WO2024057961A1 - 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法 - Google Patents

作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法 Download PDF

Info

Publication number
WO2024057961A1
WO2024057961A1 PCT/JP2023/031879 JP2023031879W WO2024057961A1 WO 2024057961 A1 WO2024057961 A1 WO 2024057961A1 JP 2023031879 W JP2023031879 W JP 2023031879W WO 2024057961 A1 WO2024057961 A1 WO 2024057961A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
work machine
wheel loader
feature point
boom
Prior art date
Application number
PCT/JP2023/031879
Other languages
English (en)
French (fr)
Inventor
高史 松山
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024057961A1 publication Critical patent/WO2024057961A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices

Definitions

  • the present disclosure relates to a system including a work machine, a controller for the work machine, and a method for controlling the work machine.
  • a conventional wheel loader is disclosed, for example, in International Publication No. 2020/224768 (Patent Document 1).
  • a wheel loader repeatedly performs excavation work and loading work. In order to automate loading work, it is necessary to appropriately set the trajectory of the automatically controlled work equipment.
  • the present disclosure proposes a system including a work machine, a controller for the work machine, and a method for controlling the work machine, which can appropriately set the trajectory of the work machine to be automatically controlled.
  • a work machine main body a work machine attached to the work machine main body and having a bucket, a work machine attitude sensor that detects the attitude of the work machine, and an object around the work machine main body are detected.
  • a system is proposed that includes a work machine that includes an object sensor and a controller that communicates with the work machine attitude sensor and the object sensor. The controller obtains a reference point of the container detected by the object sensor. The controller acquires the trajectory of the work machine when the work machine is operated. The controller extracts the positions of the feature points forming the trajectory using the reference point as a reference.
  • a controller for a work machine obtains a reference point of the container detected by the object sensor.
  • the controller acquires the trajectory of the work machine when the work machine is operated.
  • the controller extracts the positions of the feature points forming the trajectory using the reference point as a reference.
  • a method for controlling a work machine involves acquiring the reference point of the container detected by the object sensor, acquiring the trajectory of the work machine when it is operated, and determining the position of the feature points that make up the trajectory from the reference point. Extracting as a standard.
  • the system including the work machine, the work machine controller, and the work machine control method of the present disclosure, it is possible to appropriately set the trajectory of the work machine to be automatically controlled.
  • FIG. 1 is a side view of a wheel loader as an example of a working machine.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader.
  • FIG. 2 is a plan view of a wheel loader that performs excavation and loading work.
  • FIG. 1 is a block diagram showing the configuration of an automatic control system for a wheel loader.
  • 2 is a flowchart showing a process flow for recording work machine control when a skilled operator loads a container.
  • FIG. 3 is a diagram showing the trajectory of a working machine when a skilled operator loads containers.
  • 3 is a flowchart showing the flow of processing for editing recorded parameters. It is a graph showing changes in cylinder length during loading work.
  • FIG. 1 is a side view of a wheel loader as an example of a working machine.
  • FIG. 1 is a block diagram showing a schematic configuration of a control system for a wheel loader.
  • FIG. 2 is a plan view of a wheel load
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when starting a bucket dumping operation.
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when the cutting edge reaches the innermost position.
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when stopping the dumping operation of the bucket. It is a figure which shows typically the attitude
  • FIG. 3 is a diagram schematically showing the attitude of the wheel loader when starting a bucket tilting operation. It is a figure which shows typically the attitude
  • FIG. 1 is a side view of a wheel loader 1 as an example of a working machine.
  • the wheel loader 1 includes a vehicle body frame 2, a working machine 3, a traveling device 4, and a cab 5.
  • the vehicle body of the wheel loader 1 is composed of a vehicle body frame 2, a cab 5, and the like.
  • a working machine 3 and a traveling device 4 are attached to the vehicle body of the wheel loader 1.
  • the main body of the wheel loader 1 includes a vehicle body and a traveling device 4.
  • the traveling device 4 causes the vehicle body of the wheel loader 1 to travel, and includes running wheels 4a and 4b.
  • the wheel loader 1 is a wheeled vehicle that includes running wheels 4a and 4b as rotating bodies for running on both sides of the vehicle body in the left-right direction.
  • the wheel loader 1 is self-propelled by rotationally driving running wheels 4a and 4b, and can perform desired work using the working machine 3.
  • the traveling device 4 corresponds to an example of a traveling object.
  • the direction in which the wheel loader 1 travels straight is referred to as the front-rear direction of the wheel loader 1.
  • the front direction the side on which the working machine 3 is arranged with respect to the vehicle body frame 2
  • the side opposite to the front direction is defined as the rear direction.
  • the left-right direction of the wheel loader 1 is a direction perpendicular to the front-rear direction when the wheel loader 1 on a flat ground is viewed from above. Looking forward, the right and left sides in the left and right direction are the right direction and left direction, respectively.
  • the vertical direction of the wheel loader 1 is a direction perpendicular to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the bottom, and the side with the sky is the top.
  • the vehicle body frame 2 includes a front frame 2a and a rear frame 2b.
  • the front frame 2a is arranged in front of the rear frame 2b.
  • the front frame 2a and the rear frame 2b are attached to each other so as to be movable in the left-right direction.
  • a pair of steering cylinders 11 are attached across the front frame 2a and the rear frame 2b.
  • Steering cylinder 11 is a hydraulic cylinder.
  • the front frame 2a and the rear frame 2b constitute a vehicle body frame 2 having an articulated structure.
  • the wheel loader 1 is an articulated working machine in which a front frame 2a and a rear frame 2b are connected for bending movement.
  • a working machine 3 and a pair of running wheels (front wheels) 4a are attached to the front frame 2a.
  • the work machine 3 is attached to the front of the main body of the wheel loader 1.
  • the work machine 3 is supported by the vehicle body of the wheel loader 1.
  • the work machine 3 includes a boom 14 and a bucket 6.
  • the bucket 6 is arranged at the tip of the working machine 3.
  • the bucket 6 is a working tool for digging and loading.
  • the cutting edge 6a is the tip of the bucket 6.
  • the back surface 6b is part of the outer surface of the bucket 6.
  • the back surface 6b is formed of a flat surface.
  • the back surface 6b extends rearward from the cutting edge 6a.
  • the base end of the boom 14 is rotatably attached to the front frame 2a by a boom pin 9.
  • the bucket 6 is rotatably attached to the boom 14 by a bucket pin 17 located at the tip of the boom 14.
  • the boom pin 9 and the bucket pin 17 correspond to a plurality of joints of the working machine 3.
  • the work machine 3 further includes a bell crank 18 and a link 15.
  • the bell crank 18 is rotatably supported by the boom 14 by a support pin 18a located approximately at the center of the boom 14.
  • the link 15 is connected to a connecting pin 18c provided at the tip of the bell crank 18.
  • Link 15 connects bell crank 18 and bucket 6.
  • Boom cylinder 16 is a hydraulic cylinder.
  • the boom cylinder 16 rotates the boom 14 up and down about the boom pin 9 .
  • a base end of the boom cylinder 16 is attached to the front frame 2a.
  • the tip of the boom cylinder 16 is attached to the boom 14.
  • the boom cylinder 16 is a hydraulic actuator that moves the boom 14 up and down with respect to the front frame 2a. As the boom 14 moves up and down, the bucket 6 attached to the tip of the boom 14 also moves up and down.
  • the bucket cylinder 19 connects the bell crank 18 and the front frame 2a.
  • the base end of the bucket cylinder 19 is attached to the front frame 2a.
  • the tip of the bucket cylinder 19 is attached to a connecting pin 18b provided at the base end of the bell crank 18.
  • the bucket cylinder 19 is a hydraulic actuator that rotates the bucket 6 up and down with respect to the boom 14.
  • Bucket cylinder 19 is a work tool cylinder that drives bucket 6 .
  • Bucket cylinder 19 rotates bucket 6 around bucket pin 17 .
  • Bucket 6 is configured to be movable relative to boom 14 .
  • the bucket 6 is configured to be movable relative to the front frame 2a.
  • the boom cylinder 16 and the bucket cylinder 19 correspond to an example of a work machine actuator that drives the work machine 3.
  • a cab 5 on which an operator rides and a pair of running wheels (rear wheels) 4b are attached to the rear frame 2b.
  • a box-shaped cab 5 is arranged behind the boom 14.
  • the cab 5 is placed on the vehicle body frame 2. Inside the cab 5, a seat on which an operator of the wheel loader 1 sits, an operating device 8, which will be described later, and the like are arranged.
  • the cab 5 is provided with a sensory device 111.
  • the sensory device 111 is arranged, for example, on the ceiling of the cab 5.
  • the sensory device 111 is mounted on the top surface of the cab 5, for example.
  • the sensory device 111 is arranged, for example, at the front of the cab 5.
  • the sensing device 111 is attached to the cab 5, for example, facing forward, and is capable of acquiring information in front of the cab 5. The details of the perception device 111 will be described later.
  • FIG. 2 is a block diagram showing a schematic configuration of a control system that controls the wheel loader 1. As shown in FIG.
  • the engine 21 is a drive source that generates driving force for driving the working machine 3 and the traveling device 4, and is, for example, a diesel engine.
  • a motor driven by an electrical storage body may be used instead of the engine 21, or both the engine and the motor may be used.
  • the output of the engine 21 is controlled by adjusting the amount of fuel injected into the cylinders of the engine 21.
  • the driving force generated by the engine 21 is transmitted to the transmission 23.
  • the transmission 23 changes the driving force to appropriate torque and rotational speed.
  • An axle 25 is connected to the output shaft of the transmission 23.
  • the driving force shifted by the transmission 23 is transmitted to the axle 25.
  • Driving force is transmitted from the axle 25 to the running wheels 4a, 4b (FIG. 1).
  • the wheel loader 1 travels.
  • both the running wheels 4a and 4b constitute driving wheels that receive driving force and cause the wheel loader 1 to travel.
  • the work machine pump 13 is a hydraulic pump that is driven by the engine 21 and operates the work machine 3 with the hydraulic fluid it discharges.
  • the work machine 3 is driven by hydraulic oil from a work machine pump 13.
  • Hydraulic oil discharged from the work equipment pump 13 is supplied to the boom cylinder 16 and the bucket cylinder 19 via the main valve 32.
  • the boom 14 moves up and down as the boom cylinder 16 expands and contracts in response to the supply of hydraulic oil.
  • the bucket cylinder 19 is supplied with hydraulic oil and expands and contracts, the bucket 6 rotates up and down.
  • the wheel loader 1 includes a vehicle body controller 50.
  • Vehicle controller 50 includes an engine controller 60, a transmission controller 70, and a work equipment controller 80.
  • the vehicle body controller 50 is generally realized by reading various programs using a CPU (Central Processing Unit).
  • the vehicle body controller 50 has a memory (not shown).
  • the memory functions as a work memory and stores various programs for realizing the functions of the wheel loader 1.
  • the operating device 8 is provided in the cab 5.
  • the operating device 8 is operated by an operator.
  • the operating device 8 includes a plurality of types of operating members that are operated by an operator to operate the wheel loader 1.
  • the operating device 8 includes an accelerator pedal 41 and a work implement operating lever 42.
  • the operating device 8 may include a steering handle, a shift lever, etc. (not shown).
  • the accelerator pedal 41 is operated to set the target rotation speed of the engine 21.
  • Engine controller 60 controls the output of engine 21 based on the amount of operation of accelerator pedal 41 .
  • the operation amount (depression amount) of the accelerator pedal 41 is increased, the output of the engine 21 is increased.
  • the amount of operation of the accelerator pedal 41 is decreased, the output of the engine 21 is decreased.
  • Transmission controller 70 controls transmission 23 based on the amount of operation of accelerator pedal 41 .
  • the work equipment operating lever 42 is operated to operate the work equipment 3.
  • the work machine controller 80 controls the electromagnetic proportional control valves 35 and 36 based on the amount of operation of the work machine operating lever 42.
  • the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is retracted and the bucket 6 moves in the dumping direction (the direction in which the cutting edge of the bucket 6 is lowered). Further, the electromagnetic proportional control valve 35 switches the main valve 32 so that the bucket cylinder 19 is extended and the bucket 6 is moved in the tilt direction (the direction in which the cutting edge of the bucket 6 is raised).
  • the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is retracted and the boom 14 is lowered. Further, the electromagnetic proportional control valve 36 switches the main valve 32 so that the boom cylinder 16 is extended and the boom 14 is raised.
  • the machine monitor 51 receives command signals from the vehicle controller 50 and displays various information.
  • the various information displayed on the machine monitor 51 includes, for example, information regarding the work performed by the wheel loader 1, vehicle body information such as remaining fuel level, cooling water temperature, and hydraulic oil temperature, and surrounding images of the surroundings of the wheel loader 1. etc.
  • the machine monitor 51 may be a touch panel, and in this case, a signal generated when the operator touches a part of the machine monitor 51 is output from the machine monitor 51 to the vehicle controller 50.
  • the wheel loader 1 of this embodiment performs an excavation and loading operation in which an excavated object such as earth and sand is scooped up and the excavated object is loaded onto a loading object such as a dump truck.
  • FIG. 3 is a plan view of the wheel loader 1 that performs excavation and loading work.
  • FIG. 3 shows a wheel loader 1 that performs so-called V-shape work.
  • FIG. 3(A) shows a wheel loader 1 that moves forward with a so-called empty load.
  • the wheel loader 1 travels forward along an excavation route R1 toward an excavation target 310 such as earth and sand.
  • the wheel loader 1 thrusts the bucket 6 into the excavated object 310 and stops moving forward.
  • an excavation operation in which the excavated object 310 is scooped into the bucket 6 is executed.
  • FIG. 3(B) shows a wheel loader 1 that performs so-called backward movement with a loaded load.
  • An excavated object 310 is loaded into the bucket 6 .
  • the wheel loader 1 travels backward along the excavation route R1 to the position where forward travel is started in FIG. 3(A).
  • FIG. 3(C) shows a wheel loader 1 that advances a load.
  • the wheel loader 1 moves forward toward the vessel 301 of the dump truck 300.
  • the wheel loader 1 moves forward from the position where it starts moving forward in FIG. 3(A) toward the dump truck 300 along the loading route R2.
  • the wheel loader 1 loads the excavated object 310 in the bucket 6 into the vessel 301.
  • the vessel 301 corresponds to an example of a "container" for loading a load loaded onto the work machine 3.
  • FIG. 3(D) shows a wheel loader 1 that moves backwards with no load.
  • the wheel loader 1 loads the object to the position where it starts moving forward in FIG. 3(C). Travel backwards along route R2.
  • the wheel loader 1 can repeatedly perform a series of operations such as excavation, retreat, dump approach, earth removal, and retreat.
  • FIG. 4 is a block diagram showing the configuration of the automatic control system of the wheel loader 1.
  • the automation controller 100 is configured to be able to send and receive signals to and from the vehicle body controller 50 described with reference to FIG.
  • the automation controller 100 is also configured to be able to send and receive signals to and from the external world information acquisition section 110.
  • the external world information acquisition unit 110 includes a perception device 111 and a position information acquisition device 112.
  • the perception device 111 and the position information acquisition device 112 are mounted on the wheel loader 1.
  • the perception device 111 acquires information around the wheel loader 1.
  • the sensing device 111 is attached to the front part of the upper surface of the cab 5, for example.
  • the sensing device 111 corresponds to an example of an "object sensor" that detects objects around the main body of the wheel loader 1.
  • the sensing device 111 detects the direction of an object outside the wheel loader 1 and the distance to the object in a non-contact manner.
  • the perception device 111 is, for example, a LiDAR (Light Detection and Ranging) that emits a laser beam to obtain information about an object.
  • Perceptual device 111 may be a visual sensor including a camera.
  • the perception device 111 may be a Radar (Radio Detection and Ranging) that acquires information about an object by emitting radio waves.
  • the sensing device 111 may be an infrared sensor.
  • the position information acquisition device 112 acquires information on the current position of the wheel loader 1.
  • the position information acquisition device 112 uses, for example, a satellite positioning system to acquire position information of the wheel loader 1 in a global coordinate system based on the earth.
  • the position information acquisition device 112 uses, for example, GNSS (Global Navigation Satellite Systems) and has a GNSS receiver.
  • the satellite positioning system calculates the position of the wheel loader 1 by calculating the position of the antenna of the GNSS receiver based on the positioning signal that the GNSS receiver receives from the satellite.
  • the external world information of the wheel loader 1 obtained by the sensing device 111 and the position information of the wheel loader 1 obtained by the position information acquisition device 112 are input to the automation controller 100.
  • the vehicle body controller 50 is configured to be able to send and receive signals to and from the vehicle information acquisition section 120, and receives input of information about the wheel loader 1 that the vehicle information acquisition section 120 acquires.
  • the vehicle information acquisition unit 120 is composed of various sensors mounted on the wheel loader 1.
  • the vehicle information acquisition unit 120 includes an articulate angle sensor 121, a vehicle speed sensor 122, a boom angle sensor 123, a bucket angle sensor 124, and a boom cylinder pressure sensor 125.
  • the articulate angle sensor 121 detects an articulate angle, which is the angle formed by the front frame 2a and the rear frame 2b, and generates a signal of the detected articulate angle.
  • the articulate angle sensor 121 outputs an articulate angle signal to the vehicle body controller 50.
  • the vehicle speed sensor 122 detects the moving speed of the wheel loader 1 by the traveling device 4 by detecting, for example, the rotational speed of the output shaft of the transmission 23, and generates a signal of the detected vehicle speed. Vehicle speed sensor 122 outputs a vehicle speed signal to vehicle controller 50.
