WO2018045672A1 - 在滤料上原位生成纳米花状二氧化锰催化剂的方法 - Google Patents

在滤料上原位生成纳米花状二氧化锰催化剂的方法 Download PDF

Info

Publication number
WO2018045672A1
WO2018045672A1 PCT/CN2016/111417 CN2016111417W WO2018045672A1 WO 2018045672 A1 WO2018045672 A1 WO 2018045672A1 CN 2016111417 W CN2016111417 W CN 2016111417W WO 2018045672 A1 WO2018045672 A1 WO 2018045672A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter material
manganese dioxide
potassium permanganate
situ
sodium lauryl
Prior art date
Application number
PCT/CN2016/111417
Other languages
English (en)
French (fr)
Inventor
郑玉婴
陈健
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/322,133 priority Critical patent/US11565241B2/en
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2018045672A1 publication Critical patent/WO2018045672A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3225Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating involving a post-treatment of the coated or impregnated product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • B01J35/23
    • B01J35/30
    • B01J35/50
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters

Definitions

  • the invention belongs to the technical field of functional filter materials, and in particular relates to a method for generating a nano flower-like manganese dioxide catalyst in situ on a filter material.
  • China is in the stage of rapid economic development, and the demand for energy is very large, especially the demand for electricity is increasing.
  • China's coal-themed energy structure determines that China's electricity is mainly based on thermal power generation, and most of the power plants are coal-fired power plants.
  • Coal-fired power plants in addition to the guarantee rapid economic development, the president of the students a lot of pollutants such as dust, sulfur dioxide and NO x toxic gases.
  • the industry mainly uses filter bag dust collector to control a large amount of dust and trace particles generated by coal-fired power station boilers, the core of which is filter material.
  • PPS filter material polyphenylene sulfide filter material
  • the layer is chelated with divalent manganese ions, and potassium permanganate is used as an oxidant to form a denitration catalyst in situ on the surface of the polydopamine-coated filter fiber to prepare a composite filter material having denitration function.
  • the disadvantage is that the surface of the filter material is modified by dopamine, and the uniformly coated polydopamine layer affects the gas permeability of the filter material, thereby affecting the dust removal function; and the preparation process is complicated.
  • the denitration catalyst is directly attached to the filter fiber, there is a disadvantage that the catalyst load is uneven, the gas permeability is poor, the low temperature activity is poor, and the binding force between the catalyst and the filter fiber is weak. Therefore, it is very important to study a composite filter material capable of uniformly and firmly supporting a denitration catalyst and having excellent low-temperature activity.
  • the filter material obtained by the invention has excellent low-temperature activity, and can achieve a conversion rate of more than 97% at 160 ° C, and the composite filter material has excellent bonding strength, gas permeability and catalytic stability.
  • a method for in situ formation of a nano flower-like manganese dioxide catalyst on a filter material immersing the filter material in a solution containing sodium lauryl sulfate and nitric acid, firstly using sodium lauryl sulfate to the surface of the filter material Modification, the surface is wound with a layer of charge, fully adsorbing H + in the solution; then potassium permanganate is added to the solution to make the potassium permanganate react with the H + on the surface of the filter material.
  • the nanoflower-like manganese dioxide is formed to produce a composite filter material having a denitration function.
  • the solution containing sodium lauryl sulfate and nitric acid has a concentration of sodium dodecyl sulfate of 0.1 - 2 g / L and a concentration of nitric acid of 0.01 - 0.2 M.
  • the filter material is a polyphenylene sulfide needle felt filter material.
  • step 2) After the reaction system of step 1) is heated to 60-80 ° C, potassium permanganate is added, and the reaction is further stirred for 0.5-2 h to react the potassium permanganate with the H + surface of the filter material to form nano-flowers in situ.
  • the filter material obtained in the step 2) is rinsed with deionized water and ethanol, and dried in a vacuum oven at 110 ° C for 6 hours to obtain a composite filter material having a denitration function.
  • the concentration of potassium permanganate in the reaction system in step 2) is 0.01 to 0.2M.
