WO2018043104A1 - ホイールローダおよびホイールローダの制御方法 - Google Patents

ホイールローダおよびホイールローダの制御方法 Download PDF

Info

Publication number
WO2018043104A1
WO2018043104A1 PCT/JP2017/029271 JP2017029271W WO2018043104A1 WO 2018043104 A1 WO2018043104 A1 WO 2018043104A1 JP 2017029271 W JP2017029271 W JP 2017029271W WO 2018043104 A1 WO2018043104 A1 WO 2018043104A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel loader
boom
sensor
controller
bucket
Prior art date
Application number
PCT/JP2017/029271
Other languages
English (en)
French (fr)
Inventor
亨 内藤
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN201780016921.9A priority Critical patent/CN108779628B/zh
Priority to EP17846112.5A priority patent/EP3412838B1/en
Priority to US16/082,284 priority patent/US10815640B2/en
Priority to JP2018537098A priority patent/JP6914943B2/ja
Publication of WO2018043104A1 publication Critical patent/WO2018043104A1/ja
Priority to US17/023,673 priority patent/US11674285B2/en
Priority to US18/141,646 priority patent/US20230257960A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/422Drive systems for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • B60Q5/005Arrangement or adaptation of acoustic signal devices automatically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to a wheel loader and a wheel loader control method.
  • a wheel loader which is a self-propelled working vehicle, includes a traveling device for traveling the vehicle and a work machine for performing various operations such as excavation.
  • the traveling device and the work machine are driven by driving force from the engine.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-303574
  • a wheel loader is disclosed.
  • the wheel loader also includes a display device that displays the image captured by the video camera or the distance measured by the laser distance sensor at a position visible to the operator seated in the driver's seat. Thereby, the operator can monitor the state of the road surface located under the work implement.
  • Patent Document 2 discloses an automatic excavator (for example, a wheel loader) provided with a visual sensor composed of two cameras.
  • An automatic excavator measures the distance to an excavation object or a dump truck using a visual sensor for automatic excavation.
  • the wheel loader operator operates the accelerator pedal and the boom lever at the same time when the earth and sand picked up by the bucket of the work equipment is loaded on the loading platform of the dump truck. As a result, the wheel loader moves forward and performs boom raising. Such loading work is also called “dump approach”.
  • the operator In the loading operation, the operator must ensure that the front wheel tip does not collide with the side surface of the dump truck, and that the work implement (particularly the lower end of the boom) is on the side surface of the dump truck (specifically, the upper part of the vessel It is necessary to operate the wheel loader so that it does not collide. Thus, the operator needs to perform the loading operation while simultaneously confirming the upper and lower two locations.
  • the present disclosure has been made in view of the above-described problems, and the purpose thereof is a wheel capable of assisting an operator's operation when loading excavated material such as excavated earth and sand onto a loading target (for example, a dump truck). It is to provide a method for controlling a loader and a wheel loader.
  • the controller causes the wheel loader to perform a predetermined operation for avoiding a collision when the distance measured by the sensor becomes equal to or less than the threshold value as the wheel loader travels.
  • a dump truck will be described as an example of an object to be loaded with excavated material.
  • the present invention is not limited to this, and for example, a self-propelled container such as an earth and sand container cannot be used. It may be a loading target.
  • FIG. 1 is a side view of a wheel loader 1 based on the embodiment.
  • FIG. 2 is a top view of the wheel loader 1.
  • the wheel loader 1 includes a main body 5, a work machine 30, wheels 3 a and 3 b, and a cab 6.
  • the wheel loader 1 can be self-propelled when the wheels 3 a and 3 b are rotationally driven, and can perform a desired work using the work machine 30.
  • the main body 5 has a front frame 5a and a rear frame 5b.
  • the front frame 5a and the rear frame 5b are connected to each other by a center pin 81 so as to be swingable in the left-right direction.
  • a pair of steering cylinders 82 are provided across the front frame 5a and the rear frame 5b.
  • the steering cylinder 82 is a hydraulic cylinder driven by hydraulic oil from a steering pump (not shown). As the steering cylinder 82 expands and contracts, the front frame 5a swings with respect to the rear frame 5b. Thereby, the advancing direction of the wheel loader 1 is changed.
  • the work machine 30 and a pair of front wheels 3a are attached to the front frame 5a.
  • the work machine 30 is disposed in front of the main body 5.
  • the work machine 30 is driven by hydraulic oil from a hydraulic pump 119 (see FIG. 3).
  • the work machine 30 includes a boom 31, a pair of lift cylinders 33, a bucket 32, a bell crank 34, a tilt cylinder 35, and a tilt rod 36 that connects the tip of the bell crank 34 and the bucket 32. ing.
  • the boom 31 is rotatably supported by the front frame 5a.
  • a base end portion (base end portion) of the boom 31 is swingably attached to the front frame 5 a by a boom pin 7.
  • One end of the lift cylinder 33 is attached to the front frame 5a.
  • the other end of the lift cylinder 33 is attached to the boom 31.
  • the other end of the lift cylinder 33 is preferably attached to the lower end of the boom 31.
  • the front frame 5 a and the boom 31 are connected by a lift cylinder 33. As the lift cylinder 33 expands and contracts with the hydraulic oil from the hydraulic pump 119, the boom 31 swings up and down around the boom pin 7.
  • FIG. 1 only one of the lift cylinders 33 is shown, and the other is omitted.
  • the bucket 32 is rotatably supported at the tip of the boom 31.
  • the bucket 32 is instructed by a bucket pin 39 to be swingable at the tip of the boom 31.
  • One end of the tilt cylinder 35 is attached to the front frame 5a.
  • the other end of the tilt cylinder 35 is attached to the bell crank 34.
  • the bell crank 34 and the bucket 32 are connected by a link device (not shown).
  • the front frame 5a and the bucket 32 are connected by a tilt cylinder 35, a bell crank 34, and a link device.
  • the tilt cylinder 35 expands and contracts with hydraulic oil from the hydraulic pump 119, so that the bucket 32 swings up and down around the bucket pin 39.
  • the cab 6 and a pair of rear wheels 3b are attached to the rear frame 5b.
  • the cab 6 is mounted on the main body 5.
  • the cab 6 is equipped with a seat on which an operator is seated, an operation device to be described later, and the like.
  • the wheel loader 1 further includes a sensor 40 for measuring the distance between the dump truck to be loaded and the boom 31.
  • the sensor 40 is installed on the boom 31. Therefore, the sensor 40 moves in conjunction with the movement of the boom 31.
  • the sensor 40 is installed at a predetermined position of the boom 31 that is closer to the proximal end portion of the boom 31 than the distal end portion of the boom 31.
  • the sensor 40 is installed at the lower end of the boom 31.
  • the sensor 40 is installed in the vicinity of the boom pin 7.
  • the “lower end portion of the boom 31” means the lower half (the half on the ground side) of the boom 31 including the lower surface of the boom 31.
  • the sensor 40 measures the distance between the vessel of the dump truck and the boom 31 (hereinafter also referred to as “distance D”).
  • the sensor 40 senses the lower end portion of the boom 31.
  • the sensor 40 may be any device for measuring a distance, and various devices such as an ultrasonic sensor, a laser sensor, an infrared sensor, and a camera can be used as the sensor 40.
  • FIG. 3 is a perspective view of the wheel loader 1.
  • the bucket 32 can be raised by raising the boom 31 based on an operator operation. With the excavated material such as earth and sand excavated in the bucket loaded, the operator reduces the tilt angle of the bucket 32 (angle ⁇ in FIG. 14) to load the excavated material on the loading target such as a dump truck. Is possible.
  • FIG. 4 is a diagram for explaining the positional relationship between the left boom 31 and the sensor 40.
  • the sensor 40 is installed at the lower end 31 a of the boom 31.
  • a lens 41 is installed on the tip end side of the boom 31.
  • the lens 41 is disposed on the right side of the left boom 31 (closer to the right boom 31), but is not limited thereto.
  • the lens 41 may be arranged on the left side of the left boom 31.
  • a sensor may be installed on the right boom 31.
  • FIG. 5 is a schematic diagram for explaining the sensing range of the sensor 40. As shown in FIG. 5, the sensor 40 is arranged so that the optical axis 48 of the sensor 40 is along the extending direction of the boom 31.
  • the sensor 40 senses an area including the lower end 31a of the boom 31. Further, the sensor 40 may sense an area in the lower end portion 31 a of the boom 31 that is closer to the distal end portion than the proximal end portion of the boom 31. In particular, the sensor 40 preferably senses an area from the position where the other end of the lift cylinder 33 is attached to the boom 31 to the tip of the boom 31 at the lower end 31 a of the boom 31. The sensor 40 may sense a part of the area described above.
  • the senor 40 can measure the distance between the dump truck as a loading target and the boom 31.
  • the information obtained by the sensor 40 is sent to a controller 110 (FIG. 8) described later of the wheel loader 1 for data processing.
  • FIG. 6 is a diagram for explaining a general operator operation during the dump approach.
  • the operator performs an accelerator operation in the section Q11. Specifically, the operator steps on an accelerator pedal (not shown). Furthermore, in the section Q11, the operator operates a boom operation lever 122 (FIG. 8) described later in order to raise the boom 31. Thereby, in the section Q11, the wheel loader 1 travels toward the dump truck 900 and the boom raising operation is executed.
  • the reason why the operator performs the accelerator operation in the section Q ⁇ b> 11 has a strong meaning for supplying a sufficient amount of oil to the lift cylinder 33 rather than driving the wheel loader 1.
  • the engine speed is increased to ensure the output of hydraulic oil from the hydraulic pump. Therefore, even if the operator depresses the brake pedal to decrease the vehicle speed in the section Q11, the operator continues to depress the accelerator pedal.
