WO2018042838A1 - 光伝送歪補償装置、光伝送歪補償方法及び通信装置 - Google Patents

光伝送歪補償装置、光伝送歪補償方法及び通信装置 Download PDF

Info

Publication number
WO2018042838A1
WO2018042838A1 PCT/JP2017/022871 JP2017022871W WO2018042838A1 WO 2018042838 A1 WO2018042838 A1 WO 2018042838A1 JP 2017022871 W JP2017022871 W JP 2017022871W WO 2018042838 A1 WO2018042838 A1 WO 2018042838A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
compensation
distortion
optical transmission
unit
Prior art date
Application number
PCT/JP2017/022871
Other languages
English (en)
French (fr)
Inventor
靖治 大沼
山崎 悦史
裕之 野内
智大 高椋
勝一 大山
和人 武井
政則 中村
光輝 吉田
富沢 将人
Original Assignee
Nttエレクトロニクス株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 日本電信電話株式会社 filed Critical Nttエレクトロニクス株式会社
Priority to EP17845848.5A priority Critical patent/EP3435608B1/en
Priority to CA3022078A priority patent/CA3022078C/en
Priority to US16/094,857 priority patent/US10374718B2/en
Priority to CN201780036510.6A priority patent/CN109314683B/zh
Publication of WO2018042838A1 publication Critical patent/WO2018042838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • H04B10/588Compensation for non-linear transmitter output in external modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to an optical transmission distortion compensation device, an optical transmission distortion compensation method, and a communication device used for quadrature modulation communication in data communication.
  • quadrature modulation in which amplitude modulation is independently performed for each of an in-phase component (In phase component: I component) and a quadrature phase component (Quadrature phase component: Q component) is employed.
  • the transmission rate is increased by multi-level modulation such as QPSK (Quadrature Shift Keying) and 16QAM (Quadrature Amplitude Modulation).
  • QPSK Quadratture Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • the distortion of the transmission path is compensated, so that chromatic dispersion compensation, polarization processing / adaptive equalization, Error correction is performed to improve reception sensitivity.
  • the multi-level modulation signal is treated as an electric signal of 4 lanes (I component and Q component of X polarization, I component and Q component of Y polarization) in the electrical stage. That is, on the transmission side, a signal is generated as an electric signal of 4 lanes, and is converted into a multilevel modulated optical signal by the optical modulator.
  • the optical modulator for example, a Mach-Zehnder interferometer type modulator is applied.
  • Such an optical modulator has imperfections due to an error in bias voltage and an extinction ratio of the interferometer that is not infinite. Such imperfections cause distortion of the constellation.
  • constellation distortion occurs, the transmitted information cannot be decoded correctly, and an increase in bit error rate or the like occurs.
  • the constellation is also called a signal space diagram and represents data signal points by digital modulation on a two-dimensional complex plane (points indicated by an I component and a Q component on the complex plane).
  • 16QAM and 64QAM are modulation systems having a constellation consisting of 16 points and 64 points, respectively, and generally 16 points and 64 points are arranged squarely in the signal space.
  • 16QAM can be regarded as a four-value amplitude modulation that is independent of each other for each of the in-phase component and the quadrature component
  • 64QAM is an eight-value that is independent for each of the in-phase component and the quadrature component. It can be considered that amplitude modulation has been performed.
  • DC Direct Current
  • a bias voltage is applied to the optical modulator so that the light output becomes a null point.
  • a DC offset occurs.
  • the Mach-Zehnder interferometer constituting the optical modulator has an infinite extinction ratio (on / off ratio), that is, ideally the optical output is completely zero when off, but when off. If it is not completely zero, the extinction ratio is not infinite and a DC offset occurs. Since the DC offset appears in the form of residual carriers in the optical signal, it can be confirmed by observing the spectrum of the optical signal.
  • the DC offset and the remaining carrier due to this are not a direct detection method using a local oscillation laser but a direct detection method (for example, a method in which the intensity of an on / off signal of 1010 is directly detected by a light receiving element, also referred to as intensity modulation direct detection). But it happens.