  • the nano-flower-shaped manganese dioxide catalyst formed on the filter material in situ is prepared by the following chemical equation:
  • a prepared as described above denitration functional composite can be used for the simultaneous removal of PM2.5 filter and NO x, and excellent in denitration rate, 160 °C conversion can reach 97% or more.
  • the invention utilizes sodium lauryl sulfate to modify the surface of the filter material, does not affect the surface of the filter material, and does not affect the gas permeability (see Figure 1); the surface of the filter fiber is uniformly coated.
  • a layer of nano-flower-shaped manganese dioxide, and the morphology of manganese dioxide has a larger specific surface area and higher pore volume than ordinary manganese dioxide, and is more conducive to the diffusion of reactive gases, which
  • the catalytic filter material has excellent low-temperature activity, and can achieve a conversion rate of more than 97% at 160 ° C, and the composite filter material has excellent bonding strength, gas permeability and catalytic stability;
  • the preparation method of the invention is simple and environmentally friendly; the reagents used in the experiment are cheap and easy to obtain, and the experiment process is easy to operate, and the reaction process only takes 2 to 3 hours, so it is suitable for large-scale experimental production.
  • Figure 1 is an SEM image of the original polyphenylene sulfide needle felt filter material (A, B) and the denitration function polyphenylene sulfide composite filter material (C, D);
  • FIG. 2 TEM image of original polyphenylene sulfide needle felt filter material (A) and denitrification function polyphenylene sulfide composite filter material (B, C), and EDX diagram of denitration function polyphenylene sulfide composite filter material (D) ;
  • Fig. 4 is a diagram showing the NO conversion rate of the denitration function polyphenylene sulfide composite filter at 160 ° C;
  • Figure 5 shows the bonding strength of the denitration function polyphenylene sulfide composite filter
  • Fig. 6 The gas permeability of the original polyphenylene sulfide needle felt filter material and the denitration function polyphenylene sulfide composite filter material.
  • a method for in situ formation of a nanoflower-like manganese dioxide catalyst on a filter material comprising the steps of:
  • step b) immersing a circular polyphenylene sulfide filter material having a diameter of 3.8 cm into the suspension solution of step a), ultrasonically dispersing in an ultrasonic cleaner for 1 h, so that sodium lauryl sulfate is sufficiently adsorbed on the surface of the filter material;
  • the filter material obtained in the step c) is rinsed with deionized water and ethanol, and dried in a vacuum oven at 110 ° C for 6 hours to obtain a composite filter material having a denitration function.
  • a method for in situ formation of a nanoflower-like manganese dioxide catalyst on a filter material comprising the steps of:
  • step b) immersing a circular polyphenylene sulfide filter material having a diameter of 3.8 cm into the suspension solution of step a), ultrasonically dispersing in an ultrasonic cleaner for 1 h, so that sodium lauryl sulfate is sufficiently adsorbed on the surface of the filter material;
  • step d) The filter material obtained in step c) is rinsed with deionized water and ethanol, and dried in a vacuum oven at 110 ° C for 6 h. A composite filter material having a denitration function is obtained.
  • a method for in situ formation of a nanoflower-like manganese dioxide catalyst on a filter material comprising the steps of:
  • step b) immersing a circular polyphenylene sulfide filter material having a diameter of 3.8 cm into the suspension solution of step a), ultrasonically dispersing in an ultrasonic cleaner for 1 h, so that sodium lauryl sulfate is sufficiently adsorbed on the surface of the filter material;
  • the filter material obtained in the step c) is rinsed with deionized water and ethanol, and dried in a vacuum oven at 110 ° C for 6 hours to obtain a composite filter material having a denitration function.
  • a method for in situ formation of a nanoflower-like manganese dioxide catalyst on a filter material comprising the steps of:
  • step b) immersing a circular polyphenylene sulfide filter material having a diameter of 3.8 cm into the suspension solution of step a), ultrasonically dispersing in an ultrasonic cleaner for 1 h, so that sodium lauryl sulfate is sufficiently adsorbed on the surface of the filter material;
  • the filter material obtained in the step c) is rinsed with deionized water and ethanol, and dried in a vacuum oven at 110 ° C for 6 hours to obtain a composite filter material having a denitration function.

