WO2018047662A1 - ポリブチレンテレフタレート樹脂組成物および成形品 - Google Patents

ポリブチレンテレフタレート樹脂組成物および成形品 Download PDF

Info

Publication number
WO2018047662A1
WO2018047662A1 PCT/JP2017/030798 JP2017030798W WO2018047662A1 WO 2018047662 A1 WO2018047662 A1 WO 2018047662A1 JP 2017030798 W JP2017030798 W JP 2017030798W WO 2018047662 A1 WO2018047662 A1 WO 2018047662A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
terephthalate resin
resin composition
mass
silicone
Prior art date
Application number
PCT/JP2017/030798
Other languages
English (en)
French (fr)
Inventor
恵市 小佐野
耕一 坂田
Original Assignee
ウィンテックポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンテックポリマー株式会社 filed Critical ウィンテックポリマー株式会社
Priority to US16/331,389 priority Critical patent/US11214680B2/en
Priority to JP2018538361A priority patent/JP6578446B2/ja
Priority to CN201780055719.7A priority patent/CN109689782B/zh
Publication of WO2018047662A1 publication Critical patent/WO2018047662A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • Embodiments of the present invention relate to a polybutylene terephthalate resin composition and a molded article.
  • Polybutylene terephthalate resin is a crystalline thermoplastic resin with excellent mechanical strength, electrical properties, and other properties, so it can be used as engineering plastics for a wide range of applications including automobiles, electrical and electronic equipment, etc. Has been.
  • long-term durability against an alkaline solution tends to be low, and its use environment and application are limited. For example, some parts may be used in places where they come into contact with toilet cleaners, bathtub cleaners, bleaches, snow melting agents, and the like. Since these chemicals contain sodium hydroxide, sodium hypochlorite, sodium percarbonate, calcium chloride and the like as components, the resin molded product is exposed to an alkaline atmosphere.
  • Polybutylene terephthalate resin is often used as an insert molded product for inserting a metal or an inorganic solid (hereinafter also referred to as a metal).
  • the resin is a metal or the like at the time of injection molding. There is an interface that wraps around and joins, so-called welds, and environmental stress cracking as in the previous period generally occurs in the welds of molded products.
  • Measures for adding a silicone-based compound and / or a fluorine-based compound are known in order to suppress the occurrence of cracks in an insert-molded product that comes into contact with the alkaline solution as described above.
  • a countermeasure of adding an impact resistance imparting agent such as an elastomer is also known.
  • International Publication No. 2000/078867 includes (A) a thermoplastic polyester resin, (B) an impact resistance imparting agent, (C) a silicone compound and / or a fluorine compound, (D) an inorganic filler, and ( E) A thermoplastic polyester resin composition containing a polyfunctional compound is described.
  • the above-mentioned International Publication No. 2000/078867 includes (A) a polybutylene terephthalate resin as a thermoplastic polyester resin, and (B) an ethylene-ethyl acrylate copolymer and methyl methacrylate-acrylic as an impact resistance imparting agent.
  • An object of an embodiment of the present invention is to provide a polybutylene terephthalate resin composition capable of forming a molded article excellent in alkali resistance and heat shock resistance.
  • One embodiment of the present invention includes a polybutylene terephthalate resin, a silicone compound having a kinematic viscosity at 25 ° C. of 1000 to 10000 cSt of 0.5 to 1.8% by mass of the total mass of the polybutylene terephthalate resin composition,
  • the present invention relates to a polybutylene terephthalate resin composition comprising 5 to 20% by mass of an olefin-based elastomer based on the total mass of the polybutylene terephthalate resin composition.
  • Another embodiment of the present invention relates to a molded article molded using the polybutylene terephthalate resin composition described above.
  • a polybutylene terephthalate resin composition capable of molding a molded article excellent in alkali resistance and heat shock resistance, and a molded article molded using the resin composition are provided. be able to.
  • FIG. 1 is a perspective view (partially perspective view) showing an example of an insert-molded product.
  • 2A is a cross-sectional view of the insert-molded product shown in FIG. 1, and FIG.
  • the polybutylene terephthalate resin composition according to an embodiment of the present invention (hereinafter sometimes simply referred to as “resin composition”) has a polybutylene terephthalate resin and a specific amount of kinematic viscosity at 25 ° C. of 1000 to 10,000 cSt. And a specific amount of an olefinic elastomer.
  • resin composition has a polybutylene terephthalate resin and a specific amount of kinematic viscosity at 25 ° C. of 1000 to 10,000 cSt. And a specific amount of an olefinic elastomer.
  • Polybutylene terephthalate resin includes at least a dicarboxylic acid component containing terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) It is a polybutylene terephthalate resin obtained by polycondensation with a glycol component containing at least an alkylene glycol (1,4-butanediol) having 4 carbon atoms or an ester-forming derivative thereof (acetylated product, etc.).
  • the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
  • the amount of the terminal carboxyl group of the polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired.
  • the amount of terminal carboxyl groups of the polybutylene terephthalate resin is preferably 5 meq / kg or more and 30 meq / kg or less, and more preferably 10 meq / kg or more and 25 meq / kg or less.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin is preferably 0.60 dL / g or more and 1.20 dL / g or less, more preferably 0.65 dL / g or more and 1.00 dL / g or less. More preferably, it is 0.70 dL / g or more and 0.95 dL / g or less, More preferably, it is 0.75 dL / g or more and 0.90 dL / g or less.
  • the resulting polybutylene terephthalate resin composition is particularly excellent in appearance and strength.
  • the intrinsic viscosity can also be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
  • a polybutylene terephthalate resin having an intrinsic viscosity of 0.85 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. Can do.
  • the intrinsic viscosity (IV) of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives
  • dicarboxylic acid components for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′- C 8-14 aromatic dicarboxylic acids such as dicarboxydiphenyl ether; C 4-16 alkane dicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 cycloalkane dicarboxylic acids such as cyclohexane dicarboxylic acid Acid; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.).
  • dicarboxylic acid components can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid
  • C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
  • glycol components (comonomer components) other than 1,4-butanediol for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neo C 2-10 alkylene glycol such as pentyl glycol and 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diol such as cyclohexanedimethanol and hydrogenated bisphenol A; Aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; 2 mol adducts of ethylene oxide of bisphenol A, 3 mol of propylene oxide of bisphenol A An adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols (acet
  • C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycol such as diethylene glycol
  • alicyclic diol such as cyclohexanedimethanol
  • the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, and the like.
  • Aromatic hydroxycarboxylic acids Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone ( ⁇ -caprolactone, etc.); esters of these comonomer components And forming derivatives (C 1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.).
