WO2018060773A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018060773A1
WO2018060773A1 PCT/IB2017/001380 IB2017001380W WO2018060773A1 WO 2018060773 A1 WO2018060773 A1 WO 2018060773A1 IB 2017001380 W IB2017001380 W IB 2017001380W WO 2018060773 A1 WO2018060773 A1 WO 2018060773A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode active
active material
material layer
negative electrode
adhesive
Prior art date
Application number
PCT/IB2017/001380
Other languages
English (en)
French (fr)
Inventor
本田 崇
成岡 慶紀
聡 吉野
Original Assignee
日産自動車株式会社
ルノーエス、ア、エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノーエス、ア、エス filed Critical 日産自動車株式会社
Priority to CN201780060596.6A priority Critical patent/CN109792089B/zh
Priority to US16/337,047 priority patent/US10651448B2/en
Priority to KR1020197008174A priority patent/KR102071835B1/ko
Priority to EP17855081.0A priority patent/EP3522263B1/en
Priority to JP2018541598A priority patent/JP6757415B2/ja
Publication of WO2018060773A1 publication Critical patent/WO2018060773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery in which the area of the negative electrode active material layer is larger than the area of the positive electrode active material layer.
  • the secondary battery includes a power generation element.
  • the power generation element includes a positive electrode plate in which a positive electrode active material layer is disposed on at least one surface of a first current collector, and a negative electrode active material layer.
  • a negative electrode plate having an area larger than that of the material layer and disposed on at least one surface of the second current collector.
  • the positive electrode plate and the negative electrode plate are laminated with a positive electrode active material layer and a negative electrode active material layer facing each other with a separator interposed therebetween (see Patent Document 1).
  • the negative electrode plate includes a facing portion facing the positive electrode active material layer with the separator interposed therebetween, and a non-facing portion located on the outer periphery of the facing portion and not facing the positive electrode active material layer with the separator interposed therebetween.
  • the power generation capacity of the battery having the above-described configuration varies depending on the facing area between the positive electrode active material layer and the negative electrode active material layer.
  • the areas of the positive electrode active material layer and the negative electrode active material layer are the same, the opposing areas of the positive electrode active material layer and the negative electrode active material layer are relative to each other in the direction crossing the stacking direction. Can be changed by shifting the position. Therefore, even when the positive electrode active material layer and the negative electrode active material layer are relatively displaced, the facing area between the positive electrode active material layer and the negative electrode active material layer is kept constant to suppress fluctuations in power generation capacity. Therefore, the negative electrode active material layer has a larger area than the positive electrode active material layer.
  • the opposing portion of the negative electrode plate expands and contracts due to charge and discharge.
  • the non-opposing portion of the negative electrode plate contributes less to charging / discharging than the opposing portion, and the expansion / contraction dimension is also small compared to the opposing portion.
  • the expansion / contraction dimension generated in the negative electrode plate with expansion and contraction of the negative electrode active material layer is not uniform over the entire negative electrode plate, and thus wrinkles are generated at the outer peripheral edge of the negative electrode plate.
  • the soot generated at the outer peripheral edge of the negative electrode plate extends toward the opposing portion of the negative electrode plate, that is, the site that reacts as an electrode, by repeating charge and discharge. If soot reaches the site that reacts as an electrode, the distance between the electrodes becomes non-uniform and the reaction is localized, resulting in deterioration of battery performance and cycle life, so that soot is generated on the outer peripheral edge of the negative electrode plate. It is demanded to suppress this.
  • the above-described problem is not limited to the case where silicon is used for the negative electrode active material, and may occur as long as the negative electrode active material layer expands and contracts with use.
  • the present invention has been made to solve the above-described problems, and suppresses wrinkles from occurring on the outer peripheral edge of the negative electrode plate due to expansion and contraction of the negative electrode active material layer with use. Therefore, an object is to provide a secondary battery capable of preventing performance degradation and cycle life degradation.
  • a secondary battery of the present invention includes a positive electrode plate having a positive electrode active material layer disposed on at least one surface of a first current collector, a negative electrode active material layer, and a positive electrode active material layer.
  • the positive electrode active material layer and the negative electrode active material layer are opposed to each other with a separator holding the electrolyte sandwiched between a negative electrode plate having an area larger than that of the negative electrode plate disposed on at least one surface of the second current collector In this state, the power generation element is laminated.
  • the negative electrode plate is located on the opposite portion facing the positive electrode active material layer with the separator interposed therebetween, and on the outer periphery of the opposite portion, and on the positive electrode active material layer with the separator interposed therebetween.
  • the negative electrode plate and the separator are bonded via an adhesive layer, and in the adhesive layer, the second non-opposing portion is bonded to the separator than the bonding strength of the first bonding portion that bonds the opposing portion to the separator.
  • the adhesive strength of the bonded part is greater.
  • FIG. 1 is a perspective view of a secondary battery according to an embodiment. It is sectional drawing which follows the 2-2 line of FIG. It is sectional drawing which shows the principal part of the cross section which follows the 3-3 line of FIG. It is a top view of the electric power generation element of the secondary battery which concerns on embodiment. It is a schematic sectional drawing which shows a mode that a 1st adhesion part is formed. It is a schematic sectional drawing which shows a mode that a 2nd adhesion part is formed. It is sectional drawing corresponding to FIG. 3 which shows the principal part of the secondary battery which concerns on the other modification of embodiment.
  • the secondary battery 100 will be described with reference to FIGS.
  • a nonaqueous electrolyte secondary battery more specifically, a lithium ion secondary battery will be described as an example.
  • FIG. 1 is a perspective view of a secondary battery 100 according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG.
  • FIG. 3 is a cross-sectional view showing a main part of a cross section taken along line 3-3 in FIG.
  • FIG. 4 is a plan view of the power generation element 110 of the secondary battery 100.
  • FIG. 5A is a schematic cross-sectional view showing a state of forming the first adhesive portion 45a
  • FIG. 5B is a schematic cross-sectional view showing a state of forming the second adhesive portion 45b.
  • a secondary battery 100 according to the present embodiment is roughly described.
  • a positive electrode plate in which a positive electrode active material layer 12 is disposed on both surfaces 11 a and 11 b of a first current collector 11.
  • the power generation element 110 is formed by stacking the positive electrode active material layer 12 and the negative electrode active material layer 22 facing each other with the separator 30 interposed therebetween.
  • the negative electrode plate 20 is opposed to the positive electrode active material layer 12 with the separator 30 in between, and the non-opposite portion 20a is located on the outer periphery of the opposed portion 20a and does not face the positive electrode active material layer 12 with the separator 30 in between. And an opposing portion 20b.
  • the negative electrode plate 20 and the separator 30 are bonded via a second adhesive layer 45 (corresponding to an adhesive layer), and in the second adhesive layer 45, the first adhesive portion 45a that adheres the facing portion 20a to the separator 30.
  • the bonding strength of the second bonding portion 45b that bonds the non-facing portion 20b to the separator 30 is greater than the bonding strength.
  • the secondary battery 100 further includes an exterior member 120 that houses the power generation element 110 together with the electrolytic solution.
  • power generation element 110 is formed by laminating positive electrode plate 10 and negative electrode plate 20 with positive electrode active material layer 12 and negative electrode active material layer 22, which will be described later, facing separator 30. Do it.
  • the power generation element 110 is accommodated in the exterior member 120 in a state where the positive electrode plate 10 and the negative electrode plate 20 are stacked with the separator 30 interposed therebetween.
  • electrolyte solution is not specifically limited, A conventionally well-known thing can be utilized suitably.
  • an electrolyte solution using a liquid electrolyte is used as the electrolyte solution, but an electrolyte solution using a gel electrolyte may be used.
  • the liquid electrolyte is a solution in which a lithium salt as a supporting salt is dissolved in a solvent.
  • the kind of solvent is not specifically limited, For example, conventionally well-known things, such as a dimethyl carbonate (DMC), can be used suitably.
  • DMC dimethyl carbonate
  • the exterior member 120 accommodates the power generation element 110 together with the electrolytic solution.
  • the exterior member 120 is composed of a laminate sheet having a three-layer structure.
  • the first layer corresponds to a heat-fusible resin and is formed using, for example, polyethylene (PE), ionomer, or ethylene vinyl acetate (EVA).
  • the first layer material is adjacent to the negative electrode plate 20.
  • the second layer corresponds to a metal foil formed, for example, an Al foil or Ni foil.
  • the third layer corresponds to a resinous film and is formed using, for example, rigid polyethylene terephthalate (PET) or nylon.
  • PET polyethylene terephthalate
  • the third layer material is adjacent to the positive electrode plate 10.
  • the positive electrode plate 10 includes a positive electrode active material layer 12 disposed on both surfaces 11 a and 11 b of a first current collector 11.
  • the first current collector 11 has a thin film shape.
  • the material which comprises the 1st electrical power collector 11 is not specifically limited, For example, it can be set as aluminum.
  • a positive electrode tab 13 for charging / discharging is connected to the first current collector 11.
  • the thickness of the first current collector 11 is not particularly limited, but is about 1 to 100 ⁇ m, for example.
  • the positive electrode active material layer 12 includes a positive electrode active material.
