficients a1.0 corresponding to rates 1.5 [times] and 2.0 [times] are set, and estimated coefficients a1.0 corresponding to an internal resistance increase rate 1.0 [times] smaller than a2.0. If the deterioration degree of the battery 4 is an internal resistance increase rate of 2.0 [times], the estimation coefficient a is an estimation coefficient a1. 5. Estimate coefficient a2.0 corresponding to internal resistance increase rate 2.0 [times] larger than a1.0 is set.
  • FIG. 6 is a diagram showing the relationship between the estimation coefficient a and the voltage V2 for each degree of deterioration
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the voltage V2 [V]. . That is, when the voltage V2 is the same voltage (P in FIG. 6) as shown in FIG. 6, if the deterioration degree of the battery 4 is an internal resistance increase rate of 1.0 [times], the estimation coefficient a is an internal resistance increase. Estimated coefficients a1.0 corresponding to rates 1.5 [times] and 2.0 [times] are set, and estimated coefficients a1.0 corresponding to an internal resistance increase rate 1.0 [times] smaller than a2.0. If the deterioration degree of the battery 4 is an internal resistance increase rate of 2.0 [times], the estimation coefficient a is an estimation coefficient a1. 5. Estimate coefficient a2.0 corresponding to internal resistance increase rate 2.0 [times] larger than a1.0 is set.
  • the estimation coefficient is set according to the voltage V1 and the deterioration level at the start of charging or charging / discharging, or the estimation coefficient is set according to the voltage V2 and the deterioration level at the start of charging or charging / discharging.
  • the estimation accuracy of the open circuit voltage after the polarization elimination time can be improved as compared with the case of (A1).
  • the estimation accuracy of the charging rate after the polarization elimination time can also be improved.
  • control circuit 3 may use the “change amount and deterioration degree at the start of charging or charging / discharging”, “inclination and deterioration degree at the start of charging or charging / discharging end”, or “inclination and inclination threshold value and charging start.
  • the estimation coefficient a may be set in accordance with “deterioration degree at the time of charging or discharging”.
  • control circuit 3 may select “the voltage V1 and the voltage threshold Vth1 and the degree of deterioration at the start of charging or at the end of charging / discharging”, “the voltage V2 and the voltage threshold Vth2 and the degree of deterioration at the start of charging or at the end of charging / discharging” , Estimation coefficients a1 and a2 may be set according to “change amount, change amount threshold value, and deterioration degree at the start of charging or at the end of charging / discharging”.
  • the control circuit 3 performs polarization from the charging / discharging end time t0 of the battery 4 to the polarization elimination time t3 that can be considered that the charging / discharging of the battery 4 has ended and the polarization of the battery 4 has been eliminated.
  • the amount of change is multiplied by the charging coefficient SOC1 (first charging rate) corresponding to the voltage V1 or the estimation coefficient a that changes according to the charging rate SOC2 (second charging rate) corresponding to the voltage V2, and multiplied.
  • the open circuit voltage after the polarization of the battery 4 is eliminated is estimated by adding the value and the voltage V1. See Equation 1.
  • the amount of change is multiplied by an estimation coefficient a that changes according to the charging rate SOC1 (first charging rate) corresponding to the voltage V1 or the charging rate SOC2 (second charging rate) corresponding to the voltage V2, and the multiplied value
  • the open circuit voltage OCV1 after the polarization of the battery 4 is eliminated may be estimated by adding the voltage V2. See Equation 1 ′.
  • the charging rate SOC1 is obtained based on the voltage V1
  • the charging rate SOC2 is obtained based on the voltage V2.
  • information related to the OCV-SOC characteristic as shown in FIG. 2 is stored in the storage unit in advance, and the charging rate corresponding to the measured voltages V1 and V2 is obtained using the OCV-SOC characteristic.
  • the setting of the estimation coefficient in (B) will be described.
  • (B1) The control circuit 3 sets the estimation coefficient a to a larger value as the charging rate SOC1 or the charging rate SOC2 is smaller. Further, the control circuit 3 sets the estimation coefficient a to a smaller value as the charging rate SOC1 or the charging rate SOC2 is larger.
  • the polarization elimination time when the charge rate at the charge / discharge end time t0 is small is longer than the polarization elimination time when the charge rate at the charge / discharge end time t0 is large. Therefore, when the charging rate at the charging / discharging end time t0 is small, the polarization elimination time is extended. Therefore, the transition of the charging rate with respect to the polarization elimination time is compared with the transition of the charging rate when the charging rate at the charging / discharging termination time t0 is large. It will be moderate.
  • the reason is the same as the reason of (B1), and the charge rate change amount when the charge rate at the charge / discharge end time t0 is small is smaller than the charge rate change amount when the charge rate at the charge / discharge end time t0 is large. Then, the voltage change amount corresponding to the charge rate change amount when the charge rate at the charge / discharge end time t0 is small is the voltage change amount corresponding to the charge rate change amount when the charge rate at the charge / discharge end time t0 is large. Smaller. Therefore, the estimation coefficient a is set to a larger value as the charging rate change amount is smaller, and is set to a smaller value as the charging rate change amount is larger. (B3) The control circuit 3 sets the estimation coefficient a to a larger value as the slope calculated based on the change amount and the charge rate change amount is larger. Further, the control circuit 3 sets the estimation coefficient a to a smaller value as the inclination is smaller.
  • the reason is the same as the reason (A3), and the slope is large in the range where the open circuit voltage and the charging rate are small, and is small in the range where the open circuit voltage and the charging rate are large. Therefore, when the inclination is large, the charging rates SOC1 and SOC2 are in a range where the charging rate is small. Therefore, the estimation coefficient a is set to a larger value as the inclination is larger. On the contrary, when the inclination is small, the charging rates SOC1 and SOC2 are in the range where the charging rate is large, and therefore the estimation coefficient a is set to a smaller value as the inclination is smaller.
  • the control circuit 3 sets the estimation coefficient as the estimation coefficient a2 (first estimation coefficient), and the charging rate SOC1 or the charging rate SOC2 is the charging rate threshold.
  • the estimated coefficient may be an estimated coefficient a1 (second estimated coefficient) smaller than the estimated coefficient a2.
  • the reason is the same as the reason (B1), and the polarization elimination time when the charging rate at the charging / discharging end time t0 is equal to or lower than the charging rate threshold SOCth is when the charging rate at the charging / discharging end time t0 is greater than the charging rate threshold SOCth. It becomes longer than the depolarization time. Therefore, when the charge rate at the charge / discharge end time t0 is equal to or less than the charge rate threshold SOCth, the polarization elimination time is extended. Therefore, the transition of the charge rate with respect to the polarization elimination time is the charge when the charge rate at the charge / discharge end time t0 is large. It will be moderate compared to the rate.
  • the charging rate change amount is smaller than the charging rate change amount when the charging rate at the charging / discharging end time t0 is large. Then, the voltage change amount corresponding to the charge rate change amount when the charge rate at the charge / discharge end time t0 is small is the voltage change amount corresponding to the charge rate change amount when the charge rate at the charge / discharge end time t0 is large. Smaller. Therefore, the estimation coefficient a is set to a larger value as the charging rate SOC1 or the charging rate SOC2 is smaller, and is set to a smaller value as the charging rate SOC1 or the charging rate SOC2 is larger.
  • the charging rate threshold SOCth is, for example, the charging rate SOC10 [%] shown in FIG. Further, the charging rate threshold SOCth includes a charging rate threshold SOCth1 (first charging rate threshold) to be compared with the charging rate SOC1, and a charging rate threshold SOCth2 to be compared with the charging rate SOC2 (second charging rate threshold ⁇ charging rate threshold SOCth1). ). In that case, the control circuit 3 sets the estimation coefficient as the estimation coefficient a2 when the charging rate SOC1 is equal to or less than the charging rate threshold SOCth1, and when the charging rate SOC1 is larger than the charging rate threshold SOCth1, the estimation coefficient is smaller than the estimation coefficient a2. Let a1.
  • the control circuit 3 sets the estimation coefficient to the estimation coefficient a2 when the charging rate SOC2 is less than or equal to the charging rate threshold SOCth2, and the estimation coefficient a1 is smaller than the estimation coefficient a2 when the charging rate SOC2 is larger than the charging rate threshold SOCth2.
  • the control circuit 3 sets the estimation coefficient as the estimation coefficient a2 when the charging rate change amount is equal to or smaller than the charging rate change amount threshold value, and sets the estimation coefficient as the estimation coefficient a2 when the charging rate change amount is larger than the charging rate change amount threshold value.
  • a smaller estimation coefficient a1 is assumed.
  • the charge rate change amount when the charge rate at the charge / discharge end time t0 is equal to or less than the charge rate change amount threshold is the charge rate change amount at the charge / discharge end time t0. It becomes smaller than the charging rate change amount when larger. Then, when the charge rate at the charge / discharge end time t0 is equal to or less than the charge rate change amount threshold, the voltage change amount corresponding to the charge rate change amount is greater than the charge rate change amount threshold at the charge / discharge end time t0. Smaller than the amount of change in voltage corresponding to the amount of change in charging rate.
  • the estimation coefficient a is set to the estimation coefficient a2 when the charging rate change amount is equal to or less than the charging rate change amount threshold value.