Abstract

一种在滤料上原位生成纳米花状二氧化锰催化剂的方法及由其制备的滤料。方法包括将滤料浸入含有十二烷基硫酸钠和硝酸的溶液中,利用十二烷基硫酸钠对滤料的表面进行改性,使其表面缠绕一层荷电层,然后加入高锰酸钾作为氧化剂,使高锰酸钾与滤料表面的H +反应,在滤料的表面原位生成纳米花状二氧化锰,从而制得具有脱硝功能的复合滤料。

Description

在滤料上原位生成纳米花状二氧化锰催化剂的方法 技术领域
本发明属于功能滤料技术领域,尤其涉及一种在滤料上原位生成纳米花状二氧化锰催化剂的方法。
背景技术
我国正处于经济高速发展阶段,能源需求量很大,尤其是对电力的需求更是有增无减。而我国以煤炭为主题的能源结构,决定了我国电力以火力发电为主,电厂大部分为燃煤电厂。燃煤电厂除了保障经济快速发展以外,会长生大量的污染物,如粉尘、二氧化硫及NOx有毒气体等。目前,工业上主要采用滤袋除尘器控制燃煤电站锅炉产生的大量粉尘和微量颗粒物,其核心是滤料。其中,聚苯硫醚滤料(PPS滤料)因其具有稳定的化学结构、耐酸碱腐蚀性、耐水解性及尺寸稳定性等优点,成为燃煤电厂滤袋上的首选材料。
但是,滤袋除尘器对工业尾气中的氮氧化物的排放,还没有有效的控制方法。因此,研究一种能够同时具备除尘和脱硝功能的复合功能滤料,已经成为众多研究人员关注的热点。公开号为CN 103949115 A的中国专利申请公开了一种在滤料上原位生成脱硝催化剂的方法,首先利用多巴胺的氧化自聚合反应在滤料表面均匀包覆一层聚多巴胺,然后利用聚多巴胺层与二价锰离子的螯合作用,以高锰酸钾作为氧化剂,在聚多巴胺包覆的滤料纤维表面原位生成脱硝催化剂,从而制得具有脱硝功能的复合滤料。然而其缺点在于利用多巴胺对滤料表面进行改性,均匀包覆的聚多巴胺层会影响滤料的透气性,从而影响其除尘功能;并且制备过程复杂。
而如果将脱硝催化剂直接附着在滤料纤维上,则存在催化剂负载不均匀,透气性差,低温活性较差,且催化剂与滤料纤维间的结合力很弱等缺点。因此,研究一种能够均匀且牢固地负载脱硝催化剂,并具有优异低温活性的复合滤料具有非常重要的意义。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种在滤料上原位生成纳米花状二氧化锰催化剂的方法。本发明所得的滤料低温活性十分优异,160℃可达到97%以上的转化率,且该复合滤料的结合强度、透气性能及催化稳定性能均十分优异。
为实现上述发明目的,本发明采用如下技术方案:
一种在滤料上原位生成纳米花状二氧化锰催化剂的方法:将滤料浸入含有十二烷基硫酸钠和硝酸的溶液中,首先利用十二烷基硫酸钠对滤料的表面进行改性,使其表面缠绕一层荷电 层,充分吸附溶液中的H+;然后往溶液中加入高锰酸钾,使高锰酸钾与滤料表面的H+反应,在滤料表面原位生成纳米花状二氧化锰,从而制得具有脱硝功能的复合滤料。
所述的含有十二烷基硫酸钠和硝酸的溶液,十二烷基硫酸钠的浓度为0.1–2g/L,硝酸的浓度为0.01~0.2M。
所述的滤料为聚苯硫醚针刺毡滤料。
所述的在滤料上原位生成纳米花状二氧化锰催化剂的方法,具体制备步骤为:
1)将滤料浸入含有十二烷基硫酸钠和硝酸的溶液中,超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
2)将步骤1)的反应体系升温至60~80℃后,加入高锰酸钾,继续搅拌反应0.5–2h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
3)将步骤2)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h,得到具有脱硝功能的复合滤料。
步骤2)中反应体系中高锰酸钾的浓度为0.01~0.2M。
滤料上原位生成纳米花状二氧化锰催化剂,是由以下化学方程式制得:
4MnO4 +4H+→4MnO2+3O2+2H2O。
一种如上述方法制得的脱硝功能复合滤料可用于同时脱除PM2.5和NOx,并且具有优异的脱硝率,160℃可达到97%以上的转化率。
与现有技术相比,本发明的有益效果在于:
1、本发明利用十二烷基硫酸钠对滤料表面进行改性,并未对滤料表面造成影响,也不会影响其透气性(见图1);由于滤料纤维表面均匀地包覆了一层纳米花状二氧化锰,而该形貌的二氧化锰与普通的二氧化锰相比,具有更大的比表面积和更高的孔容,且更有利于反应气体的扩散,这就使得催化过滤滤料低温活性十分优异,160℃可达到97%以上的转化率,且该复合滤料的结合强度、透气性能及催化稳定性能均十分优异;