  • the operator stops the accelerator operation and performs the brake operation. Specifically, the operator stops stepping on the accelerator pedal and steps on a brake pedal (not shown). As a result, the operator stops the wheel loader 1 before the dump truck 900. Thereafter, the operator operates a bucket operation lever 123 (FIG. 8) described later to load the earth and sand picked up by the bucket 32 onto the loading platform of the dump truck 900.
  • the passing trajectory of the bucket 32 is typically represented as a broken line La.
  • FIG. 7 is a diagram illustrating a case where the boom 31 is not raised to a position where the operator can load the excavated material on the vessel 901 of the dump truck 900 during the dump approach.
  • FIG. 7A is a diagram showing a dump approach when it is assumed that the output of the sensor 40 is not used.
  • FIG. 7B is a diagram showing a dump approach when the output of the sensor 40 is used. As described above, FIG. 7A shows a comparative example for clarifying the feature of FIG.
  • the wheel loader 1 (specifically, the controller 110) performs the following control.
  • the wheel loader 1 determines whether or not the distance D (the distance between the dump truck 900 and the boom 31) measured by the sensor 40 is equal to or less than a threshold value. When the wheel loader 1 determines that the measured distance D is equal to or less than the threshold value, the wheel loader 1 starts control to raise the boom 31. For example, in the section Q21 in which the measured distance D is not less than or equal to the threshold value, the boom 31 is not raised, but when the wheel loader 1 moves forward to the section Q22 in which the measured distance D is less than or equal to the threshold value, the wheel loader 1 moves the boom 31. Start raising control.
  • the wheel loader 1 uses the sensor 40 to measure the distance D between the dump truck 900 and the boom 31.
  • the controller 110 of the wheel loader 1 causes the wheel loader to perform a boom raising operation when the distance D measured by the sensor 40 is equal to or less than a threshold value as the wheel loader 1 travels.
  • the wheel loader 1 performs the process of moving the boom 31 away from the vessel 901 before the boom 31 collides with the vessel 901 during the dump approach. Therefore, even when the operator has not paid much attention to the position of the front wheel 3a and the confirmation of the position of the boom 31 has been neglected, the boom 31 can be prevented from colliding with the dump truck 900. . Therefore, according to the wheel loader 1, an operator operation at the time of the dump approach can be assisted.
  • FIG. 8 is a block diagram showing the system configuration of the wheel loader 1.
  • the wheel loader 1 includes a boom 31, a bucket 32, a lift cylinder 33, a tilt cylinder 35, a sensor 40, a controller 110, a boom angle sensor 112, a bucket angle sensor 113, An engine 118, a hydraulic pump 119, an operation lever 120, operation valves 131 and 141, a monitor 151, and a speaker 152 are provided.
  • the operation lever 120 includes a forward / reverse switching operation lever 121, a boom operation lever 122, a bucket operation lever 123, and vibrators 124, 125, and 126.
  • the controller 110 includes a determination unit 1101.
  • the controller 110 controls the overall operation of the wheel loader 1.
  • the controller 110 controls the number of revolutions of the engine 118 based on the operation of the accelerator pedal. Further, the controller receives a signal based on an operator operation by the operation lever 120 and causes the wheel loader 1 to execute an operation corresponding to the operation.
  • the hydraulic pump 119 is driven by the output of the engine 118.
  • the hydraulic pump 119 supplies hydraulic oil to the lift cylinder 33 that drives the boom 31 via the operation valve 131.
  • the vertical movement of the boom 31 can be controlled by operating a boom operation lever 122 provided in the cab 6.
  • the hydraulic pump 119 supplies hydraulic oil to the tilt cylinder 35 that drives the bucket 32 via the operation valve 141.
  • the operation of the bucket 32 can be controlled by operating a bucket operation lever 123 provided in the cab 6.
  • the controller 110 sequentially receives sensing results from the sensor 40.
  • the determination unit 1101 of the controller 110 determines whether or not the distance D measured by the sensor 40 is equal to or less than the threshold Th during the dump approach. When the determination unit 1101 determines that the distance D is equal to or less than the threshold value Th, the controller 110 starts a process of raising the boom 31.
  • the controller 110 receives a signal corresponding to the boom angle from the boom angle sensor 112.
  • the controller 110 receives a signal corresponding to the tilt angle from the bucket angle sensor 113.
  • a method of using signals (sensing results) output from the boom angle sensor 112 and the bucket angle sensor 113 will be described later.
  • the controller 110 displays various images on the monitor 151.
  • the controller 110 causes the speaker 152 to output a predetermined sound. A method for using the monitor 151 and the speaker 152 will be described later.
  • the vibrator 124 is a device for vibrating the forward / reverse switching operation lever 121.
  • Vibrator 125 is a device for vibrating boom operation lever 122.
  • Vibrator 126 is a device for vibrating bucket operating lever 123. A method of using the vibrators 124 to 126 will be described later.
  • FIG. 9 is a flowchart for explaining the processing flow of the wheel loader 1.
  • the controller 110 determines whether or not the vehicle is moving forward.
  • controller 110 determines whether distance D measured by sensor 40 is equal to or smaller than threshold value Th.
  • controller 110 determines that the vehicle is not moving forward (NO in step S2), the process returns to step S2.
  • step S4 When the controller 110 determines that the distance D is equal to or less than the threshold Th (YES in step S4), the controller 110 starts a process of raising the boom 31 in step S6. When controller 110 determines that distance D is longer than threshold value Th (NO in step S4), the process returns to step S2. In step S8, the controller 110 determines whether or not the distance D measured by the sensor 40 is equal to or less than the threshold value Th.
  • controller 110 determines that distance D is longer than threshold value Th (YES in step S8), controller 110 stops the rise of boom 31 in step S14. After step S14, in step S16, the controller 110 determines whether or not the wheel loader 1 is moving forward. If controller 110 determines that the vehicle is moving forward (YES in step S16), the process returns to step S4. When controller 110 determines that the vehicle is not moving forward (NO in step S16), the series of processing ends.
  • step S10 the controller 110 determines whether the angle of the boom 31 (boom angle) is the maximum angle. Specifically, the controller 110 determines whether or not the lift cylinder 33 is extended to the stroke end.
  • step S10 determines that the angle is the maximum angle (YES in step S10), the controller 110 stops the traveling of the wheel loader 1 in step S12. Typically, the controller 110 applies the brake even when the operator does not perform the brake operation. If controller 110 determines that the angle is not the maximum angle (NO in step S10), the process proceeds to step S8.
  • the controller 110 performs control to raise the boom 31 when the distance D is equal to or less than the threshold Th.
  • Such control may be forcibly stopped by an operator operation.
  • Examples of such an operator operation include an operation of pressing a predetermined button (not shown), an operation of lowering the boom 31 using the boom operation lever 122, and an operation of switching the forward / reverse switching operation lever 121 from the forward movement position to the reverse movement position.
  • the operation of switching the forward / reverse switching operation lever 121 from the forward movement position to the reverse movement position is performed even when the wheel loader 1 moves forward (when not stopped).
  • the senor 40 is installed at a predetermined position of the boom 31 that is closer to the proximal end portion of the boom 31 than the distal end portion of the boom 31.
  • the controller 110 causes the wheel loader 1 to perform an operation of raising the boom 31 as a predetermined operation for avoiding a collision.
  • the wheel loader 1 performs a process of moving the boom 31 away from the vessel 901 before the boom 31 collides with the vessel 901 as shown in the section Q22 of FIG. . Therefore, even when the operator fails to confirm the position of the boom 31, it is possible to avoid the boom 31 from colliding with the dump truck 900. Therefore, according to the wheel loader 1, it is possible to assist the operator operation during the dump approach.
  • the predetermined position is the lower end 31 a of the boom 31. According to this, it is possible to sense the lower end 31a of the boom 31.
  • the sensor 40 senses the lower end 31a of the boom 31. Accordingly, the distance D between the boom 31 and the vessel 901 of the dump truck 900 can be measured.
  • the controller 110 stops the traveling of the wheel loader 1 when the angle of the boom 31 reaches the maximum angle. According to this, in a situation where the boom 31 collides with the vessel 901 even if the boom 31 is released as much as possible, it is possible to prevent the boom 31 from colliding with the vessel 901.
  • FIG. 10 is a side view of the wheel loader 1A based on the embodiment.
  • FIG. 11 is a top view of the wheel loader 1A.
  • FIG. 12 is a perspective view of the wheel loader 1A.
  • the wheel loader 1 ⁇ / b> A has the same hardware configuration as the wheel loader 1 ⁇ / b> A except that the sensor 40 ⁇ / b> A is provided instead of the sensor 40.
  • Sensor 40A is installed on the upper surface of front frame 5a.
  • the sensor 40A is installed at a predetermined position closer to the support position of the boom 31 than the front end portion 51 (see FIG. 13) of the front frame 5a. Specifically, it is installed at a position closer to the position of the boom pin 7 than the front end portion of the front frame 5a.
  • the sensor 40A is installed between the support position of the left boom 31 and the support position of the tilt cylinder 35 as viewed from above in the Y direction of FIG.
  • the sensor 40A may be installed between the support position of the right boom 31 and the support position of the tilt cylinder 35 in the top view.
  • the sensor 40A measures the distance D between the dump truck 900 and the boom 31 during the dump approach, similarly to the sensor 40. Specifically, the sensor 40 ⁇ / b> A measures the distance D between the vessel 901 of the dump truck 900 and the boom 31 in the same manner as the sensor 40. Similarly to the sensor 40, the sensor 40A senses the lower end portion of the boom 31 when the boom 31 is raised.