  • any of the polybutylene terephthalate copolymers obtained by copolymerizing the comonomer components described above can be suitably used as the (A) polybutylene terephthalate resin. Moreover, you may use combining a homopolybutylene terephthalate polymer and a polybutylene terephthalate copolymer as (A) polybutylene terephthalate resin.
  • the polybutylene terephthalate resin composition of this embodiment has high alkali resistance by including (B) a silicone compound.
  • Preferred silicone compounds are pure silicone resins such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane, which are generally known as silicone oils, alkyd resins, polyester resins, acrylic resins, and epoxy resins. Examples thereof include, but are not limited to, modified silicone reacted with a modifying resin such as
  • silicone oil absorption cured silicone powder a cured silicone powder in which silicone oil is absorbed (hereinafter sometimes referred to as “silicone oil absorption cured silicone powder”) may be used.
  • silicone oil absorption cured silicone powder for example, a powder obtained by blending 0.5 to 80% by weight of silicone oil in advance with fine powdered cured silicone and absorbing it, and powdering it by any method should be used. Can do.
  • silicone that absorbs silicone oil to form a cured silicone powder for example, a conventionally known silicone rubber or silicone gel can be used.
  • R is a substituted or unsubstituted monovalent hydrocarbon group or hydroxyl group
  • n is an integer.
  • R represents a substituted or unsubstituted monovalent hydrocarbon group or a hydroxyl group.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, Alkyl groups such as propyl group; alkenyl groups such as vinyl group and allyl group; aralkyl groups such as cycloalkyl group and ⁇ -phenylethyl group; 3,3,3-trifluoropropyl group, 3-mercaptopropyl group, 3- Examples include aminopropyl group and 3-glycidoxypropyl group.
  • the kinematic viscosity at 25 ° C. of the (B) silicone compound is 1000 to 10000 cSt (10 to 100 cm 2 / s), preferably 2000 to 8000 cSt, and more preferably 3000 to 6000 cSt.
  • silicone oil absorption hardening silicone powder mentioned above, what is necessary is just to use the thing of the kinematic viscosity of the said range as a silicone oil to absorb.
  • silicone compound One type of silicone compound may be used alone, or two or more types may be used in combination.
  • (B) Content of a silicone type compound is 0.5 to 1.8 mass% of the total mass of a polybutylene terephthalate resin composition, and 0.5 to 1.5 mass% is more. Preferably, the content is 0.7% by mass or more and 1.5% by mass or less, and more preferably 0.8% by mass or more and 1.3% by mass or less.
  • the polybutylene terephthalate resin composition of the present embodiment contains 5% by mass or more and 20% by mass or less of an olefin-based elastomer based on the total mass of the polybutylene terephthalate resin composition.
  • the content of the olefin elastomer is, for example, preferably 7% by mass or more, more preferably 8% by mass or more, and 9% by mass or more of the total mass of the polybutylene terephthalate resin composition. More preferably, it is preferably 18% by mass or less, more preferably 17% by mass or less, and further preferably 16% by mass or less.
  • Alkali resistance and heat shock resistance can be improved with a good balance when the content of the olefin elastomer is within the above range.
  • a conventionally well-known olefin type elastomer can be used as an olefin type elastomer.
  • Conventionally known olefin elastomers are, for example, selected from ethylene-propylene copolymer (EP copolymer), ethylene-propylene-diene copolymer (EPD copolymer), EP copolymer and EPD copolymer.
  • EP copolymer ethylene-propylene copolymer
  • EPD copolymer ethylene-propylene-diene copolymer
  • EP copolymer and EPD copolymer EP copolymer and EPD copolymer.
  • a copolymer containing at least one kind of unit a copolymer of an olefin and a (meth) acrylic monomer, and the like.
  • Preferred olefin-based elastomers include EP copolymers, EPD copolymers, and copolymers of olefins and (meth) acrylic monomers. Of these, a copolymer of an olefin and a (meth) acrylic monomer is preferable. Of the copolymers of olefins and (meth) acrylic monomers, EEA copolymers (ethylene ethyl acrylate copolymers) are particularly preferred.
  • the EEA copolymer is a copolymer having ethylene and ethyl acrylate as copolymerization components.
  • the copolymerization type is not particularly limited, and any of random, block, or graft copolymers may be used.
  • the copolymer may partially have two or more of a random structure, a block structure, and a graft structure. Good.
  • the ratio of ethylene and ethyl acrylate in the copolymer is not particularly limited, but the melting point of the EEA copolymer is 85 ° C or higher from the viewpoint of ensuring compatibility with the PBT resin and suppressing blocking during production. It is preferable that the temperature is 88 ° C. or higher, and 90 ° C. or higher is particularly preferable.
  • an EEA copolymer that does not substantially contain a comonomer component other than ethylene and ethyl acrylate.
  • other comonomer components are partly included within a range that does not hinder the effects of the present embodiment. May be included.
  • the amount of the comonomer other than ethylene and ethyl acrylate is preferably 10% by mass or less in the copolymerization monomer.
  • examples of other comonomers include (meth) acrylic acid esters such as maleic anhydride, butyl acrylate, and methyl methacrylate, and may be a comonomer that does not contain a highly reactive functional group such as a glycidyl group. preferable.
  • the EEA copolymer can be produced by any method. For example, a predetermined amount of ethylene and ethyl acrylate (and other comonomer components) are mixed, and radical polymerization is performed by a conventional method using a radical initiator to obtain an EEA copolymer.
  • olefin elastomer one kind may be used alone, or two or more kinds may be used in combination.
  • the polybutylene terephthalate resin composition of this embodiment may contain (D) a filler.
  • (D) By containing a filler, mechanical characteristics can be improved. Further, by reducing the molding shrinkage rate and linear expansion coefficient of the polybutylene terephthalate resin composition, further improvement in heat shock resistance can be expected.
  • filler of component (D) examples include fibrous fillers [for example, glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, Inorganic fibers such as boron fibers, potassium titanate fibers, silicon carbide fibers, whiskers (whiskers such as silicon carbide, alumina, silicon nitride), organic fibers formed of polyamide, fluororesin, etc.], plate-like fillers [ For example, talc, mica, glass flake, graphite, etc.], powdery fillers [eg, glass beads, glass powder, milled fibers (milled fibers such as glass), wollastonite, etc.] can be mentioned.
  • fibrous fillers for example, glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica / alumina fiber, zirconia fiber, boron nitride
  • glass fillers glass fibers, glass flakes, glass beads, etc.
  • Torque, mica are preferred, such as wollastonite, inter alia glass fibers, from the standpoint of availability and strength and rigidity can be suitably used.
  • a plate-like or powdery filler can be suitably used from the viewpoint of suppressing the molding shrinkage rate and the linear expansion coefficient of the polyalkylene terephthalate resin composition.
  • known surface treating agents can be used as necessary.
  • the shape is not particularly limited, but the length is, for example, about 100 ⁇ m to 5 mm, more preferably about 500 ⁇ m to 3 mm, and the diameter is, for example, 1 to 50 ⁇ m, more preferably 3 About 30 ⁇ m. Further, when a plate-like filler or a powdery filler is used, the average particle diameter is not particularly limited, but is, for example, about 0.1 to 100 ⁇ m, more preferably about 0.1 to 50 ⁇ m.
  • These (C) fillers can be used singly or in combination of two or more.