2、本发明的制备方法简单,对环境友好;实验所用试剂廉价易得,且实验过程容易操作,反应过程只需2~3h,因此适合大规模实验生产。
附图说明
图1原始聚苯硫醚针刺毡滤料(A,B)与脱硝功能聚苯硫醚复合滤料(C,D)的SEM图;
图2原始聚苯硫醚针刺毡滤料(A)与脱硝功能聚苯硫醚复合滤料(B,C)的TEM图,及脱硝功能聚苯硫醚复合滤料的EDX图(D);
图3脱硝功能聚苯硫醚复合滤料纤维表面元素成分分析;
图4脱硝功能聚苯硫醚复合滤料在160℃时的NO转化率图;
图5脱硝功能聚苯硫醚复合滤料的结合强度;
图6原始聚苯硫醚针刺毡滤料和脱硝功能聚苯硫醚复合滤料的透气性能。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。下面结合附图及具体实施例对本发明的应用原理作进一步描述。
实施例1
一种在滤料上原位生成纳米花状二氧化锰催化剂的方法,包括以下步骤:
a)将0.042g十二烷基硫酸钠固体颗粒和微量浓硝酸加入到去离子水中搅拌溶解,配置成浓度为0.84g/L的十二烷基硫酸钠溶液,控制硝酸浓度为0.05M;
b)将直径为3.8cm的圆形聚苯硫醚滤料浸入步骤a)的悬浮溶液中,在超声波清洗器进行超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
c)将反应体系升温至70℃,滴加高锰酸钾溶液,高锰酸钾浓度为0.05M,继续搅拌反应1.5h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
d)将步骤c)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h,得到具有脱硝功能的复合滤料。
该复合滤料的脱硝性能在自制管式SCR反应器中进行评价。测试条件:[NO]=[NH3]=400ppm,[O2]=5%,N2为平衡气,气体流速为700mL·min-1,温度设置为160℃,用英国KM940烟气分析仪测得脱硝效率为97%。
实施例2
一种在滤料上原位生成纳米花状二氧化锰催化剂的方法,包括以下步骤:
a)将0.024g十二烷基硫酸钠固体颗粒和微量浓硝酸加入到去离子水中搅拌溶解,配置成浓度为0.48g/L的十二烷基硫酸钠溶液,控制硝酸浓度为0.1M;
b)将直径为3.8cm的圆形聚苯硫醚滤料浸入步骤a)的悬浮溶液中,在超声波清洗器进行超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
c)将反应体系升温至80℃,滴加高锰酸钾溶液,高锰酸钾浓度为0.1M,继续搅拌反应2h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
d)将步骤c)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h, 得到具有脱硝功能的复合滤料。
该复合滤料的脱硝性能在自制管式SCR反应器中进行评价。测试条件:[NO]=[NH3]=400ppm,[O2]=5%,N2为平衡气,气体流速为700mL·min-1,温度设置为160℃,用英国KM940烟气分析仪测得脱硝效率为100%。
实施例3
一种在滤料上原位生成纳米花状二氧化锰催化剂的方法,包括以下步骤:
a)将0.042g十二烷基硫酸钠固体颗粒和微量浓硝酸加入到去离子水中搅拌溶解,配置成浓度为0.84g/L的十二烷基硫酸钠溶液,控制硝酸浓度为0.02M;
b)将直径为3.8cm的圆形聚苯硫醚滤料浸入步骤a)的悬浮溶液中,在超声波清洗器进行超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
c)将反应体系升温至65℃,滴加高锰酸钾溶液,高锰酸钾浓度为0.02M,继续搅拌反应1.5h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
d)将步骤c)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h,得到具有脱硝功能的复合滤料。
