WO2018055666A9 - インターフェース回路 - Google Patents
インターフェース回路 Download PDFInfo
- Publication number
- WO2018055666A9 WO2018055666A9 PCT/JP2016/077661 JP2016077661W WO2018055666A9 WO 2018055666 A9 WO2018055666 A9 WO 2018055666A9 JP 2016077661 W JP2016077661 W JP 2016077661W WO 2018055666 A9 WO2018055666 A9 WO 2018055666A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- potential
- signal
- interface circuit
- output
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
- H03K19/018521—Interface arrangements of complementary type, e.g. CMOS
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
Definitions
- the present invention relates to an interface circuit that converts an input signal into another signal level and outputs the signal level.
- a control signal generated by a digital IC (Integrated Circuit) operating at 3.3 V such as a microcomputer or an FPGA (Field Programmable Gate Array) may be supplied to a controlled element such as a high breakdown voltage element or a high frequency element.
- a controlled element such as a high breakdown voltage element or a high frequency element.
- JP 2007-101740 A Patent Document 1
- JP 2011-19017 A Patent Document 2
- JP A 1-152817 Patent Document 3
- JP 2011-103557 A Patent Document 4
- JP 2011-103557 A Patent Document 4
- JP-A-2011-176767 Patent Document 5 discloses various level conversion circuits.
- JP 2007-101740 A JP, 2011-19017, A Japanese Patent Application Laid-Open No. 1-152817 JP, 2011-103557, A JP, 2011-176767, A
- a digital IC is supplied with a power supply whose high potential is 3.3 V and whose low potential is 0 V (ground potential: hereinafter referred to as GND potential).
- the digital IC outputs a high active control signal in which the high level is 3.3 V and the low level is the GND potential corresponding to inactive (inactive).
- the digital IC sets a high level to the GND potential corresponding to inactive and outputs a low active control signal having a low level of -3.3V.
- the potential on the side other than the reference potential for example, the GND potential
- the potential on the side other than the reference potential for example, the GND potential
- the controlled element is also often operated by a control signal whose high level is active (high active). However, there are also controlled elements operated by a control signal whose low level is active (low active).
- the control signal corresponding to inactivity is the GND potential
- the high level is a positive potential in high activity
- the low level is a negative potential in low activity.
- an interface circuit that receives a control signal from a digital IC as an input and outputs a control signal for controlling a controlled element is appropriately designed in consideration of whether the control signal is high active or low active. There is a need.
- the digital control circuit is an interface circuit between the high-active control signal and the controlled element.
- a circuit that outputs a signal in phase with the control signal input from the IC to the controlled element is selected.
- a digital IC is used as an interface circuit between a digital IC that outputs a low active control signal whose high level is the GND potential and whose low level is -3.3 V, and a controlled element operated by the high active control signal.
- a circuit is selected which outputs to the controlled element a signal whose polarity is inverted with respect to the control signal input thereto.
- a controlled element operated by the low active control signal is: A circuit is selected that outputs to the controlled element a signal whose polarity is inverted with respect to the control signal input from the digital IC.
- a digital IC is used as an interface circuit between a digital IC that outputs a low active control signal whose high level is the GND potential and whose low level is -3.3 V, and a controlled element operated by the low active control signal.
- a circuit is selected which outputs a signal in phase with the control signal input thereto from the controlled element to the controlled element.
- the present invention has been made to solve the above problems, and it is an object of the present invention to provide an interface circuit capable of outputting a desired signal regardless of whether the input signal is high active or low active. I assume.
- the interface circuit receives the first signal in which the first potential is high and the second potential lower than the first potential is low, and the third potential is high. And a control unit that outputs a second signal for setting the fourth potential lower than the first potential to a low level.
- the control unit causes the second signal to be in phase with the first signal or the polarity of the second signal depending on which of the first potential and the second potential is the first reference potential. It controls whether to invert the first signal.
- a desired signal can be output regardless of whether the input signal is high active or low active.
- FIG. 6 is a circuit block diagram showing a configuration of an interface circuit according to Comparative Example 1;
- FIG. 7 is a circuit block diagram showing a configuration of an interface circuit according to Comparative Example 2;
- FIG. 6 is a circuit block diagram showing the configuration of the interface circuit according to the first embodiment when a signal whose high level is a positive potential and whose low level is a GND potential is received as an input signal VIN.
- FIG. 7 is a circuit block diagram showing the configuration of the interface circuit according to the first embodiment when a high level is a GND potential and a low level is a negative potential as an input signal VIN.
- FIG. 1 is a circuit diagram showing an example of an interface circuit according to Embodiment 1;
- FIG. 1 is a circuit diagram showing an example of an interface circuit according to Embodiment 1;
- FIG. 1 is a circuit diagram showing an example of an interface circuit according to Embodiment 1;
- FIG. 1 is a circuit diagram showing an example of an interface circuit according to Embodi
- FIG. 6 is a signal waveform diagram showing a change in potential state of each terminal in the interface circuit shown in FIG. 5.
- FIG. 17 is a circuit block diagram showing a configuration of an interface circuit according to a second embodiment when a signal whose high level is a positive potential and whose low level is a GND potential is received as an input signal VIN.
- FIG. 16 is a circuit block diagram showing a configuration of an interface circuit according to a second embodiment when a signal whose high level is a GND potential and whose low level is a negative potential is received as an input signal VIN.
- FIG. 7 is a circuit diagram showing an example of an interface circuit according to a second embodiment.
- FIG. 10 is a signal waveform diagram showing a change in potential state of each terminal in the interface circuit shown in FIG. 9. FIG.
- FIG. 18 is a circuit block diagram showing a configuration of an interface circuit according to a third embodiment when a signal whose high level is a positive potential and whose low level is a GND potential is received as an input signal VIN.
- FIG. 17 is a circuit block diagram showing a configuration of an interface circuit according to a third embodiment when a signal whose high level is a GND potential and whose low level is a negative potential is received as an input signal VIN.
- FIG. 13 is a circuit diagram showing an example of an interface circuit according to a third embodiment.
- FIG. 18 is a circuit block diagram showing a configuration of an interface circuit according to a fourth embodiment when a signal whose high level is a positive potential and whose low level is a GND potential is received as an input signal VIN.
- FIG. 18 is a circuit block diagram showing a configuration of an interface circuit according to a fourth embodiment when a signal whose high level is a GND potential and whose low level is a negative potential is received as an input signal VIN.
- FIG. 16 is a circuit diagram showing an example of an interface circuit according to a fourth embodiment. It is a figure which shows another circuit structure of a level shift part.
- FIG. 1 is a circuit block diagram showing a configuration of an interface circuit 100a according to Comparative Example 1.
- the interface circuit 100a receives the input signal VIN that sets the high potential VIH to high level and the low potential VIL to low level, outputs the output signal VOUT that sets the high potential VOH to high level and sets the low potential VOL to low level It is.
- the interface circuit 100 a includes an input buffer 101, a level shift unit 4, and an output buffer 5.
- the input buffer 101 receives the high potential VIH and the low potential VIL from the input side power supply, and outputs the signal S1 of the high potential VIH to the level shift unit 4 when the input signal VIN is at high level, and the input signal VIN is low. When at the level, the signal S1 of the low potential VIL is output to the level shift unit 4. Thus, the input buffer 101 outputs a signal S1 in phase with the input signal VIN.
- the level shift unit 4 is supplied with the high potential VIH and the low potential VIL from the input-side power supply, and is supplied with the high potential VOH and the low potential VOL from the output-side power supply.
- Level shift unit 4 receives signal S1 output from input buffer 101, and outputs signal S2 which is in phase with signal S1 and in which the level of signal S1 is converted.
- the level shift unit 4 may be supplied with only the high potential VIH from the input-side power supply.
- the level shift unit 4 outputs the signal S2 of the high potential VOH when the signal S1 received from the input buffer 101 is at the high level, and the signal of the low potential VOL when the signal S1 is at the low level. Output S2.
- the level shift unit 4 outputs the signal S2 in phase with the signal S1 output from the input buffer 101. That is, the level shift unit 4 outputs the signal S2 which is in phase with the input signal VIN and whose level is converted.
- the output buffer 5 receives the signal S2 output from the level shift unit 4 and outputs a signal in phase with the signal S2 as an output signal VOUT. That is, the output buffer 5 outputs a signal in phase with the input signal VIN as the output signal VOUT.
- the output buffer 5 amplifies the current of the output signal VOUT so that the output current is the current necessary to drive the load.
- the interface circuit 100a outputs the output signal VOUT in phase with the input signal VIN. Therefore, interface circuit 100a receives, for example, a high active signal having a high level of 3.3 V and a low level corresponding to inactive GND potential as an input signal VIN from the digital IC, and is controlled by the high active control signal. It is suitable for a circuit that outputs an output signal VOUT to an operating controlled element.
- the interface circuit 100a receives a low active signal whose high level is at the GND potential corresponding to inactive and the low level is -3.3 V from the digital IC as the input signal VIN, the input signal VIN is in. When it is at the GND potential corresponding to active, it outputs a high level output signal VOUT. Therefore, the interface circuit 100a is not suitable for a circuit that receives a low active signal as the input signal VIN and outputs the output signal VOUT to a controlled element operated by the high active control signal.
- FIG. 2 is a circuit block diagram showing a configuration of an interface circuit 100b according to Comparative Example 2. As shown in FIG. The interface circuit 100b is different from the interface circuit 100a shown in FIG. 1 in that an input inverter 102 is provided instead of the input buffer 101.