  • the estimation coefficient is calculated from the estimation coefficient a2.
  • a small estimation coefficient a1 is assumed.
  • the control circuit 3 estimates the estimation coefficient as the estimation coefficient a2 when the inclination calculated based on the change amount and the charging rate change amount is larger than the inclination threshold, and estimates the estimation coefficient when the inclination is equal to or less than the inclination threshold.
  • the estimated coefficient a1 is smaller than the coefficient a2.
  • the reason is the same as the reason of (B3), and when the slope is larger than the slope threshold, the charging rates SOC1 and SOC2 are in the range where the charging rate is small, so the estimation coefficient is assumed to be the estimation coefficient a2. On the other hand, when the slope is equal to or smaller than the slope threshold, the charging rates SOC1 and SOC2 are in the range where the charging rate is large, so the estimation coefficient is set to an estimation coefficient a1 smaller than the estimation coefficient a2.
  • the control circuit 3 performs the same control as (A7).
  • the control circuit 3 sets the estimation coefficient a according to the charging rate SOC1 and the temperature.
  • the control circuit 3 sets the estimation coefficient a according to the charging rate SOC2 and the temperature. That is, the estimation coefficient a is set by combining the setting of the estimation coefficient a described in (B1) and the setting of the estimation coefficient a according to the temperature of the battery 4 described in (B7).
  • FIG. 5 is a diagram showing the relationship between the estimation coefficient a and the charging rate SOC1 for each temperature
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the charging rate SOC1 [%]. That is, as shown in FIG. 5, when the charging rate SOC1 is the same charging rate (P in FIG.
  • the estimation coefficient a is If the estimation coefficient a0 corresponding to 0 [° C] larger than the estimation coefficient a25 corresponding to 25 [° C] is set and the temperature of the battery 4 is 40 [° C] higher than the reference temperature 25 [° C], the estimation coefficient is An estimation coefficient a40 corresponding to 40 [° C.] smaller than the estimation coefficient a 25 corresponding to 25 [° C.] is set.
  • FIG. 5 is a diagram showing the relationship between the estimation coefficient a and the charging rate SOC2 for each temperature
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the charging rate SOC2 [%]. Show. That is, as shown in FIG. 5, when the charging rate SOC2 is the same charging rate (P in FIG.
  • the estimation coefficient a is If the estimation coefficient a0 corresponding to 0 [° C] larger than the estimation coefficient a25 corresponding to 25 [° C] is set and the temperature of the battery 4 is 40 [° C] higher than the reference temperature 25 [° C], the estimation coefficient a Sets an estimation coefficient a40 corresponding to 40 [° C.] smaller than the estimation coefficient a 25 corresponding to 25 [° C.].
  • the control circuit 3 performs the same control as (A8).
  • the control circuit 3 sets the estimation coefficient a in accordance with the charging rate SOC1 and the degree of deterioration at the start of charging or at the end of charging / discharging.
  • the control circuit 3 sets the estimation coefficient a according to the charging rate SOC2 and the degree of deterioration at the start of charging or at the end of charging / discharging. That is, the estimation coefficient a is set by combining the setting of the estimation coefficient a described in (B1) and the setting of the estimation coefficient a according to the degree of deterioration of the battery 4 described in (B8).
  • the estimation coefficient a is set using only the charging rate SOC1 or the charging rate SOC2 for one deterioration level (for example, only the initial internal resistance deterioration level), but in (B8-1) the deterioration of the battery 4
  • the estimation coefficient a is set using the charging rate SOC1 or the charging rate SOC2 corresponding to the degree and the deterioration degree.
  • FIG. 6 is a diagram showing the relationship between the estimation coefficient a and the charging rate SOC1 for each degree of deterioration
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the charging rate SOC1 [%].
  • the charging rate SOC1 is the same voltage (P in FIG. 6)
  • the estimated coefficient a is the internal resistance.
  • Estimated coefficients a1.5 corresponding to the rate of increase 1.5 [times], 2.0 [times], and an estimated coefficient a1.0 corresponding to an internal resistance increase rate 1.0 [times] smaller than a2.0 are set.
  • the estimation coefficient a is an estimation coefficient a1. 5.
  • Estimate coefficient a2.0 corresponding to internal resistance increase rate 2.0 [times] larger than a1.0 is set.
  • FIG. 6 is a diagram showing the relationship between the estimation coefficient a and the charging rate SOC2 for each degree of deterioration
  • the vertical axis indicates the estimation coefficient a
  • the horizontal axis indicates the charging rate SOC2 [%].
  • an estimation coefficient is set according to the charge rate SOC1 and the deterioration level at the start of charging or at the end of charge / discharge, or estimated according to the charge rate SOC2 and the deterioration level at the start of charging or at the end of charge / discharge.