  • the kind of positive electrode active material is not specifically limited, For example, it can be set as LiNiCoAlO2.
  • the positive electrode active material layer 12 is disposed over the entire surfaces 11 a and 11 b of the first current collector 11.
  • the arrangement of the positive electrode active material layer 12 is such that the positive electrode plate 10 and the negative electrode plate 20 are stacked via the separator 30, and the positive electrode active material layer 12 and the negative electrode active material layer 22 are sandwiched between the separators 30. Is not particularly limited as long as they can face each other.
  • the thickness of the positive electrode active material layer 12 is not particularly limited, but is, for example, about 1 ⁇ m to 100 ⁇ m. Although the method in particular of controlling the thickness of the positive electrode active material layer 12 is not restrict
  • the positive electrode active material layer 12 is formed by applying the positive electrode slurry on the both surfaces 11 a and 11 b of the first current collector 11 and drying the first positive electrode active material layer 12. It forms on both surfaces 11a and 11b of the current collector 11. The dried positive electrode active material layer 12 is pressed from both sides of the first current collector 11 while being bonded to the both surfaces 11 a and 11 b of the first current collector 11.
  • the positive electrode slurry contains a positive electrode active material, a conductive additive, a binder, and a viscosity adjusting solvent.
  • a positive electrode active material LiNiCoAlO 2 is used at a ratio of 90 wt%.
  • a conductive additive acetylene black is used at a ratio of 5 wt%.
  • a binder PVDF is used at a ratio of 5 wt%.
  • the negative electrode plate 20 is configured by disposing a negative electrode active material layer 22 on both surfaces 21 a and 21 b of a second current collector 21.
  • the second current collector 21 has a thin film shape.
  • the material which comprises the 2nd electrical power collector 21 is not specifically limited, For example, it can be set as copper.
  • a negative electrode tab 23 for charging / discharging is connected to the second current collector 21.
  • the thickness of the second current collector 21 is not particularly limited, but is, for example, about 1 to 100 ⁇ m.
  • the area of the negative electrode active material layer 22 is larger than the area of the positive electrode active material layer 12.
  • the facing area between the positive electrode active material layer 12 and the negative electrode active material layer 22 can be maintained constant. Therefore, it is possible to suppress a change in power generation capacity due to a change in the facing area between the positive electrode active material layer 12 and the negative electrode active material layer 22.
  • the negative electrode active material layer 22 contains a negative electrode active material. At least one of the negative electrode active materials is selected from the group consisting of silicon simple substance (Si), silicon alloy, and silicon oxide.
  • the negative electrode active material layer 22 can be thinned by using the above-described material for the negative electrode active material. As a result, the negative electrode plate 20 can be reduced in size and capacity, and the secondary battery 100 can be reduced in size and capacity.
  • the thickness of the negative electrode active material layer 22 is not particularly limited, but is, for example, about 1 ⁇ m to 100 ⁇ m. Although the method for controlling the thickness of the negative electrode active material layer 22 is not particularly limited, a method similar to the method for controlling the thickness of the positive electrode active material layer 12 can be used.
  • the negative electrode slurry can contain, for example, a negative electrode active material, a conductive additive, a binder, and a viscosity adjusting solvent.
  • a negative electrode active material for example, a mixture of 80 wt% silicon alloy as a negative electrode active material, 5 wt% acetylene black as a conductive additive, and 15 wt% polyimide as a binder can be used.
  • NMP can be used as a solvent for adjusting the viscosity of the slurry.
  • the type of the separator 30 is not particularly limited as long as the electrolyte contained in the electrolytic solution can be retained, and a conventionally known one can be appropriately used.
  • a porous sheet separator or a nonwoven fabric separator made of a polymer or fiber that absorbs and holds the electrolyte contained in the electrolytic solution can be used.
  • the thickness of the separator 30 is not particularly limited, but is, for example, about 1 to 50 ⁇ m.
  • ⁇ Adhesive layer> The positive electrode plate 10 and the separator 30 are bonded via a first adhesive layer 40, and the negative electrode plate 20 and the separator 30 are bonded via a second adhesive layer 45.
  • the first adhesive layer 40 is disposed between the positive electrode active material layer 12 and the separator 30, and adheres the positive electrode plate 10 and the separator 30 by bonding the positive electrode active material layer 12 and the separator 30.
  • the second adhesive layer 45 is disposed between the negative electrode active material layer 22 and the separator 30, and adheres the negative electrode plate 20 and the separator 30 by bonding the negative electrode active material layer 22 and the separator 30.
  • the thickness of the 1st contact bonding layer 40 is not specifically limited, For example, it is about 100 nm-500 nm.
  • the thickness of the second adhesive layer 45 is not limited, but is, for example, about 100 nm to 500 nm.
  • the material constituting the first adhesive layer 40 is not limited as long as the positive electrode active material layer 12 and the separator 30 can be bonded.
  • the material constituting the second adhesive layer 45 is not limited as long as the negative electrode active material layer 22 and the separator 30 can be bonded.
  • Examples of materials constituting the first adhesive layer 40 and the second adhesive layer 45 include olefin resins such as polyethylene (PE) and polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyethernitrile (PEN).
  • olefin resins such as polyethylene (PE) and polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyethernitrile (PEN).
  • Polyacrylonitrile PAN
  • polyimide PI
  • polyamide PA
  • polyamideimide PAI
  • CMC carboxymethylcellulose
  • PVC polyvinyl chloride
  • SBR styrene-butadiene Rubber
  • isoprene rubber butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated products thereof, styrene / isoprene / styrene block
  • Thermoplastic polymers such as copolymers and hydrogenated products thereof, polyvinylidene fluoride (PVdF), polyvinylidene fluoride (having some carboxyl groups in the side chain), polyvinylidene fluoride-hexafluoropropylene (PVdF-H
  • polyvinylidene fluoride polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide as materials constituting the first adhesive layer 40 and the second adhesive layer 45.
  • the materials described above as the material constituting the first adhesive layer 40 and the material constituting the second adhesive layer 45 are excellent in heat resistance and are stable at both the oxidation potential and the reduction potential.
  • the material constituting the first adhesive layer 40 and the material constituting the second adhesive layer 45 for example, polyvinylidene fluoride (PVdF), (meth) acrylic resin, olefin resin, etc. Since it is strong against any potential on the reduction side, it can be suitably used for both the first adhesive layer 40 and the second adhesive layer 45.
  • PVdF polyvinylidene fluoride
  • (meth) acrylic resin olefin resin, etc. Since it is strong against any potential on the reduction side, it can be suitably used for both the first adhesive layer 40 and the second adhesive layer 45.
  • the material constituting the first adhesive layer 40 and the material constituting the second adhesive layer 45 PTFE or the like is strong in oxidation potential, and therefore the first active material layer 12 and the separator 30 are bonded to each other. It is preferable to use it as a material constituting the adhesive layer 40.
  • SBR or the like adheres to the negative electrode active material layer 22 and the separator 30 because of its strong reduction potential. It is preferable to use it as a material constituting the second adhesive layer 45.
  • the materials described above as the material constituting the first adhesive layer 40 and the material constituting the second adhesive layer 45 may be used alone or in combination of two or more.
  • the first adhesive layer 40 is disposed at a portion of the surface 30 a facing the positive electrode active material layer 12 in the separator 30 that faces the positive electrode active material layer 12.
  • the arrangement of the first adhesive layer 40 is not particularly limited as long as the positive electrode active material layer 12 and the separator 30 can be bonded.
  • the first adhesive layer 40 may be disposed over the entire surface 30 a facing the positive electrode active material layer 12 in the separator 30.
  • the second adhesive layer 45 is also disposed at a portion of the surface 30 b facing the negative electrode active material layer 22 in the separator 30 that faces the negative electrode active material layer 22.
  • the arrangement of the second adhesive layer 45 is not particularly limited as long as the negative electrode active material layer 22 and the separator 30 can be bonded.
  • the second adhesive layer 45 may be disposed over the entire surface 30 b facing the negative electrode active material layer 22 in the separator 30.
  • the negative electrode plate 20 is located on the outer periphery of the facing portion 20 a that faces the positive electrode active material layer 12 with the separator 30 interposed therebetween, and on the outer periphery of the facing portion 20 a.
  • the second adhesive layer 45 includes a first adhesive part 45a that adheres the opposing part 20a to the separator 30, and a second adhesive part 45b that adheres the non-opposing part 20b to the separator 30.
  • the 1st adhesion part 45a is arranged between separator 30 and counter part 20a.
  • the second adhesive portion 45b is disposed between the separator 30 and the non-facing portion 20b.
  • the adhesive strength of the second adhesive portion 45b is greater than the adhesive strength of the first adhesive portion 45a.
  • the method for evaluating the adhesive strength is not particularly limited as long as the evaluation of the adhesive strength of the first adhesive portion 45a and the adhesive strength of the second adhesive portion 45b are performed by the same evaluation method.
  • a method described in JIS K6854-1 (90-degree peeling test) or K6854-2 (180-degree peeling test) can be used as a method for evaluating the adhesive strength.
  • the negative electrode plate 20 expands and contracts, but the expansion / contraction dimension (the size of expansion / contraction) is not uniform throughout the negative electrode plate 20.