  • the direct detection method the remaining carrier appears again as a DC offset in the electrical stage on the receiving side, and can be easily removed by an analog DC block circuit such as a capacitor.
  • the coherent detection method is used and the frequencies of the transmission laser and the reception-side local oscillation laser do not exactly match, the remaining carrier is not converted to direct current in the reception-side electric stage, and the DC block circuit Can not be removed.
  • IQ crosstalk occurs when the phase difference between the in-phase component and the quadrature component is not exactly 90 ° due to the bias voltage error of the optical modulator.
  • Non-Patent Document 1 cannot be used when the characteristics of the optical modulator cannot be measured in advance or when the characteristics change over time.
  • the fluctuation of the auto-bias control circuit that controls the bias voltage applied to the optical modulator and the imperfection of the optical modulator caused by the error applied by the auto-bias control circuit are considered digital on the transmitter side.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical transmission distortion compensation apparatus, an optical transmission distortion compensation method, and communication that can accurately compensate for constellation distortion that occurs nonlinearly. Get the device.
  • the optical transmission distortion compensator configures a first polynomial representing distortion of the I component based on the I component and the Q component of the quadrature modulation signal, and sets the first coefficient to each term of the first polynomial.
  • a coefficient calculation unit for calculating the first and second coefficients in comparison.
  • constellation distortion that occurs nonlinearly can be compensated with high accuracy.
  • FIG. 1 is a diagram illustrating a receiving device of a coherent optical communication device according to Embodiment 1 of the present invention.
  • the receiving apparatus 1 converts an optical signal received from the optical fiber 2 into an electric signal and performs digital processing.
  • the polarization separator 3 separates the optical signal into two orthogonal polarization components. These optical signals and the local light of the local light source 4 are input to the 90 ° hybrid circuits 5 and 6, and a set of output light in which both lights interfere with each other in the same phase and opposite phase, orthogonal (90 °) and inverse orthogonal A total of four output lights of a set of output lights interfered at ( ⁇ 90 °) are obtained. These output lights are converted into analog signals by photodiodes (not shown). These analog signals are converted into digital signals by the AD converter 7.
  • the configuration after the chromatic dispersion compensator 8 is an optical transmission distortion compensator that digitally processes the orthogonal modulation signal output as a digital signal from the AD converter 7 to compensate for distortion.
  • the chromatic dispersion compensator 8 estimates and compensates for the magnitude of the distortion from the received signal.
  • the adaptive equalization unit 9 performs equalization processing to compensate for the distortion.
  • the polarization separation is first performed by the optical demodulator, but the polarization separation is more completely processed in the adaptive equalization unit 9.
  • a method has been proposed in which a long period / known pattern signal or a short period / known pattern signal is inserted on the transmission side to minimize an error from the received signal.
  • the frequency offset compensation unit 10 corrects the frequency error of the local signal (carrier signal) to be transmitted / received.
  • the phase fluctuation compensator 11 compensates using a short period / known pattern signal in which residual offset in the frequency offset compensator 10 or residual phase fluctuation or phase slip that cannot be completely removed by the adaptive equalizer 9 is inserted on the transmission side. Process.
  • the IQ distortion compensation unit 12 compensates for distortion on the IQ plane (IQ distortion) such as distortion due to DC offset and extinction ratio.
  • the IQ distortion compensation is preferably performed in a state where the phase fluctuation and the phase slip are reduced by the frequency offset compensator 10 and the phase fluctuation compensator 11.
  • the carrier phase recovery (Carrier Phase Recovery: CPR) unit 13 compensates for phase fluctuations that could not be completely removed by the frequency offset compensation unit 10 and the phase fluctuation compensation unit 11.
  • a deviation ⁇ between the temporarily determined constellation (signal point) and the received constellation (signal point) is detected, and the phase is rotated by ⁇ and corrected. Correction by this phase rotation can be performed by multiplying by exp (j ⁇ ).
  • the error correction unit 14 performs processing.
  • distortion that does not fluctuate statically such as distortion of the optical modulator
  • distortion of the optical modulator can be compensated to some extent on the transmission side.
  • Compensation on the receiving side has a feature that it is easy to cope with distortion that fluctuates dynamically.
  • FIG. 2 is a diagram showing a constellation of 16QAM modulation when there is no distortion.
  • FIG. 3 is a diagram showing a 16QAM constellation when distortions of the I component and the Q component occur.
  • the distortion of the constellation on the receiving side in optical communication is not a mere offset of DC components, but a bow-like distortion. This is considered due to the nonlinearity of the quadrature modulator and the quadrature demodulator.
  • a distortion component that changes in a bow shape on the IQ plane is referred to as a bow-like strain. This bow distortion cannot be compensated by simply offsetting the DC component as in the prior art.
  • FIG. 4 is a diagram showing an optical transmission distortion compensation apparatus according to Embodiment 1 of the present invention.
  • the IQ distortion compensation unit 12 is installed between the phase fluctuation compensation unit 11 and the carrier phase reproduction unit 13, and includes an I component compensation unit 15, a Q component compensation unit 16, and a coefficient calculation unit 17.
  • the I component compensation unit 15 configures a first polynomial of N terms representing distortion of the I component based on the I component Xi and the Q component Xq of the quadrature modulation signal output from the phase fluctuation compensation unit 11, and a coefficient calculation unit By multiplying each term of the first polynomial by the first coefficient for the I component compensator output from 17, the I component with distortion compensated is calculated. If the nth term of the first polynomial composed of the I component and the Q component is INi (n) and the coefficient of the nth term of the first polynomial is hi (n), the output of the I component compensation unit 15 is as follows. It is expressed by the following formula.
  • the Q component compensation unit 16 configures a second polynomial of N terms representing the distortion of the Q component based on the I component Xi and the Q component Xq of the quadrature modulation signal output from the phase fluctuation compensation unit 11, and a coefficient calculation unit
  • the Q component compensated for distortion is calculated by multiplying each term of the second polynomial by the second coefficient for Q component compensation output from 17. If the nth term of the second polynomial composed of the I component and the Q component is INq (n), and the coefficient of the nth term of the second polynomial is hq (n), the output of the Q component compensation unit 16 is as follows. It is expressed by the following formula.
  • the above processing is performed for each symbol, and the coefficient calculation unit 17 optimizes the coefficient of each term independently. Since the coefficient of each term is linear, instantaneous values can be used and no memory is required.
  • the carrier phase reproducing unit 13 rotates the phase of the signal vector composed of the I component and the Q component by ⁇ in order to compensate for the phase fluctuation of the outputs of the I component compensation unit 15 and the Q component compensation unit 16. Therefore, the output of the carrier phase reproducing unit 13 is expressed by the following equation.
  • the coefficient calculation unit 17 outputs the output of the I component compensation unit 15 and the Q component compensation unit 16 and the reference signal (known signal) for each term of the first and second polynomials before being multiplied by the first and second coefficients. ) To calculate the first and second coefficients. Specifically, the first and second coefficients are calculated so that the error between the output of the carrier phase reproducing unit 13 and the reference signal is minimized. Since the error includes phase rotation compensation in the carrier phase reproducing unit 13, a reverse rotation phase is given to the error and the coefficient calculation unit 17 is supplied to cancel the phase rotation compensation.
  • the reference signal for example, a long period / known pattern signal (for example, 256 bits per 10,000 bits) inserted in the transmission signal for synchronization detection can be used. By setting a pseudo random signal as the long period / known pattern signal, the bow distortion of the IQ axis shown in FIG. 3 is easily detected. If only 1 and 0 are repeated, the distortion becomes linear and it is difficult to detect the bow-like distortion.
  • FIG. 5 is a diagram showing an I component compensation unit and a Q component compensation unit according to Embodiment 1 of the present invention.