  • the sensor 40A may be an apparatus for measuring the distance D, and various devices such as an ultrasonic sensor, a laser sensor, an infrared sensor, and a camera can be used as the sensor 40A.
  • FIG. 13 is a schematic diagram for explaining the sensing range of the sensor 40A.
  • the sensor 40 ⁇ / b> A is arranged so that the optical axis 49 of the sensor 40 ⁇ / b> A is substantially along the extending direction of the boom 31 when the boom 31 is raised above a predetermined angle.
  • the sensing range of the sensor 40A is set in advance assuming a boom angle during the dump approach.
  • the sensor 40A senses an area including the lower end 31a of the boom 31. Furthermore, the sensor 40 ⁇ / b> A may sense an area in the lower end portion 31 a of the boom 31 that is closer to the distal end portion than the proximal end portion of the boom 31. In particular, the sensor 40 ⁇ / b> A preferably senses an area from the position where the other end of the lift cylinder 33 is attached to the boom 31 to the tip of the boom 31 at the lower end 31 a of the boom 31. The sensor 40A may sense a part of the area described above.
  • the sensor 40A can measure the distance D between the dump truck as the loading target and the boom 31.
  • the information obtained by the sensor 40A is sent to the controller 110 of the wheel loader 1A for data processing.
  • the same control as the wheel loader 1 is executed. Specifically, when the distance D measured by the sensor 40A is less than or equal to the threshold Th when the wheel loader 1A travels, the controller 110 performs an operation of raising the boom 31 as a predetermined operation for avoiding a collision. To run.
  • the wheel loader 1A can move the boom 31 away from the vessel 901 before the boom 31 collides with the vessel 901 during the dump approach. Therefore, even if the operator neglects to confirm the position of the boom 31 by running the wheel loader 1A with the line of sight toward the front wheel 3a, it is possible to avoid the boom 31 from colliding with the dump truck 900. Become.
  • Predetermined operation for collision avoidance when the distance D measured by the sensor 40A is less than or equal to the threshold Th when the wheel loader 1A travels, The wheel loader 1 is caused to perform an operation of raising the boom 31 as a predetermined operation.
  • the predetermined operation is not limited to the operation of raising the boom 31.
  • Controller 110 may output a predetermined notification sound (warning sound) from speaker 152 instead of performing control to raise boom 31.
  • the controller 110 may cause the monitor 151 to perform a predetermined warning display. According to these, the operator can notice an abnormality. Specifically, the operator can notice that the wheel loaders 1 and 1A are likely to collide with the dump truck.
  • the controller 110 may transmit a command to start vibration to the vibrators 124 to 126.
  • the operation levers 121, 122, 123 vibrate due to the vibrations of the vibrators 124-126. This also makes it possible for the operator to notice an abnormality.
  • the wheel loader 1, the assembling operation of the boom 31, the output of a predetermined warning sound from the speaker 152, the predetermined warning display on the monitor 151, and the vibrators 124 to 126 are appropriately combined. 1A may be configured.
  • FIG. 14 is a diagram for explaining the tilt angle ⁇ of the bucket 32.
  • the wheel loader 1 is illustrated.
  • the operator makes the tilt angle ⁇ larger than a predetermined angle (hereinafter also referred to as “angle ⁇ 1”).
  • angle ⁇ 1 a predetermined angle
  • the predetermined operation is not always started, but the predetermined operation is started on the condition that the tilt angle of the bucket 32 is equal to or larger than the predetermined angle ⁇ 1.
  • the wheel loaders 1 and 1A may be configured.
  • the predetermined operation is executed when the distance D becomes equal to or less than the threshold Th. Is done.
  • a predetermined operation is executed even if the distance D is equal to or less than the threshold Th. It will never be done.
  • FIG. 15 is a diagram showing the state of unloading.
  • the wheel loader 1 is illustrated.
  • the operator when the operator loads the excavated material on the vessel 901 of the dump truck 900, the excavated item can be placed in the vessel 901 beyond the height of the vessel 901.
  • the operator operates the bucket 32 with the excavated material on the upper side of the vessel 901 by setting the tilt angle of the bucket 32 to a predetermined angle smaller than the angle ⁇ 1 (hereinafter referred to as “angle ⁇ 2”) or less. Drop it on the ground.
  • angle ⁇ 2 the angle smaller than the angle ⁇ 1
  • the tilt angle ⁇ of the bucket 32 is set to zero degrees (a state where the cutting edge 32a is horizontal to the main body 5), and the earth and sand overflowing from the vessel 901 is transferred to the wheel loader 1, 1A with respect to the dump truck 900. Drop it on the other side of the ground.
  • the controller 110 may be configured to stop the execution of the predetermined operation when the wheel loader 1, 1A transitions from the forward state to the reverse state. According to this, it can suppress that unnecessary control is performed.
  • a wheel loader for loading excavated material onto a loading object includes a front frame, a bucket, a boom having a tip end connected to the bucket and a base end rotatably supported by the front frame, a loading object, and a boom. And a controller for controlling the operation of the wheel loader. The controller causes the wheel loader to perform a predetermined operation for avoiding a collision when the distance measured by the sensor becomes equal to or less than the threshold value as the wheel loader travels.
  • the wheel loader performs a predetermined operation for avoiding the collision before the boom collides with the loading target when moving forward. Therefore, even if the operator fails to confirm the position of the boom, it is possible to avoid colliding with the loading target. Therefore, according to the wheel loader, it is possible to assist the operator's operation when loading the excavated material on the loading object.
  • the senor is one of a first position on the boom that is closer to the base end than the front end and a second position on the front frame that is closer to the boom support than the front end of the front frame. Is installed.
  • the first position is a lower end portion of the boom.
  • the wheel loader can sense the lower end of the boom by the sensor.
  • the senor is installed at the first position, and senses an area closer to the tip than the base end at the lower end of the boom.
  • the wheel loader can measure the distance between the boom and the loading target.
  • the wheel loader further includes a lift cylinder that is attached at one end to the lower end of the boom and drives the boom.
  • the sensor is installed at the first position, and senses an area from the position where the lift cylinder is attached to the boom to the tip of the boom at the lower end of the boom.
  • the wheel loader can measure the distance between the boom and the loading target.
  • the predetermined operation is an operation of raising the boom.
  • the wheel loader can move the boom away from the loading target before the boom collides with the loading target during forward movement. Therefore, even when the operator fails to confirm the position of the boom, it is possible to avoid the boom from colliding with the loading target.
  • the predetermined operation is an operation for outputting a predetermined notification sound.
  • the operator can perform an operation of avoiding the collision with the loading target when the operator hears the notification sound before the boom collides with the loading target.
  • an operation lever for operating the wheel loader is further provided.
  • the predetermined operation is an operation of vibrating the operation lever.
  • the operator can perform an operation of avoiding the collision with the loading target by sensing the vibration of the operation lever before the boom collides with the loading target.
  • the controller stops the traveling of the wheel loader when the angle of the boom reaches the maximum angle by a predetermined operation.
  • the controller causes the wheel loader to execute a predetermined operation on condition that the bucket tilt angle is equal to or greater than the first value.
  • the predetermined operation is an operation of raising the boom.
  • the controller stops the operation of raising the boom.
  • the wheel loader stops automatic control of raising the boom, so that the operator can unload.
  • the controller when the controller receives a predetermined input based on an operator operation, the controller stops execution of the predetermined operation.
  • the predetermined operation is an operation of raising the boom.
  • the operator operation is an operation for lowering the boom.
  • the control for automatically raising the boom can be forcibly stopped by performing the operation of lowering the boom.
  • the vehicle further includes a forward / reverse switching lever for switching the wheel loader between forward and reverse.
  • the operator operation is an operation in which the forward / reverse switching lever switches from the forward position to the reverse position.
  • the controller stops execution of a predetermined operation when the wheel loader transitions from the forward movement state to the reverse movement state.
  • the control method is executed in the wheel loader that loads the excavated material on the loading object.
  • the control method includes a step of measuring a distance between an object to be loaded and a boom of the wheel loader, a step of determining that the measured distance is equal to or less than a threshold value as the wheel loader travels, And a step of causing the wheel loader to execute a predetermined operation for avoiding a collision when the detected distance is equal to or less than a threshold value.
  • the wheel loader performs a predetermined operation for avoiding the collision before the boom collides with the loading target at the time of forward movement. Therefore, even if the operator fails to confirm the position of the boom, it is possible to avoid colliding with the loading target. Therefore, according to the wheel loader, it is possible to assist the operator's operation when loading the excavated material on the loading object.
  • 1,1A wheel loader 3a front wheel, 3b rear wheel, 5 main body, 5a front frame, 5b rear frame, 6 cab, 7 boom pin, 30 working machine, 31 boom 31a lower end, 32 bucket, 32a cutting edge, 33 lift cylinder 34 bell crank, 35 tilt cylinder, 36 tilt rod, 39 bucket pin, 40, 40A sensor, 41 lens, 48, 49 optical axis, 900 dump truck, 901 vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