该复合滤料的脱硝性能在自制管式SCR反应器中进行评价。测试条件:[NO]=[NH3]=400ppm,[O2]=5%,N2为平衡气,气体流速为700mL·min-1,温度设置为160℃,用英国KM940烟气分析仪测得脱硝效率为95%。
实施例4
一种在滤料上原位生成纳米花状二氧化锰催化剂的方法,包括以下步骤:
a)将0.042g十二烷基硫酸钠固体颗粒和微量浓硝酸加入到去离子水中搅拌溶解,配置成浓度为0.84g/L的十二烷基硫酸钠溶液,控制硝酸浓度为0.05M;
b)将直径为3.8cm的圆形聚苯硫醚滤料浸入步骤a)的悬浮溶液中,在超声波清洗器进行超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
c)将反应体系升温至65℃,滴加高锰酸钾溶液,高锰酸钾浓度为0.05M,继续搅拌反应2.5h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
d)将步骤c)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h,得到具有脱硝功能的复合滤料。
该复合滤料的脱硝性能在自制管式SCR反应器中进行评价。测试条件:[NO]=[NH3]=400ppm,[O2]=5%,N2为平衡气,气体流速为700mL·min-1,温度设置为160℃,用英国KM940烟气分析仪测得脱硝效率为96%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种在滤料上原位生成纳米花状二氧化锰催化剂的方法,其特征在于:将滤料浸入含有十二烷基硫酸钠和硝酸的溶液中,首先利用十二烷基硫酸钠对滤料的表面进行改性,使其表面缠绕一层荷电层,充分吸附溶液中的H+;然后往溶液中加入高锰酸钾,使高锰酸钾与滤料表面的H+反应,在滤料表面原位生成纳米花状二氧化锰,从而制得具有脱硝功能的复合滤料。
  2. 根据权利要求1所述的在滤料上原位生成纳米花状二氧化锰催化剂的方法,其特征在于:所述的含有十二烷基硫酸钠和硝酸的溶液,十二烷基硫酸钠的浓度为0.1–2g/L,硝酸的浓度为0.01~0.2M。
  3. 根据权利要求1所述的在滤料上原位生成纳米花状二氧化锰催化剂的方法,其特征在于:所述的滤料为聚苯硫醚针刺毡滤料。
  4. 根据权利要求1所述的在滤料上原位生成纳米花状二氧化锰催化剂的方法,其特征在于:具体制备步骤为:
    1)将滤料浸入含有十二烷基硫酸钠和硝酸的溶液中,超声分散1h,使十二烷基硫酸钠充分吸附在滤料表面;
    2)将步骤1)的反应体系升温至60~80℃后,加入高锰酸钾,继续搅拌反应0.5–2h,使高锰酸钾与滤料表面的H+反应原位生成纳米花状二氧化锰;
    3)将步骤2)获得的滤料用去离子水和乙醇冲洗干净,放入110℃真空干燥箱中干燥6h,得到具有脱硝功能的复合滤料。
  5. 根据权利要求4所述的在滤料上原位生成纳米花状二氧化锰催化剂的方法,其特征在于:步骤2)中反应体系中高锰酸钾的浓度为0.01~0.2M。
  6. 根据权利要求1-5任一项所述的方法制得的滤料,其特征在于:可用于同时脱除PM2.5和NOx
PCT/CN2016/111417 2016-09-12 2016-12-22 在滤料上原位生成纳米花状二氧化锰催化剂的方法 WO2018045672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,133 US11565241B2 (en) 2016-09-12 2016-09-12 Method for in-situ generation of nanoflower-like manganese dioxide catalyst on filter material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610814875.4A CN106215522B (zh) 2016-09-12 2016-09-12 在滤料上原位生成纳米花状二氧化锰催化剂的方法
CN2016108148754 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018045672A1 true WO2018045672A1 (zh) 2018-03-15