  • the facing portion 20a of the negative electrode plate 20 expands and contracts with the exchange of ions with the positive electrode plate 10 by charging and discharging.
  • the non-facing portion 20b of the negative electrode plate 20 has less exchange of ions with the positive electrode plate 10 and has a small contribution to charging / discharging, and therefore has a smaller expansion / contraction dimension than the facing portion 20a.
  • the expansion of the negative electrode active material layer 22 in the non-facing portion 20b of the negative electrode plate 20 during charging is smaller than the expansion of the negative electrode active material layer 22 in the facing portion 20a.
  • the negative electrode plate 20 in the non-facing portion 20b is stretched by the second current collector 21 being stretched by applying tension as the facing portion 20a is stretched.
  • the negative electrode plate 20 in the facing portion 20a shrinks due to the shrinkage of the negative electrode active material layer 22, but the negative electrode plate 20 in the non-facing portion 20b has little shrinkage of the negative electrode active material layer 22 and is almost reduced. Do not reduce.
  • the secondary battery 100 since the adhesive force of the second adhesive portion 45b is larger than the adhesive force of the first adhesive portion 45a, expansion / contraction of the non-opposing portion 20b is suppressed more than the opposing portion 20a. Thus, the expansion / contraction dimension of the non-facing portion 20b can be reduced. Thereby, the tension
  • the adhesive strength of the second adhesive portion 45b is not particularly limited as long as it is greater than the adhesive strength of the first adhesive portion 45a.
  • the ratio between the adhesive strength of the first adhesive portion 45a and the adhesive strength of the second adhesive portion 45b is used. May be 0.02 ⁇ (adhesive strength of the first adhesive portion 45a / adhesive strength of the second adhesive portion 45b) ⁇ 0.5.
  • the ratio of the adhesive strength of the first adhesive portion 45a to the adhesive strength of the second adhesive portion 45b can be set within a range between 1: 2 and 1:50.
  • the average particle diameter of the material constituting the second adhesive portion 45b is larger than the average particle diameter of the material constituting the first adhesive portion 45a.
  • the average particle diameter means an average particle diameter of a material that generates an adhesive force among materials constituting the second adhesive layer 45.
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride
  • two or more kinds of materials are used in combination as the material constituting the second adhesive layer 45, it means the average particle diameter for all of these materials.
  • the first adhesive portion 45a is bonded by a simple method of varying the average particle size.
  • the bonding strength of the second bonding portion 45b can be made larger than the strength.
  • the average particle diameter of the material constituting the first adhesive portion 45a and the average particle diameter of the material constituting the second adhesive portion 45b are such that the adhesive strength of the second adhesive portion 45b is larger than the adhesive strength of the first adhesive portion 45a. As long as it is not particularly limited. For example, when polyvinylidene fluoride (PVdF) is used as the material constituting the second adhesive layer 45, the average particle diameter of the material constituting the first adhesive portion 45a is 1 ⁇ m, and the material constituting the first adhesive portion 45a The average particle size can be 0.1 ⁇ m.
  • the calculation method of the average particle diameter of the material forming the first bonding portion 45a and the average particle diameter of the material forming the second bonding portion 45b are the same as the calculation method of the average particle diameter of the material forming the first bonding portion 45a.
  • the calculation method of the average particle diameter of the material which comprises the 2 adhesion part 45b is the same, it is not limited.
  • the average particle diameter of the material constituting the first adhesive portion 45a and the average particle diameter of the material constituting the second adhesive portion 45b for example, a 50% cumulative particle diameter from the small particle diameter side by the laser diffraction / scattering method is used. be able to.
  • the formation method of the 1st adhesion part 45a and the 2nd adhesion part 45b is not specifically limited, For example, it can form by the following procedures.
  • the positive electrode plate 10 and the negative electrode plate 20 do not face the negative electrode active material layer 22 when stacked via the separator 30.
  • a release paper M having the same thickness as that of the first adhesive portion 45a is disposed at the site.
  • the material which comprises the 1st adhesion part 45a is applied toward 30b. Thereby, the 1st adhesion part 45a is formed on surface 30b.
  • the release paper M is peeled off, and a material constituting the second adhesive portion 45b is applied to a portion that does not face the negative electrode active material layer 22 when the positive electrode plate 10 and the negative electrode plate 20 are laminated via the separator 30. To do. Thereby, as shown to FIG. 5B, the 2nd adhesion part 45b is formed on the surface 30b.
  • the secondary battery 100 is repeatedly charged and discharged as a driving power source or auxiliary power source for a motor of a vehicle such as a fuel cell vehicle and a hybrid electric vehicle.
  • a driving power source or auxiliary power source for a motor of a vehicle such as a fuel cell vehicle and a hybrid electric vehicle.
  • the volume of the negative electrode active material contained in the negative electrode active material layer 22 changes, and the negative electrode active material layer 22 expands and contracts.
  • the bonding strength of the second bonding portion 45b that bonds the non-facing portion 20b of the negative electrode plate 20 to the separator 30 is that of the first bonding portion 45a that bonds the facing portion 20a to the separator 30. Greater than adhesive strength.
  • the expansion-contraction dimension of the non-opposing part 20b can be made small, suppressing the expansion-contraction of the non-opposing part 20b rather than the opposing part 20a. Therefore, it is possible to suppress a change in the tension of the non-facing portion 20b due to the difference in expansion / contraction dimension between the facing portion 20a and the non-facing portion 20b. Therefore, it is possible to suppress wrinkles from occurring at the outer peripheral edge of the negative electrode plate 20 due to the expansion and contraction of the negative electrode active material layer 22.
  • the secondary battery 100 includes a positive electrode plate 10 in which a positive electrode active material layer 12 is disposed on both surfaces 11 a and 11 b of a first current collector 11, and a negative electrode active material layer 22.
  • the positive electrode active material layer 12 and the negative electrode active material layer 12 are sandwiched between the negative electrode plate 20 having an area larger than 12 and disposed on both surfaces 21a and 21b of the second current collector 21 with the separator 30 holding the electrolyte therebetween.
  • the power generation element 110 is formed by stacking the material layers 22 facing each other.
  • the negative electrode plate 20 is opposed to the positive electrode active material layer 12 with the separator 30 in between, and the non-opposite portion 20a is located on the outer periphery of the opposed portion 20a and does not face the positive electrode active material layer 12 with the separator 30 in between. And an opposing portion 20b.
  • the negative electrode plate 20 and the separator 30 are bonded via a second adhesive layer 45, and the separator has a higher adhesive strength than the first adhesive portion 45 a that bonds the facing portion 20 a to the separator 30 in the second adhesive layer 45.
  • the bonding strength of the second bonding portion 45 b that bonds the non-opposing portion 20 b to 30 is greater.
  • the bonding strength of the second bonding portion 45b that bonds the non-facing portion 20b of the negative electrode plate 20 and the separator 30 is such that the facing portion 20a of the negative electrode plate 20 and the separator 30 are bonded. It is larger than the bonding strength of the first bonding portion 45a to be bonded.
  • the expansion-contraction dimension of the non-opposing part 20b can be made small, suppressing the expansion-contraction of the non-opposing part 20b rather than the opposing part 20a. Therefore, it is possible to suppress a change in the tension of the non-facing portion 20b due to the difference in expansion / contraction dimension between the facing portion 20a and the non-facing portion 20b. Therefore, it is possible to suppress wrinkles from occurring at the outer peripheral edge of the negative electrode plate 20 due to the expansion and contraction of the negative electrode active material layer 22. Accordingly, it is possible to provide a secondary battery capable of preventing performance degradation and cycle life reduction.
  • the adhesive strength of the second adhesive portion 45b can be made higher than the adhesive strength of the first adhesive portion 45a by a simple method of varying the average particle diameter. Therefore, the secondary battery can be easily manufactured.
  • the secondary battery 100 is a lithium ion secondary battery, and at least one of the negative electrode active materials included in the negative electrode active material layer 22 is selected from the group consisting of silicon, a silicon alloy, and silicon oxide. Selected.
  • the secondary battery 100 since the negative electrode active material layer 22 can be made thin, the negative electrode plate 20 can be reduced in size and increased in capacity. Therefore, the secondary battery 100 can be reduced in size and increased in capacity.
  • the basis weight of the material constituting the second adhesive portion 45b may be larger than the basis weight of the material constituting the first adhesive portion 45a.
  • the “weight per unit area” means a mass per unit area of the second adhesive layer 45 of a material that generates an adhesive force among materials constituting the second adhesive layer 45.
  • the adhesive strength of the second adhesive layer 45 increases as the basis weight increases. That is, according to the secondary battery according to this modification, the adhesive strength of the second adhesive portion 45b can be made larger than the adhesive strength of the first adhesive portion 45a by a simple method of varying the basis weight. Therefore, the secondary battery 100 can be easily manufactured.
  • the basis weight of the material constituting the second adhesive portion 45b is not particularly limited as long as it is larger than the basis weight of the material constituting the first adhesive portion 45a.
  • the basis weight of the first adhesive portion 45a is 5 mg / cm 2 and the basis weight of the second adhesive portion 45b is 20 mg / cm 2. can do.