  • FIG. 7 is a flowchart showing an embodiment of the operation of the power storage device.
  • the control circuit 3 detects that charging / discharging has been completed.
  • step S2 the control circuit 3 acquires voltages V1 and V2 at times t1 and t2. That is, from the charging / discharging end time t0 of the battery 4, the polarization elimination time t3 (t3d in FIG. 3A, t3d in FIG. 3B) can be considered that the charging / discharging of the battery 4 has ended and the polarization of the battery 4 has been eliminated.
  • T3c in FIG. 4A, t3c' in B in FIG. 4 polarization elimination time T1 (T1d in FIG. 3A, T1d ′ in FIG. 3B, T1c in FIG. 4A, B in FIG. 4)
  • T1c ′ the voltage V1 of the battery 4 measured by the voltmeter 5 at the time t1 and the voltage V2 of the battery 4 measured at the time t2 set at a time later than the time t1 are acquired.
  • time t1 and t2 demonstrated using the same time t1 and t2 in charge and discharge, it is preferable to set to different time by charge and discharge.
  • step S2 the control circuit 3 may acquire the temperature of the battery 4.
  • step S2 the control circuit 3 may determine the degree of deterioration at the start of charging or at the end of charging / discharging.
  • step S3 the control circuit 3 obtains the difference between the voltage V1 and the voltage V2 and sets it as the amount of change.
  • step S4 the control circuit 3 sets the estimation coefficient using any one of the methods described in (A1) to (B8-1) described above.
  • estimation coefficients have been described using the same estimation coefficients a, a1, and a2 in charging and discharging, but the estimation coefficients a, a1, and a2 are preferably set to different values for charging and discharging.
  • step S5 by executing the processing from step S1 to step S5, it is possible to improve the estimation accuracy of the open circuit voltage after the polarization elimination time. Moreover, since the estimation accuracy of the open circuit voltage can be improved, the estimation accuracy of the charging rate after the polarization elimination time can also be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

分極解消後の開回路電圧の推定精度を向上させる蓄電装置を提供する。電池4と、電池4の充放電を制御する制御回路3と、を備える蓄電装置1であって、制御回路3は、電池4の充放電終了時刻から、電池4の充放電が終了して電池4の分極が解消したと見做せる分極解消時刻までの分極解消時間において、第一の時刻に計測した電池4の第一の電圧と、第一の時刻より後の時刻に設定された第二の時刻に計測した電池4の第二の電圧との差を求めて変化量とし、第一の電圧、又は、第二の電圧、又は、電池4本体あるいは電池4周辺の温度、又は、電池4の劣化度に応じて変わる推定係数を、変化率に乗算し、乗算した値と第一の電圧又は第二の電圧とを加算し、電池4の分極解消後の開回路電圧を推定する。

Description

蓄電装置
 本発明は、開回路電圧を推定する蓄電装置に関する。
 電池の充放電終了時刻から、電池の分極が解消したと見做せる分極解消時刻までの分極解消時間において、分極解消後の開回路電圧(OCV:Open Circuit Voltage)及び充電率(SOC:State Of Charge)を推定する方法として、分極解消時間に設定されている時刻t1に計測した電圧V1と時刻t1より後の時刻t2に計測した電圧V2とを用いて差を求め変化量とし、変化量を用いて分極解消後の開回路電圧を推定し、推定した開回路電圧を用いて分極解消後の充電率を推定する方法が知られている。
 関連する技術として特許文献1などの技術がある。
特開2016-139525号公報
 しかしながら、充放電終了時刻における開回路電圧が所定電圧以下である場合、分極解消時間は、充放電終了時刻における開回路電圧が所定電圧より大きい場合の分極解消時間と比べて長くなる。そのため充放電終了時刻における開回路電圧が所定電圧以下である場合には分極解消時間が延びるので、その分極解消時間に対する開回路電圧の推移は、充放電終了時刻における開回路電圧が所定電圧より大きい場合の開回路電圧の推移と比べて緩やかに推移する。そうすると、充放電終了時刻における開回路電圧が所定電圧以下である場合の変化量は、充放電終了時刻における開回路電圧が所定電圧より大きい場合の変化量より小さくなる。
 従って、変化量が異なるので、充放電終了時刻における開回路電圧が所定電圧以下である場合と、充放電終了時刻における開回路電圧が所定電圧より大きい場合とに応じて分極解消後の開回路電圧の推定方法を変えないと、開回路電圧の推定精度が低下し、推定した分極解消後の開回路電圧と実際の開回路電圧とが乖離する。また、推定精度が低下した開回路電圧を用いて充電率を推定すると、推定した充電率の推定精度も低下する。
 また、電池本体あるいは電池周辺の温度、又は、電池の劣化度が変化すると、分極解消時間が変わることによって開回路電圧の推定精度が同様に低下する。
 本発明の一側面に係る目的は、分極解消後の開回路電圧の推定精度を向上させる蓄電装置を提供することである。
 本発明に係る一つの形態である蓄電装置は、電池と、電池の充放電を制御する制御回路と、を備える。
 制御回路は、電池の充放電終了時刻から、電池の充放電が終了して電池の分極が解消したと見做せる分極解消時刻までの分極解消時間において、第一の時刻に計測した電池の第一の電圧と、第一の時刻より後の時刻に設定された第二の時刻に計測した電池の第二の電圧との差を求めて変化量とし、第一の電圧、又は、第二の電圧、又は、電池本体あるいは電池周辺の温度、又は、電池の劣化度に応じて変わる推定係数を、変化量に乗算し、乗算した値と第一の電圧又は第二の電圧とを加算し、電池の分極解消後の開回路電圧を推定する。
 本発明に係る他の一つの形態である蓄電装置は、電池と、電池の充放電を制御する制御回路と、を備える。
 制御回路は、電池の充放電終了時刻から、電池の充放電が終了して電池の分極が解消したと見做せる分極解消時刻までの分極解消時間において、第一の時刻に計測した電池の第一の電圧と、第一の時刻より後の時刻に設定された第二の時刻に計測した電池の第二の電圧との差を求めて変化量とし、変化量に第一の電圧に対応する第一の充電率、又は、第二の電圧に対応する第二の充電率に応じて変わる推定係数を乗算し、乗算した値と第一の電圧又は第二の電圧とを加算し、電池の分極解消後の開回路電圧を推定する。
 分極解消後の開回路電圧の推定精度を向上させることができる。
蓄電装置の一実施例を示す図である。 OCV-SOC特性の一実施例を示す図である。 放電期間及び放電終了後の分極解消時間における電圧の推移の一実施例を示す図である。 充電期間及び充電終了後の分極解消時間における電圧の推移の一実施例を示す図である。 温度ごとの推定係数と電圧の関係、又は、温度ごとの推定係数と充電率の関係を示す図である。 劣化度ごとの推定係数と電圧の関係、又は、劣化度ごとの推定係数と充電率との関係を示す図である。 蓄電装置の動作の一実施例を示すフロー図である。
 以下図面に基づいて実施形態について詳細を説明する。
 図1は、蓄電装置1の一実施例を示す図である。図1に示す蓄電装置1は、例えば電池パックで、車両に搭載することが考えられる。本例において蓄電装置1は、一つ以上の電池4を有する組電池2、蓄電装置1を制御する制御回路3、電池4の電圧を計測する電圧計5、組電池2に流れる電流を計測する電流計6、電池4本体又は電池4周辺の温度を計測する温度計7を有している。組電池2が有する電池4は、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池又は蓄電素子などである。また、組電池2は、充電器に接続され、充電器により充電される。又は、組電池2に負荷が接続され、組電池2から負荷へ電力が供給されると、組電池2が放電される。
 制御回路3は、蓄電装置1及び電池4の充放電の制御、及び、充放電終了後の分極が解消したと見做せる分極解消時刻までの分極解消時間において開回路電圧及び充電率を推定する。また、制御回路3は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられる。また、制御回路3は、内部又は外部に備えられている記憶部を備え、記憶部に記憶されている蓄電装置1の各部を制御するプログラムを読み出して実行する。なお、制御回路3を、例えば、車両に搭載されている一つ以上のECU(Electronic Control Unit)としてもよい。
 分極解消時間における開回路電圧の推定について説明する。
(A)電圧に基づく推定
 制御回路3は、電池4の充放電終了時刻t0から、電池4の充放電が終了して電池4の分極が解消したと見做せる分極解消時刻t3までの分極解消時間T1において、時刻t1(第一の時刻)に計測した電池4の電圧V1(第一の電圧)と、時刻t1より後の時刻に設定された時刻t2(第二の時刻)に計測した電池4の電圧V2(第二の電圧)との差(=V2-V1)を求めて変化量とし、電圧V1、又は、電圧V2、又は、電池4本体又は電池4周辺の温度、又は、電池4の劣化度に応じて変わる推定係数aを、変化量に乗算し、乗算した値と電圧V1とを加算し、電池4の分極解消後の開回路電圧OCV1を推定する。式1を参照。
   OCV1=V1+(V2-V1)×a   (式1)
 なお、制御回路3は、分極解消時刻t3において、電池4の分極解消後の開回路電圧OCV1から電圧V1を減算した値を、電圧V2から電圧V1を減算した値で除算した結果を、次回の開回路電圧の推定時に用いる推定係数aとするように構成してもよい。式2を参照。
