WO2018061992A1 - 制御装置 - Google Patents
制御装置 Download PDFInfo
- Publication number
- WO2018061992A1 WO2018061992A1 PCT/JP2017/034169 JP2017034169W WO2018061992A1 WO 2018061992 A1 WO2018061992 A1 WO 2018061992A1 JP 2017034169 W JP2017034169 W JP 2017034169W WO 2018061992 A1 WO2018061992 A1 WO 2018061992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control device
- range
- hydraulic
- state
- shift
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
- F16H63/34—Locking or disabling mechanisms
- F16H63/3416—Parking lock mechanisms or brakes in the transmission
- F16H63/3483—Parking lock mechanisms or brakes in the transmission with hydraulic actuating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/22—Locking of the control input devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/48—Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1204—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures for malfunction caused by simultaneous engagement of different ratios resulting in transmission lock state or tie-up condition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1208—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1224—Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1232—Bringing the control into a predefined state, e.g. giving priority to particular actuators or gear ratios
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/126—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
- F16H2061/1264—Hydraulic parts of the controller, e.g. a sticking valve or clogged channel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/126—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
- F16H2061/1268—Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
- F16H2061/1256—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
- F16H2061/1284—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
Definitions
- the present invention relates to a shift-by-wire control device.
- Patent Document 1 As a shift-by-wire control device, one described in JP 2013-104463 A (Patent Document 1) is known.
- the control device described in Patent Document 1 operates according to a command from a range selection device whose control target is an automatic transmission having a parking lock mechanism, and the selection of the shift range is not specified by the mechanical position of the operated portion. To do.
- the control device is reset due to a momentary interruption of the power supply of the control device and the like, and emergency start (restart) may occur.
- emergency start restart
- the detent plate (62) is a position where the parking lock device (50) is locked and a position where the parking lock device (50) is unlocked. And switch between the two positions.
- the shift range selected before the emergency start can be specified as the parking range or the non-parking range from the state of the parking lock device (50), it is selected.
- the shift range is a non-parking range, it cannot be specified from the state of the parking lock device (50) to any of the forward range, the reverse range, and the neutral range.
- Patent Document 1 describes a technique for appropriately setting the shift range after the control device returns from the reset state. Yes. Specifically, in order to suppress the occurrence of abnormal noise caused by the parking lock device being switched from the unlocked state to the locked state when the vehicle speed is high, the vehicle speed at the time of return from the reset state is greater than a preset threshold value. Is also set to the neutral range. However, in such a configuration, even when the vehicle is traveling in the forward range (traveling at a speed higher than the above threshold) before the controller is emergency started, the automatic transmission is Since it is switched to the neutral state, the driver's drivability may be reduced, for example, the driver may feel that the driving force is lost. Therefore, it is desirable that the state before the reset can be maintained when the control device is reset. However, in the above configuration, when the control device is reset while the vehicle is running, The range status could not be determined.
- the automatic transmission includes a speed change mechanism having a hydraulically driven shift engagement device and a solenoid that operates upon receiving electric power. And a hydraulic control device that controls the hydraulic pressure supplied to the shift engagement device, the hydraulic control device with respect to the hydraulic control device in a state where a power transmission state is realized in a forward range in the transmission mechanism.
- a specific shift speed which is a predetermined forward shift speed, is formed in the speed change mechanism, and is supplied to the control device while the vehicle is traveling.
- the automatic transmission is controlled in the forward range when the specific shift stage is formed in the transmission mechanism.
- the control device when the control device is emergency activated while the vehicle is running, it is determined whether or not the forward range has been selected before the emergency activation based on the presence or absence of the specific gear stage in the transmission mechanism. Can do.
- the automatic transmission can be controlled in the forward range after the emergency start of the control device. Therefore, when the control device is emergency activated during traveling in the forward range of the vehicle, it is possible to continue traveling in the forward range. As a result, the driver's drivability is reduced due to the emergency activation of the control device. It becomes possible to suppress.
- the block diagram which shows the control structure which concerns on embodiment Schematic of the parking lock mechanism according to the embodiment The flowchart which shows the process sequence of the starting control which concerns on embodiment
- driving connection means a state where two rotating elements are connected so as to be able to transmit a driving force.
- This concept includes a state where the two rotating elements are coupled so as to rotate integrally, and a state where the two rotating elements are coupled so as to be able to transmit the driving force via one or more transmission members.
- Such transmission members include various members (shafts, gear mechanisms, belts, chains, etc.) that transmit rotation at the same speed or at different speeds, and an engagement device that selectively transmits rotation and driving force. (Such as a friction engagement device or a meshing engagement device) may be included.
- the control device 30 is a control device that controls the automatic transmission 1 including the parking lock mechanism 10. Then, when a shift range is selected based on the operation of the operated portion 91a, the control device 30 controls the shift-by-wire system that controls the automatic transmission 1 in accordance with the shift range selection command.
- the control device 30 is a shift-by-wire control device that operates according to a command from the range selection device 91 in which the selection of the shift range is not specified by the mechanical position of the operated unit 91a.
- the control device 30 is represented as ECU (Electronic Control Unit)
- the driving force source control device 31 is represented as ENG ECU (Engine Electronic Control Unit)
- the driving force source 20 is represented as ENG (Engine).
- the hydraulic control device 32 is expressed as V / B (Valve Body), the transmission mechanism 50 is expressed as AT (Automatic Transmission), the parking lock mechanism 10 is expressed as PBW (Park By Wire), and the hydraulic pump 40 is set as OP ( Oil Pump) and the power supply 3 is indicated as BAT (Battery).
- the automatic transmission 1 is provided in a power transmission path that connects the driving force source 20 and wheels (not shown).
- the driving force source 20 is a vehicle or wheel driving force source.
- an internal combustion engine is provided as the driving force source 20 and a rotating electrical machine is provided as the driving force source 20, or both the internal combustion engine and the rotating electrical machine are provided as the driving force source 20.
- the internal combustion engine is a prime mover (for example, a gasoline engine, a diesel engine, or the like) that is driven by combustion of fuel inside the engine to extract power.
- the rotating electrical machine is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
- the automatic transmission 1 includes a speed change mechanism 50 that can change the speed ratio stepwise or steplessly.
- the “transmission ratio” is the rotational speed of the input member of the transmission mechanism 50 (the transmission input member 22 such as the transmission input shaft) with respect to the rotational speed of the output member of the transmission mechanism 50 (the transmission output member 23 such as the transmission output shaft). (See FIG. 8). Rotation and torque are input to the shift input member 22 from the driving force source 20 side, and rotation and torque output from the shift output member 23 are output to the wheel side.
- the speed change mechanism 50 is an automatic stepped speed change mechanism configured to be able to switch between a plurality of speed stages having different speed ratios.
- the transmission mechanism 50 engages or releases the gear mechanism (the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 in the example shown in FIG. 8) and the rotating element of the gear mechanism. And a plurality of shifting engagement devices 51.
- the transmission mechanism 50 selectively forms a plurality of shift stages according to the respective engagement states of the plurality of shift engagement devices 51, and rotates the shift input member 22 at a gear ratio corresponding to the shift stage. The speed is changed and transmitted to the speed change output member 23.
- the speed change mechanism 50 is configured to be capable of forming a plurality of speed stages with different speed ratios as forward speed stages. Assuming that the state in which the transmission mechanism 50 does not transmit torque is a “neutral state”, in this embodiment, all the shift engagement devices 51 are released or engaged to form a shift stage. The transmission mechanism 50 is in a neutral state in a state in which some of the plurality of transmission engagement devices 51 are released.
- the plurality of shift engagement devices 51 provided in the transmission mechanism 50 are hydraulic drive engagement devices (for example, friction engagement devices). Therefore, the automatic transmission 1 includes a hydraulic control device 32 that controls the hydraulic pressure supplied to each of the shift engagement devices 51.
- the control device 30 controls the state of engagement of each of the shift engagement devices 51 by controlling the hydraulic pressure supplied to each of the shift engagement devices 51 via the hydraulic pressure control device 32.
- the hydraulic control device 32 operates by receiving power from a power source 3 such as a battery.
- the hydraulic control device 32 includes a solenoid that operates upon receiving power from a power source 3 such as a battery. The solenoid functions as an actuator for controlling the hydraulic pressure supplied to each of the shift engagement devices 51.
- the hydraulic control device 32 includes a solenoid valve whose valve body is driven by a solenoid. Since the supply of electric power to the hydraulic control device 32 is controlled by the control device 30, when a reset (emergency start) occurs in the control device 30, until the control of the hydraulic control device 32 by the control device 30 is resumed, The supply of electric power to the hydraulic control device 32 is cut off.
- the hydraulic control device 32 includes a solenoid valve that controls the hydraulic pressure supplied to the shift engagement device 51, and a valve body provided with an oil passage communicating with the solenoid valve.
- a hydraulic circuit 41 for supplying oil discharged from the hydraulic pump 40 to the transmission mechanism 50 is formed by these solenoid valves and the oil passage.
- the automatic transmission 1 transmission mechanism 50
- the hydraulic circuit 41 is switched by controlling the state of each valve provided in the hydraulic control device 32 by the control device 30.
- the hydraulic control device 32 includes a line pressure adjustment valve 63 (pressure regulator valve) that adjusts the discharge pressure of the hydraulic pump 40 to the line pressure.
- the hydraulic control device 32 includes a switching valve that switches between a state in which the operating hydraulic pressure (line pressure in the present embodiment) is supplied to the hydraulic actuator 14 and a state in which the hydraulic pressure is not supplied. ing.
- the hydraulic actuator 14 is an actuator for switching the lock state of the parking lock mechanism 10.
- the shift-by-wire system is equipped with a manual valve whose operating position can be switched according to the position (rotational position) of the detent lever 15 (see FIG. 2), and the position of the detent lever 15 can be adjusted according to the selected shift range.
- a configuration in which the selected shift range is formed in the automatic transmission 1 and a manual valve whose operation position is switched according to the position of the detent lever 15 are not provided.
- the selected shift range is formed in the automatic transmission 1 by controlling the state of the valve, the switching valve, and the like) by the control (electrical command) of the control device 30. In the present embodiment, the latter configuration is adopted.
- the machine of the parking lock mechanism 10 (detent lever 15) is used.
- the shift range formed in the automatic transmission 1 among the plurality of shift ranges included in the non-parking range is not specified depending on the specific position.
- the range selection device 91 is a device for switching the shift range by an artificial operation. As shown in a simplified manner in FIG. 1, the range selection device 91 includes an operated portion 91 a that is operated by a vehicle driver. That is, the operated portion 91a is a portion operated by the driver in the range selection device 91, such as a lever, a dial, or a touch panel.
- the range selection device 91 is configured such that the selection of the shift range is not specified by the mechanical position of the operated unit 91a.
- the lever is a momentary lever (a lever that automatically returns to its original position (home position) when the driver's operating force is released). ).
- the range selection device 91 may include a plurality of operated parts 91a.
- the range selection device 91 can be configured to include two operated units 91a, that is, an operated unit 91a for selecting a parking range and an operated unit 91a for selecting a non-parking range.
- the parking lock mechanism 10 is a mechanism that regulates the rotation of the locked member by engaging an engaging member with a locked member that is a rotating member that is drivingly connected to the wheel.
- the parking lock mechanism 10 includes a parking gear 2 as the above-mentioned locked member, and a parking pole 11 as the above-mentioned engaging member.
- the parking gear 2 is provided at the same position as the shift output member 23 or on the wheel side of the shift output member 23 in the power transmission path connecting the driving force source 20 and the wheels.
- the parking gear 2 is provided so as to always rotate in conjunction with the wheels. Therefore, the wheel is locked by restricting the rotation of the parking gear 2 by the parking pole 11.
- a state in which the engagement member (parking pole 11) is engaged with the member to be locked (parking gear 2) (that is, a state in which the wheel is locked) is referred to as a “lock effective state”.
- a state where the engagement with the wheel is released (that is, a state where the wheel is not locked) is referred to as a “lock invalid state”.
- the parking lock mechanism 10 displaces the parking pole 11 between an engagement position where the parking pawl 11 is engaged with the parking gear 2 and a non-engagement position where the engagement with the parking gear 2 is released (in this embodiment, the swinging mechanism swings). ) Is provided.
- a cam member that is slidably supported with respect to the parking rod 12 and biased toward the distal end is provided at the distal end of the parking rod 12 (the end on the parking pole 11 side).
- a base end portion of the parking rod 12 is rotatably connected to a detent lever 15 (detent plate). Then, as the detent lever 15 rotates around the swinging axis A (counterclockwise movement in FIG. 2), the parking rod 12 moves toward the parking pole 11 so that the parking gear 2 is engaged.
- the parking pole 11 is pressed by the cam member, and the parking pole 11 is maintained in the engaged position. Further, the parking rod 12 moves to the side away from the parking pole 11 side with the rotational movement of the detent lever 15 around the swinging axis A (movement in the clockwise direction in FIG. 2), thereby moving to the parking pole 11 by the cam member. The parking pole 11 is moved by the biasing force of a biasing member (not shown) and the parking pole 11 is maintained in the non-engagement position.
- the detent lever 15 is formed with a pair of recesses with which the engagement member 16 is engaged.
- the engagement member 16 is When one of the pair of recesses is engaged and the lock state of the parking lock mechanism 10 is the lock invalid state, the engagement member 16 engages the other of the pair of recesses.
- the position of the detent lever 15 is the first position for setting the parking lock mechanism 10 to the lock effective state and the second position for setting the parking lock mechanism 10 to the lock invalid state. It is switched by the control device 30 between the two positions. That is, the first position is the position of the detent lever 15 when the automatic transmission 1 has a parking range, and the second position is the detent when the automatic transmission 1 has a non-parking range. This is the position of the lever 15.
- the parking lock mechanism 10 moves the parking rod 12 forward and backward with respect to the parking pole 11 by the hydraulic actuator 14, thereby changing the lock state of the parking lock mechanism 10 to lock effective. It is configured to switch between a state and a lock disabled state.
- the hydraulic actuator 14 is configured to move the parking rod 12 forward and backward by swinging the detent lever 15 about the swing axis A in accordance with the hydraulic pressure supplied from the hydraulic control device 32. Yes.
- hydraulic pressure for example, line pressure
- the parking lock mechanism 10 is switched to the lock invalid state, and the hydraulic control device 32 for the hydraulic actuator 14
- the parking lock mechanism 10 is switched to the lock effective state.
- the parking lock mechanism 10 is a lock device 19 for maintaining the parking lock mechanism 10 in the unlocked state even when the hydraulic pressure supplied from the hydraulic control device 32 to the hydraulic actuator 14 is reduced. It has.
- the idling stop control for stopping the fuel supply to the internal combustion engine as the driving force source 20 with the main power supply of the vehicle turned on can be performed on the hydraulic actuator 14.
- the parking lock mechanism 10 can be maintained in the unlocked state even when the hydraulic pressure supplied in this way decreases.
- the control device 30 includes an arithmetic processing device such as a CPU as a core member, and includes a storage device such as a RAM and a ROM. Each function executed by the control device 30 is realized by software (program) stored in the ROM or the like, hardware such as a separately provided arithmetic circuit, or both.
- the arithmetic processing unit included in the control device 30 operates as a computer that executes each program.
- the control device 30 may be configured by a set of a plurality of hardware (a plurality of separated hardware) that can communicate with each other.
- the control device 30 is configured to be able to acquire information on detection results of various sensors provided in each part of the vehicle.
- the control device 30 displays information on detection results of the first rotation sensor Se1, the second rotation sensor Se2, the range sensor Se3, the parking lock sensor Se4, and the hydraulic pressure sensor Se5. It is configured to be obtainable.
- the control device 30 may be configured to acquire detection information of at least one sensor from another control device (for example, a driving force source control device 31 described later).
- the first rotation sensor Se1 detects the rotation speed of the rotation member provided in the transmission mechanism 50 or the rotation member that is drivingly connected to the transmission mechanism 50.
- the vehicle includes one or more first rotation sensors Se1.
- the first rotation sensor Se1 provided in the vehicle includes a vehicle speed sensor for detecting the vehicle speed, and the control device 30 acquires vehicle speed information based on the detection information of the first rotation sensor Se1.
- the vehicle speed sensor is, for example, a sensor that detects the rotational speed of the transmission output member 23.
- the second rotation sensor Se2 detects the rotation speed (output rotation speed) of the output member of the driving force source 20.
- the second rotation sensor Se2 determines the rotation speed of the output shaft (crankshaft) of the internal combustion engine or a member that always rotates (for example, rotates integrally) with the output shaft. It is provided to detect.
- the second rotation sensor Se2 detects the rotational speed of the rotor of the rotating electrical machine or a member that always rotates (for example, rotates integrally) with the rotor.
- the control device 30 acquires information on the output rotation speed of the driving force source 20 based on the detection information of the second rotation sensor Se2.
- control device 30 is based on the detection information of the first rotation sensor Se1 and the second rotation sensor Se2, or based on the detection information of the plurality of first rotation sensors Se1, and the input rotation speed of the automatic transmission 1. And information on the rotation speed ratio between the output rotation speed and the output rotation speed.
- the input rotational speed of the automatic transmission 1 is the rotational speed of the transmission input member 22, and the output rotational speed of the automatic transmission 1 is the rotational speed of the transmission output member 23.
- the range sensor Se3 detects the shift range selected by the driver using the range selection device 91.
- the range sensor Se3 electrically detects a driver's shift operation using the operated portion 91a of the range selection device 91.
- the control device 30 acquires information on the shift range selected by the driver based on the detection information of the range sensor Se3.
- the range that can be selected by the range selection device 91 includes a forward range (D range) that is a travel range for moving the vehicle forward, a reverse range (R range) that is a travel range for moving the vehicle backward, and the automatic transmission 1 (transmission mechanism 50). ) Is set to the neutral state (N range), and the automatic transmission 1 (transmission mechanism 50) is set to the neutral state and the parking range (P range) for locking the wheels is included.