  • the method of making the basis weight of the first adhesive portion 45a different from the basis weight of the second adhesive portion 45b is not particularly limited.
  • the second adhesive layer 45 is configured on the surface 30a facing the negative electrode active material layer 22 in the separator 30.
  • the basis weight can be varied by adjusting the time for applying the material. That is, the basis weight can be made different by making the time for applying the material forming the first bonding portion 45a different from the time for applying the material forming the second bonding portion 45b. The longer the application time, the greater the basis weight.
  • the adhesive strength of the second adhesive portion 45b can be made higher than the adhesive strength of the first adhesive portion 45a by a simple method of varying the basis weight. Therefore, the secondary battery can be easily manufactured.
  • the 2nd adhesion part 45b may be provided with non-ion permeability.
  • the negative electrode active material layer 22 of the non-opposing portion 20b of the negative electrode plate 20 is covered with a member having non-ion permeability, the negative electrode active material layer 22 of the non-opposing portion 20b that does not function as an electrode and the electrolytic solution are formed. It can prevent that electrolyte solution is consumed by contact. Thereby, since electrolyte solution can be used effectively, the quantity of electrolyte solution with which secondary battery 100 is filled can be reduced. Therefore, the secondary battery 100 can be further miniaturized and the manufacturing cost can be reduced.
  • the method for providing the second adhesive portion 45b with non-ion permeability is not particularly limited.
  • the second adhesive portion 45b is provided with non-ion permeability by reducing the porosity of the second adhesive portion 45b.
  • the porosity can be adjusted, for example, by applying a dispersion solution such as polyvinylidene fluoride (PVdF) to the separator 30 and then changing the drying conditions (drying temperature, drying time, etc.). The longer the temperature and the higher the drying temperature, the smaller the porosity.
  • PVdF polyvinylidene fluoride
  • Modification 3 In the above-described embodiment, Modification Example 1 and Modification Example 2, the material constituting the first adhesive portion 45a and the material constituting the second adhesive portion 45b are the same. However, the material forming the first bonding portion 45a may be different from the material forming the second bonding portion 45b.
  • the adhesive strength of the second adhesive portion 45b can be made larger than the adhesive strength of the first adhesive portion 45a by a simple method of different materials. Therefore, the secondary battery can be easily manufactured.
  • the combination of the material constituting the first adhesive portion 45a and the material constituting the second adhesive portion 45b is not particularly limited as long as the adhesive strength of the second adhesive portion 45b is larger than the adhesive strength of the first adhesive portion 45a.
  • a polyvinylidene fluoride (PVdF) dispersion solution is used as a material constituting the first adhesive portion 45a, and ceramic particles and an acrylic binder are substituted with N-methyl-2-pyrrolidone (NMP) as a material constituting the second adhesive portion 45b.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material layer 12 is disposed on both surfaces 11a and 11b of the first current collector 11, and the negative electrode active material layer is disposed on both surfaces 21a and 21b of the second current collector 21.
  • a so-called non-hyperbolic secondary battery in which 22 is arranged has been described as an example.
  • the positive electrode active material layer 12 is disposed on one surface 11a (21a) of the first current collector 11 (second current collector 21) and the one surface 11a (21a). It is also possible to apply the present invention to a so-called hyperbolic secondary battery in which the negative electrode active material layer 22 is disposed on the other surfaces 11b and 21b opposite to each other.
  • the first current collector 11 and the second current collector 21 may have the same structure.
  • the material which comprises the 1st electrical power collector 11 and the material which comprises the 2nd electrical power collector 21 are not specifically limited, A conventionally well-known thing can be used.
  • the material constituting the first current collector 11 and the material constituting the second current collector 21 are, for example, aluminum foil, stainless steel (SUS) foil, clad material of nickel and aluminum, clad material of copper and aluminum, SUS, It may be an aluminum clad material or a plating material of a combination of these metals.
  • a current collector in which a metal surface is coated with aluminum may be used.
  • a so-called composite current collector in which two or more metal foils are bonded together may be used.
  • the secondary battery has been described through the embodiment and the modified example thereof.
  • the present invention is not limited to the configuration described in the embodiment and the modified example, and is appropriately changed based on the description of the claims. Is possible.
  • the present invention can be applied regardless of the type of the secondary battery, the type of the active material, the type of the electrolyte, etc., as long as it is a secondary battery in which the negative electrode active material layer expands and contracts with use.
  • the secondary battery of the type in which the positive electrode tab 13 and the negative electrode tab 23 are taken out from one side of the secondary battery 100 has been described as an example.
  • the present invention can also be applied to a secondary battery in which the positive electrode tab is taken out from one side of the secondary battery and the negative electrode tab is taken out from the other side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】使用に伴って負極活物質層が膨張することに起因して負極板の外周縁部に皺が生じることを抑制し、もって性能低下・サイクル寿命低下を防止することが可能な二次電池を提供することである。 【解決手段】二次電池100は、第1集電体11上に正極活物質層12を配置してなる正極板10と、負極活物質層22を、正極活物質層の面積よりも大きな面積をもつて第2集電体21上に配置してなる負極板20とを、セパレ一タを介して積層してなる発電要素110を有する。負極板は、正極活物質層に対向している対向部20aと正極活物質層に対向していない非対向部20bと、を備える。負極板とセパレ一夕とは、接着層45を介して接着されており、セパレ一夕に対向部を接着する第1接着部45aの接着強度よりも、セパレー夕に非対向部を接着する第2接着部45bの接着強度の方が大きい。

Description

二次電池
 本発明は、負極活物質層の面積が正極活物質層の面積よりも大きな二次電池に関する。
 二次電池は、発電要素を有してなり、発電要素は、第1集電体の少なくとも一方の面上に正極活物質層を配置してなる正極板と、負極活物質層を、正極活物質層の面積よりも大きな面積をもって、第2集電体の少なくとも一方の面上に配置してなる負極板とを、有する。正極板と負極板とは、セパレータを挟んで、正極活物質層と負極活物質層とが対向した状態で積層してなる(特許文献1参照)。負極板は、セパレータを挟んで正極活物質層に対向している対向部と、対向部の外周に位置し、セパレータを挟んで正極活物質層に対向していない非対向部と、を備える。
 上述した構成を備えた電池の発電容量は、正極活物質層と負極活物質層との対向面積に応じて変化する。正極活物質層と負極活物質層の面積が同じ場合、正極活物質層と負極活物質層との対向面積は、積層方向に交差する方向において正極活物質層と負極活物質層とが相対的に位置ずれすることによって変化し得る。そのため、正極活物質層と負極活物質層とが相対的に位置ずれした場合であっても正極活物質層と負極活物質層との対向面積を一定に維持して発電容量の変動を抑制するために、負極活物質層は、正極活物質層よりも大きな面積を備えている。
特開2013−187021号公報
 近年、二次電池の小型化・高容量化を目的として負極活物質にシリコンを用いた二次電池が考えられている。しかしながら、シリコンは、充放電に伴う体積変化が大きいため、負極活物質にシリコンを用いた場合、シリコンの体積変化に伴って負極活物質層が膨張収縮する。
 ここで、上述した二次電池の場合、負極板の対向部は充放電によって伸縮する。一方、負極板の非対向部は対向部に比べて充放電への寄与が小さく、対向部に比べて伸縮寸法も小さい。
 上述の通り、負極活物質層の膨張収縮に伴って負極板に生じる伸縮寸法が負極板全体にわたって均一にならないため、負極板の外周縁部に皺が発生する。負極板の外周縁部に生じた皺は、充放電を繰り返すことによって、負極板の対向部、すなわち、電極として反応する部位に向かって延びていく。電極として反応する部位に皺が達すると電極間距離が不均一化して反応の局在化を招き、電池の性能低下およびサイクル寿命低下が生じるため、負極板の外周縁部に皺が発生することを抑制することが求められている。なお、上述した問題は、負極活物質にシリコンを用いた場合に限定されず、使用に伴って負極活物質層が膨張収縮する限りにおいて生じ得る。
 そこで、本発明は、上記課題を解決するためになされたものであり、使用に伴って負極活物質層が膨張収縮することに起因して負極板の外周縁部に皺が生じることを抑制し、もって性能低下・サイクル寿命低下を防止することが可能な二次電池を提供することを目的とする。
 上記目的を達成するための本発明の二次電池は、第1集電体の少なくとも一方の面上に正極活物質層を配置してなる正極板と、負極活物質層を、正極活物質層の面積よりも大きな面積をもって、第2集電体の少なくとも一方の面上に配置してなる負極板とを、電解質を保持するセパレータを挟んで、正極活物質層と負極活物質層とが対向した状態で積層してなる発電要素を有する。本発明の非水電界質二次電池において、負極板は、セパレータを挟んで正極活物質層に対向している対向部と、対向部の外周に位置し、セパレータを挟んで正極活物質層に対向していない非対向部と、を備える。そして、負極板とセパレータとは、接着層を介して接着されており、接着層において、セパレータに対向部を接着する第1接着部の接着強度よりも、セパレータに非対向部を接着する第2接着部の接着強度の方が大きい。
実施形態に係る二次電池の斜視図である。 図1の2−2線に沿う断面図である。 図1の3−3線に沿う断面の要部を示す断面図である。 実施形態に係る二次電池の発電要素の平面図である。 第1接着部を形成する様子を示す概略断面図である。 第2接着部を形成する様子を示す概略断面図である。 実施形態のその他の改変例に係る二次電池の要部を示す図3に対応する断面図である。
 以下、添付した図面を参照しながら、本発明の実施形態とその改変例について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における各部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。なお、図中において、Xは、二次電池100の短手方向を示し、Yは、二次電池100の長手方向を示し、Zは、発電要素110の積層方向を示している。
 本実施形態に係る二次電池100を図1~図5を参照しつつ説明する。本実施形態では、二次電池100として、非水電解質二次電池、より具体的にはリチウムイオン二次電池を例示して説明する。
 図1は、本実施形態に係る二次電池100の斜視図である。図2は、図1の2−2線に沿う断面図である。図3は、図1の3−3線に沿う断面の要部を示す断面図である。図4は、二次電池100の発電要素110の平面図である。図5Aは、第1接着部45aを形成する様子を示す概略断面図であり、図5Bは、第2接着部45bを形成する様子を示す概略断面図である。
 図1~図3を参照して、本実施形態に係る二次電池100は、概説すれば、第1集電体11の両面11a、11b上に正極活物質層12を配置してなる正極板10と、負極活物質層22を、正極活物質層12の面積よりも大きな面積をもって、第2集電体21の両面21a、21b上に配置してなる負極板20とを、電解質を保持するセパレータ30を挟んで、正極活物質層12と負極活物質層22とが対向した状態で積層してなる発電要素110を有する。
 負極板20は、セパレータ30を挟んで正極活物質層12に対向している対向部20aと、対向部20aの外周に位置し、セパレータ30を挟んで正極活物質層12に対向していない非対向部20bと、を備える。負極板20とセパレータ30とは、第2接着層45(接着層に相当)を介して接着されており、第2接着層45において、セパレータ30に対向部20aを接着する第1接着部45aの接着強度よりも、セパレータ30に非対向部20bを接着する第2接着部45bの接着強度の方が大きい。二次電池100は、発電要素110を電解液とともに収容する外装部材120をさらに有する。以下、本実施形態に係る二次電池100について詳述する。
 <発電要素>
 図2および図3を参照して、発電要素110は、セパレータ30を挟んで後述する正極活物質層12と負極活物質層22とが対向した状態で、正極板10と負極板20とを積層してなる。
 発電要素110は、正極板10と負極板20とがセパレータ30を挟んで積層された状態において外装部材120に収容されている。
 <電解液>
 電解液の種類は特に限定されず、従来公知のものを適宜利用することができる。本実施形態では、電解液として、液体電解質を用いたものを使用するが、ゲル電解質を用いた電解液を使用してもよい。
 液体電解質は、溶媒に支持塩であるリチウム塩が溶解したものである。溶媒の種類は特に限定されず、例えば、ジメチルカーボネート(DMC)などの従来公知のものを適宜使用できる。
 <外装部材>
 外装部材120は、発電要素110を電解液とともに収容する。
 外装部材120は、3層構造のラミネートシートから構成される。1層目は、熱融着性樹脂に相当し、例えばポリエチレン(PE)、アイオノマー、またはエチレンビニルアセテート(EVA)を用いて形成している。1層目の材料は、負極板20に隣接させている。2層目は、金属を箔状に形成したものに相当し、例えばAl箔またはNi箔を用いて形成している。3層目は、樹脂性のフィルムに相当し、例えば剛性を有するポリエチレンテレフタレート(PET)またはナイロンを用いて形成している。3層目の材料は、正極板10に隣接させている。
 <正極>
 正極板10は、第1集電体11の両面11a、11b上に正極活物質層12を配置してなる。
 第1集電体11は、薄膜状の形状を備える。第1集電体11を構成する材料は特に限定されず、例えば、アルミニウムとすることができる。第1集電体11には、充放電用の正極タブ13が接続されている。
 第1集電体11の厚さは特に限定されないが、例えば1~100μm程度である。
 正極活物質層12は、正極活物質を含む。正極活物質の種類は特に限定されず、例えば、LiNiCoAlO2とすることができる。
 本実施形態において、正極活物質層12は、第1集電体11の両面11a、11bの全面にわたって配置されている。しかしながら、正極活物質層12の配置の形態は、正極板10と負極板20とがセパレータ30を介して積層された状態において、セパレータ30を挟んで正極活物質層12と負極活物質層22とが対向し得る限りにおいて特に限定されない。
 正極活物質層12の厚さは特に限定されないが、例えば1μm~100μm程度である。正極活物質層12の厚さを制御する方法は特に制限されないが、ドクターブレード法などが挙げられる。また、正極活物質層12の厚さを定量的に求める方法としては、種々の方法が考えられるが、例えば、マイクロメーターで測定や放射線を用いた膜厚測定などにより求められる。
 正極板10の製造方法は特に限定されないが、本実施形態では、第1集電体11の両面11a、11b上に正極スラリーを塗工してから乾燥させることによって正極活物質層12を第1集電体11の両面11a、11b上に形成する。乾燥した正極活物質層12は、第1集電体11の両面11a、11bに結着させている状態で、第1集電体11の両側からプレス加工している。
 正極スラリーは、正極活物質、導電助剤、バインダー、および粘度調整溶媒を含む。正極活物質として、LiNiCoAlO2を90wt%の比率で用いる。導電助剤として、アセチレンブラックを、5wt%の比率で用いる。バインダーとして、PVDFを、5wt%の比率で用いる。
 <負極>
 負極板20は、第2集電体21の両面21a、21b上に負極活物質層22を配置してなる。
 第2集電体21は、薄膜状の形状を備える。第2集電体21を構成する材料は特に限定されず、例えば、銅とすることができる。第2集電体21には、充放電用の負極タブ23が接続されている。
 第2集電体21の厚さは特に限定されないが、例えば1~100μm程度である。