   a=(OCV1-V1)/(V2-V1) (式2)
 又は、制御回路3は、分極解消時間T1において、電圧V1(第一の電圧)と、電圧V2(第二の電圧)との差(=V2-V1)を求めて変化量とし、電圧V1、又は、電圧V2、又は、電池4本体又は電池4周辺の温度、又は、電池4の劣化度に応じて変わる推定係数aを、変化量に乗算し、乗算した値と電圧V2とを加算し、電池4の分極解消後の開回路電圧OCV1を推定してもよい。式1´を参照。
   OCV1=V2+(V2-V1)×a   (式1´)
 なお、制御回路3は、分極解消時刻t3において、電池4の分極解消後の開回路電圧OCV1から電圧V2を減算した値を、電圧V2から電圧V1を減算した値で除算した結果を、次回の開回路電圧の推定時に用いる推定係数aとするように構成してもよい。式2´を参照。
   a=(OCV1-V2)/(V2-V1) (式2´)
 (A)における推定係数の設定について説明をする。
(A1)制御回路3は、電圧V1又は電圧V2が小さい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、電圧V1又は電圧V2が大きい値であるほど、推定係数aを小さい値に設定する。
 理由は、充放電終了時刻t0における開回路電圧が小さい場合の分極解消時間は、充放電終了時刻t0における開回路電圧が大きい場合の分極解消時間と比べて長くなるためである。そのため充放電終了時刻t0における開回路電圧が小さい場合には分極解消時間が延びるので、その分極解消時間に対する開回路電圧の推移は、充放電終了時刻t0における開回路電圧が大きい場合の開回路電圧の推移と比べて緩やかに推移する。すなわち、充放電終了時刻t0における開回路電圧が小さい場合の変化量は、充放電終了時刻t0における開回路電圧が大きい場合の変化量より小さくなる。従って、推定係数aは、電圧V1又は電圧V2が小さい値であるほど大きい値に設定し、電圧V1又は電圧V2が大きい値であるほど小さい値に設定する。
(A2)制御回路3は、変化量が小さい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、変化量が大きい値であるほど、推定係数aを小さい値に設定する。
 理由は、(A1)の理由と同じで、充放電終了時刻t0における開回路電圧が小さい場合の変化量は、充放電終了時刻t0における開回路電圧が大きい場合の変化量より小さくなるためである。従って、推定係数aは、変化量が小さい値であるほど大きい値に設定し、変化量が大きい値であるほど小さい値に設定する。
(A3)制御回路3は、変化量と、電圧V1に対応する充電率SOC1と電圧V2に対応する充電率SOC2との差である充電率変化量とに基づいて算出される傾き(=変化量/充電率変化量=(V2-V1)/(SOC2-SOC1))が大きい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、傾きが小さい値であるほど、推定係数aを小さい値に設定する。
 理由は、傾きは開回路電圧及び充電率が小さい範囲では大きく、開回路電圧及び充電率が大きい範囲では小さくなるためである。図2は、OCV-SOC特性の一実施例を示す図で、開回路電圧OCVと開回路電圧OCVに対応する充電率SOCとの関係を示している。例えば、図2に示すように、OCV-SOC特性曲線の傾きは開回路電圧及び充電率が小さい範囲(開回路電圧OCVが2.9[V]から3.4[V]及び充電率が0[%]から10[%])では大きく、開回路電圧及び充電率が大きい範囲(開回路電圧OCVが3.4[V]より大きい電圧から3.95[V]及び充電率が10[%]より大きい充電率から100[%])では小さくなる。従って、傾きが大きい場合、電圧V1、V2は開回路電圧が小さい範囲にあるので、傾きが大きいほど推定係数aを大きい値に設定する。逆に、傾きが小さい場合、電圧V1、V2は開回路電圧が大きい範囲にあるので、傾きが小さいほど推定係数aを小さい値に設定する。なお、ここでは、(V2-V1)/(SOC2-SOC1)で求めた傾きを、OCV-SOC特性曲線の傾きと同じものとして扱う。
(A4)制御回路3は、電圧V1又は電圧V2が電圧閾値Vth以下の場合、推定係数を推定係数a2(第一の推定係数)とし、電圧V1又は電圧V2が電圧閾値Vthより大きい場合、推定係数を推定係数a2より小さい推定係数a1(第二の推定係数)としてもよい。
 理由は、(A1)の理由と同じで、放電の場合には、図3に示すように放電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合(図3のB)の分極解消時間T1d′は、放電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合(図3のA)の分極解消時間T1dと比べて長くなるためである。そのため放電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合には分極解消時間T1d′は分極解消時間T1dより延びるので、分極解消時間T1d′に対する開回路電圧の推移は、放電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合の開回路電圧の推移と比べて緩やかに推移する。すなわち、放電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合の変化量は、放電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合の変化量より小さくなる。従って、推定係数は、電圧V1又は電圧V2が電圧閾値Vth以下の場合、推定係数を推定係数a2とし、電圧V1又は電圧V2が電圧閾値Vthより大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
 なお、図3は、放電期間及び放電終了後の分極解消時間における電圧の推移の一実施例を示す図である。図3のAは、放電終了時刻t0における開回路電圧が電圧閾値Vthより大きく、電圧V1、V2が電圧閾値Vthより大きい場合における、放電期間及び放電終了後の分極解消時間T1d(時刻t0から時刻t3d)の電圧推移を示している。例えば、電圧V1、V2が、図2に示す電圧閾値Vthの3.4[V]より大きい値(3.4[V]<V1、V2≦3.95[V])である場合における放電期間及び放電終了後の分極解消時間の電圧推移を示している。図3のBは、放電終了時刻t0における開回路電圧が電圧閾値Vth以下で、電圧V1、V2が電圧閾値Vth以下の場合における、放電期間及び放電終了後の分極解消時間T1d′(時刻t0から時刻t3d′)の電圧推移を示している。例えば、電圧V1、V2が、図2に示す電圧閾値Vthが3.4[V]以下の値(2.9[V]≦V1、V2≦3.4[V])に含まれる場合における放電期間及び放電終了後の分極解消時間の電圧推移を示している。
 また、充電の場合には、図4に示すように充電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合(図4のB)の分極解消時間T1c′は、充電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合(図4のA)の分極解消時間T1cと比べて長くなる。そのため充電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合には分極解消時間T1c′は分極解消時間T1cより延びるので、分極解消時間T1c′に対する開回路電圧の推移は、充電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合の開回路電圧の推移と比べて緩やかに推移する。すなわち、充電終了時刻t0における開回路電圧が電圧閾値Vth以下の場合の変化量は、充電終了時刻t0における開回路電圧が電圧閾値Vthより大きい場合の変化量より小さくなる。従って、推定係数は、電圧V1又は電圧V2が電圧閾値Vth以下の場合、推定係数を推定係数a2とし、電圧V1、V2が電圧閾値Vthより大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
 なお、図4は、充電期間及び充電終了後の分極解消時間における電圧の推移の一実施例を示す図である。図4のAは、充電終了時刻t0における開回路電圧が電圧閾値Vthより大きく、電圧V1、V2が電圧閾値Vthより大きい場合における、充電期間及び充電終了後の分極解消時間T1c(時刻t0から時刻t3c)の電圧推移を示している。例えば、電圧V1、V2が、図2に示す電圧閾値Vthが3.4[V]より大きい値(3.4[V]<V1、V2≦3.95[V])である場合における充電期間及び充電終了後の分極解消時間の電圧推移を示している。図4のBは、充電終了時刻t0における開回路電圧が電圧閾値Vth以下で、電圧V1、V2が電圧閾値Vth以下の場合における、充電期間及び充電終了後の分極解消時間T1c′(時刻t0から時刻t3c′)の電圧推移を示している。例えば、電圧V1、V2が、図2に示す電圧閾値Vthが3.4[V]以下の値(2.9[V]≦V1、V2≦3.4[V])に含まれる場合における充電期間及び充電終了後の分極解消時間の電圧推移を示している。
 なお、電圧閾値Vthは、例えば、図2に示す開回路電圧OCV3.4[V]などである。また、電圧閾値Vthは、電圧V1と比較する電圧閾値Vth1(第一の電圧閾値)と、電圧V2と比較する電圧閾値Vth2(第二の電圧閾値≧電圧閾値Vth1)とに分けてもよい。その場合、制御回路3は、電圧V1が電圧閾値Vth1以下の場合、推定係数を推定係数a2とし、電圧V1が電圧閾値Vth1より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。あるいは、制御回路3は、電圧V2が電圧閾値Vth2以下の場合、推定係数を推定係数a2とし、電圧V2が電圧閾値Vth2より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
(A5)制御回路3は、変化量が変化量閾値以下の場合、推定係数を推定係数a2とし、変化量が変化量閾値より大きい場合、推定係数を推定係数a2より小さい推定係数a1としてもよい。
 理由は、(A2)の理由と同じである。従って、推定係数aは、変化量が変化量閾値以下の場合、推定係数を推定係数a2とし、変化量が変化量閾値より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
 変化量閾値は、実験やシミュレーションを用いて求める。例えば、充放電終了時刻t0における開回路電圧が3.4[V]の場合に電圧V1、V2を取得し、取得した電圧V1、V2に基づいて変化量を求め、変化量閾値としてもよい。
(A6)制御回路3は、変化量と充電率変化量とに基づいて算出される傾きが傾き閾値より大きい場合、推定係数を推定係数a2とし、傾きが傾き閾値以下の場合、推定係数を推定係数a2より小さい推定係数a1とする。
 理由は、(A3)の理由と同じである。そのため傾き(変化量/充電率変化量)が傾き閾値より大きい場合、電圧V1、V2は開回路電圧が小さい範囲にあるので、推定係数を推定係数a2とする。逆に、傾きが傾き閾値以下の場合、電圧V1、V2は開回路電圧が大きい範囲にあるので、推定係数を推定係数a2より小さい推定係数a1とする。
 なお、傾き閾値は、実験やシミュレーションを用いて求める。例えば、上述した図2に示す開回路電圧OCVの変化量(3.4[V]-2.9[V])と充電率の充電率変化量(10[%]-0[%])に基づいて決まる傾きを、傾き閾値としてもよい。
 更に、上述した(A4)から(A6)においては、推定係数a1を固定値とし、推定係数a1に重み付け係数bを乗算して推定係数a2を算出するようにしてもよい。
(A7)制御回路3は、電池4本体あるいは電池4周辺の温度(電池4の温度)に応じて推定係数aを変える。すなわち、制御回路3は、電池4の温度が低い値であるほど、推定係数aを大きい値に設定する。又は、制御回路3は、電池4の温度が高い値であるほど、推定係数aを小さい値に設定する。