ホイールローダ(1)は、フロントフレーム(5a)と、バケット(32)と、先端部がバケット(32)に接続され、かつ基端部がフロントフレーム(5a)に回転可能に支持されたブーム(31)と、積込対象(900)とブーム(31)との間の距離を測定するためのセンサ(40)と、ホイールローダ(1)の動作を制御するコントローラとを備える。コントローラは、ホイールローダ(1)が走行することによってセンサ(40)によって測定された距離が閾値以下になると、衝突回避のための所定の動作をホイールローダ(1)に実行させる。

Description

ホイールローダおよびホイールローダの制御方法
 本発明は、ホイールローダおよびホイールローダの制御方法に関する。
 自走式作業車両であるホイールローダは、車両を走行させるための走行装置と、掘削などの各種の作業を行うための作業機とを備えている。走行装置と作業機とは、エンジンからの駆動力によって駆動される。
 特開2008-303574号公報(特許文献1)には、前輪側の車軸ケース上にバケットの下方を通してバケットの配設位置よりも前方の路面状態を撮像するビデオカメラまたはレーザ距離センサが設けられたホイールローダが開示されている。また、このホイールローダは、運転席に着座したオペレータから見える位置に、ビデオカメラが撮像した映像またはレーザ距離センサが測定した距離を表示する表示装置を備えている。これにより、オペレータは、作業機の下方に位置する路面の状態を監視することができる。
 特開平10-88625号公報(特許文献2)には、2台のカメラで構成される視覚センサを備えた自動掘削機(たとえば、ホイールローダ)が開示されている。自動掘削機は、自動掘削のために、視覚センサを利用して、掘削対象またはダンプトラックまでの距離を測定する。
 また、ホイールローダのオペレータは、作業機のバケットによって掬い取られた土砂をダンプトラックの荷台に積込むとき、アクセルペダルとブームレバーとを同時に操作する。これにより、ホイールローダは、前進するとともに、ブーム上げを実行する。なお、このような積込み作業は、「ダンプアプローチ」とも呼ばれている。
特開2008-303574号公報 特開平10-88625号公報
 ところで、積込み作業の際には、オペレータは、前輪の先端がダンプトラックの側面に衝突しないように、かつ、作業機(特に、ブームの下端部)がダンプトラックの側面(詳しくは、ベッセルの上部)に衝突しないように、ホイールローダを操作する必要がある。このように、オペレータは、上下の2箇所を同時に確認しながら、積込み作業を行う必要がある。
 本開示は、上記の問題点に鑑みなされたものであって、その目的は、掘削した土砂等の掘削物を積込対象(たとえば、ダンプトラック)に積み込む際におけるオペレータの操作を支援可能なホイールローダおよびホイールローダの制御方法を提供することにある。
 本開示のある局面に従うと、掘削物を積込対象に積み込むホイールローダは、フロントフレームと、バケットと、先端部がバケットに接続され、かつ基端部がフロントフレームに回転可能に支持されたブームと、積込対象とブームとの間の距離を測定するためのセンサと、ホイールローダの動作を制御するコントローラとを備える。コントローラは、ホイールローダが走行することによってセンサによって測定された距離が閾値以下になると、衝突回避のための所定の動作をホイールローダに実行させる。
 本開示によれば、掘削物を積込対象に積み込む際におけるオペレータ操作を補助することができる。
ホイールローダの側面図である。 ホイールローダの上面図である。 ホイールローダの斜視図である。 左側のブームとセンサとの位置関係を説明するための図である。 センサのセンシング範囲を説明するための模式図である。 ダンプアプローチ時における一般的なオペレータ操作を説明するための図である。 ダンプアプローチ時において、オペレータが、ダンプトラックのベッセルに掘削物を積載することが可能な位置までブームを上昇させなかった場合を表した図である。 ホイールローダのシステム構成を表したブロック図である。 ホイールローダの処理の流れを説明するためのフローチャートである。 ホイールローダの側面図である。 ホイールローダの上面図である。 ホイールローダの斜視図である。 センサのセンシング範囲を説明するための模式図である。 バケットのチルト角度を説明するための図である。 荷切の状態を表した図である。
 以下、実施形態について図に基づいて説明する。実施形態における構成を適宜組み合わせて用いることは当初から予定されていることである。また、一部の構成要素を用いない場合もある。
 以下、ホイールローダについて、図面を参照しながら説明する。以下の説明において、「上」「下」「前」「後」「左」「右」とは、運転席に着座したオペレータを基準とする用語である。
 また、以下では、掘削物を積載するための積込対象として、ダンプトラックを例に挙げて説明するが、これに限定されるものではなく、たとえば、土砂用コンテナ等の自走することができない積載対象であってもよい。
 [実施の形態1]
 <全体構成>
 図1は、実施形態に基づくホイールローダ1の側面図である。図2は、ホイールローダ1の上面図である。
 図1および図2に示されるように、ホイールローダ1は、本体5、作業機30、車輪3a,3b、および運転室6を備えている。ホイールローダ1は、車輪3a,3bが回転駆動されることにより自走可能であると共に、作業機30を用いて所望の作業を行うことができる。
 本体5は、フロントフレーム5aとリアフレーム5bとを有している。フロントフレーム5aとリアフレーム5bとは、センタピン81により互いに左右方向に揺動可能に連結されている。
 フロントフレーム5aとリアフレーム5bとに渡って、一対のステアリングシリンダ82が設けられている。ステアリングシリンダ82は、図示しないステアリングポンプからの作動油によって駆動される油圧シリンダである。ステアリングシリンダ82が伸縮することによって、フロントフレーム5aがリアフレーム5bに対して揺動する。これにより、ホイールローダ1の進行方向が変更される。
 フロントフレーム5aには、作業機30および一対の前輪3aが取り付けられている。作業機30は、本体5の前方に配設されている。作業機30は、油圧ポンプ119(図3参照)からの作動油によって駆動される。作業機30は、ブーム31と、一対のリフトシリンダ33と、バケット32と、ベルクランク34と、チルトシリンダ35と、ベルクランク34の先端部とバケット32とを連結するチルトロッド36とを有している。
 ブーム31は、フロントフレーム5aに回転可能に支持されている。ブーム31の基端部(基端部)が、ブームピン7によって、フロントフレーム5aに揺動可能に取り付けられている。リフトシリンダ33の一端はフロントフレーム5aに取り付けられている。リフトシリンダ33の他端は、ブーム31に取り付けられている。リフトシリンダ33の他端は、ブーム31の下端部に取り付けられていることが好ましい。フロントフレーム5aとブーム31とは、リフトシリンダ33により連結されている。リフトシリンダ33が油圧ポンプ119からの作動油によって伸縮することによって、ブーム31がブームピン7を中心として上下に揺動する。
 なお、図1では、リフトシリンダ33のうちの一方のみを図示しており、他方を省略している。
 バケット32は、ブーム31の先端に回転可能に支持されている。バケット32は、バケットピン39によって、ブーム31の先端部に揺動可能に指示されている。チルトシリンダ35の一端はフロントフレーム5aに取り付けられている。チルトシリンダ35の他端はベルクランク34に取り付けられている。ベルクランク34とバケット32とは、図示しないリンク装置によって連結されている。フロントフレーム5aとバケット32とは、チルトシリンダ35、ベルクランク34およびリンク装置により連結されている。チルトシリンダ35が、油圧ポンプ119からの作動油によって伸縮することによって、バケット32がバケットピン39を中心として上下に揺動する。
 リアフレーム5bには、運転室6および一対の後輪3bが取り付けられている。運転室6は、本体5に搭載されている。運転室6には、オペレータが着座するシート、および後述する操作用の装置などが内装されている。
 ホイールローダ1は、積込対象としてのダンプトラックとブーム31との間の距離を測定するためのセンサ40をさらに備えている。センサ40は、ブーム31に設置されている。それゆえ、センサ40は、ブーム31の移動に連動して移動する。
 詳しくは、センサ40は、ブーム31先端部よりもブーム31の基端部に近い、ブーム31の所定位置に設置されている。センサ40は、ブーム31の下端部に設置されている。センサ40は、ブームピン7の近傍に設置されている。なお、「ブーム31の下端部」とは、ブーム31の下面を含む、ブーム31の下半分(地面側の半分)を意味する。
 後述するが、センサ40は、ダンプトラックのベッセルとブーム31との間の距離(以下、「距離D」とも称する)を測定する。センサ40は、ブーム31の下端部をセンシングする。なお、センサ40は、距離を測定するための装置であればよく、センサ40としては、超音波センサ、レーザセンサ、赤外線センサ、カメラ等の各種のデバイスを利用できる。
 図3は、ホイールローダ1の斜視図である。図3に示すように、オペレータ操作に基づいてブーム31を上昇させることにより、バケット32を上昇させることができる。バケットに掘削した土砂等の掘削物が積載されている状態で、オペレータがバケット32のチルト角度(図14の角度θ)を小さくすることにより、掘削物をダンプトラック等の積込対象に積み込むことが可能となる。
 図4は、左側のブーム31とセンサ40との位置関係を説明するための図である。図4(A)および(B)に示すように、センサ40は、ブーム31の下端部31aに設置されている。センサ40の筐体内においては、ブーム31の先端部側にレンズ41が設置されている。
 なお、ホイールローダ1では、レンズ41が左側のブーム31の右側(右側のブーム31寄り)に配置されているが、これに限定されるものではない。レンズ41が、左側のブーム31の左側に配置される構成であってもよい。また、センサが右側のブーム31に設置されていてもよい。
 図5は、センサ40のセンシング範囲を説明するための模式図である。図5に示されるように、センサ40の光軸48がブーム31の延伸方向に沿うように、センサ40が配置されている。
 センサ40は、ブーム31の下端部31aを含むエリアをセンシングする。さらに、センサ40は、ブーム31の下端部31aにおける、ブーム31の基端部よりも先端部に近いエリアをセンシングしてもよい。特に、センサ40は、ブーム31の下端部31aにおける、リフトシリンダ33の他端がブーム31に取り付けられる箇所からブーム31の先端部までのエリアをセンシングすることが好ましい。また、センサ40は、前述したエリアの一部をセンシングするものであってもよい。
 このような配置により、センサ40は、積込対象としてのダンプトラックとブーム31との間の距離を測定することができる。なお、センサ40によって得た情報は、ホイールローダ1の後述するコントローラ110(図8)に送れて、データ処理がなされる。
 <ダンプアプローチ>
 図6は、ダンプアプローチ時における一般的なオペレータ操作を説明するための図である。図6に示すように、オペレータは、区間Q11では、アクセル操作を行う。具体的には、オペレータは、図示しないアクセルペダルを踏む。さらに、オペレータは、区間Q11では、ブーム31を上げるために、後述するブーム操作レバー122(図8)を操作する。これにより、区間Q11では、ホイールローダ1がダンプトラック900に向かって走行するとともに、ブーム上げ操作が実行される。
 なお、オペレータが区間Q11でアクセル操作を行う理由は、ホイールローダ1を走行させるためというよりは、リフトシリンダ33に対して油量を十分に供給するための意味合いが濃い。エンジン回転数を上げて、油圧ポンプからの作動油の出力を確保している。したがって、区間Q11で車速を落とすために、オペレータがブレーキペダルを踏み込んだとしても、オペレータはアクセルペダルを踏み続けている。
 区間Q11に続く区間Q12においては、オペレータは、アクセル操作をやめて、ブレーキ操作を行う。具体的には、オペレータは、アクセルペダルを踏むのを止めて、図示しないブレーキペダルを踏む。これにより、オペレータは、ホイールローダ1をダンプトラック900の手前で停止させる。その後、オペレータは、後述するバケット操作レバー123(図8)を操作して、バケット32によって掬い取られた土砂をダンプトラック900の荷台に積み込む。