  • the addition amount of the filler of a component has preferable 10 mass% or more and 50 mass% or less of the total mass part of a polybutylene terephthalate resin composition, More preferably, 15 mass% or more and 40 mass% or less, More preferably, 20 It is not less than 35 parts by mass. By setting it as this range, heat shock resistance can be improved without significantly impairing the fluidity of the resin composition.
  • the polybutylene terephthalate resin composition of the present embodiment includes the above-mentioned (A) polybutylene terephthalate resin, (B) silicone-based compound, (C) olefin-based elastomer, and (D ) Components other than the filler may optionally be included.
  • Other components include antioxidants, stabilizers, molecular weight modifiers, ultraviolet absorbers, antistatic agents, colorants, lubricants, mold release agents, crystallization accelerators, crystal nucleating agents, infrared absorbers. , Flame retardants, flame retardant aids, hydrolysis resistance improvers, fluidity improvers, and the like, but are not limited thereto.
  • the total content of the above components (A) to (D) is preferably 70% by mass or more in the total composition, and 80% by mass or more. More preferably, it is more preferably 90% by mass or more. An upper limit is not specifically limited, 100 mass% may be sufficient.
  • the polybutylene terephthalate resin composition can be produced by various methods known as a method for producing a thermoplastic resin composition.
  • a melt kneading apparatus such as a single or twin screw extruder is used to melt and knead each component to form an extruded pellet.
  • One embodiment of the present invention relates to a molded article molded using the above-mentioned polybutylene terephthalate resin composition.
  • This molded article may include, for example, only a resin portion made of the polybutylene terephthalate resin composition, for example, as will be described later, a resin portion made of the polybutylene terephthalate resin composition, and a metal and / or inorganic solid.
  • an insert member made of A method for obtaining a molded product using the polybutylene terephthalate resin composition is not particularly limited, and a known method can be employed.
  • a polybutylene terephthalate resin composition can be injection molded to obtain a molded product.
  • pellets of polybutylene terephthalate resin composition prepared by melt-kneading and extruding the components of the polybutylene terephthalate resin composition are put into an injection molding machine equipped with a predetermined mold, It can be produced by injection molding.
  • the molded product of the present embodiment may be an insert molded product obtained by injection molding the polybutylene terephthalate resin composition with an insert member made of a metal and / or an inorganic solid. Since the molded product of this embodiment is excellent in alkali resistance and heat shock resistance, it can be suitably applied as a molded product (more preferably, an insert molded product) used as a part in contact with an alkaline solution.
  • Embodiments of the present invention include the following, but the present invention is not limited to the following embodiments.
  • ⁇ 1> a polybutylene terephthalate resin;
  • a polybutylene terephthalate resin composition comprising 5 to 20% by mass of an olefin-based elastomer based on the total mass of the polybutylene terephthalate resin composition.
  • ⁇ 2> The polybutylene terephthalate resin composition according to ⁇ 1>, wherein the silicone compound includes dimethylpolysiloxane.
  • ⁇ 3> The polybutylene terephthalate resin composition according to ⁇ 1> or ⁇ 2>, wherein the olefin-based elastomer includes an ethylene ethyl acrylate copolymer.
  • ⁇ 4> The polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 3>, further including a filler of 10 to 50% by mass of the total mass of the polybutylene terephthalate resin composition.
  • ⁇ 5> The polybutylene terephthalate resin composition according to ⁇ 4>, wherein the filler includes glass fibers.
  • ⁇ 6> A molded article molded using the polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 5>.
  • molded article according to ⁇ 6> which is an insert molded article including an insert member made of at least one selected from the group consisting of metals and inorganic solids.
  • molded article according to ⁇ 6> or ⁇ 7> which is used for a part in contact with an alkaline solution.
  • Polybutylene terephthalate resin (PBT resin) -PBT resin 1 PBT resin made by Wintech Polymer Co., Ltd.
  • Intrinsic viscosity (IV) 0.68 dl / g-PBT resin 2: Made by Wintech Polymer Co., Ltd.
  • Intrinsic viscosity (IV) 0.78 dl / g PBT resin / PBT resin 3: manufactured by Wintech Polymer Co., Ltd.
  • Intrinsic viscosity (IV) 0.88 dl / g PBT resin / PBT resin 4: manufactured by Wintech Polymer Co., Ltd.
  • Silicone compound / silicone compound 1 dimethylpolysiloxane having a kinematic viscosity of 5000 cSt at 25 ° C.
  • silicone compound 2 cured silicone powder containing dimethylpolysiloxane having a kinematic viscosity of 60000 cSt at 25 ° C.
  • Silicone compound 3 dimethylpolysiloxane having a kinematic viscosity of 60000 cSt at 25 ° C
  • Silicone compound 4 dimethylpolysiloxane having a kinematic viscosity of 1000 cSt at 25 ° C
  • Silicone compound 5 dimethylpolysiloxane having a kinematic viscosity of 100 cSt at 25 ° C
  • Elastomer / Elastomer 1 EEA copolymer (ethylene content 75% by mass, melting point 91 ° C.)
  • Elastomer 2 Acrylic core-shell polymer (Rohm and Haas Japan Co., Ltd., Paraloid EXL2311)
  • This test piece was fixed to a jig in a bent state so that 1.0% bending strain was always applied to the weld.
  • the jig was immersed in a 10% by mass aqueous sodium hydroxide solution and allowed to stand at an ambient temperature of 23 ° C., and whether or not cracks occurred in the test piece was observed at specific times.
  • Evaluation was performed using three test pieces for each of the pellets of each of the examples and comparative examples, and the time until cracks occurred in at least one of the three test pieces was confirmed.
  • Tables 1 to 4 show the evaluation results at 12 hours, 24 hours and 48 hours after the start of immersion, respectively. A means that none of the three test pieces has cracks, and B means that at least one of the three test pieces has cracks.
  • FIG. 1 is a perspective view showing an insert molded product in which an iron core 14 is inserted into a resin portion 12
  • FIG. 2 is a cross-sectional view (a) of the insert molded product (A in (b)).
  • FIG. 4 is a cross-sectional view taken along line -A) and FIG.
  • the iron core 10 has a cylindrical portion of 24 to 26 mm from the bottom.
  • the minimum thickness of the resin part 12 around the iron core 14 is 1 mm.
  • the pin gate filled with resin exists in the center position of the resin part bottom face shown with the arrow line in Fig.2 (a). The process of heating the obtained insert-molded product to 140 ° C.
  • the polybutylene terephthalate resin compositions of Examples 1 to 7 can provide molded articles having excellent alkali resistance and heat shock resistance. Further, as compared with Comparative Examples 1 and 17 and Comparative Examples 2 and 19, when the kinematic viscosity of the silicone compound is outside the range of 1000 to 10000 cSt, the alkali resistance is hardly changed even if the elastomer is changed. Regardless, when a silicone compound having a specific kinematic viscosity in the range of 1000 to 10000 cSt is used, as compared with Example 1 and Comparative Example 7, the use of an olefin elastomer can significantly improve alkali resistance.
  • a molded product excellent in alkali resistance and heat shock resistance can be molded. Therefore, a wide range of fields such as electric, electronic, automobile, general miscellaneous goods, In particular, it can be suitably used as an insert-molded product for use in contact with an alkaline solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

ポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の0.5~1.8質量%の、25℃における動粘度が1000~10000cStであるシリコーン系化合物と、ポリブチレンテレフタレート樹脂組成物の全質量の5~20質量%のオレフィン系エラストマーとを含む、ポリブチレンテレフタレート樹脂組成物。

Description

ポリブチレンテレフタレート樹脂組成物および成形品
 本発明の実施形態は、ポリブチレンテレフタレート樹脂組成物および成形品に関する。
 ポリブチレンテレフタレート樹脂は、結晶性熱可塑性樹脂として、機械的強度、電気的性質、その他、各種特性に優れている為、エンジニアリングプラスチックとして、自動車、電気・電子機器等をはじめとして広範な用途に使用されている。しかしながら、アルカリ溶液に対する長期耐久性が低い傾向にあり、その使用環境や用途が限られていた。
 例えば、部品によっては、トイレ用洗浄剤、浴槽用洗浄剤、漂白剤、融雪剤等に接触する場所で使用される場合がある。これらの薬剤は、その成分として、水酸化ナトリウム、次亜塩素酸ナトリウム、過炭酸ナトリウム、塩化カルシウム等を含むため、樹脂成形品がアルカリ雰囲気下に曝されることになる。樹脂成形品に、ネジ締め、金属圧入、かしめ等により過大な歪みがかかった状態で、上記のようなアルカリ雰囲気下に長時間曝されると、歪みとアルカリ成分の双方の影響で、いわゆる環境応力割れを起こし、成形品にクラックが発生するため問題となっていた。
 又、ポリブチレンテレフタレート樹脂は、金属又は無機固体(以下、金属等ともいう)をインサートするインサート成形品として使用される場合も多いが、そのようなインサート成形品では、射出成形時に樹脂が金属等を回り込んで合流する界面、いわゆるウエルド部が存在し、前期のような環境応力割れは、一般に成形品のウエルド部に発生することが多い。さらに、樹脂と金属等では収縮率、線膨張係数が異なるため、昇温や降温が繰り返されるような環境で用いられるインサート成形品では、金属等の周囲の樹脂に生じる歪みによるクラック(ヒートショック破壊)が発生しやすい。そのため、インサート成形品が上記のようなアルカリ溶液と接触し、かつ昇温や降温が繰り返されるような環境に長期間おかれると、ウエルド部や金属等の周囲にクラックが発生するため、問題となっていた。
 上記のようなアルカリ溶液に接触するインサート成形品におけるクラックの発生を抑えるために、シリコーン系化合物及び/又はフッ素系化合物を添加する対策が知られている。また、温度変化による歪みの影響を最小化するために、エラストマー等の耐衝撃性付与剤を添加するという対策も知られている。
 例えば、国際公開第2000/078867号には、(A)熱可塑性ポリエステル樹脂に(B)耐衝撃性付与剤、(C)シリコーン系化合物及び/又はフッ素系化合物、(D)無機充填剤および(E)多官能性化合物を配合してなる熱可塑性ポリエステル樹脂組成物が記載されている。
 また、上記の国際公開第2000/078867号には、(A)熱可塑性ポリエステル樹脂としてポリブチレンテレフタレート樹脂、(B)耐衝撃性付与剤としてエチレン-アクリル酸エチル共重合体とメタクリル酸メチル-アクリル酸ブチル共重合体とのグラフト共重合体(EEA-g-BA/MMA)、アクリル系コアシェルポリマー、エポキシ化-スチレン-ブタジエンースチレン共重合体(ESBS)、又はエチレン-グリシジルメタクリレート共重合体とメタクリル酸メチルとのグラフト共重合体(EGMA-g-MMA)、(C)シリコーン系化合物及び/又はフッ素系化合物としてシリコーンオイル含有シリコーンパウダー、(D)無機充填剤としてガラス繊維、(E)多官能性化合物としてエポキシ樹脂をそれぞれ所定量配合してなる熱可塑性ポリエステル樹脂組成物が記載され、これらの熱可塑性樹脂組成物を用いることにより、耐アルカリ性に優れる成形品が得られることが開示されている。
国際公開第2000/078867号
 しかしながら、製品寿命の長期化に伴い、各部品に対しても、耐アルカリ性と耐ヒートショック性の更なる向上が求められていた。
 本発明の実施形態は、耐アルカリ性と耐ヒートショック性に優れる成形品を成形することが可能なポリブチレンテレフタレート樹脂組成物を提供することを課題とする。
 本発明の一実施形態は、ポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の0.5~1.8質量%の、25℃の動粘度が1000~10000cStであるシリコーン系化合物と、ポリブチレンテレフタレート樹脂組成物の全質量の5~20質量%のオレフィン系エラストマーとを含む、ポリブチレンテレフタレート樹脂組成物に関する。
 本発明の別の一実施形態は、上記のポリブチレンテレフタレート樹脂組成物を用いて成形された、成形品に関する。
 本発明の実施形態によれば、耐アルカリ性と耐ヒートショック性に優れる成形品を成形することが可能なポリブチレンテレフタレート樹脂組成物、及び当該樹脂組成物を用いて成形された成形品を提供することができる。
図1は、インサート成形品の一例を示す斜視図(一部透視図)である。 図2は、図1に示すインサート成形品を示す、(a)断面図、(b)上面図である。
 以下に、本発明の好ましい実施形態を説明するが、本発明が下記の実施形態に限定されることはない。
<ポリブチレンテレフタレート樹脂組成物>
 本発明の一実施形態のポリブチレンテレフタレート樹脂組成物(以下、単に「樹脂組成物」と記載することもある。)は、ポリブチレンテレフタレート樹脂と、特定量の25℃の動粘度が1000~10000cStであるシリコーン系化合物と、特定量のオレフィン系エラストマーとを含む。このような樹脂組成物を用いることにより、耐アルカリ性と耐ヒートショック性に優れる成形品を成形することができる。
 以下に、本実施形態の樹脂組成物において用いることができる各成分について説明する。
(A)ポリブチレンテレフタレート樹脂
 (A)ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。(A)ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
 (A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、本発明の目的を阻害しない限り特に限定されない。(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、5meq/kg以上30meq/kg以下が好ましく、10meq/kg以上25meq/kg以下がより好ましい。かかる範囲の末端カルボキルシル基量のポリブチレンテレフタレート樹脂を用いることで、得られるポリブチレンテレフタレート樹脂組成物が湿熱環境下での加水分解による強度低下を受けにくくなる。
 (A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は0.60dL/g以上1.20dL/g以下であることが好ましく、より好ましくは0.65dL/g以上1.00dL/g以下であり、さらに好ましくは0.70dL/g以上0.95dL/g以下であり、さらに好ましくは0.75dL/g以上0.90dL/g以下である。かかる範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が特に外観と強度に優れたものとなる。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.85dL/gのポリブチレンテレフタレート樹脂を調製することができる。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
 (A)ポリブチレンテレフタレート樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。
 (A)ポリブチレンテレフタレート樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
 以上説明したコモノマー成分を共重合したポリブチレンテレフタレート共重合体は、いずれも(A)ポリブチレンテレフタレート樹脂として好適に使用できる。また、(A)ポリブチレンテレフタレート樹脂として、ホモポリブチレンテレフタレート重合体とポリブチレンテレフタレート共重合体とを組み合わせて使用してもよい。
(B)シリコーン系化合物
 本実施形態のポリブチレンテレフタレート樹脂組成物は、(B)シリコーン系化合物を含むことにより高い耐アルカリ性を有する。
 シリコーン系化合物として好ましいのは、一般にシリコーンオイルとして知られている、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサンなどの純シリコーン樹脂、純シリコーン樹脂をアルキッド樹脂、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂などの変性用樹脂と反応させた変性シリコーンなどが挙げられるが、これに限定されるものではない。
 また、シリコーンオイルを吸収させた硬化シリコーンパウダー(以下、「シリコーンオイル吸収硬化シリコーンパウダー」と記載する場合もある)を用いてもよい。シリコーンオイル吸収硬化シリコーンパウダーとしては、例えば、微粉末状の硬化シリコーンに予めシリコーンオイルを0.5~80重量%配合し吸収させて任意の方法にてパウダー化することにより得られたもの用いることができる。