 電池4の温度に応じて推定係数aを変える理由は、例えば、充放電終了時刻t0における開回路電圧が同じでも電池4の温度が異なる場合、電池4の温度が基準温度(例えば常温)より低いと、基準温度より低い温度における分極解消時間は、基準温度における分極解消時間より長くなるためである。そのため分極解消時間に対する開回路電圧の推移は、基準温度における推移より、基準温度より低い温度における推移の方が緩やかになる。従って、基準温度より低い温度の変化量は、基準温度における変化量より小さくなるので、基準温度より低い温度における推定係数aは、基準温度における推定係数aより大きい値に設定する。また、電池4の温度が基準温度より高いと、基準温度より高い温度における分極解消時間は、基準温度における分極解消時間より短くなる。そのため分極解消時間に対する開回路電圧の推移は、基準温度における推移より、基準温度より高い温度における推移の方が急になる。従って、基準温度より高い温度における変化量は、基準温度における変化量より大きくなるので、基準温度より高い温度の推定係数aは、基準温度の推定係数aより小さい値に設定する。
 (A1)から(A7)のように推定係数を設定することで、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。
 なお、電池4の温度は、例えば、充放電終了時刻t0で計測した温度、又は、時刻t1で計測した温度、又は、時刻t2で計測した温度、又は、充放電終了時刻t0から時刻t2の間で計測した温度を用いる。また、電池4の温度は、時刻t1と時刻t2に計測した温度の平均温度を用いてもよい。
 又は、制御回路3は、充放電終了時刻t0に計測した温度、又は、時刻t1(第一の時刻)に計測した温度、又は、時刻t2(第二の時刻)に計測した温度、又は、時刻t1と時刻t2に計測した温度の平均温度のいずれか一つが温度閾値以下の場合、推定係数aを第一の推定係数とし、充放電終了時刻t0に計測した温度、又は、時刻t1に計測した温度、又は、時刻t2に計測した温度、又は、時刻t1と時刻t2に計測した温度の平均温度のいずれか一つが温度閾値より大きい場合、推定係数aを第一の推定係数より小さい第二の推定係数とする。
(A7-1)制御回路3は、電圧V1と温度に応じて推定係数aを設定する。又は、制御回路3は、電圧V2と温度に応じて推定係数aを設定する。すなわち、(A1)で説明した推定係数aの設定と(A7)で説明した電池4の温度に応じた推定係数aの設定を組み合わせて推定係数aの設定をする。
 理由は、(A7)で説明したように電池4の温度に応じて開回路電圧の推移が変わるためである。(A1)では一つの温度(例えば基準温度のみ)に対する電圧V1又は電圧V2だけを用いて推定係数aを設定したが、(A7-1)では電池4の温度とその温度に対応する電圧V1又は電圧V2を用いて推定係数aを設定をする。
 図5は、温度ごとの推定係数aと電圧の関係、又は、温度ごとの推定係数aと充電率の関係を示す図である。図5の例では、基準温度を25[℃]とし、基準温度より低い温度を0[℃]とし、基準温度より高い温度を40[℃]としている。曲線51は、温度25[℃]の場合における推定係数aの推移を示し、曲線52は、温度0[℃]の場合における推定係数aの推移を示し、曲線53は、温度40[℃]の場合における推定係数aの推移を示している。なお、図5の例では、説明を簡単にするため25[℃]、0[℃]、40[℃]を用いたが、温度は三つの温度に限定されるものではない。
 例えば、図5が温度ごとの推定係数aと電圧V1との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は電圧V1[V]を示す。すなわち、図5に示すように電圧V1が同じ電圧(図5のP)である場合、電池4の温度が基準温度25[℃]より低い0[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より大きい0[℃]に対応する推定係数a0を設定し、電池4の温度が基準温度25[℃]より高い40[℃]であれば、推定係数は25[℃]に対応する推定係数a25より小さい40[℃]に対応する推定係数a40を設定する。
 また、例えば、図5が温度ごとの推定係数aと電圧V2との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は電圧V2[V]を示す。すなわち、図5に示すように電圧V2が同じ電圧(図5のP)である場合、電池4の温度が基準温度25[℃]より低い0[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より大きい0[℃]に対応する推定係数a0を設定し、電池4の温度が基準温度25[℃]より高い40[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より小さい40[℃]に対応する推定係数a40を設定する。
 このように、電圧V1と温度に応じて推定係数を設定するか、又は、電圧V2と温度に応じて推定係数を設定することにより、(A1)の場合より、分極解消時間後の開回路電圧の推定精度を向上させることができる。
 なお、制御回路3は、「変化量と温度」、「傾きと温度」、又は、「傾きと傾き閾値」に応じて推定係数aを設定してもよい。
 又は、制御回路3は、「電圧V1と電圧閾値Vth1と温度」、「電圧V2と電圧閾値Vth2と温度」、又は、「変化量と変化量閾値」に応じて推定係数a1、a2を設定してもよい。
(A8)制御回路3は、劣化度に応じて推定係数aを変える。すなわち、制御回路3は、充電開始時の劣化度が大きい値であるほど、推定係数aを大きい値に設定する。又は、制御回路3は、充電開始時の劣化度が小さい値であるほど、推定係数aを小さい値に設定する。又は、制御回路3は、充電開始時の劣化度が第一の劣化度閾値以下の場合、推定係数aを第一の推定係数とし、充電開始時の劣化度が第一の劣化度閾値より大きい場合、推定係数aを第一の推定係数より大きい第二の推定係数とする。充電開始時の劣化度は、例えば、充電開始時刻前に計測された電圧と充電開始時刻後に計測された電圧との電圧差と、充電開始時刻後に計測された電流を用いて求められた内部抵抗である。また、劣化度として内部抵抗上昇率などを用いてもよい。
 劣化度に応じて推定係数aを変える理由は、充放電終了時刻t0における開回路電圧が同じでも電池4の劣化度が異なる場合、電池4の劣化度が大きいと分極解消時間は長くなり、電池4の劣化度が小さいと分極解消時間は短くなるためである。そのため分極解消時間に対する開回路電圧の推移は、劣化度が小さいときの推移より、劣化度が大きいときの推移の方が緩やかになる。従って、劣化度が大きいときの変化量は、劣化度が小さいときの変化量より小さくなるので、劣化度が大きいときの推定係数aは、劣化度が小さいときの推定係数aより大きい値に設定する。
 このように劣化度に応じて推定係数を設定することで、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。
 また、制御回路3は、充放電終了時の劣化度が大きい値であるほど、推定係数aを大きい値に設定する。又は、制御回路3は、充放電終了時の劣化度が小さい値であるほど、推定係数aを小さい値に設定する。又は、制御回路3は、充放電終了時の劣化度が第二の劣化度閾値以下の場合、推定係数aを第一の推定係数とし、充放電終了時の劣化度が第二の劣化度閾値より大きい場合、推定係数aを第一の推定係数より大きい第二の推定係数とする。充放電終了時の劣化度とは、例えば、充放電終了時刻前に計測された電圧と充放電終了時刻後に計測された電圧との電圧差と、充放電終了時刻前に計測された電流を用いて求められた内部抵抗である。また、劣化度として内部抵抗上昇率などを用いてもよい。
 また、充放電終了時の劣化度を用いる理由は、充放電終了時に求めた劣化度の方が充電開始時に求めた劣化度より精度がよいためである。
 このように推定係数を充放電終了時の劣化度に応じて設定することで、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。(A8-1)制御回路3は、電圧V1と充電開始時又は充放電終了時の劣化度とに応じて推定係数aを設定する。又は、制御回路3は、電圧V2と充電開始時又は充放電終了時の劣化度とに応じて推定係数aを設定する。すなわち、(A1)で説明した推定係数aの設定と(A8)で説明した電池4の劣化度に応じた推定係数aの設定を組み合わせて推定係数aの設定をする。
 理由は、(A8)で説明したように電池4の劣化度に応じて開回路電圧の推移が変わるためである。(A1)では一つの劣化度(例えば、初期の内部抵抗の劣化度のみ)に対する電圧V1又は電圧V2だけを用いて推定係数aを設定したが、(A8-1)では電池4の劣化度とその劣化度に対応する電圧V1又は電圧V2を用いて推定係数aを設定する。
 図6は、劣化度ごとの推定係数aと電圧の関係、又は、劣化度ごとの推定係数aと充電率との関係を示す図である。図6の例では、劣化度として内部抵抗上昇率1.0[倍](初期の内部抵抗に対する上昇率)、1.5[倍]、2.0[倍]を用いている。曲線61は、内部抵抗上昇率1.0[倍]における推定係数aの推移を示し、曲線62は、内部抵抗上昇率1.5[倍]における推定係数aの推移を示し、曲線63は、内部抵抗上昇率2.0[倍]における推定係数aの推移を示している。なお、図6の例では、説明を簡単にするため内部抵抗上昇率1.0[倍]、1.5[倍]、2.0[倍]を用いたが、内部抵抗上昇率は三つに限定されるものではない。
 例えば、図6が劣化度ごとの推定係数aと電圧V1との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は電圧V1[V]を示す。すなわち、図6に示すように電圧V1が同じ電圧(図6のP)である場合、電池4の劣化度が内部抵抗上昇率1.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、2.0[倍]に対応する推定係数a1.5、a2.0より小さい内部抵抗上昇率1.0[倍]に対応する推定係数a1.0を設定する。また、電池4の劣化度が内部抵抗上昇率2.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、1.0[倍]に対応する推定係数a1.5、a1.0より大きい内部抵抗上昇率2.0[倍]に対応する推定係数a2.0を設定する。
 また、例えば、図6が劣化度ごとの推定係数aと電圧V2との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は電圧V2[V]を示す。すなわち、図6に示すように電圧V2が同じ電圧(図6のP)である場合、電池4の劣化度が内部抵抗上昇率1.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、2.0[倍]に対応する推定係数a1.5、a2.0より小さい内部抵抗上昇率1.0[倍]に対応する推定係数a1.0を設定する。また、電池4の劣化度が内部抵抗上昇率2.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、1.0[倍]に対応する推定係数a1.5、a1.0より大きい内部抵抗上昇率2.0[倍]に対応する推定係数a2.0を設定する。
 このように、電圧V1と充電開始時又は充放電終了時の劣化度に応じて推定係数を設定するか、又は、電圧V2と充電開始時又は充放電終了時の劣化度に応じて推定係数を設定することにより、(A1)の場合より、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、分極解消時間後の開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。
 なお、制御回路3は、「変化量と充電開始時又は充放電終了時の劣化度」、「傾きと充電開始時又は充放電終了時の劣化度」、又は、「傾きと傾き閾値と充電開始時又は充放電終了時の劣化度」に応じて推定係数aを設定してもよい。
 又は、制御回路3は、「電圧V1と電圧閾値Vth1と充電開始時又は充放電終了時の劣化度」、「電圧V2と電圧閾値Vth2と充電開始時又は充放電終了時の劣化度」、又は、「変化量と変化量閾値と充電開始時又は充放電終了時の劣化度」に応じて推定係数a1、a2を設定してもよい。(B)充電率に基づく推定
 制御回路3は、電池4の充放電終了時刻t0から、電池4の充放電が終了して電池4の分極が解消したと見做せる分極解消時刻t3までの分極解消時間T1において、時刻t1に計測した電池4の電圧V1と、時刻t1より後の時刻に設定された時刻t2に計測した電池4の電圧V2との差(=V2-V1)を求めて変化量とし、変化量に電圧V1に対応する充電率SOC1(第一の充電率)又は電圧V2に対応する充電率SOC2(第二の充電率)に応じて変わる推定係数aを乗算し、乗算した値と電圧V1とを加算し、電池4の分極解消後の開回路電圧を推定する。式1を参照。
 又は、制御回路3は、分極解消時間T1において、電圧V1(第一の電圧)と、電圧V2(第二の電圧)との差(=V2-V1)を求めて変化量とし、変化量に電圧V1に対応する充電率SOC1(第一の充電率)又は電圧V2に対応する充電率SOC2(第二の充電率)に応じて変わる推定係数aを、変化量に乗算し、乗算した値と電圧V2とを加算し、電池4の分極解消後の開回路電圧OCV1を推定してもよい。式1´を参照。 なお、充電率SOC1は電圧V1に基づいて求め、充電率SOC2は電圧V2に基づいて求める。例えば、図2に示すようなOCV-SOC特性に関する情報を予め記憶部に記憶し、OCV-SOC特性を用いて、計測した電圧V1、V2に対応する充電率を求める。
 (B)における推定係数の設定について説明をする。
(B1)制御回路3は、充電率SOC1又は充電率SOC2が小さい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、充電率SOC1又は充電率SOC2が大きい値であるほど、推定係数aを小さい値に設定する。
 理由は、充放電終了時刻t0における充電率が小さい場合の分極解消時間は、充放電終了時刻t0における充電率が大きい場合の分極解消時間と比べて長くなる。そのため充放電終了時刻t0における充電率が小さい場合には分極解消時間が延びるので、その分極解消時間に対する充電率の推移は、充放電終了時刻t0における充電率が大きい場合の充電率の推移と比べて緩やかに推移する。すなわち、充放電終了時刻t0における充電率が小さい場合には充電率変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量より小さくなる。そうすると、充放電終了時刻t0における充電率が小さい場合の充電率変化量に対応する電圧の変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量に対応する電圧の変化量より小さくなる。従って、推定係数aは、充電率SOC1又は充電率SOC2が小さい値であるほど大きい値に設定し、充電率SOC1又は充電率SOC2が大きい値であるほど小さい値に設定する。
(B2)制御回路3は、充電率変化量(=SOC2-SOC1)が小さい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、充電率変化量が大きい値であるほど、推定係数aを小さい値に設定する。
 理由は、(B1)の理由と同じで、充放電終了時刻t0における充電率が小さい場合の充電率変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量より小さくなる。そうすると、充放電終了時刻t0における充電率が小さい場合の充電率変化量に対応する電圧の変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量に対応する電圧の変化量より小さくなる。従って、推定係数aは、充電率変化量が小さい値であるほど大きい値に設定し、充電率変化量が大きい値であるほど小さい値に設定する。
(B3)制御回路3は、変化量と充電率変化量とに基づいて算出される傾きが大きい値であるほど、推定係数aを大きい値に設定する。また、制御回路3は、傾きが小さい値であるほど、推定係数aを小さい値に設定する。
 理由は、(A3)の理由と同じで、傾きは開回路電圧及び充電率が小さい範囲では大きく、開回路電圧及び充電率が大きい範囲では小さくなる。従って、傾きが大きい場合、充電率SOC1、SOC2は充電率が小さい範囲にあるので、傾きが大きいほど推定係数aを大きい値に設定する。逆に、傾きが小さい場合、充電率SOC1、SOC2は充電率が大きい範囲にあるので、傾きが小さいほど推定係数aを小さい値に設定する。
(B4)制御回路3は、充電率SOC1又は充電率SOC2が充電率閾値SOCth以下の場合、推定係数を推定係数a2(第一の推定係数)とし、充電率SOC1又は充電率SOC2が充電率閾値SOCthより大きい場合、推定係数を推定係数a2より小さい推定係数a1(第二の推定係数)としてもよい。
 理由は、(B1)の理由と同じで、充放電終了時刻t0における充電率が充電率閾値SOCth以下の場合の分極解消時間は、充放電終了時刻t0における充電率が充電率閾値SOCthより大きい場合の分極解消時間と比べて長くなる。そのため充放電終了時刻t0における充電率が充電率閾値SOCth以下の場合には分極解消時間が延びるので、その分極解消時間に対する充電率の推移は、充放電終了時刻t0における充電率が大きい場合の充電率の推移と比べて緩やかに推移する。すなわち、充放電終了時刻t0における充電率が小さい場合には充電率変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量より小さくなる。そうすると、充放電終了時刻t0における充電率が小さい場合の充電率変化量に対応する電圧の変化量は、充放電終了時刻t0における充電率が大きい場合の充電率変化量に対応する電圧の変化量より小さくなる。従って、推定係数aは、充電率SOC1又は充電率SOC2が小さい値であるほど大きい値に設定し、充電率SOC1又は充電率SOC2が大きい値であるほど小さい値に設定する。
 なお、充電率閾値SOCthは、例えば、図2に示す充電率SOC10[%]などである。また、充電率閾値SOCthは、充電率SOC1と比較する充電率閾値SOCth1(第一の充電率閾値)と、充電率SOC2と比較する充電率閾値SOCth2(第二の充電率閾値≧充電率閾値SOCth1)とに分けてもよい。その場合、制御回路3は、充電率SOC1が充電率閾値SOCth1以下の場合、推定係数を推定係数a2とし、充電率SOC1が充電率閾値SOCth1より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。あるいは、制御回路3は、充電率SOC2が充電率閾値SOCth2以下の場合、推定係数を推定係数a2とし、充電率SOC2が充電率閾値SOCth2より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
(B5)制御回路3は、充電率変化量が充電率変化量閾値以下の場合、推定係数を推定係数a2とし、充電率変化量が充電率変化量閾値より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
 理由は、(B2)の理由と同じで、充放電終了時刻t0における充電率が充電率変化量閾値以下の場合の充電率変化量は、充放電終了時刻t0における充電率が充電率変化量閾値より大きい場合の充電率変化量より小さくなる。そうすると、充放電終了時刻t0における充電率が充電率変化量閾値以下の場合の充電率変化量に対応する電圧の変化量は、充放電終了時刻t0における充電率が充電率変化量閾値より大きい場合の充電率変化量に対応する電圧の変化量より小さくなる。従って、推定係数aは、充電率変化量が充電率変化量閾値以下の場合、推定係数を推定係数a2とし、充電率変化量が充電率変化量閾値より大きい場合、推定係数を推定係数a2より小さい推定係数a1とする。
(B6)制御回路3は、変化量と充電率変化量とに基づいて算出される傾きが傾き閾値より大きい場合、推定係数を推定係数a2とし、傾きが傾き閾値以下の場合、推定係数を推定係数a2より小さい推定係数a1とする。
 理由は、(B3)の理由と同じで、傾きが傾き閾値より大きい場合、充電率SOC1、SOC2は充電率が小さい範囲にあるので、推定係数を推定係数a2とする。逆に、傾きが傾き閾値以下の場合、充電率SOC1、SOC2は充電率が大きい範囲にあるので、推定係数を推定係数a2より小さい推定係数a1とする。
 (B1)から(B6)のように推定係数を設定することで、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、分極解消時間後の開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。
(B7)制御回路3は、(A7)と同様の制御を行う。(B7-1)制御回路3は、充電率SOC1と温度に応じて推定係数aを設定する。又は、制御回路3は、充電率SOC2と温度に応じて推定係数aを設定する。すなわち、(B1)で説明した推定係数aの設定と(B7)で説明した電池4の温度に応じた推定係数aの設定を組み合わせて推定係数aの設定をする。
 例えば、図5が温度ごとの推定係数aと充電率SOC1との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は充電率SOC1[%]を示す。すなわち、図5に示すように充電率SOC1が同じ充電率(図5のP)である場合、電池4の温度が基準温度25[℃]より低い0[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より大きい0[℃]に対応する推定係数a0を設定し、電池4の温度が基準温度25[℃]より高い40[℃]であれば、推定係数は25[℃]に対応する推定係数a25より小さい40[℃]に対応する推定係数a40を設定する。
 また、例えば、図5が温度ごとの推定係数aと充電率SOC2との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は充電率SOC2[%]を示す。すなわち、図5に示すように充電率SOC2が同じ充電率(図5のP)である場合、電池4の温度が基準温度25[℃]より低い0[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より大きい0[℃]に対応する推定係数a0を設定し、電池4の温度が基準温度25[℃]より高い40[℃]であれば、推定係数aは25[℃]に対応する推定係数a25より小さい40[℃]に対応する推定係数a40を設定する。
 このように、充電率SOC1と温度に応じて推定係数を設定するか、又は、充電率SOC2と温度に応じて推定係数を設定することにより、(B1)の場合より、分極解消時間後の開回路電圧の推定精度を向上させることができる。(B8)制御回路3は、(A8)と同様の制御を行う。
(B8-1)制御回路3は、充電率SOC1と充電開始時又は充放電終了時の劣化度とに応じて推定係数aを設定する。又は、制御回路3は、充電率SOC2と充電開始時又は充放電終了時の劣化度とに応じて推定係数aを設定する。すなわち、(B1)で説明した推定係数aの設定と(B8)で説明した電池4の劣化度に応じた推定係数aの設定を組み合わせて推定係数aの設定をする。
 (B1)では一つの劣化度(例えば、初期の内部抵抗の劣化度のみ)に対する充電率SOC1又は充電率SOC2だけを用いて推定係数aを設定したが、(B8-1)では電池4の劣化度とその劣化度に対応する充電率SOC1又は充電率SOC2を用いて推定係数aを設定する。
 例えば、図6が劣化度ごとの推定係数aと充電率SOC1との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は充電率SOC1[%]を示す。すなわち、図6に示すように充電率SOC1が同じ電圧(図6のP)である場合、電池4の劣化度が内部抵抗上昇率1.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、2.0[倍]に対応する推定係数a1.5、a2.0より小さい内部抵抗上昇率1.0[倍]に対応する推定係数a1.0を設定する。また、電池4の劣化度が内部抵抗上昇率2.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、1.0[倍]に対応する推定係数a1.5、a1.0より大きい内部抵抗上昇率2.0[倍]に対応する推定係数a2.0を設定する。
 また、例えば、図6が劣化度ごとの推定係数aと充電率SOC2との関係を示している図である場合には、縦軸は推定係数aを示し、横軸は充電率SOC2[%]を示す。すなわち、図6に示すように充電率SOC2が同じ電圧(図6のP)である場合、電池4の劣化度が内部抵抗上昇率1.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、2.0[倍]に対応する推定係数a1.5、a2.0より小さい内部抵抗上昇率1.0[倍]に対応する推定係数a1.0を設定する。また、電池4の劣化度が内部抵抗上昇率2.0[倍]であれば、推定係数aは内部抵抗上昇率1.5[倍]、1.0[倍]に対応する推定係数a1.5、a1.0より大きい内部抵抗上昇率2.0[倍]に対応する推定係数a2.0を設定する。
 このように、充電率SOC1と充電開始時又は充放電終了時の劣化度に応じて推定係数を設定するか、又は、充電率SOC2と充電開始時又は充放電終了時の劣化度に応じて推定係数を設定することにより、(B1)の場合より、分極解消時間後の開回路電圧の推定精度を向上させることができる。
 蓄電装置1の動作について説明をする。
 図7は、蓄電装置の動作の一実施例を示すフロー図である。ステップS1では、制御回路3は充放電が終了したことを検出する。
 ステップS2では、制御回路3が時刻t1、t2において電圧V1、V2を取得する。すなわち、電池4の充放電終了時刻t0から、電池4の充放電が終了して電池4の分極が解消したと見做せる分極解消時刻t3(図3のAのt3d、図3のBのt3d′、図4のAのt3c、図4のBのt3c′)までの分極解消時間T1(図3のAのT1d、図3のBのT1d′、図4のAのT1c、図4のBのT1c′)において、電圧計5が時刻t1に計測した電池4の電圧V1と、時刻t1より後の時刻に設定された時刻t2に計測した電池4の電圧V2とを取得する。
 なお、時刻t1、t2は、充電及び放電において同じ時刻t1、t2を用いて説明をしたが、充電と放電とで異なる時刻に設定することが好ましい。
 なお、ステップS2では、制御回路3が電池4の温度を取得してもよい。
 また、ステップS2では、制御回路3が充電開始時又は充放電終了時の劣化度を求めてもよい。
 ステップS3では、制御回路3が電圧V1と電圧V2の差を求め変化量とする。
 ステップS4では、制御回路3が、上述した(A1)から(B8-1)などで説明したいずれか一つの方法を用いて推定係数を設定する。
 なお、推定係数は、充電及び放電において同じ推定係数a、a1、a2を用いて説明をしたが、推定係数a、a1、a2は充電と放電とで異なる値にすることが好ましい。
 ステップS5では、制御回路3が開回路電圧を推定する。すなわち、制御回路3は、ステップS4で設定した推定係数(a又はa1又はa2)を変化量(=V2-V1)に乗算し、乗算した値と電圧V1又はV2とを加算し、電池4の分極解消後の開回路電圧を推定する。式1又は式1´を参照。
 このようにステップS1からステップS5の処理を実行することで、分極解消時間後の開回路電圧の推定精度を向上させることができる。また、開回路電圧の推定精度を向上させることができるので、分極解消時間後の充電率の推定精度も向上させることができる。
 また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
1  蓄電装置、
2  組電池、
3  制御回路、
4  電池、
5  電圧計、
6  電流計、
7  温度計、

Claims (14)

  1.  電池と、前記電池の充放電を制御する制御回路と、を備える蓄電装置であって、
     前記制御回路は、
     前記電池の充放電終了時刻から、前記電池の充放電が終了して前記電池の分極が解消したと見做せる分極解消時刻までの分極解消時間において、第一の時刻に計測した前記電池の第一の電圧と、前記第一の時刻より後の時刻に設定された第二の時刻に計測した前記電池の第二の電圧との差を求めて変化量とし、
     前記第一の電圧、又は、前記第二の電圧、又は、前記電池本体あるいは前記電池周辺の温度、又は、前記電池の劣化度に応じて変わる推定係数を、前記変化量に乗算し、乗算した値と前記第一の電圧又は前記第二の電圧とを加算し、前記電池の分極解消後の開回路電圧を推定する、
     ことを特徴とする蓄電装置。
  2.  請求項1に記載の蓄電装置であって、
     前記制御回路は、
     前記第一の電圧が第一の電圧閾値以下の場合、前記推定係数を第一の推定係数とし、前記第一の電圧が前記第一の電圧閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とし、
     又は、前記第二の電圧が第二の電圧閾値以下の場合、前記推定係数を前記第一の推定係数とし、前記第二の電圧が前記第二の電圧閾値より大きい場合、前記推定係数を前記第二の推定係数とする、
     ことを特徴とする蓄電装置。
  3.  請求項1に記載の蓄電装置であって、
     前記制御回路は、
     前記変化量が変化量閾値以下の場合、前記推定係数を第一の推定係数とし、前記変化量が前記変化量閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  4.  請求項1に記載の蓄電装置であって、
     前記制御回路は、
     前記変化量と、前記第一の電圧に対応する第一の充電率と前記第二の電圧に対応する第二の充電率との差である充電率変化量とに基づいて算出される傾き(変化量/充電率変化量)が傾き閾値より大きい場合、前記推定係数を第一の推定係数とし、前記傾きが前記傾き閾値以下の場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  5.  請求項1から4のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     前記充放電終了時刻に計測した温度、又は、前記第一の時刻に計測した温度、又は、前記第二の時刻に計測した温度、又は、前記第一の時刻と前記第二の時刻に計測した温度の平均温度のいずれか一つが温度閾値以下の場合、前記推定係数を第一の推定係数とし、
     前記充放電終了時刻に計測した温度、又は、前記第一の時刻に計測した温度、又は、前記第二の時刻に計測した温度、又は、前記第一の時刻と前記第二の時刻に計測した温度の平均温度のいずれか一つが前記温度閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  6.  請求項1から4のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     充電開始時の劣化度が第一の劣化度閾値以下の場合、前記推定係数を第一の推定係数とし、前記充電開始時の劣化度が前記第一の劣化度閾値より大きい場合、前記推定係数を前記第一の推定係数より大きい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  7.  請求項1から4のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     充放電終了時の劣化度が第二の劣化度閾値以下の場合、前記推定係数を第一の推定係数とし、前記充放電終了時の劣化度が前記第二の劣化度閾値より大きい場合、前記推定係数を前記第一の推定係数より大きい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  8.  電池と、前記電池の充放電を制御する制御回路と、を備える蓄電装置であって、
     前記制御回路は、
     前記電池の充放電終了時刻から、前記電池の充放電が終了して前記電池の分極が解消したと見做せる分極解消時刻までの分極解消時間において、第一の時刻に計測した前記電池の第一の電圧と、前記第一の時刻より後の時刻に設定された第二の時刻に計測した前記電池の第二の電圧との差を求めて変化量とし、
     前記変化量に前記第一の電圧に対応する第一の充電率、又は、前記第二の電圧に対応する第二の充電率に応じて変わる推定係数を乗算し、乗算した値と前記第一の電圧又は前記第二の電圧とを加算し、前記電池の分極解消後の開回路電圧を推定する、
     ことを特徴とする蓄電装置。
  9.  請求項8に記載の蓄電装置であって、
     前記制御回路は、
     前記第一の充電率が第一の充電率閾値以下の場合、前記推定係数を第一の推定係数とし、前記第一の充電率が前記第一の充電率閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とし、
     又は、前記第二の充電率が第二の充電率閾値以下の場合、前記推定係数を第一の推定係数とし、前記第二の充電率が前記第二の充電率閾値より大きい場合、前記推定係数を前記第二の推定係数とする、
     ことを特徴とする蓄電装置。
  10.  請求項8に記載の蓄電装置であって、
     前記制御回路は、
     前記第一の充電率と前記第二の充電率との差である充電率変化量が充電率変化量閾値以下の場合、前記推定係数を第一の推定係数とし、前記充電率変化量が前記充電率変化量閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  11.  請求項8に記載の蓄電装置であって、
     前記制御回路は、
     前記変化量と前記第一の充電率と前記第二の充電率との差である充電率変化量とに基づいて算出される傾き(変化量/充電率変化量)が傾き閾値より大きい場合、前記推定係数を第一の推定係数とし、前記傾きが前記傾き閾値以下の場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  12.  請求項8から11のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     前記充放電終了時刻に計測した温度、又は、前記第一の時刻に計測した温度、又は、前記第二の時刻に計測した温度、又は、前記第一の時刻と前記第二の時刻に計測した温度の平均温度のいずれか一つが温度閾値以下の場合、前記推定係数を第一の推定係数とし、
     前記充放電終了時刻に計測した温度、又は、前記第一の時刻に計測した温度、又は、前記第二の時刻に計測した温度、又は、前記第一の時刻と前記第二の時刻に計測した温度の平均温度のいずれか一つが前記温度閾値より大きい場合、前記推定係数を前記第一の推定係数より小さい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  13.  請求項8から11のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     充電開始時の劣化度が第一の劣化度閾値以下の場合、前記推定係数を第一の推定係数とし、前記充電開始時の劣化度が前記第一の劣化度閾値より大きい場合、前記推定係数を前記第一の推定係数より大きい第二の推定係数とする、
     ことを特徴とする蓄電装置。
  14.  請求項8から11のいずれか一つに記載の蓄電装置であって、
     前記制御回路は、
     充放電終了時の劣化度が第二の劣化度閾値以下の場合、前記推定係数を第一の推定係数とし、前記充放電終了時の劣化度が前記第二の劣化度閾値より大きい場合、前記推定係数を前記第一の推定係数より大きい第二の推定係数とする、
     ことを特徴とする蓄電装置。
PCT/JP2017/032400 2016-10-06 2017-09-08 蓄電装置 WO2018066298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018543793A JP6756372B2 (ja) 2016-10-06 2017-09-08 蓄電装置
CN201780060350.9A CN109791183B (zh) 2016-10-06 2017-09-08 蓄电装置
DE112017005089.8T DE112017005089T5 (de) 2016-10-06 2017-09-08 Leistungsspeichervorrichtung
US16/336,177 US11095130B2 (en) 2016-10-06 2017-09-08 Power storage apparatus for estimating an open-circuit voltage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-197814 2016-10-06
JP2016197814 2016-10-06
JP2016-254693 2016-12-28
JP2016254693 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018066298A1 true WO2018066298A1 (ja) 2018-04-12

Family

ID=61830989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032400 WO2018066298A1 (ja) 2016-10-06 2017-09-08 蓄電装置

Country Status (5)

Country Link
US (1) US11095130B2 (ja)
JP (2) JP6756372B2 (ja)
CN (1) CN109791183B (ja)
DE (1) DE112017005089T5 (ja)
WO (1) WO2018066298A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856551A (zh) * 2019-01-28 2019-06-07 蜂巢能源科技有限公司 车辆及其基于电压值的电池异常检测方法和装置
JP2020194767A (ja) * 2019-05-24 2020-12-03 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Soc補正方法及び装置、電池管理システム、及び記憶媒体
WO2022107536A1 (ja) * 2020-11-20 2022-05-27 株式会社日立製作所 電池制御装置およびプログラム
WO2024014447A1 (ja) * 2022-07-11 2024-01-18 古河電気工業株式会社 内部抵抗測定システム、内部抵抗測定装置及び内部抵抗測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856552B (zh) * 2019-01-28 2021-01-26 蜂巢能源科技(无锡)有限公司 车辆及其基于电流值的电池异常检测方法和装置
CN114171811B (zh) * 2021-11-30 2023-07-18 上海瑞浦青创新能源有限公司 一种阶梯式充电方法与充电装置及其用途
JP2023119877A (ja) * 2022-02-17 2023-08-29 株式会社日立製作所 電池管理装置、電池管理プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214371A (ja) * 2012-03-30 2013-10-17 Toyota Motor Corp 電池システムおよび推定方法
WO2013171786A1 (ja) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 電池システムおよび、二次電池の分極判別方法
JP2014139521A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 充電率推定装置および充電率推定方法
JP2016109466A (ja) * 2014-12-02 2016-06-20 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
JP2016139525A (ja) * 2015-01-28 2016-08-04 株式会社豊田自動織機 蓄電装置および蓄電装置の制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085574A (ja) 2002-05-14 2004-03-18 Yazaki Corp バッテリの充電状態推定方法およびその装置
US6850038B2 (en) 2002-05-14 2005-02-01 Yazaki Corporation Method of estimating state of charge and open circuit voltage of battery, and method and device for computing degradation degree of battery
JP4327143B2 (ja) * 2005-09-30 2009-09-09 パナソニックEvエナジー株式会社 二次電池用の制御装置及び二次電池の出力制御方法及び二次電池の出力制御実行プログラム
JP2010002227A (ja) * 2008-06-18 2010-01-07 Autonetworks Technologies Ltd 開放電圧推定方法及び電源装置
JP2011257219A (ja) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd 二次電池の内部抵抗又は開放電圧を演算する演算装置
JP5509152B2 (ja) * 2011-05-31 2014-06-04 株式会社日立製作所 蓄電システム
EP2767841A4 (en) * 2011-10-13 2015-02-25 Toyota Motor Co Ltd CONTROL DEVICE AND METHOD FOR A SECONDARY BATTERY
EP2860539B1 (en) * 2012-06-05 2018-11-28 Kabushiki Kaisha Toyota Jidoshokki State-of-charge estimation method and state-of-charge estimation device
JP5863603B2 (ja) * 2012-08-24 2016-02-16 日立オートモティブシステムズ株式会社 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
JP5673654B2 (ja) * 2012-11-16 2015-02-18 トヨタ自動車株式会社 蓄電システムおよび満充電容量算出方法
JP2014181924A (ja) * 2013-03-18 2014-09-29 Toyota Industries Corp 満充電容量推定方法及び装置
CN103675698A (zh) * 2013-11-26 2014-03-26 北京航空航天大学 动力电池荷电状态估计装置及其估计方法
JP6098496B2 (ja) * 2013-12-06 2017-03-22 トヨタ自動車株式会社 蓄電システム
US9533598B2 (en) * 2014-08-29 2017-01-03 Ford Global Technologies, Llc Method for battery state of charge estimation
CN104965179B (zh) * 2015-07-06 2018-07-13 首都师范大学 一种锂离子蓄电池的温度组合电路模型及其参数识别方法
JP6528906B2 (ja) * 2016-06-22 2019-06-12 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214371A (ja) * 2012-03-30 2013-10-17 Toyota Motor Corp 電池システムおよび推定方法
WO2013171786A1 (ja) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 電池システムおよび、二次電池の分極判別方法
JP2014139521A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 充電率推定装置および充電率推定方法
JP2016109466A (ja) * 2014-12-02 2016-06-20 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
JP2016139525A (ja) * 2015-01-28 2016-08-04 株式会社豊田自動織機 蓄電装置および蓄電装置の制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856551A (zh) * 2019-01-28 2019-06-07 蜂巢能源科技有限公司 车辆及其基于电压值的电池异常检测方法和装置
JP2020194767A (ja) * 2019-05-24 2020-12-03 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Soc補正方法及び装置、電池管理システム、及び記憶媒体
JP7088973B2 (ja) 2019-05-24 2022-06-21 寧徳時代新能源科技股▲分▼有限公司 Soc補正方法及び装置、電池管理システム、及び記憶媒体
WO2022107536A1 (ja) * 2020-11-20 2022-05-27 株式会社日立製作所 電池制御装置およびプログラム
WO2024014447A1 (ja) * 2022-07-11 2024-01-18 古河電気工業株式会社 内部抵抗測定システム、内部抵抗測定装置及び内部抵抗測定方法

Also Published As

Publication number Publication date
US20190229539A1 (en) 2019-07-25
CN109791183A (zh) 2019-05-21
US11095130B2 (en) 2021-08-17
CN109791183B (zh) 2021-09-03
DE112017005089T5 (de) 2019-08-01
JP6756372B2 (ja) 2020-09-16
JP6708287B2 (ja) 2020-06-10
JP2019197056A (ja) 2019-11-14
JPWO2018066298A1 (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6708287B2 (ja) 蓄電装置
US10436850B2 (en) Power storage apparatus and controlling method for the same
KR101615139B1 (ko) 배터리 잔존수명 실시간 추정 장치 및 방법
JP6369340B2 (ja) 蓄電装置および蓄電装置の制御方法
JP6824275B2 (ja) リチウム−硫黄電池管理システム
JP6106991B2 (ja) 状態管理装置、蓄電素子の均等化方法
JP2017125813A (ja) 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
JP7292404B2 (ja) バッテリ健全状態の推定方法
WO2014126029A1 (ja) 充電率推定装置および充電率推定方法
TWI613454B (zh) 滿充電容量校準方法
WO2017169088A1 (ja) リチウムイオン二次電池の寿命推定装置
JP6828339B2 (ja) 蓄電装置
JP6753328B2 (ja) 充電率均等化装置
JP2013108919A (ja) Soc推定装置
JP2018151176A (ja) 推定装置、推定方法、および推定プログラム
JP5851514B2 (ja) 電池制御装置、二次電池システム
JP2015094710A (ja) バッテリの健全度推定装置及び健全度推定方法
JP2014176184A (ja) 電圧均等化装置及び電圧均等化方法
JP2016181991A (ja) 充電装置および充電装置の制御方法
JP2014075953A (ja) 電池充電装置および電圧均等化方法
JP2014011840A (ja) 電池充電装置および電圧均等化方法
JP6062919B2 (ja) 電気化学バッテリを最適に充電するための方法
JP6801613B2 (ja) 電池パック
JP2014155405A (ja) 電圧均等化装置および電圧均等化方法
JP6862850B2 (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543793

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17858137

Country of ref document: EP

Kind code of ref document: A1