 このような一連の操作を行った場合、バケット32の通過軌跡は、典型的には、破線Laとして表される。
 図7は、ダンプアプローチ時において、オペレータが、ダンプトラック900のベッセル901に掘削物を積載することが可能な位置までブーム31を上昇させなかった場合を表した図である。図7(A)は、センサ40の出力を利用していないと仮定したときのダンプアプローチを表した図である。図7(B)は、センサ40の出力を利用しているときのダンプアプローチを表した図である。このように、図7(A)には、図7(B)の特徴を明確にするための比較例を表している。
 図7(A)に示すように、区間Q11において、ブーム31を図6に示した高さまで上昇させていなかった場合、区間Q12において、以下の事象が起こり得る。ホイールローダ1の前輪3aの先端がダンプトラック900の側面に衝突することを避けるために、オペレータが前輪3aに視線を向けたままホイールローダ1を前進させていると、オペレータがホイールローダ1を停止させようとする位置に前輪3aが到達する前に、ブーム31の下端部がダンプトラック900のベッセル901の上部に衝突してしまう。そこで、本実施の形態では、このような事象をセンサ40を用いて回避する。以下、図7(B)に基づき説明する。なお、図7(A)においては、バケット32の通過軌跡を、破線Lbとして表している。
 図7(B)に示すように、区間Q11において、ブーム31を図6に示した高さまで上昇させていなかった場合、ホイールローダ1(詳しくは、コントローラ110)は以下の制御を行う。
 ホイールローダ1は、センサ40によって測定された距離D(ダンプトラック900とブーム31との間の距離)が閾値以下になった否かを判断する。ホイールローダ1は、測定された距離Dが閾値以下になったと判断すると、ブーム31を上昇させる制御を開始する。たとえば、測定された距離Dが閾値以下とならない区間Q21では、ブーム31を上昇させないが、測定された距離Dが閾値以下となる区間Q22までホイールローダ1が前進すると、ホイールローダ1はブーム31を上昇させる制御を開始する。
 このように、ホイールローダ1は、センサ40を用いて、ダンプトラック900とブーム31との間の距離Dを測定する。ホイールローダ1のコントローラ110は、ホイールローダ1が走行することによってセンサ40によって測定された距離Dが閾値以下になると、ブーム上げ動作をホイールローダに実行させる。
 上述したように、ホイールローダ1は、ダンプアプローチ時において、ブーム31がベッセル901に衝突する前に、ブーム31をベッセル901から遠ざける処理を行なう。したがって、オペレータが前輪3aの位置に注目しすぎるあまり、ブーム31の位置の確認が疎かになってしまった場合であっても、ブーム31がダンプトラック900に衝突してしまうことを回避可能となる。よって、ホイールローダ1によれば、ダンプアプローチ時におけるオペレータ操作を補助することができる。
 <機能的構成>
 図8は、ホイールローダ1のシステム構成を表したブロック図である。図8に示すように、ホイールローダ1は、ブーム31と、バケット32と、リフトシリンダ33と、チルトシリンダ35と、センサ40と、コントローラ110と、ブーム角度センサ112と、バケット角度センサ113と、エンジン118と、油圧ポンプ119と、操作レバー120と、操作弁131,141と、モニタ151、スピーカ152とを備える。
 操作レバー120は、前後進切替操作レバー121と、ブーム操作レバー122と、バケット操作レバー123と、バイブレータ124,125,126とを含んでいる。コントローラ110は、判定部1101を含んでいる。
 コントローラ110は、ホイールローダ1の全体的な動作を制御する。コントローラ110は、アクセルペダルの操作に基づき、エンジン118の回転数等を制御する。また、コントローラは、操作レバー120によるオペレータ操作に基づく信号を受信し、当該操作に応じた動作をホイールローダ1に実行させる。
 油圧ポンプ119は、エンジン118の出力によって駆動する。油圧ポンプ119は、操作弁131を介して、ブーム31を駆動するリフトシリンダ33に作動油を供給する。ブーム31の上下動作は、運転室6に備えられたブーム操作レバー122の操作によって制御可能である。また、油圧ポンプ119は、操作弁141を介して、バケット32を駆動するチルトシリンダ35に作動油を供給する。バケット32の動作は、運転室6に備えられたバケット操作レバー123の操作によって制御可能である。
 コントローラ110は、センサ40からセンシング結果を逐次受信する。コントローラ110の判定部1101は、ダンプアプローチの際に、センサ40によって測定された距離Dが閾値Th以下となったかないかを判定する。コントローラ110は、判定部1101によって距離Dが閾値Th以下になったと判定されると、ブーム31を上昇させる処理を開始する。
 コントローラ110は、ブーム角度センサ112からブーム角度に応じた信号を受信する。コントローラ110は、バケット角度センサ113からチルト角度に応じた信号を受信する。ブーム角度センサ112およびバケット角度センサ113から出力される信号(センシング結果)の利用方法については後述する。
 コントローラ110は、モニタ151に各種の画像を表示させる。コントローラ110は、スピーカ152に所定の音を出力させる。モニタ151およびスピーカ152の利用方法については後述する。
 バイブレータ124は、前後進切替操作レバー121を振動させるための装置である。バイブレータ125は、ブーム操作レバー122を振動させるための装置である。バイブレータ126は、バケット操作レバー123を振動させるための装置である。バイブレータ124~126の利用方法については後述する。
 <制御構造>
 図9は、ホイールローダ1の処理の流れを説明するためのフローチャートである。図9に示すように、ステップS2において、コントローラ110は、前進中か否かを判断する。コントローラ110は、前進中であると判断した場合(ステップS2においてYES)、ステップS4において、センサ40によって測定された距離Dが閾値Th以下であるか否かを判断する。コントローラ110は、前進中でないと判断した場合(ステップS2においてNO)、処理をステップS2に戻す。
 コントローラ110は、距離Dが閾値Th以下であると判断した場合(ステップS4においてYES)、ステップS6において、ブーム31を上昇させる処理を開始する。コントローラ110は、距離Dが閾値Thよりも長いと判断した場合(ステップS4においてNO)、処理をステップS2に戻す。ステップS8において、コントローラ110は、センサ40によって測定された距離Dが閾値Th以下であるか否かを判断する。
 コントローラ110は、距離Dが閾値Thよりも長いと判断した場合(ステップS8においてYES)、ステップS14において、ブーム31の上昇を停止させる。ステップS14の後、ステップS16において、コントローラ110は、ホイールローダ1が前進中であるか否かを判断する。コントローラ110は、前進中であると判断した場合(ステップS16においてYES)、処理をステップS4に戻す。コントローラ110は、前進中でないと判断した場合(ステップS16においてNO)、一連の処理を終了する。
 コントローラ110は、距離Dが閾値Th以下であると判断した場合(ステップS8においてNO)、ステップS10において、ブーム31の角度(ブーム角)が最大角度であるか否かを判断する。具体的には、コントローラ110は、リフトシリンダ33がストロークエンドまで伸びている状態か否かを判断する。
 コントローラ110は、最大角度であると判断した場合(ステップS10においてYES)、ステップS12において、ホイールローダ1の走行を停止させる。典型的には、コントローラ110は、オペレータがブレーキ操作を行わなくても、ブレーキをかける。コントローラ110は、最大角度でないと判断した場合(ステップS10においてNO)、処理をステップS8に進める。
 上記においては、コントローラ110は、距離Dが閾値Th以下になった場合、ブーム31を上昇させる制御を行う。このような制御を、オペレータ操作によって、強制的に停止させてもよい。このようなオペレータ操作としては、たとえば、図示しない所定のボタンの押下操作、ブーム操作レバー122を用いてブーム31を下げる操作、前後進切替操作レバー121を前進位置から後進位置に切り替える操作が挙げられる。なお、ホイールローダ1においては、前後進切替操作レバー121を前進位置から後進位置に切り替える操作は、ホイールローダ1の前進時(停止していないとき)においても行われる。
 <利点>
 (1)以上のように、センサ40は、ブーム31の先端部よりもブーム31の基端部に近い、ブーム31の所定位置に設置されている。コントローラ110は、ホイールローダ1が走行することによってセンサ40によって測定された距離Dが閾値Th以下になると、衝突回避のための所定の動作としてブーム31を上げる動作をホイールローダ1に実行させる。
 これによれば、ホイールローダ1は、ダンプアプローチ時において、ブーム31がベッセル901に衝突する前に、図7(B)の区間Q22に示したように、ブーム31をベッセル901から遠ざける処理を行なう。それゆえ、オペレータがブーム31の位置の確認を怠った場合であっても、ブーム31がダンプトラック900に衝突してしまうことを回避可能となる。したがって、ホイールローダ1によれば、ダンプアプローチ時におけるオペレータ操作を補助することができる。
 (2)詳しくは、上記所定位置は、ブーム31の下端部31aである。これによれば、ブーム31の下端部31aをセンシングすることが可能となる。
 (3)センサ40は、ブーム31の下端部31aをセンシングする。これによれば、ブーム31とダンプトラック900のベッセル901との距離Dを測定することが可能となる。
 (4)コントローラ110は、ブーム31の角度が最大角となると、ホイールローダ1の走行を停止させる。これによれば、ブーム31を可能な限り逃がしてもベッセル901に衝突してしまうような局面において、ブーム31がベッセル901に衝突してしまう事態を防止できる。
 [実施の形態2]
 本実施の形態に係るホイールローダについて、図面を参照して説明する。なお、実施の形態1のホイールローダ1と異なる構成について説明し、ホイールローダ1と同様な構成については、その説明を繰り返さない。
 図10は、実施形態に基づくホイールローダ1Aの側面図である。図11は、ホイールローダ1Aの上面図である。図12は、ホイールローダ1Aの斜視図である。
 図10,11,12に示されるように、ホイールローダ1Aは、センサ40の代わりにセンサ40Aを備える点以外は、ホイールローダ1Aと同様のハードウェア構成を備える。
 センサ40Aは、フロントフレーム5aの上面に設置されている。センサ40Aは、フロントフレーム5aの前端部51(図13参照)よりもブーム31の支持位置に近い所定位置に設置されている。詳しくは、フロントフレーム5aの前端部よりもブームピン7の位置に近い位置に設置されている。
 センサ40Aは、図11のY方向において、上面視で、左のブーム31の支持位置と、チルトシリンダ35の支持位置との間に設置されている。なお、当該上面視で、右のブーム31の支持位置と、チルトシリンダ35の支持位置との間にセンサ40Aを設置してもよい。
 センサ40Aは、センサ40と同様に、ダンプアプローチ時においては、ダンプトラック900とブーム31との間の距離Dを測定する。詳しくは、センサ40Aは、センサ40と同様に、ダンプトラック900のベッセル901とブーム31との間の距離Dを測定する。センサ40Aは、センサ40と同様に、ブーム31が上昇しているときには、ブーム31の下端部をセンシングする。なお、センサ40Aは、距離Dを測定するための装置であればよく、センサ40Aとしては、超音波センサ、レーザセンサ、赤外線センサ、カメラ等の各種のデバイスを利用できる。
 図13は、センサ40Aのセンシング範囲を説明するための模式図である。図13に示されるように、ブーム31が所定の角度以上に上昇した場合においてセンサ40Aの光軸49が概ねブーム31の延伸方向に沿うように、センサ40Aが配置されている。センサ40Aのセンシング範囲は、ダンプアプローチ時のブーム角度を想定して予め設定されている。