 シリコーンオイルを吸収して硬化シリコーンパウダーを形成するシリコーンとしては、例えば、従来公知のシリコーンゴムあるいはシリコーンゲルが使用できる。
 なお、シリコーンオイルとしては、例えば、下記一般式(1)で表されるものが挙げられる。下記一般式(1)中、Rは置換もしくは非置換の一価炭化水素基又は水酸基であり、nは整数である。
 RSiO[RSiO]SiR  (1)
 上記一般式(1)式中、Rは置換もしくは非置換の一価炭化水素基又は水酸基であるが、置換もしくは非置換の一価炭化水素基の例としては、例えば、メチル基、エチル基、プロピル基などのアルキル基;ビニル基、アリル基等のアルケニル基;シクロアルキル基、β-フェニルエチル基などのアラルキル基;3,3,3-トリフルオロプロピル基、3-メルカプトプロピル基、3-アミノプロピル基、3-グリシドキシプロピル基等が挙げられる。
 本実施形態において、(B)シリコーン系化合物の、25℃における動粘度は、1000~10000cSt(10~100cm/s)であり、好ましくは2000~8000cSt、より好ましくは、3000~6000cStである。なお、先に述べたシリコーンオイル吸収硬化シリコーンパウダーを用いる場合は、吸収させるシリコーンオイルとして上記範囲の動粘度のものを用いればよい。
 (B)シリコーン系化合物は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (B)シリコーン系化合物の含有量は、ポリブチレンテレフタレート樹脂組成物の全質量の0.5質量%以上1.8質量%以下であり、0.5質量%以上1.5質量%以下がより好ましく、0.7質量%以上1.5質量%以下であることがより好ましく、0.8質量%以上1.3質量%以下であることがさらに好ましい。(B)シリコーン系化合物の含有量が0.5重量%以上であると、耐アルカリ性向上の効果が得られ、また、1.8質量%以下であると、成形品からの染み出しによる問題が発生しにくい。
(C)オレフィン系エラストマー
 本実施形態のポリブチレンテレフタレート樹脂組成物は、ポリブチレンテレフタレート樹脂組成物の全質量の5質量%以上20質量%以下のオレフィン系エラストマーを含有する。
(C)オレフィン系エラストマーの含有量は、例えば、ポリブチレンテレフタレート樹脂組成物の全質量の7質量%以上であることが好ましく、8質量%以上であることがより好ましく、9質量%以上であることがさらに好ましく、また、18質量%以下であることが好ましく、17質量%以下であることがより好ましく、16質量%以下であることがさらに好ましい。(C)オレフィン系エラストマーの含有量が上記範囲内であると、耐アルカリ性と耐ヒートショック性をバランス良く改善することができる。
(C)オレフィン系エラストマーとしては従来公知のオレフィン系エラストマーを用いることができる。従来公知のオレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体(EP共重合体)、エチレン-プロピレン-ジエン共重合体(EPD共重合体)、EP共重合体およびEPD共重合体から選択された少なくとも一種の単位を含む共重合体、オレフィンと(メタ)アクリル系単量体との共重合体等が含まれる。好ましいオレフィン系エラストマーには、EP共重合体、EPD共重合体、オレフィンと(メタ)アクリル系単量体との共重合体が含まれる。これらのうちオレフィンと(メタ)アクリル系単量体との共重合体が好ましい。オレフィンと(メタ)アクリル系単量体との共重合体の中でも、EEA共重合体(エチレンエチルアクリレート共重合体)が特に好ましい。
 EEA共重合体は、エチレンとエチルアクリレートを共重合成分とする共重合体である。共重合形式は特に限定されず、ランダム、ブロック、又はグラフトのいずれの共重合体でもよく、例えば部分的に、ランダム構造、ブロック構造及びグラフト構造のうちの2以上の構造を有していてもよい。
 共重合体中のエチレンとエチルアクリレートの比率は、特に限定はされないが、PBT樹脂と相溶性を確保し、かつ、製造時のブロッキング抑制の観点から、EEA共重合体の融点が85℃以上であることが好ましく、88℃以上であることがより好ましく、90℃以上であることが特に好ましい。
 本実施形態においては、エチレンとエチルアクリレート以外のコモノマー成分を実質的に含まないEEA共重合体を用いることが好ましいが、本実施形態の効果を阻害しない範囲で、その他のコモノマー成分を一部に含んでいてもよい。具体的には、エチレンとエチルアクリレート以外のコモノマーは、共重合モノマー中に10質量%以下となる量であることが好ましい。なお、その他のコモノマーとしては、無水マレイン酸、ブチルアクリレート、メチルメタクリレート等の(メタ)アクリル酸エステル等を挙げることができ、グリシジル基などの反応性の高い官能基を含まないコモノマーであることが好ましい。
 EEA共重合体は、任意の方法で製造することができる。例えば、エチレンとエチルアクリレート(及びその他のコモノマー成分)を所定量混合し、ラジカル開始剤を用いて常法によりラジカル重合を行うことにより、EEA共重合体が得られる。
 オレフィン系エラストマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D)充填剤
 本実施形態のポリブチレンテレフタレート樹脂組成物は、(D)充填剤を含有していてもよい。(D)充填剤を含有することで、機械的特性を向上させることができる。また、ポリブチレンテレフタレート樹脂組成物の成形収縮率や線膨張係数を低減することにより、更なる耐ヒートショック性向上も期待できる。
 (D)成分の充填剤としては、例えば、繊維状充填剤[例えば、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、アルミナ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、炭化珪素繊維、ウィスカー(炭化珪素、アルミナ、窒化珪素などのウィスカー)などの無機質繊維や、ポリアミドやフッ素樹脂などで形成された有機質繊維など]、板状充填剤[例えば、タルク、マイカ、ガラスフレーク、グラファイトなど]、粉状充填剤[例えば、ガラスビーズ、ガラスパウダー、ミルドファイバー(ガラスなどのミルドファイバー)、ウォラストナイトなど]が挙げられ、これらの充填剤のうち、ガラス系充填剤(ガラス繊維、ガラスフレーク、ガラスビーズなど)、タルク、マイカ、ウォラストナイトなどが好ましく、中でもガラス繊維は、入手性や強度及び剛性の面から、好適に使用できる。また、板状や粉状の充填剤は、ポリアルキレンテレフタレート樹脂組成物の成形収縮率や線膨張係数の異方性抑制の面から、好適に使用できる。これらの充填剤の使用に当たっては、必要に応じ公知の表面処理剤を使用することができる。
(D)成分として繊維状充填剤を用いる場合、その形状は特に限定されないが、例えば長さは100μm~5mm、より好ましくは500μm~3mm程度であり、直径は例えば1~50μm、より好ましくは3~30μm程度である。また、板状充填剤又は粉状充填剤を用いる場合、その平均粒子径も特に限定されないが、例えば0.1~100μm、より好ましくは0.1~50μm程度である。これらの(C)充填剤は、1種単独で又は2種以上組み合わせて使用できる。
(D)成分の充填剤の添加量は、ポリブチレンテレフタレート樹脂組成物の全質量部の10質量%以上50質量%以下が好ましく、より好ましくは15質量%以上40質量%以下、さらに好ましくは20質量部以上35質量部以下である。かかる範囲にすることで、樹脂組成物の流動性を大きく損なうことなく、耐ヒートショック性を向上することができる。
(E)その他の成分
 本実施形態のポリブチレンテレフタレート樹脂組成物は、目的に応じて、上述の(A)ポリブチレンテレフタレート樹脂、(B)シリコーン系化合物、(C)オレフィン系エラストマー、及び(D)充填剤以外の成分を任意に含んでもよい。(E)その他の成分としては、酸化防止剤、安定剤、分子量調整剤、紫外線吸収剤、帯電防止剤、着色剤、潤滑剤、離型剤、結晶化促進剤、結晶核剤、赤外線吸収剤、難燃剤、難燃助剤、耐加水分解性向上剤、流動性改良剤等が挙げられるがこれらに限定されない。
 なお、本実施形態のポリブチレンテレフタレート樹脂組成物において、上記(A)~(D)成分の含有量の合計が、全組成物中の70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
上限は特に限定されず100質量%であってもよい。上記(A)~(D)成分の含有量の合計を上記範囲内とすることにより、耐アルカリ性と耐ヒートショック性のより優れた樹脂組成物を得ることができる。
 ポリブチレンテレフタレート樹脂組成物は、熱可塑性樹脂組成物の製造方法として知られる種々の方法によって製造することができる。好適な方法としては、例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出しペレットとする方法が挙げられる。
<成形品>
 上述のポリブチレンテレフタレート樹脂組成物を用いてなる成形品について説明する。
 本発明の一実施形態は、上述のポリブチレンテレフタレート樹脂組成物を用いて成形された成形品に関する。
 この成形品は、例えば、上記ポリブチレンテレフタレート樹脂組成物からなる樹脂部のみを含んでもよく、例えば、後述するように、上記ポリブチレンテレフタレート樹脂組成物からなる樹脂部と、金属及び/又は無機固体からなるインサート部材とを含んでもよい。
 ポリブチレンテレフタレート樹脂組成物を用いて成形品を得る方法としては、特に限定はなく、公知の方法を採用することができる。例えば、ポリブチレンテレフタレート樹脂組成物を射出成形して成形品を得ることができる。このような方法としては、例えば、ポリブチレンテレフタレート樹脂組成物の成分を溶融混練して押出して作製したポリブチレンテレフタレート樹脂組成物のペレットを、所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。
 本実施形態の成形品は、上記のポリブチレンテレフタレート樹脂組成物を、金属及び/又は無機固体からなるインサート部材とともに射出成形して得られるインサート成形品とすることもできる。
 本実施形態の成形品は耐アルカリ性と耐ヒートショック性に優れているため、特にアルカリ溶液に接する部品として用いられる成形品(より好ましくは、インサート成形品)として好適に適用することができる。
 本発明の実施形態は、下記を含むが、本発明は下記の実施形態に限定されるものではない。
<1> ポリブチレンテレフタレート樹脂と、
 ポリブチレンテレフタレート樹脂組成物の全質量の0.5~1.8質量%の、25℃における動粘度が1000~10000cStであるシリコーン系化合物と、
 ポリブチレンテレフタレート樹脂組成物の全質量の5~20質量%のオレフィン系エラストマーとを含む、ポリブチレンテレフタレート樹脂組成物。
<2> 前記シリコーン系化合物が、ジメチルポリシロキサンを含む、<1>に記載のポリブチレンテレフタレート樹脂組成物。
<3> 前記オレフィン系エラストマーが、エチレンエチルアクリレート共重合体を含む、<1>又は<2>に記載のポリブチレンテレフタレート樹脂組成物。
<4> ポリブチレンテレフタレート樹脂組成物の全質量の10~50質量%の充填剤をさらに含む、<1>~<3>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物。
<5> 前記充填剤が、ガラス繊維を含む、<4>に記載のポリブチレンテレフタレート樹脂組成物。
<6> <1>~<5>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物を用いて成形された、成形品。
<7> 金属及び無機固体からなる群から選択される少なくとも1種からなるインサート部材を含むインサート成形品である、<6>に記載の成形品。
<8> アルカリ溶液に接する部品に用いられるものである、<6>又は<7>に記載の成形品。
 日本国特許出願第2016-177967号の開示はその全体が参照により本明細書に取り込まれる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 表1~4に示す成分を同表に示す割合(質量%)で混合した後、二軸押出機(日本製鋼所製TEX44αIIを用いて、シリンダー温度280℃で溶融混練して押出し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。使用した各成分の詳細を以下に示す。
(1)ポリブチレンテレフタレート樹脂(PBT樹脂)
・PBT樹脂1:ウィンテックポリマー(株)製 固有粘度(IV)=0.68dl/gのPBT樹脂
・PBT樹脂2:ウィンテックポリマー(株)製 固有粘度(IV)=0.78dl/gのPBT樹脂
・PBT樹脂3:ウィンテックポリマー(株)製 固有粘度(IV)=0.88dl/gのPBT樹脂
・PBT樹脂4:ウィンテックポリマー(株)製 固有粘度(IV)=1.14dl/gのPBT樹脂
・変性PBT樹脂:ウィンテックポリマー(株)製 固有粘度(IV)=0.90dl/gのイソフタル酸30mol%変性PBT樹脂
(2)シリコーン系化合物
・シリコーン系化合物1:25℃の動粘度5000cStのジメチルポリシロキサン
・シリコーン系化合物2:25℃の動粘度60000cStのジメチルポリシロキサン含有硬化シリコーンパウダー(シリコーンパウダー含有量:40質量%)
・シリコーン系化合物3:25℃の動粘度60000cStのジメチルポリシロキサン
・シリコーン系化合物4:25℃の動粘度1000cStのジメチルポリシロキサン
・シリコーン系化合物5:25℃の動粘度100cStのジメチルポリシロキサン
(3)エラストマー
・エラストマー1:EEA共重合体(エチレン含有量75質量%、融点91℃)
・エラストマー2:アクリル系コアシェルポリマー(ローム・アンド・ハース・ジャパン(株)製、パラロイドEXL2311)
(4)充填剤
・ガラス繊維(GF):日本電気硝子(株)製 ECS03T-127(平均繊維径13μm、平均繊維長3mm)
(5)その他
・耐加水分解性向上剤(エポキシ樹脂):三菱化学(株)製 エピコートJER1004K
・酸化防止剤:BASFジャパン(株)製 Irganox1010
・着色剤(カーボンブラック):コロンビヤンカーボン日本(株)製 Raven UVUltra
<評価>(1)耐アルカリ性
 得られたポリブチレンテレフタレート樹脂組成物のペレットを、140℃で3時間乾燥させた後、シリンダー温度250℃、金型温度70℃にて射出成形し、厚さ1mmt、一辺120mmの平板状で、ウエルド部を有する成形片を作製した。次にこの成形片を長手方向の略中央部がウエルド部となるよう、幅10mm、長さ100mmの短冊状に切削して試験片を準備した。この試験片をたわませた状態で治具に固定し、常時1.0%の曲げ歪みがウエルド部に加わるようにした。この状態のまま、治具ごと10質量%の水酸化ナトリウム水溶液中に浸漬し、周辺温度23℃にて静置し、特定時間ごとに、試験片にクラックが発生するか否かを観察した。評価は各実施例・比較例のペレットについて3個ずつの試験片を用いて行い、3個のうち少なくとも1つの試験片でクラックが発生するまでの時間を確認した。表1~4に、浸漬開始後12時間後、24時間後及び48時間後のそれぞれにおける評価結果を示す。Aは、3個の試験片のいずれにもクラックの発生がないことを意味し、Bは、3個のうち少なくとも1つの試験片にクラックの発生があることを意味する。
(2)耐ヒートショック性
 得られたポリブチレンテレフタレート樹脂組成物のペレットを、140℃で3時間乾燥させた後、シリンダー温度250℃、金型温度70℃、射出時間15秒、冷却時間10秒で、試験片成形用金型(縦22mm、横22mm、高さ28mmの角柱内部に、縦14mm、横14mm、高さ24mmの鉄芯をインサートする金型)に、一部の樹脂部の最小肉厚が1mmとなるようにインサート射出成形し、インサート成形品を製造した。製造したインサート成形品を図1、図2に示す。図1に示すインサート成形品10は、樹脂部12に鉄芯14がインサートされたインサート成形品を示す斜視図であり、図2は当該インサート成形品の(a)断面図((b)のA-A線に沿った断面図)、(b)上面図である。鉄芯10は、図2(a)に示すように、底面から24~26mmの部分が円柱となっている。また、図2(b)に示すように、鉄芯14の周囲にある樹脂部12の最小肉厚は1mmである。なお、樹脂を充填するピンゲートは、図2(a)において矢線で示す樹脂部底面の中央位置にある。得られたインサート成形品について、冷熱衝撃試験機を用いて、140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却し、さらに、140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定して、5個のサンプルの平均破壊寿命を耐ヒートショック性として評価した。結果を表1~4に示す。
(3)耐ブリード性
 上記の耐アルカリ性の評価と同様にして得た、水酸化ナトリウム水溶液に浸漬する前の幅10mm、長さ100mmの短冊状試験片について、東洋精機製作所社製ギアオーブンにて、140℃で20時間放置した試験片を目視にて観察し、シリコーン系化合物の染み出しを評価した。評価基準は、Aは染み出しなし、Bは僅かな染み出しあり、Cは顕著な染み出しあり、とした。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に示すように、実施例1~7のポリブチレンテレフタレート樹脂組成物では、耐アルカリ性と耐ヒートショック性に優れる成形品を得られることが分かる。また、比較例1と17、及び比較例2と19の対比の通り、シリコーン系化合物の動粘度が1000~10000cStの範囲外である場合、エラストマーを変更しても耐アルカリ性はほとんど変わらないにもかかわらず、特定動粘度が1000~10000cStの範囲内のシリコーン系化合物を用いる場合、実施例1と比較例7の対比の通り、オレフィン系エラストマーを用いる方が、耐アルカリ性を大幅に向上することができるという予期し得ない効果が得られる。なお、比較例8、9のように、シリコーン系化合物の添加量を多くした場合、オレフィン系エラストマーではないエラストマーを用いても、耐アルカリ性と耐ヒートショック性を向上することは可能であるものの、染み出しの問題により実使用に耐えられないものとなる。
 本発明の実施形態のポリブチレンテレフタレート樹脂組成物によれば、耐アルカリ性と耐ヒートショック性に優れた成形品を成形することができるため、電気・電子・自動車・一般雑貨等の広汎な分野、特にアルカリ溶液に接する用途に用いられるインサート成形品として好適に利用することができる。

Claims (8)

  1.  ポリブチレンテレフタレート樹脂と、
     ポリブチレンテレフタレート樹脂組成物の全質量の0.5~1.8質量%の、25℃における動粘度が1000~10000cStであるシリコーン系化合物と、
     ポリブチレンテレフタレート樹脂組成物の全質量の5~20質量%のオレフィン系エラストマーとを含む、ポリブチレンテレフタレート樹脂組成物。
  2.  前記シリコーン系化合物が、ジメチルポリシロキサンを含む、請求項1に記載のポリブチレンテレフタレート樹脂組成物。
  3.  前記オレフィン系エラストマーが、エチレンエチルアクリレート共重合体を含む、請求項1又は2に記載のポリブチレンテレフタレート樹脂組成物。
  4.  ポリブチレンテレフタレート樹脂組成物の全質量の10~50質量%の充填剤をさらに含む、請求項1~3のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物。
  5.  前記充填剤が、ガラス繊維を含む、請求項4に記載のポリブチレンテレフタレート樹脂組成物。
  6.  請求項1~5のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物を用いて成形された、成形品。
  7.  金属及び無機固体からなる群から選択される少なくとも1種からなるインサート部材を含むインサート成形品である、請求項6に記載の成形品。
  8.  アルカリ溶液に接する部品に用いられるものである、請求項6又は7に記載の成形品。
PCT/JP2017/030798 2016-09-12 2017-08-28 ポリブチレンテレフタレート樹脂組成物および成形品 WO2018047662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/331,389 US11214680B2 (en) 2016-09-12 2017-08-28 Polybutylene terephthalate resin composition and molded article
JP2018538361A JP6578446B2 (ja) 2016-09-12 2017-08-28 ポリブチレンテレフタレート樹脂組成物および成形品
CN201780055719.7A CN109689782B (zh) 2016-09-12 2017-08-28 聚对苯二甲酸丁二醇酯树脂组合物以及成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177967 2016-09-12
JP2016-177967 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047662A1 true WO2018047662A1 (ja) 2018-03-15

Family

ID=61562813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030798 WO2018047662A1 (ja) 2016-09-12 2017-08-28 ポリブチレンテレフタレート樹脂組成物および成形品

Country Status (4)