- the parking lock sensor Se4 detects a physical quantity related to the state of the parking lock mechanism 10. That is, the parking lock sensor Se4 is a sensor that detects the locked state of the parking lock mechanism 10. The control device 30 determines whether the parking lock mechanism 10 is in the lock valid state or the lock invalid state based on the detection information of the parking lock sensor Se4. For example, one or both of a sensor that detects the rotational position of the detent lever 15 and a sensor that detects the position of a member that moves in conjunction with the detent lever 15 in the hydraulic actuator 14 are provided as a parking lock sensor Se4 in the vehicle. . In the present embodiment, the parking lock sensor Se4 corresponds to a “sensor”.
- the hydraulic sensor Se5 detects the hydraulic pressure in the hydraulic circuit 41 of the hydraulic control device 32.
- the hydraulic sensor Se5 is, for example, a hydraulic switch that is turned on when the hydraulic pressure at the detection target location is equal to or greater than a predetermined value, and that is turned off when the hydraulic pressure at the detection target location is less than the predetermined value.
- the hydraulic switch is turned off when the hydraulic pressure is greater than or equal to a predetermined value and turned on when the hydraulic pressure at the detection target location is less than the predetermined value.
- a sensor that outputs the value of the hydraulic pressure at the detection target location can also be used. The installation location of the hydraulic sensor Se5 will be described later.
- the control device 30 selects a shift range based on the operation of the operated portion 91a (specifically, selection of any one of the forward range, the reverse range, the neutral range, and the parking range). Is performed, a normal control for controlling the automatic transmission 1 is performed in accordance with the shift range selection command. Specifically, when the parking range is selected by the range selection device 91, the control device 30 controls the parking lock mechanism 10 to be in the lock effective state, and the range selection device 91 selects the non-parking range. If it is, the parking lock mechanism 10 is controlled to be in a lock invalid state.
- the parking lock mechanism 10 is not mechanically connected to the range selection device 91, and the state of the parking lock mechanism 10 is controlled by the control device 30 based on the detection information by the range sensor Se3. That is, the parking lock mechanism 10 according to the present embodiment is a park-by-wire (PBW) type parking lock mechanism.
- PBW park-by-wire
- the control device 30 is a hydraulic control device so that a forward range (forward shift speed) is formed in the automatic transmission 1 (transmission mechanism 50).
- a forward range forward shift speed
- the hydraulic control device 32 is set so that the reverse range (reverse gear stage) is formed in the automatic transmission 1 (transmission mechanism 50).
- the neutral range or the parking range is selected by the range selection device 91, the hydraulic control device 32 is controlled so that the automatic transmission 1 (transmission mechanism 50) is in the neutral state.
- the control device 30 controls the speed change mechanism 50 and the parking lock mechanism 10.
- the control device 30 also controls the driving force source 20. Based on sensor detection information (accelerator opening, vehicle speed, shift range, and other information), the control device 30 forms the wheel required torque required for driving the wheel and the automatic transmission 1 (transmission mechanism 50). Determine the target gear position. And the control apparatus 30 determines the target torque of the driving force source 20 based on the determined wheel request
- the control device 30 controls the transmission mechanism 50 so as to form the determined target shift speed. Specifically, the control device 30 controls the engagement states of the plurality of shift engagement devices 51 so as to form the determined target shift speed. Each engagement state of the shift engagement device 51 is controlled to one of a direct engagement state, a slip engagement state, and a release state according to the supplied hydraulic pressure.
- control device 30 is configured to control the driving force source 20 via the driving force source control device 31, and the driving force source control device 31 is a target commanded from the control device 30.
- the driving force source 20 is controlled so as to output torque.
- the drive power source control device 31 starts fuel supply or ignition to the internal combustion engine when the control device 30 requests to start the internal combustion engine.
- the internal combustion engine is stopped by stopping fuel supply or ignition to the internal combustion engine.
- the control device is caused by an abnormality such as an activation associated with the vehicle power being switched from OFF to ON (that is, the vehicle activation), a power supply voltage drop or a power interruption. And activation after 30 is reset.
- the former activation is normal activation after vehicle activation, and is hereinafter referred to as “normal activation”.
- the latter activation is an activation associated with an abnormality, and is hereinafter referred to as “emergency activation”.
- startup when it is not necessary to distinguish between normal startup and emergency startup, that is, when the matters common to both normal startup and emergency startup are described, normal startup and emergency startup are not distinguished. This is called “startup”.
- the hydraulic control device 32 in the automatic transmission 1 (transmission mechanism 50), when the control device 30 is urgently activated in a state where the forward range is selected, a predetermined forward shift speed is formed. It is configured as follows. That is, the hydraulic control device 32 according to the present embodiment is provided with a limp home function for all-off failure in which all solenoid valves provided in the hydraulic control device 32 are off-failed (become non-energized). The gear stage formed by the limp home function when the all-off failure occurs in the state where the range is formed in the automatic transmission 1 is the specific gear stage. In this way, the hydraulic control device 32 is used for a predetermined forward movement when the power transmission state is interrupted in the transmission mechanism 50 in the state where the power transmission state is realized in the forward range. A specific shift speed, which is a shift speed, is formed in the speed change mechanism 50.
- the automatic transmission 1 (transmission mechanism 50) is in a neutral state when the control device 30 is emergency activated with the reverse range being selected. That is, when the control device 30 is emergency activated with the reverse range being selected, when the control device 30 is emergency activated with the neutral range selected, and with the parking range being selected.
- the automatic transmission 1 (transmission mechanism 50) is in a neutral state.
- the hydraulic control device 32 is disconnected from the supply of electric power to the hydraulic control device 32 in a state where the power transmission state is interrupted in the neutral range in the speed change mechanism 50 (a state where power transmission is interrupted).
- the transmission mechanism 50 is configured to be in a neutral state.
- the hydraulic control device 32 causes the transmission mechanism 50 to be in the neutral state when power supply to the hydraulic control device 32 is interrupted while the transmission mechanism is in the reverse range in the transmission mechanism 50. It is configured.
- the control device 30 performs normal start control when the start is a normal start after the start of the vehicle until the shift range is selected based on the operation of the operated portion 91a after the start, and the start is an emergency start.
- emergency start control is performed.
- the normal activation control is control for selecting any shift range from the neutral range and the parking range, and controlling the automatic transmission 1 according to the selected shift range.
- the emergency start control is a control for selecting any one of the neutral range, the parking range, and the forward range and controlling the automatic transmission 1 in accordance with the selected shift range.
- the forward range is selected on the condition that at least the vehicle speed is equal to or higher than a predetermined threshold (in the example shown in FIG. 6, the second threshold in step # 36).
- a predetermined threshold in the example shown in FIG. 6, the second threshold in step # 36.
- the vehicle speed in the forward direction is positive and the vehicle speed in the reverse direction is negative, and the above threshold is set to a value of 0 or more.
- the parking range is selected when the lock state of the parking lock mechanism 10 is the lock effective state.
- the forward range is selected on the condition that the vehicle speed is equal to or higher than a predetermined threshold (second threshold) and that a specific shift speed is formed (steps # 34 to # in FIG. 6). # 37). That is, the control device 30 cuts off the supply of power to the control device 30 (here, the supply of power from the power source 3) while the vehicle is running (here, the vehicle speed is equal to or higher than the second threshold).
- the automatic transmission 1 is controlled in the forward range.
- the control of the automatic transmission 1 in the forward range is executed until the shift range is selected based on the operation of the operated portion 91a.
- the value of the second threshold value is set to a lower limit speed (for example, 7 km / h) in which the reverse range is not formed even when the reverse range is mistakenly selected during forward traveling, for example. can do.
- the forward range may not be selected.
- the forward range may not be selected.
- the vehicle is traveling at a relatively high speed in the forward range before the emergency start of the control device 30 by making a determination based not only on whether or not the specific shift speed is formed but also on the vehicle speed.
- the driving force in the direction opposite to the driver's intention or intention is maintained while maintaining the driver's drivability by continuously forming the forward range in the automatic transmission 1 (transmission mechanism 50). Can be avoided.
- the control device 30 forms the specific shift stage based on the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1 (transmission mechanism 50) and the state of the hydraulic circuit 41. It is determined whether or not. Specifically, the control device 30 determines that the rotational speed ratio between the input rotational speed of the automatic transmission 1 (the rotational speed of the transmission input member 22) and the output rotational speed (the rotational speed of the transmission output member 23) is a specific gear stage. On the condition that the value of the hydraulic circuit 41 coincides with the value when the specific gear is formed, and the state of the hydraulic circuit 41 matches the state when the specific gear is formed. It is determined that a specific gear stage is formed (steps # 34 and # 35).
- the hydraulic pressure sensor Se ⁇ b> 5 is provided in the hydraulic pressure control device 32, and detects a hydraulic pressure supply state to at least some of the plurality of shift engagement devices 51.
- the shift engagement device 51 that is engaged to form a specific shift stage is referred to as a “specific engagement device”, and the hydraulic sensor Se5 includes a plurality of shift engagement devices 51. It is provided so that the supply state of the hydraulic pressure to at least each of the specific engagement devices among the shift engagement devices 51 can be acquired.
- the control apparatus 30 determines whether the state of the hydraulic circuit 41 corresponds with the state in case the specific gear stage is formed based on the detection information of the hydraulic sensor Se5. That is, the control device 30 compares the detection information of the hydraulic sensor Se5 with the respective engagement states of the shift engagement device 51 when the specific shift speed is formed, and engages based on the detection result of the hydraulic sensor Se5.
- the shift engaging device 51 determined to be engaged when the shift engaging device 51 determined to be engaged matches the specific engaging device (if there are a plurality of specific engaging devices) When the combination of 51 matches the combination of the specific engagement devices, the same applies hereinafter.), It is determined that the state of the hydraulic circuit 41 matches the state when the specific shift speed is formed.
- the specific engagement device is a normally open type engagement device that is in a released state when no hydraulic pressure is supplied to the hydraulic servo mechanism. Therefore, the control device 30 determines the hydraulic pressure when the shift engagement device 51 determined that the hydraulic pressure is supplied to the hydraulic servo mechanism 42 based on the detection information of the hydraulic sensor Se5 matches the specific engagement device. It is determined that the state of the circuit 41 matches the state when the specific shift speed is formed.
- the control device 30 forms the specific shift stage based on the state of the hydraulic circuit 41 in addition to the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1. It is determined whether or not. Specifically, the control device 30 is based on the comparison between the detection information of the rotation speed ratio between the input rotation speed and the output rotation speed of the transmission mechanism 50 and the transmission ratio of the specific shift speed, and the detection of the hydraulic sensor Se5. Based on the comparison between the information and the respective engagement states of the shift engagement device 51 at the time of formation of the specific shift stage, it is determined whether or not the specific shift stage is formed in the transmission mechanism 50.
- the control device 30 is engaged based on the detection value of the rotation speed ratio between the input rotation speed and the output rotation speed of the transmission mechanism 50 that matches the transmission ratio of the specific shift speed and the detection result of the hydraulic sensor Se5.
- the shift engagement device 51 determined to be in agreement with the specific engagement device, it is determined that the specific gear stage is formed in the transmission mechanism 50.
- the rotational speed ratio between the input rotational speed and the output rotational speed of the automatic transmission 1 even though the specific gear stage is not formed. It is possible to suppress erroneous determination that the specific shift speed is formed in a situation that coincides with the value when the specific shift speed is formed.
- the transition time is the time from when the control device 30 is emergency started until the specific gear stage is formed in the automatic transmission 1, and in emergency startup control, the transition time has elapsed since the occurrence of emergency startup. It is configured to determine whether or not a specific shift speed is formed after the time point. Accordingly, it is possible to avoid the determination whether or not the specific shift speed is formed during the shift to the specific shift speed, and whether or not the forward range has been selected before the control device 30 is activated. It is possible to determine with high accuracy.
- the acquisition of the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1 and the hydraulic circuit during a predetermined period after the transition time has elapsed since the occurrence of the emergency start of the control device 30 It is also possible to continue the acquisition of the state of 41 and determine whether or not a specific shift speed is formed based on information (for example, an average value) acquired during the period. .
- information for example, an average value
- the vehicle speed it may be determined whether or not the vehicle speed is equal to or higher than a predetermined threshold value using information (for example, an average value) acquired within a predetermined period.
- the control device 30 executes a start type determination process for determining whether the start is due to an emergency start or a normal start after the vehicle is started, and is a normal start by the start type determination process.
- the normal activation control is performed when it is determined, and the emergency activation control is performed when it is determined that the emergency activation is performed by the activation type determination process.
- the normal activation control is performed when it is determined that the normal activation is performed by the activation type determination process, and when the normal activation is not determined by the activation type determination process (which is determined not to be the normal activation) Emergency start control).
- the control device 30 is activated by switching the vehicle power source from off to on, the activation is not determined to be normal activation due to a failure of the parking lock sensor Se4 or the like.
- Emergency start control is performed. That is, even if the vehicle power is switched from OFF to ON (start after the vehicle is started), if there is an abnormality such as a failure of the parking lock sensor Se4, the start is an emergency start. .
- the control device 30 controls the automatic transmission 1 in either the neutral range or the parking range when it is determined that the activation is a normal activation.
- the control of the automatic transmission 1 in either the neutral range or the parking range is executed until the shift range is selected based on the operation of the operated portion 91a.
- the parking range is selected when the lock state of the parking lock mechanism 10 is the lock effective state
- the neutral range is selected when the lock state of the parking lock mechanism 10 is the lock invalid state.
- the time from when the control device 30 is activated until the shift range (neutral range or parking range) is selected is shortened. It is possible.
- the internal combustion engine is provided as the driving force source 20, it is generally one of the starting conditions for the internal combustion engine that the shift range is the neutral range or the parking range, but the control device 30 is activated as described above. Since the time from when the neutral range or the parking range is selected can be shortened, the response when starting the internal combustion engine after the control device 30 is normally started can be improved.
- the activation type determination process it is determined that the vehicle is normally activated on the condition that at least the vehicle speed is zero and the output rotation speed of the driving force source 20 of the vehicle is zero. Furthermore, in the present embodiment, in the activation type determination process, there is no discharge of hydraulic pressure from the hydraulic pump 40 that supplies hydraulic pressure to the automatic transmission 1, and the parking lock sensor Se4 that detects the lock state of the parking lock mechanism fails. As a further condition that at least one of the following is satisfied, it is determined as normal activation. Specifically, in this embodiment, the vehicle speed is zero, the output rotational speed of the driving force source 20 of the vehicle is zero, no hydraulic pressure is discharged from the hydraulic pump 40, and the parking lock sensor Se4 fails.
- the hydraulic sensor Se5 provided in the hydraulic circuit 41 of the hydraulic control device 32 includes a discharge presence / absence determination sensor for determining whether or not hydraulic pressure is discharged from the hydraulic pump 40.
- This discharge presence / absence determination sensor for example, does not supply hydraulic pressure from the hydraulic pump 40 in a situation where the control device 30 is normally started, and detects a hydraulic pressure at a location where hydraulic pressure is supplied from the hydraulic pump 40 in a situation where the control device 30 is emergency started. To detect.
- the control device 30 determines the presence / absence of discharge of hydraulic pressure from the hydraulic pump 40 based on the detection information of the discharge presence / absence determination sensor.
- the following effects can be obtained by including the fact that there is no hydraulic discharge from the hydraulic pump 40 in the condition for determining the normal activation.
- an electric oil pump as the hydraulic pump 40 and an electric oil pump are provided for a vehicle that executes idling stop control for stopping the internal combustion engine while the main power source of the vehicle is turned on.
- an accumulator operating accumulating pressure or discharging in some cases.
- the control device 30 is emergency started while the vehicle is stopped and the idling stop control is being executed, the electric oil pump does not discharge hydraulic pressure at the emergency start of the control device 30.
- the hydraulic pressure corresponding to the operating pressure of the accumulator is discharged.
- the control device 30 executes an activation type determination process after activation (step # 01). If it is determined that the activation is due to normal activation after vehicle activation (step # 02: Yes), normal activation control is executed (step # 03), and activation is due to emergency activation. If determined, in other words, if it is not determined that the start is due to normal start (step # 02: No), emergency start control is executed (step # 04), and the process ends. .
- step # 10 the control device 30 does not discharge hydraulic pressure from the hydraulic pump 40 (step # 10: Yes), the vehicle speed is zero (step # 11: Yes), and the parking lock sensor Se4 fails. If the output rotation speed of the driving force source 20 is zero (step # 13: Yes), it is determined that the control device 30 is normally started (step # 12: Yes). # 14). In other words, unless a positive determination is made in all of steps # 10 to # 13, in other words, if a negative determination is made in one of steps # 10 to # 13, the activation of the control device 30 is an emergency start. (Determined that it is not normal activation) (step # 15). Note that the determination order of steps # 10 to # 13 can be changed as appropriate, and at least one of the determinations can be performed simultaneously.
- step # 03 The processing procedure for normal activation control in step # 03 in FIG. 3 will be described with reference to FIG.
- the control device 30 selects the parking range (step # 21), and the parking lock mechanism If the 10 lock state is the lock invalid state (step # 20: No), the neutral range is selected (step # 22). And the control apparatus 30 controls the automatic transmission 1 so that the selected shift range may be formed (step # 23).
- the control device 30 determines whether or not the parking lock sensor Se4 has failed (step # 30). If the parking lock sensor Se4 has not failed (step # 30: No), the parking lock mechanism 10 is determined. On the condition that the lock state is the lock effective state (step # 31: Yes), the parking range is selected (step # 32), and the automatic transmission 1 is controlled to form the parking range (step # 39). ). Even if the parking lock sensor Se4 is out of order (step # 30: Yes), if the vehicle speed is equal to or lower than a predetermined first threshold (step # 33: Yes), the parking range is set. The automatic transmission 1 is controlled so as to form a parking range (step # 39).