- the input inverter 102 receives the high potential VIH and the low potential VIL from the input side power supply, and outputs the signal S1 of the low potential VIL to the level shift unit 4 when the input signal VIN is at high level, and the input signal VIN is low. When at the level, the signal S 1 of the high potential VIH is output to the level shift unit 4. Thus, the input inverter 102 outputs the signal S1 whose polarity is inverted with respect to the input signal VIN.
- the level shift unit 4 outputs the signal S2 in phase with the signal S1 received from the previous stage.
- the output buffer 5 also outputs an output signal VOUT in phase with the signal S2 received from the previous stage. Therefore, the interface circuit 100b outputs an output signal VOUT whose polarity is inverted with respect to the input signal VIN.
- interface circuit 100b receives a low active control signal having a high level corresponding to inactive and a low level of -3.3 V from the digital IC as an input signal VIN, for example. It is suitable for a circuit that outputs an output signal VOUT to a controlled element operated by a control signal.
- the interface circuit 100b receives a high active signal having a high level of 3.3 V and a low level corresponding to the inactive GND potential as the input signal VIN from the digital IC, the input signal VIN is inactive.
- the output signal VOUT is output at a high level when the GND potential corresponds to. Therefore, the interface circuit 100b is not suitable for a circuit that receives a high active signal as the input signal VIN and outputs the output signal VOUT to a controlled element operated by the high active control signal.
- the user outputs an output signal VOUT to the controlled element operated by the high active control signal, depending on whether the input signal VIN is high active or low active (That is, it is necessary to selectively use the interface circuit 100a and the interface circuit 100b depending on which of the high level and the low level of the input signal VIN is the reference potential (for example, the GND potential) corresponding to inactivity.
- the reference potential for example, the GND potential
- the interface circuit according to the embodiment of the present invention can be used regardless of whether the input signal VIN is high active or low active.
- the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
- Embodiment 1 (Configuration of interface circuit) 3 and 4 are circuit block diagrams showing the configuration of the interface circuit 10a according to the first embodiment.
- a high active signal whose reference level (here, GND potential) corresponding to a high level (high potential VIH) as a positive potential and a low level (low potential VIL) as an inactive potential is used as the input signal VIN.
- GND potential reference level
- VIL low potential
- FIG. 4 shows a case where a high active level is a reference potential (in this case, GND potential) corresponding to inactive and a low active level is a negative potential, and a low active signal is received as the input signal VIN.
- the configuration of the interface circuit 10a itself is the same in FIG. 3 and FIG.
- the interface circuit 10a is a circuit that outputs a high active output signal VOUT regardless of which of the high level and the low level of the input signal VIN is at the GND potential. Therefore, the interface circuit 10a can be applied to a circuit that outputs an output signal VOUT to a controlled element operated by a high active control signal.
- interface circuit 10a has polarity control portion 1a instead of input buffer 101 or input inverter 102 as compared with interface circuit 100a shown in FIG. 1 or interface circuit 100b shown in FIG. It differs in having the point.
- Polarity control unit 1a receives signal S1 to be output according to whether the GND potential (first reference potential), which is a reference potential corresponding to inactivity, corresponds to the high level or low level of input signal VIN. It controls whether the signal is in phase with the signal VIN or whether the polarity of the output signal S1 is inverted with respect to the input signal VIN. Specifically, when the GND potential corresponds to the low level of the input signal VIN, the polarity control unit 1a makes the signal S1 to be output in phase with the input signal VIN and the GND potential corresponds to the high level of the input signal VIN. , The polarity of the signal S1 to be output is inverted with respect to the level of the input signal VIN.
- first reference potential which is a reference potential corresponding to inactivity
- Polar control unit 1a includes, for example, voltage detection unit 2a and switching unit 3a as its internal configuration.
- the voltage detection unit 2a receives the GND potential, which is a reference potential corresponding to inactive, and receives the high potential VIH from the input-side power supply, and compares the two potentials. When the difference between the high potential VIH and the GND potential is smaller than the threshold, the voltage detection unit 2a outputs a detection signal indicating that the high potential VIH is the GND potential to the switching unit 3a, and the high potential VIH and the GND potential If the difference between the two is greater than or equal to the threshold value, a detection signal indicating that the low potential VIL is the GND potential is output to the switching unit 3a.
- the switching unit 3a receives the input signal VIN and switches whether the signal S1 is in phase with or in phase with the input signal VIN according to the detection signal from the voltage detection unit 2a.
- the switching unit 3a when the detection signal indicates that the low potential VIL is the GND potential, the switching unit 3a outputs the signal S1 in phase with the input signal VIN to the level shift unit 4, and the high potential VIH is the GND potential.
- the detection signal indicates that the signal S1 is a signal S1
- the signal S1 whose polarity is inverted with respect to the input signal VIN is output to the level shift unit 4.
- the switching unit 3a receives the high potential VIH and the low potential VIL from the input-side power supply, sets the high potential VIH to a high level, and outputs a signal S1 that sets the low potential VIL to a low level.
- the level shift unit 4 receiving the signal S1 output from the switching unit 3a is in phase with the received signal S1 as in the comparative examples 1 and 2, and sets the high potential VOH to high level and the low potential VOL. A signal S2 to be low level is output.
- the high potential VOH is a potential of an active state controlled to the drive state in the controlled element receiving the output signal VOUT from the interface circuit 10a.
- the low potential VOL is a potential (for example, the GND potential) which does not become a driving state in the controlled element. Therefore, the output buffer 5 receiving the signal output from the level shift unit 4 outputs the high active output signal VOUT.
- the switching unit 3a outputs the signal S1 in phase with the input signal VIN.
- the level shift unit 4 and the output buffer 5 output a signal of the same polarity as the signal S1 output from the switching unit 3a. Therefore, the input signal VIN and the output signal VOUT are in phase.
- the high level (high potential VIH) is the GND potential corresponding to inactive and the low level (low potential VIL) receives the low active input signal VIN, which is a negative potential
- the voltage detection unit 2a outputs a detection signal indicating that the high potential VIH is the GND potential. Therefore, the switching unit 3a outputs the signal S1 whose polarity is inverted with respect to the input signal VIN.
- the level shift unit 4 and the output buffer 5 output a signal in phase with the signal S1 output from the switching unit 3a. Therefore, the polarity of the output signal VOUT is inverted with respect to the input signal VIN.
- the interface circuit 10a receives the input signal VIN (first signal) which sets the high potential VIH (first potential) to the high level and the low potential VIL (second potential) to the low level.
- An output signal VOUT (second signal) is output with the potential VOH (third potential) at high level and the low potential VOL (fourth potential) at low level.
- the interface circuit 10a sets the output signal VOUT in phase with the input signal VIN or the output signal depending on which of the high potential VIH and the low potential VIL corresponds to the inactive reference potential (for example, the GND potential).
- a polarity control unit 1a is provided to control whether the polarity of VOUT is inverted with respect to the input signal VIN.
- the output signal VOUT can be one of high level and low level, and when the input signal VIN is not at the GND potential, the output signal VOUT can be other one of high level and low level.
- the desired output signal VOUT can be output regardless of whether the input signal VIN is high active or low active.
- polarity control unit 1a generates signal S1 (third signal) in phase with input signal VIN when low potential VIL is a reference potential (for example, GND potential) corresponding to inactivity.
- VIL low potential
- VIL a reference potential
- VIH the reference potential
- the signal S1 whose polarity is inverted with respect to the input signal VIN is output.
- the interface circuit 10a receives the signal S1, and outputs a signal S2 (second signal) that is in phase with the signal S1, sets the high potential VOH to high level, and sets the low potential VOL to low level. And an output buffer 5 for current-amplifying the signal S2 and outputting an output signal VOUT.
- a high active output signal VOUT can be output regardless of whether the input signal VIN is high active or low active.
- FIG. 5 is a circuit diagram showing an embodiment of the interface circuit 10a.
- the polarity control unit 1a includes, for example, two input terminals 201 and 202, two output terminals 203 and 204, two power terminals 205 and 206, and two AND circuits 21 and 22. And three inverters 24, 25, 26 and an OR circuit 23.
- An input terminal 201 receives an input signal VIN.
- the input terminal 202 is grounded, and a GND potential which is a reference potential is applied.
- the power supply terminal 205 is connected to the low potential side of the input side power supply, and a low potential VIL is applied.
- the power supply terminal 206 is connected to the high potential side of the input side power supply, and a high potential VIH is applied.
- One input terminal of the AND circuit 21 is directly connected to the input terminal 201.
- the other input terminal of the AND circuit 21 is connected to the input terminal 202 via the inverter 25.
- One input terminal of the AND circuit 22 is directly connected to the input terminal 202.
- the other input terminal of the AND circuit 22 is connected to the input terminal 201 via the inverter 26.
- One input terminal of the OR circuit 23 is connected to the output terminal of the AND circuit 21.
- the other input terminal of the OR circuit 23 is connected to the output terminal of the AND circuit 22.
- the output terminal of the OR circuit 23 is connected to the output terminal 203. Therefore, the signal from the OR circuit 23 is output as the signal S1 from the polarity control unit 1a.
- the input terminal of the inverter 24 is connected to the output terminal of the OR circuit 23.
- the output terminal of the inverter 24 is connected to the output terminal 204. Therefore, the inverted signal of the signal from the OR circuit 23 is output from the output terminal 204.
- FIG. 6 shows signals indicating changes in potential states of the input terminal 201, the input terminal 202, the output terminal of the AND circuit 21, the output terminal of the AND circuit 22, and the output terminal (output terminal 203) of the OR circuit 23.
- FIG. 6 shows signals indicating changes in potential states of the input terminal 201, the input terminal 202, the output terminal of the AND circuit 21, the output terminal of the AND circuit 22, and the output terminal (output terminal 203) of the OR circuit 23.
- FIG. 6A shows a case where the high level (high potential VIH) is a positive potential and the low level (low potential VIL) receives an input signal VIN at the GND potential.
- Each logic circuit of polarity control unit 1a receives high potential VIH and low potential VIL from the input-side power supply. Therefore, the AND circuit 22 recognizes the potential of the input terminal directly connected to the input terminal 202 to which the GND potential is applied as the low level. Thus, the AND circuit 22 always outputs a low level signal.
- the AND circuit 21 recognizes the potential of the input terminal connected to the input terminal 202 through the inverter 25 as the high level. Further, the input signal VIN is input to the input terminal of the AND circuit 21 directly connected to the input terminal 201. As a result, as shown in FIG. 6A, the AND circuit 21 outputs a signal in phase with the input signal VIN input to the input terminal 201.
- the OR circuit 23 outputs a signal in phase with the input signal VIN input to the input terminal 201 as the signal S1.
- FIG. 6B shows the case where the high level (high potential VIH) is at the GND potential and the low level (low potential VIL) is at the negative potential to receive the input signal VIN.
- Each logic circuit of polarity control unit 1a receives high potential VIH and low potential VIL from the input-side power supply. Therefore, the AND circuit 22 recognizes the potential of the input terminal directly connected to the input terminal 202 to which the GND potential is applied as the high level. Further, the inverted signal of the input signal VIN is input to the input terminal of the AND circuit 22 connected to the input terminal 201 via the inverter 26. Therefore, as shown in FIG. 6B, the AND circuit 22 outputs an inverted signal of the input signal VIN input to the input terminal 201.
- the AND circuit 21 recognizes the potential applied to the input terminal connected to the input terminal 202 through the inverter 25 as the low level. Therefore, the AND circuit 21 always outputs a low level signal.
- the OR circuit 23 outputs an inverted signal of the input signal VIN input to the input terminal 201 as the signal S1.
- the polarity control unit 1a including the circuit configuration shown in FIG. 5 operates when the input signal VIN is in the state of the GND potential regardless of which of the high level and the low level of the input signal VIN is the GND potential.
- a signal S1 which becomes low level and becomes high level when the input signal VIN is not at the GND potential can be output from the output terminal 203.
- the level shift unit 4 includes two input terminals 401 and 402, an output terminal 403, three power supply terminals 404 to 406, and four PMOS transistors (PMOSFET: P-channel type Metal Oxide).
- PMOSFET P-channel type Metal Oxide
- NMOSFET N-channel type Metal Oxide Semiconductor Field Effect Transistor (N-type field effect transistor)
- the input terminal 401 is connected to the output terminal 203 of the polarity control unit 1a, and the input terminal 402 is connected to the output terminal 204 of the polarity control unit 1a.
- the power supply terminal 405 is connected to the high potential side of the input side power supply, and a high potential VIH is applied.
- the power supply terminal 406 is connected to the high potential side of the output side power supply, and the high potential VOH is applied.
- the power supply terminal 404 is connected to the low potential side of the output side power supply, and a low potential VOL is applied.
- the sources of the PMOS transistor M41 and the PMOS transistor M42 are connected to the power supply terminal 405 (high potential VIH).
- the gate of the PMOS transistor M41 is connected to the input terminal 401, and the gate of the PMOS transistor M42 is connected to the input terminal 402.
- the sources of the NMOS transistor M45 and the NMOS transistor M46 are connected to the power supply terminal 404 (low potential VOL).
- the gates of NMOS transistor M45 and NMOS transistor M46 are connected to the drains of NMOS transistor M45 and the other of NMOS transistor M46, respectively. That is, the NMOS transistor M45 and the NMOS transistor M46 are cross-coupled.
- the sources of the PMOS transistor M43 and the PMOS transistor M44 are connected to the power supply terminal 406 (high potential VOH).
- the gate of one of PMOS transistor M43 and PMOS transistor M44 is connected to the other drain of PMOS transistor M43 and the other drain of PMOS transistor M44, respectively. That is, the PMOS transistor M43 and the PMOS transistor M44 are cross-coupled.
- the sources of the NMOS transistor M47 and the NMOS transistor M48 are connected to the power supply terminal 404 (low potential VOL).
- the gate of the NMOS transistor M47 is connected to the drains of the PMOS transistor M41 and the NMOS transistor M45, and the gate of the NMOS transistor M48 is connected to the drains of the PMOS transistor M42 and the NMOS transistor M46.
- the drains of the PMOS transistor M43 and the NMOS transistor M47 are connected to each other, and the drains of the PMOS transistor M44 and the NMOS transistor M48 are connected to each other.
- the drains of the PMOS transistor M43 and the NMOS transistor M47 are connected to the output terminal 403.
- the high potential VIH is applied to the gate of the NMOS transistor M48, and the source-drain of the NMOS transistor M48 conducts.
- the low potential VOL is applied to the gate of the PMOS transistor M43, and the source and drain of the PMOS transistor M43 conduct.
- the signal S2 of the high potential VOH is output from the output terminal 403.
- the source-drain of the PMOS transistor M42 When the signal received at the input terminal 401 is at high level (high potential VIH), the source-drain of the PMOS transistor M42 is conductive, so the high potential VIH is applied to the gate of the NMOS transistor M45. Conduction between source and drain. Since the high potential VIH is applied to the gate of the PMOS transistor M41, the source and drain of the PMOS transistor M41 do not conduct. Therefore, the potentials of the drains of the PMOS transistor M41 and the NMOS transistor M45 maintain the state of the low potential VOL.
- the source-drain of the NMOS transistor M46 does not conduct.
- the source and drain of the PMOS transistor M42 are conductive, the potentials of the drains of the PMOS transistor M42 and the NMOS transistor M46 maintain the high potential VIH.
- the source-drain of the NMOS transistor M47 does not conduct.
- the source and drain of the PMOS transistor M43 are conductive, the potentials of the drains of the PMOS transistor M43 and the NMOS transistor M47 are maintained at the high potential VOH.
- the source-drain of the PMOS transistor M43 is conductive, the high potential VIH is applied to the gate of the PMOS transistor M44, and the source-drain of the PMOS transistor M44 is not conductive.
- the source and drain of the NMOS transistor M48 are conductive, the potentials of the drains of the PMOS transistor M44 and the NMOS transistor M48 are maintained at the low potential VOL.
- the drain potentials of the PMOS transistor M43 and the NMOS transistor M47 are high potential VOH.
- the signal S2 of the high potential VOH is output from the output terminal 403 connected to the drain.
- the source-drain of the PMOS transistor M41 Since the source-drain of the PMOS transistor M41 is conductive, the high potential VIH is also applied to the gate of the NMOS transistor M46, and the source-drain of the NMOS transistor M46 is conductive.
- the signal S1 output from the output terminal 203 is at the low potential VIL
- the signal output from the output terminal 204 is at the high potential VIH. Therefore, the source ⁇ of the PMOS transistor M42 whose gate is connected to the output terminal 204 There is no conduction between the drains. Therefore, the potentials of the drains of the PMOS transistor M42 and the NMOS transistor M46 maintain the low potential VOL.
- the drain of the NMOS transistor M46 is at the low potential VOL, the source-drain of the NMOS transistor M45 whose gate is connected to the drain of the NMOS transistor M46 does not conduct. As described above, since the source and drain of the PMOS transistor M41 conduct, the potentials of the drains of the PMOS transistor M41 and the NMOS transistor M45 maintain the high potential VIH.
- the source-drain of the NMOS transistor M48 whose gate is connected to the drain (low potential VOL) of the NMOS transistor M46 also does not conduct. Further, as described above, since the source and drain of the NMOS transistor M47 are conductive, the low potential VOL is applied to the gate of the PMOS transistor M44, and the source and drain of the PMOS transistor M44 are conductive. Therefore, the potentials of the drains of the PMOS transistor M44 and the NMOS transistor M48 maintain the state of the high potential VOH.
- the drain of the PMOS transistor M44 is at the high potential VOH, the source-drain of the PMOS transistor M43 whose gate is connected to the drain of the PMOS transistor M44 does not conduct. As described above, since the source and drain of the NMOS transistor M47 are conductive, the drain potentials of the PMOS transistor M43 and the NMOS transistor M47 maintain the low potential VOL.
- the drain potentials of the PMOS transistor M43 and the NMOS transistor M47 are low potential VOL.
- the signal S2 of the low potential VOL is output from the output terminal 403 connected to the drain.
- the level shift unit 4 when the level shift unit 4 receives the signal S1 at high level, the signal S2 of the high potential VOH is output from the output terminal 403, and when the signal S1 at low level is received, the output terminal 403 has the low potential VOL. Signal S2 is output. That is, the level shift unit 4 is in phase with the signal S1 input to the input terminal 401, and outputs the signal S2 in which the high level is shifted to the high potential VOH and the low level is shifted to the low potential VOL.
- the output buffer 5 has an input terminal 501 to which the signal S2 from the level shift unit 4 is input, an output terminal 502, two power supply terminals 503 and 504, and even-numbered CMOS inverters 5-1 to 5-n (n Is a positive even number).
- the power supply terminal 503 is connected to the low potential side of the output side power supply, and a low potential VOL is applied.
- the power supply terminal 504 is connected to the high potential side of the output side power supply, and a high potential VOH is applied.
- the CMOS inverters 5-1 to 5-n amplify the current of the signal S2 from the level shift unit 4 so that the current necessary for driving the load on the rear stage of the interface circuit 10a, and then output the output signal VOUT. Output from the output terminal 502.
- the polarity control unit 1a when the low potential VIL is the GND potential, the polarity control unit 1a outputs the signal S1 in phase with the input signal VIN and the high potential VIH is the GND potential. In this case, the signal S1 whose polarity is inverted with respect to the input signal VIN is output. Then, the level shift unit 4 outputs a signal S2 in phase with the signal S1. The output buffer 5 outputs an output signal VOUT in phase with the signal S2.
- the interface circuit 10a can output the high-active output signal VOUT regardless of whether the GND potential, which is a reference potential corresponding to inactive, corresponds to the high level or the low level of the input signal VIN. it can.
- Second Embodiment (Configuration of interface circuit) 7 and 8 are circuit block diagrams showing the configuration of the interface circuit 10b according to the second embodiment.
- FIG. 7 shows a high active signal having a high level (high potential VIH) as a positive potential and a low level (low potential VIL) as an inactive corresponding reference potential (here, GND potential) as the input signal VIN. Indicates the case of receiving.
- FIG. 8 shows the case where a low active signal whose high level is the GND potential and whose low level is the negative potential is received as the input signal VIN.
- the configuration of the interface circuit 10b itself is the same in FIGS.
- the interface circuit 10b is a circuit that outputs a low active output signal VOUT regardless of which of the high level and the low level of the input signal VIN is at the GND potential. Therefore, the interface circuit 10b can be applied to a circuit that outputs an output signal VOUT to a controlled element operated by a low active control signal.
- interface circuit 10b is different from interface circuit 10a shown in FIGS. 3 and 4 in that it has polarity control unit 1b instead of polarity control unit 1a.
- the polarity control unit 1b makes the output signal S1 in phase with the input signal VIN depending on whether the GND potential, which is a reference potential corresponding to inactivity, corresponds to the high level or the low level of the input signal VIN . Controls whether the polarity of the signal S1 to be output is inverted with respect to the input signal VIN. Specifically, when the GND potential corresponds to the high level of the input signal VIN, the polarity control unit 1b makes the output signal S1 in phase with the input signal VIN, and the GND potential corresponds to the low level of the input signal VIN. The polarity of the signal S1 to be output is inverted with respect to the input signal VIN.
- Polar control unit 1b includes, for example, voltage detection unit 2b and switching unit 3b as its internal configuration.
- the voltage detection unit 2b receives the GND potential, which is a reference potential corresponding to inactive, and receives the low potential VIL from the input-side power supply, and compares the two potentials. If the difference between the low potential VIL and the GND potential is smaller than the threshold, the voltage detection unit 2b outputs a detection signal indicating that the low potential VIL is the GND potential to the switching unit 3b, and the low potential VIL and the GND potential If the difference between the two is greater than or equal to the threshold value, a detection signal indicating that the high potential VIH is the GND potential is output to the switching unit 3b.
- the GND potential which is a reference potential corresponding to inactive
- the switching unit 3b receives the input signal VIN, and switches whether the signal S1 is in phase with or in phase with the input signal VIN according to the detection signal from the voltage detection unit 2b.
- the switching unit 3b when the detection signal indicates that the high potential VIH is the GND potential, the switching unit 3b outputs the signal S1 in phase with the input signal VIN to the level shift unit 4, and the low potential VIL is the GND potential.
- the detection signal indicates that the signal S1 is a signal S1
- the signal S1 whose polarity is inverted with respect to the input signal VIN is output to the level shift unit 4.
- the switching unit 3b receives the high potential VIH and the low potential VIL from the input-side power supply, sets the high level of the signal S1 to the high potential VIH, and sets the low level to the low potential VIL.
- the level shift unit 4 receiving the signal S1 output from the switching unit 3b is in phase with the received signal S1, sets the high potential VOH to high level, and sets the low potential VOL to low.
- a signal S2 to be leveled is output.
- the low potential VOL is a potential of an active state controlled to the drive state in the controlled element receiving the output signal VOUT from the interface circuit 10b.
- the high potential VOH is a potential (for example, GND potential) which does not become a drive state in the controlled element. Therefore, the output buffer 5 receiving the signal output from the level shift unit 4 outputs the low active output signal VOUT.
- the voltage is high.
- the detection unit 2b outputs a detection signal indicating that the low potential VIL is the GND potential. Therefore, the switching unit 3b outputs a signal S1 whose polarity is inverted with respect to the input signal VIN.
- the level shift unit 4 and the output buffer 5 output a signal in phase with the signal S1 output from the switching unit 3b. Therefore, the polarity of the output signal VOUT is inverted with respect to the input signal VIN.
- the high level (high potential VIH) is the GND potential corresponding to inactive
- the low level (low potential VIL) is the negative potential
- the voltage detection unit 2b outputs a detection signal indicating that the high potential VIH is the GND potential. Therefore, the switching unit 3b outputs a signal S1 in phase with the input signal VIN.
- the level shift unit 4 and the output buffer 5 output a signal in phase with the signal S1 output from the switching unit 3b. Therefore, the input signal VIN and the output signal VOUT are in phase.
- the interface circuit 10b when the high potential VIH is a reference potential (for example, GND potential) corresponding to inactive, the interface circuit 10b outputs the signal S1 in phase with the input signal VIN and the low potential VIL is at the GND potential.
- a polarity control unit 1b is provided that outputs a signal S1 whose polarity is inverted with respect to the input signal VIN.
- the level shift unit 4 and the output buffer 5 output a signal in phase with the signal S1.
- the low active output Signal VOUT can be output.
- FIG. 9 is a circuit diagram showing an embodiment of the interface circuit 10b.
- the interface circuit 10b of the embodiment shown in FIG. 9 is different from the interface circuit 10a of the embodiment shown in FIG. 5 in that a polarity control unit 1b is provided instead of the polarity control unit 1a.
- the embodiment of the polarity control unit 1b shown in FIG. 9 is different from the embodiment of the polarity control unit 1a shown in FIG. 5 only in that an inverter 27 is provided instead of the inverter 25.
- the two input terminals of the AND circuit 21 are directly connected to the input terminals 201 and 202, respectively.
- One input terminal of the AND circuit 22 is connected to the input terminal 202 via the inverter 27, and the other input terminal of the AND circuit 22 is connected to the input terminal 201 via the inverter 26.
- FIG. 10 shows the input terminal 201, the input terminal 202, the output terminal of the AND circuit 21, the output terminal of the AND circuit 22, and the output terminal of the OR circuit 23 in the embodiment of the polarity control unit 1b shown in FIG. It is a signal waveform diagram which shows the change of the electric potential state with output terminal 203).
- FIG. 10A shows a case where the high level (high potential VIH) is a positive potential and the low level (low potential VIL) receives an input signal VIN at the GND potential.
- Each logic circuit of polarity control unit 1b receives high potential VIH and low potential VIL from the input-side power supply. Therefore, the AND circuit 21 recognizes the potential of the input terminal directly connected to the input terminal 202 to which the GND potential is input as the low level. Thus, the AND circuit 21 always outputs a low level signal.
- the AND circuit 22 recognizes the potential of the input terminal connected to the input terminal 202 through the inverter 27 as the high level. Further, the inverted signal of the input signal VIN is input to the input terminal of the AND circuit 22 connected via the input terminal 201 and the inverter 26. Therefore, as shown in FIG. 10A, the AND circuit 22 outputs an inverted signal of the input signal VIN input to the input terminal 201.
- the OR circuit 23 outputs an inverted signal of the input signal VIN input to the input terminal 201 as the signal S1.
- FIG. 10B shows the case where the high level (high potential VIH) is at the GND potential and the low level (low potential VIL) is at the negative potential to receive the input signal VIN.
- Each logic circuit of polarity control unit 1b receives high potential VIH and low potential VIL from the input-side power supply. Therefore, the AND circuit 21 recognizes the potential of the input terminal directly connected to the input terminal 202 to which the GND potential is applied as the high level. Further, the input signal VIN is input to the input terminal of the AND circuit 21 directly connected to the input terminal 201. Therefore, as shown in FIG. 10B, the AND circuit 21 outputs a signal in phase with the input signal VIN input to the input terminal 201 as the signal S1.
- the AND circuit 22 recognizes the potential of the input terminal connected to the input terminal 202 through the inverter 27 as the low level. Therefore, the AND circuit 22 always outputs a low level signal.
- the OR circuit 23 outputs a signal in phase with the input signal VIN input to the input terminal 201 as the signal S1.
- the polarity control unit 1b including the circuit configuration shown in FIG. 9 receives the input signal VIN at the GND potential regardless of which of the high level and the low level of the input signal VIN is the GND potential.
- a signal that becomes high level and becomes low level when the input signal VIN is not at the GND potential can be output from the output terminal 203.
- Level shift unit 4 shown in FIG. 9 has the same circuit configuration as that shown in FIG. 5, and outputs signal S2 in phase with signal S1.
- the output buffer 5 shown in FIG. 9 is also the same as the circuit configuration shown in FIG. 5, and outputs an output signal VOUT in phase with the signal S2.
- the interface circuit 10b can output the low active output signal VOUT regardless of whether the GND potential, which is a reference potential corresponding to inactive, corresponds to the high level or the low level of the input signal VIN. it can.
- the interface circuit 10a according to the first embodiment described above operates by receiving the high potential VIH and the low potential VIL from the input side power supply.