 負極活物質層22の面積は、正極活物質層12の面積よりも大きい。
 これにより、正極活物質層12および負極活物質層22の位置が相対的にずれた場合であっても正極活物質層12と負極活物質層22との対向面積を一定に維持できる。そのため、正極活物質層12と負極活物質層22との対向面積が変化することに起因して発電容量が変動することを抑制できる。
 負極活物質層22は、負極活物質を含む。負極活物質の少なくとも1種は、シリコン単体(Si)、シリコン合金、シリコン酸化物からなる群から選択される。
 シリコンは、単位体積当たりのリチウムイオンの吸蔵能力が黒鉛等と比較して高い。そのため、上述した材料を負極活物質に使用することによって負極活物質層22を薄くすることができる。その結果、負極板20を小型化・高容量化でき、ひいては二次電池100を小型化・高容量化できる。
 負極活物質層22の厚さは特に限定されないが、例えば1μm~100μm程度である。負極活物質層22の厚さを制御する方法は特に限定されないが、正極活物質層12の厚さを制御する方法と同様の方法を使用できる。
 負極板20の製造方法は特に限定されないが、本実施形態では、第2集電体21の両面21a、21bに負極スラリーを塗工してから乾燥させることによって、第2集電体21の両面21a、21b上に負極活物質層22を形成する。乾燥した負極活物質層22は、第2集電体21の両面21a、21bに結着させている状態で、第2集電体21の両側からプレス加工している。
 負極スラリーは、例えば、負極活物質、導電助剤、バインダーおよび粘度調整溶媒を含むことができる。負極スラリーは、例えば、負極活物質として80wt%のシリコン合金と、導電助剤として5wt%のアセチレンブラックと、バインダーとして15wt%のポリイミドと、を混合したものを使用できる。スラリーの粘度を調整する溶媒としてNMPを使用できる。
 <セパレータ>
 セパレータ30は、電解液に含まれる電解質を保持する。
 セパレータ30の種類は、電解液に含まれる電解質を保持し得る限りにおいて特に限定されず、従来公知のものを適宜利用できる。セパレータ30として、例えば、電解液に含まれる電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を用いることができる。
 セパレータ30の厚さは特に限定されないが、例えば1~50μm程度である。
 <接着層>
 正極板10とセパレータ30とは、第1接着層40を介して接着されており、負極板20とセパレータ30とは、第2接着層45を介して接着されている。
 第1接着層40は、正極活物質層12とセパレータ30との間に配置され、正極活物質層12とセパレータ30とを接着することによって正極板10とセパレータ30とを接着する。第2接着層45は、負極活物質層22とセパレータ30との間に配置され、負極活物質層22とセパレータ30とを接着することによって負極板20とセパレータ30とを接着する。第1接着層40の厚さは特に限定されないが、例えば100nm~500nm程度である。同様に、第2接着層45の厚さは限定されないが、例えば100nm~500nm程度である。
 第1接着層40を構成する材料は、正極活物質層12とセパレータ30とを接着し得る限りにおいて限定されない。第2接着層45を構成する材料は、負極活物質層22とセパレータ30とを接着し得る限りにおいて限定されない。
 第1接着層40および第2接着層45を構成する材料として、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系樹脂、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル(PVC)、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物等の熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン(カルボキシル基を一部側鎖に持つもの)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)等の(メタ)アクリル系樹脂、アラミド、ポリ塩化ビニリデン(PVDC)等を用いることができる。
 第1接着層40および第2接着層45を構成する材料として、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドを用いるのがより好ましい。
 第1接着層40を構成する材料および第2接着層45を構成する材料として上述した材料は、耐熱性に優れ、さらに酸化電位、還元電位双方に安定である。
 第1接着層40を構成する材料および第2接着層45を構成する材料として上述した材料のうち、例えば、ポリフッ化ビニリデン(PVdF)、(メタ)アクリル系樹脂、オレフィン系樹脂等は、酸化側、還元側のいずれの電位にも強いから、第1接着層40および第2接着層45のいずれに対しても好適に使用可能である。
 第1接着層40を構成する材料および第2接着層45を構成する材料として上述した材料のうち、PTFE等は、酸化電位に強いから、正極活物質層12とセパレータ30とを接着する第1接着層40を構成する材料として用いるのが好ましい。
 一方、第1接着層40を構成する材料および第2接着層45を構成する材料として上述した材料のうち、SBR等は、還元電位に強いことから負極活物質層22とセパレータ30とを接着する第2接着層45を構成する材料として用いるのが好ましい。
 第1接着層40を構成する材料および第2接着層45を構成する材料として上述した材料は、単独で用いてもよいし、2種以上を併用してもよい。
 第1接着層40は、セパレータ30において正極活物質層12に臨む面30aのうち、正極活物質層12に対向する部位に配置されている。しかしながら、第1接着層40の配置の形態は、正極活物質層12とセパレータ30とを接着し得る限りにおいて特に限定されない。例えば、第1接着層40は、セパレータ30において正極活物質層12に臨む面30aの全面にわたって配置されていてもよい。
 第2接着層45も同様に、セパレータ30において負極活物質層22に臨む面30bのうち負極活物質層22に対向する部位に配置されている。しかしながら、第2接着層45の配置の形態は、負極活物質層22とセパレータ30とを接着し得る限りにおいて特に限定されない。例えば、第2接着層45は、セパレータ30において負極活物質層22に臨む面30bの全面にわたって配置されていてもよい。
 <第2接着層と負極板との関係>
 図3および図4を参照して、負極板20は、セパレータ30を挟んで正極活物質層12に対向している対向部20aと、対向部20aの外周に位置し、セパレータ30を挟んで正極活物質層12に対向していない非対向部20bと、を備える。
 第2接着層45は、セパレータ30に対向部20aを接着する第1接着部45aと、セパレータ30に非対向部20bを接着する第2接着部45bと、を備える。第1接着部45aは、セパレータ30と対向部20aとの間に配置されている。第2接着部45bは、セパレータ30と非対向部20bとの間に配置されている。
 第2接着部45bの接着強度は、第1接着部45aの接着強度よりも大きい。接着強度の評価方法は、第1接着部45aの接着強度および第2接着部45bの接着強度の評価が同じ評価方法によって行われる限りにおいて特に限定されない。接着強度の評価方法として、例えば、JISのK6854−1(90度はく離試験)やK6854−2(180度はく離試験)に記載の方法を使用できる。
 負極活物質層22は、使用に伴って膨張収縮する。具体的には、上述したように、負極活物質の少なくとも1種はシリコンを含有するが、シリコンは、充放電に伴う体積変化が大きい。そのため、シリコンを含有する材料を負極活物質に用いた場合、シリコンの体積変化に伴って負極活物質層22が膨張収縮する。具体的には、負極活物質層22は充電時には膨張し、放電時には収縮する。
 負極活物質層22が膨張収縮すると負極板20が伸縮するが、伸縮寸法(伸縮の大きさ)は、負極板20全体にわたって均一にならない。具体的には、図2および図3を参照して、負極板20の対向部20aは充放電による正極板10とのイオンの授受に伴い伸縮する。一方、負極板20の非対向部20bは正極板10とのイオンの授受が少なく、充放電への寄与が小さいことから、対向部20aに比して伸縮寸法が小さい。
 ここで、充電時の負極板20の非対向部20bにおける負極活物質層22の膨張は、対向部20aにおける負極活物質層22の膨張よりも小さい。しかしながら、非対向部20bにおける負極板20は対向部20aの伸張に伴って張力が付与されることにより、第2集電体21が引き伸ばされて伸張する。この状態から放電が実施されると、対向部20aにおける負極板20は負極活物質層22が収縮して縮小するが、非対向部20bにおける負極板20は負極活物質層22の収縮が小さく殆ど縮小しない。
 このように、対向部20aが伸縮した際に非対向部20bとの間の伸縮寸法の大きさに差が生じ、伸縮寸法の差に起因して発生する非対向部20bの張力変化によって皺が発生する。
 本実施形態に係る二次電池100によれば、第2接着部45bの接着力が第1接着部45aの接着力よりも大きいことによって、対向部20aよりも非対向部20bの伸縮を抑制して、非対向部20bの伸縮寸法を小さくできる。これにより、対向部20aと非対向部20bとの間の伸縮寸法の差に起因した非対向部20bの張力変化を抑制できる。そのため、負極活物質層22が膨張収縮することに起因して、負極板20の外周縁部に皺が発生することを抑制できる。
 第2接着部45bの接着強度は、第1接着部45aの接着強度よりも大きい限りにおいて特に限定されないが、例えば、第1接着部45aの接着強度と第2接着部45bの接着強度との比は、0.02<(第1接着部45aの接着強度/第2接着部45bの接着強度)<0.5とし得る。別の言い方をすれば、第1接着部45aの接着強度:第2接着部45bの接着強度の比を、1:2から1:50までの間の範囲内に設定し得る。
 本実施形態では、第2接着部45bを構成する材料の平均粒径は、第1接着部45aを構成する材料の平均粒径よりも大きい。平均粒径とは、第2接着層45を構成する材料のうち接着力を生じさせる材料の平均粒径を意味する。例えば、第2接着層45を構成する材料として、ポリフッ化ビニリデン(PVdF)を用いた場合には、ポリフッ化ビニリデン(PVdF)の平均粒径を意味する。また、第2接着層45を構成する材料として二種類以上の材料を併用した場合には、それら材料全てについての平均粒径を意味する。
 第2接着層45を構成する材料のうち接着力を生じさせる材料の平均粒径を小さくすると接着強度が増大するため、平均粒径を異ならせるという簡便な方法によって、第1接着部45aの接着強度よりも第2接着部45bの接着強度を大きくできる。
 第1接着部45aを構成する材料の平均粒径および第2接着部45bを構成する材料の平均粒径は、第2接着部45bの接着強度が第1接着部45aの接着強度よりも大きくなる限りにおいて特に限定されない。例えば、第2接着層45を構成する材料としてポリフッ化ビニリデン(PVdF)を用いた場合、第1接着部45aを構成する材料の平均粒径を1μmとし、第1接着部45aを構成する材料の平均粒径を0.1μmとすることができる。
 第1接着部45aを構成する材料の平均粒径および第2接着部45bを構成する材料の平均粒径の算出方法は、第1接着部45aを構成する材料の平均粒径の算出方法と第2接着部45bを構成する材料の平均粒径の算出方法とが同じである限りにおいて限定されない。第1接着部45aを構成する材料の平均粒径および第2接着部45bを構成する材料の平均粒径として、例えば、レーザー回折・散乱法による小粒子径側からの50%積算粒子径を用いることができる。
 第1接着部45aおよび第2接着部45bの形成方法は特に限定されないが、例えば、以下の手順によって形成できる。
 図5Aを参照して、セパレータ30において負極活物質層22に臨む面30bの部位のうち、正極板10と負極板20とをセパレータ30を介して積層したときに負極活物質層22に対向しない部位に第1接着部45aと同じ厚さを備える剥離紙Mを配置する。そして、第1接着部45aを構成する材料を30bに向かって塗工する。これにより、第1接着部45aが面30b上に形成される。
 次に、剥離紙Mをはがして、正極板10と負極板20とをセパレータ30を介して積層したときに負極活物質層22に対向しない部位に第2接着部45bを構成する材料を塗工する。これにより、図5Bに示すように第2接着部45bが面30b上に形成される。