- the parking lock sensor Se4 is broken and the vehicle speed is equal to or less than a predetermined threshold (here, the first threshold), the speed change mechanism Regardless of whether or not a specific gear stage is formed at 50, the automatic transmission 1 is controlled in the parking range.
- the control of the automatic transmission 1 in the parking range is executed until the shift range is selected based on the operation of the operated portion 91a.
- the first threshold value is set to a value of 0 or more.
- the first threshold value can be set to a value smaller than the second threshold value, for example, 5 km / h.
- the control device 30 determines that the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1 matches the value when the specific shift speed is formed (step # 34: Yes), and the hydraulic circuit 41 When the state matches the state when the specific shift speed is formed (step # 35: Yes) and the vehicle speed is equal to or higher than the second threshold (step # 36: Yes), the forward range is selected. (Step # 37). In other words, unless a positive determination is made in all of steps # 34 to # 36, in other words, if a negative determination is made in any of steps # 34 to # 36, the neutral range is selected (step # 38). ). And the control apparatus 30 controls the automatic transmission 1 so that the selected shift range may be formed (step # 39).
- the control device 30 is in a state in which the specific gear stage is formed in the transmission mechanism 50 when the control device 30 is emergency activated while the vehicle is running (here, the vehicle speed is equal to or higher than the first threshold). If the state is other than the above, the automatic transmission 1 is controlled in the neutral range. The control of the automatic transmission 1 in the neutral range is executed until the shift range is selected based on the operation of the operated portion 91a. Therefore, for example, when the control device 30 is activated in an emergency after the driver intentionally switches from the forward range to the neutral range while the vehicle is traveling, a specific gear stage is not formed in the transmission mechanism 50. The transmission mechanism 50 is maintained in the neutral state.
- the determination order of steps # 34 to # 36 can be changed as appropriate, and at least one of the determinations can be performed simultaneously.
- steps # 31 to # 33 determination processing for determining whether or not to select a parking range is performed. If the decision to select the parking range is not made, next, a determination process for determining whether or not to select the forward range is performed (steps # 34 to # 36). If no decision has been made to select the forward range, the neutral range is selected.
- FIG. 7 shows changes in the hydraulic pressure command value Pi and the actual output hydraulic pressure Pr with respect to time t for each of the solenoid valves (first linear solenoid valve SL1, second linear solenoid valve SL2, and fourth linear solenoid valve SL4). ing.
- the fifth speed stage 5th is supplied with hydraulic pressure from the first linear solenoid valve SL1.
- the first clutch C1 that is received and the second clutch C2 that is supplied with hydraulic pressure from the second linear solenoid valve SL2 are engaged with each other, and the sixth speed stage 6th includes the second clutch C2 and the fourth linear solenoid. It is formed in a state where the fourth clutch C4 receiving the hydraulic pressure from the valve SL4 is engaged.
- the case where the control which forms the target gear stage (here 5th speed stage 5th) to be performed is performed is illustrated. That is, as the control device 30 resumes control of the hydraulic control device 32, at time T2, the hydraulic command for the second linear solenoid valve SL2 for engaging the second clutch C2 and the fourth clutch C4 are engaged. The hydraulic pressure command for the fourth linear solenoid valve SL4 is generated, and the sixth speed stage 6th is formed by the control of the hydraulic control device 32 by the control device 30. Then, as the target shift speed is set to the fifth speed 5th, at time T3, the hydraulic command to the first linear solenoid valve SL1 for engaging the first clutch C1 and the fourth clutch C4 are released. And a hydraulic pressure command for the fourth linear solenoid valve SL4 is generated, and the fifth speed stage 5th is formed by the control of the hydraulic control device 32 by the control device 30.
- the speed change mechanism 50 changes the rotation of the speed change input member 22 that is drivingly connected to the driving force source 20 via the torque converter TC at a speed ratio corresponding to the speed stage, and the speed change output member. It is comprised so that it may transmit to 23.
- the transmission output member 23 is drivingly connected to the two left and right wheels via an output differential gear device.
- the torque converter TC is provided with a lock-up clutch CL that directly connects the output member (drive output member 21) of the drive force source 20 and the transmission input member 22.
- the speed change mechanism 50 is configured by combining two planetary gear mechanisms, a first planetary gear mechanism PG1 and a second planetary gear mechanism PG2.
- the first planetary gear mechanism PG1 is a double pinion type planetary gear mechanism having three rotating elements (first sun gear SG1, first carrier CA1, and first ring gear RG1).
- the second planetary gear mechanism PG2 is a Ravigneaux type planetary gear mechanism having four rotating elements (second sun gear SG2, third sun gear SG3, second carrier CA2, and second ring gear RG2).
- the second carrier CA2 supports a plurality of long pinion gears that mesh with the second sun gear SG2 and mesh with the second ring gear RG2, and a plurality of short pinion gears that mesh with the long pinion gear and mesh with the third sun gear SG3.
- the speed change mechanism 50 includes a plurality of speed change engagement devices 51. Specifically, the speed change mechanism 50 includes a first clutch C1, a second clutch C2, a third clutch C3, a fourth clutch C4, a first brake B1, and a second brake B2. Further, the speed change mechanism 50 includes a one-way clutch F in addition to the plurality of speed change engagement devices 51.
- the transmission mechanism 50 selectively forms any one of a plurality of shift stages according to the engagement state of the transmission engagement device 51 and the one-way clutch F. Specifically, according to the operation table shown in FIG. 9, two shift engagement devices 51 (or one shift engagement device 51 and the one-way clutch F) are engaged, so that the forward gears having different gear ratios are engaged.
- FIG. 10 shows an example of a hydraulic control device 32 (hydraulic circuit 41) that can be used to control the speed change mechanism 50 shown in FIG.
- the hydraulic control device 32 includes a plurality of solenoid valves (solenoid valves).
- the hydraulic control device 32 includes a first solenoid valve S1, a second solenoid valve S2, a third solenoid valve S3, and a fourth solenoid valve S4 as on / off solenoid valves, and a linear solenoid valve as a first solenoid valve.
- the control device 30 controls the power supply state (energization state) to each of these solenoid valves, thereby changing the state of the speed change mechanism 50 to a state corresponding to the forward range (any of the forward shift stages is formed).
- a state corresponding to a reverse range (a state where a reverse gear is formed), a state corresponding to a neutral range or a parking range (a neutral state where no gear is formed).
- the hydraulic control device 32 includes a line pressure adjusting valve 63, a modulator valve 64, and a lock-up relay valve 65.
- the line pressure adjustment valve 63 is a valve that adjusts the oil pressure of the oil discharged from the hydraulic pump 40 to the line pressure PL.
- the control device 30 controls the line pressure control valve SLT so that the hydraulic pressure (signal pressure) corresponding to the target line pressure is output to the line pressure adjusting valve 63, and the line pressure PL is adjusted to the target line pressure by the line pressure adjusting valve 63. It is adjusted together.
- the modulator valve 64 is a valve that reduces the line pressure PL to generate a modulator pressure Pmod.
- the lock-up relay valve 65 is a valve for switching a hydraulic pressure supply state to the lock-up clutch CL.
- the lock-up relay valve 65 is in a state where the lock-up clutch CL is engaged and a state where the lock-up clutch CL is released according to the hydraulic pressure input from the third solenoid valve S3 to the lock-up relay valve 65. Can be switched.
- the lockup relay valve 65 is in a state where the lockup clutch CL is engaged, the hydraulic pressure output from the lockup control valve SLU is supplied to the lockup clutch CL via the lockup relay valve 65.
- the lock-up relay valve 65 is a port that outputs oil to the torque converter TC (specifically, a power transmission chamber or a circulating oil chamber, the same applies hereinafter), and a port that receives oil discharged from the torque converter TC. And a port for outputting oil to the oil cooler 43, and the lockup relay valve 65 supplies oil to the torque converter TC and oil discharged from the torque converter TC to the oil cooler 43. It can be switched to a supplied state.
- the hydraulic control device 32 includes a range switching unit 70 that generates the forward range pressure PD or the reverse range pressure PR based on the line pressure PL.
- the forward range pressure PD output from the range switching unit 70 is applied to the first linear solenoid valve SL1, the second linear solenoid valve SL2, the third linear solenoid valve SL3, the fourth linear solenoid valve SL4, and the fifth linear solenoid valve SL5. Supplied.
- the reverse range pressure PR output from the range switching unit 70 is supplied to the third linear solenoid valve SL3.
- the range switching unit 70 includes a first switching valve 61 whose state is switched according to the hydraulic pressure input from the first solenoid valve S1, and a second switching valve 62 whose state is switched according to the hydraulic pressure input from the second solenoid valve S2. And.
- the control device 30 sets the energization state of the first solenoid valve S1 and the second solenoid valve S2 so that the forward range pressure PD is output from the range switching unit 70.
- the energization state of the first solenoid valve S1 and the second solenoid valve S2 is controlled so that the reverse range pressure PR is output from the range switching unit 70.
- the first solenoid valve is configured so that neither the forward range pressure PD nor the reverse range pressure PR is output from the range switching unit 70.
- the energization state of S1 and the second solenoid valve S2 is controlled.
- the first switching valve 61 switches to a state in which the line pressure PL is output to the second switching valve 62 as the forward range hydraulic pressure when the first solenoid valve S1 is not energized, and when the first solenoid valve S1 is energized, the line pressure PL It is configured to switch to a state in which PL is output to the second switching valve 62 as the hydraulic pressure for the reverse range.
- the second switching valve 62 outputs the forward range hydraulic pressure supplied from the first switching valve 61 as the forward range pressure PD and is supplied from the first switching valve 61 when the second solenoid valve S2 is not energized.
- the reverse range hydraulic pressure supplied from the first switching valve 61 is output as the reverse range pressure PR and the first switching is performed. It is configured to switch to a state in which the hydraulic pressure for the forward range supplied from the valve 61 is shut off. Thereby, when all-off failure occurs, the forward range pressure PD is output from the range switching unit 70.
- Each of the linear solenoid valves communicates with an input port to which the forward range pressure PD, the reverse range pressure PR, or the line pressure PL is input, and the hydraulic servo mechanism 42 of the shift engagement device 51 to be controlled.
- Output port and a drain port For example, the first linear solenoid valve SL1 includes an input port to which the forward range pressure PD is input, an output port that communicates with the hydraulic servo mechanism 42 of the first clutch C1, and a drain port.
- Each of the linear solenoid valves (SL1 to SL6) adjusts the hydraulic pressure input to the input port according to the applied current, and supplies the hydraulic pressure to the hydraulic servo mechanism 42 of the shift engagement device 51 to be controlled. .
- each of the linear solenoid valves (SL1 to SL6) is a normally closed solenoid valve that closes when not energized. Therefore, when an all-off failure occurs, the drain port and the output port communicate with each other for all of the linear solenoid valves (SL1 to SL6), and the hydraulic pressure supplied to the input port is shut off. In such a configuration, when an all-off failure occurs in the state where the power transmission state is realized in the forward range in the transmission mechanism 50 (when the supply of power to the hydraulic control device 32 is interrupted), the transmission mechanism 50.
- the hydraulic control device 32 is provided with a specific engagement device (for shifting to be engaged to form a specific shift speed) when an all-off failure occurs.
- the specific engagement device is configured to be engaged by reversely inputting hydraulic pressure to a drain port of a linear solenoid valve (hereinafter referred to as “specific solenoid valve”) corresponding to the engagement device 51). .
- the hydraulic control device includes a fail-safe valve 60 whose state is switched according to the hydraulic pressure input from the fourth solenoid valve S4, and a hydraulic pressure supplied from the fail-safe valve 60 (first hydraulic pressure P1 described below). Is input to the drain port of the specific solenoid valve.
- the specific solenoid valve is the second linear solenoid valve.
- SL2 and fourth linear solenoid valve SL4 and the reverse input unit 71 is provided in each of these two specific solenoid valves.
- the failsafe valve 60 includes an input port to which the forward range pressure PD output from the range switching unit 70 is input, and an output port that communicates with the reverse input unit 71.
- the fail safe valve 60 switches to a state in which the input forward range pressure PD is cut off.
- the fail safe valve 60 converts the input forward range pressure PD to the first hydraulic pressure. It is configured to switch to a state of outputting as P1.
- the fourth solenoid valve S ⁇ b> 4 is basically in an energized state in which power is supplied, so that the first hydraulic pressure P ⁇ b> 1 is not output from the fail safe valve 60.
- the fourth solenoid valve S4 When an all-off failure occurs, the fourth solenoid valve S4 is in a non-energized state, so that the first hydraulic pressure P1 is output from the fail safe valve 60.
- the fourth solenoid valve S4 is a normally open solenoid valve that opens when no power is supplied. If an all-off failure occurs, the fourth solenoid valve S4 is input to the fail-safe valve 60. The state of the fail safe valve 60 is switched to a state in which the forward range pressure PD is output as the first hydraulic pressure P1 by the applied hydraulic pressure.
- the reverse input unit 71 includes a check valve and an orifice.
- the check valve is provided so as to allow the hydraulic pressure to be discharged from the drain port of the specific solenoid valve in a state where the all-off failure has not occurred. Therefore, when an all-off failure occurs, the first hydraulic pressure P1 supplied from the fail-safe valve 60 to the reverse input unit 71 passes through an orifice provided in parallel with the check valve, and the drain port of the specific solenoid valve. Is input. In this state, the check valve is kept closed by the first hydraulic pressure P1.
- the first hydraulic pressure P1 input to the drain port of the specific solenoid valve is supplied from the output port of the specific solenoid valve to the hydraulic servo mechanism 42 of the specific engagement device, so that the specific engagement device is engaged. Is done.
- the second clutch C2 and the fourth clutch C4 are engaged to form the sixth speed 6th. Therefore, even when an all-off failure occurs during traveling in the forward range, by supplying hydraulic pressure to each hydraulic servo mechanism 42 of the specific engagement device, a fixed gear position (here, It is possible to continue traveling forward at the sixth speed (6th).
- the hydraulic control device 32 is configured to perform reverse input of the first hydraulic pressure P1 (forward range pressure PD) to the drain port of the specific solenoid valve via the fail-safe valve 60 and the reverse input unit 71.
- the transmission mechanism 50 is configured to be performed only when the power transmission state is realized in the forward range.
- the hydraulic control device 32 supplies the hydraulic pressure output from the output port communicating with the hydraulic servo mechanism 42 of the shift engagement device 51 to be controlled to each of the linear solenoid valves (SL2 to SL6).
- a hydraulic sensor Se5 for detection is provided.
- the second linear solenoid valve SL2 is provided with a second hydraulic switch SW2
- the third linear solenoid valve SL3 is provided with a third hydraulic switch SW3
- the fourth linear solenoid valve SL4 is provided with a fourth hydraulic switch SW4.
- a fifth hydraulic switch SW5 is provided in the fifth linear solenoid valve SL5, and a sixth hydraulic switch SW6 is provided in the sixth linear solenoid valve SL6.
- the control device 30 is configured so that each of the second hydraulic switch SW2 and the fourth hydraulic switch SW4 is an output port.
- the state of the hydraulic circuit 41 coincides with the state when the specific shift stage is formed (that is, It can be determined that a specific gear stage is formed in the transmission mechanism 50).
- the case where there is one specific shift speed has been described as an example.
- a plurality of forward shift speeds having different speed ratios are specified. It can also be set as the structure which can be formed as a step.
- the plurality of forward shift speeds are divided into a first group to which the low speed side (large gear ratio side) gear stage belongs and a second group to which the high speed side (low speed ratio side) gear stage belongs.
- the gear position at the time when the supply of power to the hydraulic control device 32 is cut off belongs to the first group, the first specific shift step is formed, and the gear shift at the time when the supply of electric power to the hydraulic control device 32 is cut off.
- a second specific shift stage having a speed ratio different from that of the first specific shift stage may be formed.
- the control device 30 controls the automatic transmission 1 in the forward range when any specific gear stage is formed in the speed change mechanism 50 when the vehicle is started during an emergency. Configured as follows.
- the specific shift speed is formed based on the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1 and the state of the hydraulic circuit 41.
- the configuration for determining whether or not there has been described as an example.
- the specific shift speed is formed based on only one of the rotation speed ratio between the input rotation speed and the output rotation speed of the automatic transmission 1 and the state of the hydraulic circuit 41. It can also be configured to determine whether or not it has been done. That is, the control device 30 forms the specific gear stage in the transmission mechanism 50 based only on the comparison between the detection information of the rotational speed ratio between the input rotational speed and the output rotational speed of the transmission mechanism 50 and the gear ratio of the specific gear stage.
- the controller 30 determines whether or not it is in the engaged state, and the control device 30 detects the detection information of the hydraulic sensor Se5 and the engagement state of each of the shift engagement devices 51 when the specific shift speed is formed. Based on only the comparison, it is possible to determine whether or not the specific speed is established in the speed change mechanism 50.
- the control device is based on information other than these. In addition, it may be configured to determine whether or not a specific shift speed is formed.
- the vehicle speed is zero
- the output rotational speed of the driving force source 20 of the vehicle is zero
- no hydraulic pressure is discharged from the hydraulic pump 40
- the parking lock sensor Se4 fails.
- the configuration in which the activation of the control device 30 is determined to be the normal activation is described as an example.
- the present invention is not limited to such a configuration, and may be configured to determine whether or not the activation of the control device 30 is a normal activation on the condition of only a part of these four conditions.
- it can be set as the structure which determines with starting of the control apparatus 30 being normal starting on condition that the vehicle speed is zero and the output rotational speed of the driving force source 20 of a vehicle is zero.
- control device 30 is normally started. It can also be set as the structure determined to be. Moreover, it can also be set as the structure which determines whether starting of the control apparatus 30 is normal starting based on another condition in addition to all or one part of said four conditions.
- control device 30 executes the activation type determination process after activation
- the present invention is not limited to such a configuration, and a configuration in which the activation type determination process is not performed after the control device 30 is activated can also be employed.
- the control device 30 is configured to be monitored by another control device (for example, the driving force source control device 31 or the like) provided in the vehicle, and an emergency start has occurred in the control device 30.
- the control device 30 receives a signal indicating the above from another control device at the time of activation, the emergency activation control is executed, and when the signal is not received, the normal activation control is executed.
- the configuration in which the lock state of the parking lock mechanism 10 is switched by the hydraulic actuator 14 has been described as an example.
- the configuration is not limited to such a configuration, and the locked state of the parking lock mechanism 10 may be switched by an electric actuator that operates in accordance with a command from the control device 30.
- the forward range was selected before the emergency activation based on the presence or absence of the specific gear stage in the transmission mechanism (50). It can be determined whether or not. Then, in a situation where it is estimated that the forward range has been selected before the emergency start of the control device (30), the automatic transmission (1) can be controlled in the forward range after the emergency start of the control device (30). it can. Therefore, when the control device (30) starts emergency during traveling in the forward range of the vehicle, it is possible to continue traveling in the forward range, and as a result, the driver accompanying the emergency start of the control device (30). It is possible to suppress a decrease in drivability.
- the hydraulic control device (32) is The speed change mechanism (50) is configured to be in a neutral state, and the specific speed stage is formed in the speed change mechanism (50) when the control device (30) is activated in an emergency while the vehicle is running.
- the state is other than the state, it is preferable that the automatic transmission (1) is controlled in the neutral range.
- the control device (30) When the control device (30) is emergency activated during the traveling of the vehicle, if the specific gear stage is not formed in the transmission mechanism (50), it is estimated that the forward range has not been selected before the emergency activation, Since the vehicle is running, it is unlikely that the parking range was selected before the emergency start. According to the above configuration, since the automatic transmission (1) can be controlled in the neutral range in such a situation, the state of the automatic transmission (1) after the emergency start of the control device (30) It is possible to avoid a state that is largely deviated from the intention of the person. In such a situation, there is a possibility that the reverse range was selected before the emergency start, but since the speed in the reverse range is basically low, the reverse range after the emergency start of the control device (30). Thus, the decrease in the drivability of the driver due to the lack of control of the automatic transmission (1) is limited.
- the sensor (Se4) for detecting the lock state of the parking lock mechanism (10) has failed and the vehicle speed is below a predetermined threshold value.
- the automatic transmission (1) is controlled in a parking range regardless of whether or not the specific shift stage is formed in the transmission mechanism (50).
- the parking lock mechanism (10) when the parking lock mechanism (10) is in the lock effective state, it is possible to avoid the vehicle from being switched from the lock effective state to the lock invalid state against the driver's intention.
- the vehicle even when the sensor (Se4) is out of order and the parking lock mechanism (10) is in the lock invalid state, the vehicle is locked from the lock invalid state if the vehicle speed is equal to or less than a predetermined threshold. Although it can be switched to the effective state, the vehicle has a limited influence on the behavior of the vehicle because the vehicle is stopped or the vehicle speed is low.
- the specific shift in the transmission mechanism (50) based on the comparison between the detection information of the rotation speed ratio between the input rotation speed and the output rotation speed of the transmission mechanism (50) and the transmission ratio of the specific shift stage, the specific shift in the transmission mechanism (50). It is preferable to determine whether or not a stage is formed.
- the transmission mechanism (50) includes a plurality of shifting engagement devices (51), and the hydraulic control device (32) includes at least a part of the plurality of shifting engagement devices (51).
- the specific shift speed is formed based on the detection information that is a predetermined state when the specific shift speed is formed, that is, the state in which the hydraulic pressure is supplied to the shift engagement device (51). It is possible to accurately determine whether or not it has been performed.
- the control device (30) After the control device (30) is started, it is determined whether the start is due to the emergency start or the normal start after the vehicle is started, and when the start is determined to be the normal start, It is preferable that the automatic transmission (1) is controlled in any of a neutral range and a parking range.
- control device (30) When the control device (30) is normally activated, it is difficult to assume a situation where the control of the automatic transmission (1) in the forward range or the reverse range is in line with the driver's intention. In view of this point, in the configuration described above, when it is determined that the activation is a normal activation, the control device (30) is normally activated because the shift range options do not include the forward range or the reverse range. Thus, the time until the control of the automatic transmission (1) is started in any shift range can be shortened.
- the activation is determined to be the normal activation on the condition that the rotation speed is zero.
- the activation is determined to be the normal activation on the condition that at least one of the two conditions is satisfied.
- the control device (30) when the control device (30) is emergency started while the vehicle is stopped and the idling stop control is being performed, the vehicle speed is zero and the vehicle driving force source is Although the output rotation speed is zero, the electric oil pump as the hydraulic pump (40) does not discharge hydraulic pressure but discharges hydraulic pressure corresponding to the operating pressure of the accumulator.
- the activation of the control device (30) in such a situation is based on the normal activation. Instead, it is possible to correctly determine that it is due to an emergency start.
- control device only needs to exhibit at least one of the effects described above.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Control Of Transmission Device (AREA)
- Gear-Shifting Mechanisms (AREA)
Abstract
油圧制御装置(32)は、変速機構(50)において前進レンジで動力伝達状態が実現されている状態で当該油圧制御装置(32)に対する電力の供給が遮断された場合に、予め定められた前進用の変速段である特定変速段を変速機構(50)において形成するように構成される。制御装置(30)は、車両の走行中に当該制御装置(30)への電力の供給が遮断されて非常起動した場合に、変速機構(50)において特定変速段が形成された状態である場合には、前進レンジで自動変速機(1)を制御する。
Description
本発明は、シフト・バイ・ワイヤ方式の制御装置に関する。
シフト・バイ・ワイヤ方式の制御装置として、特開2013-104463号公報(特許文献1)に記載されたものが知られている。特許文献1に記載の制御装置は、パーキングロック機構を備えた自動変速機を制御対象とし、シフトレンジの選択が被操作部の機械的な位置によって特定されないレンジ選択装置からの指令に応じて動作する。ところで、制御装置の電源の瞬断等により制御装置がリセットされて非常起動(再起動)する場合があるが、上記のようなレンジ選択装置を用いるシフト・バイ・ワイヤ方式では、制御装置が非常起動された場合に、非常起動前に選択されていたシフトレンジを被操作部の機械的な位置から特定することはできない。また、特許文献1に記載のパーキングロック装置(50)では、ディテントプレート(62)が、パーキングロック装置(50)をロック状態とする位置と、パーキングロック装置(50)を非ロック状態とする位置との、2つの位置の間で切り替えられる。このような構成では、パーキングロック装置(50)の状態から、非常起動前に選択されていたシフトレンジがパーキングレンジであるか非パーキングレンジであるかを特定することはできても、選択されていたシフトレンジが非パーキングレンジである場合に、パーキングロック装置(50)の状態から、前進レンジ、後進レンジ、及びニュートラルレンジのいずれであるかまで特定することはできない。
上記のようなシフト・バイ・ワイヤ方式の制御装置に特有の問題に鑑みて、特許文献1には、制御装置のリセット状態からの復帰後にシフトレンジを適切に設定するための技術が記載されている。具体的には、車速が高い状態でパーキングロック装置が非ロック状態からロック状態に切り替えられることによる異音の発生を抑制するために、リセット状態からの復帰時の車速が予め設定された閾値よりも大きい場合には、シフトレンジをニュートラルレンジに設定することが記載されている。しかしながら、このような構成では、制御装置の非常起動前に車両が前進レンジで走行(上記閾値よりも高い速度で走行)していた場合であっても、制御装置の非常起動後に自動変速機がニュートラル状態に切り替えられるため、駆動力の抜けを運転者が感じる等、運転者のドライバビリティが低下するおそれがある。そのため、制御装置のリセットが生じた際にはリセット前の状態を維持できることが望まれるが、上記のような構成では、車両の走行中に制御装置のリセットが生じた場合に、ニュートラル状態と前進レンジ状態の判別をすることができなかった。
そこで、制御装置の非常起動に伴う運転者のドライバビリティの低下を抑制することが可能な技術の実現が望まれる。
上記に鑑みた、パーキングロック機構を備えた自動変速機を制御対象とし、被操作部の操作に基づくシフトレンジの選択が行われた場合に、当該シフトレンジの選択指令に応じて前記自動変速機を制御するシフト・バイ・ワイヤ方式の制御装置の特徴構成は、前記自動変速機は、油圧駆動式の変速用係合装置を備えた変速機構と、電力の供給を受けて動作するソレノイドを含む、前記変速用係合装置に供給する油圧を制御する油圧制御装置と、を備え、前記油圧制御装置は、前記変速機構において前進レンジで動力伝達状態が実現されている状態で当該油圧制御装置に対する電力の供給が遮断された場合に、予め定められた前進用の変速段である特定変速段を前記変速機構において形成するように構成され、車両の走行中に前記制御装置への電力の供給が遮断され、前記制御装置が非常起動した場合に、前記変速機構において前記特定変速段が形成された状態である場合には、前記前進レンジで前記自動変速機を制御する点にある。
この構成によれば、車両の走行中に制御装置が非常起動した場合に、変速機構における特定変速段の形成の有無に基づき、非常起動前に前進レンジが選択されていたか否かを判定することができる。そして、制御装置の非常起動前に前進レンジが選択されていたことが推定される状況において、制御装置の非常起動後に前進レンジで自動変速機を制御することができる。よって、車両の前進レンジでの走行中に制御装置が非常起動した場合に、前進レンジでの走行を継続することができ、この結果、制御装置の非常起動に伴う運転者のドライバビリティの低下を抑制することが可能となる。
制御装置の実施形態について、図面を参照して説明する。以下の説明では、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、2つの回転要素が1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト、チェーン等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれてもよい。
図1に示すように、制御装置30は、パーキングロック機構10を備えた自動変速機1を制御対象とする制御装置である。そして、制御装置30は、被操作部91aの操作に基づくシフトレンジの選択が行われた場合に、当該シフトレンジの選択指令に応じて自動変速機1を制御するシフト・バイ・ワイヤ方式の制御装置である。ここでは、制御装置30は、シフトレンジの選択が被操作部91aの機械的な位置によって特定されないレンジ選択装置91からの指令に応じて動作するシフト・バイ・ワイヤ方式の制御装置である。図1では、制御装置30をECU(Electronic Control Unit)と表記し、駆動力源制御装置31をENG ECU(Engine Electronic Control Unit)と表記し、駆動力源20をENG(Engine)と表記し、油圧制御装置32をV/B(Valve Body)と表記し、変速機構50をAT(Automatic Transmission)と表記し、パーキングロック機構10をPBW(Park By Wire)と表記し、油圧ポンプ40をOP(Oil Pump)と表記し、電源3をBAT(Battery)と表記している。
自動変速機1は、駆動力源20と車輪(図示せず)とを結ぶ動力伝達経路に設けられる。駆動力源20は、車両或いは車輪の駆動力源である。例えば、内燃機関が駆動力源20として備えられ、回転電機が駆動力源20として備えられ、或いは、内燃機関及び回転電機の双方が駆動力源20として備えられる。ここで、内燃機関は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(例えば、ガソリンエンジン、ディーゼルエンジン等)である。また、回転電機は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
自動変速機1は、変速比を段階的に或いは無段階に変更可能な変速機構50を備えている。ここで、「変速比」は、変速機構50の出力部材(変速出力軸などの変速出力部材23)の回転速度に対する変速機構50の入力部材(変速入力軸等の変速入力部材22)の回転速度の比である(図8参照)。変速入力部材22には、駆動力源20の側から回転及びトルクが入力され、変速出力部材23から出力される回転及びトルクが、車輪の側に出力される。本実施形態では、図8に一例を示すように、変速機構50は、変速比の異なる複数の変速段を切替可能に構成された自動有段変速機構である。詳細は後述するが、変速機構50は、歯車機構(図8に示す例では、第一遊星歯車機構PG1及び第二遊星歯車機構PG2)と、当該歯車機構の回転要素の係合又は解放を行う複数の変速用係合装置51とを備えている。変速機構50は、複数の変速用係合装置51のそれぞれの係合の状態に応じて複数の変速段を選択的に形成して、変速入力部材22の回転を変速段に応じた変速比で変速して変速出力部材23に伝達する。
本実施形態では、変速機構50は、前進用の変速段として、変速比の異なる複数の変速段を形成可能に構成されている。変速機構50がトルクの伝達を行わない状態を「ニュートラル状態」とすると、本実施形態では、全ての変速用係合装置51が解放されている状態や、変速段を形成するために係合される複数の変速用係合装置51のうちの一部の変速用係合装置51が解放されている状態で、変速機構50がニュートラル状態となる。
変速機構50が備える複数の変速用係合装置51は、油圧駆動式の係合装置(例えば、摩擦係合装置)である。そのため、自動変速機1は、変速用係合装置51のそれぞれに供給する油圧を制御する油圧制御装置32を備えている。制御装置30は、変速用係合装置51のそれぞれに供給される油圧を油圧制御装置32を介して制御することで、変速用係合装置51のそれぞれの係合の状態を制御する。油圧制御装置32は、バッテリ等の電源3から電力の供給を受けて動作する。具体的には、油圧制御装置32は、バッテリ等の電源3から電力の供給を受けて動作するソレノイドを含む。ソレノイドは、変速用係合装置51のそれぞれに供給する油圧を制御するためのアクチュエータとして機能する。本実施形態では、後述するように、油圧制御装置32は、ソレノイドにより弁体が駆動されるソレノイドバルブを備えている。油圧制御装置32に対する電力の供給は、制御装置30により制御されるため、制御装置30にリセット(非常起動)が発生すると、制御装置30による油圧制御装置32に対する制御が再開されるまでの間、油圧制御装置32に対する電力の供給が遮断される。
詳細は後述するが、油圧制御装置32は、変速用係合装置51に供給する油圧を制御するソレノイドバルブと、当該ソレノイドバルブと連通する油路が設けられたバルブボディとを備えている。これらのソレノイドバルブと油路とによって、油圧ポンプ40から吐出された油を変速機構50に供給するための油圧回路41が形成されている。自動変速機1(変速機構50)は、油圧回路41の切り替えによって後述する特定変速段を含む複数の変速段が選択的に形成されるように構成されている。制御装置30によって油圧制御装置32に備えられる各バルブの状態を制御することで、油圧回路41が切り替えられる。例えば、駆動力源20により駆動される機械式オイルポンプが油圧ポンプ40として備えられ、駆動力源20とは異なる専用の回転電機により駆動される電動オイルポンプが油圧ポンプ40として備えられ、或いは、機械式オイルポンプ及び電動オイルポンプの双方が油圧ポンプ40として備えられる。図10に一例を示すように、油圧制御装置32は、油圧ポンプ40の吐出圧をライン圧に調整するライン圧調整バルブ63(プレッシャーレギュレータバルブ)を備えている。また、図示は省略するが、本実施形態では、油圧制御装置32は、作動油圧(本実施形態では、ライン圧)が油圧アクチュエータ14に供給される状態と供給されない状態とを切り替える切替バルブを備えている。後述するように、油圧アクチュエータ14は、パーキングロック機構10のロック状態を切り替えるためのアクチュエータである。
シフト・バイ・ワイヤ方式には、ディテントレバー15(図2参照)の位置(回転位置)に応じて作動位置が切り替えられるマニュアルバルブを備え、選択されたシフトレンジに応じてディテントレバー15の位置を制御装置30の制御により切り替えることで、選択されたシフトレンジを自動変速機1に形成する構成と、ディテントレバー15の位置に応じて作動位置が切り替えられるマニュアルバルブを備えず、複数のバルブ(ソレノイドバルブや切り替えバルブ等)の状態を制御装置30の制御(電気的指令)によって制御することで、選択されたシフトレンジを自動変速機1に形成する構成とがある。本実施形態では、後者の構成を採用している。そのため、本実施形態では、パーキングレンジ以外の非パーキングレンジ(前進レンジ、後進レンジ、及びニュートラルレンジ等)が自動変速機1に形成されている場合に、パーキングロック機構10(ディテントレバー15)の機械的な位置によって、非パーキングレンジに含まれる複数のシフトレンジのうちの自動変速機1に形成されているシフトレンジが特定されない構成となっている。
レンジ選択装置91は、シフトレンジを人為的操作により切り替えるための装置である。図1に簡略化して示すように、レンジ選択装置91は、車両の運転者によって操作される被操作部91aを有している。すなわち、被操作部91aは、例えば、レバー、ダイヤル、タッチパネル等の、レンジ選択装置91における運転者に操作される部分である。レンジ選択装置91は、シフトレンジの選択が被操作部91aの機械的な位置によって特定されないように構成される。よって、例えば、被操作部91aとしてレバーが用いられる場合には、当該レバーは、モーメンタリ式のレバー(運転者の操作力が解除されると元の位置(ホームポジション)に自動的に復帰するレバー)とされる。また、例えば、被操作部91aとして押下式スイッチが用いられる場合には、当該スイッチは、モーメンタリ式の押下式スイッチ(運転者の押圧力が解除されると元の位置(ホームポジション)に自動的に復帰する押下式スイッチ)とされる。レンジ選択装置91が、複数の被操作部91aを備える構成とすることもできる。例えば、パーキングレンジを選択するための被操作部91aと、非パーキングレンジを選択する被操作部91aとの2つの被操作部91aを、レンジ選択装置91が備える構成とすることができる。
パーキングロック機構10は、車輪に駆動連結される回転部材である被ロック部材に係合部材を係合させて、当該被ロック部材の回転を規制する機構である。図2に示すように、本実施形態に係るパーキングロック機構10は、上記の被ロック部材としてパーキングギヤ2を備え、上記の係合部材としてパーキングポール11を備えている。パーキングギヤ2は、駆動力源20と車輪とを結ぶ動力伝達経路における、変速出力部材23と同じ位置或いは変速出力部材23よりも車輪側に設けられる。パーキングギヤ2は、車輪と常時連動して回転するように設けられる。よって、パーキングギヤ2の回転をパーキングポール11により規制することで、車輪がロックされる。以下では、被ロック部材(パーキングギヤ2)に係合部材(パーキングポール11)が係合した状態(すなわち、車輪がロックされた状態)を「ロック有効状態」とし、被ロック部材と係合部材との係合が解除された状態(すなわち、車輪がロックされていない状態)を「ロック無効状態」とする。
パーキングロック機構10は、パーキングポール11を、パーキングギヤ2に係合する係合位置と、パーキングギヤ2への係合が解除される非係合位置との間で変位(本実施形態では揺動)させるためのパーキングロッド12を備えている。パーキングロッド12の先端部(パーキングポール11側の端部)には、パーキングロッド12に対して摺動可能に支持されると共に先端部側に付勢されたカム部材が設けられている。パーキングロッド12の基端部は、ディテントレバー15(ディテントプレート)に回転自在に連結されている。そして、ディテントレバー15の揺動軸A周りの回転移動(図2における反時計回り方向の移動)に伴いパーキングロッド12がパーキングポール11側に移動することで、パーキングギヤ2に係合するようにパーキングポール11がカム部材により押圧され、パーキングポール11が係合位置に維持される。また、ディテントレバー15の揺動軸A周りの回転移動(図2における時計回り方向の移動)に伴いパーキングロッド12がパーキングポール11側から離れる側に移動することで、カム部材によるパーキングポール11への押圧が解除されると共にパーキングポール11が付勢部材(図示せず)の付勢力により移動し、パーキングポール11が非係合位置に維持される。
本実施形態では、ディテントレバー15には、係合部材16が係合する一対の凹部が形成されており、パーキングロック機構10のロック状態がロック有効状態である場合には、係合部材16が一対の凹部の一方に係合し、パーキングロック機構10のロック状態がロック無効状態である場合には、係合部材16が一対の凹部の他方に係合する。このように、本実施形態では、ディテントレバー15の位置は、パーキングロック機構10をロック有効状態とするための第一位置と、パーキングロック機構10をロック無効状態とするための第二位置との2つの位置の間で、制御装置30により切り替えられる。すなわち、第一位置は、自動変速機1にパーキングレンジが形成されている場合のディテントレバー15の位置であり、第二位置は、自動変速機1に非パーキングレンジが形成されている場合のディテントレバー15の位置である。
図2に示すように、本実施形態では、パーキングロック機構10は、油圧アクチュエータ14によりパーキングロッド12をパーキングポール11に対する遠近方向に進退移動させることで、パーキングロック機構10のロック状態を、ロック有効状態とロック無効状態との間で切り替えるように構成されている。具体的には、油圧アクチュエータ14は、油圧制御装置32から供給される油圧に応じてディテントレバー15を揺動軸A周りに揺動させることで、パーキングロッド12を進退移動させるように構成されている。本実施形態では、油圧アクチュエータ14に対して油圧制御装置32から油圧(例えば、ライン圧)が供給されると、パーキングロック機構10がロック無効状態に切り替えられ、油圧アクチュエータ14に対する油圧制御装置32からの油圧の供給が停止されると、パーキングロック機構10がロック有効状態に切り替えられる。また、本実施形態では、パーキングロック機構10は、油圧制御装置32から油圧アクチュエータ14に供給される油圧が低下した場合であってもパーキングロック機構10をロック解除状態に維持するためのロック装置19を備えている。このようなロック装置19を備えることで、例えば、車両の主電源をオン状態としたまま駆動力源20としての内燃機関への燃料供給を停止するアイドリングストップ制御の実行により、油圧アクチュエータ14に対して供給される油圧が低下した場合であっても、パーキングロック機構10をロック解除状態に維持することができる。
制御装置30は、CPU等の演算処理装置を中核部材として備えると共に、RAMやROM等の記憶装置等を有して構成される。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30が実行する各機能が実現される。制御装置30が備える演算処理装置は、各プログラムを実行するコンピュータとして動作する。なお、制御装置30が、互いに通信可能な複数のハードウェア(複数の分離したハードウェア)の集合によって構成されても良い。
制御装置30は、車両の各部に備えられた各種センサの検出結果の情報を取得可能に構成される。本実施形態では、図1に示すように、制御装置30は、第一回転センサSe1、第二回転センサSe2、レンジセンサSe3、パーキングロックセンサSe4、及び油圧センサSe5のそれぞれの検出結果の情報を取得可能に構成されている。なお、制御装置30が、他の制御装置(例えば、後述する駆動力源制御装置31等)から、少なくともいずれかのセンサの検出情報を取得する構成とすることもできる。
第一回転センサSe1は、変速機構50に備えられる回転部材或いは変速機構50に駆動連結される回転部材の回転速度を検出する。単数又は複数の第一回転センサSe1が車両に備えられる。車両に備えられる第一回転センサSe1には、車速を検出するための車速センサが含まれ、制御装置30は、第一回転センサSe1の検出情報に基づき車速の情報を取得する。車速センサは、例えば、変速出力部材23の回転速度を検出するセンサとされる。
第二回転センサSe2は、駆動力源20の出力部材の回転速度(出力回転速度)を検出する。駆動力源20が内燃機関である場合には、第二回転センサSe2は、内燃機関の出力軸(クランクシャフト)或いは当該出力軸と常時連動して回転(例えば一体回転)する部材の回転速度を検出するように設けられる。また、駆動力源20が回転電機である場合には、第二回転センサSe2は、回転電機のロータ或いは当該ロータと常時連動して回転(例えば一体回転)する部材の回転速度を検出するように設けられる。制御装置30は、第二回転センサSe2の検出情報に基づき、駆動力源20の出力回転速度の情報を取得する。また、制御装置30は、第一回転センサSe1及び第二回転センサSe2のそれぞれの検出情報に基づき、或いは複数の第一回転センサSe1のそれぞれの検出情報に基づき、自動変速機1の入力回転速度と出力回転速度との回転速度比の情報を取得する。ここで、自動変速機1の入力回転速度は、変速入力部材22の回転速度であり、自動変速機1の出力回転速度は、変速出力部材23の回転速度である。
レンジセンサSe3は、レンジ選択装置91を用いて運転者により選択されたシフトレンジを検出する。レンジセンサSe3は、レンジ選択装置91の被操作部91aを用いた運転者のシフト操作を電気的に検出する。制御装置30は、レンジセンサSe3の検出情報に基づき、運転者により選択されたシフトレンジの情報を取得する。レンジ選択装置91により選択可能なレンジには、車両を前進させる走行レンジである前進レンジ(Dレンジ)、車両を後進させる走行レンジである後進レンジ(Rレンジ)、自動変速機1(変速機構50)をニュートラル状態とするためのニュートラルレンジ(Nレンジ)、自動変速機1(変速機構50)をニュートラル状態とすると共に車輪をロックするパーキングレンジ(Pレンジ)が含まれる。
パーキングロックセンサSe4は、パーキングロック機構10の状態に関する物理量を検出する。すなわち、パーキングロックセンサSe4は、パーキングロック機構10のロック状態を検出するセンサである。制御装置30は、パーキングロックセンサSe4の検出情報に基づき、パーキングロック機構10がロック有効状態であるかロック無効状態であるかを判別する。例えば、ディテントレバー15の回転位置を検出するセンサと、油圧アクチュエータ14におけるディテントレバー15と連動して移動する部材の位置を検出するセンサとの一方又は双方が、パーキングロックセンサSe4として車両に設けられる。本実施形態では、パーキングロックセンサSe4が「センサ」に相当する。
油圧センサSe5は、油圧制御装置32の油圧回路41における油圧を検出する。油圧センサSe5は、例えば、検出対象箇所における油圧が所定値以上である場合にオンとなり、検出対象箇所における油圧が所定値未満である場合にオフとなる油圧スイッチとされ、或いは、検出対象箇所における油圧が所定値以上である場合にオフとなり、検出対象箇所における油圧が所定値未満である場合にオンとなる油圧スイッチとされる。油圧センサSe5として、検出対象箇所における油圧の値を出力するセンサを用いることもできる。油圧センサSe5の設置箇所については後述する。
制御装置30は、レンジ選択装置91において、被操作部91aの操作に基づくシフトレンジの選択(具体的には、前進レンジ、後進レンジ、ニュートラルレンジ、及びパーキングレンジのいずれかのシフトレンジの選択)が行われた場合には、当該シフトレンジの選択指令に応じて自動変速機1を制御する通常制御を行う。具体的には、制御装置30は、レンジ選択装置91によりパーキングレンジが選択された場合には、パーキングロック機構10をロック有効状態となるように制御し、レンジ選択装置91により非パーキングレンジが選択された場合には、パーキングロック機構10をロック無効状態となるように制御する。このように、パーキングロック機構10は、レンジ選択装置91とは機械的に連結されておらず、パーキングロック機構10の状態は、レンジセンサSe3による検出情報に基づき制御装置30により制御される。すなわち、本実施形態に係るパーキングロック機構10は、パーク・バイ・ワイヤ(PBW)方式のパーキングロック機構である。
また、制御装置30は、レンジ選択装置91により前進レンジが選択された場合には、自動変速機1(変速機構50)に前進レンジ(前進用の変速段)が形成されるように油圧制御装置32を制御し、レンジ選択装置91により後進レンジが選択された場合には、自動変速機1(変速機構50)に後進レンジ(後進用の変速段)が形成されるように油圧制御装置32を制御し、レンジ選択装置91によりニュートラルレンジ又はパーキングレンジが選択された場合には、自動変速機1(変速機構50)をニュートラル状態とするように油圧制御装置32を制御する。
図1に示すように、制御装置30は、変速機構50及びパーキングロック機構10を制御対象とする。また、制御装置30は、駆動力源20も制御対象とする。制御装置30は、センサ検出情報(アクセル開度、車速、シフトレンジ等の情報)に基づき、車輪の駆動のために要求される車輪要求トルクや、自動変速機1(変速機構50)に形成する目標変速段を決定する。そして、制御装置30は、決定した車輪要求トルクに基づき駆動力源20の目標トルクを決定し、当該目標トルクを出力するように駆動力源20を制御する。制御装置30は、決定した目標変速段を形成するよう変速機構50を制御する。具体的には、制御装置30は、決定した目標変速段を形成するように、複数の変速用係合装置51のそれぞれの係合の状態を制御する。変速用係合装置51のそれぞれの係合の状態は、供給される油圧に応じて、直結係合状態、滑り係合状態、及び解放状態のいずれかに制御される。
本実施形態では、制御装置30は、駆動力源制御装置31を介して駆動力源20の制御を行うように構成されており、駆動力源制御装置31が、制御装置30から指令された目標トルクを出力するように、駆動力源20を制御する。内燃機関が駆動力源20として備えられる場合、駆動力源制御装置31は、制御装置30から内燃機関の始動要求があった場合には、内燃機関への燃料供給や点火を開始する等して内燃機関を始動させ、制御装置30から内燃機関の停止要求があった場合には、内燃機関への燃料供給や点火を停止する等して内燃機関を停止させる。
ところで、制御装置30の起動には、車両の電源がオフからオンに切り替えられること(すなわち、車両が起動すること)に伴う起動と、電源電圧の低下や電源の瞬断等の異常により制御装置30がリセットされた後の起動とがある。前者の起動は、車両起動後の通常の起動であり、以下、「通常起動」という。一方、後者の起動は、異常に伴う起動であり、以下、「非常起動」という。以下の説明では、通常起動と非常起動とを区別する必要がない場合、すなわち、通常起動及び非常起動の双方に共通の事項について述べる場合には、通常起動と非常起動とを区別せずに単に「起動」という。本実施形態では、自動変速機1(変速機構50)は、前進レンジが選択されている状態で制御装置30が非常起動された場合に、予め定められた前進用の特定変速段が形成されるように構成されている。すなわち、本実施形態に係る油圧制御装置32には、油圧制御装置32に備えられる全てのソレノイドバルブがオフフェールする(非通電状態となる)オールオフフェールに対するリンプホーム機能が備えられており、前進レンジが自動変速機1に形成されている状態でオールオフフェールが発生した場合にリンプホーム機能により形成される変速段が、上記の特定変速段とされている。このように、油圧制御装置32は、変速機構50において前進レンジで動力伝達状態が実現されている状態で当該油圧制御装置32に対する電力の供給が遮断された場合に、予め定められた前進用の変速段である特定変速段を変速機構50において形成するように構成されている。
本実施形態では、自動変速機1(変速機構50)は、後進レンジが選択されている状態で制御装置30が非常起動された場合には、ニュートラル状態となる。すなわち、後進レンジが選択されている状態で制御装置30が非常起動された場合、ニュートラルレンジが選択されている状態で制御装置30が非常起動された場合、及びパーキングレンジが選択されている状態で制御装置30が非常起動された場合のいずれの場合も、自動変速機1(変速機構50)はニュートラル状態となる。このように、油圧制御装置32は、変速機構50においてニュートラルレンジで動力伝達状態が遮断されている状態(動力の伝達が遮断されている状態)で当該油圧制御装置32に対する電力の供給が遮断された場合に、変速機構50をニュートラル状態とするように構成されている。また、油圧制御装置32は、変速機構50において後進レンジで動力伝達状態が実現されている状態で当該油圧制御装置32に対する電力の供給が遮断された場合に、変速機構50をニュートラル状態とするように構成されている。
制御装置30は、起動後、被操作部91aの操作に基づくシフトレンジの選択が行われるまでの間、起動が車両起動後の通常起動の場合には通常起動制御を行い、起動が非常起動の場合には、非常起動制御を行う。ここで、通常起動制御は、ニュートラルレンジ及びパーキングレンジの中のいずれかのシフトレンジを選択し、当該選択したシフトレンジに応じて自動変速機1を制御する制御である。また、非常起動制御は、ニュートラルレンジ、パーキングレンジ、及び前進レンジの中のいずれかのシフトレンジを選択し、当該選択したシフトレンジに応じて自動変速機1を制御する制御である。制御装置30の起動後に被操作部91aの操作に基づくシフトレンジの選択が行われた場合には、制御装置30は上述した通常制御を行う。本実施形態では、非常起動制御では、少なくとも車速に基づいて前進レンジを選択するか否かを決定し、前進レンジを選択しない場合には、少なくともパーキングロック機構10のロック状態に基づいて、ニュートラルレンジとパーキングレンジとのいずれを選択するかを決定する。後に参照する図6に示す例では、少なくとも車速が予め定められた閾値(図6に示す例では、ステップ#36の第二閾値)以上であることを条件として、前進レンジが選択される。なお、本明細書では、前進方向の車速を正とし、後進方向の車速を負としており、上記の閾値は0以上の値に設定される。また、図6に示す例では、パーキングロック機構10のロック状態がロック有効状態である場合に、パーキングレンジが選択される。
非常起動制御では、更に特定変速段が形成されているか否かにも基づいて、前進レンジを選択するか否かを決定する。図6に示す例では、車速と、特定変速段が形成されているか否かに基づいて、前進レンジを選択するか否かを決定している。具体的には、車速が予め定められた閾値(第二閾値)以上であり、且つ、特定変速段が形成されていることを条件に、前進レンジが選択される(図6のステップ#34~#37)。すなわち、制御装置30は、車両の走行中(ここでは、車速が第二閾値以上である状態)に制御装置30への電力の供給(ここでは、電源3からの電力の供給)が遮断され、制御装置30が非常起動した場合に、変速機構50において特定変速段が形成された状態である場合には、前進レンジで自動変速機1を制御する。前進レンジでの自動変速機1の制御は、被操作部91aの操作に基づくシフトレンジの選択が行われるまでの間、実行される。第二閾値の値は、例えば、前進走行中に誤って後進レンジが選択されても後進レンジを形成しない構成とする場合の、後進レンジが形成されない下限の速度(例えば、7km/h)に設定することができる。第二閾値をこのように設定することで、制御装置30のリセットの発生から制御装置30が非常起動されるまでの間に運転者が被操作部91aを用いて後進レンジを選択する操作を行った場合に、制御装置30のリセットが発生していなければ後進レンジが形成されていた状況では、前進レンジが選択されない構成とすることができる。これにより、運転者の後進の意思とは反対方向の前進方向の駆動力が発生することの回避が可能となっている。このように、特定変速段が形成されているか否かだけでなく車速に基づく判断も行うことで、制御装置30の非常起動前に車両が前進レンジで比較的高速で走行していた場合には、自動変速機1(変速機構50)に継続して前進レンジを形成することで、運転者のドライバビリティの維持を図りつつ、上記のような運転者の意思或いは意図とは反対方向の駆動力が発生することを回避することが可能となっている。
本実施形態では、制御装置30は、自動変速機1(変速機構50)の入力回転速度と出力回転速度との回転速度比と、油圧回路41の状態とに基づいて、特定変速段が形成されているか否かを判定する。具体的には、制御装置30は、自動変速機1の入力回転速度(変速入力部材22の回転速度)と出力回転速度(変速出力部材23の回転速度)との回転速度比が、特定変速段が形成されている場合の値(すなわち、特定変速段の変速比)と一致し、且つ、油圧回路41の状態が、特定変速段が形成されている場合の状態と一致することを条件に、特定変速段が形成されていると判定する(ステップ#34,#35)。なお、変速機構50の入力回転速度と出力回転速度との回転速度比が、特定変速段の変速比と一致するという場合の「一致」とは、完全に一致する場合だけでなく、第一回転センサSe1や第二回転センサSe2等の回転速度比を導出するために用いるセンサの検出誤差に応じた範囲のずれを含む概念として用いている。
また、油圧回路41の状態は、上述した油圧センサSe5の検出情報に基づき取得される。油圧センサSe5は油圧制御装置32に設けられ、複数の変速用係合装置51のうちの少なくとも一部の変速用係合装置51に対する油圧の供給状態を検出する。具体的には、複数の変速用係合装置51のうちの特定変速段を形成するために係合される変速用係合装置51を「特定係合装置」として、油圧センサSe5は、複数の変速用係合装置51のうちの少なくとも特定係合装置のそれぞれに対する油圧の供給状態を取得可能なように設けられる。そして、制御装置30は、油圧センサSe5の検出情報に基づき、油圧回路41の状態が特定変速段が形成されている場合の状態と一致するか否かを判定する。すなわち、制御装置30は、油圧センサSe5の検出情報と、特定変速段の形成時の変速用係合装置51のそれぞれの係合の状態とを比較し、油圧センサSe5の検出結果に基づき係合していると判定される変速用係合装置51が特定係合装置と一致する場合に(特定係合装置が複数である場合には、係合していると判定される変速用係合装置51の組み合わせが特定係合装置の組み合わせと一致する場合に、以下同様。)、油圧回路41の状態が特定変速段が形成されている場合の状態と一致すると判定する。本実施形態では、特定係合装置は、油圧サーボ機構に油圧が供給されない状態で解放状態となるノーマルオープン型の係合装置である。そのため、制御装置30は、油圧センサSe5の検出情報に基づき油圧サーボ機構42に対して油圧が供給されていると判定される変速用係合装置51が特定係合装置と一致する場合に、油圧回路41の状態が特定変速段が形成されている場合の状態と一致すると判定する。
このように、本実施形態では、制御装置30は、自動変速機1の入力回転速度と出力回転速度との回転速度比に加えて、油圧回路41の状態にも基づき、特定変速段が形成されているか否かの判定を行う。具体的には、制御装置30は、変速機構50の入力回転速度と出力回転速度との回転速度比の検出情報と、特定変速段の変速比との比較に基づき、且つ、油圧センサSe5の検出情報と、特定変速段の形成時の変速用係合装置51のそれぞれの係合の状態との比較に基づき、変速機構50において特定変速段が形成された状態であるか否かを判定する。すなわち、制御装置30は、変速機構50の入力回転速度と出力回転速度との回転速度比の検出値が特定変速段の変速比と一致し、且つ、油圧センサSe5の検出結果に基づき係合していると判定される変速用係合装置51が特定係合装置と一致する場合に、変速機構50において特定変速段が形成された状態であると判定する。変速機構50における特定変速段の形成の有無をこのように判定することで、特定変速段が形成されていないにもかかわらず、自動変速機1の入力回転速度と出力回転速度との回転速度比が偶然、特定変速段が形成されている場合の値に一致する状況において、特定変速段が形成されていると誤判定することを抑制することが可能となっている。
本実施形態では、制御装置30が非常起動されてから、自動変速機1で特定変速段が形成されるまでの時間を移行時間として、非常起動制御では、非常起動の発生から移行時間が経過した時点以降に、特定変速段が形成されているか否かの判定を行うように構成されている。これにより、特定変速段への変速中に特定変速段が形成されているか否かの判定が行われることを回避して、制御装置30の起動前に前進レンジが選択されていたか否かをより精度良く判定することが可能となっている。例えば、制御装置30の非常起動の発生から移行時間が経過した時点以降の予め定められた期間の間、自動変速機1の入力回転速度と出力回転速度との回転速度比の取得と、油圧回路41の状態の取得とを継続して行い、当該期間の間に取得された情報(例えば、平均値等)に基づき、特定変速段が形成されているか否かを判定する構成とすることもできる。車速についても同様に、予め定められた期間内に取得された情報(例えば、平均値等)を用いて、車速が予め定められた閾値以上であるか否かを判定しても良い。
本実施形態では、制御装置30は、起動後、起動が非常起動によるものか、車両起動後の通常起動によるものかを判定する起動種別判定処理を実行し、起動種別判定処理により通常起動であると判定された場合には通常起動制御を行い、起動種別判定処理により非常起動であると判定された場合には非常起動制御を行うように構成されている。本実施形態では、起動種別判定処理により通常起動であると判定された場合に通常起動制御を行い、起動種別判定処理により通常起動であると判定されなかった場合(通常起動ではないと判定された場合)には非常起動制御を行う。よって、例えば、車両の電源がオフからオンに切り替えられることで制御装置30が起動した場合であっても、パーキングロックセンサSe4の故障等により当該起動が通常起動であると判定されなかった場合には、非常起動制御が行われる。すなわち、車両の電源がオフからオンに切り替えられることに伴う起動(車両起動後の起動)であっても、パーキングロックセンサSe4の故障等の異常がある場合には、当該起動は非常起動とする。
通常起動制御では、少なくともパーキングロック機構10のロック状態に基づいて、ニュートラルレンジとパーキングレンジとのいずれを選択するかを決定する。すなわち、制御装置30は、起動が通常起動であると判定した場合に、ニュートラルレンジ及びパーキングレンジのうちのいずれかで自動変速機1を制御する。ニュートラルレンジ及びパーキングレンジのうちのいずれかでの自動変速機1の制御は、被操作部91aの操作に基づくシフトレンジの選択が行われるまでの間、実行される。図5に示す例では、パーキングロック機構10のロック状態がロック有効状態である場合に、パーキングレンジが選択され、パーキングロック機構10のロック状態がロック無効状態である場合に、ニュートラルレンジが選択される。このような構成とすることで、制御装置30の起動が通常起動である場合に、制御装置30が起動してからシフトレンジ(ニュートラルレンジ又はパーキングレンジ)が選択されるまでの時間の短縮を図ることが可能となっている。内燃機関が駆動力源20として備えられる場合には、シフトレンジがニュートラルレンジ又はパーキングレンジであることが、一般的に内燃機関の始動条件の1つとなるが、上記のように制御装置30が起動してからニュートラルレンジ又はパーキングレンジが選択されるまでの時間を短縮できることで、制御装置30の通常起動後に内燃機関を始動させる際のレスポンスの向上を図ることができる。
本実施形態では、起動種別判定処理では、少なくとも車速がゼロであり且つ車両の駆動力源20の出力回転速度がゼロであることを条件として、通常起動と判定する。更に、本実施形態では、起動種別判定処理では、自動変速機1に油圧を供給する油圧ポンプ40からの油圧の吐出がないことと、パーキングロック機構のロック状態を検出するパーキングロックセンサSe4が故障していないこととの、少なくともいずれか一方が成立することを更なる条件として、通常起動と判定する。具体的には、本実施形態では、車速がゼロであり、車両の駆動力源20の出力回転速度がゼロであり、油圧ポンプ40からの油圧の吐出がなく、更に、パーキングロックセンサSe4が故障していないことを条件として、制御装置30の起動が通常起動であると判定する。本実施形態では、油圧制御装置32の油圧回路41に設けられる油圧センサSe5には、油圧ポンプ40からの油圧の吐出の有無を判定するための吐出有無判定センサが含まれる。この吐出有無判定センサは、例えば、制御装置30が通常起動する状況では油圧ポンプ40から油圧が供給されず、制御装置30が非常起動する状況では油圧ポンプ40から油圧が供給される箇所の油圧を検出する。制御装置30は、この吐出有無判定センサの検出情報に基づき、油圧ポンプ40からの油圧の吐出の有無を判定する。
このように油圧ポンプ40からの油圧の吐出がないことを、通常起動と判定する条件に含めることで、例えば、以下のような効果を得ることができる。内燃機関が駆動力源20として備えられる場合、車両の主電源をオン状態としたまま内燃機関を停止させるアイドリングストップ制御を実行する車両には、油圧ポンプ40としての電動オイルポンプと、電動オイルポンプの吐出圧を作動圧として動作する(蓄圧或いは吐出を行う)アキュムレータとが備えられる場合がある。この場合、車両の停車中で且つアイドリングストップ制御の実行中に制御装置30が非常起動した場合、制御装置30の非常起動時に、電動オイルポンプは、油圧の吐出がない状態とはならずに、アキュムレータの作動圧に応じた油圧を吐出する状態となる。油圧ポンプ40からの油圧の吐出がないことを、通常起動と判定する条件に含めることで、このような状況での制御装置30の起動を、非常起動によるものであると正しく判定することが可能となる。
次に、本実施形態に係る起動時制御(制御装置30の起動時に行われる制御)の処理手順の一例について、図3~図6を参照して説明する。図3に示すように、制御装置30は、起動後、起動種別判定処理を実行する(ステップ#01)。そして、起動が車両起動後の通常起動によるものであると判定された場合には(ステップ#02:Yes)、通常起動制御を実行し(ステップ#03)、起動が非常起動によるものであると判定された場合には、言い換えれば、起動が通常起動によるものであると判定されなかった場合には(ステップ#02:No)、非常起動制御を実行し(ステップ#04)、処理は終了する。
図3のステップ#01の起動種別判定処理の処理手順について、図4を参照して説明する。図4に示すように、制御装置30は、油圧ポンプ40からの油圧の吐出がなく(ステップ#10:Yes)、車速がゼロであり(ステップ#11:Yes)、パーキングロックセンサSe4が故障しておらず(ステップ#12:Yes)、更に、駆動力源20の出力回転速度がゼロである場合に(ステップ#13:Yes)、制御装置30の起動が通常起動であると判定する(ステップ#14)。ステップ#10~#13の全てで肯定的な判定がなされない限り、言い換えれば、ステップ#10~#13の1つでも否定的な判定がなされると、制御装置30の起動が非常起動であると判定(通常起動ではないと判定)される(ステップ#15)。なお、ステップ#10~#13の判定順序は適宜変更可能であり、少なくともいずれかの判定を同時に行うことも可能である。
図3のステップ#03の通常起動制御の処理手順について、図5を参照して説明する。図5に示すように、制御装置30は、パーキングロック機構10のロック状態がロック有効状態である場合には(ステップ#20:Yes)、パーキングレンジを選択し(ステップ#21)、パーキングロック機構10のロック状態がロック無効状態である場合には(ステップ#20:No)、ニュートラルレンジを選択する(ステップ#22)。そして、制御装置30は、選択したシフトレンジを形成するように、自動変速機1を制御する(ステップ#23)。
図3のステップ#04の非常起動制御の処理手順について、図6を参照して説明する。制御装置30は、パーキングロックセンサSe4が故障しているか否かの判定を行い(ステップ#30)、パーキングロックセンサSe4が故障していない場合には(ステップ#30:No)、パーキングロック機構10のロック状態がロック有効状態であることを条件に(ステップ#31:Yes)、パーキングレンジを選択し(ステップ#32)、パーキングレンジを形成するように自動変速機1を制御する(ステップ#39)。また、パーキングロックセンサSe4が故障している場合であっても(ステップ#30:Yes)、車速が予め定められた第一閾値以下である場合には(ステップ#33:Yes)、パーキングレンジを選択し(ステップ#32)、パーキングレンジを形成するように自動変速機1を制御する(ステップ#39)。このように、制御装置30が非常起動した場合に、パーキングロックセンサSe4が故障しており、且つ、車速が予め定められた閾値(ここでは、第一閾値)以下である場合には、変速機構50において特定変速段が形成されているか否かにかかわらず、パーキングレンジで自動変速機1を制御する。パーキングレンジでの自動変速機1の制御は、被操作部91aの操作に基づくシフトレンジの選択が行われるまでの間、実行される。第一閾値は、0以上の値に設定される。第一閾値は、第二閾値よりも小さい値に設定することができ、例えば、5km/hに設定することができる。第一閾値を正の値に設定することで、車速がゼロでなくても比較的低速である場合にはパーキングレンジを選択して車輪をロックすることで、特に坂道等で車両が運転者の意思に反して移動することを回避しやすくなっている。
一方、パーキングロックセンサSe4が故障していない場合であってもパーキングロック機構10のロック状態がロック無効状態である場合や(ステップ#30:No、ステップ#31:No)、パーキングロックセンサSe4が故障しており、且つ、車速が第一閾値より高い場合には(ステップ#30:Yes、ステップ#33:No)、パーキングレンジは選択されず、前進レンジを選択するか否かの判定に処理が進む(ステップ#34~#36)。制御装置30は、自動変速機1の入力回転速度と出力回転速度との回転速度比が、特定変速段が形成されている場合の値と一致し(ステップ#34:Yes)、油圧回路41の状態が、特定変速段が形成されている場合の状態と一致し(ステップ#35:Yes)、更に、車速が第二閾値以上である場合に(ステップ#36:Yes)、前進レンジを選択する(ステップ#37)。ステップ#34~#36の全てで肯定的な判定がなされない限り、言い換えれば、ステップ#34~#36の1つでも否定的な判定がなされると、ニュートラルレンジが選択される(ステップ#38)。そして、制御装置30は、選択したシフトレンジを形成するように、自動変速機1を制御する(ステップ#39)。このように、制御装置30は、車両の走行中(ここでは、車速が第一閾値以上である状態)に制御装置30が非常起動した場合に、変速機構50において特定変速段が形成された状態以外の状態である場合には、ニュートラルレンジで自動変速機1を制御する。ニュートラルレンジでの自動変速機1の制御は、被操作部91aの操作に基づくシフトレンジの選択が行われるまでの間、実行される。よって、例えば、車両の走行中に運転者が意図的に前進レンジからニュートラルレンジに切り替える操作を行った後に、制御装置30が非常起動した場合には、変速機構50において特定変速段が形成されないため、変速機構50はニュートラル状態に維持される。なお、ステップ#34~#36の判定順序は適宜変更可能であり、少なくともいずれかの判定を同時に行うことも可能である。
以上のように、本実施形態に係る非常起動制御では、まず、パーキングレンジを選択するか否かを決定するための判定処理が行われる(ステップ#31~#33)。そして、パーキングレンジを選択する決定がなされなかった場合には、次に、前進レンジを選択するか否かを決定するための判定処理が行われる(ステップ#34~#36)。そして、前進レンジを選択する決定がなされなかった場合には、ニュートラルレンジが選択される。
本実施形態に係る非常起動制御の具体的内容について、図7に示す例を参照して説明する。なお、この例では、第五速段5thでの走行中(前進走行中)に制御装置30が非常起動することで、特定変速段である第六速段6thが形成され、制御装置30の非常起動後に前進レンジが選択される状況を想定している。図7では、ソレノイドバルブ(第一リニアソレノイドバルブSL1、第二リニアソレノイドバルブSL2、及び第四リニアソレノイドバルブSL4)のそれぞれについて、油圧指令値Piと実際の出力油圧Prの時間tに対する変化を示している。なお、ここでは、図8~図10に示す自動変速機1を制御装置30の制御対象とする場合を想定しており、第五速段5thは、第一リニアソレノイドバルブSL1から油圧の供給を受ける第一クラッチC1と、第二リニアソレノイドバルブSL2から油圧の供給を受ける第二クラッチC2とが係合した状態で形成され、第六速段6thは、第二クラッチC2と、第四リニアソレノイドバルブSL4から油圧の供給を受ける第四クラッチC4とが係合した状態で形成される。
時刻T1で制御装置30にリセットが発生し、ソレノイドバルブにオールオフフェールが発生すると、全てのソレノイドバルブに対する油圧指令値はゼロとなるが、リンプホーム機能により、特定変速段としての第六速段6thが形成される。そして、制御装置30の非常起動に伴い実行される非常起動制御により前進レンジが選択され、時刻T2において、前進レンジを形成するための油圧制御装置32に対する制御装置30の制御が再開される。ここでは、前進レンジを形成するための制御の再開に際して、まずは特定変速段(ここでは、第六速段6th)を形成する制御を行い、その後の時点で、アクセル開度や車速等に基づき決定される目標変速段(ここでは、第五速段5th)を形成する制御を行う場合を例示している。すなわち、制御装置30による油圧制御装置32に対する制御の再開に伴い、時刻T2で、第二クラッチC2を係合するための第二リニアソレノイドバルブSL2に対する油圧指令と、第四クラッチC4を係合するための第四リニアソレノイドバルブSL4に対する油圧指令とが生成され、制御装置30による油圧制御装置32の制御によって、第六速段6thが形成される。そして、目標変速段が第五速段5thに設定されることに伴い、時刻T3で、第一クラッチC1を係合するための第一リニアソレノイドバルブSL1に対する油圧指令と、第四クラッチC4を解放するための第四リニアソレノイドバルブSL4に対する油圧指令とが生成され、制御装置30による油圧制御装置32の制御によって、第五速段5thが形成される。
次に、制御装置30の制御対象となる自動変速機1の一例について、図8~図10を参照して説明する。図8に示す例では、変速機構50は、トルクコンバータTCを介して駆動力源20に駆動連結される変速入力部材22の回転を、変速段に応じた変速比で変速して、変速出力部材23に伝達するように構成されている。図示は省略するが、変速出力部材23は、出力用差動歯車装置を介して左右2つの車輪に駆動連結されている。トルクコンバータTCには、駆動力源20の出力部材(駆動出力部材21)と変速入力部材22とを直結するロックアップクラッチCLが設けられている。
図8に示すように、変速機構50は、第一遊星歯車機構PG1及び第二遊星歯車機構PG2の2つの遊星歯車機構を組み合わせて構成されている。第一遊星歯車機構PG1は、3つの回転要素(第一サンギヤSG1、第一キャリヤCA1、及び第一リングギヤRG1)を有するダブルピニオン型の遊星歯車機構である。また、第二遊星歯車機構PG2は、4つの回転要素(第二サンギヤSG2、第三サンギヤSG3、第二キャリヤCA2、及び第二リングギヤRG2)を有するラビニヨ型の遊星歯車機構である。すなわち、第二キャリヤCA2は、第二サンギヤSG2に噛み合うと共に第二リングギヤRG2に噛み合う複数のロングピニオンギヤと、ロングピニオンギヤに噛み合うと共に第三サンギヤSG3に噛み合う複数のショートピニオンギヤとを支持している。
変速機構50は、複数の変速用係合装置51を備えている。具体的には、変速機構50は、第一クラッチC1、第二クラッチC2、第三クラッチC3、第四クラッチC4、第一ブレーキB1、及び第二ブレーキB2を備えている。また、変速機構50は、複数の変速用係合装置51に加えて、ワンウェイクラッチFを備えている。変速機構50は、変速用係合装置51及びワンウェイクラッチFのそれぞれの係合の状態に応じて、複数の変速段のいずれかを選択的に形成する。具体的には、図9に示す作動表に従い、2つの変速用係合装置51(或いは1つの変速用係合装置51及びワンウェイクラッチF)が係合することで、変速比の異なる前進用の8つの変速段(変速比の大きいものから順に、第一段1st、第二段2nd、第三段3rd、第四段4th、第五段5th、第六段6th、第七段7th、第八段8th)や後進段(R)が選択的に形成される。ニュートラルレンジ(N)やパーキングレンジ(P)では、全ての変速用係合装置51が解放されて変速機構50はニュートラル状態となる。なお、図9において、「(○)」は、駆動力源20としての内燃機関の回転抵抗を利用した制動(いわゆるエンジンブレーキ)や駆動力源20としての回転電機による回生制動を行う場面において係合状態に制御されることを示している。
図10に、図8に示す変速機構50の制御に用いることが可能な油圧制御装置32(油圧回路41)の一例を示す。油圧制御装置32は、複数のソレノイドバルブ(電磁弁)を備えている。具体的には、油圧制御装置32は、オンオフソレノイドバルブとして、第一ソレノイドバルブS1、第二ソレノイドバルブS2、第三ソレノイドバルブS3、及び第四ソレノイドバルブS4を備えると共に、リニアソレノイドバルブとして、第一リニアソレノイドバルブSL1、第二リニアソレノイドバルブSL2、第三リニアソレノイドバルブSL3、第四リニアソレノイドバルブSL4、第五リニアソレノイドバルブSL5、第六リニアソレノイドバルブSL6、ライン圧制御バルブSLT、及びロックアップ制御バルブSLUを備えている。制御装置30は、これらの各ソレノイドバルブに対する電力の供給状態(通電の状態)を制御することで、変速機構50の状態を、前進レンジに応じた状態(いずれかの前進用変速段が形成される状態)、後進レンジに応じた状態(後進用変速段が形成される状態)、ニュートラルレンジ或いはパーキングレンジに応じた状態(いずれの変速段も形成されないニュートラル状態)との間で切り替える。
図10に示すように、油圧制御装置32は、ライン圧調整バルブ63、モジュレータバルブ64、及びロックアップリレーバルブ65を備えている。ライン圧調整バルブ63は、油圧ポンプ40から吐出される油の油圧をライン圧PLに調整するバルブである。制御装置30は、目標ライン圧に応じた油圧(信号圧)をライン圧調整バルブ63に出力するようにライン圧制御バルブSLTを制御し、ライン圧調整バルブ63によってライン圧PLが目標ライン圧に合わせて調整される。モジュレータバルブ64は、ライン圧PLを減圧してモジュレータ圧Pmodを生成するバルブである。
ロックアップリレーバルブ65は、ロックアップクラッチCLに対する油圧の供給状態を切り替えるバルブである。ロックアップリレーバルブ65の状態は、第三ソレノイドバルブS3からロックアップリレーバルブ65に入力される油圧に応じて、ロックアップクラッチCLを係合させる状態と、ロックアップクラッチCLを解放させる状態とに切り替えられる。ロックアップリレーバルブ65の状態が、ロックアップクラッチCLを係合させる状態である場合には、ロックアップ制御バルブSLUから出力された油圧がロックアップリレーバルブ65を介してロックアップクラッチCLに供給される。なお、ロックアップリレーバルブ65は、トルクコンバータTC(具体的には、動力伝達室或いは循環油室、以下同様。)に油を出力するポート、トルクコンバータTCから排出された油が入力されるポート、及び、オイルクーラ43に油を出力するポートを備えており、ロックアップリレーバルブ65は、トルクコンバータTCに対して油が供給されると共に、トルクコンバータTCから排出された油がオイルクーラ43に供給される状態に切り替え可能に構成されている。
油圧制御装置32は、ライン圧PLに基づいて前進レンジ圧PD又は後進レンジ圧PRを生成するレンジ切替部70を備えている。レンジ切替部70から出力された前進レンジ圧PDは、第一リニアソレノイドバルブSL1、第二リニアソレノイドバルブSL2、第三リニアソレノイドバルブSL3、第四リニアソレノイドバルブSL4、及び第五リニアソレノイドバルブSL5に供給される。また、レンジ切替部70から出力された後進レンジ圧PRは、第三リニアソレノイドバルブSL3に供給される。
レンジ切替部70は、第一ソレノイドバルブS1から入力される油圧に応じて状態が切り替わる第一切替バルブ61と、第二ソレノイドバルブS2から入力される油圧に応じて状態が切り替わる第二切替バルブ62とを備えている。制御装置30は、前進レンジで自動変速機1を制御する場合には、レンジ切替部70から前進レンジ圧PDが出力されるように第一ソレノイドバルブS1及び第二ソレノイドバルブS2の通電の状態を制御し、後進レンジで自動変速機1を制御する場合には、レンジ切替部70から後進レンジ圧PRが出力されるように第一ソレノイドバルブS1及び第二ソレノイドバルブS2の通電の状態を制御する。また、制御装置30は、ニュートラルレンジやパーキングレンジで自動変速機1を制御する場合には、レンジ切替部70から前進レンジ圧PD及び後進レンジ圧PRのいずれもが出力されないように第一ソレノイドバルブS1及び第二ソレノイドバルブS2の通電の状態を制御する。
第一切替バルブ61は、第一ソレノイドバルブS1の非通電時には、ライン圧PLを前進レンジ用の油圧として第二切替バルブ62に出力する状態に切り替わり、第一ソレノイドバルブS1の通電時には、ライン圧PLを後進レンジ用の油圧として第二切替バルブ62に出力する状態に切り替わるように構成されている。また、第二切替バルブ62は、第二ソレノイドバルブS2の非通電時には、第一切替バルブ61から供給される前進レンジ用の油圧を前進レンジ圧PDとして出力すると共に、第一切替バルブ61から供給される後進レンジ用の油圧を遮断する状態に切り替わり、第二ソレノイドバルブS2の通電時には、第一切替バルブ61から供給される後進レンジ用の油圧を後進レンジ圧PRとして出力すると共に、第一切替バルブ61から供給される前進レンジ用の油圧を遮断する状態に切り替わるように構成されている。これにより、オールオフフェールが発生した場合には、レンジ切替部70から前進レンジ圧PDが出力される。
リニアソレノイドバルブ(SL1~SL6)のそれぞれは、前進レンジ圧PD、後進レンジ圧PR、又はライン圧PLが入力される入力ポートと、制御対象の変速用係合装置51の油圧サーボ機構42に連通する出力ポートと、ドレンポートと、を備えている。例えば、第一リニアソレノイドバルブSL1は、前進レンジ圧PDが入力される入力ポートと、第一クラッチC1の油圧サーボ機構42に連通する出力ポートと、ドレンポートとを備えている。そして、リニアソレノイドバルブ(SL1~SL6)のそれぞれは、入力ポートに入力される油圧を印加される電流に応じて調圧して、制御対象の変速用係合装置51の油圧サーボ機構42に供給する。
図10に示す例では、リニアソレノイドバルブ(SL1~SL6)のそれぞれは、非通電時に閉弁するノーマルクローズ型のソレノイドバルブである。よって、オールオフフェールが発生した場合には、リニアソレノイドバルブ(SL1~SL6)の全てについて、ドレンポートと出力ポートとが連通し、入力ポートに供給される油圧は遮断される。このような構成において、変速機構50において前進レンジで動力伝達状態が実現されている状態でオールオフフェールが発生した場合(油圧制御装置32に対する電力の供給が遮断された場合)に、変速機構50において特定変速段を形成することを可能とするために、この油圧制御装置32は、オールオフフェールが発生した場合に、特定係合装置(特定変速段を形成するために係合される変速用係合装置51)に対応するリニアソレノイドバルブ(以下、「特定ソレノイドバルブ」という。)のドレンポートに対して油圧を逆入力することで、特定係合装置を係合させるように構成されている。
具体的には、油圧制御装置は、第四ソレノイドバルブS4から入力される油圧に応じて状態が切り替わるフェールセーフバルブ60と、フェールセーフバルブ60から供給される油圧(以下に述べる第一油圧P1)を特定ソレノイドバルブのドレンポートに入力する逆入力部71と、を備えている。図10に示す例では、特定係合装置が第二クラッチC2及び第四クラッチC4であるため(すなわち、特定変速段は第六速段6thであるため)、特定ソレノイドバルブは第二リニアソレノイドバルブSL2と第四リニアソレノイドバルブSL4であり、逆入力部71は、これら2つの特定ソレノイドバルブのそれぞれに設けられている。
フェールセーフバルブ60は、レンジ切替部70から出力された前進レンジ圧PDが入力される入力ポートと、逆入力部71に連通する出力ポートと、を備えている。フェールセーフバルブ60は、第四ソレノイドバルブS4の通電時には、入力される前進レンジ圧PDを遮断する状態に切り替わり、第四ソレノイドバルブS4の非通電時には、入力される前進レンジ圧PDを第一油圧P1として出力する状態に切り替わるように構成されている。制御装置30の起動中は、第四ソレノイドバルブS4は基本的に電力が供給される通電状態とされるため、フェールセーフバルブ60から第一油圧P1は出力されない。そして、オールオフフェールが発生した場合には、第四ソレノイドバルブS4が非通電状態となることで、フェールセーフバルブ60から第一油圧P1が出力される状態となる。なお、本例では、第四ソレノイドバルブS4は、非通電時に開弁するノーマルオープン型のソレノイドバルブであり、オールオフフェールが発生した場合には、第四ソレノイドバルブS4からフェールセーフバルブ60に入力される油圧により、フェールセーフバルブ60の状態が、前進レンジ圧PDを第一油圧P1として出力する状態に切り替えられる。
逆入力部71は、逆止弁とオリフィスとを備えている。逆止弁は、オールオフフェールが発生していない状態での特定ソレノイドバルブのドレンポートからの油圧の排出を許容ように設けられている。そのため、オールオフフェールが発生した場合には、フェールセーフバルブ60から逆入力部71に供給された第一油圧P1は、逆止弁と並列に設けられたオリフィスを通って特定ソレノイドバルブのドレンポートに入力される。なお、この状態では、第一油圧P1によって逆止弁は閉状態に維持される。そして、特定ソレノイドバルブのドレンポートに入力された第一油圧P1が、当該特定ソレノイドバルブの出力ポートから特定係合装置の油圧サーボ機構42に供給されることで、当該特定係合装置が係合される。図10に示す例では、第二クラッチC2及び第四クラッチC4が係合されて、第六速段6thが形成される。よって、前進レンジでの走行中にオールオフフェールが発生した場合であっても、特定係合装置のそれぞれの油圧サーボ機構42に油圧を供給することで、固定された変速段(ここでは、第六速段6th)で前進走行を継続することが可能となっている。詳細は省略するが、油圧制御装置32は、このようなフェールセーフバルブ60及び逆入力部71を介した、特定ソレノイドバルブのドレンポートへの第一油圧P1(前進レンジ圧PD)の逆入力が、オールオフフェールの発生時(油圧制御装置32に対する電力の供給の遮断時)に変速機構50において前進レンジで動力伝達状態が実現されていた場合にのみ行われるように構成されている。
図10に示すように、油圧制御装置32は、リニアソレノイドバルブ(SL2~SL6)のそれぞれに、制御対象の変速用係合装置51の油圧サーボ機構42に連通する出力ポートから出力される油圧を検出する油圧センサSe5を備えている。具体的には、第二リニアソレノイドバルブSL2に第二油圧スイッチSW2が設けられ、第三リニアソレノイドバルブSL3に第三油圧スイッチSW3が設けられ、第四リニアソレノイドバルブSL4に第四油圧スイッチSW4が設けられ、第五リニアソレノイドバルブSL5に第五油圧スイッチSW5が設けられ、第六リニアソレノイドバルブSL6に第六油圧スイッチSW6が設けられている。本例では、特定係合装置は第二クラッチC2及び第四クラッチC4が係合されて形成されるため、制御装置30は、第二油圧スイッチSW2及び第四油圧スイッチSW4のそれぞれが、出力ポートから油圧サーボ機構42への油圧の供給(所定圧以上の油圧の供給)を検出している場合に、油圧回路41の状態が特定変速段が形成されている場合の状態と一致する(すなわち、変速機構50において特定変速段が形成されている)と判定することができる。
なお、ここでは、特定変速段が1つである場合を例として説明したが、油圧制御装置32に対する電力の供給が遮断された場合に、変速比の互いに異なる複数の前進用変速段を特定変速段として形成可能な構成とすることもできる。例えば、複数の前進用変速段を、低速側(変速比の大きい側)の変速段が属する第一グループと、高速側(変速比の小さい側)の変速段が属する第二グループとに分け、油圧制御装置32に対する電力の供給が遮断された時点の変速段が第一グループに属する場合には、第一特定変速段が形成され、油圧制御装置32に対する電力の供給が遮断された時点の変速段が第二グループに属する場合には、第一特定変速段とは変速比の異なる(例えば、変速比のより小さい)第二特定変速段が形成される構成とすることもできる。この場合、制御装置30は、車両の走行中に非常起動した場合に、変速機構50においていずれかの特定変速段が形成された状態である場合には、前進レンジで自動変速機1を制御するように構成される。
〔その他の実施形態〕
次に、制御装置のその他の実施形態について説明する。
次に、制御装置のその他の実施形態について説明する。
(1)上記の実施形態では、非常起動制御では、自動変速機1の入力回転速度と出力回転速度との回転速度比と、油圧回路41の状態とに基づいて、特定変速段が形成されているか否かを判定する構成を例として説明した。しかし、そのような構成に限定されることなく、自動変速機1の入力回転速度と出力回転速度との回転速度比と、油圧回路41の状態との一方のみに基づいて、特定変速段が形成されているか否かを判定する構成とすることもできる。すなわち、制御装置30が、変速機構50の入力回転速度と出力回転速度との回転速度比の検出情報と、特定変速段の変速比との比較のみに基づき、変速機構50において特定変速段が形成された状態であるか否かを判定する構成とすることや、制御装置30が、油圧センサSe5の検出情報と、特定変速段の形成時の変速用係合装置51のそれぞれの係合の状態との比較のみに基づき、変速機構50において特定変速段が形成された状態であるか否かを判定する構成とすることができる。また、制御装置が、自動変速機1の入力回転速度と出力回転速度との回転速度比と、油圧回路41の状態との少なくとも一方の情報に加えて、これらとは別の情報にも基づいて、特定変速段が形成されているか否かを判定する構成とすることもできる。
(2)上記の実施形態では、車速がゼロであり、車両の駆動力源20の出力回転速度がゼロであり、油圧ポンプ40からの油圧の吐出がなく、更に、パーキングロックセンサSe4が故障していないことを条件として、制御装置30の起動が通常起動であると判定する構成を例として説明した。しかし、そのような構成に限定されることなく、これら4つの条件のうちの一部のみを条件として、制御装置30の起動が通常起動であるか否かを判定する構成とすることもできる。例えば、車速がゼロであり、且つ、車両の駆動力源20の出力回転速度がゼロであることを条件に、制御装置30の起動が通常起動であると判定する構成とすることができる。また、例えば、車速がゼロであり、車両の駆動力源20の出力回転速度がゼロであり、更に、油圧ポンプ40からの油圧の吐出がないことを条件として、制御装置30の起動が通常起動であると判定する構成とすることもできる。また、上記の4つの条件の全て又は一部に加えて、更に別の条件にも基づき、制御装置30の起動が通常起動であるか否かを判定する構成とすることもできる。
(3)上記の実施形態では、制御装置30は、起動後、起動種別判定処理を実行する構成を例として説明した。しかし、そのような構成に限定されることなく、制御装置30が起動後、起動種別判定処理を行わない構成とすることもできる。例えば、制御装置30の状態(リセットの発生等)を車両に備えられた他の制御装置(例えば、駆動力源制御装置31等)が監視する構成とし、制御装置30に非常起動が発生したことを示す信号を制御装置30が起動時に当該他の制御装置から受けた場合に非常起動制御を実行し、上記の信号を受けなかった場合には通常起動制御を実行する構成とすることもできる。
(4)上記の実施形態では、パーキングロック機構10のロック状態が、油圧アクチュエータ14によって切り替えられる構成を例として説明した。しかし、そのような構成に限定されることなく、パーキングロック機構10のロック状態が、制御装置30からの指令に応じて動作する電動アクチュエータによって切り替えられる構成とすることもできる。
(5)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
以下、上記において説明した制御装置の概要について説明する。
以下、上記において説明した制御装置の概要について説明する。
パーキングロック機構(10)を備えた自動変速機(1)を制御対象とし、被操作部(91a)の操作に基づくシフトレンジの選択が行われた場合に、当該シフトレンジの選択指令に応じて前記自動変速機(1)を制御するシフト・バイ・ワイヤ方式の制御装置(30)であって、前記自動変速機(1)は、油圧駆動式の変速用係合装置(51)を備えた変速機構(50)と、電力の供給を受けて動作するソレノイドを含む、前記変速用係合装置(51)に供給する油圧を制御する油圧制御装置(32)と、を備え、前記油圧制御装置(32)は、前記変速機構(50)において前進レンジで動力伝達状態が実現されている状態で当該油圧制御装置(32)に対する電力の供給が遮断された場合に、予め定められた前進用の変速段である特定変速段を前記変速機構(50)において形成するように構成され、車両の走行中に前記制御装置(30)への電力の供給が遮断され、前記制御装置(30)が非常起動した場合に、前記変速機構(50)において前記特定変速段が形成された状態である場合には、前記前進レンジで前記自動変速機(1)を制御する。
この構成によれば、車両の走行中に制御装置(30)が非常起動した場合に、変速機構(50)における特定変速段の形成の有無に基づき、非常起動前に前進レンジが選択されていたか否かを判定することができる。そして、制御装置(30)の非常起動前に前進レンジが選択されていたことが推定される状況において、制御装置(30)の非常起動後に前進レンジで自動変速機(1)を制御することができる。よって、車両の前進レンジでの走行中に制御装置(30)が非常起動した場合に、前進レンジでの走行を継続することができ、この結果、制御装置(30)の非常起動に伴う運転者のドライバビリティの低下を抑制することが可能となる。
ここで、前記油圧制御装置(32)は、前記変速機構(50)においてニュートラルレンジで動力伝達状態が遮断されている状態で当該油圧制御装置(32)に対する電力の供給が遮断された場合に、前記変速機構(50)をニュートラル状態とするように構成され、車両の走行中に前記制御装置(30)が前記非常起動した場合に、前記変速機構(50)において前記特定変速段が形成された状態以外の状態である場合には、前記ニュートラルレンジで前記自動変速機(1)を制御する構成とすると好適である。
車両の走行中に制御装置(30)が非常起動した場合に、変速機構(50)において特定変速段が形成されていなければ、非常起動前に前進レンジが選択されていなかったことが推定され、車両の走行中であるため非常起動前にパーキングレンジが選択されていた可能性も低い。上記の構成によれば、このような状況においてニュートラルレンジで自動変速機(1)を制御することができるため、制御装置(30)の非常起動後の自動変速機(1)の状態が、運転者の意図と大きく乖離した状態となることを回避可能となる。
なお、このような状況において、非常起動前に後進レンジが選択されていた可能性もあるが、後進レンジでの走行は基本的に速度が低いため、制御装置(30)の非常起動後に後進レンジで自動変速機(1)の制御が行われないことによる運転者のドライバビリティの低下は限定的である。
なお、このような状況において、非常起動前に後進レンジが選択されていた可能性もあるが、後進レンジでの走行は基本的に速度が低いため、制御装置(30)の非常起動後に後進レンジで自動変速機(1)の制御が行われないことによる運転者のドライバビリティの低下は限定的である。
また、前記制御装置(30)が前記非常起動した場合に、前記パーキングロック機構(10)のロック状態を検出するセンサ(Se4)が故障しており、且つ、車速が予め定められた閾値以下である場合には、前記変速機構(50)において前記特定変速段が形成されているか否かにかかわらず、パーキングレンジで前記自動変速機(1)を制御する構成とすると好適である。
この構成によれば、パーキングロック機構(10)がロック有効状態である場合に、運転者の意思に反してロック有効状態からロック無効状態に切り替えられて車両が移動することを回避可能となる。なお、この構成では、センサ(Se4)が故障しており且つパーキングロック機構(10)がロック無効状態である場合にも、車速が予め定められた閾値以下である場合にはロック無効状態からロック有効状態に切り替えられるが、停車中又は車速が低い状態であるため、車両の挙動に与える影響は限定的である。
また、前記変速機構(50)の入力回転速度と出力回転速度との回転速度比の検出情報と、前記特定変速段の変速比との比較に基づいて、前記変速機構(50)において前記特定変速段が形成された状態であるか否かを判定する構成とすると好適である。
この構成によれば、変速機構(50)の入力回転速度と出力回転速度との回転速度比という、特定変速段が形成されている場合には予め定められた値となる検出情報に基づいて、特定変速段が形成されているか否かを精度良く判定することが可能となる。
また、前記変速機構(50)は、複数の前記変速用係合装置(51)を備え、前記油圧制御装置(32)は、複数の前記変速用係合装置(51)のうちの少なくとも一部の前記変速用係合装置(51)に対する油圧の供給状態を検出する油圧センサ(Se5)を備え、前記油圧センサ(Se5)の検出情報と、前記特定変速段の形成時の前記変速用係合装置(51)のそれぞれの係合の状態との比較に基づいて、前記変速機構(50)において前記特定変速段が形成された状態であるか否かを判定する構成とすると好適である。
この構成によれば、変速用係合装置(51)に対する油圧の供給状態という、特定変速段が形成されている場合には予め定められた状態となる検出情報に基づいて、特定変速段が形成されているか否かを精度良く判定することが可能となる。
また、前記制御装置(30)の起動後、起動が前記非常起動によるものか、車両起動後の通常起動によるものかを判定し、前記起動が前記通常起動であると判定される場合には、ニュートラルレンジ及びパーキングレンジのうちのいずれかで前記自動変速機(1)を制御する構成とすると好適である。
制御装置(30)が通常起動した場合には、前進レンジや後進レンジで自動変速機(1)の制御を実行することが運転者の意思に沿うような状況は想定し難い。この点に鑑み、上記の構成では、起動が通常起動であると判定される場合には、シフトレンジの選択肢に前進レンジや後進レンジが含まれないため、制御装置(30)が通常起動してからいずれかのシフトレンジで自動変速機(1)の制御が開始されるまでの時間の短縮を図ることができる。
上記のように制御装置(30)の起動後、起動が前記非常起動によるものか前記通常起動によるものかを判定する構成において、少なくとも車速がゼロであり且つ車両の駆動力源(20)の出力回転速度がゼロであることを条件として、前記起動が前記通常起動であると判定する構成とすると好適である。
この構成によれば、制御装置(30)の起動が車両起動後の通常起動である場合には、車速がゼロであり且つ駆動力源(20)の出力回転速度がゼロである場合が多いことを考慮して、制御装置(30)の起動が非常起動によるものであるか通常起動によるものであるかを適切に判定することが可能となる。
ここで、前記自動変速機(1)に油圧を供給する油圧ポンプ(40)からの油圧の吐出がないことと、前記パーキングロック機構(10)のロック状態を検出するセンサ(Se4)が故障していないこととの、少なくともいずれか一方が成立することを更なる条件として、前記起動が前記通常起動であると判定する構成とすると好適である。
上記の構成によれば、油圧ポンプ(40)からの油圧の吐出がないことを、通常起動と判定するための条件に含めることで、制御装置(30)の起動が非常起動によるものであるか通常起動によるものであるかの判定精度を高めることが可能となる。例えば、車両の主電源をオン状態としたまま車両の駆動力源(20)としての内燃機関を停止させるアイドリングストップ制御を実行する車両には、専用の回転電機で駆動される電動オイルポンプと、電動オイルポンプの吐出圧を作動圧として動作する(蓄圧或いは吐出を行う)アキュムレータとが備えられる場合がある。この場合、車両の停車中で且つアイドリングストップ制御の実行中に制御装置(30)が非常起動した場合に、制御装置(30)の非常起動時に、車速がゼロであり且つ車両の駆動力源の出力回転速度がゼロの状態となるが、油圧ポンプ(40)としての電動オイルポンプは、油圧の吐出がない状態とはならずに、アキュムレータの作動圧に応じた油圧を吐出する状態となる。上記のように油圧ポンプ(40)からの油圧の吐出がないことを通常起動と判定するための条件に含めることで、このような状況での制御装置(30)の起動を、通常起動によるものではなく非常起動によるものであると正しく判定することが可能となる。
また、上記の構成によれば、パーキングロック機構(10)のロック状態を検出するセンサ(Se4)が故障していなことを、通常起動と判定するための条件に含めることで、当該センサ(Se4)が故障している場合には、起動が通常起動制御ではなく非常起動制御によるものであるとして、自動変速機(1)を適切に制御することが可能となる。
また、上記の構成によれば、パーキングロック機構(10)のロック状態を検出するセンサ(Se4)が故障していなことを、通常起動と判定するための条件に含めることで、当該センサ(Se4)が故障している場合には、起動が通常起動制御ではなく非常起動制御によるものであるとして、自動変速機(1)を適切に制御することが可能となる。
本開示に係る制御装置は、上述した各効果のうち、少なくとも1つを奏することができれば良い。
1:自動変速機
10:パーキングロック機構
20:駆動力源
30:制御装置
32:油圧制御装置
40:油圧ポンプ
50:変速機構
51:変速用係合装置
91a:被操作部
Se4:パーキングロックセンサ(センサ)
Se5:油圧センサ
10:パーキングロック機構
20:駆動力源
30:制御装置
32:油圧制御装置
40:油圧ポンプ
50:変速機構
51:変速用係合装置
91a:被操作部
Se4:パーキングロックセンサ(センサ)
Se5:油圧センサ
Claims (8)
- パーキングロック機構を備えた自動変速機を制御対象とし、被操作部の操作に基づくシフトレンジの選択が行われた場合に、当該シフトレンジの選択指令に応じて前記自動変速機を制御するシフト・バイ・ワイヤ方式の制御装置であって、
前記自動変速機は、油圧駆動式の変速用係合装置を備えた変速機構と、電力の供給を受けて動作するソレノイドを含む、前記変速用係合装置に供給する油圧を制御する油圧制御装置と、を備え、
前記油圧制御装置は、前記変速機構において前進レンジで動力伝達状態が実現されている状態で当該油圧制御装置に対する電力の供給が遮断された場合に、予め定められた前進用の変速段である特定変速段を前記変速機構において形成するように構成され、
車両の走行中に前記制御装置への電力の供給が遮断され、前記制御装置が非常起動した場合に、前記変速機構において前記特定変速段が形成された状態である場合には、前記前進レンジで前記自動変速機を制御する制御装置。 - 前記油圧制御装置は、前記変速機構においてニュートラルレンジで動力伝達状態が遮断されている状態で当該油圧制御装置に対する電力の供給が遮断された場合に、前記変速機構をニュートラル状態とするように構成され、
車両の走行中に前記制御装置が前記非常起動した場合に、前記変速機構において前記特定変速段が形成された状態以外の状態である場合には、前記ニュートラルレンジで前記自動変速機を制御する請求項1に記載の制御装置。 - 前記制御装置が前記非常起動した場合に、前記パーキングロック機構のロック状態を検出するセンサが故障しており、且つ、車速が予め定められた閾値以下である場合には、前記変速機構において前記特定変速段が形成されているか否かにかかわらず、パーキングレンジで前記自動変速機を制御する請求項1又は2に記載の制御装置。
- 前記変速機構の入力回転速度と出力回転速度との回転速度比の検出情報と、前記特定変速段の変速比との比較に基づいて、前記変速機構において前記特定変速段が形成された状態であるか否かを判定する請求項1から3のいずれか一項に記載の制御装置。
- 前記変速機構は、複数の前記変速用係合装置を備え、
前記油圧制御装置は、複数の前記変速用係合装置のうちの少なくとも一部の前記変速用係合装置に対する油圧の供給状態を検出する油圧センサを備え、
前記油圧センサの検出情報と、前記特定変速段の形成時の前記変速用係合装置のそれぞれの係合の状態との比較に基づいて、前記変速機構において前記特定変速段が形成された状態であるか否かを判定する請求項1から4のいずれか一項に記載の制御装置。 - 前記制御装置の起動後、起動が前記非常起動によるものか、車両起動後の通常起動によるものかを判定し、
前記起動が前記通常起動であると判定される場合には、ニュートラルレンジ及びパーキングレンジのうちのいずれかで前記自動変速機を制御する請求項1から5のいずれか一項に記載の制御装置。 - 少なくとも車速がゼロであり且つ車両の駆動力源の出力回転速度がゼロであることを条件として、前記起動が前記通常起動であると判定する請求項6に記載の制御装置。
- 前記自動変速機に油圧を供給する油圧ポンプからの油圧の吐出がないことと、前記パーキングロック機構のロック状態を検出するセンサが故障していないこととの、少なくともいずれか一方が成立することを更なる条件として、前記起動が前記通常起動であると判定する請求項7に記載の制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018542493A JP6562159B2 (ja) | 2016-09-30 | 2017-09-21 | 制御装置 |
DE112017002978.3T DE112017002978T5 (de) | 2016-09-30 | 2017-09-21 | Steuerungsvorrichtung |
CN201780058626.XA CN109790922B (zh) | 2016-09-30 | 2017-09-21 | 控制装置 |
US16/310,183 US10648556B2 (en) | 2016-09-30 | 2017-09-21 | Control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-194989 | 2016-09-30 | ||
JP2016194989 | 2016-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061992A1 true WO2018061992A1 (ja) | 2018-04-05 |
Family
ID=61762756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034169 WO2018061992A1 (ja) | 2016-09-30 | 2017-09-21 | 制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10648556B2 (ja) |
JP (1) | JP6562159B2 (ja) |
CN (1) | CN109790922B (ja) |
DE (1) | DE112017002978T5 (ja) |
WO (1) | WO2018061992A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7307558B2 (ja) * | 2019-03-06 | 2023-07-12 | 株式会社Subaru | 車両の運転制御システム |
CN113446396B (zh) * | 2021-09-02 | 2022-01-04 | 盛瑞传动股份有限公司 | 换挡控制方法、装置设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591102A (en) * | 1995-06-07 | 1997-01-07 | Cummins Engine Company, Inc. | Apparatus and method for controlling a manual-automatic transmission after a power reset |
JP2007177932A (ja) * | 2005-12-28 | 2007-07-12 | Aisin Aw Co Ltd | 多段式自動変速機の油圧制御装置 |
JP2007298083A (ja) * | 2006-04-28 | 2007-11-15 | Mitsubishi Electric Corp | 変速機制御装置 |
JP2011231841A (ja) * | 2010-04-27 | 2011-11-17 | Toyota Motor Corp | 自動変速機のレンジ切り替え装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7628729B2 (en) | 2005-12-28 | 2009-12-08 | Aisin Aw Co., Ltd. | Hydraulic control apparatus for an automatic transmission |
JP4609418B2 (ja) * | 2006-11-15 | 2011-01-12 | トヨタ自動車株式会社 | シフト切換機構の制御装置および制御方法 |
JP4404911B2 (ja) * | 2007-01-09 | 2010-01-27 | ジヤトコ株式会社 | 自動変速機 |
JP4363486B2 (ja) * | 2008-01-22 | 2009-11-11 | トヨタ自動車株式会社 | 無段変速機の制御装置および制御方法 |
JP2010223355A (ja) * | 2009-03-24 | 2010-10-07 | Aisin Aw Co Ltd | シフトバイワイヤ装置 |
JP5359459B2 (ja) * | 2009-03-27 | 2013-12-04 | トヨタ自動車株式会社 | 車両のシフト制御装置 |
US8402855B2 (en) * | 2010-01-11 | 2013-03-26 | GM Global Technology Operations LLC | Hydraulic control systems for dual clutch transmissions |
JP5733165B2 (ja) | 2011-11-11 | 2015-06-10 | トヨタ自動車株式会社 | 車両の制御装置 |
CN103946594B (zh) * | 2011-11-22 | 2016-08-17 | 丰田自动车株式会社 | 液压控制装置 |
JP5937226B2 (ja) * | 2012-11-02 | 2016-06-22 | 本田技研工業株式会社 | 車両のパーキング制御装置 |
US20180292005A1 (en) * | 2017-04-06 | 2018-10-11 | GM Global Technology Operations LLC | Redundant hazard mitigation methods for an etrs controls architecture |
-
2017
- 2017-09-21 CN CN201780058626.XA patent/CN109790922B/zh active Active
- 2017-09-21 WO PCT/JP2017/034169 patent/WO2018061992A1/ja active Application Filing
- 2017-09-21 US US16/310,183 patent/US10648556B2/en active Active
- 2017-09-21 DE DE112017002978.3T patent/DE112017002978T5/de not_active Withdrawn
- 2017-09-21 JP JP2018542493A patent/JP6562159B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591102A (en) * | 1995-06-07 | 1997-01-07 | Cummins Engine Company, Inc. | Apparatus and method for controlling a manual-automatic transmission after a power reset |
JP2007177932A (ja) * | 2005-12-28 | 2007-07-12 | Aisin Aw Co Ltd | 多段式自動変速機の油圧制御装置 |
JP2007298083A (ja) * | 2006-04-28 | 2007-11-15 | Mitsubishi Electric Corp | 変速機制御装置 |
JP2011231841A (ja) * | 2010-04-27 | 2011-11-17 | Toyota Motor Corp | 自動変速機のレンジ切り替え装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190257418A1 (en) | 2019-08-22 |
CN109790922B (zh) | 2020-08-28 |
JPWO2018061992A1 (ja) | 2019-03-28 |
DE112017002978T5 (de) | 2019-03-07 |
US10648556B2 (en) | 2020-05-12 |
CN109790922A (zh) | 2019-05-21 |
JP6562159B2 (ja) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4337812B2 (ja) | 油圧制御回路の故障判定装置 | |
US7905807B2 (en) | Hydraulic control apparatus for automatic transmission, and hybrid drive system provided with the same | |
JP5463620B2 (ja) | 自動変速機搭載車のシフトバイワイヤ故障時制御装置 | |
KR101787249B1 (ko) | 동력 전달 장치 | |
JP4506655B2 (ja) | 車両用自動変速機の油圧制御装置 | |
US8224541B2 (en) | Hydraulic control device for automatic transmission | |
JP4305556B2 (ja) | 車両の制御装置 | |
JP3965386B2 (ja) | 自動変速機の変速制御装置 | |
JP3849609B2 (ja) | 車両用自動変速機の油圧制御装置 | |
JP5127884B2 (ja) | 自動変速機 | |
KR20080022515A (ko) | 자동 변속기의 정차 시 고장 제어 장치 | |
JP4893460B2 (ja) | 変速機の制御装置 | |
JP6562159B2 (ja) | 制御装置 | |
JP2008064176A (ja) | 車両の制御装置 | |
JP4715932B2 (ja) | 車両用自動変速機の油圧制御装置 | |
KR102064693B1 (ko) | 자동 변속기의 이상 검출 장치 | |
JP6146487B2 (ja) | 自動変速機の油圧制御装置 | |
JP6626585B2 (ja) | 車両の制御装置及び車両の制御方法 | |
CN109642660B (zh) | 车辆的控制装置及车辆的控制方法 | |
JP6700115B2 (ja) | 自動変速機の制御装置 | |
US12025217B2 (en) | Control apparatus for vehicle | |
CN113631842B (zh) | 自动变速器的温度传感器诊断装置及诊断方法 | |
JP7219038B2 (ja) | 自動変速機の制御装置 | |
JP7219037B2 (ja) | 自動変速機の制御装置 | |
JP7187114B2 (ja) | 自動変速機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855946 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018542493 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17855946 Country of ref document: EP Kind code of ref document: A1 |