- the interface circuit according to the third embodiment receives the high potential VIH from the input side power supply, and internally generates a potential corresponding to the low potential VIL from the high potential VIH. Therefore, it is not necessary to receive the low potential VIL from the input side power supply.
- FIGS. 11 and 12 are circuit block diagrams showing the configuration of the interface circuit 10c according to the third embodiment.
- a high active signal having a positive potential at a high level (high potential VIH) and a low level (low potential VIL) corresponding to an inactive level (here, GND potential) is used as the input signal VIN.
- VIN high level
- VIL low level
- FIG. 12 shows a case where a low active signal whose high level is the GND potential and whose low level is the negative potential is received as the input signal VIN.
- the configuration of the interface circuit 10c itself is the same in FIGS.
- the interface circuit 10c is a circuit that outputs a high active output signal VOUT regardless of which of the high level and low level of the input signal VIN is at the GND potential. Therefore, the interface circuit 10c can be applied to a circuit that outputs the output signal VOUT to a controlled element operated by a high active control signal.
- interface circuit 10c does not receive low potential VIL from the input side power supply as compared with interface circuit 10a shown in FIGS. 3 and 4 and does not generate voltage generation unit 6a. It differs in the point to prepare.
- the voltage generation unit 6a generates a potential VIL_INT which is lower than the high potential VIH by a predetermined voltage ⁇ V, and outputs the generated potential VIL_INT to the polarity control unit 1a and the level shift unit 4 as a low potential side potential.
- Voltage ⁇ V is substantially equal to the difference (VIH ⁇ VIL) between high potential VIH and low potential VIL of input signal VIN, and in polarity control portion 1a and level shift portion 4 receiving potential VIL_INT as the potential on the low potential side. A voltage that allows sufficient switching is set.
- FIG. 13 is a circuit diagram showing an example of the interface circuit 10c according to the third embodiment.
- the embodiment of the interface circuit 10c shown in FIG. 13 is different from the embodiment of the interface circuit 10a shown in FIG. 5 in that a voltage generator 6a is provided.
- the voltage generator 6 a includes an inverting input terminal 61, a first noninverting input terminal 62, a second noninverting input terminal 64, an output terminal 63, resistors R 61, R 62, R 63, R 64, and an operational amplifier 60.
- a non-inverting amplifier is included in the voltage generator 6 a.
- the inverting input terminal 61 is grounded and a GND potential is applied.
- a constant potential -VREF (second reference potential) is applied to the first non-inverted input terminal 62.
- the high potential VIH of the input side power supply is applied to the second non-inverting input terminal 64.
- the resistor R61 is connected between the inverting input terminal 61 and the inverting input terminal of the operational amplifier.
- One terminal of the resistor R62 is connected to the inverting input terminal of the operational amplifier, and the other terminal is connected to the output terminal 63 and the output terminal of the operational amplifier.
- the resistor R63 is connected between the first noninverting input terminal 62 and the noninverting input terminal of the operational amplifier.
- the resistor R64 is connected between the second noninverting input terminal 64 and the noninverting input terminal of the operational amplifier.
- the potential V + obtained by dividing the voltage between the high potential VIH and the second reference potential (-VREF) by the resistors R63 and R64 is input to the non-inverting input terminal of the operational amplifier Be done.
- the potential V O represented by the following equation is output from the output terminal 63.
- the resistances of the resistors R61, R62, R63, and R64 and the constant potential -VREF are appropriately set such that the potential of the output terminal 63 becomes approximately equal to the low potential VIL.
- the interface circuit 10b according to the second embodiment operates by receiving the high potential VIH and the low potential VIL from the input-side power supply.
- the interface circuit according to the fourth embodiment receives low potential VIL from the input-side power supply, and internally generates high potential VIH_INT from low potential VIL. Therefore, it is not necessary to receive the high potential VIH from the input side power supply.
- FIGS. 14 and 15 are circuit block diagrams showing the configuration of an interface circuit 10d according to the fourth embodiment.
- a high active signal having a high level (high potential VIH) as a positive potential and a low level (low potential VIL) as a reference potential (here, GND potential) corresponding to inactive is used as the input signal VIN.
- VIL high level
- GND potential reference potential
- FIG. 15 shows a case where a low active signal whose high level is the GND potential and whose low level is the negative potential is received as the input signal VIN.
- the configuration of the interface circuit 10b itself is identical in FIGS.
- the interface circuit 10d is a circuit that outputs a low active output signal VOUT regardless of which of the high level and low level of the input signal VIN is at the GND potential. Therefore, the interface circuit 10d can be applied to a circuit that outputs an output signal VOUT to a controlled element operated by a low active control signal.
- interface circuit 10d does not receive high potential VIH from the input-side power supply as compared with interface circuit 10b shown in FIGS. 7 and 8, and generates voltage generation unit 6b. It differs in the point to prepare.
- the voltage generation unit 6b generates a potential VIH_INT that is raised from the low potential VIL by a predetermined voltage ⁇ V, and outputs the generated potential VIH_INT to the polarity control unit 1b and the level shift unit 4 as a high potential side potential.
- Voltage ⁇ V is substantially equal to the difference (VIH ⁇ VIL) between high potential VIH and low potential VIL of input signal VIN, and in polarity control portion 1 b and level shift portion 4 receiving potential VIH_INT as the potential on the high potential side. A voltage that allows sufficient switching is set.
- FIG. 16 is a circuit diagram showing an example of the interface circuit 10d according to the fourth embodiment.
- the embodiment of the interface circuit 10d shown in FIG. 16 is different from the embodiment of the interface circuit 10b shown in FIG. 5 in that a voltage generator 6b is provided.
- the voltage generation unit 6 b includes an inverting input terminal 61, a first noninverting input terminal 62, a second noninverting input terminal 64, an output terminal 63, and a resistor R65, It is an inverting amplifier comprising R66, R67, R68 and an operational amplifier 60.
- a constant potential -VREF (second reference potential) is applied to the inverting input terminal 61.
- the first noninverting input terminal 62 is grounded and a GND potential is applied.
- the low potential VIL is applied to the second noninverting input terminal 64.
- the resistor R65 is connected between the inverting input terminal 61 and the inverting input terminal of the operational amplifier.
- One terminal of the resistor R66 is connected to the inverting input terminal of the operational amplifier, and the other terminal is connected to the output terminal 63 and the output terminal of the operational amplifier.
- the resistor R67 is connected between the first noninverting input terminal 62 and the noninverting input terminal of the operational amplifier.
- the resistor R68 is connected between the second noninverting input terminal 64 and the noninverting input terminal of the operational amplifier.
- the potential V + obtained by dividing the voltage between the low potential VIL and the first reference potential (GND) by the resistors R67 and R68 is input to the non-inverting input terminal of the operational amplifier Ru.
- the potential V O represented by the following equation is output from the output terminal 63.
- the resistances of the resistor R65, the resistor R66, the resistor R67, and the resistor R68 and the constant potential -VREF are appropriately set such that the potential of the output terminal 63 becomes approximately equal to the high potential VIH.
- the interface circuit 10a according to the first embodiment shown in FIGS. 3 and 4 may include a voltage detection unit 2b shown in FIGS. 7 and 8 instead of the voltage detection unit 2a.
- the interface circuit 10b of the second embodiment shown in FIGS. 7 and 8 may include the voltage detection unit 2a shown in FIGS. 3 and 4 instead of the voltage detection unit 2b.
- the polarity control unit 1a is not limited to the circuit configuration shown in FIG. That is, when the GND potential corresponds to the low level of the input signal VIN, the polarity control unit 1a makes the output signal S1 in phase with the input signal VIN and outputs the signal S1 when the GND potential corresponds to the high level of the input signal VIN. It may be configured by a logic circuit (logic circuit equivalent to FIG. 5) appropriately designed to invert the signal S1 with respect to the input signal VIN.
- the polarity control unit 1b is not limited to the circuit configuration shown in FIG. That is, when the GND potential corresponds to the high level of the input signal VIN, the polarity control unit 1b makes the output signal S1 in phase with the input signal VIN, and outputs the signal S1 when the GND potential corresponds to the low level of the input signal VIN. It may be configured by a logic circuit (logic circuit equivalent to FIG. 9) appropriately designed to invert the signal S1 with respect to the input signal VIN.
- the polarity control unit 1a makes the signal S1 to be output in phase with the input signal VIN when the GND potential corresponds to the low level of the input signal VIN and outputs the signal S1 when the GND potential corresponds to the high level of the input signal VIN.
- a storage unit in which a program for reversing the polarity of the signal S1 with respect to the input signal VIN may be stored, and a processor that executes the program.
- the polarity control unit 1b makes the output signal S1 in phase with the input signal VIN, and outputs the output potential when the GND potential corresponds to the low level of the input signal VIN.
- the storage unit may store a program that causes the signal S1 to be inverted with respect to the input signal VIN, and a processor that executes the program.
- the voltage detection unit 2a compares the high potential VIH with the GND potential which is the reference potential.
- the voltage detection unit 2a is not limited to this configuration. For example, by comparing the potential obtained by dividing the high potential VIH with the GND potential, either the high potential VIH or the low potential VIL can be obtained. It may be detected whether it is the GND potential.
- the voltage detection unit 2b compares, for example, the potential obtained by dividing the low potential VIL with the GND potential to determine which of the high potential VIH and the low potential VIL is the GND potential. It may be detected.