Family

ID=58074778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111417 WO2018045672A1 (zh) 2016-09-12 2016-12-22 在滤料上原位生成纳米花状二氧化锰催化剂的方法

Country Status (3)

Country Link
US (1) US11565241B2 (zh)
CN (1) CN106215522B (zh)
WO (1) WO2018045672A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013666A (zh) * 2019-11-14 2020-04-17 江西新科环保股份有限公司 一种scr脱硝催化剂的制备方法
CN114229903A (zh) * 2021-11-23 2022-03-25 湖北大学 一种MnO2电极材料及其制备方法和应用
CN114570445A (zh) * 2022-03-03 2022-06-03 广州大学 一种用于合成二氧化锰纳米花的微流控芯片及其应用方法
CN114573033A (zh) * 2022-03-25 2022-06-03 南京信息工程大学 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565241B2 (en) 2016-09-12 2023-01-31 Fuzhou University Method for in-situ generation of nanoflower-like manganese dioxide catalyst on filter material
CN106512552B (zh) * 2016-12-23 2019-01-22 福州大学 原位负载三元脱硝抗硫催化剂的复合滤料及其制备方法
CN106847525A (zh) * 2016-12-23 2017-06-13 宁波中车新能源科技有限公司 一种水系非对称MnO2/FeWO4超级电容器及其制备方法
CN109091968A (zh) * 2018-09-13 2018-12-28 东南大学 一种利用原有设备生产多功能pps滤袋的方法
CN109224635A (zh) * 2018-10-12 2019-01-18 东南大学 一种复合低温脱硝和脱汞功能的pps滤料及其制备方法
CN111359673A (zh) * 2020-03-26 2020-07-03 安徽元琛环保科技股份有限公司 MnO2/PPS复合材料及其制备方法、应用
CN112619411B (zh) * 2020-12-14 2023-08-25 山东飞薄新材料科技有限公司 一种以纤维束为基材的空气净化材料的制备方法及应用
CN112755997B (zh) * 2021-01-29 2022-01-18 福州大学 一种负载Mn/Fe-MOF的聚苯硫醚脱硝抗硫滤料及其制备方法
CN113000064A (zh) * 2021-03-05 2021-06-22 南京工业大学 一种用于低温脱硝的催化膜的制备方法
CN113145110B (zh) * 2021-05-08 2023-03-17 贵州省材料产业技术研究院 硅溶胶改性臭氧催化氧化材料及制备方法
CN113171796B (zh) * 2021-05-08 2023-03-17 贵州省材料产业技术研究院 钛溶胶改性臭氧催化氧化材料及制备方法
CN114377482A (zh) * 2021-12-01 2022-04-22 上海市凌桥环保设备厂有限公司 一种催化滤袋材料的生产工艺及催化滤袋材料
CN115709975B (zh) * 2022-11-28 2024-04-30 中国机械总院集团武汉材料保护研究所有限公司 一种三水合磷酸锰纳米花及生物质定向诱导合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120116A (zh) * 2011-02-24 2011-07-13 福州大学 一种负载脱硝催化剂的复合型滤料及其制备方法
CN103949115A (zh) * 2014-05-22 2014-07-30 福州大学 一种在滤料上原位生成脱硝催化剂的方法
CN105521659A (zh) * 2016-03-11 2016-04-27 安徽省元琛环保科技有限公司 一种具有中低温scr脱硝活性的改性滤料及其制备方法
CN106215522A (zh) * 2016-09-12 2016-12-14 福州大学 在滤料上原位生成纳米花状二氧化锰催化剂的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339629A (ja) * 1993-06-01 1994-12-13 Kondo Kogyo Kk 空気浄化剤および空気浄化用フィルター
CN103212245B (zh) * 2013-04-25 2014-11-05 福州大学 一种含有MnO2催化剂的除尘滤料及其制备方法和应用
CN103943375B (zh) * 2014-05-09 2016-10-05 福州大学 一种夹层状二氧化锰/聚苯胺复合材料及其制备方法
CN104876455B (zh) * 2015-05-15 2017-04-19 济南大学 一种二氧化锰修饰的玻璃纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120116A (zh) * 2011-02-24 2011-07-13 福州大学 一种负载脱硝催化剂的复合型滤料及其制备方法
CN103949115A (zh) * 2014-05-22 2014-07-30 福州大学 一种在滤料上原位生成脱硝催化剂的方法
CN105521659A (zh) * 2016-03-11 2016-04-27 安徽省元琛环保科技有限公司 一种具有中低温scr脱硝活性的改性滤料及其制备方法
CN106215522A (zh) * 2016-09-12 2016-12-14 福州大学 在滤料上原位生成纳米花状二氧化锰催化剂的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111013666A (zh) * 2019-11-14 2020-04-17 江西新科环保股份有限公司 一种scr脱硝催化剂的制备方法
CN114229903A (zh) * 2021-11-23 2022-03-25 湖北大学 一种MnO2电极材料及其制备方法和应用
CN114229903B (zh) * 2021-11-23 2023-10-31 湖北大学 一种MnO2电极材料及其制备方法和应用
CN114570445A (zh) * 2022-03-03 2022-06-03 广州大学 一种用于合成二氧化锰纳米花的微流控芯片及其应用方法
CN114573033A (zh) * 2022-03-25 2022-06-03 南京信息工程大学 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池
CN114573033B (zh) * 2022-03-25 2023-04-28 南京信息工程大学 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池

Also Published As

Publication number Publication date
US11565241B2 (en) 2023-01-31
CN106215522B (zh) 2018-04-13
US20200179906A1 (en) 2020-06-11
CN106215522A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018045672A1 (zh) 在滤料上原位生成纳米花状二氧化锰催化剂的方法
CN106512552A (zh) 原位负载三元脱硝抗硫催化剂的复合滤料及其制备方法
CN109904369B (zh) 用于锂硫电池的异质结纳米材料隔膜及其制备方法
CN104174415B (zh) 一种Bi2O3/BiOX纳米异质结构空心球及其制备方法
CN107362807A (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
CN103715436A (zh) 一种二氧化碳电化学还原催化剂及其制备和应用
KR101823069B1 (ko) 구형의 실리카 표면에 나노선 형태로 음각화되어 있는 이산화탄소 건식흡착제용 담체 및 이의 제조방법
CN107261831A (zh) 原位负载脱硝抗硫催化剂的复合滤料及其制备方法
CN107268024A (zh) 四氧化三钴复合α型氧化铁蠕虫状纳米结构阵列光阳极及其制备方法和应用
CN109665525A (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
CN103165912A (zh) 一种用于锂空气电池阴极的催化剂及制备方法
CN110327905A (zh) 一种聚苯胺碳纳米管基含氮多孔碳纳米复合材料制备方法
CN104419840B (zh) 反负载型纳米多孔金/金属氧化物复合材料及其制备方法
CN113862715A (zh) 一种多价态铜纳米材料、其制备方法及其作为电催化剂在碳捕获技术中的应用
CN102078796B (zh) 一种二氧化碳固体吸收剂及其制备方法
CN107159182A (zh) 一种中空微球scr脱硝催化剂的制备方法
CN111957328A (zh) 一种催化剂模块、制备方法及应用
CN107376916B (zh) 一种C-Co复合纳米材料及其制备方法和应用
CN107158900B (zh) 一种固体碳材料及以此为还原剂电化学脱硝的方法
CN106925034A (zh) 一种脱硝功能聚苯硫醚复合滤料的制备方法
CN108262049B (zh) 一种改性低温sco脱硝催化剂及其制备方法
CN110586118A (zh) 一种选择性催化还原脱硝的磁性铁基催化剂及其制备方法
CN107890706A (zh) 一种负载中空结构脱硝抗硫催化剂的复合滤料及其制备方法
KR20230170740A (ko) 여과재와 그 제조 방법 및 응용
CN106513007A (zh) 一种多孔分级片状复合氧化物整体式脱硝催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915606

Country of ref document: EP

Kind code of ref document: A1