Country Link
US (1) US11214680B2 (ja)
JP (1) JP6578446B2 (ja)
CN (1) CN109689782B (ja)
WO (1) WO2018047662A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022208A1 (ja) * 2018-07-23 2020-01-30 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物
WO2020203436A1 (ja) * 2019-04-01 2020-10-08 ポリプラスチックス株式会社 熱可塑性樹脂の耐アルカリ溶液性向上方法
JP2021001295A (ja) * 2019-06-24 2021-01-07 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、二色成形体
CN112513181A (zh) * 2018-08-09 2021-03-16 东丽株式会社 热塑性聚酯树脂组合物及其成型品
CN113165236A (zh) * 2018-12-07 2021-07-23 宝理塑料株式会社 聚对苯二甲酸丁二醇酯树脂组合物和双重成型品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025790B (zh) * 2010-06-10 2014-12-03 胜技高分子株式会社 粘接力改善用改性聚对苯二甲酸烷二醇酯树脂、粘接力改善用改性聚对苯二甲酸烷二醇酯树脂组合物、树脂成形体、接合体
CN114514288B (zh) * 2019-10-11 2024-04-09 Sabic环球技术有限责任公司 包含聚酯和聚烯烃的组合物
CN114555704A (zh) * 2019-10-16 2022-05-27 巴斯夫欧洲公司 聚对苯二甲酸丁二醇酯组合物及其制品
CN112920557A (zh) * 2020-12-04 2021-06-08 张家港大塚化学有限公司 一种按键用高强度低摩擦系数复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078867A1 (fr) * 1999-06-23 2000-12-28 Polyplastics Co., Ltd. Composition a base de resine thermoplastique de polyester
JP2002356611A (ja) * 2001-03-28 2002-12-13 Toray Ind Inc ポリエステル系樹脂組成物およびその成形品
JP2005133087A (ja) * 2003-10-07 2005-05-26 Wintech Polymer Ltd レーザ溶着用樹脂組成物及び成形品
WO2006090751A1 (ja) * 2005-02-23 2006-08-31 Polyplastics Co., Ltd. 難燃性樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029154A1 (ja) * 2002-09-25 2004-04-08 Toray Industries, Inc. 難燃性ポリブチレンテレフタレート樹脂組成物および成形品
CN101139438A (zh) 2006-09-08 2008-03-12 东丽纤维研究所(中国)有限公司 耐碱性热塑性树脂组合物
CN103834147A (zh) * 2012-11-23 2014-06-04 东丽纤维研究所(中国)有限公司 一种耐碱性树脂组合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078867A1 (fr) * 1999-06-23 2000-12-28 Polyplastics Co., Ltd. Composition a base de resine thermoplastique de polyester
JP2002356611A (ja) * 2001-03-28 2002-12-13 Toray Ind Inc ポリエステル系樹脂組成物およびその成形品
JP2005133087A (ja) * 2003-10-07 2005-05-26 Wintech Polymer Ltd レーザ溶着用樹脂組成物及び成形品
WO2006090751A1 (ja) * 2005-02-23 2006-08-31 Polyplastics Co., Ltd. 難燃性樹脂組成物

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12098273B2 (en) 2018-07-23 2024-09-24 Mitsubishi Chemical Corporation Polybutylene terephthalate resin composition
WO2020022208A1 (ja) * 2018-07-23 2020-01-30 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物
JPWO2020032083A1 (ja) * 2018-08-09 2021-08-10 東レ株式会社 熱可塑性ポリエステル樹脂組成物およびその成形品
JP7338470B2 (ja) 2018-08-09 2023-09-05 東レ株式会社 熱可塑性ポリエステル樹脂組成物およびその成形品
CN112513181A (zh) * 2018-08-09 2021-03-16 东丽株式会社 热塑性聚酯树脂组合物及其成型品
EP3835359A4 (en) * 2018-08-09 2022-03-16 Toray Industries, Inc. POLYESTER THERMOPLASTIC RESIN COMPOSITION AND MOLDED ARTICLES THEREOF
CN113165236B (zh) * 2018-12-07 2023-02-28 宝理塑料株式会社 聚对苯二甲酸丁二醇酯树脂组合物和双重成型品
CN113165236A (zh) * 2018-12-07 2021-07-23 宝理塑料株式会社 聚对苯二甲酸丁二醇酯树脂组合物和双重成型品
CN113728054A (zh) * 2019-04-01 2021-11-30 宝理塑料株式会社 热塑性树脂的耐碱溶液性改善方法
JP6831946B1 (ja) * 2019-04-01 2021-02-17 ポリプラスチックス株式会社 熱可塑性樹脂の耐アルカリ溶液性向上方法
WO2020203436A1 (ja) * 2019-04-01 2020-10-08 ポリプラスチックス株式会社 熱可塑性樹脂の耐アルカリ溶液性向上方法
JP2021001295A (ja) * 2019-06-24 2021-01-07 三菱エンジニアリングプラスチックス株式会社 ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、二色成形体
JP7439400B2 (ja) 2019-06-24 2024-02-28 三菱ケミカル株式会社 ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、二色成形体

Also Published As

Publication number Publication date
US20190249003A1 (en) 2019-08-15
JPWO2018047662A1 (ja) 2019-06-24
JP6578446B2 (ja) 2019-09-18
US11214680B2 (en) 2022-01-04
CN109689782B (zh) 2022-01-18
CN109689782A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6578446B2 (ja) ポリブチレンテレフタレート樹脂組成物および成形品
TWI549985B (zh) Polybutylene terephthalate resin composition
WO2009150831A1 (ja) ポリブチレンテレフタレート樹脂組成物及び成形品
US20140058015A1 (en) Insert molded article
JP6100983B1 (ja) ポリブチレンテレフタレート樹脂組成物
JP2008523216A (ja) 耐加水分解性ポリエステル組成物および該組成物から製造された物品
JP5005204B2 (ja) 電子部品を収容するケース、カバー又はハウジング成形品
KR20130074607A (ko) 바이오 플라스틱 조성물
JP6325457B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP6302072B2 (ja) ポリブチレンテレフタレート樹脂組成物の成形に用いる離型性向上剤、及び離型性向上方法
JP7446090B2 (ja) ポリブチレンテレフタレート樹脂組成物の耐トラッキング性向上方法
WO2023027069A1 (ja) ポリブチレンテレフタレート樹脂組成物および成形品
JP2022070452A (ja) ポリブチレンテレフタレート樹脂組成物、ポリブチレンテレフタレート樹脂組成物からなる成形品、ポリブチレンテレフタレート樹脂組成物の粘度上昇抑制剤、ポリブチレンテレフタレート樹脂組成物からなる成形品の加水分解抑制剤
JP6836695B2 (ja) ポリブチレンテレフタレート樹脂組成物および二重成形品
JPWO2019235505A1 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JP2023093180A (ja) ポリブチレンテレフタレート樹脂組成物及び成形品
JP7081123B2 (ja) ポリエステルエラストマーを溶着する成形体用ポリブチレンテレフタレート樹脂組成物および複合成形体
JP5773999B2 (ja) 接着力改善用樹脂組成物、樹脂成形体、接合体及び接着力改善剤
JP2024143339A (ja) ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに樹脂成形品
JP6097096B2 (ja) ポリブチレンテレフタレート樹脂組成物の製造方法
JP6159652B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2022057306A (ja) 結晶性熱可塑性樹脂の耐アルカリ溶液性向上方法
JPWO2020067564A1 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
JP2005281486A (ja) 樹脂組成物
JPH06345945A (ja) ポリエチレンテレフタレート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848603

Country of ref document: EP

Kind code of ref document: A1