  • the vehicle speed sensor 122 corresponds to an example of a travel sensor that detects the progress of the travel device 4 (traveling object).
  • the boom angle sensor 123 is composed of, for example, a rotary encoder provided on the boom pin 9, which is the attachment portion of the boom 14 to the vehicle body frame 2.
  • the boom angle sensor 123 detects the angle of the boom 14 with respect to the horizontal direction and generates a signal of the detected angle of the boom 14.
  • Boom angle sensor 123 outputs a signal indicating the angle of boom 14 to vehicle controller 50 .
  • the bucket angle sensor 124 is composed of, for example, a rotary encoder provided on the support pin 18a, which is the rotation axis of the bell crank 18. Bucket angle sensor 124 detects the angle of bucket 6 with respect to boom 14 and generates a signal of the detected angle of bucket 6. Bucket angle sensor 124 outputs a signal indicating the angle of bucket 6 to vehicle controller 50 .
  • the boom angle sensor 123 and the bucket angle sensor 124 correspond to an example of a "work machine attitude sensor” that detects the attitude of the work machine 3.
  • the boom cylinder pressure sensor 125 detects the pressure on the bottom side of the boom cylinder 16 (boom bottom pressure) and generates a signal of the detected boom bottom pressure.
  • the boom bottom pressure is high when the bucket 6 is loaded and low when it is empty.
  • Boom cylinder pressure sensor 125 outputs a boom bottom pressure signal to vehicle body controller 50.
  • the vehicle body controller 50 outputs the information input from the vehicle information acquisition unit 120 to the automation controller 100.
  • the automation controller 100 receives detected values from the vehicle speed sensor 122, boom angle sensor 123, and bucket angle sensor 124 via the vehicle body controller 50.
  • the actuator 140 is configured to be able to transmit and receive signals to and from the vehicle body controller 50. In response to a command signal from the vehicle body controller 50, the actuator 140 is driven.
  • the actuator 140 includes a brake EPC (electromagnetic proportional control valve) 141 for operating the brake of the traveling device 4, a steering EPC 142 for adjusting the running direction of the wheel loader 1, and a working machine for operating the working machine 3. It includes an EPC 143 and an HMT (Hydraulic Mechanical Transmission) 144.
  • the electromagnetic proportional control valves 35 and 36 shown in FIG. 2 constitute a working machine EPC 143.
  • the transmission 23 shown in FIG. 2 is realized as an HMT 144 that utilizes electronic control.
  • the transmission 23 may be an HST (Hydro-Static Transmission).
  • the power transmission device that transmits power from the engine 21 to the running wheels 4a, 4b may include an electric drive device such as a diesel electric system, or may include any combination of HMT, HST, and electric drive device. .
  • the transmission controller 70 has a brake control section 71 and an accelerator control section 72.
  • the brake control unit 71 outputs a command signal to the brake EPC 141 to control the operation of the brake.
  • the accelerator control unit 72 outputs a command signal to the HMT 144 to control the vehicle speed.
  • the work machine controller 80 has a steering control section 81 and a work machine control section 82.
  • the steering control unit 81 outputs a command signal for controlling the running direction of the wheel loader 1 to the steering EPC 142.
  • the work machine control unit 82 outputs a command signal for controlling the operation of the work machine 3 to the work machine EPC 143.
  • the automation controller 100 includes a position estimation section 101, a path planning section 102, and a route following control section 103.
  • the position estimation unit 101 estimates the self-position of the wheel loader 1 based on the position information acquired by the position information acquisition device 112. Further, the position estimating unit 101 recognizes the target position based on the external world information acquired by the sensing device 111.
  • the target position is, for example, the position of the excavated object 310 or the dump truck 300 shown in FIG. 3 .
  • the position estimation unit 101 is capable of acquiring a predetermined reference point of the dump truck 300, for example, the position of the upper end of the side surface of the vessel 301.
  • the sensing device 111 may recognize the target position and input it to the automation controller 100, or the position estimation unit 101 may recognize the target position based on the detection result detected by the sensing device 111.
  • the path planning unit 102 generates an optimal route for the wheel loader 1 when automatically controlling the wheel loader 1.
  • the optimal route includes a traveling route by the traveling device 4 and an operation route of the working machine 3.
  • the path planning unit 102 determines an optimal route for the wheel loader 1 to move forward with a load toward the dump truck 300 and an optimal route for the wheel loader 1 to move backward and leave the dump truck 300 with an empty load in the loading operation on the dump truck 300. and generate.
  • the path planning unit 102 also generates an optimal route connecting the current self-position of the wheel loader 1 and the target position to which the wheel loader 1 is heading while executing the loading operation onto the dump truck 300.
  • the traveling route of the traveling device 4 included in the optimal route may be generated based on the actual traveling history based on the operator's operations.
  • the travel route may be a travel route determined by calculation.
  • the route following control unit 103 controls the accelerator, brake, and steering so that the wheel loader 1 follows the optimal route generated by the path planning unit 102.
  • a command signal for causing the wheel loader 1 to travel along the optimal route is output from the route following control section 103 to the brake control section 71, the accelerator control section 72, and the steering control section 81.
  • the path following control section 103 controls the boom cylinder 16 and the bucket cylinder 19 so that the working machine 3 operates along the optimal path generated by the path planning section 102.
  • a command signal for moving the work machine 3 along the optimal route is output from the route following control unit 103 to the work machine control unit 82.
  • the interface 130 is configured to be able to send and receive signals to and from the vehicle body controller 50.
  • the interface 130 includes a mode selection operation section 131, an engine emergency stop switch 132, and a mode lamp 133.
  • the mode selection operation section 131 is operated by an operator.
  • the operator selects the operation mode of the wheel loader 1 by operating the mode selection operation section 131.
  • the operation modes of the wheel loader 1 include a manual mode in which the wheel loader 1 is operated manually and an auto mode in which the wheel loader 1 is automatically controlled.
  • the operation mode is record & edit mode, which records the actual work based on operator operations and edits the parameters recorded during the work in order to generate the optimal route when automatically controlling the wheel loader 1. including.
  • the work is executed by the operator's operations.
  • the wheel loader 1 is automatically controlled to execute the work.
  • the operator operates the wheel loader 1 to perform work with the record & edit mode selected, the work is recorded, the feature points in the trajectory of the work equipment 3 during the work are extracted, and each feature is The position and attitude of the work implement 3 at the point are determined. A route that sequentially follows each feature point is generated, and this generated route is used as the operation route of the working machine 3 when automatically controlling the wheel loader 1.
  • the engine emergency stop switch 132 is operated by the operator. When an event occurs that requires an emergency stop of the engine 21, the operator operates the engine emergency stop switch 132. Signals from the operation of the mode selection operation section 131 and the engine emergency stop switch 132 are input to the vehicle body controller 50.
  • the mode lamp 133 displays whether the wheel loader 1 is currently in a manual mode operated manually by an operator, an auto mode automatically controlled, or a record & edit mode.
  • a command signal for controlling lighting of the lamp is output from the vehicle body controller 50 to the mode lamp 133.
  • FIG. 5 is a flowchart showing the flow of processing for recording work machine control when a skilled operator performs loading work of the bucket 6 into the vessel 301 of the dump truck 300.
  • the operator selects the operating mode of the wheel loader 1 in step S100.
  • the operator operates the mode selection operation section 131 to select the record & edit mode.
  • the operation of the mode selection operation section 131 may be a button operation or a monitor operation.
  • step S101 the shape of the vessel 301 of the dump truck 300, which is a container into which a load is loaded, is recognized.
  • the shape of the dump truck 300 is acquired using LiDAR, which is the sensing device 111.
  • LiDAR irradiates the dump truck 300 with laser light to obtain point cloud data indicating three-dimensional coordinate values of measurement points on the dump truck 300.
  • the dump truck 300 can be detected from the front, rear, right, and left sides, and the shape of the vessel 301 can be recognized from the point cloud information.
  • the recognized shape of the vessel 301 is input to the automation controller 100.
  • the perception device 111 recognizes the reference point P of the vessel 301 of the dump truck 300.
  • LiDAR which is the sensing device 111, detects the dump truck 300.
  • the automation controller 100 recognizes the position of the vessel 301 by comparing the point cloud detected by the perception device 111 with a master point cloud indicating the shape of the vessel 301 .
  • the automation controller 100 sets the upper end of the side surface of the vessel 301 of the dump truck 300 recognized by LiDAR, which is the sensing device 111, as a reference point P.
  • the reference point P is determined based on the position when loading was performed.
  • the sensing device 111 detects the loading position of the vessel 301 during the loading operation, and determines the reference point P from the loading position.
  • step S103 the operator on board the wheel loader 1 performs an operation to load the load in the bucket 6 into the vessel 301.
  • the operator causes the wheel loader 1, on which the work equipment 3 (bucket 6) is loaded, to travel forward toward the vessel 301.
  • the operator operates the work equipment 3 (boom 14, bucket 6) at an appropriate timing, and switches the running direction of the wheel loader 1 from forward to reverse at an appropriate timing. Thereby, the operator loads the load loaded on the working machine 3 (bucket 6) into the bucket 301.
  • FIG. 6 is a diagram showing the trajectory of the working machine 3 when a skilled operator loads the vessel 301.
  • the vessel 301 is schematically shown as seen from the front and rear directions of the dump truck 300, and the wheel loader 1 approaching the vessel 301 from the left or right side of the dump truck 300 is shown schematically. A part of the front side is shown schematically.
  • the trajectory TR shown in FIG. 6 is such that after the wheel loader 1 starts moving forward (dump approach) toward the dump truck 300 for loading the load in the bucket 6 into the vessel 301, This is the trajectory followed by the cutting edge 6a of the bucket 6 until the wheel loader 1 leaves the dump truck 300 after being discharged.
  • an xy coordinate system is set with the reference point P as the origin.
  • the x-axis is the left-right direction of the dump truck 300 passing through the reference point P.
  • the direction away from the vessel 301 with respect to the reference point P is the +x direction.
  • the y-axis is the vertical direction passing through the reference point P.
  • the upward direction from the reference point P is the +y direction.
  • the bucket angle ⁇ shown in FIG. 6 is the angle between the ground and the back surface 6b of the bucket 6.
  • the bucket angle ⁇ may be an angle between the back surface 6b of the bucket 6 and a horizontal plane based on the vehicle body.
  • step S104 the automation controller 100 recognizes the current position of the cutting edge 6a of the bucket 6.
  • the position information acquisition device 112 acquires the current position of the vehicle body of the wheel loader 1, and the attitude of the work equipment with respect to the vehicle body is acquired by the boom angle sensor 123 and the bucket angle sensor 124, thereby determining the position of the cutting edge 6a of the bucket 6 in the global coordinate system. You can recognize your current location. Based on the current positions of the wheel loader 1 and the working machine 3 and the current position of the dump truck 300 in the global coordinate system, the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
  • the sensing device 111 by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated and this relative position may be recognized as the current position.
  • step S105 the path planning unit 102 of the automation controller 100 records parameters while the operator performs the loading operation into the vessel 301.
  • the parameters to be recorded include the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates.
  • the parameters also include the bucket angle ⁇ .
  • the path planning unit 102 can calculate the bucket angle ⁇ from the detection results of the boom angle sensor 123 and the bucket angle sensor 124 attached to the work machine 3.
  • the current position of the cutting edge 6a of the bucket 6 and the bucket angle ⁇ are recorded. From the current position of the cutting edge 6a of the bucket 6 and the bucket angle ⁇ , the attitude of the working machine 3 while the operator is performing the loading operation into the vessel 301 is recorded.
  • step S106 the automation controller 100 determines whether the loading operation is finished. For example, it can be recognized from the detection result of the boom cylinder pressure sensor 125 that all the loads in the bucket 6 have been discharged into the vessel 301 and the bucket 6 has become empty. When it is recognized that the current position of the cutting edge 6a of the bucket 6 has moved away from the dump truck 300 while the inside of the bucket 6 is empty, it can be determined that the loading operation has ended.
  • step S106 If it is determined in step S106 that the loading operation has not been completed (NO in step S106), the process returns to step S104, and while the operator is loading the vessel 301, the cutting edge 6a of the bucket 6 is The recognition of the current position and the recording of the parameters are repeated.
  • step S106 If it is determined in step S106 that the loading operation has been completed (YES in step S106), the record of the skilled operator's work is ended ("end record" in FIG. 5).
  • a skilled operator performs an operation for loading the load loaded on the working machine 3 (bucket 6) into the vessel 301 from the time it starts in step S103 until it ends in step S106, including recognition of the current position of the cutting edge 6a in step S104 and , and recording the parameters at the current position in step S105 are repeated.
  • the locus TR of the cutting edge 6a shown in FIG. 6 is obtained.
  • the path planning unit 102 stores the acquired trajectory TR.
  • the path planning unit 102 also stores the reference point P of the vessel 301 acquired in step S102.
  • FIG. 7 is a flowchart showing the flow of processing for editing the parameters recorded in step S105 shown in FIG. 5 so as to be used in automatic control of the loading operation.
  • step S201 the path planning unit 102 extracts feature points constituting the trajectory TR from the trajectory TR of the working machine 3 (the cutting edge 6a of the bucket 6) during the loading operation, shown in FIG.
  • feature points a, b, c, d, f, and g which will be described in detail below, are extracted.
  • FIG. 8 is a graph showing changes in cylinder length during loading work.
  • the horizontal axis in FIG. 8 indicates the passage of time, and auxiliary lines are drawn at the times when the cutting edge 6a passes the feature points a, b, c, d, f, and g.
  • the vertical axis in FIG. 8 indicates the lengths of the boom cylinder 16 and the bucket cylinder 19.
  • FIG. 9 is a diagram schematically showing the attitude of the wheel loader 1 when starting the dumping operation of the bucket 6.
  • the feature point a is a position where the cutting edge 6a of the bucket 6 passes while the wheel loader 1 is traveling forward toward the dump truck 300.
  • the feature point a is further away from the vessel 301 than the reference point P.
  • the feature point a is located in front of the reference point P of the vessel 301.
  • the feature point a is located higher than the reference point P of the vessel 301.
  • the wheel loader 1 is traveling forward before the cutting edge 6a reaches the feature point a.
  • the length of the boom cylinder 16 is increasing and therefore the boom 14 is rising.
  • the length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 is constant.
  • the bucket 6 is in a tilted state with an object to be excavated loaded therein.
  • the bucket 6 is in a position that allows the load inside the bucket 6 to be stably transported.
  • FIG. 10 is a diagram schematically showing the attitude of the wheel loader 1 when the cutting edge 6a reaches the innermost position.
  • the feature point b is a position where the cutting edge 6a of the bucket 6 passes after passing the feature point a and exceeding the reference point P.
  • the feature point b is above the vessel 301.
  • the wheel loader 1 continues to travel forward until the cutting edge 6a passes the feature point a and reaches the feature point b.
  • Boom cylinder 16 continues to increase in length and thus boom 14 continues to rise.
  • the movement of the bucket 6 in the dumping direction is started when the cutting edge 6a reaches the feature point a, and the bucket 6 continues to move in the dumping direction until it reaches the feature point b.
  • the length of bucket cylinder 19 continues to decrease.
  • feature point b is lower in height than feature point a.
  • the value of the y-coordinate of feature point b is smaller than the value of the y-coordinate of feature point a.
  • FIG. 11 is a diagram schematically showing the attitude of the wheel loader 1 when the dumping operation of the bucket 6 is stopped.
  • the feature point c is a position where the cutting edge 6a of the bucket 6 passes after passing the feature point b.
  • the bucket 6 continues to move in the dumping direction from when the cutting edge 6a of the bucket 6 passes the feature point a until it reaches the feature point c.
  • the bucket 6 is in a full dump state.
  • the length of the bucket cylinder 19 is the minimum.
  • the feature point c is located closer to the reference point P than the feature point b.
  • the wheel loader 1 continues to travel forward until the cutting edge 6a passes the feature point b and reaches the feature point c.
  • Boom cylinder 16 continues to increase in length and thus boom 14 continues to rise.
  • Bucket cylinder 19 continues to decrease in length, so bucket 6 continues to move in the dumping direction.
  • the cutting edge 6a reaches the feature point c
  • the bucket 6 assumes the full dumping position, and the dumping operation of the bucket 6 stops.
  • the length of the bucket cylinder 19 is at its minimum.
  • the dumping operation of the bucket 6 has a greater influence on the position of the cutting edge 6a than the lifting of the boom 14. Therefore, the feature point c is lower in height than the feature point b.
  • the value of the y-coordinate of the feature point c is smaller than the value of the y-coordinate of the feature point b.
  • the boom 14 continues to rise. While the bucket 6 is being unloaded, the boom 14 continues to rise. While loading the dump truck 300, the boom 14 continues to rise. During the dumping operation of the bucket 6, the wheel loader 1 moves toward the vessel 301 of the dump truck 300, and therefore continues to travel forward.
  • FIG. 12 is a diagram schematically showing the attitude of the wheel loader 1 when the raising operation of the boom 14 is stopped.
  • the feature point d is a position where the cutting edge 6a of the bucket 6 passes after passing the feature point c.
  • the wheel loader 1 which is traveling forward toward the dump truck 300, is raising the boom 14. The raising operation of the boom 14 is continued from when the wheel loader 1 starts the dump approach until the cutting edge 6a of the bucket 6 reaches the feature point d.
  • the height position of the boom 14 is at its highest.
  • the length of the boom cylinder 16 is maximum.
  • the feature point d is located closer to the reference point P than the feature point c.
  • the wheel loader 1 is traveling forward at the time when the cutting edge 6a passes the feature point c, and the wheel loader 1 is moving forward at the time when the cutting edge 6a passes the feature point d. I am driving backwards. While the cutting edge 6a is moving between the feature point c and the feature point d, the running direction of the wheel loader 1 is switched from forward to reverse. Boom cylinder 16 continues to increase in length and thus boom 14 continues to rise. The length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant.
  • the feature point c is the position where the movement of the bucket 6 in the dumping direction is stopped, and the bucket 6 maintains the full dumping posture while the cutting edge 6a moves from the feature point c to the feature point d.
  • FIG. 13 is a diagram schematically showing the attitude of the wheel loader 1 when starting the tilting operation of the bucket 6.
  • the feature point f is a position through which the cutting edge 6a of the bucket 6 passes after passing the feature point d.
  • the bucket 6 maintains the full dump state from when the cutting edge 6a of the bucket 6 passes through the feature point c until it reaches the feature point f.
  • the feature point f is set closer to the reference point P than the feature point d. From when the cutting edge 6a of the bucket 6 passes the feature point d until it reaches the feature point f, the length of the boom cylinder 16 is constant, and the boom 14 is maintained at the uppermost position.
  • the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the feature point f after passing the feature point d.
  • the length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant. At this time, the height position of the boom 14 is at its highest.
  • the length of the bucket cylinder 19 is constant, so the attitude of the bucket 6 with respect to the vehicle body is constant. While the cutting edge 6a moves from the feature point d to the feature point f, the wheel loader 1 is running backwards while maintaining the full dump state of the bucket 6.
  • FIG. 14 is a diagram schematically showing the attitude of the wheel loader 1 when the tilting operation of the bucket 6 is stopped.
  • the feature point g is a position through which the cutting edge 6a of the bucket 6 passes after passing the feature point f.
  • the movement of the bucket 6 in the tilt direction continues from when the cutting edge 6a of the bucket 6 passes through the feature point f until it reaches the feature point g.
  • the feature point g is above the reference point P.
  • the boom 14 is maintained at the highest position from when the cutting edge 6a of the bucket 6 passes the feature point d until it reaches the feature point g.
  • the wheel loader 1 continues to travel backwards until the cutting edge 6a reaches the feature point g after passing the feature point f.
  • the length of the boom cylinder 16 is constant, so the attitude of the boom 14 with respect to the vehicle body is constant.
  • the movement of the bucket 6 in the tilt direction is started when the cutting edge 6a reaches the feature point f, and the bucket 6 continues to move in the tilt direction until it reaches the feature point g.
  • the length of bucket cylinder 19 continues to increase.
  • the feature point f is the position at which the bucket 6 starts tilting.
  • the feature point g is the position where the tilting operation of the bucket 6 is stopped. While the cutting edge 6a is moving from the feature point f to the feature point g, the wheel loader 1 is running backward while tilting the bucket 6. After loading the dump truck 300, the wheel loader 1 tilts the bucket 6 while moving backward to leave the dump truck 300.
  • the attitude of the boom 14 remains constant. After the load is completely discharged from the bucket 6, the boom 14 is held and the bucket 6 is tilted. During this tilting operation of the bucket 6, the wheel loader 1 continues to travel backwards and is traveling in a direction away from the vessel 301 of the dump truck 300.
  • the wheel loader 1 continues to travel backwards.
  • the length of boom cylinder 16 is decreasing and therefore boom 14 is lowering.
  • the length of the bucket cylinder 19 is constant, and therefore the attitude of the bucket 6 with respect to the vehicle body is constant.
  • the path planning unit 102 determines whether the work machine 3 is connected to the reference point P based on the recorded parameters at each of the extracted feature points a, b, c, d, f, and g. determine the position and posture of The path planning unit 102 determines the horizontal and vertical positions of the cutting edge 6a of the bucket 6 with respect to the reference point P, that is, the x and y coordinates, and the bucket angle when the cutting edge 6a of the bucket 6 follows the trajectory TR. ⁇ is memorized. The path planning unit 102 stores the posture of the working machine 3 when the cutting edge 6a of the bucket 6 is at each point on the trajectory TR.
  • the position of the working machine 3 at each feature point a, b, c, d, f, g is determined by giving the x and y coordinates of the cutting edge 6a of the bucket 6. From the x and y coordinates of each feature point a, b, c, d, f, g and the bucket angle ⁇ at each feature point a, b, c, d, f, g, the cutting edge 6a of the bucket 6 is The posture of the working machine 3 at the feature points a, b, c, d, f, and g is determined.
  • the feature point a is located at the position where the height position of the cutting edge 6a becomes the highest (the y coordinate becomes the maximum value) during the loading operation.
  • the feature point c is located at the position where the height position of the cutting edge 6a is the lowest (the y coordinate is the minimum value) while the load in the bucket 6 is being unloaded.
  • the y-coordinate of feature point a takes a positive value.
  • the y-coordinate of feature point c takes a negative value.
  • the y coordinates of feature points d, f, and g take positive values.
  • the x-coordinate of feature point a takes a positive value.
  • the x coordinates of feature points b, c, d, and f take negative values.
  • the feature point b is located at the position where the x-coordinate has the minimum value while the load in the bucket 6 is being unloaded.
  • the x-coordinate of feature point g is zero.
  • the feature point g is located directly above the reference point P.
  • the path planning unit 102 defines the posture of the working machine 3 at each feature point a, b, c, d, f, g using the lengths of the boom cylinder 16 and bucket cylinder 19.
  • the lengths of the boom cylinder 16 and the bucket cylinder 19 are uniquely determined from the x and y coordinates of the feature point and the bucket angle ⁇ .
  • the path planning unit 102 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 when the cutting edge 6a of the bucket 6 is located at each feature point a, b, c, d, f, and g.
  • the path planning unit 102 generates a path in which the cutting edge 6a of the bucket 6 sequentially follows the feature point a, feature point b, feature point c, feature point d, feature point f, and feature point g, and includes this path in the optimal route. This is the path of movement of the working machine 3. Then, the process ends ("edit end" in FIG. 7).
  • FIG. 15 is a flowchart showing the flow of processing for loading the cargo loaded in the bucket 6 into the vessel 301 under automatic control.
  • step S301 the automation controller 100 recognizes the current positions of the wheel loader 1 and the work machine 3.
  • the wheel loader 1 and the work implement in the global coordinate system are 3's current position can be recognized.
  • the relative position of the cutting edge 6a of the bucket 6 with respect to the vessel 301 of the dump truck 300 can be calculated.
  • the sensing device 111 by using the sensing device 111 to obtain the direction and distance of the reference point P of the vessel 301 of the dump truck 300 with respect to the arrangement position of the sensing device 111, the current relative position of the cutting edge 6a of the bucket 6 with respect to the reference point P can be determined. may be calculated.
  • the position of the blade tip 6a of the bucket 6 relative to each of the characteristic points a, b, c, d, f, and g is recognized from the current position of the work machine 3. For example, it is recognized that the blade tip 6a has not yet reached characteristic point a, that the blade tip 6a has passed characteristic point a and is between characteristic point a and characteristic point b, that the blade tip 6a has passed characteristic point b and is between characteristic point b and characteristic point c, etc. Furthermore, the characteristic point to which the blade tip 6a will next head is recognized as the target position. For example, if the blade tip 6a has not yet reached characteristic point a, the target position is characteristic point a, and if the blade tip 6a is between characteristic point a and characteristic point b, the target position is characteristic point b, etc.
  • step S302 the automation controller 100 recognizes the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position.
  • a boom angle sensor 123 detects the angle of the boom 14 .
  • a bucket angle sensor 124 detects the angle of the bucket 6.
  • the attitude of the working machine 3 is determined from the angle of the boom 14 and the angle of the bucket 6. Based on the attitude of the working machine 3, the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position are recognized.
  • an angle sensor that detects the angle of the bell crank 18 and an angle sensor that detects the angle of the link 15 may be provided.
  • the boom cylinder 16 and the bucket cylinder 19 may be provided with stroke sensors that detect cylinder stroke lengths.
  • step S303 the automation controller 100 determines the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the current position recognized in step S302, and the length of the boom cylinder 16 and the length of the bucket cylinder 19 at the target position where the cutting edge 6a will go next. (hereinafter referred to as target cylinder length).
  • the automation controller 100 calculates how far the cylinder should be moved until the cutting edge 6a reaches the next target position.
  • step S304 the automation controller 100 refers to the current vehicle speed and determines a target cylinder stroke speed that will result in the target cylinder length when the cutting edge 6a reaches the next target position.
  • the automation controller 100 controls the boom cylinder 16 and the bucket cylinder 19 so that when the cutting edge 6a reaches the next target position, the working machine 3 assumes a posture corresponding to the target position.
  • the current vehicle speed is acquired by vehicle speed sensor 122.
  • the time required to reach the next target position can be calculated from the current position of the cutting edge 6a and the current vehicle speed.
  • the target cylinder stroke speed can be determined by dividing the difference in cylinder length calculated in step S303 by the time required to reach the next target position.
  • the cylinder stroke amount during which the wheel loader 1 travels a unit distance may be determined. Whether the wheel loader 1 has traveled a unit distance may be determined from the vehicle speed, or may be detected by the sensing device 111.
  • step S305 the automation controller 100 outputs a command current corresponding to the target cylinder stroke speed to the vehicle body controller 50.
  • the automation controller 100 outputs a command to the work machine control unit 82 of the work machine controller 80 to extend and contract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • a command is output from the work equipment control unit 82 to the work equipment EPC 143 to extend and retract the boom cylinder 16 and the bucket cylinder 19 at a target cylinder stroke speed.
  • step S306 the working machine EPC 143 that has received the command signal adjusts the opening degree, so that appropriate hydraulic oil is supplied to the boom cylinder 16 and the bucket cylinder 19. This causes the boom cylinder 16 and bucket cylinder 19 to operate.
  • step S307 the automation controller 100 recognizes the current lengths of the boom cylinder 16 and bucket cylinder 19 similarly to step S302.
  • the automation controller 100 determines whether the current lengths of the boom cylinder 16 and bucket cylinder 19 have reached the target cylinder length.
  • step S307 If it is determined in step S307 that the target cylinder length has been reached (YES in step S307), the process proceeds to step S308, and the automation controller 100 determines whether there is a next target position.
  • step S307 If it is determined in step S307 that the target cylinder length has not been reached (NO in step S307), and if it is determined in step S308 that there is a next target position (YES in step S308) , the process returns to step S301, and the process of expanding and contracting the boom cylinder 16 and the bucket cylinder 19 based on the current position of the working machine 3 is repeated.
  • the cylinder speed is sequentially changed according to the current position of the cutting edge 6a of the bucket 6. If the current position of the cutting edge 6a deviates from the position based on the cylinder speed set in the previous process, the cylinder speed is adjusted.
  • step S308 if it is judged that there is no next target position (NO in step S308), the loading work is ended ("end of play" in FIG. 15). In this embodiment, this corresponds to the fact that the next target position is not set after the cutting edge 6a passes the feature point g.
  • the automation controller 100 acquires the reference point P of the vessel 301 of the dump truck 300, and acquires the trajectory TR of the cutting edge 6a of the bucket 6 when the wheel loader 1 is operated. As shown in FIGS. 7 to 14, the automation controller 100 extracts the positions of the feature points a, b, c, d, f, and g constituting the trajectory TR with reference to the reference point P.
  • a skilled operator records the trajectory TR of the work equipment 3 when operating the wheel loader 1, determines feature points a, b, c, d, f, and g from the trajectory TR of the work equipment 3, and determines the feature points a, b, c, d, f, and g.
  • the trajectory of the work machine 3 when automatically controlling the work machine 3 according to b, c, d, f, and g is set. Thereby, the trajectory of the automatically controlled working machine 3 can be appropriately set, and the operation by a skilled operator can be reproduced by automatic control.
  • the automation controller 100 acquires the trajectory TR of the cutting edge 6a when an operation is performed to load the load loaded on the working machine 3 into the vessel 301.
  • the loading operation by the skilled operator can be automatically controlled. Can be reproduced.
  • the automation controller 100 acquires the posture of the work machine 3 at feature points a, b, c, d, f, and g.
  • the work machine 3 By automatically controlling the work machine 3 according to the positions of the feature points a, b, c, d, f, g and the posture of the work machine 3 at the feature points a, b, c, d, f, g, Operator operations can be more faithfully reproduced.
  • feature point a is the position of the cutting edge 6a when the wheel loader 1 starts moving the bucket 6 in the dumping direction while moving forward toward the vessel 301.
  • the dumping operation of the bucket 6 can be started before the cutting edge 6a has reached the vessel 301.
  • the forward travel of the wheel loader 1 toward the dump truck 300 and the dumping operation of the bucket 6 are performed simultaneously, and by overlapping a plurality of operations in time, the cycle time of the loading operation can be shortened.
  • feature point c is the position of the cutting edge 6a when the bucket 6 stops moving in the dumping direction above the vessel 301.
  • the feature point d is the position of the cutting edge 6a when the operation of raising the boom 14 is stopped above the vessel 301.
  • the feature point f is the position of the cutting edge 6a when the bucket 6 starts moving in the tilt direction above the vessel 301.
  • the feature point g is the position of the cutting edge 6a when the bucket 6 stops moving in the tilt direction.
  • the automation controller 100 that constitutes the automatic control system for the wheel loader 1 described in the above embodiment does not necessarily have to be installed in the wheel loader 1.
  • a controller external to the wheel loader 1 may construct a system that constitutes the automation controller 100.
  • the vehicle body controller 50 mounted on the wheel loader 1 performs a process of transmitting the information acquired by the external world information acquisition section 110, the vehicle information acquisition section 120, etc. to an external controller, and the external controller that receives the signal transmits the information.
  • the positions of the feature points a, b, c, d, f, and g constituting the locus TR of the cutting edge 6a of the bucket 6 with respect to the reference point P may be extracted.
  • the external controller may be located at the work site of the wheel loader 1, or may be located at a remote location away from the work site of the wheel loader 1.
  • the external controller may be a portable device.
  • the external controller may be a portable device that can be carried and used by a worker, such as a notebook computer, a tablet computer, or a smartphone.
  • the vessel 301 of the dump truck 300 is used as an example of the container, and the operation of loading the load loaded on the working machine 3 (bucket 6) into the vessel 301 has been described.
  • the container for loading the load loaded onto the work machine 3 is not limited to the vessel 301 of the dump truck 300, but may be, for example, a hopper.
  • the wheel loader 1 is a manned vehicle that includes a cab 5 and an operator rides in the cab 5.
  • the wheel loader 1 may be an unmanned vehicle.
  • the wheel loader 1 does not need to include a cab 5 for an operator to board and operate.
  • the wheel loader 1 does not need to be equipped with a control function by an operator on board.
  • the wheel loader 1 may be a working machine exclusively for remote control.
  • the wheel loader 1 may be controlled by radio signals from a remote control device.
  • a system including a working machine, The working machine body, a work machine attached to the work machine main body and having a bucket; a work machine attitude sensor that detects the attitude of the work machine; an object sensor that detects objects around the work machine main body; a controller that communicates with the work machine attitude sensor and the object sensor; The controller acquires a reference point of the container detected by the object sensor, acquires a trajectory of the work machine when the work machine is operated, and determines the positions of feature points constituting the trajectory from the reference point.
  • a system that extracts based on.
  • the characteristic point is any one of Supplementary notes 1 to 3, including the position of the working machine when the working machine starts moving the bucket in the dumping direction while traveling forward toward the container. system described in.
  • Appendix 5 The system according to any one of appendices 1 to 4, wherein the characteristic point includes a position of the working machine when the bucket stops moving in the dumping direction above the container.
  • the work machine has a boom with the bucket attached to the tip,
  • the system according to any one of Supplementary notes 1 to 5, wherein the characteristic point includes a position of the working machine when the operation of raising the boom is stopped above the container.
  • Appendix 7 The system according to any one of appendices 1 to 6, wherein the feature point includes a position of the working machine when the bucket starts moving in a tilt direction above the container.
  • Appendix 8 The system according to appendix 7, wherein the feature point includes a position of the working machine when the bucket stops moving in the tilt direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

自動制御される作業機の軌跡を適切に設定する。作業機械のコントローラは、物体センサにより検出された容器の基準点を取得し、作業機械が操作されたときの作業機の軌跡を取得し、軌跡を構成する特徴点の位置を前記基準点を基準として抽出する。

Description

作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法
 本開示は、作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法に関する。
 従来のホイールローダは、たとえば国際公開2020/224768号(特許文献1)に開示されている。
国際公開2020/224768号
 ホイールローダは、掘削作業と積込作業とを繰り返し行う。積込作業を自動化するためには、自動制御される作業機の軌跡を適切に設定することが求められる。
 本開示では、自動制御される作業機の軌跡を適切に設定できる、作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法が提案される。
 本開示のある局面に従うと、作業機械本体と、作業機械本体に取り付けられ、バケットを有する作業機と、作業機の姿勢を検出する作業機姿勢センサと、作業機械本体の周辺の物体を検出する物体センサと、作業機姿勢センサおよび物体センサと通信するコントローラとを備える、作業機械を含むシステムが提案される。コントローラは、物体センサにより検出された容器の基準点を取得する。コントローラは、作業機械が操作されたときの作業機の軌跡を取得する。コントローラは、軌跡を構成する特徴点の位置を基準点を基準として抽出する。
 本開示のある局面に従うと、作業機械のコントローラが提案される。コントローラは、物体センサにより検出された容器の基準点を取得する。コントローラは、作業機械が操作されたときの作業機の軌跡を取得する。コントローラは、軌跡を構成する特徴点の位置を基準点を基準として抽出する。
 本開示のある局面に従うと、作業機械の制御方法が提案される。制御方法は、物体センサにより検出された容器の基準点を取得することと、作業機械が操作されたときの作業機の軌跡を取得することと、軌跡を構成する特徴点の位置を基準点を基準として抽出することと、を備えている。
 本開示の作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法によると、自動制御される作業機の軌跡を適切に設定することができる。
作業機械の一例としてのホイールローダの側面図である。 ホイールローダの制御システムの概略構成を示すブロック図である。 掘削積込作業を行うホイールローダの平面図である。 ホイールローダの自動制御システムの構成を示すブロック図である。 熟練オペレータが容器への積込みを行う際の作業機制御を記録する処理の流れを示すフローチャートである。 熟練オペレータが容器への積込みを行う際の作業機の軌跡を示す図である。 記録されたパラメータを編集する処理の流れを示すフローチャートである。 積込作業中のシリンダ長さの変化を示すグラフである。 バケットのダンプ動作を開始するときのホイールローダの姿勢を模式的に示す図である。 刃先が最奥位置に到達するときのホイールローダの姿勢を模式的に示す図である。 バケットのダンプ動作を停止するときのホイールローダの姿勢を模式的に示す図である。 ブームの上げ動作を停止するときのホイールローダの姿勢を模式的に示す図である。 バケットのチルト動作を開始するときのホイールローダの姿勢を模式的に示す図である。 バケットのチルト動作を停止するときのホイールローダの姿勢を模式的に示す図である。 自動制御によりバケットに積載した荷を容器に積み込む処理の流れを示すフローチャートである。
 以下、実施形態について図に基づいて説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。実施形態から任意の構成が抽出され、それらが任意に組み合わされることも、当初から予定されている。
 <ホイールローダ1の全体構成>
 実施形態においては、作業機械の一例としてホイールローダ1について説明する。図1は、作業機械の一例としてのホイールローダ1の側面図である。
 図1に示されるように、ホイールローダ1は、車体フレーム2と、作業機3と、走行装置4と、キャブ5とを備えている。車体フレーム2、キャブ5などからホイールローダ1の車体が構成されている。ホイールローダ1の車体には、作業機3および走行装置4が取り付けられている。ホイールローダ1の本体は、車体と、走行装置4とを有している。
 走行装置4は、ホイールローダ1の車体を走行させるものであり、走行輪4a,4bを含んでいる。ホイールローダ1は、車体の左右方向の両側に走行用回転体として走行輪4a,4bを備える装輪車両である。ホイールローダ1は、走行輪4a,4bが回転駆動されることにより自走可能であり、作業機3を用いて所望の作業を行うことができる。走行装置4は、走行体の一例に対応する。
 本明細書中において、ホイールローダ1が直進走行する方向を、ホイールローダ1の前後方向という。ホイールローダ1の前後方向において、車体フレーム2に対して作業機3が配置されている側を前方向とし、前方向と反対側を後方向とする。ホイールローダ1の左右方向とは、平坦な地面上にあるホイールローダ1を平面視したときに前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。ホイールローダ1の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。
 車体フレーム2は、前フレーム2aと後フレーム2bとを含んでいる。前フレーム2aは、後フレーム2bの前方に配置されている。前フレーム2aと後フレーム2bとは、互いに左右方向に動作可能に取り付けられている。
 前フレーム2aと後フレーム2bとに亘って、一対のステアリングシリンダ11が取り付けられている。ステアリングシリンダ11は、油圧シリンダである。ステアリングシリンダ11がステアリングポンプからの作動油によって伸縮することによって、ホイールローダ1の進行方向が左右に変更される。前フレーム2aと後フレーム2bとにより、アーティキュレート構造の車体フレーム2が構成されている。ホイールローダ1は、前フレーム2aと後フレーム2bとが屈曲動作可能に連結されたアーティキュレート式の作業機械である。
 前フレーム2aには、作業機3および一対の走行輪(前輪)4aが取り付けられている。作業機3は、ホイールローダ1の本体の前方に取り付けられている。作業機3は、ホイールローダ1の車体によって支持されている。作業機3は、ブーム14と、バケット6とを含んでいる。バケット6は、作業機3の先端に配置されている。バケット6は、掘削・積込用の作業具である。刃先6aは、バケット6の先端部である。背面6bは、バケット6の外面の一部である。背面6bは、平面で形成されている。背面6bは、刃先6aから後方に延びている。
 ブーム14の基端部は、ブームピン9によって前フレーム2aに回転自在に取付けられている。バケット6は、ブーム14の先端に位置するバケットピン17によって、回転自在にブーム14に取付けられている。ブームピン9およびバケットピン17は、作業機3の複数の関節に対応する。
 作業機3は、ベルクランク18と、リンク15とをさらに含んでいる。ベルクランク18は、ブーム14のほぼ中央に位置する支持ピン18aによって、ブーム14に回転自在に支持されている。リンク15は、ベルクランク18の先端部に設けられた連結ピン18cに連結されている。リンク15は、ベルクランク18とバケット6とを連結している。
 前フレーム2aとブーム14とは、一対のブームシリンダ16により連結されている。ブームシリンダ16は、油圧シリンダである。ブームシリンダ16は、ブーム14を、ブームピン9を中心として上下に回転駆動する。ブームシリンダ16の基端は、前フレーム2aに取り付けられている。ブームシリンダ16の先端は、ブーム14に取り付けられている。ブームシリンダ16は、ブーム14を前フレーム2aに対し上下に動作させる油圧アクチュエータである。ブーム14の昇降に伴って、ブーム14の先端に取り付けられたバケット6も昇降する。
 バケットシリンダ19は、ベルクランク18と前フレーム2aとを連結している。バケットシリンダ19の基端は、前フレーム2aに取り付けられている。バケットシリンダ19の先端は、ベルクランク18の基端部に設けられた連結ピン18bに取り付けられている。バケットシリンダ19は、バケット6をブーム14に対し上下に回動させる油圧アクチュエータである。バケットシリンダ19は、バケット6を駆動する作業具シリンダである。バケットシリンダ19は、バケット6を、バケットピン17を中心として回転駆動する。バケット6は、ブーム14に対し動作可能に構成されている。バケット6は、前フレーム2aに対し動作可能に構成されている。
 ブームシリンダ16と、バケットシリンダ19とは、作業機3を駆動する作業機アクチュエータの一例に対応する。
 後フレーム2bには、オペレータが搭乗するキャブ5、および一対の走行輪(後輪)4bが取り付けられている。箱状のキャブ5は、ブーム14の後方に配置されている。キャブ5は、車体フレーム2上に載置されている。キャブ5内には、ホイールローダ1のオペレータが着座するシート、および後述する操作装置8などが配置されている。
 キャブ5には、知覚装置111が設けられている。知覚装置111は、たとえばキャブ5の天井部に配置されている。知覚装置111は、たとえばキャブ5の上面に搭載されている。知覚装置111は、たとえばキャブ5の前部に配置されている。知覚装置111は、たとえば前方を向いてキャブ5に取り付けられており、キャブ5の前方の情報を取得可能である。知覚装置111の詳細は後述する。
 <システム構成>
 図2は、ホイールローダ1を制御する制御システムの概略構成を示すブロック図である。
 エンジン21は、作業機3および走行装置4を駆動するための駆動力を発生する駆動源であり、たとえばディーゼルエンジンである。駆動源として、エンジン21に代えて、蓄電体により駆動するモータが用いられてもよく、またエンジンとモータとの双方が用いられてもよい。エンジン21の出力は、エンジン21のシリンダ内に噴射する燃料量を調整することにより制御される。
 エンジン21の発生する駆動力は、トランスミッション23へ伝達される。トランスミッション23は、駆動力を適切なトルクおよび回転速度に変速する。トランスミッション23の出力軸に、アクスル25が接続されている。トランスミッション23で変速された駆動力は、アクスル25に伝達される。アクスル25から走行輪4a,4b(図1)に、駆動力が伝達される。これにより、ホイールローダ1が走行する。実施形態のホイールローダ1においては、走行輪4aと走行輪4bとの両方が、駆動力を受けてホイールローダ1を走行させる駆動輪を構成している。
 エンジン21の駆動力の一部は、作業機ポンプ13に伝達される。作業機ポンプ13は、エンジン21により駆動され、吐出する作動油によって作業機3を作動させる油圧ポンプである。作業機3は、作業機ポンプ13からの作動油によって駆動される。作業機ポンプ13から吐出された作動油は、メインバルブ32を介して、ブームシリンダ16およびバケットシリンダ19に供給される。ブームシリンダ16が作動油の供給を受けて伸縮することによって、ブーム14が昇降する。バケットシリンダ19が作動油の供給を受けて伸縮することによって、バケット6が上下に回動する。
 ホイールローダ1は、車体コントローラ50を備えている。車体コントローラ50は、エンジンコントローラ60と、トランスミッションコントローラ70と、作業機コントローラ80とを含んでいる。
 車体コントローラ50は、一般的にCPU(Central Processing Unit)により各種のプログラムを読み込むことにより実現される。車体コントローラ50は、図示しないメモリを有している。メモリは、ワークメモリとして機能するとともに、ホイールローダ1の機能を実現するための各種のプログラムを格納する。
 操作装置8は、キャブ5に設けられている。操作装置8は、オペレータによって操作される。操作装置8は、オペレータがホイールローダ1を動作させるために操作する、複数種類の操作部材を備えている。操作装置8は、アクセルペダル41と、作業機操作レバー42とを含んでいる。操作装置8は、図示しないステアリングハンドル、シフトレバーなどを含んでいてもよい。
 アクセルペダル41は、エンジン21の目標回転数を設定するために操作される。エンジンコントローラ60は、アクセルペダル41の操作量に基づいて、エンジン21の出力を制御する。アクセルペダル41の操作量(踏み込み量)を増大すると、エンジン21の出力が増大する。アクセルペダル41の操作量を減少すると、エンジン21の出力が減少する。トランスミッションコントローラ70は、アクセルペダル41の操作量に基づいて、トランスミッション23を制御する。
 作業機操作レバー42は、作業機3を動作させるために操作される。作業機コントローラ80は、作業機操作レバー42の操作量に基づいて、電磁比例制御弁35,36を制御する。
 電磁比例制御弁35は、バケットシリンダ19を縮めて、バケット6がダンプ方向(バケット6の刃先が下がる方向)に移動するように、メインバルブ32を切り換える。また電磁比例制御弁35は、バケットシリンダ19を伸ばして、バケット6がチルト方向(バケット6の刃先が上がる方向)に移動するように、メインバルブ32を切り換える。電磁比例制御弁36は、ブームシリンダ16を縮めて、ブーム14が下がるようにメインバルブ32を切り換える。また電磁比例制御弁36は、ブームシリンダ16を伸ばして、ブーム14が上がるようにメインバルブ32を切り換える。
 機械モニタ51は、車体コントローラ50から指令信号の入力を受けて、各種情報を表示する。機械モニタ51に表示される各種情報は、たとえば、ホイールローダ1により実行される作業に関する情報、燃料残量、冷却水温度および作動油温度などの車体情報、ホイールローダ1の周辺を撮像した周辺画像などであってもよい。機械モニタ51はタッチパネルであってもよく、この場合、オペレータが機械モニタ51の一部に触れることにより生成される信号が、機械モニタ51から車体コントローラ50に出力される。
 <掘削積込作業>
 本実施形態のホイールローダ1は、土砂などの掘削対象物を掬い取り、ダンプトラックなどの積込対象に掘削対象物を積み込む、掘削積込作業を実行する。図3は、掘削積込作業を行うホイールローダ1の平面図である。図3には、いわゆるVシェープ作業を行うホイールローダ1が図示されている。
 図3(A)には、いわゆる空荷前進をするホイールローダ1が図示されている。ホイールローダ1は、土砂などの掘削対象物310へ向かって、掘削経路R1に沿って前進走行する。ホイールローダ1がバケット6を掘削対象物310へ突っ込み、前進走行を停止する。バケット6の刃先6aを掘削対象物310に食い込ませた状態でバケット6を上昇させることにより、バケット6に掘削対象物310を掬い取る掘削作業が実行される。
 図3(B)には、いわゆる積荷後進をするホイールローダ1が図示されている。バケット6内には、掘削対象物310が積み込まれている。ホイールローダ1は、図3(A)で前進走行を開始した位置まで、掘削経路R1に沿って後進走行する。
 図3(C)には、いわゆる積荷前進をするホイールローダ1が図示されている。バケット6内に掘削対象物310が積み込まれた状態で、ホイールローダ1は、ダンプトラック300のベッセル301へ向かって前進走行する。ホイールローダ1は、図3(A)で前進走行を開始した位置から、ダンプトラック300へ向かって、積込経路R2に沿って前進走行する。ダンプトラック300に接近して所定位置に到達すると、ホイールローダ1は、バケット6内の掘削対象物310をベッセル301内に積み込む。ベッセル301は、作業機3に積載された荷を積み込むための「容器」の一例に対応する。
 図3(D)には、いわゆる空荷後進をするホイールローダ1が図示されている。バケット6内の掘削対象物310をダンプトラック300のベッセル301に全て排出してバケット6内が空の状態で、ホイールローダ1は、図3(C)で前進走行を開始した位置まで、積込経路R2に沿って後進走行する。
 このように、ホイールローダ1は、掘削、後退、ダンプアプローチ、排土、後退という一連の作業を繰り返し行うことができる。
 <ホイールローダ1の自動制御システム>
 ホイールローダ1によるダンプトラック300への積込作業を自動化するにあたり、バケット6をベッセル301に接触させることなく、作業量を確保しつつ、より素早く積込作業を行うために、熟練オペレータの作業機3の操作を自動制御によって再現することが望まれている。図4は、ホイールローダ1の自動制御システムの構成を示すブロック図である。
 自動化コントローラ100は、図2を参照して説明した車体コントローラ50との間で信号の送受信が可能に構成されている。自動化コントローラ100はまた、外界情報取得部110との間で信号の送受信が可能に構成されている。外界情報取得部110は、知覚装置111と、位置情報取得装置112とを有している。知覚装置111と位置情報取得装置112とは、ホイールローダ1に搭載されている。
 知覚装置111は、ホイールローダ1の周囲の情報を取得する。知覚装置111は、たとえばキャブ5の上面の前部に取り付けられている。知覚装置111は、ホイールローダ1の本体の周辺の物体を検出する「物体センサ」の一例に対応する。
 知覚装置111は、ホイールローダ1の外部の対象物の方向および対象物までの距離を、非接触で検出する。知覚装置111はたとえば、レーザ光を射出して対象物の情報を取得するLiDAR(Light Detection and Ranging)である。知覚装置111は、カメラを含む視覚センサであってもよい。知覚装置111は、電波を射出することにより対象物の情報を取得するRadar(Radio Detection and Ranging)であってもよい。知覚装置111は、赤外線センサであってもよい。
 位置情報取得装置112は、ホイールローダ1の現在位置の情報を取得する。位置情報取得装置112はたとえば、衛星測位システムを利用して、地球を基準としたグローバル座標系におけるホイールローダ1の位置情報を取得する。位置情報取得装置112はたとえば、GNSS(Global Navigation Satellite Systems:全地球航法衛星システム)を用いるものであり、GNSSレシーバを有している。衛星測位システムは、GNSSレシーバが衛星から受信した測位信号により、GNSSレシーバのアンテナの位置を演算して、ホイールローダ1の位置を算出する。
 知覚装置111によるホイールローダ1の外界情報、および、位置情報取得装置112によるホイールローダ1の位置情報は、自動化コントローラ100に入力される。
 車体コントローラ50は、車両情報取得部120との間で信号の送受信が可能に構成されており、車両情報取得部120が取得するホイールローダ1の情報の入力を受ける。車両情報取得部120は、ホイールローダ1に搭載されている各種のセンサにより構成されている。車両情報取得部120は、アーティキュレート角度センサ121、車両速度センサ122、ブーム角度センサ123、バケット角度センサ124、およびブームシリンダ圧力センサ125を有している。
 アーティキュレート角度センサ121は、前フレーム2aと後フレーム2bとのなす角度であるアーティキュレート角度を検出し、検出したアーティキュレート角度の信号を発生する。アーティキュレート角度センサ121は、アーティキュレート角度の信号を車体コントローラ50に出力する。
 車両速度センサ122は、たとえば、トランスミッション23の出力軸の回転速度を検出することにより、走行装置4によるホイールローダ1の移動速度を検出し、検出した車速の信号を発生する。車両速度センサ122は、車速の信号を車体コントローラ50に出力する。車両速度センサ122は、走行装置4(走行体)の進行状況を検出する走行センサの一例に対応する。
 ブーム角度センサ123は、たとえば、ブーム14の車体フレーム2に対する取付部であるブームピン9に設けられたロータリーエンコーダで構成される。ブーム角度センサ123は、水平方向に対するブーム14の角度を検出し、検出したブーム14の角度の信号を発生する。ブーム角度センサ123は、ブーム14の角度の信号を車体コントローラ50に出力する。
 バケット角度センサ124は、たとえば、ベルクランク18の回転軸である支持ピン18aに設けられたロータリーエンコーダで構成される。バケット角度センサ124は、ブーム14に対するバケット6の角度を検出し、検出したバケット6の角度の信号を発生する。バケット角度センサ124は、バケット6の角度の信号を車体コントローラ50に出力する。
 ブーム角度センサ123と、バケット角度センサ124とは、作業機3の姿勢を検出する「作業機姿勢センサ」の一例に対応する。
 ブームシリンダ圧力センサ125は、ブームシリンダ16のボトム側の圧力(ブームボトム圧)を検出し、検出したブームボトム圧の信号を発生する。ブームボトム圧は、バケット6に荷が積まれた場合に高くなり、空荷の場合に低くなる。ブームシリンダ圧力センサ125は、ブームボトム圧の信号を車体コントローラ50に出力する。
 車体コントローラ50は、車両情報取得部120から入力された情報を、自動化コントローラ100へ出力する。自動化コントローラ100は、車体コントローラ50を介して、車両速度センサ122、ブーム角度センサ123およびバケット角度センサ124の検出値を入力する。
 アクチュエータ140は、車体コントローラ50との間で信号の送受信が可能に構成されている。車体コントローラ50からの指令信号を受けて、アクチュエータ140が駆動する。アクチュエータ140は、走行装置4のブレーキを作動させるためのブレーキEPC(電磁比例制御弁)141と、ホイールローダ1の走行方向を調節するためのステアリングEPC142と、作業機3を動作させるための作業機EPC143と、HMT(Hydraulic Mechanical Transmission)144とを含んでいる。
 図2に示される電磁比例制御弁35,36は、作業機EPC143を構成している。図2に示されるトランスミッション23は、電子制御を活用したHMT144として実現される。トランスミッション23は、HST(Hydro-Static Transmission)であってもよい。エンジン21から走行輪4a,4bへ動力を伝達する動力伝達装置は、ディーゼル・エレクトリック方式などの電気式駆動装置を含んでもよく、HMT、HST、電気式駆動装置のいずれかの組み合わせを含んでもよい。
 トランスミッションコントローラ70は、ブレーキ制御部71と、アクセル制御部72とを有している。ブレーキ制御部71は、ブレーキEPC141に対して、ブレーキの作動を制御するための指令信号を出力する。アクセル制御部72は、HMT144に対して、車速を制御するための指令信号を出力する。
 作業機コントローラ80は、ステアリング制御部81と、作業機制御部82とを有している。ステアリング制御部81は、ステアリングEPC142に対して、ホイールローダ1の走行方向を制御するための指令信号を出力する。作業機制御部82は、作業機EPC143に対して、作業機3の動作を制御するための指令信号を出力する。
 自動化コントローラ100は、位置推定部101と、パスプランニング部102と、経路追従制御部103とを有している。
 位置推定部101は、位置情報取得装置112が取得した位置情報によって、ホイールローダ1の自己位置を推定する。また位置推定部101は、知覚装置111が取得した外界情報によって、目標位置を認識する。目標位置は、たとえば、図3に示される掘削対象物310またはダンプトラック300の位置である。位置推定部101は、ダンプトラック300の所定の基準点、たとえばベッセル301の側面上端の位置を取得可能である。知覚装置111が目標位置を認識して自動化コントローラ100に入力してもよく、知覚装置111が検出した検出結果に基づいて位置推定部101が目標位置を認識してもよい。
 パスプランニング部102は、ホイールローダ1を自動制御するときの、ホイールローダ1の最適経路を生成する。最適経路は、走行装置4による走行の経路と、作業機3の動作の経路とを含んでいる。たとえばパスプランニング部102は、ダンプトラック300への積込作業における、ダンプトラック300へ向かって積荷前進するホイールローダ1の最適経路と、空荷後進してダンプトラック300から離れるホイールローダ1の最適経路とを生成する。パスプランニング部102はまた、ダンプトラック300への積込作業を実行中に、ホイールローダ1の現在の自己位置と、ホイールローダ1がこれから向かう目標位置と、をむすぶ最適経路を生成する。
 最適経路に含まれる走行装置4による走行の経路は、オペレータの操作に基づく実際の走行履歴に基づいて生成してもよい。または、走行の経路は、演算で求められる走行経路であってもよい。
 経路追従制御部103は、パスプランニング部102が生成した最適経路に追従してホイールローダ1が走行するように、アクセル、ブレーキおよびステアリングを制御する。経路追従制御部103から、ブレーキ制御部71、アクセル制御部72およびステアリング制御部81に、ホイールローダ1を最適経路に沿って走行させるための指令信号が出力される。経路追従制御部103は、パスプランニング部102が生成した最適経路に沿って作業機3が動作するように、ブームシリンダ16およびバケットシリンダ19を制御する。経路追従制御部103から、作業機制御部82に、作業機3を最適経路に沿って移動させるための指令信号が出力される。
 インターフェース130は、車体コントローラ50との間で信号の送受信が可能に構成されている。インターフェース130は、モード選択操作部131、エンジン緊急停止スイッチ132、およびモードランプ133を有している。
 モード選択操作部131は、オペレータによって操作される。オペレータは、モード選択操作部131を操作することにより、ホイールローダ1の運転モードを選択する。ホイールローダ1の運転モードは、ホイールローダ1をマニュアルで操作するマニュアルモードと、ホイールローダ1を自動制御するオートモードとを含む。また運転モードは、ホイールローダ1を自動制御するときの最適経路を生成するために、オペレータの操作に基づく実際の作業を記録するとともにその作業中に記録されたパラメータを編集する、レコード&エディットモードを含む。
 マニュアルモードが選択されていると、オペレータの操作によって作業が実行される。オートモードが選択されていると、ホイールローダ1が自動制御されることによって、作業が実行される。レコード&エディットモードが選択された状態で、オペレータがホイールローダ1を操作して作業を実行すると、その作業が記録され、その作業中の作業機3の軌跡における特徴点が抽出されて、各特徴点における作業機3の位置と姿勢とが決定される。各特徴点を順に辿る経路が生成され、この生成された経路が、ホイールローダ1を自動制御するときの作業機3の動作の経路とされる。
 エンジン緊急停止スイッチ132は、オペレータによって操作される。エンジン21を緊急停止させることが求められる事象が発生したとき、オペレータは、エンジン緊急停止スイッチ132を操作する。モード選択操作部131およびエンジン緊急停止スイッチ132の操作の信号は、車体コントローラ50に入力される。
 モードランプ133は、ホイールローダ1が現在、オペレータによるマニュアル操作されるマニュアルモードであるか、自動制御されるオートモードであるか、またはレコード&エディットモードであるか、を表示する。車体コントローラ50からモードランプ133に、ランプの点灯を制御するための指令信号が出力される。
 <熟練オペレータの作業記録(レコード)>
 図5は、熟練オペレータが、ダンプトラック300のベッセル301へのバケット6内の荷の積込作業を行う際の、作業機制御を記録する処理の流れを示すフローチャートである。
 まず、事前準備として、積込作業を開始する前に、ステップS100において、オペレータによるホイールローダ1の運転モードの選択が行われる。オペレータがモード選択操作部131を操作して、レコード&エディットモードが選択される。モード選択操作部131の操作は、ボタン操作であってもよく、モニタ操作であってもよい。
 ステップS101において、荷が積み込まれる容器であるダンプトラック300のベッセル301の形状を認識する。たとえば、知覚装置111であるLiDARで、ダンプトラック300の形状を取得する。LiDARからダンプトラック300にレーザ光を照射して、ダンプトラック300上の計測点の三次元座標値を示す点群データを取得する。ダンプトラック300を、前方、後方、右方および左方の四方から検知して、点群の情報からベッセル301の形状を認識することができる。認識されたベッセル301の形状が、自動化コントローラ100に入力される。
 ステップS102において、知覚装置111によって、ダンプトラック300のベッセル301の基準点Pを認識する。知覚装置111であるLiDARで、ダンプトラック300を検出する。自動化コントローラ100は、知覚装置111が検出した点群と、ベッセル301の形状を示すマスター点群とを比較して、ベッセル301の位置を認識する。自動化コントローラ100は、知覚装置111であるLiDARが認識したダンプトラック300のベッセル301の側面上端を、基準点Pとして設定する。
 オペレータの操作に基づく実際の走行履歴に基づいて走行の経路を生成する場合は、積込みが行われたときの位置に基づき、基準点Pを決定する。この場合、知覚装置111は、積込作業時にベッセル301の位置における積込み位置を検出し、積込み位置より基準点Pを求めることになる。
 ステップS101,S102の処理を終えた後、ステップS103において、ホイールローダ1に搭乗したオペレータが、バケット6内の荷をベッセル301に積み込むための操作を行う。図3(C)(D)を参照して説明したように、オペレータは、作業機3(バケット6)に荷が積載されたホイールローダ1を、ベッセル301に向かって前進走行させる。オペレータは、作業機3(ブーム14、バケット6)を適宜のタイミングで動作させるとともに、適宜のタイミングでホイールローダ1の走行方向を前進から後進に切り替える。これによりオペレータは、作業機3(バケット6)に積載された荷を、バケット301内に積み込む。
 図6は、熟練オペレータがベッセル301への積込みを行う際の作業機3の軌跡を示す図である。図6および後続の図9~図14では、ダンプトラック300の前後方向から見たベッセル301が模式的に示されており、またダンプトラック300の左側または右側からベッセル301に接近するホイールローダ1の前側の一部が模式的に示されている。
 図6に示される軌跡TRは、ホイールローダ1がバケット6内の荷をベッセル301に積み込むためのダンプトラック300へ向かう前進走行(ダンプアプローチ)を開始してから、バケット6内の荷をベッセル301に排出した後のホイールローダ1がダンプトラック300から離れるまでの、バケット6の刃先6aが辿る軌跡である。
 図6に示されるように、基準点Pを原点としたxy座標系が設定される。x軸は、基準点Pを通るダンプトラック300の左右方向である。基準点Pを基準とした、ベッセル301から離れる方向が、+x方向である。y軸は、基準点Pを通る上下方向である。基準点Pからの上向き方向が、+y方向である。
 図6に示されるバケット角度θは、地面と、バケット6の背面6bとがなす角度である。バケット角度θは、バケット6の背面6bと車体基準の水平面とがなす角度であってもよい。
 ステップS104において、自動化コントローラ100は、バケット6の刃先6aの現在位置を認識する。位置情報取得装置112でホイールローダ1の車体の現在位置を取得し、車体に対する作業機の姿勢をブーム角度センサ123およびバケット角度センサ124により取得することで、グローバル座標系におけるバケット6の刃先6aの現在位置を認識することができる。グローバル座標系における、ホイールローダ1および作業機3の現在位置と、ダンプトラック300の現在位置とに基づいて、ダンプトラック300のベッセル301に対するバケット6の刃先6aの相対位置を算出することができる。
 または、知覚装置111を用いて、知覚装置111の配置位置に対するダンプトラック300のベッセル301の基準点Pの方向および距離を取得することで、基準点Pに対するバケット6の刃先6aの現在の相対位置を算出し、この相対位置を現在位置として認識してもよい。
 ステップS105において、自動化コントローラ100のパスプランニング部102は、オペレータがベッセル301への積込み操作を行っている間の、パラメータを記録する。記録するパラメータは、バケット6の刃先6aの、基準点Pを基準とした水平方向および鉛直方向の位置、すなわちx座標およびy座標を含む。パラメータはまた、バケット角度θを含む。パスプランニング部102は、作業機3に取り付けられたブーム角度センサ123およびバケット角度センサ124の検出結果から、バケット角度θを算出することができる。
 オペレータがベッセル301への積込み操作を行っている間の、バケット6の刃先6aの現在位置およびバケット角度θが記録される。バケット6の刃先6aの現在位置とバケット角度θとから、オペレータがベッセル301への積込み操作を行っている間の、作業機3の姿勢が記録されることになる。
 ステップS106において、自動化コントローラ100は、積込み操作が終了したか否かを判断する。たとえば、バケット6内の荷が全てベッセル301に排出されてバケット6内が空になったことを、ブームシリンダ圧力センサ125の検出結果から認識できる。バケット6内が空の状態において、バケット6の刃先6aの現在位置がダンプトラック300から離れた位置にまで移動したことが認識されると、積込み操作が終了したと判断することができる。
 ステップS106の判断において、積込み操作が終了していないと判断されると(ステップS106においてNO)、ステップS104に戻り、オペレータがベッセル301への積込み操作を行っている間の、バケット6の刃先6aの現在位置の認識と、パラメータの記録とが繰り返される。
 ステップS106の判断において、積込み操作が終了したと判断されると(ステップS106においてYES)、熟練オペレータの作業記録を終了する(図5の「レコード終了」)。
 熟練オペレータが作業機3(バケット6)に積載された荷をベッセル301に積み込むための操作を、ステップS103で開始してからステップS106で終了するまで、ステップS104の刃先6aの現在位置の認識と、ステップS105の現在位置におけるパラメータの記録と、が繰り返される。バケット6の刃先6aの、基準点Pを基準とした水平方向および鉛直方向の位置、すなわちx座標およびy座標をプロットすることにより、図6に示される刃先6aの軌跡TRが取得される。パスプランニング部102は、取得された軌跡TRを記憶する。パスプランニング部102はまた、ステップS102で取得されたベッセル301の基準点Pを記憶する。
 <記録したパラメータの編集(エディット)>
 図7は、図5に示されるステップS105で記録されたパラメータを、積込作業の自動制御において用いられるように編集する処理の流れを示すフローチャートである。
 ステップS201において、パスプランニング部102は、図6に示される、積込み操作中の作業機3(バケット6の刃先6a)の軌跡TRから、軌跡TRを構成する特徴点を抽出する。本実施形態では、以下に詳細を説明する特徴点a,b,c,d,f,gが抽出される。
 図8は、積込作業中のシリンダ長さの変化を示すグラフである。図8の横軸は時間の経過を示し、刃先6aが特徴点a,b,c,d,f,gを通過する時刻に補助線が引かれている。図8の縦軸は、ブームシリンダ16およびバケットシリンダ19の長さを示す。
 ホイールローダ1がダンプトラック300へ向かって前進走行中に、バケット6内の荷をベッセル301へ積み込むためのバケット6のダンプ方向への動作を開始するときの、バケット6の刃先6aの位置が、特徴点aとして抽出される。図9は、バケット6のダンプ動作を開始するときのホイールローダ1の姿勢を模式的に示す図である。特徴点aは、ホイールローダ1がダンプトラック300へ向かって前進走行中に、バケット6の刃先6aが通過する位置である。特徴点aは、基準点Pよりもベッセル301から離れている。特徴点aは、ベッセル301の基準点Pよりも手前に位置している。特徴点aは、ベッセル301の基準点Pよりも高い位置にある。
 図8および図6,9に示されるように、刃先6aが特徴点aに到達する前に、ホイールローダ1は前進走行している。ブームシリンダ16の長さが増大しており、したがってブーム14は上昇している。バケットシリンダ19の長さは一定であり、したがってバケット6の姿勢は一定である。バケット6は、バケット6内に掘削対象物を積載してチルトしている状態である。バケット6は、バケット6内の荷を安定して運搬できる姿勢を取っている。
 ホイールローダ1が前進走行してベッセル301に接近して、バケット6の刃先6aが最も奥側(図9~図14においては、図中の左側)に移動するときの、バケット6の刃先6aの位置が、特徴点bとして抽出される。図10は、刃先6aが最奥位置に到達するときのホイールローダ1の姿勢を模式的に示す図である。特徴点bは、バケット6の刃先6aが特徴点aを通過し基準点Pを越えた後に、刃先6aが通過する位置である。特徴点bは、ベッセル301の上方にある。
 図8および図9,10に示されるように、刃先6aが特徴点aを通過した後特徴点bに到達するまで、ホイールローダ1は前進走行を継続している。ブームシリンダ16は長さを増大し続けており、したがってブーム14は上昇を続けている。特徴点aに刃先6aが到達した時点でバケット6のダンプ方向の動作が開始され、特徴点bに到達するまで、バケット6はダンプ方向への動作を継続している。バケットシリンダ19の長さは減少を続けている。特徴点aから特徴点bまでの刃先6aの移動においては、ブーム14の上昇よりもバケット6のダンプ動作が、刃先6aの位置により大きく影響を及ぼしている。そのため、特徴点bは、特徴点aよりも高さ位置が低い。特徴点bのy座標の値は、特徴点aのy座標の値よりも小さい。
 図8に示されるように、刃先6aが特徴点aに到達した後、ブーム14の上昇速度が小さくなっている。ブーム14の上げ動作が緩やかになっている。刃先6aが特徴点bに到達する前に、ブーム14の上昇速度が再度大きくなっている。
 ベッセル301の上方でバケット6のダンプ方向への動作を停止するときの、バケット6の刃先6aの位置が、特徴点cとして抽出される。図11は、バケット6のダンプ動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。特徴点cは、特徴点bを通過した後にバケット6の刃先6aが通過する位置である。バケット6の刃先6aが特徴点aを通過してから特徴点cに到達するまで、バケット6のダンプ方向への動作が継続されている。バケット6の刃先6aが特徴点cにあるとき、バケット6はフルダンプ状態である。バケット6の刃先6aが特徴点cにあるとき、バケットシリンダ19の長さは最小である。特徴点cは、特徴点bよりも基準点Pに近い位置にある。
 図8および図10,11に示されるように、刃先6aが特徴点bを通過した後特徴点cに到達するまで、ホイールローダ1は前進走行を継続している。ブームシリンダ16は長さを増大し続けており、したがってブーム14は上昇を続けている。バケットシリンダ19は長さを減少し続けており、したがってバケット6はダンプ方向への動作を継続している。刃先6aが特徴点cに到達した時点で、バケット6はフルダンプの姿勢となり、バケット6のダンプ動作が停止する。刃先6aが特徴点cに到達した時点で、バケットシリンダ19の長さが最小となっている。特徴点bから特徴点cまでの刃先6aの移動においては、ブーム14の上昇よりもバケット6のダンプ動作が、刃先6aの位置により大きく影響を及ぼしている。そのため、特徴点cは、特徴点bよりも高さ位置が低い。特徴点cのy座標の値は、特徴点bのy座標の値よりも小さい。
 バケット6のダンプ動作中に、ブーム14は上昇を続けている。バケット6からの排土中に、ブーム14は上昇を続けている。ダンプトラック300への荷の積込み中に、ブーム14は上昇を続けている。バケット6のダンプ動作中に、ホイールローダ1がダンプトラック300のベッセル301に向かっていくため、前進走行も継続している。
 ベッセル301の上方でブーム14を上げる動作を停止するときの、バケット6の刃先6aの位置が、特徴点dとして抽出される。図12は、ブーム14の上げ動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。特徴点dは、特徴点cを通過した後にバケット6の刃先6aが通過する位置である。作業機3のベッセル301との干渉を避けるために、ダンプトラック300へ向かって前進走行中のホイールローダ1は、ブーム14を上げる動作をしている。ホイールローダ1がダンプアプローチを開始してから、バケット6の刃先6aが特徴点dに到達するまで、ブーム14の上げ動作が継続されている。バケット6の刃先6aが特徴点dにあるとき、ブーム14の高さ位置が最も高くなっている。バケット6の刃先6aが特徴点dにあるとき、ブームシリンダ16の長さは最大である。特徴点dは、特徴点cよりも基準点Pに近い位置にある。
 図8および図11,12に示されるように、刃先6aが特徴点cを通過する時刻ではホイールローダ1は前進走行をしており、刃先6aが特徴点dを通過する時刻ではホイールローダ1は後進走行をしている。刃先6aが特徴点cと特徴点dとの間を移動している間に、ホイールローダ1の走行方向が前進から後進へと切り替わっている。ブームシリンダ16は長さを増大し続けており、したがってブーム14は上昇を続けている。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。特徴点cはバケット6のダンプ方向への動作を停止する位置であり、刃先6aが特徴点cから特徴点dまで移動する間、バケット6はフルダンプの姿勢を保っている。
 ブーム14が上昇を停止するときにはバケット6内の荷は既にベッセル301に積み込まれており、バケット6は空荷状態である。バケット6内の荷の重量が小さくなっているので、ブーム14を停止したときの慣性の影響が小さい。そのため、特徴点dでブーム14を上げる動作を停止したときの、車体の振動が起こりにくくなっている。
 ホイールローダ1の走行方向を前進から後進へ切り替えるときに、前方向への重心変動が起きる。ブーム14の上昇を減少させるときに、バケット6内の荷の重心が移動する。これらによってバケット6内の荷をベッセル301に円滑に移動させることで、積込作業にかかる時間を短縮でき、積込作業のサイクルタイムを短縮できる。
 ベッセル301の上方でバケット6のチルト方向への動作を開始するときの、バケット6の刃先6aの位置が、特徴点fとして抽出される。図13は、バケット6のチルト動作を開始するときのホイールローダ1の姿勢を模式的に示す図である。特徴点fは、特徴点dを通過した後にバケット6の刃先6aが通過する位置である。バケット6の刃先6aが特徴点cを通過してから特徴点fに到達するまで、バケット6はフルダンプ状態を維持している。特徴点fは、特徴点dよりも基準点Pに近く設定される。バケット6の刃先6aが特徴点dを通過してから特徴点fに到達するまで、ブームシリンダ16の長さは一定とされ、ブーム14は最上位位置に維持されている。
 図8および図12,13に示されるように、刃先6aが特徴点dを通過した後特徴点fに到達するまで、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さは一定であり、したがって車体に対するブーム14の姿勢は一定である。このとき、ブーム14の高さ位置が最も高くなっている。ブーム14が上昇を停止するときにはバケット6内の荷は既にベッセル301に積み込まれており、バケット6は空荷状態である。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。刃先6aが特徴点dから特徴点fまで移動する間、ホイールローダ1は、バケット6のフルダンプ状態を維持したまま後進走行している。
 バケット6のチルト方向への動作を停止するときの、バケット6の刃先6aの位置が、特徴点gとして抽出される。図14は、バケット6のチルト動作を停止するときのホイールローダ1の姿勢を模式的に示す図である。特徴点gは、特徴点fを通過した後にバケット6の刃先6aが通過する位置である。バケット6の刃先6aが特徴点fを通過してから特徴点gに到達するまで、バケット6のチルト方向への動作が継続されている。特徴点gは、基準点Pの上方にある。バケット6の刃先6aが特徴点dを通過してから特徴点gに到達するまで、ブーム14は最上位位置に維持されている。
 図8および図13,14に示されるように、刃先6aが特徴点fを通過した後特徴点gに到達するまで、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さは一定であり、したがって車体に対するブーム14の姿勢は一定である。特徴点fに刃先6aが到達した時点でバケット6のチルト方向への動作が開始され、特徴点gに到達するまで、バケット6はチルト方向への動作を継続している。バケットシリンダ19の長さは増大を続けている。特徴点gに刃先6aが到達した時点で、バケット6のチルト方向への動作が停止される。特徴点fは、バケット6のチルト動作を開始する位置である。特徴点gは、バケット6のチルト動作を停止する位置である。刃先6aが特徴点fから特徴点gまで移動する間、ホイールローダ1は、バケット6をチルト動作させながら後進走行している。ホイールローダ1は、ダンプトラック300への積込作業を行った後、ダンプトラック300から離れるための後進中に、バケット6のチルト動作を行う。
 バケット6のチルト動作中に、ブーム14の姿勢は一定を保っている。バケット6からの荷の排出の完了後、ブーム14を保持して,バケット6をチルト動作する。このバケット6のチルト動作中に、ホイールローダ1は後進走行を継続し、ダンプトラック300のベッセル301から離れる方向に走行している。
 図8に示されるように、刃先6aが特徴点gを通過した後、ホイールローダ1は後進走行を継続している。ブームシリンダ16の長さが減少しており、したがってブーム14は下降している。バケットシリンダ19の長さは一定であり、したがって車体に対するバケット6の姿勢は一定である。
 図7に戻って、ステップS202において、パスプランニング部102は、抽出された各特徴点a,b,c,d,f,gにおける、記録されたパラメータに基づいて、基準点Pに対する作業機3の位置と姿勢とを決定する。パスプランニング部102は、バケット6の刃先6aが軌跡TRを辿るときの、バケット6の刃先6aの基準点Pを基準とした水平方向および鉛直方向の位置、すなわちx座標およびy座標と、バケット角度θとを記憶している。パスプランニング部102は、バケット6の刃先6aが軌跡TR上の各点にあるときの作業機3の姿勢を記憶している。
 各特徴点a,b,c,d,f,gにおける作業機3の位置は、バケット6の刃先6aのx座標およびy座標を与えることによって、決定される。各特徴点a,b,c,d,f,gのx座標およびy座標と、各特徴点a,b,c,d,f,gにおけるバケット角度θとから、バケット6の刃先6aが各特徴点a,b,c,d,f,gにあるときの作業機3の姿勢が決定される。
 特徴点aは、積込作業中に刃先6aの高さ位置が最も高くなる(y座標が最大値となる)位置にある。特徴点cは、バケット6内の荷の排土中に刃先6aの高さ位置が最も低くなる(y座標が最小値となる)位置にある。特徴点aのy座標は、プラスの値をとる。特徴点cのy座標は、マイナスの値をとる。特徴点d,f,gのy座標は、プラスの値をとる。
 特徴点aのx座標は、プラスの値をとる。特徴点b,c,d,fのx座標は、マイナスの値をとる。特徴点bは、バケット6内の荷の排土中にx座標が最小値となる位置にある。特徴点gのx座標は、ゼロである。特徴点gは、基準点Pの真上にある。
 ステップS203において、パスプランニング部102は、各特徴点a,b,c,d,f,gにおける作業機3の姿勢を、ブームシリンダ16およびバケットシリンダ19の長さで定義する。特徴点のx座標およびy座標と、バケット角度θとから、ブームシリンダ16およびバケットシリンダ19の長さが一義的に決められる。パスプランニング部102は、バケット6の刃先6aが各特徴点a,b,c,d,f,gにあるときの、ブームシリンダ16の長さとバケットシリンダ19の長さとを決定する。パスプランニング部102は、バケット6の刃先6aが特徴点a、特徴点b、特徴点c、特徴点d、特徴点f、および特徴点gを順に辿る経路を生成し、これを最適経路に含まれる作業機3の動作の経路とする。そして、処理を終了する(図7の「エディット終了」)。
 <積込作業の自動制御(プレイ)>
 図15は、自動制御によりバケット6に積載した荷をベッセル301に積み込む処理の流れを示すフローチャートである。
 ステップS301において、自動化コントローラ100は、ホイールローダ1および作業機3の現在位置を認識する。位置情報取得装置112でホイールローダ1の車体の現在位置を取得し、車体に対する作業機の姿勢をブーム角度センサ123およびバケット角度センサ124により取得することで、グローバル座標系におけるホイールローダ1および作業機3の現在位置を認識することができる。グローバル座標系における、ホイールローダ1および作業機3の現在位置と、ダンプトラック300の現在位置とに基づいて、ダンプトラック300のベッセル301に対するバケット6の刃先6aの相対位置を算出することができる。
 または、知覚装置111を用いて、知覚装置111の配置位置に対するダンプトラック300のベッセル301の基準点Pの方向および距離を取得することで、基準点Pに対するバケット6の刃先6aの現在の相対位置を算出してもよい。
 作業機3の現在位置から、バケット6の刃先6aが各特徴点a,b,c,d,f,gに対してどの位置にあるのかを認識する。たとえば、刃先6aが特徴点aに未だ到達していない、刃先6aが特徴点aを通過して特徴点aと特徴点bとの間にある、刃先6aが特徴点bを通過して特徴点bと特徴点cとの間にある、などと認識される。さらに、刃先6aが次に向かう特徴点が、目標位置として認識される。たとえば、刃先6aが特徴点aに未だ到達していないのであれば目標位置は特徴点aであり、刃先6aが特徴点aと特徴点bとの間にあれば目標位置は特徴点bである、などと認識される。
 ステップS302において、自動化コントローラ100は、現在位置におけるブームシリンダ16の長さおよびバケットシリンダ19の長さを認識する。ブーム角度センサ123により、ブーム14の角度を検出する。バケット角度センサ124により、バケット6の角度を検出する。ブーム14の角度とバケット6の角度とから、作業機3の姿勢が決定される。作業機3の姿勢に基づいて、現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さとが認識される。
 ブーム角度センサ123およびバケット角度センサ124に替えて、またはこれらに加えて、ベルクランク18の角度を検出する角度センサおよびリンク15の角度を検出する角度センサを設けてもよい。ブームシリンダ16およびバケットシリンダ19に、シリンダストローク長さを検出するストロークセンサを設けてもよい。
 ステップS303において、自動化コントローラ100は、ステップS302で認識された現在位置におけるブームシリンダ16の長さとバケットシリンダ19の長さと、刃先6aが次に向かう目標位置におけるブームシリンダ16の長さとバケットシリンダ19の長さ(以下、目標シリンダ長さと称する)と、の差を算出する。自動化コントローラ100は、刃先6aが次の目標位置に到達するまでにシリンダをどれだけ動かすのかを計算する。
 ステップS304において、自動化コントローラ100は、現在の車速を参照し、刃先6aが次に向かう目標位置に到達したときに目標シリンダ長さとなる、目標シリンダストローク速度を決定する。自動化コントローラ100は、刃先6aが次に向かう目標位置に到達したとき、作業機3がその目標位置に対応する姿勢をとるように、ブームシリンダ16およびバケットシリンダ19を制御する。現在の車速は、車両速度センサ122により取得される。刃先6aの現在位置と、現在の車速とから、次の目標位置に到達するまでの時間を計算できる。ステップS303で算出されたシリンダ長さの差を、次の目標位置に到達するまでの時間で割って、目標シリンダストローク速度を決定できる。
 ホイールローダ1が単位距離走行する間のシリンダストローク量を決めてもよい。ホイールローダ1が単位距離走行したことは、車速から求めてもよく、知覚装置111で検知することもできる。
 ステップS305において、自動化コントローラ100は、車体コントローラ50に対し、目標シリンダストローク速度に対応する指令電流を出力する。自動化コントローラ100は、作業機コントローラ80の作業機制御部82に対し、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令を出力する。作業機制御部82から作業機EPC143に、ブームシリンダ16およびバケットシリンダ19を目標シリンダストローク速度で伸縮させる指令が出力される。
 ステップS306において、指令信号を受けた作業機EPC143が開度を調節することで、ブームシリンダ16およびバケットシリンダ19に適切な作動油が供給される。これにより、ブームシリンダ16およびバケットシリンダ19が動作する。
 ステップS307において、自動化コントローラ100は、ステップS302と同様に現在のブームシリンダ16およびバケットシリンダ19の長さを認識する。自動化コントローラ100は、現在のブームシリンダ16およびバケットシリンダ19の長さが、目標シリンダ長さに到達したか否かを判断する。
 ステップS307の判断において、目標シリンダ長さに到達したと判断されれば(ステップS307においてYES)、ステップS308に進み、自動化コントローラ100は、次の目標位置があるか否かの判断をする。
 ステップS307の判断において目標シリンダ長さに到達していないと判断される場合(ステップS307においてNO)、および、ステップS308の判断において次の目標位置があると判断される場合(ステップS308においてYES)、ステップS301に戻り、作業機3の現在位置に基づいてブームシリンダ16およびバケットシリンダ19を伸縮させる処理が繰り返される。バケット6の刃先6aの現在位置に応じて、シリンダ速度は逐次変更される。前回の処理で設定されたシリンダ速度に基づいた位置から刃先6aの現在位置がずれていると、シリンダ速度が調整される。
 ステップS308の判断において、次の目標位置がないと判断されれば(ステップS308においてNO)、積込作業を終了する(図15の「プレイ終了」)。本実施形態において、刃先6aが特徴点gを通過した後、次の目標位置が設定されていない、ことに対応する。
 バケット6の刃先6aを、特徴点a、特徴点b、特徴点c、特徴点d、特徴点f、特徴点gを順に通過するように移動させることで、バケット6および車体をベッセル301に接触させることなくバケット6内の荷をベッセル301に積み込むことができる。このようにバケット6を移動させる自動制御をホイールローダ1に適用することで、熟練オペレータの操作による動作と同等の作業機3の動作を実現することができる。
 <作用および効果>
 上述した説明と一部重複する記載もあるが、本実施形態の特徴的な構成および作用効果についてまとめて記載すると、以下の通りである。
 自動化コントローラ100は、図5,6に示されるように、ダンプトラック300のベッセル301の基準点Pを取得し、ホイールローダ1が操作されたときのバケット6の刃先6aの軌跡TRを取得する。自動化コントローラ100は、図7~14に示されるように、軌跡TRを構成する特徴点a,b,c,d,f,gの位置を、基準点Pを基準として抽出する。
 熟練オペレータがホイールローダ1を操作する際の作業機3の軌跡TRを記録し、作業機3の軌跡TRから特徴点a,b,c,d,f,gを決定し、その特徴点a,b,c,d,f,gに従って作業機3を自動制御するときの作業機3の軌跡を設定する。これにより、自動制御される作業機3の軌跡を適切に設定でき、熟練オペレータによる操作を自動制御によって再現することができる。
 図5,6に示されるように、自動化コントローラ100は、作業機3に積載された荷をベッセル301に積み込むための操作がされたときの刃先6aの軌跡TRを取得する。熟練オペレータがベッセル301への積込み操作を行う際の作業機3の軌跡TRを基に特徴点a,b,c,d,f,gを決定することで、熟練オペレータによる積込み操作を自動制御によって再現することができる。
 図5~14に示されるように、自動化コントローラ100は、特徴点a,b,c,d,f,gにおける作業機3の姿勢を取得する。特徴点a,b,c,d,f,gの位置と、特徴点a,b,c,d,f,gにおける作業機3の姿勢とに従って、作業機3を自動制御することで、熟練オペレータによる操作をより忠実に再現することができる。
 図8,9に示されるように、特徴点aは、ホイールローダ1がベッセル301に向かって前進走行しながらバケット6のダンプ方向への動作を開始するときの刃先6aの位置である。刃先6aが特徴点aを通るようにホイールローダ1を自動制御することで、刃先6aがベッセル301に到達していない時点でバケット6のダンプ動作を開始することができる。ホイールローダ1のダンプトラック300へ向かう前進走行と、バケット6のダンプ動作とを同時に行い、複数の動作を時間的に重ねることで、積込作業のサイクルタイムを短縮できる。
 図8,11に示されるように、特徴点cは、ベッセル301の上方でバケット6のダンプ方向への動作を停止するときの刃先6aの位置である。刃先6aが特徴点cを通るようにホイールローダ1を自動制御することで、バケット6内の荷をベッセル301に確実に積み込むことができる。
 図8,12に示されるように、特徴点dは、ベッセル301の上方でブーム14を上げる動作を停止するときの刃先6aの位置である。刃先6aが特徴点dを通るようにホイールローダ1を自動制御することで、作業機3の動作を止めることなく積込作業をすることができ、ブーム14が停止するときの慣性による車両の揺れを抑制することができる。
 図8,13に示されるように、特徴点fは、ベッセル301の上方でバケット6のチルト方向への動作を開始するときの刃先6aの位置である。刃先6aが特徴点fを通るようにホイールローダ1を自動制御することで、バケット6の刃先6aおよび背面6bとベッセル301との接触を回避することができる。
 図8,14に示されるように、特徴点gは、バケット6のチルト方向への動作を停止するときの刃先6aの位置である。刃先6aが特徴点gを通るようにホイールローダ1を自動制御することで、バケット6がベッセル301に接触することを確実に回避することができる。バケット6を必要以上にチルト動作させずに、バケット6が確実にベッセル301をかわして移動できるだけのチルト動作をさせることにより、バケット6を、次の掘削作業のための姿勢に迅速に移動させることができる。
 上記の実施形態で説明した、ホイールローダ1の自動制御システムを構成する自動化コントローラ100は、必ずしもホイールローダ1に搭載されていなくてもよい。ホイールローダ1の外部のコントローラが、自動化コントローラ100を構成するシステムを構築してもよい。ホイールローダ1に搭載された車体コントローラ50が、外界情報取得部110および車両情報取得部120などによって取得された情報を、外部のコントローラへ送信する処理を行い、信号を受信した外部のコントローラが、バケット6の刃先6aの軌跡TRを構成する特徴点a,b,c,d,f,gの基準点Pを基準とする位置を抽出してもよい。
 外部のコントローラは、ホイールローダ1の作業現場に配置されてもよく、ホイールローダ1の作業現場から離れた遠隔地に配置されてもよい。外部のコントローラは、可搬式の機器であってもよい。外部のコントローラは、ノートパソコン、タブレットコンピュータ、スマートフォンなどの、作業者が携帯して使用可能な携帯機器であってもよい。
 実施形態では、容器としてダンプトラック300のベッセル301を例示して、作業機3(バケット6)に積載された荷をベッセル301に積み込む作業について説明した。作業機3に積載された荷を積み込むための容器は、ダンプトラック300のベッセル301に限られず、たとえばホッパなどであってもよい。
 実施形態では、ホイールローダ1はキャブ5を備えており、オペレータがキャブ5に搭乗する有人車両である例について説明した。ホイールローダ1は、無人車両であってもよい。ホイールローダ1は、オペレータが搭乗して操作するためのキャブ5を備えていなくてもよい。ホイールローダ1は、搭乗したオペレータによる操縦機能を搭載していなくてもよい。ホイールローダ1は、遠隔操縦専用の作業機械であってもよい。ホイールローダ1の操縦は、遠隔操縦装置からの無線信号により行われてもよい。
 <付記>
 以上の説明は、以下に付記する特徴を含む。
 (付記1)
 作業機械を含むシステムであって、
 作業機械本体と、
 前記作業機械本体に取り付けられ、バケットを有する作業機と、
 前記作業機の姿勢を検出する作業機姿勢センサと、
 前記作業機械本体の周辺の物体を検出する物体センサと、
 前記作業機姿勢センサおよび前記物体センサと通信するコントローラとを備え、
 前記コントローラは、前記物体センサにより検出された容器の基準点を取得し、前記作業機械が操作されたときの前記作業機の軌跡を取得し、前記軌跡を構成する特徴点の位置を前記基準点を基準として抽出する、システム。
 (付記2)
 前記操作は、前記作業機に積載された荷を前記容器に積み込むための操作である、付記1に記載のシステム。
 (付記3)
 前記特徴点における前記作業機の姿勢を取得する、付記1または付記2に記載のシステム。
 (付記4)
 前記特徴点は、前記作業機械が前記容器に向かって前進走行しながら前記バケットのダンプ方向への動作を開始するときの、前記作業機の位置を含む、付記1から付記3のいずれか1つに記載のシステム。
 (付記5)
 前記特徴点は、前記容器の上方で前記バケットのダンプ方向への動作を停止するときの、前記作業機の位置を含む、付記1から付記4のいずれか1つに記載のシステム。
 (付記6)
 前記作業機は、先端に前記バケットが取り付けられたブームを有し、
 前記特徴点は、前記容器の上方で前記ブームを上げる動作を停止するときの、前記作業機の位置を含む、付記1から付記5のいずれか1つに記載のシステム。
 (付記7)
 前記特徴点は、前記容器の上方で前記バケットのチルト方向への動作を開始するときの、前記作業機の位置を含む、付記1から付記6のいずれか1つに記載のシステム。
 (付記8)
 前記特徴点は、前記バケットの前記チルト方向への動作を停止するときの、前記作業機の位置を含む、付記7に記載のシステム。
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 ホイールローダ、2 車体フレーム、2a 前フレーム、2b 後フレーム、3 作業機、4 走行装置、4a,4b 走行輪、5 キャブ、6 バケット、8 操作装置、9 ブームピン、11 ステアリングシリンダ、13 作業機ポンプ、14 ブーム、15 リンク、16 ブームシリンダ、17 バケットピン、18 ベルクランク、18a 支持ピン、18b,18c 連結ピン、19 バケットシリンダ、21 エンジン、23 トランスミッション、25 アクスル、32 メインバルブ、35,36 電磁比例制御弁、41 アクセルペダル、42 作業機操作レバー、50 車体コントローラ、51 機械モニタ、60 エンジンコントローラ、70 トランスミッションコントローラ、71 ブレーキ制御部、72 アクセル制御部、80 作業機コントローラ、81 ステアリング制御部、82 作業機制御部、100 自動化コントローラ、101 位置推定部、102 パスプランニング部、103 経路追従制御部、110 外界情報取得部、111 知覚装置、112 位置情報取得装置、120 車体情報取得部、121 アーティキュレート角度センサ、122 車両速度センサ、123 ブーム角度センサ、124 バケット角度センサ、125 ブームシリンダ圧力センサ、130 インターフェース、131 モード選択操作部、132 エンジン緊急停止スイッチ、133 モードランプ、140 アクチュエータ、141 ブレーキEPC、142 ステアリングEPC、143 作業機EPC、144 HMT。

Claims (10)

  1.  作業機械を含むシステムであって、
     作業機械本体と、
     前記作業機械本体に取り付けられ、バケットを有する作業機と、
     前記作業機の姿勢を検出する作業機姿勢センサと、
     前記作業機械本体の周辺の物体を検出する物体センサと、
     前記作業機姿勢センサおよび前記物体センサと通信するコントローラとを備え、
     前記コントローラは、前記物体センサにより検出された容器の基準点を取得し、前記作業機械が操作されたときの前記作業機の軌跡を取得し、前記軌跡を構成する特徴点の位置を前記基準点を基準として抽出する、システム。
  2.  前記操作は、前記作業機に積載された荷を前記容器に積み込むための操作である、請求項1に記載のシステム。
  3.  前記特徴点における前記作業機の姿勢を取得する、請求項1または請求項2に記載のシステム。
  4.  前記特徴点は、前記作業機械が前記容器に向かって前進走行しながら前記バケットのダンプ方向への動作を開始するときの、前記作業機の位置を含む、請求項1または請求項2に記載のシステム。
  5.  前記特徴点は、前記容器の上方で前記バケットのダンプ方向への動作を停止するときの、前記作業機の位置を含む、請求項1または請求項2に記載のシステム。
  6.  前記作業機は、先端に前記バケットが取り付けられたブームを有し、
     前記特徴点は、前記容器の上方で前記ブームを上げる動作を停止するときの、前記作業機の位置を含む、請求項1または請求項2に記載のシステム。
  7.  前記特徴点は、前記容器の上方で前記バケットのチルト方向への動作を開始するときの、前記作業機の位置を含む、請求項1または請求項2に記載のシステム。
  8.  前記特徴点は、前記バケットの前記チルト方向への動作を停止するときの、前記作業機の位置を含む、請求項7に記載のシステム。
  9.  物体センサにより検出された容器の基準点を取得し、
     作業機械が操作されたときの作業機の軌跡を取得し、
     前記軌跡を構成する特徴点の位置を前記基準点を基準として抽出する、作業機械のコントローラ。
  10.  物体センサにより検出された容器の基準点を取得することと、
     作業機械が操作されたときの作業機の軌跡を取得することと、
     前記軌跡を構成する特徴点の位置を前記基準点を基準として抽出することと、を備える、作業機械の制御方法。
PCT/JP2023/031879 2022-09-15 2023-08-31 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法 WO2024057961A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147195 2022-09-15
JP2022147195A JP2024042455A (ja) 2022-09-15 2022-09-15 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法

Publications (1)

Publication Number Publication Date
WO2024057961A1 true WO2024057961A1 (ja) 2024-03-21

Family

ID=90275067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031879 WO2024057961A1 (ja) 2022-09-15 2023-08-31 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法

Country Status (2)

Country Link
JP (1) JP2024042455A (ja)
WO (1) WO2024057961A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024997A (ja) * 2016-08-08 2018-02-15 日立建機株式会社 建設機械の作業機軌道修正システム
WO2019181872A1 (ja) * 2018-03-20 2019-09-26 住友重機械工業株式会社 ショベル
JP2020122389A (ja) * 2015-12-28 2020-08-13 住友建機株式会社 ショベル及びショベル用のシステム
JP2021059945A (ja) * 2019-10-09 2021-04-15 住友重機械工業株式会社 ショベル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122389A (ja) * 2015-12-28 2020-08-13 住友建機株式会社 ショベル及びショベル用のシステム
JP2018024997A (ja) * 2016-08-08 2018-02-15 日立建機株式会社 建設機械の作業機軌道修正システム
WO2019181872A1 (ja) * 2018-03-20 2019-09-26 住友重機械工業株式会社 ショベル
JP2021059945A (ja) * 2019-10-09 2021-04-15 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
JP2024042455A (ja) 2024-03-28

Similar Documents

Publication Publication Date Title
US9487931B2 (en) Excavation system providing machine cycle training
US11668071B2 (en) Control system for work vehicle, control method, and work vehicle
US20210164192A1 (en) Loading machine control device and control method
US20200407949A1 (en) Work machine
US11001993B2 (en) Control system for work vehicle, control method, and work vehicle
US11105071B2 (en) Control system for work vehicle, control method, and work vehicle
US11408149B2 (en) Control system for work vehicle, control method, and work vehicle
EP3851590B1 (en) System and method of controlling wheel loader
JPWO2019187192A1 (ja) 作業機械の制御システム、方法、及び作業機械
US10907325B2 (en) Control system for work vehicle, control method, and work vehicle
WO2021192655A1 (ja) 作業機械
US20200407939A1 (en) Work machine
US11091898B2 (en) Control system for work vehicle, control method, and work vehicle
WO2024057961A1 (ja) 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法
WO2024057959A1 (ja) 作業機械を含むシステム、作業機械のコントローラ、および作業機械の制御方法
WO2022209176A1 (ja) 作業機械の走行システムおよび作業機械の制御方法
WO2024043074A1 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
US20220364335A1 (en) System and method for assisted positioning of transport vehicles relative to a work machine during material loading
WO2024043075A1 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
WO2024053443A1 (ja) 作業機械、作業機械を含むシステム、および作業機械の制御方法
WO2024062899A1 (ja) 作業機械を含むシステム、および作業機械の制御方法
CA3094497A1 (en) Method and system for operating implement assemblies of machines
US11953337B2 (en) System and method for assisted positioning of transport vehicles for material discharge in a worksite
WO2024106536A1 (ja) 積込機械の制御装置、遠隔制御装置および制御方法
WO2024024510A1 (ja) 積込機械の制御装置、積込機械の制御方法および制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865316

Country of ref document: EP

Kind code of ref document: A1