 センサ40Aは、ブーム31の下端部31aを含むエリアをセンシングする。さらに、センサ40Aは、ブーム31の下端部31aにおける、ブーム31の基端部よりも先端部に近いエリアをセンシングしてもよい。特に、センサ40Aは、ブーム31の下端部31aにおける、リフトシリンダ33の他端がブーム31に取り付けられる箇所からブーム31の先端部までのエリアをセンシングすることが好ましい。また、センサ40Aは、前述したエリアの一部をセンシングするものであってもよい。
 このような配置により、センサ40Aは、積込対象としてのダンプトラックとブーム31との間の距離Dを測定することができる。なお、センサ40Aによって得た情報は、ホイールローダ1Aのコントローラ110に送れて、データ処理がなされる。
 ホイールローダ1Aにおいても、ホイールローダ1と同様の制御が実行される。具体的には、コントローラ110は、ホイールローダ1Aが走行することによってセンサ40Aによって測定された距離Dが閾値Th以下になると、衝突回避のための所定の動作としてブーム31を上げる動作をホイールローダ1に実行させる。
 これによれば、ホイールローダ1Aは、ダンプアプローチ時において、ブーム31がベッセル901に衝突する前に、ブーム31をベッセル901から遠ざけことができる。それゆえ、オペレータが、前輪3aに視線を向けたままホイールローダ1Aを走行させることによりブーム31の位置の確認を怠ったとしても、ブーム31がダンプトラック900に衝突してしまうことを回避可能となる。
 <<変形例>>
 実施の形態1に係るホイールローダ1および実施の形態2に係るホイールローダ1Aとの変形例については、図面を参照して説明する。
 (1)衝突回避のための所定の動作について
 上記の実施の形態1,2においては、コントローラ110は、ホイールローダ1Aが走行することによってセンサ40Aによって測定された距離Dが閾値Th以下になると、所定の動作としてブーム31を上げる動作をホイールローダ1に実行させる。しかしながら、所定の動作は、ブーム31を上昇させる動作に限定されるものではない。
 コントローラ110は、ブーム31を上げる制御を行う代わりに、スピーカ152から所定の報知音(警告音)を出力させてもよい。あるいは、コントローラ110は、モニタ151に所定の警告表示を行わせてもよい。これらによれば、オペレータは、異常に気付くことが可能となる。具体的には、オペレータは、ホイールローダ1,1Aがダンプトラックに衝突しそうな状態となっていることに気付くことが可能となる。
 コントローラ110は、バイブレータ124~126に対して振動を開始する指令を送信してもよい。なお、バイブレータ124~126の振動により、各操作レバー121,122,123は振動する。これによっても、オペレータは、異常に気付くことが可能となる。
 なお、ブーム31の上昇の動作と、スピーカ152からの所定の警告音の出力と、モニタ151における所定の警告表示と、バイブレータ124~126とを、適宜組み合わせて実行するように、ホイールローダ1,1Aを構成してもよい。
 (2)チルト角度を考慮した制御
 図14は、バケット32のチルト角度θを説明するための図である。なお、図14では、ホイールローダ1を例示している。図14に示すように、ダンプアプローチ時には、土砂等の掘削物がバケット32に積載されているため、オペレータは、チルト角度θを所定の角度(以下、「角度θ1」とも称する)よりも大きくする必要がある。
 そこで、距離Dが閾値Th以下になった場合に、所定の動作を常に開始するのではなく、バケット32のチルト角度が所定の角度θ1以上となったことを条件に、所定の動作を開始するように、ホイールローダ1,1Aを構成してもよい。
 これによれば、バケット32に掘削物を積載している状態でホイールローダ1,1Aがダンプトラック900に近づいている状況の場合には、距離Dが閾値Th以下になると、所定の動作が実行される。その一方で、バケット32に掘削物を積載していない状態でホイールローダ1,1Aがダンプトラック900に近づいている状況の場合には、距離Dが閾値Th以下になっても所定の動作が実行されることはない。
 このように、ホイールローダ1、1Aがダンプトラック900に近づいている場合であっても、バケット32に掘削物が積載されていないときには、所定の動作が実行されることを抑止することができる。
 図15は、荷切の状態を表した図である。なお、図15では、ホイールローダ1を例示している。図15に示すように、オペレータは、ダンプトラック900のベッセル901に掘削物を積載していった場合、ベッセル901の高さを超えて掘削物がベッセル901に盛られた状態になり得る。このような場合、オペレータは、バケット32のチルト角度を上記の角度θ1よりも小さい所定の角度(以下、「角度θ2」)以下にして、ベッセル901の上側の掘削物をバケット32を操作して地面に落とす。典型的には、バケット32のチルト角度θをゼロ度(刃先32aが本体5に対して水平となる状態)にして、ベッセル901から溢れた土砂を、ダンプトラック900に対してホイールローダ1、1Aとは反対側の地面に落とす。
 オペレータがこのような荷切の処理を行なおうとしているときに、距離Dが閾値Th以下になったからといってブーム31が自動的に上昇してしまうと、荷切が行えない。そこで、コントローラ110は、チルト角度θが角度θ1よりも小さい角度θ2以下である場合、所定の動作としてのブーム上げの実行を停止させる。これにより、オペレータは、荷切をすることができる。
 (3)後進状態における制御停止
 ホイールローダ1、1Aの後進時には、距離Dが閾値Th以下であっても、ブーム31がベッセル901に衝突することはないため、ブーム31の上昇等の所定の動作を実行させる必要はない。そこで、ホイールローダ1,1Aが前進状態から後進状態に遷移すると、上記所定の動作の実行を停止させるように、コントローラ110を構成してもよい。これによれば、不要な制御が実行されることを抑制できる。
 <<付記>>
 掘削物を積込対象に積み込むホイールローダは、フロントフレームと、バケットと、先端部がバケットに接続され、かつ基端部がフロントフレームに回転可能に支持されたブームと、積込対象とブームとの間の距離を測定するためのセンサと、ホイールローダの動作を制御するコントローラとを備える。コントローラは、ホイールローダが走行することによってセンサによって測定された距離が閾値以下になると、衝突回避のための所定の動作をホイールローダに実行させる。
 上記の構成によれば、ホイールローダは、前進時において、ブームが積込対象に衝突する前に、衝突回避のための所定の動作を実行する。それゆえ、オペレータがブームの位置の確認を怠った場合であっても、積載対象と衝突してしまうことを避けることが可能となる。したがって、ホイールローダによれば、掘削物を積込対象に積み込む際におけるオペレータ操作を補助することができる。
 好ましくは、センサは、先端部よりも基端部に近い、ブームにおける第1の位置、およびフロントフレームの前端部よりもブームの支持位置に近い、フロントフレームにおける第2の位置のうちのいずれかに設置されている。また好ましくは、第1の位置は、ブームの下端部である。
 上記の構成によれば、ホイールローダは、センサによって、ブームの下端部をセンシングすることが可能となる。
 好ましくは、センサは、第1の位置に設置されており、かつブームの下端部における、基端部よりも先端部に近いエリアをセンシングする。
 上記の構成によれば、ホイールローダは、ブームと積載対象との距離を測定することが可能となる。
 好ましくは、ホイールローダは、一端がブームの下端部に取り付けられ、かつブームを駆動するリフトシリンダをさらに備える。センサは、第1の位置に設置されており、かつブームの下端部における、リフトシリンダがブームに取り付けられる箇所からブームの先端部までのエリアをセンシングする。
 上記の構成によれば、ホイールローダは、ブームと積載対象との距離を測定することが可能となる。
 好ましくは、所定の動作は、ブームを上げる動作である。
 上記の構成によれば、ホイールローダは、前進時において、ブームが積込対象に衝突する前に、ブームを積込対象から遠ざけることができる。それゆえ、オペレータがブームの位置の確認を怠った場合であっても、ブームが積込対象に衝突してしまうことを回避可能となる。
 好ましくは、所定の動作は、所定の報知音を出力する動作である。
 上記の構成によれば、ブームが積込対象に衝突する前にオペレータが報知音を聞くことにより、オペレータは、積込対象との衝突を回避する操作を行うことが可能となる。
 好ましくは、ホイールローダを操作するための操作レバーをさらに備える。所定の動作は、操作レバーを振動させる動作である。
 上記の構成によれば、ブームが積込対象に衝突する前にオペレータが操作レバーの振動を感知することにより、オペレータは、積込対象との衝突を回避する操作を行うことが可能となる。
 好ましくは、コントローラは、所定の動作によってブームの角度が最大角となると、ホイールローダの走行を停止させる。
 上記の構成によれば、ブームを可能な限り逃がしても積載対象に衝突してしまうような局面において、ブームが積載対象に衝突してしまう事態を防止できる。
 好ましくは、コントローラは、バケットのチルト角度が第1の値以上であることを条件に、所定の動作をホイールローダに実行させる。
 上記の構成によれば、ホイールローダが積載対象に近づいている場合であっても、バケットに掘削物が積載されていないときには、衝突を回避するための所定の動作が実行されることを抑止することができる。
 好ましくは、所定の動作は、ブームを上げる動作である。コントローラは、チルト角度が第1の値よりも小さい第2の値以下である場合、ブームを上げる動作を停止させる。
 上記の構成によれば、ホイールローダは、ブーム上げの自動制御を停止するため、オペレータは、荷切をすることができる。
 好ましくは、コントローラは、オペレータ操作に基づく所定の入力を受け付けた場合には、所定の動作の実行を停止させる。
 上記の構成によれば、積載対象との距離が閾値以下になった場合にブームを上昇させるといった制御を、オペレータ操作によって強制的に停止させることが可能となる。
 好ましくは、所定の動作は、ブームを上げる動作である。オペレータ操作は、ブームを下げる操作である。
 上記の構成によれば、ブームが自動的に上昇しているときに、ブームを下げる操作を行うことにより、ブームを自動的に上昇させる制御を強制的に停止させることができる。
 好ましくは、ホイールローダの前進と後進とを切り替える前後進切替レバーをさらに備える。オペレータ操作は、前後進切替レバーが前進位置から後進位置に切り替える操作である。
 上記の構成によれば、積載対象との距離が閾値以下になった場合にブームを上昇させるといった制御を、前後進切替レバーの切替操作によって強制的に停止させることが可能となる。
 好ましくは、コントローラは、ホイールローダが前進状態から後進状態に遷移すると、所定の動作の実行を停止させる。
 上記の構成によれば、積載対象との距離が閾値以下になった場合にブームを上昇させるといった制御を、後進状態のときには停止させることが可能となる。
 制御方法は、掘削物を積込対象に積み込むホイールローダにおいて実行される。この制御方法は、積込対象とホイールローダのブームとの間の距離を測定するステップと、ホイールローダが走行することによって、測定された距離が閾値以下になることを判断するステップと、測定された距離が閾値以下になると、衝突回避のための所定の動作をホイールローダに実行させるステップとを備える。
 上記の方法によれば、ホイールローダは、前進時において、ブームが積込対象に衝突する前に、衝突回避のための所定の動作を実行する。それゆえ、オペレータがブームの位置の確認を怠った場合であっても、積載対象と衝突してしまうことを避けることが可能となる。したがって、ホイールローダによれば、掘削物を積込対象に積み込む際におけるオペレータ操作を補助することができる。
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A ホイールローダ、3a 前輪、3b 後輪、5 本体、5a フロントフレーム、5b リアフレーム、6 運転室、7 ブームピン、30 作業機、31 ブーム31a 下端部、32 バケット、32a 刃先、33 リフトシリンダ、34 ベルクランク、35 チルトシリンダ、36 チルトロッド、39 バケットピン、40,40A センサ、41 レンズ、48,49 光軸、900 ダンプトラック、901 ベッセル。

Claims (16)

  1.  掘削物を積込対象に積み込むホイールローダであって、
     フロントフレームと、
     バケットと、
     先端部が前記バケットに接続され、かつ基端部が前記フロントフレームに回転可能に支持されたブームと、
     前記積込対象と前記ブームとの間の距離を測定するためのセンサと、
     前記ホイールローダの動作を制御するコントローラとを備え、
     前記コントローラは、前記ホイールローダが走行することによって前記センサによって測定された距離が閾値以下になると、衝突回避のための所定の動作を前記ホイールローダに実行させる、ホイールローダ。
  2.  前記センサは、前記先端部よりも前記基端部に近い、前記ブームにおける第1の位置、および前記フロントフレームの前端部よりも前記ブームの支持位置に近い、前記フロントフレームにおける第2の位置のうちのいずれかに設置されている、請求項1に記載のホイールローダ。
  3.  前記第1の位置は、前記ブームの下端部である、請求項2に記載のホイールローダ。
  4.  前記センサは、前記第1の位置に設置されており、かつ前記ブームの下端部における、前記基端部よりも前記先端部に近いエリアをセンシングする、請求項2または3に記載のホイールローダ。
  5.  一端が前記ブームの下端部に取り付けられ、かつ前記ブームを駆動するリフトシリンダをさらに備え、
     前記センサは、前記第1の位置に設置されており、かつ前記ブームの下端部における、前記リフトシリンダが前記ブームに取り付けられる箇所から前記ブームの先端部までのエリアをセンシングする、請求項2または3に記載のホイールローダ。
  6.  前記所定の動作は、前記ブームを上げる動作である、請求項1から5のいずれか1項に記載のホイールローダ。
  7.  前記所定の動作は、所定の報知音を出力する動作である、請求項1から5のいずれか1項に記載のホイールローダ。
  8.  前記ホイールローダを操作するための操作レバーをさらに備え、
     前記所定の動作は、前記操作レバーを振動させる動作である、請求項1から5のいずれか1項に記載のホイールローダ。
  9.  前記コントローラは、前記所定の動作によって前記ブームの角度が最大角となると、前記ホイールローダの走行を停止させる、請求項6に記載のホイールローダ。
  10.  前記コントローラは、前記バケットのチルト角度が第1の値以上であることを条件に、前記所定の動作を前記ホイールローダに実行させる、請求項1から9のいずれか1項に記載のホイールローダ。
  11.  前記所定の動作は、前記ブームを上げる動作であって、
     前記コントローラは、前記チルト角度が前記第1の値よりも小さい第2の値以下である場合、前記ブームを上げる動作を停止させる、請求項10に記載のホイールローダ。
  12.  前記コントローラは、オペレータ操作に基づく所定の入力を受け付けた場合には、前記所定の動作の実行を停止させる、請求項1から11のいずれか1項に記載のホイールローダ。
  13.  前記所定の動作は、前記ブームを上げる動作であって、
     前記オペレータ操作は、前記ブームを下げる操作である、請求項12に記載のホイールローダ。
  14.  前記ホイールローダの前進と後進とを切り替える前後進切替レバーをさらに備え、
     前記オペレータ操作は、前記前後進切替レバーが前進位置から後進位置に切り替える操作である、請求項12に記載のホイールローダ。
  15.  前記コントローラは、前記ホイールローダが前進状態から後進状態に遷移すると、前記所定の動作の実行を停止させる、請求項1から13のいずれか1項に記載のホイールローダ。
  16.  掘削物を積込対象に積み込むホイールローダの制御方法であって、
     前記積込対象と前記ホイールローダのブームとの間の距離を測定するステップと、
     前記ホイールローダが走行することによって、測定された前記距離が閾値以下になることを判断するステップと、
     測定された前記距離が前記閾値以下になると、衝突回避のための所定の動作を前記ホイールローダに実行させるステップとを備える、ホイールローダの制御方法。
PCT/JP2017/029271 2016-08-31 2017-08-14 ホイールローダおよびホイールローダの制御方法 WO2018043104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780016921.9A CN108779628B (zh) 2016-08-31 2017-08-14 轮式装载机以及轮式装载机的控制方法
EP17846112.5A EP3412838B1 (en) 2016-08-31 2017-08-14 Wheel loader and wheel loader control method
US16/082,284 US10815640B2 (en) 2016-08-31 2017-08-14 Wheel loader and method for controlling wheel loader
JP2018537098A JP6914943B2 (ja) 2016-08-31 2017-08-14 ホイールローダおよびホイールローダの制御方法
US17/023,673 US11674285B2 (en) 2016-08-31 2020-09-17 Wheel loader and method for controlling wheel loader
US18/141,646 US20230257960A1 (en) 2016-08-31 2023-05-01 Wheel loader and method for controlling wheel loader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169498 2016-08-31
JP2016-169498 2016-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,284 A-371-Of-International US10815640B2 (en) 2016-08-31 2017-08-14 Wheel loader and method for controlling wheel loader
US17/023,673 Continuation US11674285B2 (en) 2016-08-31 2020-09-17 Wheel loader and method for controlling wheel loader

Publications (1)

Publication Number Publication Date
WO2018043104A1 true WO2018043104A1 (ja) 2018-03-08

Family

ID=61300572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029271 WO2018043104A1 (ja) 2016-08-31 2017-08-14 ホイールローダおよびホイールローダの制御方法

Country Status (5)

Country Link
US (3) US10815640B2 (ja)
EP (1) EP3412838B1 (ja)
JP (1) JP6914943B2 (ja)
CN (1) CN108779628B (ja)
WO (1) WO2018043104A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190238A (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
WO2019207981A1 (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
JP2020165108A (ja) * 2019-03-28 2020-10-08 日立建機株式会社 作業車両
JP2020193503A (ja) * 2019-05-29 2020-12-03 ナブテスコ株式会社 作業機械の操縦支援システム、作業機械の操縦支援方法、操縦支援システムの保守支援方法、建設機械
WO2021059655A1 (ja) * 2019-09-26 2021-04-01 日立建機株式会社 制御システム
WO2022070562A1 (ja) * 2020-09-30 2022-04-07 株式会社小松製作所 作業機械

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570582B2 (en) * 2016-11-23 2020-02-25 Caterpillar Inc. System and method for operating a material-handling machine
DE102017215379A1 (de) * 2017-09-01 2019-03-07 Robert Bosch Gmbh Verfahren zur Ermittlung einer Kollisionsgefahr
EP3724862B1 (en) * 2017-12-14 2022-10-19 Volvo Construction Equipment AB Method for alerting a person near a vehicle when said vehicle performs a movement and vehicle
JP7127313B2 (ja) * 2018-03-19 2022-08-30 コベルコ建機株式会社 建設機械
US10883256B2 (en) * 2018-05-25 2021-01-05 Deere & Company Object responsive control system for a work machine
WO2018199342A1 (ja) * 2018-06-19 2018-11-01 株式会社小松製作所 作業車両の制御システム及び作業車両の制御方法
CN114174596B (zh) * 2019-09-18 2024-03-08 住友重机械工业株式会社 挖土机
JP7283332B2 (ja) * 2019-09-26 2023-05-30 コベルコ建機株式会社 容器計測システム
JP7306191B2 (ja) * 2019-09-26 2023-07-11 コベルコ建機株式会社 輸送車位置判定装置
US11401684B2 (en) 2020-03-31 2022-08-02 Caterpillar Inc. Perception-based alignment system and method for a loading machine
AU2020468174A1 (en) * 2020-09-15 2023-03-02 Sandvik Mining And Construction Oy Mining machine with a support structure for measurement sensors
US11946230B2 (en) 2020-10-28 2024-04-02 Deere & Company Container load assist system and method for a work vehicle
EP4269704A1 (en) * 2020-12-23 2023-11-01 Volvo Construction Equipment AB Excavator and method and device for controlling excavator
US11939748B2 (en) 2021-03-29 2024-03-26 Joy Global Surface Mining Inc Virtual track model for a mining machine
US11987961B2 (en) 2021-03-29 2024-05-21 Joy Global Surface Mining Inc Virtual field-based track protection for a mining machine
US11879231B2 (en) 2021-04-19 2024-01-23 Deere & Company System and method of selective automation of loading operation stages for self-propelled work vehicles
US20230064337A1 (en) 2021-08-26 2023-03-02 Caterpillar Inc. Methods and systems for implementing a lock-out command on lever machines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193098A (ja) * 1992-12-24 1994-07-12 Komatsu Ltd 自走式作業車両の制御装置
JPH101968A (ja) * 1996-06-18 1998-01-06 Hitachi Constr Mach Co Ltd 油圧建設機械の自動軌跡制御装置
JPH1088625A (ja) * 1996-09-13 1998-04-07 Komatsu Ltd 自動掘削機、自動掘削方法および自動積み込み方法
JP2003184131A (ja) * 2001-12-19 2003-07-03 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2006195877A (ja) * 2005-01-17 2006-07-27 Hitachi Constr Mach Co Ltd 作業機械
JP2007023486A (ja) * 2005-07-12 2007-02-01 Shin Caterpillar Mitsubishi Ltd 作業機械における接触回避制御装置
JP2008144378A (ja) * 2006-12-06 2008-06-26 Shin Caterpillar Mitsubishi Ltd 遠隔操縦作業機の制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537099B2 (ja) * 1993-07-16 2004-06-14 株式会社小松製作所 産業車両のバケット角制御装置
US5528498A (en) * 1994-06-20 1996-06-18 Caterpillar Inc. Laser referenced swing sensor
JP2867332B2 (ja) * 1996-09-03 1999-03-08 株式会社レンタルのニッケン 深掘り掘削機の運動規制機構
US6108949A (en) * 1997-12-19 2000-08-29 Carnegie Mellon University Method and apparatus for determining an excavation strategy
JP4082646B2 (ja) * 1999-11-19 2008-04-30 株式会社小松製作所 排土板の前方監視装置付き車両
FI115678B (fi) * 2003-03-25 2005-06-15 Sandvik Tamrock Oy Järjestely kaivosajoneuvon törmäyksenestoon
JP2008303574A (ja) 2007-06-06 2008-12-18 Hitachi Constr Mach Co Ltd 作業機械
JP4948493B2 (ja) * 2008-08-28 2012-06-06 日立建機株式会社 建設機械
JP5920953B2 (ja) * 2011-09-23 2016-05-24 ボルボ コンストラクション イクイップメント アーベー バケットを備えた作業機械のアタック姿勢を選択する方法
US9206587B2 (en) * 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
US8768583B2 (en) * 2012-03-29 2014-07-01 Harnischfeger Technologies, Inc. Collision detection and mitigation systems and methods for a shovel
CN105934686B (zh) * 2014-01-30 2019-07-16 西门子工业公司 用于确定n+1维环境模型的方法和设备及采矿装置
JP6342705B2 (ja) * 2014-05-12 2018-06-13 古河ユニック株式会社 作業機用ブーム衝突回避装置
JP2016065422A (ja) * 2014-09-26 2016-04-28 株式会社日立製作所 外界認識装置および外界認識装置を用いた掘削機械
CN204475392U (zh) * 2014-12-30 2015-07-15 阿特拉斯工程机械有限公司 挖掘机驾驶室防碰装置
JP6419585B2 (ja) * 2015-01-13 2018-11-07 株式会社小松製作所 掘削機械、掘削機械の制御方法及び掘削システム
US10094093B2 (en) * 2015-11-16 2018-10-09 Caterpillar Inc. Machine onboard activity and behavior classification
WO2018051511A1 (ja) * 2016-09-16 2018-03-22 日立建機株式会社 作業機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193098A (ja) * 1992-12-24 1994-07-12 Komatsu Ltd 自走式作業車両の制御装置
JPH101968A (ja) * 1996-06-18 1998-01-06 Hitachi Constr Mach Co Ltd 油圧建設機械の自動軌跡制御装置
JPH1088625A (ja) * 1996-09-13 1998-04-07 Komatsu Ltd 自動掘削機、自動掘削方法および自動積み込み方法
JP2003184131A (ja) * 2001-12-19 2003-07-03 Hitachi Constr Mach Co Ltd 建設機械の操作装置
JP2006195877A (ja) * 2005-01-17 2006-07-27 Hitachi Constr Mach Co Ltd 作業機械
JP2007023486A (ja) * 2005-07-12 2007-02-01 Shin Caterpillar Mitsubishi Ltd 作業機械における接触回避制御装置
JP2008144378A (ja) * 2006-12-06 2008-06-26 Shin Caterpillar Mitsubishi Ltd 遠隔操縦作業機の制御装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121532B2 (ja) 2018-04-27 2022-08-18 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
WO2019207981A1 (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
JP2019190237A (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
WO2019207982A1 (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
JP2019190238A (ja) * 2018-04-27 2019-10-31 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
US11885096B2 (en) 2018-04-27 2024-01-30 Komatsu Ltd. Loading machine control device and loading machine control method
JP6995687B2 (ja) 2018-04-27 2022-01-17 株式会社小松製作所 積込機械の制御装置及び積込機械の制御方法
US11821168B2 (en) 2018-04-27 2023-11-21 Komatsu Ltd. Control device for loading machine and control method for loading machine
JP2020165108A (ja) * 2019-03-28 2020-10-08 日立建機株式会社 作業車両
JP2020193503A (ja) * 2019-05-29 2020-12-03 ナブテスコ株式会社 作業機械の操縦支援システム、作業機械の操縦支援方法、操縦支援システムの保守支援方法、建設機械
WO2021059655A1 (ja) * 2019-09-26 2021-04-01 日立建機株式会社 制御システム
JP7282644B2 (ja) 2019-09-26 2023-05-29 日立建機株式会社 制御システム
JP2021050575A (ja) * 2019-09-26 2021-04-01 日立建機株式会社 制御システム
WO2022070562A1 (ja) * 2020-09-30 2022-04-07 株式会社小松製作所 作業機械

Also Published As

Publication number Publication date
EP3412838A4 (en) 2019-08-28
JPWO2018043104A1 (ja) 2019-06-24
CN108779628A (zh) 2018-11-09
US20190093311A1 (en) 2019-03-28
EP3412838A1 (en) 2018-12-12
US11674285B2 (en) 2023-06-13
JP6914943B2 (ja) 2021-08-04
US10815640B2 (en) 2020-10-27
CN108779628B (zh) 2021-06-08
EP3412838B1 (en) 2020-11-04
US20230257960A1 (en) 2023-08-17
US20210032837A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2018043104A1 (ja) ホイールローダおよびホイールローダの制御方法
WO2018043091A1 (ja) ホイールローダおよびホイールローダの制御方法
CN110088035B (zh) 起重机
JP7450083B2 (ja) 周辺監視システム及び周辺監視方法
EP2924176B1 (en) Front loader
US8267480B2 (en) Method and a device for controlling a vehicle comprising a dump body
EP3848516B1 (en) System and method for controlling construction machinery
JP2012112108A (ja) 作業機械の周囲監視装置
WO2018151310A1 (ja) 作業車両および作業車両の制御方法
JP7000957B2 (ja) 作業機械操縦装置
JP5261832B2 (ja) 運搬車両の後方視界表示システム
US20220145588A1 (en) Work machine
WO2022209176A1 (ja) 作業機械の走行システムおよび作業機械の制御方法
US11821171B2 (en) Work machine
JP5778796B2 (ja) 運搬車両の後方視界表示システム
WO2024043075A1 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
JP5462352B2 (ja) 運搬車両の後方視界表示システム
US20240117604A1 (en) Automatic mode for object detection range setting
WO2024057961A1 (ja) 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法
WO2024057959A1 (ja) 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法
WO2024062899A1 (ja) 作業機械を含むシステム、および作業機械の制御方法
WO2024043074A1 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
JP2019014584A (ja) クレーン車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018537098

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2017846112

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017846112

Country of ref document: EP

Effective date: 20180904

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE