WO2018199342A1 - 作業車両の制御システム及び作業車両の制御方法 - Google Patents

作業車両の制御システム及び作業車両の制御方法 Download PDF

Info

Publication number
WO2018199342A1
WO2018199342A1 PCT/JP2018/023273 JP2018023273W WO2018199342A1 WO 2018199342 A1 WO2018199342 A1 WO 2018199342A1 JP 2018023273 W JP2018023273 W JP 2018023273W WO 2018199342 A1 WO2018199342 A1 WO 2018199342A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
bucket
control
limit
condition
Prior art date
Application number
PCT/JP2018/023273
Other languages
English (en)
French (fr)
Inventor
雅明 今泉
誠 内藤
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN201880001750.7A priority Critical patent/CN109072584B/zh
Priority to JP2018534992A priority patent/JP6632731B2/ja
Priority to EP18785493.0A priority patent/EP3434831B1/en
Priority to US16/096,896 priority patent/US11280063B2/en
Priority to PCT/JP2018/023273 priority patent/WO2018199342A1/ja
Publication of WO2018199342A1 publication Critical patent/WO2018199342A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/221Arrangements for controlling the attitude of actuators, e.g. speed, floating function for generating actuator vibration

Definitions

  • the present invention relates to a work vehicle control system and a work vehicle control method.
  • the work vehicle performs excavation work, loading work, and soil removal work using buckets of work equipment.
  • the operator of the work vehicle operates the operating device so that the bucket performs a dumping operation.
  • soil and sand remaining after the dumping operation is attached to the bucket, in order to shake off the soil and sand attached to the bucket, the operator repeats the dumping operation and tilting operation so that the bucket repeats the dumping operation and the tilting operation.
  • the operating device is quickly reciprocated within the operating range.
  • the bucket reciprocates between the operation limit position (stroke end) of the dump operation and the operation limit position (stroke end) of the tilt operation.
  • An aspect of the present invention aims to reduce the load acting on the work machine.
  • the hydraulic device includes: a hydraulic device that adjusts a supply state of hydraulic oil that is supplied to a hydraulic cylinder that operates the work tool; and a control device that controls the hydraulic device.
  • An operation data acquisition unit that acquires operation data indicating an operation state of an operation device operated to cause the work tool to perform a dump operation and a tilt operation, and a control command for controlling the hydraulic device based on the operation data
  • an operation condition determining unit that determines whether or not the operating device is operated under a specified operating condition, and it is determined that the operating device is operated under the operating condition.
  • a limit command unit that outputs a limit command for limiting the control command, and the operation data includes the dumping operation or the tilting operation of the work implement.
  • a work vehicle control system including a third condition in which is less than or equal to an operation time threshold.
  • the load acting on the work machine can be reduced.
  • FIG. 1 is a side view showing a work vehicle according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating a control system according to the embodiment.
  • Drawing 3 is a figure showing typically a flow control valve concerning an embodiment.
  • FIG. 4 is a diagram schematically illustrating an operation example of the bucket according to the embodiment.
  • FIG. 5 is a functional block diagram illustrating the control device according to the embodiment.
  • FIG. 6 is a diagram for explaining the control method according to the embodiment.
  • FIG. 7 is a diagram for explaining the control method according to the embodiment.
  • FIG. 8 is a flowchart illustrating a control method according to the embodiment.
  • FIG. 9 is a block diagram illustrating a computer system according to the embodiment.
  • FIG. 1 is a side view showing an example of a work vehicle 1 according to the present embodiment.
  • the work vehicle 1 is a wheel loader 1 that is a kind of articulated work vehicle.
  • the wheel loader 1 loads the earth and sand scooped up with the bucket 12 which is a work tool on a transport vehicle, or discharges it to a predetermined discharge place.
  • the wheel loader 1 includes a vehicle body 2, a cab 3, a traveling device 4, a work implement 10, and a control system 50.
  • the vehicle body 2 includes a vehicle body front portion 2F and a vehicle body rear portion 2R.
  • the cab 3 is supported by the vehicle body 2.
  • a cab 3R is provided in the cab 3.
  • the wheel loader 1 is driven by an operator who has boarded the cab 3R.
  • the traveling device 4 supports the vehicle body 2.
  • the joint mechanism 9 connects the vehicle body front part 2F and the vehicle body rear part 2R so that they can be bent.
  • the joint mechanism 9 includes a steering cylinder.
  • the vehicle body 2 bends as the steering cylinder expands and contracts.
  • the wheel loader 1 turns.
  • the wheel 5 is rotated by the power generated by the engine 8 mounted on the vehicle body 2.
  • a tire 6 is attached to the wheel 5.
  • the wheel 5 includes two front wheels 5F supported by the vehicle body front portion 2F and two rear wheels 5R supported by the vehicle body rear portion 2R.
  • the tire 6 includes a front tire 6F attached to the front wheel 5F and a rear tire 6R attached to the rear wheel 5R.
  • the wheel loader 1 travels on the ground RS.
  • the work machine 10 is supported by the vehicle body front part 2F.
  • the work implement 10 includes a boom 11 that is swingably connected to the vehicle body 2, a bucket 12 that is swingably connected to the boom 11, a bell crank 15, and a bucket link 16.
  • the boom 11 swings in the vertical direction by the power generated by the boom cylinder 13.
  • the boom cylinder 13 is operated by the hydraulic oil discharged from the hydraulic pump 31.
  • the boom cylinder 13 is a hydraulic cylinder that swings the boom 11 in the vertical direction.
  • One end of the boom cylinder 13 is connected to the vehicle body 2.
  • the other end of the boom cylinder 13 is connected to the boom 11.
  • the bucket 12 is a work tool having a tip portion 12B including a cutting edge.
  • the bucket 12 is disposed in front of the front tire 6F.
  • Bucket 12 is connected to the tip of boom 11.
  • the bucket 12 is swung by the power generated by the bucket cylinder 14.
  • the bucket cylinder 14 is a hydraulic cylinder that swings the bucket 12.
  • the bucket cylinder 14 is operated by hydraulic oil discharged from the hydraulic pump 31.
  • a central portion of the bell crank 15 is rotatably connected to the boom 11.
  • One end of the bucket cylinder 14 is connected to the vehicle body 2.
  • the other end of the bucket cylinder 14 is connected to one end of the bell crank 15.
  • the other end of the bell crank 15 is connected to the bucket 12 via a bucket link 16.
  • the bucket 12 is connected to the tip of the boom 11 via a connecting pin 12P.
  • One end portion of the bucket cylinder 14 is coupled to the vehicle body front portion 2F via a coupling pin (not shown).
  • the other end portion of the bucket cylinder 14 is connected to one end portion of the bell crank 15 via a connecting pin 15P.
  • the other end of the bell crank 15 is connected to one end of the bucket link 16 via a connecting pin 15Q.
  • the other end of the bucket link 16 is connected to the bucket 12 via a connecting pin 12Q.
  • a support member 17 is provided in the middle part of the boom 11.
  • the support member 17 supports the bell crank 15.
  • An intermediate portion of the bell crank 15 is coupled to the support member 17 via a coupling pin 15R.
  • the bell crank 15 rotates with the connecting pin 15R as a fulcrum.
  • the bell crank 15 rotates about the connecting pin 15R
  • the bucket 12 rotates about the connecting pin 12P.
  • the angle of the bucket 12 around the connecting pin 12P changes. That is, when the bucket cylinder 14 expands and contracts, the attitude of the bucket 12 changes, and the bucket 12 performs a dumping operation or a tilting operation.
  • the bell crank 15 rotates with the connecting pin 15R as a fulcrum so that one end of the bell crank 15 moves forward and the other end of the bell crank 15 moves backward.
  • the bucket 12 is pulled rearward by the bucket link 16.
  • the bucket 12 tilts.
  • the dumping operation of the bucket 12 refers to an operation in which the bucket 12 rotates with the connecting pin 12P as a fulcrum so that the opening 12M of the bucket 12 faces downward and the tip 12B approaches the ground RS.
  • the tilting operation of the bucket 12 refers to an operation in which the bucket 12 rotates with the connecting pin 12P as a fulcrum so that the opening 12M faces upward and the tip 12B is separated from the ground RS.
  • the driver's cab 3R is provided with a driving seat on which an operator is seated and an operating device 7 operated by the operator.
  • the operating device 7 includes an accelerator pedal, a brake pedal, a steering lever, a forward / reverse switching switch, and a work implement operating lever.
  • the operator can perform driving, braking, turning, and forward / reverse switching of the traveling device 4 by operating the accelerator pedal, the brake pedal, the steering lever, and the forward / reverse selector switch of the operating device 7.
  • the operator can operate the accelerator pedal and the brake pedal of the operating device 7 to adjust driving speed, braking, and traveling speed.
  • the operator can turn the wheel loader 1 by operating the steering lever of the operating device 7, and can switch the forward / backward movement of the wheel loader 1 by operating the forward / reverse switching lever. .
  • the operator can operate the boom cylinder 13 and the bucket cylinder 14 by operating the work machine operation lever of the operation device 7. As the boom cylinder 13 expands and contracts, the boom 11 moves up or down. As the bucket cylinder 14 expands and contracts, the bucket 12 is tilted or dumped.
  • FIG. 2 is a diagram schematically illustrating the control system 50 according to the present embodiment.
  • the control system 50 is mounted on the wheel loader 1.
  • the control system 50 includes a hydraulic device 30 that adjusts the supply state of hydraulic oil supplied to each of the boom cylinder 13 and the bucket cylinder 14, and a control device 40 that controls the hydraulic device 30.
  • the hydraulic device 30 shown in FIG. 2 adjusts the supply state of hydraulic oil supplied to the bucket cylinder 14 that operates the bucket 12.
  • the control device 40 includes a computer system.
  • the supply state of the hydraulic oil includes the increase / decrease state of the flow rate of the hydraulic oil supplied to extend or contract the bucket cylinder 14 to the operation limit position (stroke end), and the bucket cylinder 14 to the operation limit position (stroke end) or It includes at least one of the increase and decrease states of the flow rate of hydraulic oil supplied for contraction per unit time.
  • the hydraulic device 30 includes a hydraulic pump 31 that supplies hydraulic oil, a hydraulic pump 32 that supplies pilot oil, oil passages 33A and 33B through which pilot oil flows, and a spool 38 (see FIG. 3). It has a flow control valve 34 for adjusting the flow rate and direction of hydraulic oil supplied to the bucket cylinder 14 by movement, and a control valve 35 (control valves 35A, 35B) for adjusting the force for moving the spool 38.
  • a pilot pressure is applied to the flow control valve 34 by the pilot oil that has flowed through the oil passages 33A and 33B.
  • the force for moving the spool 38 is a pilot pressure.
  • the control valves 35A and 35B adjust the pilot pressure acting on the spool 38.
  • Pilot oil discharged from the hydraulic pump 32 is supplied to the operation device 7. Pilot oil discharged from the hydraulic pump 31 and decompressed by the pressure reducing valve may be supplied to the operating device 7.
  • the operating device 7 includes a pilot pressure adjusting valve such as a rotary valve. The pilot oil discharged from the hydraulic pump 32 is supplied to the flow control valve 34 via the operating device 7 and the oil passages 33A and 33B.
  • the bucket cylinder 14 has a piston-side oil chamber 14A and a rod-side oil chamber 14B.
  • the hydraulic oil discharged from the hydraulic pump 31 is supplied to the bucket cylinder 14 via the flow rate control valve 34.
  • the bucket cylinder 14 extends.
  • the hydraulic oil is supplied to the rod-side oil chamber 14B via the port 37B and the oil passage 36B of the flow control valve 34, the bucket cylinder 14 is contracted.
  • the operating device 7 includes a work implement operating lever, and is operated by an operator to cause the bucket 12 to perform a dumping operation and a tilting operation.
  • the work implement operating lever of the operating device 7 is operated so as to fall in the first operating direction (for example, forward)
  • the bucket cylinder 14 contracts and the bucket 12 performs a dumping operation.
  • the work implement operating lever of the operating device 7 is operated so as to fall in the second operating direction (for example, rearward)
  • the bucket cylinder 14 extends and the bucket 12 performs a tilting operation.
  • the cylinder stroke indicating the amount of contraction of the bucket cylinder 14 changes based on the operation amount of the work implement operating lever of the operating device 7;
  • the rotation angle of the bucket 12 that performs the dumping operation changes. For example, when the work machine operation lever of the operation device 7 is operated with a large operation amount in the first operation direction, the bucket cylinder 14 operates with a large cylinder stroke, and the rotation angle of the bucket 12 that performs the dumping operation increases.
  • the bucket cylinder 14 operates with a small cylinder stroke, and the rotation angle of the bucket 12 that performs the dumping operation becomes small.
  • the cylinder stroke of the bucket cylinder 14 changes based on the operation amount of the work implement operating lever, and the rotation of the bucket 12 performing the tilt operation is performed.
  • the moving angle changes.
  • the cylinder speed of the bucket cylinder 14 changes based on the operation speed of the work implement operating lever, and the operation speed of the bucket 12 that performs the dump operation. (Rotation speed) changes. For example, when the work implement operating lever of the operating device 7 is operated at a high operating speed in the first operating direction, the bucket cylinder 14 operates at a high cylinder speed, and the operating speed of the bucket 12 that performs the dumping operation increases. When the work implement operating lever of the operating device 7 is operated at a low operating speed in the first operating direction, the bucket cylinder 14 operates at a low cylinder speed, and the operating speed of the bucket 12 that performs the dumping operation decreases.
  • the cylinder speed of the bucket cylinder 14 changes based on the operation speed of the work implement operation lever, and the operation of the bucket 12 that performs the tilt operation is performed. The speed changes.
  • the control system 50 includes an operation sensor 20 that detects operation data indicating the operation state of the operation device 7.
  • the operation sensor 20 includes, for example, a potentiometer.
  • the operation sensor 20 is provided in the operation device 7.
  • the operation data detected by the operation sensor 20 includes an operation amount of the operation device 7 for causing the bucket 12 to perform a dump operation or a tilt operation, an operation direction of the operation device 7 for causing the bucket 12 to perform a dump operation or a tilt operation, and the bucket 12. Includes the operation time or operation speed of the operation device 7 when the operation is switched from one operation of the dump operation and the tilt operation to the other operation. Operation data detected by the operation sensor 20 is output to the control device 40.
  • the control device 40 controls the control valves 35A and 35B based on the operation data output from the operation sensor 20. By controlling the control valves 35A and 35B, the pilot pressure acting on the flow control valve 34 is adjusted. By adjusting the pilot pressure by the operating device 7, the moving amount, moving speed, and moving direction of the spool 38 in the axial direction are adjusted. Thereby, the supply state of the hydraulic oil supplied to the bucket cylinder 14 is adjusted.
  • FIG. 3 is a diagram schematically showing the flow control valve 34 according to the present embodiment.
  • the flow rate control valve 34 is a slide spool type flow rate control valve that switches the flow rate and direction of hydraulic oil supplied to the bucket cylinder 14 by moving a rod-shaped spool 38 in the axial direction. As the spool 38 moves in the axial direction, the supply of hydraulic oil to the piston side oil chamber 14A and the supply of hydraulic oil to the rod side oil chamber 14B are switched. As shown in FIG. 3A, when the spool 38 moves to one side in the axial direction, a flow path indicated by a broken line arrow is formed, and hydraulic oil is discharged from the port 37A. The hydraulic oil discharged from the port 37A is supplied to the piston side oil chamber 14A.
  • the operation direction of the bucket 12 includes a first operation direction in which the bucket 12 tilts and a second operation direction in which a dump operation is performed.
  • the operation direction of the bucket 12 includes a first operation direction in which the bucket 12 tilts and a second operation direction in which a dump operation is performed.
  • the flow rate of the hydraulic oil per unit time supplied to the bucket cylinder 14 is adjusted.
  • the cylinder stroke or cylinder speed of the bucket cylinder 14 is adjusted by adjusting the flow rate of the hydraulic oil supplied to the bucket cylinder 14.
  • the rotation angle or the operation speed of the bucket 12 is adjusted.
  • the rotation angle of the bucket 12 indicates the swing amount of the bucket 12, and the operation speed of the bucket 12 indicates the rotation speed (swing speed) of the bucket 12.
  • the operating device 7 may not be a pilot pressure method.
  • the operation device 7 may be an electronic lever system that outputs operation data detected by the operation sensor 20 to the control device 40 and electrically controls the flow control valve 24 based on the control device 40.
  • FIG. 4 is a diagram schematically illustrating an operation example of the bucket 12 according to the present embodiment.
  • the wheel loader 1 uses the bucket 12 of the work machine 10 to perform a loading operation of loading earth and sand on the loading platform of the dump truck 100.
  • the operator of the wheel loader 1 operates the operation device 7 so that the bucket 12 performs a dumping operation. Even after the dumping operation is performed, if the remaining earth and sand adhere to the bucket 12, the operator repeats the dumping operation and the tilting operation in order to shake off the earth and sand adhering to the bucket 12.
  • the operating device 7 may be quickly reciprocated in the entire operating range of the operating device 7.
  • the bucket cylinder 14 quickly repeats the state extending to the operation limit position (stroke end) and the state extending to the operation limit position (stroke end), and the bucket 12 performs the dumping operation.
  • the reciprocating operation is performed between the operation limit position (stroke end) and the tilt operation limit position (stroke end).
  • the reciprocating operation of the bucket between the operation limit position of the dump operation and the operation limit position of the tilt operation is repeated in a short time, at least a part of the work machine 10 at the operation limit position of the dump operation or the operation limit position of the tilt operation. May be overloaded.
  • an excessive stress may act on the support member 17 connected to the bell crank 15 via the connecting pin 15R, or an excessive stress may act on the bell crank 15.
  • the work machine 10 may be damaged. If the working machine 10 to which a structure or material that can withstand the load is applied is prepared, an increase in weight or cost of the working machine 10 is caused.
  • the operation of the operating device 7 by the operator such that the bucket 12 quickly reciprocates between the operation limit position of the dump operation and the operation limit position of the tilt operation will be referred to as a sudden operation as appropriate.
  • the operator may suddenly operate the operation device 7 in the entire operation range, and may suddenly repeat the dumping operation and the tilting operation of the bucket 12.
  • the control device 40 allows the bucket 12 to reach the operation limit position (stroke end) of the dump operation in the dump operation and tilt operation of the bucket 12 even when the operator suddenly operates the operation device 7. Therefore, the control valve 35 is controlled so as not to reach the operation limit position (stroke end) of the tilt operation. That is, the control device 40 controls the operation of the bucket 12 so that an excessive load is not applied to at least a part of the work machine 10 when the operating device 7 is suddenly operated.
  • FIG. 5 is a functional block diagram showing the control device 40 according to the present embodiment.
  • the control device 40 includes an operation data acquisition unit 41, a control command unit 42, an operation condition determination unit 43, a storage unit 44, a limit command unit 45, an output command determination unit 46, And an output unit 47.
  • the operation data acquisition unit 41 acquires, from the operation sensor 20, operation data indicating the operation state of the operation device 7 that is detected by the operation sensor 20 and operated to cause the bucket 12 to perform a dump operation and a tilt operation.
  • the control command unit 42 outputs a control command Ca for controlling the hydraulic device 30 based on the operation data acquired by the operation data acquisition unit 41.
  • the control command Ca includes a command value calculated based on the operation amount.
  • the operation condition determination unit 43 determines whether or not the operation device 7 has been operated under a specified operation condition based on the operation data acquired by the operation data acquisition unit 41.
  • the specified operating conditions are the first condition that the operation amount of the operating device 7 for causing the bucket 12 to perform the dumping operation or the tilting operation is equal to or greater than the operation amount threshold a, and the operating device 7 for operating the bucket 12 to perform the dumping operation or tilting operation.
  • the second condition in which the operation direction is switched a specified number of times, and the operation time t (t1, t2) of the operation device 7 required for switching the bucket 12 from one operation of the dump operation and the tilt operation to the other operation are the operation time threshold T.
  • the third condition is equal to or less than (Ta, Tb).
  • the number of times the operation direction of the operation device 7 is switched is the number of times the operation device 7 that is reciprocated in the first operation direction and the second operation direction is operated in the first operation direction or the second operation direction.
  • the number of times of switching is one.
  • the number of times of switching is one.
  • the operation device 7 in the neutral state or in the second operation direction is operated in the second operation direction after being operated in the first operation direction, the number of times of switching is two.
  • the number of times of switching is two.
  • the number of times of switching is 3 times.
  • the controller 7 in the neutral state or operated in the first operation direction is operated in the first direction after being operated in the second operation direction and then operated again in the second operation direction, the number of times of switching is 3 Times.
  • the specified number of times for the second condition is multiple times.
  • the prescribed number of times for the second condition is three.
  • the prescribed number of times for the second condition may be two, or may be any number of four or more.
  • the storage unit 44 stores an operation amount threshold value a and an operation time threshold value T.
  • the operation amount threshold value a and the operation time threshold value T are predetermined values.
  • the limit command unit 45 outputs a limit command Cb for limiting the control command Ca when the operation condition determination unit 43 determines that the operating device 7 is operated under the operation conditions.
  • the limit command Cb includes a limit value that limits the command value defined by the control command Ca.
  • the supply state of the hydraulic oil supplied to the bucket cylinder 14 includes the flow rate of the hydraulic oil supplied to the bucket cylinder 14.
  • the limit command unit 45 outputs a limit command Cb so that the hydraulic oil is supplied at a flow rate smaller than the flow rate of the hydraulic oil supplied to the bucket cylinder 14 based on the control command Ca. That is, the limit command unit 45 outputs the limit command Cb so that the bucket cylinder 14 operates with a cylinder stroke smaller than the cylinder stroke of the bucket cylinder 14 that operates based on the control command Ca.
  • the output command determination unit 46 compares the command value defined by the control command Ca with the limit value defined by the limit command Cb, and outputs either the control command Ca or the limit command Cb to the hydraulic device 30.
  • the output command Cc is determined.
  • the output unit 47 outputs the output command Cc determined by the output command determination unit 46 to the hydraulic device 30.
  • the output unit 47 outputs an output command Cc to the control valve 35.
  • the output command determination unit 46 determines the limit command Cb as the output command Cc when the command value is outside the limit value range, and determines the control command Ca as the output command Cc when the command value is within the limit value range. .
  • the output output from the output unit 47 to the control valve 35 A limit command Cb is output as the command Cc.
  • the output command Cc output from the output unit 47 to the control valve 35 A control command Ca is output.
  • FIGS. 6 and 7 are diagram illustrating an example of the output command Cc according to the present embodiment. 6 and 7, the vertical axis represents the operation amount of the controller device 7, and the horizontal axis represents the elapsed time from the reference time point.
  • FIG. 6 is a diagram showing an output command Cc when the operating device 7 is not operated under a specified operating condition.
  • 6A shows a case where the operating device 7 is reciprocated in a range that is less than the entire operating range
  • FIG. 6B shows a case where the operating device 7 is reciprocated in the entire operating range, but slowly. It shows the case where it was operated over time.
  • solid line La and line La ′ indicate detection data of the operation sensor 20.
  • the operation amount of the operation device 7 detected by the operation sensor 20 shows a positive value.
  • the operation amount of the operation device 7 detected by the operation sensor 20 shows a negative value. That is, FIG. 6 shows a state where the controller device 7 is reciprocated so that the bucket 12 repeats the dumping operation and the tilting operation.
  • dotted lines Lb and Lb ' indicate output commands Cc.
  • the output command Cc is generated slightly later than the operation of the controller device 7. Therefore, in FIG. 6, the line Lb and the line Lb ′ are shown to be delayed in time from the line La and the line La ′ indicating the detection data of the operation sensor 20. Similarly in FIG. 7, the line Lc indicating the output command Cc is shown to be delayed from the line La indicating the detection data of the operation sensor 20.
  • control command Ca output from the control command unit 42 is output to the control valve 35 as the output command Cc.
  • the output command determination unit 46 determines the control command Ca as the output command Cc.
  • FIG. 7 is a diagram showing an output command Cc when the operating device 7 is operated under a specified operating condition.
  • a solid line La indicates detection data of the operation sensor 20.
  • the operation amount of the operating device 7 detected by the operation sensor 20 shows a positive value.
  • the operation amount of the operation device 7 detected by the operation sensor 20 shows a negative value.
  • a thick broken line Lc indicates an output command Cc.
  • Specified operating conditions include that all of the above-mentioned first condition, second condition, and third condition are satisfied.
  • the 1st condition shows that the operation amount of the operating device 7 detected by the operation sensor 20 is more than the operation amount threshold value a.
  • the second condition indicates that the operation direction of the controller device 7 for causing the bucket 12 to perform a dump operation or a tilt operation is switched a specified number of times.
  • the operation amount threshold value a is a value of 90 [%] of the maximum value of the operation amount that can be operated by the operation device 7.
  • the second condition indicates that the operation direction of the controller device 7 is switched three times.
  • the operation amount when the operating device 7 is operated in the first operation direction so that the bucket 12 performs the dumping operation from the reference time point p0 exceeds the operation amount threshold value a.
  • the operation amount when the operation device 7 is operated in the second operation direction so that the bucket 12 is tilted after the operation device 7 is operated in the first operation direction also exceeds the operation amount threshold value a.
  • the operation amount when the operation device 7 is continuously operated in the first operation direction so that the bucket 12 performs the dumping operation after the operation device 7 is operated in the second operation direction also exceeds the operation amount threshold value a. . Therefore, the example shown in FIG. 7 satisfies the first condition and the second condition.
  • the third condition is that the operation time t (t1, t2) of the operation device 7 required for switching the bucket 12 from one operation of the dump operation and the tilt operation to the other operation is equal to or less than the operation time threshold value T (Ta, Tb).
  • T operation time threshold value
  • a certain third condition is included. For example, when the operation device 7 is operated in the first operation direction, the time when the operation amount exceeds the operation amount threshold a is p1, and when the operation device 7 is subsequently operated in the second operation direction, the operation amount is the operation amount threshold a.
  • the operation time t is from the time point p1 to the time point p2, where p2 is the time when the operation time is exceeded and p3 is the time when the operation amount when the operation amount is continuously operated in the first operation direction (control start time point).
  • the operation time threshold value Ta related to the first operation time t1 is set to, for example, 0.25 [seconds]
  • the operation time threshold value Tb related to the second operation time t2 is set to, for example, 0.5 [seconds].
  • the example shown in FIG. 7 shows a case where not only the first condition and the second condition but also the third condition is satisfied.
  • the example shown in FIG. 7 is a case where the operating device 7 is first operated in the first operating direction. However, even if the operating device 7 is initially operated in the second operating direction, the first condition, When the two conditions and the third condition are all satisfied, the operation condition determination unit 43 determines that the operation device 7 has been operated under the specified operation conditions.
  • a thick broken line Lc is output to the control valve 35 as an output command Cc.
  • the limit command unit 45 outputs a limit command from a control start time point p3 at which it is determined that the controller device 7 has been operated under an operation condition to a control end time point p4 after the lapse of a specified time.
  • a line Ld indicated by a thin broken line indicates a limit value defined by the limit command.
  • the limit command unit 45 gradually decreases the limit value from the control start time point p3. Since the limit value gradually decreases, the cylinder stroke of the bucket cylinder 14 gradually decreases, and the operation amount of the bucket 12 gradually decreases. Since the operation amount of the bucket 12 does not rapidly decrease, the operator of the wheel loader 1 is prevented from feeling uncomfortable that the movement of the bucket 12 has suddenly deteriorated.
  • a minimum limit value b indicating the minimum limit value is determined.
  • the limit command unit 45 continues outputting the minimum limit value b after the limit value reaches the minimum limit value b.
  • the limit command unit 45 continues to output the minimum limit value b, which is a constant value, without changing the minimum limit value b.
  • the limit command unit 45 outputs the limit command Cb from the release preparation start time pe indicating the time when it is determined that the controller device 7 was last operated under the specified operation condition to the control end time p4 after the control release preparation time t3 has elapsed. To do.
  • the release preparation start time point pe is a time point at which preparation for release of control based on the limit command Cb is started.
  • the control end time point p4 is a time point at which the control based on the limit command Cb is canceled.
  • the control release preparation time t3 is a time from the release preparation start time point pe to the control end time point p4, and is a preset time.
  • the control end point p4 is a point at which 3 [seconds] have elapsed as the control release preparation time t3, for example, from the release preparation start point pe that finally satisfied the specified operation condition.
  • the release preparation start time point pe is a time point when the operator of the wheel loader 1 operates the operation device 7 in the first operation direction and finally satisfies the operation conditions.
  • the operation device 7 operated in the first operation direction so as to satisfy the operation condition is operated in the second operation direction after the elapse of the release preparation start time point pe, but the operation amount does not exceed the operation amount threshold a.
  • FIG. 7 shows an example in which the bucket 12 that has been dumped to the operation limit position at the release preparation start time point pe is operated so as not to move to the operation limit position in the next tilt operation.
  • the control end point p4 When the control end point p4 is reached, the control end condition based on the limit command Cb is satisfied, and the control returns to the control for extending and retracting the bucket cylinder 14 based on the control command Ca. That is, the control returns to the operation of extending and retracting the bucket cylinder 14 based on the operator's intention.
  • the control based on the limit command Cb is automatically released, so that it is possible to quickly shift to normal excavation work or the like.
  • the limit value gradually decreases in a state where the controller device 7 is operated under the specified operating conditions, and when the minimum limit value b is reached, the minimum limit value b is not changed and the minimum value is not changed. Continue to output the limit value b.
  • the limit value gradually decreases at the initial stage of the control based on the limit command Cb, and the minimum limit value b starts from the middle of the control. Is continuously output from the output unit 47 to the control valve 35.
  • FIG. 8 is a flowchart showing a control method according to the present embodiment.
  • the control device 40 repeats the process shown in FIG. 8 at a specified cycle.
  • the operation data acquisition unit 41 acquires operation data from the operation sensor 20 (step S10).
  • the operation condition determination unit 43 determines whether or not the operation amount when the operation device 7 is operated in the first operation direction is greater than or equal to the operation amount threshold a based on the operation data (step S20).
  • step S20 When it is determined in step S20 that the operation amount is equal to or greater than the operation amount threshold a (step S20: Yes), the operation condition determination unit 43 operates the operation device 7 in the second operation direction based on the operation data. It is determined whether or not the operation amount at this time is equal to or greater than the operation amount threshold a (step S30).
  • step S30 When it is determined in step S30 that the operation amount is equal to or greater than the operation amount threshold a (step S30: Yes), the operation condition determination unit 43 determines that the first operation time t1 of the operation device 7 is the operation based on the operation data. It is determined whether or not the time threshold Ta is 0.25 [seconds] or less (step S40).
  • step S40 When it is determined in step S40 that the first operation time t1 is equal to or less than the operation time threshold Ta (step S40: Yes), the operation sensor 20 detects that the operation device 7 has been operated, and the operation data acquisition unit 41 Gets operation data. Based on the operation data, the operation condition determination unit 43 determines whether or not the operation amount when the operation device 7 is operated in the first operation direction is equal to or greater than the operation amount threshold a (step S50).
  • step S50 When it is determined in step S50 that the operation amount is equal to or greater than the operation amount threshold a (step S50: Yes), the operation condition determination unit 43 determines that the second operation time t2 of the operation device 7 is an operation based on the operation data. It is determined whether or not the time threshold Tb is 0.5 [second] or less (step S60).
  • step S60 when it is determined that the second operation time t2 is equal to or less than the operation time threshold value Tb (step S60: Yes), the limit command unit 45 sets a limit value for limiting the command value defined by the control command Ca. Calculate (step S70).
  • the output command determination unit 46 determines whether or not the command value output from the control command unit 42 is outside the limit value range (step S80).
  • step S80 When it is determined in step S80 that the command value is outside the limit value range (step S80: Yes), the output command determination unit 46 determines the limit command Cb indicating the limit value as the output command Cc. The output unit 47 outputs the limit command Cb indicating the limit value as the output command Cc (step S90).
  • step S80 When it is determined in step S80 that the command value is within the limit value range (step S80: No), the output command determination unit 46 determines the control command Ca indicating the command value as the output command Cc. The output unit 47 outputs the control command Ca indicating the command value as the output command Cc (step S100).
  • the output command determination unit 46 determines whether or not the control termination condition based on the limit command Cb described above is satisfied (step S110).
  • step S110 If it is determined in step S110 that the termination condition is not satisfied (step S110: No), the output unit 47 outputs the output command Cc determined in step S90 or the output command Cc determined in step S100 (step S130). ), The process returns to step S10.
  • step S110 If it is determined in step S110 that the end condition is satisfied (step S110: Yes), the output unit 47 controls the control command Ca without changing the size of the control command Ca in order to limit the control command Ca indicating the command value.
  • Ca is output as an output command Cc (step S120).
  • step S20 If it is determined in step S20 that the operation amount in the first operation direction is not equal to or greater than the operation amount threshold a (step S20: No), it is determined in step S30 that the operation amount in the second operation direction is not equal to or greater than the operation amount threshold a. If it is determined (step S30: No), if it is determined in step S40 that the first operation time t1 is not less than or equal to the operation time threshold Ta (step S40: No), the operation amount in the first operation direction is determined in step S50.
  • step S110 When it is determined that it is not equal to or greater than the operation amount threshold a (step S50: No), and when it is determined that the second operation time t2 is not equal to or less than the operation time threshold Tb (step S60: Yes), the process of step S110 is executed.
  • FIG. 9 is a block diagram illustrating an example of a computer system 1000.
  • the control device 40 described above includes a computer system 1000.
  • the computer system 1000 includes a processor 1001 such as a CPU (Central Processing Unit), a main memory 1002 including a nonvolatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory), A storage 1003 and an interface 1004 including an input / output circuit are included.
  • the functions of the control device 40 described above are stored in the storage 1003 as a program.
  • the processor 1001 reads out the program from the storage 1003, expands it in the main memory 1002, and executes the above-described processing according to the program. Note that the program may be distributed to the computer system 1000 via a network.
  • the operation device 7 performs all operations so that the bucket 12 can quickly reciprocate between the operation limit position of the dump operation and the operation limit position of the tilt operation, that is, the operation data satisfies the operation conditions.
  • control is performed to limit the cylinder stroke of the bucket cylinder 14 so that the bucket 12 does not move to the operation limit position of the dump operation and the operation limit position of the tilt operation.
  • the control for limiting the cylinder stroke of the bucket cylinder 14 can prevent the operator from feeling uncomfortable in the operation of the operating device 7. For example, in order to suppress an excessive load on the work machine 10, in the control for limiting the cylinder speed of the bucket cylinder 14 and slowing down the operation speed of the bucket 12, the operation speed of the operation device 7 may be delayed.
  • the operator may feel uncomfortable. According to the present embodiment, since the control for limiting the cylinder stroke of the bucket cylinder 14 is executed, the operator can be prevented from feeling uncomfortable in the operation of the operation device 7.
  • the limit command unit 45 is configured to slow down the operation speed of the dump operation or the tilt operation. You may control. That is, when the operation data satisfies the operation condition, a limit command may be generated so that the operation speed of the bucket 12 becomes slow, and control in which the cylinder speed of the bucket cylinder 14 is limited may be executed.
  • the control device 40 calculates the flow rate of the hydraulic oil per unit time supplied to the bucket cylinder 14 so that the operation speed of the bucket 12 is decreased. A limit command is generated based on the flow rate.
  • the work vehicle 1 is a wheel loader.
  • the work vehicle 1 may be provided with a work machine having a work tool such as a bucket, and may be at least one of a crawler loader, a dozer excavator, a wheel hydraulic excavator, and a crawler hydraulic excavator.
  • a work tool such as a bucket
  • the work vehicle 1 is a hydraulic excavator
  • the operating device of the hydraulic excavator is operated in the entire operation range so that the bucket as the work tool can quickly reciprocate between the operation limit position of the dumping operation and the operation limit position of the tilting operation.
  • the load applied to the work machine is reduced by controlling the bucket cylinder according to the above-described embodiment.
  • SYMBOLS 1 Wheel loader (work vehicle), 2 ... Vehicle body, 2F ... Vehicle body front part, 2R ... Vehicle body rear part, 3 ... Driver's cab, 3R ... Driver's cab, 4 ... Traveling device, 5 ... Wheel, 5F ... Front wheel, 5R ... Rear Wheel, 6 ... tire, 6F ... front tire, 6R ... rear tire, 7 ... operating device, 8 ... engine, 9 ... joint mechanism, 10 ... work implement, 11 ... boom, 12 ... bucket, 12B ... tip, 12M ... Opening part, 12P ... connecting pin, 12Q ... connecting pin, 13 ... boom cylinder, 14 ... bucket cylinder, 14A ...
  • piston side oil chamber, 14B ... rod side oil chamber, 15 ... bell crank, 15P ... connecting pin, 15Q ... connection Pins, 15R ... connecting pins, 16 ... bucket links, 17 ... support members, 20 ... operation sensors, 30 ... hydraulic devices, 31 ... hydraulic pumps, 32 ... hydraulic pumps, 33A ... oil passages, 33B ... oil passages, 34 ... flow rates

Abstract

作業車両の制御システムは、作業具を動作させる油圧シリンダに供給される作動油の供給状態を調整する油圧装置と、油圧装置を制御する制御装置と、を備える。制御装置は、作業具をダンプ動作及びチルト動作させるために操作される操作装置の操作状態を示す操作データを取得する操作データ取得部と、操作データに基づいて、油圧装置を制御するための制御指令を出力する制御指令部と、操作データに基づいて、操作装置が規定の操作条件で操作されたか否かを判定する操作条件判定部と、操作装置が操作条件で操作されたと判定された場合、制御指令を制限するためのリミット指令を出力するリミット指令部と、を有する。

Description

作業車両の制御システム及び作業車両の制御方法
 本発明は、作業車両の制御システム及び作業車両の制御方法に関する。
 作業車両は、作業機のバケットを用いて土砂の掘削作業、積込作業、及び排土作業を実施する。例えば積込作業においてバケットから土砂を排出するとき、作業車両の操作者は、バケットがダンプ動作するように操作装置を操作する。ダンプ動作の実施後において残った土砂がバケットに付着している場合、バケットに付着した土砂を振り落すために、操作者は、バケットがダンプ動作とチルト動作とを繰り返すように、操作装置の全操作範囲において操作装置を素早く往復操作する場合がある。操作装置が全操作範囲において素早く往復操作されると、バケットはダンプ動作の動作限界位置(ストロークエンド)とチルト動作の動作限界位置(ストロークエンド)の間を往復動作することになる。
特開平08-042507号公報
 操作装置が全操作範囲において往復操作されても、ダンプ動作の動作限界位置とチルト動作の動作限界位置の間のバケットの往復動作がゆっくりと時間をかけて繰り返されれば、作業機には大きな負荷はかからない。しかし、操作装置が全操作範囲において素早く往復操作され、ダンプ動作の動作限界位置とチルト動作の動作限界位置との間のバケットの往復動作が短時間に繰り返されると、ダンプ動作の動作限界位置又はチルト動作の動作限界位置において、作業機の少なくとも一部に過度な負荷が与えられる。その場合、負荷に耐えうる構造又は材料を適用した作業機を用意しなければならず、作業機の重量増加又はコスト増大を招来する。また、作業機が負荷に耐えることができない場合、作業機が損傷する可能性がある。
 本発明の態様は、作業機に作用する負荷を軽減することを目的とする。
 本発明の態様に従えば、作業具を動作させる油圧シリンダに供給される作動油の供給状態を調整する油圧装置と、前記油圧装置を制御する制御装置と、を備え、前記制御装置は、前記作業具をダンプ動作及びチルト動作させるために操作される操作装置の操作状態を示す操作データを取得する操作データ取得部と、前記操作データに基づいて、前記油圧装置を制御するための制御指令を出力する制御指令部と、前記操作データに基づいて、前記操作装置が規定の操作条件で操作されたか否かを判定する操作条件判定部と、前記操作装置が前記操作条件で操作されたと判定された場合、前記制御指令を制限するためのリミット指令を出力するリミット指令部と、を有し、前記操作データは、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作量、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作方向、及び前記作業具を前記ダンプ動作及び前記チルト動作の一方の動作から他方の動作への切り換えに要する前記操作装置の操作時間を含み、前記操作条件は、前記操作量が操作量閾値以上である第1条件、前記操作方向が規定回数切り換えられる第2条件、及び前記操作時間が操作時間閾値以下である第3条件を含む、作業車両の制御システムが提供される。
 本発明の態様によれば、作業機に作用する負荷を軽減することができる。
図1は、実施形態に係る作業車両を示す側面図である。 図2は、実施形態に係る制御システムを模式的に示す図である。 図3は、実施形態に係る流量制御弁を模式的に示す図である。 図4は、実施形態に係るバケットの動作例を模式的に示す図である。 図5は、実施形態に係る制御装置を示す機能ブロック図である。 図6は、実施形態に係る制御方法を説明するための図である。 図7は、実施形態に係る制御方法を説明するための図である。 図8は、実施形態に係る制御方法を示すフローチャートである。 図9は、実施形態に係るコンピュータシステムを示すブロック図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[作業車両]
 図1は、本実施形態に係る作業車両1の一例を示す側面図である。本実施形態において、作業車両1は、アーティキュレート式作業車両の一種であるホイールローダ1である。ホイールローダ1は、作業具であるバケット12ですくい取った土砂を運搬車両に積み込んだり所定の排出場所に排出したりする。
 図1に示すように、ホイールローダ1は、車体2と、運転台3と、走行装置4と、作業機10と、制御システム50とを備える。
 車体2は、車体前部2Fと車体後部2Rとを含む。運転台3は、車体2に支持される。運転台3に運転室3Rが設けられる。ホイールローダ1は、運転室3Rに搭乗した操作者によって運転される。
 走行装置4は、車体2を支持する。関節機構9は、車体前部2Fと車体後部2Rとを屈曲可能に連結する。関節機構9は、ステアリングシリンダを含む。ステアリングシリンダが伸縮することによって車体2が屈曲する。車体2が屈曲することによって、ホイールローダ1が旋回する。車輪5は、車体2に搭載されているエンジン8が発生する動力により回転する。タイヤ6が車輪5に装着される。車輪5は、車体前部2Fに支持される2つの前輪5Fと、車体後部2Rに支持される2つの後輪5Rとを含む。タイヤ6は、前輪5Fに装着される前タイヤ6Fと、後輪5Rに装着される後タイヤ6Rとを含む。車輪5が回転することによって、ホイールローダ1は地面RSを走行する。
 作業機10は、車体前部2Fに支持される。作業機10は、車体2対して揺動可能に連結されるブーム11と、ブーム11に対して揺動可能に連結されるバケット12と、ベルクランク15と、バケットリンク16とを有する。
 ブーム11は、ブームシリンダ13が発生する動力によって上下方向に揺動する。ブームシリンダ13は、油圧ポンプ31から吐出された作動油により作動する。ブームシリンダ13は、ブーム11を上下方向に揺動させる油圧シリンダである。ブームシリンダ13の一端部は、車体2に連結される。ブームシリンダ13の他端部は、ブーム11に連結される。
 バケット12は、刃先を含む先端部12Bを有する作業具である。バケット12は、前タイヤ6Fよりも前方に配置される。バケット12は、ブーム11の先端部に連結される。バケット12は、バケットシリンダ14が発生する動力によって揺動する。バケットシリンダ14は、バケット12を揺動させる油圧シリンダである。バケットシリンダ14は、油圧ポンプ31から吐出された作動油により作動する。ベルクランク15の中央部がブーム11に対して回転可能に連結される。バケットシリンダ14の一端部は、車体2に連結される。バケットシリンダ14の他端部は、ベルクランク15の一端部に連結される。ベルクランク15の他端部は、バケットリンク16を介してバケット12に連結される。
 バケット12は、連結ピン12Pを介してブーム11の先端部に連結される。バケットシリンダ14の一端部は、連結ピン(不図示)を介して車体前部2Fに連結される。バケットシリンダ14の他端部は、連結ピン15Pを介してベルクランク15の一端部に連結される。ベルクランク15の他端部は、連結ピン15Qを介してバケットリンク16の一端部と連結される。バケットリンク16の他端部は、連結ピン12Qを介してバケット12と連結される。
 ブーム11の中間部に支持部材17が設けられる。支持部材17は、ベルクランク15を支持する。ベルクランク15の中間部は、連結ピン15Rを介して支持部材17と連結される。ベルクランク15は、連結ピン15Rを支点として回転する。
 バケットシリンダ14が伸縮することにより、ベルクランク15は、連結ピン15Rを支点として回転し、バケット12は、連結ピン12Pを支点として回転する。連結ピン12Pを支点としてバケット12が揺動することにより、連結ピン12Pを中心とするバケット12の角度が変化する。すなわち、バケットシリンダ14が伸縮することによりバケット12の姿勢が変化し、バケット12はダンプ動作又はチルト動作する。
 バケットシリンダ14が縮むと、ベルクランク15は、ベルクランク15の一端部が後方に移動し、ベルクランク15の他端部が前方に移動するように、連結ピン15Rを支点として回転する。ベルクランク15の他端部が前方に移動すると、バケット12は、バケットリンク16によって前方に押される。バケット12がバケットリンク16によって前方に押されることにより、バケット12はダンプ動作する。
 バケットシリンダ14が伸びると、ベルクランク15は、ベルクランク15の一端部が前方に移動し、ベルクランク15の他端部が後方に移動するように、連結ピン15Rを支点として回転する。ベルクランク15の他端部が後方に移動すると、バケット12は、バケットリンク16によって後方に引かれる。バケット12がバケットリンク16によって後方に引かれることにより、バケット12はチルト動作する。
 バケット12のダンプ動作とは、バケット12の開口部12Mが下方を向き先端部12Bが地面RSに近付くようにバケット12が連結ピン12Pを支点として回転する動作をいう。バケット12のチルト動作とは、開口部12Mが上方を向き先端部12Bが地面RSから離れるようにバケット12が連結ピン12Pを支点として回転する動作をいう。バケット12のダンプ動作が実施されることにより、バケット12ですくい上げられた土砂がバケット12から排出される。バケット12のチルト動作が実施されることにより、バケット12は土砂をすくい取る。
 運転室3Rには、操作者が着座する運転シートと、操作者に操作される操作装置7と設けられる。操作装置7は、アクセルペダル、ブレーキペダル、ステアリングレバー、前後進切換スイッチ、及び作業機操作レバーを含む。
 操作者は、操作装置7のアクセルペダル、ブレーキペダル、ステアリングレバー、及び前後進切換スイッチを操作して、走行装置4の駆動、制動、旋回、及び前後進の切り換えを実施することができる。
 操作者は、操作装置7のアクセルペダル及びブレーキペダルを操作して、走行装置4の駆動、制動、及び走行速度の調整を実施することができる。操作者は、操作装置7のステアリングレバーを操作して、ホイールローダ1の旋回を実施することができ、前後進切換レバーを操作して、ホイールローダ1の前後進の切り換えを実施することができる。
 操作者は、操作装置7の作業機操作レバーを操作して、ブームシリンダ13の作動及びバケットシリンダ14の作動を実施することができる。ブームシリンダ13が伸縮することにより、ブーム11は上げ動作又は下げ動作する。バケットシリンダ14が伸縮することにより、バケット12はチルト動作又はダンプ動作する。
[制御システム]
 図2は、本実施形態に係る制御システム50を模式的に示す図である。制御システム50は、ホイールローダ1に搭載される。制御システム50は、ブームシリンダ13及びバケットシリンダ14のそれぞれに供給される作動油の供給状態を調整する油圧装置30と、油圧装置30を制御する制御装置40とを備える。図2に示す油圧装置30は、バケット12を動作させるバケットシリンダ14に供給される作動油の供給状態を調整する。制御装置40は、コンピュータシステムを含む。作動油の供給状態は、バケットシリンダ14を動作限界位置(ストロークエンド)まで伸ばす又は縮めるために供給される作動油の流量の増減状態、及びバケットシリンダ14を動作限界位置(ストロークエンド)まで伸ばす又は縮めるために供給される作動油の単位時間当たりの流量の増減状態の少なくとも一方を含む。
 油圧装置30は、作動油を供給する油圧ポンプ31と、パイロット油を供給する油圧ポンプ32と、パイロット油が流れる油路33A,33Bと、スプール38(図3参照)を有し、スプール38の移動によりバケットシリンダ14に供給される作動油の流量及び方向を調整する流量制御弁34と、スプール38を移動させる力を調整する制御弁35(制御弁35A,35B)とを有する。油路33A,33Bを流れたパイロット油により流量制御弁34にパイロット圧が作用する。本実施形態において、スプール38を移動させる力は、パイロット圧である。制御弁35A,35Bは、スプール38に作用するパイロット圧を調整する。
 油圧ポンプ32から吐出されたパイロット油が操作装置7に供給される。なお、油圧ポンプ31から吐出され、減圧弁によって減圧されたパイロット油が操作装置7に供給されてもよい。操作装置7は、ロータリーバルブのようなパイロット圧調整弁を含む。油圧ポンプ32から吐出されたパイロット油は、操作装置7及び油路33A,33Bを介して、流量制御弁34に供給される。
 バケットシリンダ14は、ピストン側油室14Aと、ロッド側油室14Bとを有する。油圧ポンプ31から吐出された作動油は、流量制御弁34を介して、バケットシリンダ14に供給される。作動油が流量制御弁34のポート37A及び油路36Aを介してピストン側油室14Aに供給されると、バケットシリンダ14は伸びる。作動油が流量制御弁34のポート37B及び油路36Bを介してロッド側油室14Bに供給されると、バケットシリンダ14は縮む。
 操作装置7は、作業機操作レバーを含み、バケット12をダンプ動作及びチルト動作させるために操作者に操作される。操作装置7の作業機操作レバーが第1操作方向(例えば前方)に倒れるように操作されると、バケットシリンダ14が縮んで、バケット12はダンプ動作する。操作装置7の作業機操作レバーが第2操作方向(例えば後方)に倒れるように操作されると、バケットシリンダ14が伸びて、バケット12はチルト動作する。
 また、操作装置7の作業機操作レバーが第1操作方向に操作されるとき、操作装置7の作業機操作レバーの操作量に基づいて、バケットシリンダ14の縮み量を示すシリンダストロークが変化し、ダンプ動作するバケット12の回動角度が変化する。例えば、操作装置7の作業機操作レバーが第1操作方向に大きな操作量で操作されると、バケットシリンダ14は、大きなシリンダストロークで作動し、ダンプ動作するバケット12の回動角度は大きくなる。操作装置7の作業機操作レバーが第1操作方向に小さな操作量で操作されると、バケットシリンダ14は、小さなシリンダストロークで作動し、ダンプ動作するバケット12の回動角度は小さくなる。
 同様に、操作装置7の作業機操作レバーが第2操作方向に操作されるとき、作業機操作レバーの操作量に基づいて、バケットシリンダ14のシリンダストロークが変化し、チルト動作するバケット12の回動角度が変化する。
 また、操作装置7の作業機操作レバーが第1操作方向に操作されるとき、作業機操作レバーの操作速度に基づいて、バケットシリンダ14のシリンダ速度が変化し、ダンプ動作するバケット12の動作速度(回動速度)が変化する。例えば、操作装置7の作業機操作レバーが第1操作方向に高い操作速度で操作されると、バケットシリンダ14は、高いシリンダ速度で作動し、ダンプ動作するバケット12の動作速度は高くなる。操作装置7の作業機操作レバーが第1操作方向に低い操作速度で操作されると、バケットシリンダ14は、低いシリンダ速度で作動し、ダンプ動作するバケット12の動作速度は低くなる。
 同様に、操作装置7の作業機操作レバーが第2操作方向に操作されるとき、作業機操作レバーの操作速度に基づいて、バケットシリンダ14のシリンダ速度が変化し、チルト動作するバケット12の動作速度が変化する。
 制御システム50は、操作装置7の操作状態を示す操作データを検出する操作センサ20を有する。操作センサ20は、例えばポテンショメータを含む。操作センサ20は、操作装置7に設けられる。
 操作センサ20によって検出される操作データは、バケット12をダンプ動作又はチルト動作させるための操作装置7の操作量、バケット12をダンプ動作又はチルト動作させるための操作装置7の操作方向、及びバケット12をダンプ動作及びチルト動作の一方の動作から他方の動作に切り換えたときの操作装置7の操作時間又は操作速度を含む。操作センサ20によって検出される操作データは、制御装置40に出力される。
 制御装置40は、操作センサ20から出力された操作データに基づいて、制御弁35A,35Bを制御する。制御弁35A,35Bが制御されることにより、流量制御弁34に作用するパイロット圧が調整される。操作装置7によりパイロット圧が調整されることによって、軸方向におけるスプール38の移動量、移動速度、及び移動方向が調整される。これにより、バケットシリンダ14に供給される作動油の供給状態が調整される。
 図3は、本実施形態に係る流量制御弁34を模式的に示す図である。流量制御弁34は、ロッド状のスプール38を軸方向に移動させてバケットシリンダ14に供給される作動油の流量及び方向を切り換えるスライドスプール方式の流量制御弁である。スプール38が軸方向に移動することにより、ピストン側油室14Aに対する作動油の供給と、ロッド側油室14Bに対する作動油の供給とが切り換わる。図3(A)に示すように、スプール38が軸方向の一方側に移動すると、破線矢印で示す流路が形成され、作動油は、ポート37Aから吐出される。ポート37Aから吐出された作動油は、ピストン側油室14Aに供給される。図3(B)に示すように、スプール38が軸方向の他方側に移動すると、破線矢印で示す流路が形成され、作動油は、ポート37Bから吐出される。ポート37Bから吐出された作動油は、ロッド側油室14Bに供給される。
 すなわち、スプール38が軸方向に移動することにより、バケットシリンダ14の作動方向が調整される。バケットシリンダ14の作動方向が調整されることにより、バケット12の動作方向が調整される。バケット12の動作方向は、バケット12がチルト動作する第1動作方向及びダンプ動作する第2動作方向を含む。操作装置7が第1操作方向に操作され、バケットシリンダ14のピストン側油室14Aに作動油が供給され、バケットシリンダ14が伸びることにより、バケット12は、第1動作方向に移動して、チルト動作する。操作装置7が第2操作方向に操作され、バケットシリンダ14のロッド側油室14Bに作動油が供給され、バケットシリンダ14が縮むことにより、バケット12は、第2動作方向に移動して、ダンプ動作する。
 また、スプール38が軸方向に移動することにより、バケットシリンダ14に供給される単位時間当たりの作動油の流量が調整される。バケットシリンダ14に供給される作動油の作動油の流量が調整されることにより、バケットシリンダ14のシリンダストローク又はシリンダ速度が調整される。バケットシリンダ14のシリンダストローク又はシリンダ速度が調整されることにより、バケット12の回動角度又は動作速度が調整される。バケット12の回動角度は、バケット12の揺動量を示し、バケット12の動作速度は、バケット12の回動速度(揺動速度)を示す。
 なお、操作装置7は、パイロット圧方式でなくてもよい。操作装置7は、操作センサ20で検出された操作データを制御装置40に出力して、制御装置40に基づいて流量制御弁24を電気的に制御する電子レバー方式でもよい。
[バケットの動作]
 図4は、本実施形態に係るバケット12の動作例を模式的に示す図である。ホイールローダ1は、作業機10のバケット12を用いて土砂をダンプトラック100の荷台に積み込む積込作業を実施する。バケット12から土砂を排出するとき、ホイールローダ1の操作者は、バケット12がダンプ動作するように操作装置7を操作する。ダンプ動作の実施後においても、残った土砂がバケット12に付着していると、バケット12に付着した土砂を振り落すために、操作者は、バケット12がダンプ動作とチルト動作とを繰り返すように、操作装置7の全操作範囲において操作装置7を素早く往復操作する場合がある。
 操作装置7が全操作範囲において素早く往復操作されると、バケットシリンダ14は動作限界位置(ストロークエンド)まで伸びる状態と動作限界位置(ストロークエンド)まで伸びる状態とを素早く繰り返し、バケット12はダンプ動作の動作限界位置(ストロークエンド)とチルト動作の動作限界位置(ストロークエンド)の間を往復動作することになる。ダンプ動作の動作限界位置とチルト動作の動作限界位置の間のバケットの往復動作が短時間に繰り返されると、ダンプ動作の動作限界位置又はチルト動作の動作限界位置において、作業機10の少なくとも一部に過度な負荷が与えられる可能性がある。例えば、連結ピン15Rを介してベルクランク15に連結されている支持部材17に過度な応力が作用したり、ベルクランク15に過度な応力が作用したりする可能性がある。作業機10の少なくとも一部に過度な負荷が与えられると、作業機10が損傷する可能性がある。負荷に耐えうる構造又は材料を適用した作業機10を用意するならば、作業機10の重量増加又はコスト増大を招来する。
 以下の説明においては、バケット12がダンプ動作の動作限界位置とチルト動作の動作限界位置の間を素早く往復動作するような操作者による操作装置7の操作を適宜、急操作、と称する。
 上述のように、バケット12に付着した土砂を振り落す場合、操作者は、操作装置7を全操作範囲で急操作して、バケット12のダンプ動作とチルト動作とを急激に繰り返す場合がある。
 本実施形態において、制御装置40は、操作者が操作装置7を急操作した場合においても、バケット12のダンプ動作及びチルト動作において、バケット12がダンプ動作の動作限界位置(ストロークエンド)に到達せず、チルト動作の動作限界位置(ストロークエンド)に到達しないように、制御弁35を制御する。すなわち、制御装置40は、操作装置7が急操作された場合、作業機10の少なくとも一部に過度な負荷が与えられないように、バケット12の動作を制御する。
[制御装置]
 図5は、本実施形態に係る制御装置40を示す機能ブロック図である。図5に示すように、制御装置40は、操作データ取得部41と、制御指令部42と、操作条件判定部43と、記憶部44と、リミット指令部45と、出力指令決定部46と、出力部47とを有する。
 操作データ取得部41は、操作センサ20により検出された、バケット12をダンプ動作及びチルト動作させるために操作される操作装置7の操作状態を示す操作データを操作センサ20から取得する。
 制御指令部42は、操作データ取得部41により取得された操作データに基づいて、油圧装置30を制御するための制御指令Caを出力する。制御指令Caは、操作量に基づいて算出される指令値を含む。
 操作条件判定部43は、操作データ取得部41により取得された操作データに基づいて、操作装置7が規定の操作条件で操作されたか否かを判定する。
 規定の操作条件は、バケット12をダンプ動作又はチルト動作させるための操作装置7の操作量が操作量閾値a以上である第1条件、バケット12をダンプ動作又はチルト動作させるための操作装置7の操作方向が規定回数切り換えられる第2条件、及びバケット12をダンプ動作及びチルト動作の一方の動作から他方の動作への切り換えに要する操作装置7の操作時間t(t1,t2)が操作時間閾値T(Ta,Tb)以下である第3条件を含む。
 第2条件において、操作装置7の操作方向が切り換えられる回数とは、第1操作方向及び第2操作方向に往復操作される操作装置7が第1操作方向又は第2操作方向に操作された回数をいう。中立状態又は第2操作方向に操作されている状態の操作装置7が第1操作方向に1回操作されたとき、切り換えられる回数は1回である。中立状態又は第1操作方向に操作されている状態の操作装置7が第2操作方向に1回操作されたとき、切り換えられる回数は1回である。中立状態又は第2操作方向に操作されている状態の操作装置7が第1操作方向に操作された後に第2操作方向に操作されたとき、切り換えられる回数は2回である。中立状態又は第1操作方向に操作されている状態の操作装置7が第2操作方向に操作された後に第1方向に操作されたとき、切り換えられる回数は2回である。中立状態又は第2操作方向に操作されている状態の操作装置7が第1操作方向に操作された後に第2操作方向に操作されその後再び第1操作方向に操作されたとき、切り換えられる回数は3回である。中立状態又は第1操作方向に操作されている状態の操作装置7が第2操作方向に操作された後に第1方向に操作されその後再び第2操作方向に操作されたとき、切り換えられる回数は3回である。
 第2条件の規定回数は、複数回数である。本実施形態において、第2条件の規定回数は、3回であることとする。なお、第2条件の規定回数は、2回でもよいし、4回以上の任意の複数回でもよい。
 記憶部44は、操作量閾値a及び操作時間閾値Tを記憶する。操作量閾値a及び操作時間閾値Tは、予め定められている値である。
 リミット指令部45は、操作装置7が操作条件で操作されたと操作条件判定部43により判定された場合、制御指令Caを制限するためのリミット指令Cbを出力する。リミット指令Cbは、制御指令Caで規定される指令値を制限するリミット値を含む。
 バケットシリンダ14に供給される作動油の供給状態は、バケットシリンダ14に供給される作動油の流量を含む。リミット指令部45は、制御指令Caに基づいてバケットシリンダ14に供給される作動油の流量よりも少ない流量で作動油が供給されるように、リミット指令Cbを出力する。すなわち、リミット指令部45は、制御指令Caに基づいて作動するバケットシリンダ14のシリンダストロークよりも小さいシリンダストロークでバケットシリンダ14が作動するように、リミット指令Cbを出力する。
 出力指令決定部46は、制御指令Caで規定される指令値とリミット指令Cbで規定されるリミット値とを比較して、制御指令Ca及びリミット指令Cbのいずれか一方を油圧装置30に出力する出力指令Ccに決定する。
 出力部47は、出力指令決定部46により決定された出力指令Ccを油圧装置30に出力する。出力部47は、制御弁35に出力指令Ccを出力する。
 出力指令決定部46は、指令値がリミット値範囲外である場合、リミット指令Cbを出力指令Ccに決定し、指令値がリミット値範囲内である場合、制御指令Caを出力指令Ccに決定する。すなわち、制御指令Caで規定される指令値とリミット指令Cbで規定されるリミット値とを比較して、指令値がリミット値範囲外である場合、出力部47から制御弁35に出力される出力指令Ccとしてリミット指令Cbが出力される。制御指令Caで規定される指令値とリミット指令Cbで規定されるリミット値とを比較して、指令値がリミット範囲内である場合、出力部47から制御弁35に出力される出力指令Ccとして制御指令Caが出力される。
[出力指令]
 図6及び図7のそれぞれは、本実施形態に係る出力指令Ccの一例を示す図である。図6及び図7において、縦軸は操作装置7の操作量を示し、横軸は基準時点からの経過時間を示す。
 図6は、操作装置7が規定の操作条件で操作されていないときの出力指令Ccを示す図である。なお、図6(A)は、操作装置7が全操作範囲に満たない範囲で往復操作された場合を示し、図6(B)は、操作装置7が全操作範囲において往復操作されるもののゆっくりと時間をかけて操作された場合を示す。
 図6において、実線のラインLa及びラインLa’は、操作センサ20の検出データを示す。操作装置7が第1操作方向(例えば前方)に操作されると、操作センサ20で検出される操作装置7の操作量はプラスの値を示す。操作装置7が第2操作方向(例えば後方)に操作されると、操作センサ20で検出される操作装置7の操作量はマイナスの値を示す。すなわち、図6は、バケット12がダンプ動作とチルト動作とを繰り返すように、操作装置7が往復操作されている状態を示す。
 図6において、点線のラインLb及びラインLb’は、出力指令Ccを示す。出力指令Ccは、操作装置7の操作よりもわずかに遅れて生成される。そのため、図6において、ラインLb及びラインLb’は、操作センサ20の検出データを示すラインLa及びラインLa’よりも時間が遅れるように示されている。図7においても同様に、出力指令Ccを示すラインLcは、操作センサ20の検出データを示すラインLaよりも時間が遅れるように示されている。
 操作装置7が規定の操作条件で操作されていないとき、制御指令部42から出力された制御指令Caが出力指令Ccとして制御弁35に出力される。
 すなわち、操作装置7が操作条件で操作されたと判定されない場合、出力指令決定部46は、制御指令Caを出力指令Ccに決定する。
 図7は、操作装置7が規定の操作条件で操作されているときの出力指令Ccを示す図である。図7において、実線のラインLaは、操作センサ20の検出データを示す。図6と同様、操作装置7が第1操作方向(例えば前方)に操作されると、操作センサ20で検出される操作装置7の操作量はプラスの値を示す。操作装置7が第2操作方向(例えば後方)に操作されると、操作センサ20で検出される操作装置7の操作量はマイナスの値を示す。
 太い破線のラインLcは、出力指令Ccを示す。操作装置7が規定の操作条件で操作されているとき、制御指令部42から出力された制御指令Caがリミット指令部45によりリミット指令Cbとして制限され、リミット指令Cbが出力指令Ccとして制御弁35に出力される。
 規定の操作条件は、上述の第1条件、第2条件、及び第3条件の全ての条件が満足することを含む。
 第1条件は、操作センサ20で検出された操作装置7の操作量が操作量閾値a以上であることを示す。第2条件は、バケット12をダンプ動作又はチルト動作させるための操作装置7の操作方向が規定回数切り換えられることを示す。本実施形態において、操作量閾値aは、操作装置7が操作可能な操作量の最大値の90[%]の値である。本実施形態において、第2条件は、操作装置7の操作方向が3回切り換えられることを示す。
 図7に示す例において、基準時点p0からバケット12がダンプ動作するように操作装置7が第1操作方向に操作されたときの操作量は、操作量閾値aを上回っている。操作装置7が第1操作方向に操作された後、バケット12がチルト動作するように操作装置7が第2操作方向に操作されたときの操作量も、操作量閾値aを上回っている。操作装置7が第2操作方向に操作された後、バケット12がダンプ動作するように操作装置7が続けて第1操作方向に操作されたときの操作量も、操作量閾値aを上回っている。したがって、図7に示す例は、第1条件及び第2条件を満足する。
 第3条件は、バケット12をダンプ動作及びチルト動作の一方の動作から他方の動作への切り換えに要する操作装置7の操作時間t(t1,t2)が操作時間閾値T(Ta,Tb)以下である第3条件を含む。操作装置7が、例えば第1操作方向に操作されたときの操作量が操作量閾値aを超えた時点をp1、続けて第2操作方向に操作されたときの操作量が操作量閾値aを超えた時点をp2、続けて第1操作方向に操作されたときの操作量が操作量閾値aを超えた時点(制御開始時点)をp3としたとき、操作時間tは、時点p1から時点p2までの第1操作時間t1、及び時点p1から制御開始時点p3までの第2操作時間t2を含む。第1操作時間t1に係る操作時間閾値Taは、例えば0.25[秒]に設定され、第2操作時間t2に係る操作時間閾値Tbは、例えば0.5[秒]に設定される。図7に示す例は、第1条件及び第2条件のみならず、第3条件も満足する場合を示している。
 なお、図7に示す例は、操作装置7が最初に第1操作方向に操作された場合であるが、操作装置7が最初に第2操作方向に操作された場合でも、第1条件、第2条件、及び第3条件の全てを満足する場合、操作条件判定部43は、操作装置7が規定の操作条件で操作されたと判定する。
 制御開始時点p3までは、太い破線のラインLcが、出力指令Ccとして制御弁35に出力される。リミット指令部45は、操作装置7が操作条件で操作されたと判定された制御開始時点p3から規定時間経過後の制御終了時点p4までリミット指令を出力する。細い破線で示すラインLdは、リミット指令で規定されるリミット値を示す。ラインLdで示すように、リミット指令部45は、制御開始時点p3からリミット値を徐々に小さくする。リミット値が徐々に小さくなるため、バケットシリンダ14のシリンダストロークは徐々に小さくなり、バケット12の動作量は徐々に小さくなる。バケット12の動作量が急激に小さくならないので、ホイールローダ1の操作者がバケット12の動きが急に悪くなったという違和感を覚えることが抑制される。
 本実施形態において、リミット値の最小値を示す最小リミット値bが定められる。図7のラインLdで示すように、リミット指令部45は、リミット値が最小リミット値bに到達した後、最小リミット値bの出力を継続する。リミット指令部45は、最小リミット値bを変化させずに、一定値である最小リミット値bの出力を継続する。
 リミット指令部45は、操作装置7が最後に規定の操作条件で操作されたと判定された時点を示す解除準備開始時点peから制御解除準備時間t3経過後の制御終了時点p4までリミット指令Cbを出力する。
 解除準備開始時点peは、リミット指令Cbに基づく制御の解除の準備を開始する時点である。制御終了時点p4は、リミット指令Cbに基づく制御を解除する時点である。制御解除準備時間t3は、解除準備開始時点peから制御終了時点p4までの時間であり、予め設定された時間である。
 本実施形態において、制御終了時点p4は、規定の操作条件を最後に満足した解除準備開始時点peから、例えば制御解除準備時間t3として3[秒]経過した時点である。図7に示す例において、解除準備開始時点peは、ホイールローダ1の操作者が操作装置7を第1操作方向に操作して操作条件を最後に満足した時点である。操作条件を満足するように第1操作方向に操作された操作装置7は、解除準備開始時点peの経過後に第2操作方向に操作されたものの、その操作量が操作量閾値aを超えずに第1条件を満足しない状態になった場合を示す。すなわち、図7は、解除準備開始時点peにおいて動作限界位置までダンプ動作したバケット12が、次のチルト動作においては動作限界位置まで移動しないように操作された例を示す。
 制御終了時点p4に達すると、リミット指令Cbに基づく制御の終了条件を満足し、制御指令Caに基づいてバケットシリンダ14を伸縮動作させる制御に戻る。すなわち、操作者の意思に基づいてバケットシリンダ14を伸縮動作させる制御に戻る。操作者が急操作を止めたとき、リミット指令Cbに基づく制御が自動的に解除されるため、速やかに通常の掘削作業等に移行することができる。
 本実施形態においては、操作装置7が規定の操作条件で操作されている状態において、リミット値は徐々に小さくなり、最小リミット値bに到達したとき、最小リミット値bを変化させずに、最小リミット値bの出力を継続する。規定の操作条件を満足するように長時間に亘って操作装置7が操作され続けた場合、リミット指令Cbに基づく制御の初期においてはリミット値が徐々に小さくなり、制御の途中から最小リミット値bが出力部47から制御弁35に出力され続ける。
[制御方法]
 図8は、本実施形態にかかる制御方法を示すフローチャートである。制御装置40は、図8に示す処理を規定の周期で繰り返す。
 操作データ取得部41は、操作センサ20から操作データを取得する(ステップS10)。
 操作条件判定部43は、操作データに基づいて、操作装置7が第1操作方向に操作されたときの操作量が操作量閾値a以上か否かを判定する(ステップS20)。
 ステップS20において、操作量が操作量閾値a以上であると判定された場合(ステップS20:Yes)、操作条件判定部43は、操作データに基づいて、操作装置7が第2操作方向に操作されたときの操作量が操作量閾値a以上か否かを判定する(ステップS30)。
 ステップS30において、操作量が操作量閾値a以上であると判定された場合(ステップS30:Yes)、操作条件判定部43は、操作データに基づいて、操作装置7の第1操作時間t1が操作時間閾値Taである0.25[秒]以下か否かを判定する(ステップS40)。
 ステップS40において、第1操作時間t1が操作時間閾値Ta以下であると判定された場合(ステップS40:Yes)、操作装置7が操作されたことを操作センサ20が検出し、操作データ取得部41は操作データを取得する。操作条件判定部43は、操作データに基づいて、操作装置7が第1操作方向に操作されたときの操作量が操作量閾値a以上か否かを判定する(ステップS50)。
 ステップS50において、操作量が操作量閾値a以上であると判定された場合(ステップS50:Yes)、操作条件判定部43は、操作データに基づいて、操作装置7の第2操作時間t2が操作時間閾値Tbである0.5[秒]以下か否かを判定する(ステップS60)。
 ステップS60において、第2操作時間t2が操作時間閾値Tb以下であると判定された場合(ステップS60:Yes)、リミット指令部45は、制御指令Caで規定される指令値を制限するリミット値を算出する(ステップS70)。
 出力指令決定部46は、制御指令部42から出力された指令値がリミット値範囲外か否かを判定する(ステップS80)。
 ステップS80において、指令値がリミット値範囲外であると判定した場合(ステップS80:Yes)、出力指令決定部46は、リミット値を示すリミット指令Cbを出力指令Ccに決定する。出力部47は、リミット値を示すリミット指令Cbを出力指令Ccとして出力する(ステップS90)。
 ステップS80において、指令値がリミット値範囲内であると判定した場合(ステップS80:No)、出力指令決定部46は、指令値を示す制御指令Caを出力指令Ccに決定する。出力部47は、指令値を示す制御指令Caを出力指令Ccとして出力する(ステップS100)。
 出力指令決定部46は、上述したリミット指令Cbに基づく制御の終了条件を満足するか否かを判定する(ステップS110)。
 ステップS110において、終了条件を満足しないと判定した場合(ステップS110:No)、出力部47は、ステップS90で決定された出力指令Cc又はステップS100で決定された出力指令Ccを出力し(ステップS130)、ステップS10に戻る。
 ステップS110において、終了条件を満足すると判定した場合(ステップS110:Yes)、出力部47は、指令値を示す制御指令Caを制限するために、制御指令Caの大きさを変えることなく、制御指令Caを出力指令Ccとして出力する(ステップS120)。
 ステップS20において、第1操作方向の操作量が操作量閾値a以上でないと判定された場合(ステップS20:No)、ステップS30において、第2操作方向の操作量が操作量閾値a以上でないと判定された場合(ステップS30:No)、ステップS40において、第1操作時間t1が操作時間閾値Ta以下でないと判定された場合(ステップS40:No)、ステップS50において、第1操作方向の操作量が操作量閾値a以上でないと判定された場合(ステップS50:No)、及び第2操作時間t2が操作時間閾値Tb以下でないと判定された場合(ステップS60:Yes)、ステップS110の処理が実行される。
[コンピュータシステム]
 図9は、コンピュータシステム1000の一例を示すブロック図である。上述の制御装置40は、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の制御装置40の機能は、プログラムとしてストレージ1003に記憶されている。プロセッサ1001は、プログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、プログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
[効果]
 以上説明したように、本実施形態によれば、バケット12がダンプ動作とチルト動作とを繰り返すように操作装置7が素早く操作された場合、すなわち、操作データが操作条件を満足するように操作装置7が操作された場合、リミット指令部45は、操作データに基づいて出力される制御指令Caを制限するリミット指令Cbを出力する。これにより、操作装置7が操作条件を満足するように急操作されても、バケット12がダンプ動作の動作限界位置(ストロークエンド)とチルト動作の動作限界位置(ストロークエンド)の間を素早く往復動作することが抑制される。したがって、作業機10にかかる負荷を軽減することができる。つまり、バケット12がダンプ動作の動作限界位置とチルト動作の動作限界位置の間を素早く往復動作するように、操作者が操作装置7を操作しても、作業機10に過度な負荷がかかることが自動的に抑制される。
 本実施形態においては、バケット12がダンプ動作の動作限界位置とチルト動作の動作限界位置の間を素早く往復動作するように、すなわち、操作データが操作条件を満足するように操作装置7が全操作範囲において素早く操作された場合、バケット12がダンプ動作の動作限界位置及びチルト動作の動作限界位置まで動作しないように、バケットシリンダ14のシリンダストロークを制限する制御が実行される。バケットシリンダ14のシリンダストロークを制限する制御は、操作装置7の操作において操作者が違和感を覚えることを抑制することができる。例えば作業機10に過度な負荷がかかることを抑制するために、バケットシリンダ14のシリンダ速度を制限して、バケット12の動作速度を遅くする制御の場合、操作装置7の操作速度に遅れるようにバケット12がダンプ動作又はチルト動作するため、操作者が違和感を覚える可能性がある。本実施形態によれば、バケットシリンダ14のシリンダストロークを制限する制御が実行されるため、操作装置7の操作において操作者が違和感を覚えることを抑制することができる。
[他の実施形態]
 なお、上述の実施形態において、操作データが操作条件を満足するように操作装置7が全操作範囲において素早く操作された場合、リミット指令部45がダンプ動作又はチルト動作の動作速度を遅くするように制御してもよい。すなわち、操作データが操作条件を満足する場合、バケット12の動作速度が遅くなるようにリミット指令が生成され、バケットシリンダ14のシリンダ速度が制限される制御が実行されてもよい。バケット12の動作速度を遅くする場合、制御装置40は、バケット12の動作速度が遅くなるようにバケットシリンダ14に供給される単位時間当たりの作動油の流量を算出し、算出された作動油の流量に基づいてリミット指令を生成する。
 なお、上述の実施形態においては、作業車両1がホイールローダであることとした。作業車両1は、バケットのような作業具を有する作業機を備えていればよく、クローラローダ、ドーザーショベル、ホイール式油圧ショベル、及び履帯式油圧ショベルの少なくとも一つでもよい。例えば作業車両1が油圧ショベルである場合において、作業具であるバケットがダンプ動作の動作限界位置とチルト動作の動作限界位置の間を素早く往復動作するように油圧ショベルの操作装置が全操作範囲において素早く往復操作された場合、上述の実施形態に従ってバケットシリンダが制御されることにより、作業機にかかる負荷が軽減される。
 1…ホイールローダ(作業車両)、2…車体、2F…車体前部、2R…車体後部、3…運転台、3R…運転室、4…走行装置、5…車輪、5F…前輪、5R…後輪、6…タイヤ、6F…前タイヤ、6R…後タイヤ、7…操作装置、8…エンジン、9…関節機構、10…作業機、11…ブーム、12…バケット、12B…先端部、12M…開口部、12P…連結ピン、12Q…連結ピン、13…ブームシリンダ、14…バケットシリンダ、14A…ピストン側油室、14B…ロッド側油室、15…ベルクランク、15P…連結ピン、15Q…連結ピン、15R…連結ピン、16…バケットリンク、17…支持部材、20…操作センサ、30…油圧装置、31…油圧ポンプ、32…油圧ポンプ、33A…油路、33B…油路、34…流量制御弁、35…制御弁、35A…制御弁、35B…制御弁、36A…油路、36B…油路、37A…ポート、37B…ポート、38…スプール、40…制御装置、41…操作データ取得部、42…制御指令部、43…操作条件判定部、44…記憶部、45…リミット指令部、46…出力指令決定部、47…出力部、50…制御システム、a…操作量閾値、b…最小リミット値、Ca…制御指令、Cb…リミット指令、Cc…出力指令、RS…地面、t1…第1操作時間、t2…第2操作時間、t3…制御解除準備時間。

Claims (8)

  1.  作業具を動作させる油圧シリンダに供給される作動油の供給状態を調整する油圧装置と、
     前記油圧装置を制御する制御装置と、を備え、
     前記制御装置は、
     前記作業具をダンプ動作及びチルト動作させるために操作される操作装置の操作状態を示す操作データを取得する操作データ取得部と、
     前記操作データに基づいて、前記油圧装置を制御するための制御指令を出力する制御指令部と、
     前記操作データに基づいて、前記操作装置が規定の操作条件で操作されたか否かを判定する操作条件判定部と、
     前記操作装置が前記操作条件で操作されたと判定された場合、前記制御指令を制限するためのリミット指令を出力するリミット指令部と、を有し、
     前記操作データは、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作量、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作方向、及び前記作業具を前記ダンプ動作及び前記チルト動作の一方の動作から他方の動作への切り換えに要する前記操作装置の操作時間を含み、
     前記操作条件は、前記操作量が操作量閾値以上である第1条件、前記操作方向が規定回数切り換えられる第2条件、及び前記操作時間が操作時間閾値以下である第3条件を含む、
    作業車両の制御システム。
  2.  前記作動油の供給状態は、前記油圧シリンダに供給される作動油の流量を含み、
     前記リミット指令部は、前記制御指令に基づいて前記油圧シリンダに供給される作動油の流量よりも少ない流量で前記作動油が供給されるように、前記リミット指令を出力する、
    請求項1に記載の作業車両の制御システム。
  3.  前記制御指令は、前記操作量に基づいて算出される指令値を含み、
     前記リミット指令は、前記指令値を制限するリミット値を含み、
     前記制御装置は、
     前記指令値と前記リミット値とを比較して、前記制御指令及び前記リミット指令のいずれか一方を前記油圧装置に出力する出力指令に決定する出力指令決定部と、
     前記出力指令決定部により決定された前記出力指令を前記油圧装置に出力する出力部と、を有し、
     前記出力指令決定部は、前記指令値が前記リミット値範囲外である場合、前記リミット指令を前記出力指令に決定し、前記指令値が前記リミット値範囲内である場合、前記制御指令を前記出力指令に決定する、
    請求項1又は請求項2に記載の作業車両の制御システム。
  4.  前記リミット指令部は、前記操作装置が最後に前記操作条件で操作されたと判定された時点を示す解除準備開始時点から制御解除準備時間経過後の制御終了時点まで前記リミット指令を出力する、
    請求項1から請求項3のいずれか一項に記載の作業車両の制御システム。
  5.  前記リミット指令部は、前記操作装置が前記操作条件で操作されたと判定された時点を示す制御開始時点から前記リミット値を徐々に小さくする、
    請求項1から請求項3のいずれか一項に記載の作業車両の制御システム。
  6.  前記リミット値の最小値を示す最小リミット値が定められ、
     前記リミット指令部は、前記リミット値が前記最小リミット値に到達した後、前記最小リミット値の出力を継続する、
    請求項5に記載の作業車両の制御システム。
  7.  前記操作装置が前記操作条件で操作されたと判定されない場合、前記出力指令決定部は、前記制御指令を前記出力指令に決定する、
    請求項3から請求項6のいずれか一項に記載の作業車両の制御システム。
  8.  作業車両の作業具をダンプ動作及びチルト動作させるために操作される操作装置の操作状態を示す操作データを取得することと、
     前記操作データに基づいて、前記作業具を動作させる油圧シリンダに供給される作動油の供給状態を調整可能な油圧装置を制御するための制御指令を出力することと、
     前記操作データに基づいて、前記操作装置が規定の操作条件で操作されたか否かを判定することと、
     前記操作装置が前記操作条件で操作されたと判定された場合、前記制御指令を制限するためのリミット指令を出力することと、を含み、
     前記操作データは、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作量、前記作業具を前記ダンプ動作又は前記チルト動作させるための前記操作装置の操作方向、及び前記作業具を前記ダンプ動作及び前記チルト動作の一方の動作から他方の動作への切り換えに要する前記操作装置の操作時間を含み、
     前記操作条件は、前記操作量が操作量閾値以上である第1条件、前記操作方向が規定回数切り換えられる第2条件、及び前記操作時間が操作時間閾値以下である第3条件を含む、
    作業車両の制御方法。
PCT/JP2018/023273 2018-06-19 2018-06-19 作業車両の制御システム及び作業車両の制御方法 WO2018199342A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880001750.7A CN109072584B (zh) 2018-06-19 2018-06-19 作业车辆的控制系统及作业车辆的控制方法
JP2018534992A JP6632731B2 (ja) 2018-06-19 2018-06-19 作業車両の制御システム及び作業車両の制御方法
EP18785493.0A EP3434831B1 (en) 2018-06-19 2018-06-19 Control system for work vehicle, and control method for work vehicle
US16/096,896 US11280063B2 (en) 2018-06-19 2018-06-19 Work vehicle control system and work vehicle control method
PCT/JP2018/023273 WO2018199342A1 (ja) 2018-06-19 2018-06-19 作業車両の制御システム及び作業車両の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023273 WO2018199342A1 (ja) 2018-06-19 2018-06-19 作業車両の制御システム及び作業車両の制御方法

Publications (1)

Publication Number Publication Date
WO2018199342A1 true WO2018199342A1 (ja) 2018-11-01

Family

ID=63920324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023273 WO2018199342A1 (ja) 2018-06-19 2018-06-19 作業車両の制御システム及び作業車両の制御方法

Country Status (5)

Country Link
US (1) US11280063B2 (ja)
EP (1) EP3434831B1 (ja)
JP (1) JP6632731B2 (ja)
CN (1) CN109072584B (ja)
WO (1) WO2018199342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065455A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 バルブシステム、作業機械、バルブの制御方法、プログラム、および記録媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019205002A1 (en) * 2019-07-11 2021-01-28 Caterpillar Underground Mining Pty Ltd System and method for operating underground machines
KR102510286B1 (ko) * 2022-12-26 2023-03-24 주식회사 금아하이드파워 도저 블레이드 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237726A (ja) * 1991-01-16 1992-08-26 Kubota Corp バックホウのバケット操作装置
JPH0842507A (ja) 1994-03-31 1996-02-13 Samsung Heavy Ind Co Ltd 油/空圧式機械装備の衝撃防止装置及び方法
JPH09217702A (ja) * 1996-02-15 1997-08-19 Yutani Heavy Ind Ltd 油圧ショベルの制御装置
JP2000136801A (ja) * 1998-11-04 2000-05-16 Teijin Seiki Co Ltd 振動発生流体回路

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999872A (en) 1996-02-15 1999-12-07 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
KR100328217B1 (ko) 1996-04-30 2002-06-26 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압식건설기계의자동진동장치및방법
US5701793A (en) * 1996-06-24 1997-12-30 Catepillar Inc. Method and apparatus for controlling an implement of a work machine
US5737993A (en) * 1996-06-24 1998-04-14 Caterpillar Inc. Method and apparatus for controlling an implement of a work machine
US5875701A (en) * 1997-06-09 1999-03-02 Caterpillar Inc. Method and apparatus for controlling an implement of a work machine using linkage angles
US6234254B1 (en) * 1999-03-29 2001-05-22 Caterpillar Inc. Apparatus and method for controlling the efficiency of the work cycle associated with an earthworking machine
US6618659B1 (en) * 2003-01-14 2003-09-09 New Holland North America, Inc. Boom/bucket hydraulic fluid sharing method
US6895319B2 (en) 2003-03-07 2005-05-17 Deere & Company Valve command signal processing system
SE526989C2 (sv) 2004-04-19 2005-11-29 Volvo Constr Equip Holding Se Metod för skakning av arbetsredskap
US7867136B2 (en) * 2007-03-15 2011-01-11 Caterpillar Inc Method for limiting drive train torque
JP4862078B2 (ja) * 2007-03-29 2012-01-25 株式会社小松製作所 建設機械および建設機械の制御方法
US8037807B2 (en) * 2007-05-18 2011-10-18 Caterpillar Inc. Controlled motion in a hydraulically actuated system
US7748279B2 (en) * 2007-09-28 2010-07-06 Caterpillar Inc Hydraulics management for bounded implements
JP5261419B2 (ja) * 2010-03-05 2013-08-14 株式会社小松製作所 作業車両及び作業車両の制御方法
JP5222895B2 (ja) * 2010-05-07 2013-06-26 株式会社小松製作所 作業車両及び作業車両の制御方法
AU2014201490B2 (en) * 2011-04-29 2015-08-20 Joy Global Surface Mining Inc Controlling a digging operation of an industrial machine
US9732502B2 (en) * 2015-07-02 2017-08-15 Caterpillar Inc. Excavation system providing impact detection
CN105696638B (zh) * 2016-01-22 2018-09-11 广西柳工机械股份有限公司 装载机抖料装置
US9790660B1 (en) * 2016-03-22 2017-10-17 Caterpillar Inc. Control system for a machine
WO2016129708A1 (ja) * 2016-03-29 2016-08-18 株式会社小松製作所 作業機械の制御装置、作業機械及び作業機械の制御方法
US10196796B2 (en) * 2016-05-31 2019-02-05 Komatsu Ltd. Construction machine control system, construction machine, and construction machine control method
JP6995467B2 (ja) * 2016-08-26 2022-01-14 株式会社小松製作所 ホイールローダ、およびホイールローダの制御方法
US10815640B2 (en) * 2016-08-31 2020-10-27 Komatsu Ltd. Wheel loader and method for controlling wheel loader
JP6555592B2 (ja) * 2016-09-28 2019-08-07 日立建機株式会社 作業車両
US10246855B2 (en) 2016-10-10 2019-04-02 Wacker Neuson Production Americas Llc Material handling machine with bucket shake control system and method
US10570582B2 (en) * 2016-11-23 2020-02-25 Caterpillar Inc. System and method for operating a material-handling machine
US10385547B2 (en) * 2016-12-23 2019-08-20 Caterpillar Inc. System and method for determining load distribution on a machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237726A (ja) * 1991-01-16 1992-08-26 Kubota Corp バックホウのバケット操作装置
JPH0842507A (ja) 1994-03-31 1996-02-13 Samsung Heavy Ind Co Ltd 油/空圧式機械装備の衝撃防止装置及び方法
JPH09217702A (ja) * 1996-02-15 1997-08-19 Yutani Heavy Ind Ltd 油圧ショベルの制御装置
JP2000136801A (ja) * 1998-11-04 2000-05-16 Teijin Seiki Co Ltd 振動発生流体回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065455A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 バルブシステム、作業機械、バルブの制御方法、プログラム、および記録媒体
JP7337632B2 (ja) 2019-09-30 2023-09-04 株式会社小松製作所 バルブシステム、作業機械、バルブの制御方法、プログラム、および記録媒体

Also Published As

Publication number Publication date
EP3434831A1 (en) 2019-01-30
JPWO2018199342A1 (ja) 2019-06-27
US11280063B2 (en) 2022-03-22
CN109072584A (zh) 2018-12-21
US20210222401A1 (en) 2021-07-22
CN109072584B (zh) 2022-03-11
JP6632731B2 (ja) 2020-01-22
EP3434831A4 (en) 2020-03-25
EP3434831B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
CN111094665B (zh) 建筑机械的油压驱动系统
JP5026055B2 (ja) 複数アクチュエータの圧力に基づく流れ制御システム
JP6707514B2 (ja) 作業機の油圧システム
WO2018199342A1 (ja) 作業車両の制御システム及び作業車両の制御方法
JP2011236759A (ja) 作業車両及び作業車両の制御方法
JP6640641B2 (ja) 作業機の油圧システム
US9702117B2 (en) Work vehicle control method, work vehicle control device, and work vehicle
CN111032968A (zh) 轮式装载机
US11572674B2 (en) Working vehicle
JP7016606B2 (ja) ショベル
US9809948B2 (en) Work vehicle control method, work vehicle control device, and work vehicle
JP6858723B2 (ja) ホイールローダ
JP6928161B2 (ja) 作業車両及び作業車両の制御方法
CN111823856B (zh) 用于控制作业车辆的系统和方法
JP2019052484A (ja) 作業機械
JP3922701B2 (ja) 作業車両の作業機用油圧ポンプの制御方法と制御装置
US20220333347A1 (en) Work vehicle
JP6791827B2 (ja) 作業車両及び作業車両の制御方法
JP2019065571A (ja) ホイールローダ
JP6963961B2 (ja) 作業車両及び作業車両の制御方法
JP4376018B2 (ja) 作業車両の制御装置
JP2022068632A (ja) 作業車両
KR20230044286A (ko) 작업 기계
JP2000313598A (ja) フォークリフトトラックにおける作業機の制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018785493

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018785493

Country of ref document: EP

Effective date: 20181023

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE