WO2014126029A1 - 充電率推定装置および充電率推定方法 - Google Patents

充電率推定装置および充電率推定方法 Download PDF

Info

Publication number
WO2014126029A1
WO2014126029A1 PCT/JP2014/053010 JP2014053010W WO2014126029A1 WO 2014126029 A1 WO2014126029 A1 WO 2014126029A1 JP 2014053010 W JP2014053010 W JP 2014053010W WO 2014126029 A1 WO2014126029 A1 WO 2014126029A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
charging rate
transition
charging
charge
Prior art date
Application number
PCT/JP2014/053010
Other languages
English (en)
French (fr)
Inventor
西垣 研治
征志 城殿
隆広 都竹
博之 野村
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US14/766,538 priority Critical patent/US10459037B2/en
Priority to DE112014000836.2T priority patent/DE112014000836T5/de
Priority to CN201480008220.7A priority patent/CN105008945B/zh
Publication of WO2014126029A1 publication Critical patent/WO2014126029A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging rate estimation device and a charging rate estimation method for estimating a charging rate.
  • an open circuit voltage (Open Circuit Voltage: OCV) is estimated using the measured closed circuit voltage (Closed Circuit Voltage: CCV), and this open circuit voltage is calculated.
  • a method for estimating the charging rate by using it is known.
  • the remaining capacity calculation device As a technique for estimating the charging rate, there is known a secondary battery remaining capacity calculation device that can accurately detect the remaining capacity of a secondary battery having a large charge / discharge voltage flat region with a simple and small configuration. Yes. According to the remaining capacity calculation device, the remaining capacity is determined by the first remaining capacity obtained based on the charge / discharge voltage or the second remaining capacity obtained based on the integrated value of the charge / discharge current according to the voltage change rate of the charge / discharge voltage. The charging / discharging voltage corresponding to is weighted. That is, even when the characteristic curve of the charge / discharge voltage is flat, the charge / discharge voltage is weighted at least by the second remaining capacity obtained based on the integrated value of the charge / discharge current. The characteristic curve has an inclination, whereby the remaining capacity of the secondary battery can be obtained with high accuracy.
  • the present invention has been made in view of the above circumstances, and provides a charging rate estimation device and a charging rate estimation method that accurately estimate the charging rate even when the charging rate of the battery is influenced by polarization. With the goal.
  • the charging rate estimation apparatus which is one of the embodiments includes a voltage measurement unit, a current measurement unit, a charging time estimation unit, a transition time estimation unit, and a discharge time estimation unit.
  • the voltage measurement unit measures the battery voltage.
  • the current measuring unit measures the current charged / discharged from the battery.
  • the charging time estimation unit refers to the charging mode information in which the closed circuit voltage of the battery and the first charging rate are associated with each other using the measured closed circuit voltage. The first charging rate is obtained, and the first charging rate is estimated as the charging rate at the time of charging.
  • the transition estimation unit starts current integration using the measured current when the transition from the charging mode to the discharging mode is started. Thereafter, the transition estimation unit obtains the second charging rate using the first charging rate and the current integrated value at the start of the transition, and the target charging determined by the current integrated value obtained in the determined period after the transition starts. The second charging rate is estimated as the charging rate at the time of transition until the rate is reached.
  • the discharge time estimation unit uses the measured closed circuit voltage to generate a closed circuit generated using a battery discharge pattern obtained by operating the vehicle with a predetermined operation pattern.
  • the third charging rate is obtained, and the third charging rate is estimated as the charging rate during discharging.
  • the charging rate estimation apparatus which is one of the other embodiments includes a voltage measurement unit, a current measurement unit, a discharge estimation unit, a transition estimation unit, and a charge estimation unit.
  • the voltage measurement unit measures the battery voltage.
  • the current measuring unit measures the current charged / discharged from the battery.
  • the discharge time estimation unit uses the measured closed circuit voltage, and the closed circuit voltage generated by using the battery discharge pattern obtained by operating the vehicle with the determined operation pattern and the third circuit voltage.
  • the third charging rate is obtained by referring to the discharge mode information associated with the charging rate, and the third charging rate is estimated as the charging rate at the time of discharging.
  • the transition estimation unit starts current integration using the measured current when the transition from the discharge mode to the charge mode is started. Thereafter, the transition estimation unit obtains the sixth charging rate using the third charging rate and the current integrated value at the start of the transition, and the target charging determined by the current integrated value obtained in the determined period after the transition starts. Until the rate reaches, the sixth charging rate is estimated as the charging rate at the time of transition.
  • the charging time estimation unit uses the measured closed circuit voltage to associate the closed circuit voltage of the battery when the charger is charged with the first charging rate.
  • the first charging rate is obtained by referring to the charging mode information, and the first charging rate is estimated as the charging rate at the time of charging.
  • the charging rate can be accurately estimated even when the charging rate of the battery is influenced by polarization.
  • FIG. 1 is a diagram illustrating an embodiment of a charge / discharge device.
  • FIG. 2 is a graph showing an example of SOC-CCV characteristics during charging / discharging.
  • FIG. 3A is a diagram illustrating an example of the data structure of the charging mode information.
  • FIG. 3B is a diagram illustrating an example of the data structure of the discharge mode information.
  • FIG. 4 is a diagram illustrating an example of the data structure of the discharge mode transition information or the charge mode transition information.
  • FIG. 5 is a diagram illustrating an example of an operation during a period of transition from the charging mode to the discharging mode.
  • FIG. 6 is a diagram illustrating an example of an operation during a period of transition from the discharge mode to the charge mode.
  • Embodiment 1 will be described.
  • FIG. 1 is a diagram showing an embodiment of a charging / discharging device.
  • the charging / discharging device 1 of FIG. 1 has a charging rate estimation device, and includes a battery 2, a current measuring unit 3, a voltage measuring unit 4, a control unit 5, a storage unit 6, a charger 7, switches SW1, SW2, and the like.
  • a load 8 in FIG. 1 is a device that operates by receiving power from the charging / discharging device 1.
  • an operating device for example, a motor mounted on a vehicle can be considered.
  • the charging rate estimation device includes a current measurement unit 3, a voltage measurement unit 4, a control unit 5, a storage unit 6, switches SW1, SW2, and the like.
  • Battery 2 can be a polarized battery.
  • a secondary battery in which the polarization of the battery 2 is large, takes a long time for depolarization, and has a large charge / discharge hysteresis will be described.
  • a lithium ion secondary battery using a SiO negative electrode as the negative electrode can be considered.
  • SiO silicon oxide
  • even in a conventional secondary battery that uses a carbon negative electrode as the negative electrode there is polarization when the temperature is low, and therefore the application of the present invention can be considered when the temperature is low even in a conventional secondary battery.
  • the description is made using one battery, but the present invention is not limited to one battery, and a plurality of batteries may be used.
  • the current measuring unit 3 measures the current charged / discharged from the battery 2. For example, an ammeter can be considered.
  • the data measured by the current measuring unit 3 is output to the control unit 5.
  • the voltage measuring unit 4 measures the voltage of the battery 2. For example, a voltmeter can be considered.
  • the data measured by the voltage measuring unit 4 is output to the control unit 5.
  • control unit 5 uses a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device, etc.)).
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • the storage unit 6 may be a memory such as a Read Only Memory (ROM) or a Random Access Memory (RAM), a hard disk, or the like.
  • the storage unit 6 may store data such as parameter values and variable values, or may be used as a work area at the time of execution. Moreover, when the control part 5 has a memory
  • the charger 7 is a device for receiving power from the power supply device and charging the battery 2.
  • the switches SW1 and SW2 are switches for switching between charging and discharging according to an instruction from the control unit 5, and it is conceivable to use a relay or the like. In this example, charging and discharging are switched using two switches SW1 and SW2, but the present invention is not limited to the circuit shown in FIG.
  • the control unit will be described.
  • the control unit 5 includes a charging time estimation unit 9, a transition time estimation unit 10, and a discharge time estimation unit 11, and estimates the charging rate using closed circuit voltages measured at the time of charging and at the time of discharging.
  • the transition time estimation unit 10 includes one or both of a first processing unit and a second processing unit described later.
  • the charging time estimation unit 9 uses the measured closed circuit voltage to calculate charging mode information, which will be described later, associated with the closed circuit voltage of the battery 2 when the charger 7 performs constant current charging and the first charging rate.
  • the first charging rate is obtained by reference, and the first charging rate is used as the charging rate during charging.
  • the first processing unit of the transition time estimation unit 10 starts current integration using the measured current. Thereafter, the transition estimation unit 10 obtains the second charge rate using the first charge rate and the current integrated value at the start of the transition. Further, the transition time estimation unit 10 obtains the current integrated value during the determined period, and uses the second charge rate as the charge rate at the time of transition until the target charge rate associated with the obtained current integrated value is reached.
  • the discharge time estimation unit 11 is generated using the discharge pattern of the battery 2 obtained by operating the vehicle with the determined operation pattern using the measured closed circuit voltage.
  • the third charging rate is obtained by referring to later-described discharge mode information in which the closed circuit voltage and the third charging rate are associated with each other, and the third charging rate is used as the charging rate during discharging.
  • the discharge time estimation unit 11 refers to discharge mode information described later using the measured closed circuit voltage, obtains a third charge rate, and uses the third charge rate as the charge rate during discharge.
  • the second processing unit of the transition estimation unit 10 starts current integration using the measured current. Thereafter, the transition estimation unit 10 obtains a sixth charging rate using the third charging rate and the current integrated value at the start of the transition. Moreover, the transition time estimation unit 10 obtains a current integrated value in a determined period, and uses the sixth charge rate as the charge rate at the time of transition until the target charge rate associated with the obtained current integrated value is reached.
  • the charging time estimation unit 9 refers to charging mode information described later using the measured closed circuit voltage, obtains a first charging rate, and charges the first charging rate. Used as the charging rate of the hour.
  • FIG. 2 is a graph showing an example of SOC-CCV characteristics during charging and discharging.
  • 3A and 3B are diagrams illustrating an example of the data structure of the charging mode information and the discharging mode information.
  • a curve 302 of the graph 301 showing the SOC-CCV characteristics in FIG. 2 shows the relationship between the closed circuit voltage of the battery 2 and the charging rate when the charger 7 performs constant current charging.
  • the relationship between the closed circuit voltage and the charging rate in the charging mode is obtained by, for example, experiments or simulations.
  • the charging mode information 401 in FIG. 3A includes information stored in a closed circuit voltage “CCV during charging” and a charging rate “first charging rate SOC [%]” corresponding to the closed circuit voltage during charging.
  • Charging CCV includes information “cm00” “cm01” “cm02” “cm03” “cm04” “cm05” “cm06”... “Cm17” “cm18” “cm19” in this example.
  • “Cm20” is stored.
  • First charging rate SOC [%] includes information “0” “5” “10” “15” “20” “25” “30”... “85” “ 90, “95” and “100” are stored in association with the closed circuit voltage.
  • the curve 302 of the graph 301 and the charging mode 401 of FIG. 3A are not limited to the closed circuit voltage and the charging rate of the battery 2 when the charger 7 performs constant current charging.
  • the relationship when the charger 7 charges with constant power may be used.
  • a curve 303 of the graph 301 indicates a relationship between a closed circuit voltage generated using a discharge pattern of the battery 2 obtained by operating a vehicle or the like with a determined operation pattern and a charged state.
  • a fuel consumption measurement method JC-08 mode, LA # 4 mode, or the like that is measured from a running pattern can be considered.
  • a forklift it may be possible to use a predetermined traveling pattern or work pattern.
  • the discharge pattern is a pattern of a closed circuit voltage at the time of discharge typified by the battery 2 mounted on the vehicle when the vehicle is operated with a running pattern or a work pattern.
  • the relationship between the closed circuit voltage and the charging rate in the discharge mode is obtained through experiments and simulations using the closed circuit voltage during discharge.
  • the discharge mode information 402 in FIG. 3B includes information stored in the closed circuit voltage “Discharge CCV” during discharge and the charge rate “Charge rate SOC [%]” corresponding to the closed circuit voltage.
  • “Discharge CCV” includes information “dm00” “dm01” “dm02” “dm03” “dm04” “dm05” “dm06”... “Dm17” “dm18” “dm19” in this example.
  • “Dm20” is stored.
  • “third charging rate SOC [%] in this example, information “0” “5” “10” “15” “20” “25” “30”... “85” “ 90, “95” and “100” are stored in association with the closed circuit voltage.
  • a curve 304 shown in FIG. 2 indicates the charging rate (first charging rate) estimated by the transition estimation unit 10 using the first charging rate SOC1 and the current integrated value at the start of transition when shifting from the charging mode to the discharging mode. 2 charging rate).
  • the transition time estimation unit 10 continues until the target charging rate SOC2 (SOC1 (first charging rate) ⁇ SOC1 (fourth charging rate)) associated with the current integrated value obtained in the determined period is reached.
  • the charging rate of 2 be the charging rate of the transition period.
  • the target charging rate SOC2 is obtained by subtracting ⁇ SOC1 from SOC1.
  • the determined period is a period that is set within a transition period from transition start to transition end (period from transition start to transition to estimation of charge rate using discharge mode information) and shorter than the transition period. is there. For example, a period of 10 seconds from the start of transition can be considered. However, the determined period is not limited to 10 seconds.
  • the current integrated value obtained in the determined period is, for example, a current integrated value discharged in a period of 10 seconds from the start of the transition.
  • ⁇ SOC1 is a charging rate (fourth charging rate) for determining the target charging rate SOC2.
  • ⁇ SOC1 is obtained by referring to the discharge mode transition information associated with the information indicating the current load during discharge stored in the storage unit 6 and the information indicating ⁇ SOC.
  • the discharge rate may be considered as the current load during discharge. It is conceivable that the discharge rate is obtained using a predetermined period, a current integrated value obtained during the predetermined period, and the full capacity of the battery 2.
  • the discharge rate in the determined period is 0.5C ⁇ 10/20.
  • a curve 305 shown in FIG. 2 indicates the charging rate (first charging rate) estimated by the transition estimation unit 10 using the first charging rate SOC3 and the current integrated value at the start of the transition when shifting from the discharging mode to the charging mode. 6 charging rate).
  • the transition time estimation unit 10 continues to the sixth until the target charging rate SOC4 (SOC3 (third charging rate) + ⁇ SOC2 (fifth charging rate)) associated with the current integrated value obtained in the determined period is reached. Is the charging rate of the transition period.
  • the target charge rate SOC4 is obtained by adding ⁇ SOC2 to SOC3.
  • the determined period is a period that is set within the transition period from the start of transition to the end of transition (the period from transition start to transition to estimation of the charging rate using the charging mode information) and shorter than the transition period. is there. For example, a period of 10 seconds from the start of transition can be considered. However, the determined period is not limited to 10 seconds.
  • the current integrated value obtained in the determined period is, for example, the current integrated value for a period of 10 seconds from the start of the transition.
  • ⁇ SOC2 is a charging rate (fifth charging rate) for determining the target charging rate SOC4.
  • ⁇ SOC2 is obtained by referring to the discharge mode transition information associated with the information indicating the current load at the time of charging stored in the storage unit 6 and the information indicating ⁇ SOC.
  • the current load at the time of charging may be a charging rate, for example. It is conceivable that the charging rate is obtained by using a predetermined period, a current integrated value obtained in the predetermined period, and the full capacity of the battery 2.
  • the charging rate in the determined period is 0.5C ⁇ 10/20.
  • FIG. 4 is a diagram showing an example of the data structure of the discharge mode transition information or the charge mode transition information.
  • Information 501 indicating the discharge mode transition information or the charge mode transition information in FIG. 4 stores information stored in “current load” and “ ⁇ SOC [%]”. In this example, “0.1 C”, “0.2 C”, “0.5 C”, “0.7 C”, “1.0 C”, and “2.0 C” are stored in the “current load”. In “ ⁇ SOC [%]”, ⁇ SOC “15” “13” “10” “9” “8” “5” is stored in association with the information stored in “current load” in this example. .
  • the discharge mode transition information is referred to, and if the discharge rate for a predetermined period is 0.5 C, ⁇ SOC1 is 10%.
  • the method for obtaining ⁇ SOC2 is the same.
  • discharge mode transition information and charge mode transition information are the same, the information memorize
  • control unit first processing operation
  • FIG. 5 is a diagram illustrating an example of an operation during a period of transition from the charging mode to the discharging mode.
  • the control unit 5 detects that the charging mode has been switched to the discharging mode.
  • step S602 the control unit 5 starts the current integration process using the current value acquired from the current measurement unit 3, and obtains the current integration value.
  • step S603 the control unit 5 obtains the second charging rate using the first charging rate and the current integrated value at the time of switching.
  • step S604 the control unit 5 obtains a target charging rate associated with the current integrated value obtained in the determined period.
  • the determined period is set within the transition period from the start of transition to the end of transition (the period from transition start to transition to estimation of the charging rate using the discharge mode information) and is shorter than the transition period. .
  • step S603 and step S604 is not limited.
  • step S605 the control unit 5 determines whether or not the second charging rate is equal to or lower than the target charging rate. If the second charging rate is equal to or lower than the target charging rate (Yes), the process proceeds to step S606. If the second charging rate is larger than the target charging rate (No), the process proceeds to step S603.
  • step S605 may be repeated without moving to step S603.
  • step S606 the control unit 5 proceeds to a charging rate estimation process with reference to the discharge mode information. Also, the current integration process is stopped.
  • control unit (second processing operation) will be described.
  • FIG. 6 is a diagram illustrating an example of the operation during the period of transition from the discharge mode to the charge mode.
  • the control unit 5 detects that the charging mode has been switched to the discharging mode.
  • step S ⁇ b> 702 the control unit 5 starts the current integration process using the current value acquired from the current measurement unit 3 to obtain the current integration value.
  • step S703 the control unit 5 obtains the sixth charging rate using the third charging rate and the current integrated value at the time of switching.
  • step S704 the control unit 5 obtains a target charging rate associated with the integrated current value obtained in the determined period.
  • the determined period is set within the transition period from the start of transition to the end of transition (the period from the start of transition to the transition to the estimation of the charging rate using the charging mode information) and is shorter than the transition period. .
  • step S703 and step S704 is not limited.
  • step S705 the control unit 5 determines whether or not the sixth charging rate is equal to or higher than the target charging rate. If the sixth charging rate is equal to or higher than the target charging rate (Yes), the process proceeds to step S706. If the sixth charging rate is smaller than the target charging rate (No), the process proceeds to step S703. If No in step S705, step S705 may be repeated without moving to step S703.
  • step S706 the control unit 5 proceeds to a charging rate estimation process with reference to the charging mode information. Also, the current integration process is stopped.
  • the charging rate can be accurately estimated even when the charging rate of the battery is influenced by polarization.