- the voltage detection unit 2a When the potential difference between the high potential VIH and the low potential VIL is Vd, for example, the voltage detection unit 2a is higher than the high potential VIH and a potential lower by Vd / 2 than the GND potential and only Vd / 2 than the GND potential. It is also possible to detect which of the high potential VIH and the low potential VIL is the GND potential by comparing the reference potential with the high potential. In this case, when the difference between the high potential VIH and the reference potential is smaller than Vd / 2, the voltage detection unit 2a outputs a detection signal indicating that the high potential VIH is the GND potential, and the high potential VIH is referred to. When the difference from the potential is Vd / 2 or more, a detection signal indicating that the low potential VIL is the GND potential may be output.
- the voltage detection unit 2b compares, for example, the low potential VIL with a reference potential that is higher than a potential lower by Vd / 2 than the GND potential and lower than a potential higher by Vd / 2 than the GND potential. It may be detected which of VIH and low potential VIL is the GND potential. In this case, when the difference between the low potential VIL and the reference potential is smaller than Vd / 2, the voltage detection unit 2b outputs a detection signal indicating that the low potential VIL is the GND potential, and is referred to as the low potential VIL. When the difference from the potential is Vd / 2 or more, a detection signal indicating that the high potential VIH is the GND potential may be output.
- the level shift unit 4 is not limited to the circuit configuration shown in FIG.
- the level shift unit 4 is appropriately designed to output the signal S2 of the high potential VOH when the input signal S1 is at the high level, and output the signal S2 of the low potential VOL when the signal S1 is at the low level. You may be comprised by the several logic circuit.
- FIG. 17 is a diagram showing another circuit configuration of the level shift unit 4.
- the output terminal 403 is not for the drains of the PMOS transistor M43 and the NMOS transistor M47, but for the drains of the PMOS transistor M44 and the NMOS transistor M48 as compared to the level shift unit 4 shown in FIG. It differs in that it is connected via an inverter 42.
- the level shift unit 4 outputs the signal S2 of the high potential VOH when the input signal S1 is at the high level, and the low potential VOL when the signal S1 is at the low level.
- Signal S2 can be output.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
Abstract
Description
図1は、比較例1に係るインターフェース回路100aの構成を示す回路ブロック図である。インターフェース回路100aは、高電位VIHをハイレベルとし、低電位VILをローレベルとする入力信号VINを受け、高電位VOHをハイレベルとし、低電位VOLをローレベルとする出力信号VOUTを出力する回路である。図1に示されるように、インターフェース回路100aは、入力バッファ101と、レベルシフト部4と、出力バッファ5とを備える。
図2は、比較例2に係るインターフェース回路100bの構成を示す回路ブロック図である。インターフェース回路100bは、図1に示すインターフェース回路100aと比較して、入力バッファ101の代わりに入力インバータ102を備える点で相違する。
これにより、インターフェース回路100bは、たとえば、ハイレベルがインアクティブに相当するGND電位であり、ローレベルが-3.3Vであるローアクティブの制御信号を入力信号VINとしてデジタルICから受け、ハイアクティブの制御信号によって動作する被制御素子に出力信号VOUTを出力する回路には適している。
しかしながら、インターフェース回路100bは、ハイレベルが3.3Vであり、ローレベルがインアクティブに相当するGND電位であるハイアクティブの信号を入力信号VINとしてデジタルICから受けた場合、入力信号VINがインアクティブに相当するGND電位であるときに、ハイレベルの出力信号VOUTを出力する。そのため、インターフェース回路100bは、ハイアクティブの信号を入力信号VINとして受け、ハイアクティブの制御信号によって動作する被制御素子に出力信号VOUTを出力する回路に適さない。
(インターフェース回路の構成)
図3および図4は、実施の形態1に係るインターフェース回路10aの構成を示す回路ブロック図である。図3は、ハイレベル(高電位VIH)が正電位であり、ローレベル(低電位VIL)がインアクティブに相当する基準電位(ここでは、GND電位)であるハイアクティブの信号を入力信号VINとして受けた場合を示す。図4は、ハイレベルがインアクティブに相当する基準電位(ここでは、GND電位)であり、ローレベルが負電位であるローアクティブの信号を入力信号VINとして受けた場合を示す。インターフェース回路10a自体の構成は図3および図4で同一である。
(極性制御部の回路構成)
図5は、インターフェース回路10aの実施例を示す回路図である。図5に示されるように、極性制御部1aは、たとえば、2つの入力端子201,202と、2つの出力端子203,204と、2つの電源端子205,206と、2つのAND回路21,22と、3つのインバータ24,25,26と、OR回路23とを含む。
図6は、入力端子201と、入力端子202と、AND回路21の出力端子と、AND回路22の出力端子と、OR回路23の出力端子(出力端子203)との電位状態の変化を示す信号波形図である。
図5に示されるように、レベルシフト部4は、2つの入力端子401,402と、出力端子403と、3つの電源端子404~406と、4つのPMOSトランジスタ(PMOSFET:P-channel type Metal Oxide Semiconductor Field Effect Transistor(P型電界効果トランジスタ))M41,M42,M43,M44と、4つのNMOSトランジスタ(NMOSFET:N-channel type Metal Oxide Semiconductor Field Effect Transistor(N型電界効果トランジスタ))M45,M46,M47,M48とを含む。
PMOSトランジスタM41およびNMOSトランジスタM45のドレイン同士が接続され、PMOSトランジスタM42およびNMOSトランジスタM46のドレイン同士が接続される。
NMOSトランジスタM47およびNMOSトランジスタM48のソースは、電源端子404(低電位VOL)に接続される。NMOSトランジスタM47のゲートは、PMOSトランジスタM41およびNMOSトランジスタM45のドレインに接続され、NMOSトランジスタM48のゲートは、PMOSトランジスタM42およびNMOSトランジスタM46のドレインに接続される。
図5に示す回路構成を有するレベルシフト部4の動作について説明する。まず、出力端子203から出力される信号S1がハイレベル(高電位VIH)である場合について説明する。この場合、入力端子401は、高電位VIHの信号を受け、入力端子402は、低電位VILの信号を受ける。これにより、PMOSトランジスタM42のゲートに低電位VILが印加され、PMOSトランジスタM42のソース-ドレイン間が導通する。
次に、出力端子203から出力される信号がローレベル(低電位VIL)である場合について説明する。この場合、入力端子401は、低電位VILの信号を受け、入力端子402は、高電位VIHを信号を受ける。そのため、PMOSトランジスタM41のゲートに低電位VILが印加され、PMOSトランジスタM41のソース-ドレイン間が導通する。
以上のように、レベルシフト部4は、ハイレベルの信号S1を受けるとき、出力端子403から高電位VOHの信号S2を出力し、ローレベルの信号S1を受けるとき、出力端子403が低電位VOLの信号S2を出力する。すなわち、レベルシフト部4は、入力端子401に入力された信号S1と同相であり、ハイレベルを高電位VOHに、ローレベルを低電位VOLにシフトさせた信号S2を出力する。
出力バッファ5は、レベルシフト部4からの信号S2が入力される入力端子501と、出力端子502と、2つの電源端子503,504と、偶数段のCMOSインバータ5-1~5-n(nは正の偶数)とを含む。
(インターフェース回路の構成)
図7および図8は、実施の形態2に係るインターフェース回路10bの構成を示す回路ブロック図である。図7は、ハイレベル(高電位VIH)が正電位であり、ローレベル(低電位VIL)がインアクティブに相当する基準電位(ここでは、GND電位)であるハイアクティブの信号を入力信号VINとして受けた場合を示す。図8は、ハイレベルがGND電位であり、ローレベルが負電位であるローアクティブの信号を入力信号VINとして受けた場合を示す。インターフェース回路10b自体の構成は図7および図8において同一である。
切替部3bは、入力信号VINを受け、電圧検知部2bからの検知信号に応じて、信号S1を入力信号VINと同相とするか反転させるかを切り替える。
ここで、低電位VOLは、インターフェース回路10bからの出力信号VOUTを受ける被制御素子において、駆動状態に制御されるアクティブの状態の電位である。一方、高電位VOHは、被制御素子において駆動状態とならない電位(たとえば、GND電位)である。そのため、レベルシフト部4から出力された信号を受けた出力バッファ5は、ローアクティブの出力信号VOUTを出力する。
(極性制御部の回路構成)
図9は、インターフェース回路10bの実施例を示す回路図である。図9に示す実施例のインターフェース回路10bは、図5に示す実施例のインターフェース回路10aと比較して、極性制御部1aの代わりに極性制御部1bを備える点で相違する。
図10は、図9に示す極性制御部1bの実施例における、入力端子201と、入力端子202と、AND回路21の出力端子と、AND回路22の出力端子と、OR回路23の出力端子(出力端子203)との電位状態の変化を示す信号波形図である。
図10(a)は、ハイレベル(高電位VIH)が正電位であり、ローレベル(低電位VIL)がGND電位の入力信号VINを受ける場合を示している。極性制御部1bの各論理回路は、入力側電源から高電位VIHおよび低電位VILとを受ける。そのため、AND回路21は、GND電位が入力される入力端子202と直接接続される入力端子の電位をローレベルと認識する。これにより、AND回路21は、常にローレベルの信号を出力する。
図10(b)は、ハイレベル(高電位VIH)がGND電位であり、ローレベル(低電位VIL)が負電位である入力信号VINを受ける場合を示している。極性制御部1bの各論理回路は、入力側電源から高電位VIHおよび低電位VILとを受ける。そのため、AND回路21は、GND電位が印加される入力端子202と直接接続された入力端子の電位をハイレベルと認識する。また、入力端子201と直接接続されるAND回路21の入力端子には、入力信号VINが入力される。そのため、図10(b)に示されるように、AND回路21は、入力端子201に入力される入力信号VINと同相の信号を信号S1として出力する。
一方、AND回路22は、インバータ27を介して入力端子202と接続される入力端子の電位をローレベルと認識する。そのため、AND回路22は、常にローレベルの信号を出力する。
(インターフェース回路の構成)
上記の実施の形態1に係るインターフェース回路10aは、入力側電源から高電位VIHおよび低電位VILを受けて動作する。これに対し、実施の形態3に係るインターフェース回路は、入力側電源から高電位VIHを受け、高電位VIHから低電位VILに相当する電位を内部で生成する。そのため、入力側電源から低電位VILを受ける必要がない。
図13は、実施の形態3に係るインターフェース回路10cの実施例を示す回路図である。図13に示すインターフェース回路10cの実施例は、図5に示すインターフェース回路10aの実施例と比較して、電圧生成部6aを備える点で相違する。
VO=V+×(1+(R62の抵抗値)/(R61の抵抗値))
の式で示される電位VOを出力端子63から出力する。
(インターフェース回路の構成)
上記の実施の形態2に係るインターフェース回路10bは、入力側電源から高電位VIHおよび低電位VILを受けて動作する。これに対し、実施の形態4に係るインターフェース回路は、入力側電源から低電位VILを受け、低電位VILから高電位VIH_INTを内部で生成する。そのため、入力側電源から高電位VIHを受ける必要がない。
電圧ΔVは、入力信号VINの高電位VIHと低電位VILとの差(VIH-VIL)と同程度であり、電位VIH_INTを高電位側の電位として受けた極性制御部1bおよびレベルシフト部4において十分にスイッチングが可能となる電圧が設定される。
図16は、実施の形態4に係るインターフェース回路10dの実施例を示す回路図である。図16に示すインターフェース回路10dの実施例は、図5に示すインターフェース回路10bの実施例と比較して、電圧生成部6bを備える点で相違する。
VO=V+-((R66の抵抗値)/(R65の抵抗値))×(-VREF-V+)
の式で示される電位VOを出力端子63から出力する。
図3および図4に示す実施の形態1のインターフェース回路10aは、電圧検知部2aの代わりに、図7および図8に示す電圧検知部2bを備えていてもよい。逆に、図7および図8に示す実施の形態2のインターフェース回路10bは、電圧検知部2bの代わりに、図3および図4に示す電圧検知部2aを備えていてもよい。
Claims (13)
- 第1の電位をハイレベルとし、前記第1の電位よりも低い第2の電位をローレベルとする第1の信号を受け、第3の電位をハイレベルとし、前記第3の電位よりも低い第4の電位をローレベルとする第2の信号を生成するインターフェース回路であって、
前記第1の電位および前記第2の電位のいずれが第1の基準電位であるかに応じて、前記第2の信号を前記第1の信号と同相にするか、前記第2の信号の極性を前記第1の信号に対して反転させるかを制御する制御部を備える、インターフェース回路。 - 前記制御部は、前記第2の電位が前記第1の基準電位である場合、前記第1の信号と同相である信号を第3の信号として出力し、前記第1の電位が前記第1の基準電位である場合、前記第1の信号に対して極性が反転した信号を前記第3の信号として出力し、
前記インターフェース回路は、さらに、前記第3の信号を受け、前記第3の信号と同相であり、かつ、前記第3の電位をハイレベルとし、前記第4の電位をローレベルとする信号を前記第2の信号として生成するレベルシフト部を備える、請求項1に記載のインターフェース回路。 - 前記制御部は、前記第2の電位が前記第1の基準電位である場合、前記第1の信号に対して極性が反転した信号を第3の信号として出力し、前記第1の電位が前記第1の基準電位である場合、前記第1の信号と同相である信号を前記第3の信号として出力し、
前記インターフェース回路は、さらに、前記第3の信号を受け、前記第3の信号と同相であり、かつ、前記第3の電位をハイレベルとし、前記第4の電位をローレベルとする信号を前記第2の信号として生成するレベルシフト部を備える、請求項1に記載のインターフェース回路。 - 前記第2の信号を電流増幅して前記インターフェース回路から出力するバッファ部をさらに備える、請求項2または3に記載のインターフェース回路。
- 前記制御部は、前記第1の電位または前記第1の電位を分圧することにより得られた電位と、参照電位とを比較することにより、前記第1の電位および前記第2の電位のいずれが前記第1の基準電位であるかを示す制御信号を生成する電圧検知部を含み、
前記参照電位は、前記第1の電位と前記第2の電位との電位差の半分だけ前記第1の基準電位よりも低い電位より高く、かつ、前記電位差の半分だけ前記第1の基準電位よりも高い電位より低い電位であり、
前記制御部は、さらに、前記制御信号に応じて、前記第3の信号を、前記第1の信号と同相にするか、極性を反転させるかを切り替える切替部とを含む、請求項2から4のいずれか1項に記載のインターフェース回路。 - 前記制御部は、前記第2の電位または前記第2の電位を分圧することにより得られた電位と、参照電位とを比較することにより、前記第1の電位および前記第2の電位のいずれが前記第1の基準電位であるかを示す制御信号を生成する電圧検知部を含み、
前記参照電位は、前記第1の電位と前記第2の電位との電位差の半分だけ前記第1の基準電位よりも低い電位より高く、かつ、前記電位差の半分だけ前記第1の基準電位よりも高い電位より低い電位であり、
前記制御部は、さらに、前記制御信号に応じて、前記第3の信号を、前記第1の信号と同相にするか、極性を反転させるかを切り替える切替部とを含む、請求項2から4のいずれか1項に記載のインターフェース回路。 - 前記制御部は、第1のAND回路と、第2のAND回路と、OR回路と、第1のインバータと、第2のインバータとを含み、
前記第1のAND回路は、前記第1の信号を受けるとともに、前記第1の基準電位を前記第1のインバータを介して受け、
前記第2のAND回路は、前記第1の信号を前記第2のインバータを介して受けるとともに、前記第1の基準電位を受け、
前記OR回路は、前記第1のAND回路の出力と、前記第2のAND回路の出力とを受けて、前記第3の信号を出力する、請求項2に記載のインターフェース回路。 - 前記制御部は、第1のAND回路と、第2のAND回路と、OR回路と、第1のインバータと、第2のインバータとを含み、
前記第1のAND回路は、前記第1の信号を受けるとともに、前記第1の基準電位を受け、
前記第2のAND回路は、前記第1の信号を前記第1のインバータを介して受けるとともに、前記第1の基準電位を前記第2のインバータを介して受け、
前記OR回路は、前記第1のAND回路の出力と、前記第2のAND回路の出力とを受けて、前記第3の信号を出力する、請求項3に記載のインターフェース回路。 - 前記レベルシフト部は、第1から第4のPMOSトランジスタと、第1から第4のNMOSトランジスタとを含み、
前記第1のPMOSトランジスタにおいて、ゲートが前記第3の信号を受け、ソースが前記第1の電位を受け、
前記第2のPMOSトランジスタにおいて、ゲートが前記第3の信号の反転信号を受け、ソースが前記第1の電位を受け、
前記第1のNMOSトランジスタにおいて、ゲートが前記第2のNMOSトランジスタのドレインに接続され、ソースが前記第4の電位を受け、
前記第2のNMOSトランジスタにおいて、ゲートが前記第1のNMOSトランジスタのドレインに接続され、ソースが前記第4の電位を受け、
前記第1のPMOSトランジスタおよび前記第1のNMOSトランジスタのドレイン同士が接続され、
前記第2のPMOSトランジスタおよび前記第2のNMOSトランジスタのドレイン同士が接続され、
前記第3のPMOSトランジスタにおいて、ゲートが前記第4のPMOSトランジスタのドレインに接続され、ソースが前記第3の電位を受け、
前記第4のPMOSトランジスタにおいて、ゲートが前記第3のPMOSトランジスタのドレインに接続され、ソースが前記第3の電位を受け、
前記第3のNMOSトランジスタにおいて、ゲートが前記第1のPMOSトランジスタおよび前記第1のNMOSトランジスタのドレインに接続され、ソースが前記第4の電位を受け、
前記第4のNMOSトランジスタにおいて、ゲートが前記第2のPMOSトランジスタおよび前記第2のNMOSトランジスタのドレインに接続され、ソースが前記第4の電位を受け、
前記第3のPMOSトランジスタおよび前記第3のNMOSトランジスタのドレイン同士が接続され、
前記第4のPMOSトランジスタおよび前記第4のNMOSトランジスタのドレイン同士が接続され、
前記レベルシフト部は、前記第3のPMOSトランジスタおよび前記第3のNMOSトランジスタのドレインの電位状態の信号、または、前記第4のPMOSトランジスタおよび前記第4のNMOSトランジスタのドレインの電位状態を反転させた信号を前記第2の信号として生成する、請求項2から8のいずれか1項に記載のインターフェース回路。 - 電源から前記第1の電位を受け、前記第1の電位から所定電圧だけ低い電位を前記第2の電位として生成する電圧生成部をさらに備え、
前記制御部は、前記電源から受けた前記第1の電位と、前記電圧生成部により生成された前記第2の電位とに基づいて、前記第3の信号を生成する、請求項2から9のいずれか1項に記載のインターフェース回路。 - 電源から前記第2の電位を受け、前記第2の電位から所定電圧だけ高い電位を前記第1の電位として生成する電圧生成部をさらに備え、
前記制御部は、前記電源から受けた前記第2の電位と、前記電圧生成部により生成された前記第1の電位とに基づいて、前記第3の信号を生成する、請求項2から9のいずれか1項に記載のインターフェース回路。 - 前記電圧生成部は、第1から第4の抵抗と、オペアンプとを含み、
前記第1の抵抗は、前記第1の基準電位が入力される端子と、前記オペアンプの反転入力端子との間に接続され、
前記第2の抵抗は、前記オペアンプの反転入力端子と、前記オペアンプの出力端子との間に接続され、
前記第3の抵抗は、第2の基準電位が入力される端子と、前記オペアンプの非反転入力端子との間に接続され、
前記第4の抵抗は、前記オペアンプの非反転入力端子と、前記電源からの前記第1の電位が入力される端子との間に接続され、
前記第1から第4の抵抗の各々の抵抗値と前記第2の基準電位とは、前記オペアンプの出力端子から出力される電位が前記第2の電位となるように設定されている、請求項10に記載のインターフェース回路。 - 前記電圧生成部は、第1から第4の抵抗と、オペアンプとを含み、
前記第1の抵抗は、第2の基準電位が入力される端子と、前記オペアンプの反転入力端子との間に接続され、
前記第2の抵抗は、前記オペアンプの反転入力端子と、前記オペアンプの出力端子との間に接続され、
前記第3の抵抗は、前記第1の基準電位が入力される端子と、前記オペアンプの非反転入力端子との間に接続され、
前記第4の抵抗は、前記オペアンプの非反転入力端子と、前記電源からの前記第2の電位が入力される端子との間に接続され、
前記第1から第4の抵抗の各々の抵抗値と前記第2の基準電位とは、前記オペアンプの出力端子から出力される電位が前記第1の電位となるように設定されている、請求項11に記載のインターフェース回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/319,879 US10972102B2 (en) | 2016-09-20 | 2016-09-20 | Interface circuit |
PCT/JP2016/077661 WO2018055666A1 (ja) | 2016-09-20 | 2016-09-20 | インターフェース回路 |
GB1900255.9A GB2570805B (en) | 2016-09-20 | 2016-09-20 | Interface circuit |