 <二次電池の動作>
 本実施形態に係る二次電池100は、燃料電池車およびハイブリッド電気自動車等の車両のモータ等の駆動用電源や補助電源として充放電が繰り返しなされる。充放電によって、負極活物質層22に含まれる負極活物質の体積が変化して負極活物質層22が膨張収縮する。
 本実施形態に係る二次電池100では、負極板20の非対向部20bをセパレータ30に接着する第2接着部45bの接着強度は、対向部20aをセパレータ30に接着する第1接着部45aの接着強度よりも大きい。これにより、対向部20aよりも非対向部20bの伸縮を抑制して、非対向部20bの伸縮寸法を小さくできる。そのため、対向部20aと非対向部20bとの間の伸縮寸法の差に起因した非対向部20bの張力変化を抑制できる。そのため、負極活物質層22が膨張収縮することに起因して、負極板20の外周縁部に皺が発生することを抑制できる。
 負極板20の外周縁部に皺が生じることを抑制することによって、対向部20a、すなわち、電極として反応する部位に皺が生じることを抑制できる。そのため、電極として反応する部位に皺が生じて電極間距離が不均一になることに起因した反応の局在化(電流密度の不均一化など)を抑制し、電池の性能低下およびサイクル寿命低下を防止できる。
 (作用・効果)
 本実施形態に係る二次電池100は、第1集電体11の両面11a、11b上に正極活物質層12を配置してなる正極板10と、負極活物質層22を、正極活物質層12の面積よりも大きな面積をもって、第2集電体21の両面21a、21b上に配置してなる負極板20とを、電解質を保持するセパレータ30を挟んで、正極活物質層12と負極活物質層22とが対向した状態で積層してなる発電要素110を有する。負極板20は、セパレータ30を挟んで正極活物質層12に対向している対向部20aと、対向部20aの外周に位置し、セパレータ30を挟んで正極活物質層12に対向していない非対向部20bと、を備える。負極板20とセパレータ30とは、第2接着層45を介して接着されており、第2接着層45において、セパレータ30に対向部20aを接着する第1接着部45aの接着強度よりも、セパレータ30に非対向部20bを接着する第2接着部45bの接着強度の方が大きい。
 本実施形態に係る二次電池100によれば、負極板20の非対向部20bとセパレータ30とを接着する第2接着部45bの接着強度は、負極板20の対向部20aとセパレータ30とを接着する第1接着部45aの接着強度よりも大きい。これにより、対向部20aよりも非対向部20bの伸縮を抑制して、非対向部20bの伸縮寸法を小さくできる。そのため、対向部20aと非対向部20bとの間の伸縮寸法の差に起因した非対向部20bの張力変化を抑制できる。そのため、負極活物質層22が膨張収縮することに起因して、負極板20の外周縁部に皺が発生することを抑制できる。従って、性能低下・サイクル寿命低下を防止することが可能な二次電池を提供できる。
 また、本実施形態に係る二次電池100は、第2接着部45bを構成する材料の平均粒径は、第1接着部45aを構成する材料の平均粒径よりも小さい。
 本実施形態に係る二次電池100によれば、平均粒径を異ならせるという簡便な方法によって、第2接着部45bの接着強度を第1接着部45aの接着強度よりも高めることができる。そのため、二次電池の製造が容易になる。
 また、本実施形態に係る二次電池100は、リチウムイオン二次電池であり、負極活物質層22に含まれる負極活物質の少なくとも1種は、シリコン、シリコン合金およびシリコン酸化物からなる群から選択される。
 本実施形態に係る二次電池100によれば、負極活物質層22を薄くすることができるから、負極板20を小型化・高容量化できる。そのため、二次電池100の小型化・高容量化を実現できる。
 (改変例1)
 上述した実施形態では、第1接着部45aを構成する材料よりも第2接着部45bを構成する材料の平均粒径を小さくすることにより、第1接着部45aの接着強度よりも第2接着部45bの接着強度を大きくした。しかしながら、第2接着部45bの接着強度を第2接着部45bの接着強度よりも大きくする方法は特に限定されない。
 例えば、第2接着部45bを構成する材料の目付量を、第1接着部45aを構成する材料の目付量よりも大きくしてもよい。ここで、本明細書において、「目付量」とは、第2接着層45を構成する材料のうち接着力を生じさせる材料の第2接着層45の単位面積当たりの質量を意味する。
 第2接着層45は、目付量が増すことによって接着強度が大きくなる。すなわち、本改変例に係る二次電池によれば、目付量を異ならせるという簡便な方法によって第2接着部45bの接着強度を第1接着部45aの接着強度よりも大きくできる。そのため、二次電池100の製造が容易になる。
 第2接着部45bを構成する材料の目付量は、第1接着部45aを構成する材料の目付量よりも大きい限りにおいて特に限定されない。例えば、第2接着層45を構成する材料としてポリフッ化ビニリデン(PVdF)を用いた場合、第1接着部45aの目付量を5mg/cm2とし、第2接着部45bの目付量を20mg/cm2とすることができる。
 第1接着部45aの目付量と第2接着部45bの目付量とを異ならせる方法は特に限定されないが、例えば、セパレータ30において負極活物質層22に臨む面30aに第2接着層45を構成する材料を塗工する際に、材料を塗布する時間を調整することによって目付量を異ならせることができる。すなわち、第1接着部45aを構成する材料を塗布する時間と第2接着部45bを構成する材料を塗布する時間とを異ならせることによって目付量を異ならせることができる。塗布する時間が長い程、目付量は大きくなる。
 本改変例に係る二次電池によれば、目付量を異ならせるという簡便な方法によって、第2接着部45bの接着強度を第1接着部45aの接着強度よりも高めることができる。そのため、二次電池の製造が容易になる。
 (改変例2)
 また、第2接着部45bは、非イオン透過性を備えてもよい。
 これにより、負極板20の非対向部20bの負極活物質層22が非イオン透過性を備えた部材によって覆われるから、電極として機能しない非対向部20bの負極活物質層22と電解液とが接触して電解液が消費されることを防止できる。これにより、電解液を有効に利用できるため二次電池100に充填する電解液の量を減らせる。そのため、二次電池100をさらに小型化できるとともに製造コストを削減できる。
 第2接着部45bに非イオン透過性を備えさせる方法は特に限定されないが、例えば、第2接着部45bの空孔率を小さくすることによって第2接着部45bに非イオン透過性を備えさせることができる。空孔率の調整は、例えばポリフッ化ビニリデン(PVdF)等のディスパージョン溶液をセパレータ30に塗工した後に、乾燥条件(乾燥温度や乾燥時間など)を変更することによって可能であり、乾燥時間が長い程、また乾燥温度が高い程、空孔率が小さくなる。
 (改変例3)
 また、上述した実施形態並びに改変例1および改変例2では、第1接着部45aを構成する材料と第2接着部45bを構成する材料とは同じだった。しかしながら、第1接着部45aを構成する材料と第2接着部45bを構成する材料とは異なっていてもよい。
 これにより、材料を異ならせるという簡便な方法によって、第2接着部45bの接着強度を第1接着部45aの接着強度よりも大きくできる。そのため、二次電池の製造が容易になる。
 第1接着部45aを構成する材料と第2接着部45bを構成する材料の組合せは、第1接着部45aの接着強度よりも第2接着部45bの接着強度が大きくなる限りにおいて特に限定されない。例えば、第1接着部45aを構成する材料としてポリフッ化ビニリデン(PVdF)ディスパージョン溶液を使用し、第2接着部45bを構成する材料としてセラミック粒子およびアクリルバインダーをN−メチル−2−ピロリドン(NMP)へ分散させたものを使用できる。
 (その他の改変例)
 さらに、上述した実施形態および改変例では、第1集電体11の両面11a、11bに正極活物質層12が配置されるとともに、第2集電体21の両面21a、21bに負極活物質層22が配置された、いわゆる非双曲型の二次電池を例に説明した。
 しかしながら、図6に示すように、第1集電体11(第2集電体21)の一方の面11a(21a)上に正極活物質層12が配置されるとともに一方の面11a(21a)に対向する他方の面11b、21b上に負極活物質層22が配置された、いわゆる双曲型の二次電池に本発明を適用することも可能である。
 本改変例では、第1集電体11および第2集電体21は同一の構造を備えてよい。第1集電体11を構成する材料および第2集電体21を構成する材料は特に限定されず、従来公知のものを使用できる。第1集電体11を構成する材料および第2集電体21を構成する材料は、例えば、アルミニウム箔、ステンレス(SUS)箔、ニッケルとアルミニウムのクラッド材、銅とアルミニウムのクラッド材、SUSとアルミニウムのクラッド材あるいはこれらの金属の組み合わせのめっき材であってよい。また、金属表面に、アルミニウムを被覆させた集電体であってもよい。さらに、2つ以上の金属箔を張り合わせた、いわゆる複合集電体を用いてもよい。
 本改変例に係る二次電池によっても、上述した実施形態と同様の効果を奏することができる。また、上述した実施形態の改変例において説明した構成を本改変例に係る二次電池に適用することが可能であり、それによって、上述した実施形態の改変例に係る二次電池と同様の効果を奏することができる。
 以上、実施形態およびその改変例を通じて二次電池を説明したが、本発明は実施形態とその改変例において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。
 例えば、本発明は、使用に伴って負極活物質層が膨張収縮する二次電池である限りにおいて、二次電池の種類や活物質の種類、電解質の種類などによらず適用可能である。
 また、上述した実施形態およびその改変例では、二次電池100の一の辺から正極タブ13および負極タブ23が取り出されているタイプの二次電池を例に説明した。しかしながら、二次電池の一の辺から正極タブが取り出されるとともに、他の辺から負極タブが取り出されるタイプの二次電池に本発明を適用することも可能である。
 さらに、上述した実施形態およびその改変例では、積層型の二次電池を例に説明したが、本発明は、巻回型の二次電池にも適用可能である。
 本出願は、2016年9月29日に出願された日本特許出願番号2016−191862号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
10  正極板、
11  第1集電体、
11a、21a 面(一方の面)、
11b、21b 面、
12  正極活物質層、
20  負極板、
20a 対向部、
20b 非対向部、
21  第2集電体、
22  負極活物質層、
30  セパレータ、
40  第1接着層、
45  第2接着層(接着層)、
45a 第1接着部、
45b 第2接着部、
100 二次電池、
110 発電要素、
120 外装部材、
M   剥離紙。

Claims (6)

  1.  第1集電体の少なくとも一方の面上に正極活物質層を配置してなる正極板と、負極活物質層を、前記正極活物質層の面積よりも大きな面積をもって、第2集電体の少なくとも一方の面上に配置してなる負極板とを、電解質を保持するセパレータを挟んで、前記正極活物質層と前記負極活物質層とが対向した状態で積層してなる発電要素を有し、
     前記負極板は、前記セパレータを挟んで前記正極活物質層に対向している対向部と、前記対向部の外周に位置し、前記セパレータを挟んで前記正極活物質層に対向していない非対向部と、を備え、
     前記負極板と前記セパレータとは、接着層を介して接着されており、
     前記接着層において、前記セパレータに前記対向部を接着する第1接着部の接着強度よりも、前記セパレータに前記非対向部を接着する第2接着部の接着強度の方が大きい、二次電池。
  2.  前記第2接着部を構成する材料の平均粒径は、前記第1接着部を構成する材料の平均粒径よりも小さい、請求項1に記載の二次電池。
  3.  前記第2接着部を構成する材料の目付量は、前記第1接着部を構成する材料の目付量よりも大きい、請求項1または請求項2に記載の二次電池。
  4.  前記第1接着部を構成する材料と前記第2接着部を構成する材料とは異なる、請求項1~3のいずれか1項に記載の二次電池。
  5.  前記第2接着部は、非イオン透過性を備える、請求項4に記載の二次電池。
  6.  リチウムイオン二次電池であり、