  • the closed circuit voltage on the curve 302 represented by the charging mode information and the closed circuit voltage on the curve 303 represented by the discharging mode information Has a voltage difference. Therefore, if the charge rate is estimated using the discharge mode information immediately after switching from the charge mode to the discharge mode, the charge rate cannot be accurately estimated. However, according to the first embodiment, there is an effect that the charging rate can be accurately estimated by estimating the charging rate from the charging mode to the discharging mode using the current period and the transition period.
  • the closed circuit voltage on the curve 303 represented by the discharge mode information and the closed circuit voltage on the curve 302 represented by the charge mode information as shown in FIG. Has a voltage difference. Therefore, if the charging rate is estimated using the charging mode information immediately after switching from the discharging mode to the charging mode, the charging rate cannot be accurately estimated. However, according to the first embodiment, there is an effect that the charging rate can be accurately estimated by estimating the charging rate from the discharge mode to the charging mode using the current period and the transition period.
  • Embodiment 2 will be described.
  • the first processing unit included in the transition time estimation unit 10 of the second embodiment obtains a discharge rate for each period determined from the start of transition when transitioning from the charge mode to the discharge mode. For example, when the determined period is 10 seconds, the discharge rate is obtained every 10 seconds. That is, the discharge rate 10 seconds after the start of transition, the discharge rate 20 seconds after the start of transition, the discharge rate 30 seconds after the start of transition 20 seconds, and so on are obtained.
  • the transition estimation unit 10 uses the obtained discharge rate to refer to the discharge mode transition information in which the discharge rate and the fourth charging rate ( ⁇ SOC1) for determining the target charging rate are associated with each other. Find the charge rate.
  • the information 501 in FIG. 4 is used as the discharge mode transition information.
  • ⁇ SOC1 associated with the discharge rate is obtained every 10 seconds. That is, ⁇ SOC1 associated with the discharge rate 10 seconds after the start of transition, ⁇ SOC1 associated with the discharge rate 20 seconds after 10 seconds after the start of transition, and ⁇ SOC1 associated with the discharge rate 30 seconds after 20 seconds after the start of transition ⁇ ⁇ ⁇ ⁇ ⁇
  • the transition estimation unit 10 uses the fourth charging rate and the first charging rate at the start of transition to obtain a target charging rate for each determined period. For example, when the determined period is 10 seconds, the target charge rate is obtained every 10 seconds using ⁇ SOC1 associated with the discharge rate every 10 seconds and the first charge rate at the start of the transition. That is, the target charge rate 10 seconds after the start of the transition is obtained using ⁇ SOC1 associated with the discharge rate 10 seconds after the start of the transition and the first charge rate at the start of the transition. Next, using ⁇ SOC1 associated with the discharge rate 20 seconds after the start of the transition 10 seconds and the first charge rate at the start of the transition, the target charge rate 20 seconds after the transition start 10 seconds is obtained. Next, by using ⁇ SOC1 associated with the discharge rate after 20 seconds from the start of the transition and 30 seconds after the start of the transition and the first charging rate at the start of the transition, the target charge rate after 20 seconds from the start of the transition is obtained.
  • the target charging rate is 60 [%].
  • the target charging rate is 55 [%].
  • ⁇ SOC1 associated with the discharge rate after 20 seconds to 30 seconds after the start of transition is 5 [%]
  • the target charging rate is 65 [%].
  • the transition estimation unit 10 determines whether or not the second charging rate is equal to or lower than the target charging rate for each determined period, and when the second charging rate is equal to or lower than the target charging rate, the discharge mode information is displayed. The process proceeds to the referenced charging rate estimation process.
  • the transition estimation unit 10 uses the fourth charge rate, the first charge rate at the start of transition, and the difference between the first charge rate and the second charge rate at the start of transition.
  • the target charging rate may be obtained every predetermined period.
  • the first charging rate is 70 [%] (SOC1)
  • the second charging rate is 69 [%]
  • ⁇ SOC1 associated with the discharge rate 10 seconds after the start of transition is 10 [%].
  • a difference 1 [%] between the first charging rate and the second charging rate at the start of the transition is obtained.
  • 10 [%] of ⁇ SOC1 is subtracted from the first charging rate of 70 [%]
  • the difference 1 [%] is added to the subtracted value to obtain the target charging rate 61 [%].
  • the first charging rate 70 [%]. ] is subtracted from 15% of ⁇ SOC1. Subsequently, the difference 2 [%] between the first charging rate and the second charging rate is added to the subtracted value to obtain the target charging rate 57 [%].
  • the target charging rate 68 [%] is obtained by adding the difference 3 [%] between the first charging rate and the second charging rate to the subtracted value.
  • the transition estimation unit 10 determines whether or not the second charging rate is equal to or lower than the target charging rate for each determined period, and refers to the discharge mode information when the second charging rate is equal to or lower than the target charging rate. The process proceeds to the charging rate estimation process.
  • a process (second process) when shifting from the discharge mode to the charge mode will be described.
  • the second processing unit included in the transition time estimation unit 10 of the second embodiment obtains a charge rate for each period determined from the start of transition when shifting from the discharge mode to the charge mode. For example, when the determined period is 10 seconds, the charging rate is obtained every 10 seconds. That is, the charging rate after 10 seconds from the start of the transition, the charging rate after 20 seconds after the start of the transition, the charging rate after 20 seconds after the start of the transition, and the charging rate after 30 seconds are obtained.
  • the transition estimation unit 10 uses the obtained charging rate to refer to charging mode transition information in which the charging rate and the fifth charging rate ( ⁇ SOC2) for determining the target charging rate are associated with each other. Find the charge rate.
  • the information 501 in FIG. 4 is used as the charging mode transition information.
  • ⁇ SOC2 associated with the charge rate is obtained every 10 seconds. That is, ⁇ SOC2 associated with the charge rate 10 seconds after the start of the transition, ⁇ SOC2 associated with the charge rate 20 seconds after the start of the transition 10 seconds, and ⁇ SOC2 associated with the charge rate 30 seconds after the start of the transition 20 seconds ⁇ ⁇ ⁇ ⁇ ⁇
  • the transition estimation unit 10 uses the fifth charging rate and the third charging rate at the start of transition to obtain a target charging rate for each determined period. For example, when the determined period is 10 seconds, the target charge rate is obtained every 10 seconds using ⁇ SOC2 associated with the charge rate every 10 seconds and the third charge rate at the start of the transition. That is, the target charge rate 10 seconds after the start of the transition is obtained using ⁇ SOC2 associated with the charge rate 10 seconds after the start of the transition and the third charge rate at the start of the transition. Next, by using ⁇ SOC2 associated with the charge rate 20 seconds after the start of the transition 10 seconds and the third charge rate at the start of the transition, the target charge rate 20 seconds after the transition start 10 seconds is obtained. Next, by using ⁇ SOC2 associated with the charging rate after 30 seconds from the start of the transition and the third charging rate at the start of the transition, the target charging rate after 20 seconds from the start of the transition is obtained.
  • the target charging rate is 50 [%].
  • the target charging rate is 55 [%].
  • ⁇ SOC2 associated with the charge rate after 30 seconds from the start of transition to 30 seconds is 5 [%]
  • the target charge rate is 45 [%].
  • the transition estimation unit 10 determines whether or not the sixth charging rate is equal to or lower than the target charging rate for each determined period. When the sixth charging rate is equal to or lower than the target charging rate, the discharge mode information is displayed. The process proceeds to the referenced charging rate estimation process.
  • the transition estimation unit 10 uses the fifth charge rate, the third charge rate at the start of transition, and the difference between the third charge rate and the sixth charge rate at the start of transition.
  • the target charging rate may be obtained every predetermined period.
  • the third charging rate is 40 [%] (SOC1)
  • the sixth charging rate is 41 [%]
  • ⁇ SOC2 associated with the charging rate 10 seconds after the start of the transition is 10 [%].
  • the difference 1 [%] between the third charging rate and the sixth charging rate at the start of the transition is obtained.
  • 10 [%] of ⁇ SOC2 is added to the third charging rate 40 [%]
  • the target charging rate 49 [%] is obtained by subtracting the difference 1 [%] from the added value.
  • the target charging rate 53 [%] is obtained by subtracting the difference 2 [%] between the third charging rate and the sixth charging rate from the added value.
  • the target charging rate 42 [%] is obtained by subtracting the difference 3 [%] between the first charging rate and the sixth charging rate from the added value.
  • the transition time estimation unit 10 determines whether or not the sixth charging rate is equal to or lower than the target charging rate for each determined period. When the sixth charging rate is equal to or lower than the target charging rate, the charging mode information is displayed. The process proceeds to the referenced charging rate estimation process.
  • the charging rate can be accurately estimated even when the charging rate of the battery is influenced by polarization.
  • the closed circuit voltage on the curve 302 represented by the charging mode information and the closed circuit voltage on the curve 303 represented by the discharging mode information Has a voltage difference. Therefore, if the charge rate is estimated using the discharge mode information immediately after switching from the charge mode to the discharge mode, the charge rate cannot be accurately estimated. However, according to the second embodiment, there is an effect that the charging rate can be accurately estimated by estimating the charging rate from the charging mode to the discharging mode using the current period and the transition period.
  • the closed circuit voltage on the curve 303 represented by the discharge mode information and the closed circuit voltage on the curve 302 represented by the charge mode information as shown in FIG. Has a voltage difference. Therefore, if the charging rate is estimated using the charging mode information immediately after switching from the discharging mode to the charging mode, the charging rate cannot be accurately estimated. However, according to the first embodiment, there is an effect that the charging rate can be estimated with high accuracy by estimating the charging rate from the discharge mode to the charging mode using the current period and the transition period.
  • the charging rate can be accurately estimated even when the vehicle stops or accelerates.
  • the present invention is not limited to the first and second embodiments, and various improvements and modifications can be made without departing from the gist of the present invention.

Abstract

 電池の充電率に分極の影響がある場合でも、充電率を精度よく推定する充電率推定装置および充電率推定方法を提供する。充電モードから放電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始し、移行開始時の第1の充電率と電流積算値を用いて第2の充電率を求め、移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、第2の充電率を移行時の充電率と推定し、または、放電モードから充電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始し、移行開始時の第3の充電率と電流積算値を用いて第6の充電率を求め、移行開始後の決められた期間に求めた電流積算値に関連付けられた目標充電率になるまで、第6の充電率を移行時の充電率と推定する、移行時推定部を備える充電率推定装置である。

Description

充電率推定装置および充電率推定方法
 本発明は、充電率を推定する充電率推定装置および充電率推定方法に関する。
 電池の充電率(State Of Charge:SOC)の推定方法として、計測した閉回路電圧(Closed Circuit Voltage:CCV)を用いて開回路電圧(Open Circuit Voltage:OCV)を推定し、この開回路電圧を用いて充電率を推定する方法が知られている。
 しかし、分極が解消するまでに長時間を要する二次電池の場合、SOC-OCV特性における充放電時のヒステリシスが大きいため、開回路電圧から充電率を正確に推定することが難しい。なお、分極が解消するまでに長時間を要する二次電池として、例えば、SiO(一酸化珪素)を負極に用いた二次電池などが知られている。
 充電率を推定する技術として、充放電電圧の平坦領域が大きい二次電池の残存容量を、簡易で小型な構成で高精度に検知することができる二次電池の残存容量演算装置が知られている。その残存容量演算装置によれば、充放電電圧の電圧変化率に応じて、充放電電圧に基づき求めた第1残存容量または充放電電流の積算値に基づき求めた第2残存容量で、残存容量に対応する充放電電圧に対して重み付けを行う。つまり、充放電電圧の特性曲線が平坦となっている場合でも、充放電電圧に対して少なくとも、充放電電流の積算値に基づき求めた第2残存容量による重み付けが行われるので、充放電電圧の特性曲線に傾斜が付き、これによって高精度に二次電池の残存容量を求めることができる。
特開2012-137408号公報
 本発明は上記のような実情に鑑みてなされたものであり、電池の充電率に分極の影響がある場合でも、充電率を精度よく推定する充電率推定装置および充電率推定方法を提供することを目的とする。
 実施の態様のひとつである充電率推定装置は、電圧計測部、電流計測部、充電時推定部、移行時推定部、放電時推定部を有している。
 電圧計測部は電池の電圧を測定する。電流計測部は電池から充放電される電流を測定する。
 充電時推定部は、充電モードの場合、測定した閉回路電圧を用いて、充電器が充電をするときの電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、第1の充電率を求め、第1の充電率を充電時の充電率と推定する。
 移行時推定部は、充電モードから放電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始する。その後、移行時推定部は、移行開始時の第1の充電率と電流積算値を用いて第2の充電率を求め、移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、第2の充電率を移行時の充電率と推定する。
 放電時推定部は、移行が終了して放電モードになると、測定した閉回路電圧を用いて、決められた動作パターンで車両を動作させて求められる電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、第3の充電率を求め、第3の充電率を放電時の充電率と推定する。
 他の実施の態様のひとつである充電率推定装置は、電圧計測部、電流計測部、放電時推定部、移行時推定部、充電時推定部を有している。
 電圧計測部は電池の電圧を測定する。電流計測部は電池から充放電される電流を測定する。
 放電時推定部は、放電モードの場合、測定した閉回路電圧を用いて、決められた動作パターンで車両を動作させて求められる電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、第3の充電率を求め、第3の充電率を放電時の充電率と推定する。
 移行時推定部は、放電モードから充電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始する。その後、移行時推定部は、移行開始時の第3の充電率と電流積算値を用いて第6の充電率を求め、移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、第6の充電率を移行時の充電率と推定する。
 充電時推定部は、移行が終了して前記充電モードになると、測定した閉回路電圧を用いて、充電器が充電をするときの電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、第1の充電率を求め、第1の充電率を充電時の充電率と推定する。
 本実施形態によれば、電池の充電率に分極の影響がある場合でも、充電率を精度よく推定することができるという効果を奏する。
図1は、充放電装置の一実施例を示す図である。 図2は、充放電時のSOC-CCV特性の一実施例を示す図である。 図3Aは、充電モード情報のデータ構造の一実施例を示す図である。 図3Bは、放電モード情報のデータ構造の一実施例を示す図である。 図4は、放電モード移行情報または充電モード移行情報のデータ構造の一実施例を示す図である。 図5は、充電モードから放電モードに移行する期間の動作の一実施例を示す図である。 図6は、放電モードから充電モードに移行する期間の動作の一実施例を示す図である。
 以下図面に基づいて、実施形態について詳細を説明する。
 実施形態1について説明をする。
 図1は、充放電装置の一実施例を示す図である。図1の充放電装置1は充電率推定装置を有し、電池2、電流計測部3、電圧計測部4、制御部5、記憶部6、充電器7、スイッチSW1、SW2などから構成される。図1の負荷8は、充放電装置1から電力を受電して動作する装置である。動作する装置は、例えば、車両に搭載されるモータなどが考えられる。
 なお、充電率推定装置は、電流計測部3、電圧計測部4、制御部5、記憶部6、スイッチSW1、SW2などを有する。
 電池2は分極がある電池が考えられる。本例では、便宜上電池2の分極が大きくかつ分極解消に長時間を要し、充放電のヒステリシスが大きい二次電池について説明をする。例えば、負極にSiO負極を利用したリチウムイオン二次電池などが考えられる。ただし、SiOを負極に用いたリチウムイオン二次電池に限定されるものではない。例えば、負極にカーボン負極を利用した従来の二次電池でも温度が低い場合には分極があるので、従来の二次電池でも温度が低い場合に本発明の適用が考えられる。
 なお、図1の例では1つの電池を用いて説明しているが1つの電池に限定されるものではなく、複数の電池を用いてもよい。
 電流計測部3は電池2から充放電される電流を計測する。例えば、電流計などが考えられる。また、電流計測部3が計測したデータは制御部5に出力される。
 電圧計測部4は電池2の電圧を計測する。例えば、電圧計などが考えられる。また、電圧計測部4が計測したデータは制御部5に出力される。
 制御部5(コンピュータなど)は、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device)など)を用いることが考えられる。
 記憶部6は、例えばRead Only Memory(ROM)、Random Access Memory(RAM)などのメモリやハードディスクなどが考えられる。なお、記憶部6にはパラメータ値、変数値などのデータを記憶してもよいし、実行時のワークエリアとして用いてもよい。また、制御部5が記憶部を有している場合には記憶部6を用いなくてもよい。
 充電器7は、給電装置から電力を受電して電池2に充電するための装置である。
 スイッチSW1、SW2は、制御部5からの指示により充電と放電とを切り替えるスイッチで、リレーなどを用いることが考えられる。本例では、2つのスイッチSW1、SW2を用いて充電と放電の切り替えをしているが図1の回路に限定されるものではない。
 制御部について説明する。
 制御部5は、充電時推定部9、移行時推定部10、放電時推定部11を有し、充電時と放電時のそれぞれにおいて計測される閉路電圧を用いて充電率を推定する。なお、移行時推定部10は、後述する第1の処理部あるいは第2の処理部のいずれか1つまたは両方を有する。
 充電モードから放電モードへ移行する際における充電率の推定方法について説明する。
 充電時推定部9は、測定した閉回路電圧を用いて、充電器7が定電流充電をするときの電池2の閉回路電圧と第1の充電率とが関連付けられた後述する充電モード情報を参照し、第1の充電率を求め、第1の充電率を充電時の充電率として用いる。
 移行時推定部10の有する第1の処理部は、充電モードから放電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始する。その後、移行時推定部10は移行開始時の第1の充電率と電流積算値を用いて第2の充電率を求める。また、移行時推定部10は決められた期間において電流積算値を求め、求めた電流積算値に関連付けられた目標充電率になるまで、第2の充電率を移行時の充電率として用いる。
 放電時推定部11は、移行が終了して放電モードになると、測定した閉回路電圧を用いて、決められた動作パターンで車両を動作させて求められる電池2の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた後述する放電モード情報を参照し、第3の充電率を求め、第3の充電率を放電時の充電率として用いる。
 放電モードから充電モードへ移行する際における充電率の推定方法について説明する。
 放電時推定部11は、測定した閉回路電圧を用いて、後述する放電モード情報を参照し、第3の充電率を求め、第3の充電率を放電時の充電率として用いる。
 移行時推定部10の有する第2の処理部は、放電モードから充電モードへ移行を開始すると、測定した電流を用いて、電流積算を開始する。その後、移行時推定部10は移行開始時の第3の充電率と電流積算値を用いて第6の充電率を求める。また、移行時推定部10は決められた期間において電流積算値を求め、求めた電流積算値に関連付けられた目標充電率になるまで、第6の充電率を移行時の充電率として用いる。
 充電時推定部9は、移行が終了して充電モードになると、測定した閉回路電圧を用いて、後述する充電モード情報を参照し、第1の充電率を求め、第1の充電率を充電時の充電率として用いる。
 図2は、充放電時のSOC-CCV特性の一実施例を示す図である。図3A、図3Bは、充電モード情報と放電モード情報のデータ構造の一実施例を示す図である。
 図2のSOC-CCV特性を示すグラフ301の曲線302は、充電器7が定電流充電をするときの電池2の閉回路電圧と充電率との関係を示している。充電モードにおける閉回路電圧と充電率との関係は、例えば、実験やシミュレーションにより求める。
 図3Aの充電モード情報401は、充電時の閉回路電圧「充電時CCV」と閉回路電圧に対応する充電率「第1の充電率SOC[%]」に記憶される情報を有する。「充電時CCV」には、本例では閉回路電圧を示す情報「cm00」「cm01」「cm02」「cm03」「cm04」「cm05」「cm06」・・・「cm17」「cm18」「cm19」「cm20」が記憶されている。「第1の充電率SOC[%]」には、本例では充電率を示す情報「0」「5」「10」「15」「20」「25」「30」・・・「85」「90」「95」「100」が、閉回路電圧に関連付けられて記憶されている。
 なお、グラフ301の曲線302および図3Aの充電モード401は、充電器7が定電流充電するときの電池2の閉回路電圧と充電率に限定されるものではない。例えば、充電器7が定電力充電するときの関係でもよい。
 グラフ301の曲線303は、決められた動作パターンで車両などを動作させて求められる電池2の放電パターンを用いて生成された閉回路電圧と充電状態との関係を示している。
 決められた動作パターンとは、車両が電気自動車(EV)やプラグインハイブリッド車(PHV)の場合には、走行パターンから測定する燃費測定方法JC-08モード、LA#4モードなどが考えられる。フォークリフトの場合は、予め決められた走行パターンや作業パターンを用いることが考えられる。
 放電パターンは、走行パターンや作業パターンで車両を動作させたときの車両に搭載された電池2に代表される放電時の閉回路電圧のパターンである。放電モードにおける閉回路電圧と充電率との関係は、放電時の閉回路電圧を用いて実験やシミュレーションにより求める。
 図3Bの放電モード情報402は、放電時の閉回路電圧「放電時CCV」と閉回路電圧に対応する充電率「充電率SOC[%]」に記憶される情報を有する。「放電時CCV」には、本例では閉回路電圧を示す情報「dm00」「dm01」「dm02」「dm03」「dm04」「dm05」「dm06」・・・「dm17」「dm18」「dm19」「dm20」が記憶されている。「第3の充電率SOC[%]」には、本例では充電率を示す情報「0」「5」「10」「15」「20」「25」「30」・・・「85」「90」「95」「100」が、閉回路電圧に関連付けられて記憶されている。
 図2の曲線304について説明する。
 図2に示す曲線304は、充電モードから放電モードへ移行する際に、移行開始時の第1の充電率SOC1と電流積算値を用いて、移行時推定部10により推定された充電率(第2の充電率)を示している。移行時推定部10は、決められた期間に求められた電流積算値に関連付けられた目標充電率SOC2(SOC1(第1の充電率)-ΔSOC1(第4の充電率))になるまで、第2の充電率を移行期間の充電率とする。充電モードから放電モードへ移行する場合、目標充電率SOC2はSOC1からΔSOC1を減算して求める。
 決められた期間とは、移行開始から移行終了までの移行期間(移行開始から放電モード情報を用いて充電率の推定に移行するまでの期間)内に設定され、かつその移行期間より短い期間である。例えば、移行開始から10秒の期間が考えられる。ただし、決められた期間は10秒に限定されるものではない。
 次に、決められた期間に求められた電流積算値は、例えば、移行開始から10秒の期間に放電される電流積算値である。
 ΔSOC1は目標充電率SOC2を決めるための充電率(第4の充電率)である。例えば、記憶部6に記憶されている放電時の電流負荷を示す情報とΔSOCを示す情報とが関連付けられた放電モード移行情報を参照し、ΔSOC1を求める。
 放電時の電流負荷は、例えば、放電レートが考えられる。放電レートは、決められた期間と、決められた期間に求められた電流積算値と、電池2の満容量と、を用いて求めることが考えられる。
 例えば、決められた期間が10秒で、この10秒の間に放電される電流積算値が0.02778[Ah]である場合、今後1時間で放電される電流積算値が10.008[Ah]=0.0278×(3600÷10)であると推定される。従って、電池2の満容量が20[Ah]であれば決められた期間の放電レートは0.5C←10/20となる。
 図2の曲線305について説明する。
 図2に示す曲線305は、放電モードから充電モードへ移行する際に、移行開始時の第1の充電率SOC3と電流積算値を用いて、移行時推定部10により推定された充電率(第6の充電率)を示している。移行時推定部10は、決められた期間に求められた電流積算値に関連付けられた目標充電率SOC4(SOC3(第3の充電率)+ΔSOC2(第5の充電率))になるまで、第6の充電率を移行期間の充電率とする。放電モードから充電モードへ移行する場合、目標充電率SOC4はSOC3にΔSOC2を加算して求める。
 決められた期間とは、移行開始から移行終了までの移行期間(移行開始から充電モード情報を用いて充電率の推定に移行するまでの期間)内に設定され、かつその移行期間より短い期間である。例えば、移行開始から10秒の期間が考えられる。ただし、決められた期間は10秒に限定されるものではない。
 次に、決められた期間に求められた電流積算値は、例えば、移行開始から10秒の期間の電流積算値である。
 ΔSOC2は目標充電率SOC4を決めるための充電率(第5の充電率)である。例えば、記憶部6に記憶されている充電時の電流負荷を示す情報とΔSOCを示す情報とが関連付けられた放電モード移行情報を参照し、ΔSOC2を求める。
 充電時の電流負荷は、例えば、充電レートが考えられる。充電レートは、決められた期間と、決められた期間に求められた電流積算値と、電池2の満容量と、を用いて求めることが考えられる。
 例えば、決められた期間が10秒で、この10秒の間に充電される電流積算値が0.02778[Ah]である場合、今後1時間で充電される電流積算値が10.008[Ah]=0.0278×(3600÷10)であると推定される。従って、電池2の満容量が20[Ah]であれば決められた期間の充電レートは0.5C←10/20となる。
 図4は、放電モード移行情報または充電モード移行情報のデータ構造の一実施例を示す図である。図4の放電モード移行情報または充電モード移行情報を示す情報501には、「電流負荷」「ΔSOC[%]」に記憶される情報が記憶されている。「電流負荷」には、本例では放電レートとして「0.1C」「0.2C」「0.5C」「0.7C」「1.0C」「2.0C」が記憶されている。「ΔSOC[%]」には、本例では「電流負荷」に記憶されている情報に関連付けられてΔSOC「15」「13」「10」「9」「8」「5」が記憶されている。例えば、充電モードから放電モードへ移行する場合、放電モード移行情報を参照し、決められた期間の放電レートが0.5CならΔSOC1は10%となる。ΔSOC2の求め方も同様である。
 なお、本例では放電モード移行情報と充電モード移行情報が同じ場合について説明したが、放電モード移行情報と充電モード移行情報に記憶される情報は違うものでもよい。
 制御部の動作(第1の処理の動作)について説明する。
 図5は、充電モードから放電モードに移行する期間の動作の一実施例を示す図である。ステップS601では、制御部5が充電モードから放電モードに切り替えられたことを検出する。
 ステップS602では、制御部5が電流計測部3から取得した電流値を用いて電流積算処理を開始し、電流積算値を求める。
 ステップS603では、制御部5が切り替え時の第1の充電率と電流積算値を用いて第2の充電率を求める。
 ステップS604では、制御部5が決められた期間に求められた電流積算値に関連付けられた目標充電率を求める。決められた期間は、移行開始から移行終了までの移行期間(移行開始から放電モード情報を用いて充電率の推定に移行するまでの期間)内に設定され、かつその移行期間より短い期間である。
 なお、ステップS603とステップS604の順番は限定されるものではない。
 ステップS605では、制御部5が第2の充電率が目標充電率以下であるか否かを判定し、第2の充電率が目標充電率以下である場合(Yes)にはステップS606に移行し、第2の充電率が目標充電率より大きい場合(No)にはステップS603に移行する。
 なお、ステップS605でNoの場合、ステップS603に移行せず、ステップS605を繰り返してもよい。
 ステップS606では、制御部5が放電モード情報を参照した充電率推定処理に移行する。また、電流積算処理を停止する。
 制御部の動作(第2の処理の動作)について説明する。
 図6は、放電モードから充電モードに移行する期間の動作の一実施例を示す図である。ステップS701では、制御部5が充電モードから放電モードに切り替えられたことを検出する。
 ステップS702では、制御部5が電流計測部3から取得した電流値を用いて電流積算処理を開始し、電流積算値を求める。
 ステップS703では、制御部5が切り替え時の第3の充電率と電流積算値を用いて第6の充電率を求める。
 ステップS704では、制御部5が決められた期間に求められた電流積算値に関連付けられた目標充電率を求める。決められた期間は、移行開始から移行終了までの移行期間(移行開始から充電モード情報を用いて充電率の推定に移行するまでの期間)内に設定され、かつその移行期間より短い期間である。
 なお、ステップS703とステップS704の順番は限定されるものではない。
 ステップS705では、制御部5が第6の充電率が目標充電率以上であるか否かを判定し、第6の充電率が目標充電率以上である場合(Yes)にはステップS706に移行し、第6の充電率が目標充電率より小さい場合(No)にはステップS703に移行する。なお、ステップS705でNoの場合、ステップS703に移行せず、ステップS705を繰り返してもよい。
 ステップS706では、制御部5が充電モード情報を参照した充電率推定処理に移行する。また、電流積算処理を停止する。
 実施形態1によれば、電池の充電率に分極の影響がある場合でも、充電率を精度よく推定することができるという効果を奏する。
 また、充電モードから放電モードに移行する際には、図2に示すように充電モード情報により表される曲線302上の閉回路電圧と、放電モード情報により表される曲線303上の閉回路電圧には、電圧差がある。そのため、充電モードから放電モードに切り替えて直ぐに放電モード情報を用いて充電率を推定すると、精度良く充電率を推定することができない。しかし、実施形態1によれば、充電モードから放電モードに移行期間、電流積算を用いて充電率を推定することにより、充電率を精度よく推定することができるという効果を奏する。
 また、放電モードから充電モードに移行する際にも、図2に示すように放電モード情報により表される曲線303上の閉回路電圧と、充電モード情報により表される曲線302上の閉回路電圧には、電圧差がある。そのため、放電モードから充電モードに切り替えて直ぐに充電モード情報を用いて充電率を推定すると、精度良く充電率を推定することができない。しかし、実施形態1によれば、放電モードから充電モードに移行期間、電流積算を用いて充電率を推定することにより、充電率を精度よく推定することができるという効果を奏する。
 実施形態2について説明をする。
 充電モードから放電モードに移行する際の処理(第1の処理)について説明する。
 実施形態2の移行時推定部10の有する第1の処理部は、充電モードから放電モードに移行する際、移行開始時から決められた期間ごとに放電レートを求める。例えば、決められた期間が10秒である場合には、10秒ごとに放電レートを求める。すなわち、移行開始時から10秒後の放電レート、移行開始10秒後から20秒後の放電レート、移行開始20秒後から30秒後の放電レート・・・・を求める。
 また、移行時推定部10は求めた放電レートを用いて、放電レートと目標充電率を決めるための第4の充電率(ΔSOC1)とが関連付けられた放電モード移行情報を参照し、第4の充電率を求める。放電モード移行情報は、例えば、図4の情報501を用いる。例えば、決められた期間が10秒である場合には、10秒ごとに放電レートに関連付けられるΔSOC1を求める。すなわち、移行開始時から10秒後の放電レートに関連付けられるΔSOC1、移行開始10秒後から20秒後の放電レートに関連付けられるΔSOC1、移行開始20秒後から30秒後の放電レートに関連付けられるΔSOC1・・・・を求める。
 また、移行時推定部10は第4の充電率と移行開始時の第1の充電率を用いて、決められた期間ごとに目標充電率を求める。例えば、決められた期間が10秒である場合には、10秒ごとに放電レートに関連付けられるΔSOC1と移行開始時の第1の充電率を用いて、10秒ごとに目標充電率を求める。すなわち、移行開始時から10秒後の放電レートに関連付けられるΔSOC1と移行開始時の第1の充電率を用いて、移行開始時から10秒後の目標充電率を求める。次に、移行開始10秒後から20秒後の放電レートに関連付けられるΔSOC1と移行開始時の第1の充電率を用いて、移行開始時10秒後から20秒後の目標充電率を求める。次に、移行開始20秒後から30秒後の放電レートに関連付けられるΔSOC1と移行開始時の第1の充電率を用いて、移行開始時20秒後から30秒後の目標充電率を求める。
 例えば、第1の充電率が70[%](SOC1)で、移行開始時から10秒後の放電レートに関連付けられるΔSOC1が10[%]である場合には、目標充電率は60[%]になる。次に、移行開始時10秒後から20秒後の放電レートに関連付けられるΔSOC1が15[%]である場合には、目標充電率は55[%]になる。次に、移行開始時20秒後から30秒後の放電レートに関連付けられるΔSOC1が5[%]である場合には、目標充電率は65[%]になる。
 また、移行時推定部10は決められた期間ごとに第2の充電率が目標充電率以下であるか否か判定をし、第2の充電率が目標充電率以下になると、放電モード情報を参照した充電率推定処理に移行する。
 また、移行時推定部10は、第4の充電率と、移行開始時の第1の充電率と、移行開始時の第1の充電率と第2の充電率との差と、を用いて、決められた期間ごとに目標充電率を求めてもよい。
 例えば、第1の充電率が70[%](SOC1)で、第2の充電率が69[%]で、移行開始時から10秒後の放電レートに関連付けられるΔSOC1が10[%]である場合には、まず移行開始時の第1の充電率と第2の充電率との差1[%]を求める。そして、第1の充電率が70[%]からΔSOC1の10[%]を減算し、減算した値に差1[%]を加算して目標充電率61[%]を求める。
 また、移行開始時10秒後から20秒後の第2の充電率が68[%]で、放電レートに関連付けられるΔSOC1が15[%]である場合には、第1の充電率70[%]からΔSOC1の15[%]を減算する。続いて、減算した値に、第1の充電率と第2の充電率との差2[%]を加算して目標充電率57[%]を求める。
 また、移行開始時20秒後から30秒後の第2の充電率が67[%]で、放電レートに関連付けられるΔSOC1が5[%]である場合には、第1の充電率70[%]からΔSOC1の5[%]を減算する。続いて、減算した値に、第1の充電率と第2の充電率との差3[%]を加算して目標充電率68[%]を求める。
 移行時推定部10は決められた期間ごとに第2の充電率が目標充電率以下であるか否か判定をし、第2の充電率が目標充電率以下になると、放電モード情報を参照した充電率推定処理に移行する。
 放電モードから充電モードに移行する際の処理(第2の処理)について説明する。
 実施形態2の移行時推定部10の有する第2の処理部は、放電モードから充電モードに移行する際に、移行開始時から決められた期間ごとに充電レートを求める。例えば、決められた期間が10秒である場合には、10秒ごとに充電レートを求める。すなわち、移行開始時から10秒後の充電レート、移行開始10秒後から20秒後の充電レート、移行開始20秒後から30秒後の充電レート・・・・を求める。
 また、移行時推定部10は求めた充電レートを用いて、充電レートと目標充電率を決めるための第5の充電率(ΔSOC2)とが関連付けられた充電モード移行情報を参照し、第5の充電率を求める。充電モード移行情報は、例えば、図4の情報501を用いる。例えば、決められた期間が10秒である場合には、10秒ごとに充電レートに関連付けられるΔSOC2を求める。すなわち、移行開始時から10秒後の充電レートに関連付けられるΔSOC2、移行開始10秒後から20秒後の充電レートに関連付けられるΔSOC2、移行開始20秒後から30秒後の充電レートに関連付けられるΔSOC2・・・・を求める。
 また、移行時推定部10は第5の充電率と移行開始時の第3の充電率を用いて、決められた期間ごとに目標充電率を求める。例えば、決められた期間が10秒である場合には、10秒ごとに充電レートに関連付けられるΔSOC2と移行開始時の第3の充電率を用いて、10秒ごとに目標充電率を求める。すなわち、移行開始時から10秒後の充電レートに関連付けられるΔSOC2と移行開始時の第3の充電率を用いて、移行開始時から10秒後の目標充電率を求める。次に、移行開始10秒後から20秒後の充電レートに関連付けられるΔSOC2と移行開始時の第3の充電率を用いて、移行開始時10秒後から20秒後の目標充電率を求める。次に、移行開始20秒後から30秒後の充電レートに関連付けられるΔSOC2と移行開始時の第3の充電率を用いて、移行開始時20秒後から30秒後の目標充電率を求める。
 例えば、第3の充電率が40[%](SOC1)で、移行開始時から10秒後の充電レートに関連付けられるΔSOC2が10[%]である場合には、目標充電率は50[%]になる。次に、移行開始時10秒後から20秒後の充電レートに関連付けられるΔSOC2が15[%]である場合には、目標充電率は55[%]になる。次に、移行開始時20秒後から30秒後の充電レートに関連付けられるΔSOC2が5[%]である場合には、目標充電率は45[%]になる。
 また、移行時推定部10は決められた期間ごとに第6の充電率が目標充電率以下であるか否か判定をし、第6の充電率が目標充電率以下になると、放電モード情報を参照した充電率推定処理に移行する。
 また、移行時推定部10は、第5の充電率と、移行開始時の第3の充電率と、移行開始時の第3の充電率と第6の充電率との差と、を用いて、決められた期間ごとに目標充電率を求めてもよい。
 例えば、第3の充電率が40[%](SOC1)で、第6の充電率が41[%]で、移行開始時から10秒後の充電レートに関連付けられるΔSOC2が10[%]である場合に、移行開始時の第3の充電率と第6の充電率との差1[%]を求める。次に、第3の充電率40[%]にΔSOC2の10[%]を加算し、加算した値から差1[%]を減算して目標充電率49[%]を求める。
 また、移行開始時10秒後から20秒後の第6の充電率が42[%]で、充電レートに関連付けられるΔSOC2が15[%]である場合には、第3の充電率40[%]にΔSOC2の15[%]を加算する。続いて、加算した値から、第3の充電率と第6の充電率との差2[%]を減算して目標充電率53[%]を求める。
 また、移行開始時20秒後から30秒後の第6の充電率が43[%]で、充電レートに関連付けられるΔSOC2が5[%]である場合には、第3の充電率40[%]にΔSOC2の5[%]を加算する。続いて、加算した値から、第1の充電率と第6の充電率との差3[%]を減算して目標充電率42[%]を求める。
 また、移行時推定部10は決められた期間ごとに第6の充電率が目標充電率以下であるか否か判定をし、第6の充電率が目標充電率以下になると、充電モード情報を参照した充電率推定処理に移行する。
 実施形態2によれば、電池の充電率に分極の影響がある場合でも、充電率を精度よく推定することができるという効果を奏する。
 また、充電モードから放電モードに移行する際には、図2に示すように充電モード情報により表される曲線302上の閉回路電圧と、放電モード情報により表される曲線303上の閉回路電圧には、電圧差がある。そのため、充電モードから放電モードに切り替えて直ぐに放電モード情報を用いて充電率を推定すると、精度良く充電率を推定することができない。しかし、実施形態2によれば、充電モードから放電モードに移行期間、電流積算を用いて充電率を推定することにより、充電率を精度よく推定することができるという効果を奏する。
 また、放電モードから充電モードに移行する際にも、図2に示すように放電モード情報により表される曲線303上の閉回路電圧と、充電モード情報により表される曲線302上の閉回路電圧には、電圧差がある。そのため、放電モードから充電モードに切り替えて直ぐに充電モード情報を用いて充電率を推定すると、精度良く充電率を推定することができない。しかし、実施形態1によれば、放電モードから充電モードに移行期間、電流積算を用いて充電率を推定することにより、充電率を精度よく推定することができるという効果を奏する。
 さらに、決められた期間ごとに目標充電率を決めるため、車両が停車または加速をした場合においても、充電率を精度よく推定することができるという効果を奏する。
 また、本発明は、実施形態1、2に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。

Claims (10)

  1.  電池の電圧を測定する電圧計測部と、
     前記電池から充放電される電流を測定する電流計測部と、
     充電モードの場合、測定した閉回路電圧を用いて、充電器が充電をするときの前記電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、前記第1の充電率を求め、前記第1の充電率を充電時の充電率と推定する充電時推定部と、
     前記充電モードから放電モードへ移行を開始すると、測定した前記電流を用いて、電流積算を開始し、移行開始時の前記第1の充電率と電流積算値を用いて第2の充電率を求め、移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、前記第2の充電率を移行時の充電率と推定する移行時推定部と、
     前記移行が終了して前記放電モードになると、測定した閉回路電圧を用いて、決められた動作パターンで車両を動作させて求められる前記電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、前記第3の充電率を求め、前記第3の充電率を放電時の充電率と推定する放電時推定部と、
     を備えることを特徴とする充電率推定装置。
  2.  前記移行時推定部は、
     前記移行開始後の決められた期間の放電レートを求め、
     前記放電レートを用いて、前記放電レートと前記目標充電率を決めるための第4の充電率とが関連付けられた放電モード移行情報を参照し、前記第4の充電率を求め、
     前記移行開始時の第1の充電率から前記第4の充電率を減算して前記目標充電率を求める、
     ことを特徴とする請求項1に記載の充電率推定装置。
  3.  前記移行時推定部は、
     前記移行開始後の決められた期間ごとに放電レートを求め、
     前記放電レートを用いて、前記放電レートと前記目標充電率を決めるための第4の充電率とが関連付けられた放電モード移行情報を参照し、前記第4の充電率を求め、
     前記移行開始時の第1の充電率から前記第4の充電率を減算して前記決められた期間ごとに前記目標充電率を求める、
     ことを特徴とする請求項1に記載の充電率推定装置。
  4.  前記移行時推定部は、
     前記移行開始時の第1の充電率から前記第4の充電率を減算した値と、前記移行開始時の第1の充電率と前記第2の充電率との差と、を用いて、前記決められた期間ごとに前記目標充電率を求める、
     ことを特徴とする請求項3に記載の充電率推定装置。
  5.  電池の電圧を測定する電圧計測部と、
     前記電池から充放電される電流を測定する電流計測部と、
     放電モードの場合、測定した閉回路電圧を用いて、決められた動作パターンで車両を動作させて求められる前記電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、前記第3の充電率を求め、前記第3の充電率を放電時の充電率と推定する放電時推定部と、
     前記放電モードから充電モードへ移行を開始すると、測定した前記電流を用いて、電流積算を開始し、移行開始時の前記第3の充電率と電流積算値を用いて第6の充電率を求め、移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、前記第6の充電率を移行時の充電率と推定する移行時推定部と、
     前記移行が終了して前記充電モードになると、測定した閉回路電圧を用いて、充電器が充電をするときの前記電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、前記第1の充電率を求め、前記第1の充電率を充電時の充電率と推定する充電時推定部と、
     を備えることを特徴とする充電率推定装置。
  6.  前記移行時推定部は、
     前記移行開始後の決められた期間の充電レートを求め、
     前記充電レートを用いて、前記充電レートと前記目標充電率を決めるための第5の充電率とが関連付けられた充電モード移行情報を参照し、前記第5の充電率を求め、
     前記移行開始時の第3の充電率に前記第5の充電率を加算して前記目標充電率を求める、
     ことを特徴とする請求項5に記載の充電率推定装置。
  7.  前記移行時推定部は、
     前記移行開始後の決められた期間ごとに充電レートを求め、
     前記充電レートを用いて、前記充電レートと前記目標充電率を決めるための第5の充電率とが関連付けられた充電モード移行情報を参照し、前記第5の充電率を求め、
     前記移行開始時の第3の充電率に前記第5の充電率を加算して前記決められた期間ごとに前記目標充電率を求める、
     ことを特徴とする請求項5に記載の充電率推定装置。
  8.  前記移行時推定部は、
     前記移行開始時の第3の充電率に前記第5の充電率を加算した値と、前記移行開始時の第3の充電率と前記第6の充電率との差と、を用いて、前記決められた期間ごとに前記目標充電率を求める、
     ことを特徴とする請求項7に記載の充電率推定装置。
  9.  コンピュータが
     充電モードの場合、充電器が充電をするときの電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、前記第1の充電率を求め、前記第1の充電率を充電時の充電率とし、
     前記充電モードから放電モードへ移行を開始すると、電流積算を開始し、移行開始時の前記第1の充電率と電流積算値を用いて第2の充電率を求め、
     移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、前記第2の充電率を移行時の充電率とし、
     前記移行が終了して前記放電モードになると、決められた動作パターンで車両を動作させて求められる前記電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、前記第3の充電率を求め、前記第3の充電率を放電時の充電率とする、
     処理を実行することを特徴とする充電率推定方法。
  10.  コンピュータが
     放電モードの場合、決められた動作パターンで車両を動作させて求められる電池の放電パターンを用いて生成された閉回路電圧と第3の充電率とが関連付けられた放電モード情報を参照し、前記第3の充電率を求め、前記第3の充電率を放電時の充電率とし、
     前記放電モードから充電モードへ移行を開始すると、電流積算を開始し、移行開始時の前記第3の充電率と電流積算値を用いて第6の充電率を求め、
    移行開始後の決められた期間に求めた電流積算値によって決まる目標充電率になるまで、前記第6の充電率を移行時の充電率とし、
     前記移行が終了して前記充電モードになると、充電器が充電をするときの前記電池の閉回路電圧と第1の充電率とが関連付けられた充電モード情報を参照し、前記第1の充電率を求め、前記第1の充電率を充電時の充電率とする、
     処理を実行することを特徴とする充電率推定方法。
     
PCT/JP2014/053010 2013-02-15 2014-02-10 充電率推定装置および充電率推定方法 WO2014126029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/766,538 US10459037B2 (en) 2013-02-15 2014-02-10 State-of-charge estimation device and state-of-charge estimation method
DE112014000836.2T DE112014000836T5 (de) 2013-02-15 2014-02-10 Ladezustandschätzvorrichtung und Ladezustandschätzverfahren
CN201480008220.7A CN105008945B (zh) 2013-02-15 2014-02-10 充电状态估计装置和充电状态估计方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027277A JP5929778B2 (ja) 2013-02-15 2013-02-15 充電率推定装置および充電率推定方法
JP2013-027277 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126029A1 true WO2014126029A1 (ja) 2014-08-21

Family

ID=51354032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053010 WO2014126029A1 (ja) 2013-02-15 2014-02-10 充電率推定装置および充電率推定方法

Country Status (5)

Country Link
US (1) US10459037B2 (ja)
JP (1) JP5929778B2 (ja)
CN (1) CN105008945B (ja)
DE (1) DE112014000836T5 (ja)
WO (1) WO2014126029A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201984A (ja) * 2015-04-10 2016-12-01 株式会社豊田自動織機 蓄電装置及び蓄電方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107562B2 (ja) * 2013-09-19 2017-04-05 株式会社豊田自動織機 電池制御ユニットシステム
EP3411262B1 (en) * 2016-02-02 2020-12-30 Toyota Motor Europe Control device and method for charging a rechargeable battery
JP2018153069A (ja) * 2017-03-14 2018-09-27 株式会社豊田自動織機 電池パック
CN107565185B (zh) * 2017-09-07 2019-11-01 深圳埃瑞斯瓦特新能源有限公司 一种电池充电方法
WO2019087018A1 (ja) * 2017-11-02 2019-05-09 株式会社半導体エネルギー研究所 蓄電装置の容量推定方法および容量推定システム
JP6867987B2 (ja) * 2018-10-09 2021-05-12 株式会社豊田中央研究所 電源装置の満充電容量推定装置
JP7261016B2 (ja) * 2019-01-10 2023-04-19 株式会社デンソーテン 推定装置および推定方法
WO2020165195A1 (de) 2019-02-14 2020-08-20 Robert Bosch Gmbh Batterieeinheit und verfahren zum betrieb einer batterieeinheit
DE102019203541B3 (de) 2019-03-15 2020-06-18 Robert Bosch Gmbh Halteelement für einen Akkumulator sowie Akkumulator mit einem derartigen Halteelement
JPWO2020240324A1 (ja) 2019-05-24 2020-12-03
US11742680B2 (en) * 2020-03-09 2023-08-29 Medtronic Minimed, Inc. Dynamic management of charge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312404A (ja) * 1999-02-24 2000-11-07 Denso Corp 発電型電気自動車の電池制御方法
JP2002238106A (ja) * 2001-02-14 2002-08-23 Denso Corp ハイブリッド車の電池状態制御方法
JP2012247374A (ja) * 2011-05-31 2012-12-13 Primearth Ev Energy Co Ltd 二次電池の制御装置
WO2013069459A1 (ja) * 2011-11-10 2013-05-16 日産自動車株式会社 二次電池の制御装置およびsoc検出方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169867B2 (ja) * 1997-11-14 2001-05-28 北海道日本電気ソフトウェア株式会社 電池残量検出方法および装置
US6232744B1 (en) * 1999-02-24 2001-05-15 Denso Corporation Method of controlling battery condition of self-generation electric vehicle
JP2003224901A (ja) * 2001-10-30 2003-08-08 Yamaha Motor Co Ltd 電池容量管理方法及びその装置、並びに車両動力用電池の容量管理装置
JP3689084B2 (ja) * 2002-12-11 2005-08-31 三菱電機株式会社 バッテリ充電状態演算装置およびバッテリ充電状態演算方法
JP4597501B2 (ja) * 2003-10-01 2010-12-15 プライムアースEvエナジー株式会社 二次電池の残存容量推定方法および装置
US7554295B2 (en) * 2004-04-06 2009-06-30 Cobasys, Llc Determination of IR-free voltage in hybrid vehicle applications
KR100669476B1 (ko) * 2005-12-21 2007-01-16 삼성에스디아이 주식회사 배터리의 soc보정 방법 및 이를 이용한 배터리 관리시스템
JP2010019595A (ja) * 2008-07-08 2010-01-28 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
KR20110008101A (ko) * 2008-12-05 2011-01-25 파나소닉 주식회사 전지 팩
JP5287844B2 (ja) 2010-12-27 2013-09-11 株式会社デンソー 二次電池の残存容量演算装置
JP5966376B2 (ja) * 2012-01-20 2016-08-10 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP6111275B2 (ja) * 2013-02-05 2017-04-05 日立オートモティブシステムズ株式会社 電池制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312404A (ja) * 1999-02-24 2000-11-07 Denso Corp 発電型電気自動車の電池制御方法
JP2002238106A (ja) * 2001-02-14 2002-08-23 Denso Corp ハイブリッド車の電池状態制御方法
JP2012247374A (ja) * 2011-05-31 2012-12-13 Primearth Ev Energy Co Ltd 二次電池の制御装置
WO2013069459A1 (ja) * 2011-11-10 2013-05-16 日産自動車株式会社 二次電池の制御装置およびsoc検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201984A (ja) * 2015-04-10 2016-12-01 株式会社豊田自動織機 蓄電装置及び蓄電方法

Also Published As

Publication number Publication date
US20150369871A1 (en) 2015-12-24
US10459037B2 (en) 2019-10-29
CN105008945A (zh) 2015-10-28
JP2014157048A (ja) 2014-08-28
CN105008945B (zh) 2017-08-11
JP5929778B2 (ja) 2016-06-08
DE112014000836T5 (de) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5929778B2 (ja) 充電率推定装置および充電率推定方法
JP6380635B2 (ja) 充電率推定装置および充電率推定方法
JP6844683B2 (ja) 蓄電素子管理装置、socのリセット方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
JP4597501B2 (ja) 二次電池の残存容量推定方法および装置
JP5282789B2 (ja) リチウムイオン二次電池の電池容量検出装置
JP6197479B2 (ja) 蓄電システム及び蓄電装置の満充電容量推定方法
JP6300000B2 (ja) 充電状態推定装置、充電状態推定方法
US20150369869A1 (en) Method and device for estimating remaining capacity of battery
US10705146B2 (en) Battery state-of-charge estimation apparatus
JP2010266221A (ja) 電池状態推定装置
KR102274383B1 (ko) 자동차 차량 배터리의 에너지량 평가
JP2013108919A (ja) Soc推定装置
JP6855835B2 (ja) 電池満充電容量推定装置
JP6866756B2 (ja) 充電率推定装置
JP2015230169A (ja) 電池の状態検出装置
WO2013057784A1 (ja) 電池制御装置、二次電池システム
JP5999409B2 (ja) 状態推定装置及び状態推定方法
TWI472784B (zh) 用於計算電池荷電狀態的系統及方法
JP2019144211A (ja) 推定装置および推定方法
JP2020060489A (ja) 満充電容量推定結果補正装置
JP2018063128A (ja) 充電率推定装置及び充電率推定方法
KR102375843B1 (ko) 배터리 관리 장치 및 방법
JP6862850B2 (ja) 電池パック
Szumanowski Nonlinear Dynamics Traction Battery Modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140008362

Country of ref document: DE

Ref document number: 112014000836

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751691

Country of ref document: EP

Kind code of ref document: A1