JP2018540249A JP6698855B2 (ja) | 2016-09-20 | 2016-09-20 | インターフェース回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077661 WO2018055666A1 (ja) | 2016-09-20 | 2016-09-20 | インターフェース回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018055666A1 WO2018055666A1 (ja) | 2018-03-29 |
WO2018055666A9 true WO2018055666A9 (ja) | 2019-01-17 |
Family
ID=61690790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077661 WO2018055666A1 (ja) | 2016-09-20 | 2016-09-20 | インターフェース回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10972102B2 (ja) |
JP (1) | JP6698855B2 (ja) |
GB (1) | GB2570805B (ja) |
WO (1) | WO2018055666A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019092010A (ja) | 2017-11-13 | 2019-06-13 | 株式会社東海理化電機製作所 | 信号処理装置 |
US11009901B2 (en) * | 2017-11-15 | 2021-05-18 | Qualcomm Incorporated | Methods and apparatus for voltage regulation using output sense current |
CN112129990B (zh) * | 2020-09-04 | 2022-05-13 | 苏州浪潮智能科技有限公司 | 一种电位差预警电路以及系统 |
CN112904122B (zh) * | 2021-01-22 | 2024-09-20 | 维沃移动通信有限公司 | 插入检测电路及电子设备 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4728820A (en) * | 1986-08-28 | 1988-03-01 | Harris Corporation | Logic state transition detection circuit for CMOS devices |
JPH01152817A (ja) | 1987-12-09 | 1989-06-15 | Mitsubishi Electric Corp | レベルシフト回路 |
US5461331A (en) * | 1994-07-28 | 1995-10-24 | International Business Machines Corporation | Dynamic to static logic translator or pulse catcher |
JPH0946199A (ja) * | 1995-07-28 | 1997-02-14 | Denso Corp | 入力信号判定装置 |
US6917239B2 (en) * | 2000-10-24 | 2005-07-12 | Fujitsu Limited | Level shift circuit and semiconductor device |
JP4230678B2 (ja) * | 2001-06-05 | 2009-02-25 | 三菱電機株式会社 | インターフェース |
JP4319362B2 (ja) * | 2001-07-12 | 2009-08-26 | 三菱電機株式会社 | 逆レベルシフト回路およびパワー用半導体装置 |
AU2003277555A1 (en) * | 2002-11-06 | 2004-06-07 | Nec Corporation | Level conversion circuit |
US7215149B1 (en) * | 2004-12-15 | 2007-05-08 | Lattice Semiconductor Corporation | Interface circuitry for electrical systems |
JP2006197564A (ja) * | 2004-12-16 | 2006-07-27 | Seiko Epson Corp | 信号選択回路およびリアルタイムクロック装置 |
JP4736119B2 (ja) | 2005-09-30 | 2011-07-27 | 株式会社デンソー | 表示装置用駆動回路 |
US7808294B1 (en) * | 2007-10-15 | 2010-10-05 | Netlogic Microsystems, Inc. | Level shifter with balanced rise and fall times |
US7692450B2 (en) * | 2007-12-17 | 2010-04-06 | Intersil Americas Inc. | Bi-directional buffer with level shifting |
JP5008612B2 (ja) * | 2008-06-27 | 2012-08-22 | シャープ株式会社 | 半導体集積回路及びその制御方法 |
JP5313779B2 (ja) * | 2009-06-22 | 2013-10-09 | ルネサスエレクトロニクス株式会社 | レベルシフト回路 |
JP5295889B2 (ja) | 2009-07-07 | 2013-09-18 | 株式会社東芝 | レベル変換回路 |
JP2011103557A (ja) | 2009-11-10 | 2011-05-26 | Advantest Corp | ドライバ回路および試験装置 |
JP5397267B2 (ja) | 2010-02-25 | 2014-01-22 | アイコム株式会社 | レベル変換回路 |
US20130021084A1 (en) * | 2011-07-18 | 2013-01-24 | Honeywell International Inc. | Low voltage sensors with integrated level translators |
JP2015177347A (ja) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | レベルシフト回路 |
US20150346742A1 (en) * | 2014-06-02 | 2015-12-03 | Nxp B.V. | Energy recycling for a cost effective platform to optimize energy efficiency for low powered system |
US10355692B2 (en) * | 2014-12-16 | 2019-07-16 | Sony Corporation | Power source monitoring circuit, power on reset circuit, and semiconductor device |
US9912335B2 (en) * | 2015-07-08 | 2018-03-06 | Nxp B.V. | Configurable power domain and method |
JP2018042077A (ja) * | 2016-09-07 | 2018-03-15 | ルネサスエレクトロニクス株式会社 | レベルシフト回路および半導体装置 |
-
2016
- 2016-09-20 JP JP2018540249A patent/JP6698855B2/ja active Active
- 2016-09-20 GB GB1900255.9A patent/GB2570805B/en active Active
- 2016-09-20 US US16/319,879 patent/US10972102B2/en active Active
- 2016-09-20 WO PCT/JP2016/077661 patent/WO2018055666A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
GB2570805A (en) | 2019-08-07 |
WO2018055666A1 (ja) | 2018-03-29 |
US20190267999A1 (en) | 2019-08-29 |
US10972102B2 (en) | 2021-04-06 |
GB2570805B (en) | 2021-12-29 |
GB201900255D0 (en) | 2019-02-27 |
JPWO2018055666A1 (ja) | 2019-06-24 |
JP6698855B2 (ja) | 2020-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8044950B2 (en) | Driver circuit usable for display panel | |
US8063808B2 (en) | Multi-input operational amplifier circuit, digital/analog converter using same, and driver for display device using same | |
US10855265B2 (en) | Comparison circuit | |
JP5739058B2 (ja) | 動的レベルシフト構成を用いて電圧信号をレベルシフトするためのシステムおよび方法 | |
CN106899288B (zh) | 电平转换电路 | |
WO2018055666A9 (ja) | インターフェース回路 | |
KR20180092804A (ko) | 레벨 시프터 | |
US7714613B2 (en) | Level converter | |
US8558581B2 (en) | Analog rail-to-rail comparator with hysteresis | |
JP4928290B2 (ja) | 差動信号比較器 | |
JP2007329518A (ja) | チョッパ型コンパレータ | |
JP2007227990A (ja) | タイミング生成回路及びそれを用いたデジタル/アナログ変換器 | |
JP2006203762A (ja) | フリップフロップ回路および半導体装置 | |
JP3068752B2 (ja) | 半導体装置 | |
JP4630782B2 (ja) | レベルシフト回路 | |
US20090212823A1 (en) | Low Jitter CMOS to CML Converter | |
JP4658868B2 (ja) | 増幅回路 | |
US10917095B2 (en) | Level shifting circuit and integrated circuit | |
JP2018019223A (ja) | シングル差動変換回路 | |
JP5417470B2 (ja) | ダイナミックコンパレータのためのオフセット電圧補正回路とそれを用いたダイナミックコンパレータ回路 | |
CN114389595A (zh) | 电平转换电路 | |
US7157946B2 (en) | Chopper comparator circuit | |
Almeida et al. | A Less Complex and Effective Approach to Design Current Sample-and-Hold Circuits with Clock Generation for use on Current Mode ADCs | |
JP4273881B2 (ja) | 差動信号出力回路及びそれを内蔵した半導体集積回路 | |
TWM517481U (zh) | 電壓位準轉換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916737 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540249 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 201900255 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20160920 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16916737 Country of ref document: EP Kind code of ref document: A1 |