     前記負極活物質層に含まれる負極活物質の少なくとも1種は、シリコン、シリコン合金およびシリコン酸化物からなる群から選択される、請求項1~5のいずれか1項に記載の二次電池。
PCT/IB2017/001380 2016-09-29 2017-09-28 二次電池 WO2018060773A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780060596.6A CN109792089B (zh) 2016-09-29 2017-09-28 二次电池
US16/337,047 US10651448B2 (en) 2016-09-29 2017-09-28 Secondary cell
KR1020197008174A KR102071835B1 (ko) 2016-09-29 2017-09-28 이차 전지
EP17855081.0A EP3522263B1 (en) 2016-09-29 2017-09-28 Secondary cell
JP2018541598A JP6757415B2 (ja) 2016-09-29 2017-09-28 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191862 2016-09-29
JP2016191862 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018060773A1 true WO2018060773A1 (ja) 2018-04-05

Family

ID=61760179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001380 WO2018060773A1 (ja) 2016-09-29 2017-09-28 二次電池

Country Status (7)

Country Link
US (1) US10651448B2 (ja)
EP (1) EP3522263B1 (ja)
JP (1) JP6757415B2 (ja)
KR (1) KR102071835B1 (ja)
CN (1) CN109792089B (ja)
MY (1) MY175433A (ja)
WO (1) WO2018060773A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054801A1 (ja) * 2018-09-12 2020-03-19 日本ゼオン株式会社 二次電池用積層体および二次電池、並びに、それらの製造方法
CN112655106A (zh) * 2018-09-28 2021-04-13 日本瑞翁株式会社 二次电池及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030810A1 (ko) * 2016-08-12 2018-02-15 주식회사 엘지화학 전극과 분리막이 부분 결착된 전극조립체
KR102111105B1 (ko) * 2016-10-10 2020-05-14 주식회사 엘지화학 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
CN111146396B (zh) * 2019-12-30 2022-11-04 宁德新能源科技有限公司 电化学装置及包含所述电化学装置的电子装置
KR20210135861A (ko) * 2020-05-06 2021-11-16 주식회사 엘지에너지솔루션 저항이 개선된 이차전지 제조방법
JP7186747B2 (ja) 2020-07-27 2022-12-09 プライムプラネットエナジー&ソリューションズ株式会社 二次電池およびその製造方法
JP7245212B2 (ja) * 2020-10-09 2023-03-23 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池
JP7158449B2 (ja) * 2020-10-09 2022-10-21 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池
CN116261794A (zh) 2020-11-18 2023-06-13 株式会社Lg新能源 二次电池及其制造方法
JP7304369B2 (ja) * 2021-01-05 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池
JP2023539571A (ja) * 2021-05-24 2023-09-15 エルジー エナジー ソリューション リミテッド 単位セルおよびこれを含む電池セル
CN114447406B (zh) * 2022-01-28 2023-05-05 蜂巢能源科技(无锡)有限公司 全固态电芯及其制备方法和全固态电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187021A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd 二次電池
JP2018018760A (ja) * 2016-07-29 2018-02-01 トヨタ自動車株式会社 二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040644A1 (fr) 1998-02-05 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication de batteries a ions lithium
US6468693B1 (en) * 1999-07-29 2002-10-22 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR100913176B1 (ko) * 2007-11-28 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP4659861B2 (ja) * 2008-07-09 2011-03-30 シャープ株式会社 扁平型二次電池およびその製造方法
JP5365215B2 (ja) 2009-01-27 2013-12-11 ソニー株式会社 二次電池
JP2014120456A (ja) 2012-12-19 2014-06-30 Nissan Motor Co Ltd 二次電池
JP2014127272A (ja) 2012-12-25 2014-07-07 Toyota Motor Corp 全固体電池用電極体の製造方法
KR101584752B1 (ko) 2013-03-19 2016-01-12 주식회사 엘지화학 전기화학소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187021A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd 二次電池
JP2018018760A (ja) * 2016-07-29 2018-02-01 トヨタ自動車株式会社 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522263A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054801A1 (ja) * 2018-09-12 2020-03-19 日本ゼオン株式会社 二次電池用積層体および二次電池、並びに、それらの製造方法
CN112534616A (zh) * 2018-09-12 2021-03-19 日本瑞翁株式会社 二次电池用层叠体及二次电池以及其制造方法
JPWO2020054801A1 (ja) * 2018-09-12 2021-08-30 日本ゼオン株式会社 二次電池用積層体および二次電池、並びに、それらの製造方法
EP3852179A4 (en) * 2018-09-12 2022-06-08 Zeon Corporation LAMINATED BODY FOR SECONDARY BATTERIES AND SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP7414003B2 (ja) 2018-09-12 2024-01-16 日本ゼオン株式会社 二次電池用積層体および二次電池、並びに、それらの製造方法
CN112655106A (zh) * 2018-09-28 2021-04-13 日本瑞翁株式会社 二次电池及其制造方法
JPWO2020067208A1 (ja) * 2018-09-28 2021-08-30 日本ゼオン株式会社 二次電池およびその製造方法
EP3859863A4 (en) * 2018-09-28 2022-06-22 Zeon Corporation SECONDARY BATTERY AND METHOD OF MANUFACTURE THEREOF
JP7380581B2 (ja) 2018-09-28 2023-11-15 日本ゼオン株式会社 二次電池およびその製造方法
CN112655106B (zh) * 2018-09-28 2024-06-21 日本瑞翁株式会社 二次电池及其制造方法

Also Published As

Publication number Publication date
JPWO2018060773A1 (ja) 2019-08-22
US10651448B2 (en) 2020-05-12
EP3522263B1 (en) 2020-08-26
MY175433A (en) 2020-06-25
JP6757415B2 (ja) 2020-09-16
KR102071835B1 (ko) 2020-01-30
CN109792089A (zh) 2019-05-21
CN109792089B (zh) 2020-07-14
EP3522263A4 (en) 2019-08-07
EP3522263A1 (en) 2019-08-07
KR20190040295A (ko) 2019-04-17
US20190221808A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018060773A1 (ja) 二次電池
JP5167703B2 (ja) 電池用電極
JP5481904B2 (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
KR101529408B1 (ko) 비수 전해질 2차 전지
JP5935405B2 (ja) 積層構造電池
JP5748108B2 (ja) リチウム二次電池
JP5966285B2 (ja) 耐熱絶縁層付セパレータ
KR101721300B1 (ko) 비수 전해질 2차 전지
JP2009224239A (ja) 電池用電極
JP5601361B2 (ja) 電池用電極
WO2007032365A1 (ja) 電池用電極
US9847518B2 (en) Separator with heat-resistant insulation layer
JP2009043703A (ja) 非水電解液二次電池
JP2007280687A (ja) 電池用電極
JP2020013637A (ja) 電池
JP2014026943A (ja) 積層構造電池
KR101207640B1 (ko) 세퍼레이터
JP6829974B2 (ja) 二次電池
JP2011258435A (ja) 電池用電極、双極型電池用電極及び双極型電池
JP2010212094A (ja) 双極型電池
WO2020021683A1 (ja) 電池パック
JP2016152125A (ja) 非水電解液二次電池
JP2014086179A (ja) リチウムイオン二次電池用正極
JP2020027788A (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541598

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008174

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855081

Country of ref document: EP

Effective date: 20190429