  • N 7.
  • the distortion is approximated using some terms of Voltera series expansion used as an expression for nonlinearity. This is equivalent to a nonlinear filter.
  • the increase / decrease in the number of terms in the first and second polynomials, the use of other axis components, and the increase / decrease in the degree are set based on the technical idea that “bow distortion can be expressed by a polynomial”.
  • the output of the I component compensation unit 15 is expressed by the following polynomial based on the I component Xi and the Q component Xq from the phase fluctuation compensation unit 11.
  • the output of the Q component compensation unit 16 is represented by the following polynomial based on the I component Xi and the Q component Xq from the phase fluctuation compensation unit 11.
  • the bow-shaped distortion changes like a bow along the I axis and changes like a bow along the Q axis. It can be assumed that this can be represented in a pseudo manner by a quadratic curve and a cubic curve for the I component, and a quadratic curve and a cubic curve for the Q component.
  • the second term, the third term, and the sixth term in the above formula are intended for this purpose.
  • the fifth term is a correction term for preventing the curvature of the bow from changing due to differences in quadrants.
  • the first term adjusts the amplitude to account for the difference in amplification ratio during IQ combining on the transmitting side and IQ separation on the receiving side, and further the deviation of the amplitude ratio caused by the load difference in the I component and Q component lines.
  • the fourth term is a term for approximating it by a cubic curve and returning it to linear because the control signal of the modulator versus the modulation output has a nonlinearity close to a sine wave.
  • the seventh term corresponds to conventional DC offset compensation.
  • coefficients hi (1) to hi (7) and the coefficients hq (1) to hq (7) of each term of the polynomial are calculated independently by the coefficient calculation unit 17.
  • the outputs of the I component compensation unit 15 and the Q component compensation unit 16 are represented by the following signal vectors.
  • the phase of this signal vector is rotated by ⁇ by the phase rotation compensation of the carrier phase reproducing unit 13.
  • the output CPR_OUT of the carrier phase reproducing unit 13 is expressed by the following equation.
  • the true value of the long period / known pattern signal (reference signal: TSi + jTSq) is subtracted from CPR_OUT to calculate the error err.
  • the I component compensation unit 15 and the Q component compensation unit 16 have not yet performed phase rotation compensation by the carrier phase reproduction unit 13. Therefore, if the coefficient calculation is performed using the error err between the result of the phase rotation compensation and the reference signal, the influence of the phase rotation compensation is included, and the coefficient for compensating the IQ distortion cannot be calculated correctly. Therefore, the data input to the coefficient calculation unit 17 is set to err ⁇ e ⁇ j ⁇ by performing an operation for returning the phase rotation compensation to the error err. This is equivalent to performing phase rotation compensation on the reference signal.
  • FIG. 6 is a diagram showing a coefficient calculation unit according to Embodiment 1 of the present invention.
  • the coefficient calculation unit 17 obtains coefficients of all the polynomial terms of the I component compensation unit 15 and the Q component compensation unit 16 using a least square method (Least Mean Square, LMS) algorithm.
  • LMS least Square Mean Square
  • the LSM algorithm at this time is represented by the following equation.
  • k indicates the number of calculation updates, and is updated for each symbol in the long period / known pattern signal.
  • E k is a general error expression input at the k-th time.
  • the values of the input signals INi (n), INq (n), error err, and phase rotation amount ⁇ are also different for each k, but k is not shown in the lower expression.
  • is a coefficient of 1 or less.
  • the LSM algorithm uses the following coefficients hi (n) k , hq (n) k , error err ⁇ e ⁇ j ⁇ and input signals Xi, Xq so that the error is minimized.
  • the coefficients hi (n) k + 1 and hq (n) k + 1 are obtained.
  • the convergence value changes depending on the input status.
  • the initial value is not limited to the above example.
  • the IQ distortion is expressed by a polynomial, so that constellation distortion that occurs nonlinearly such as bow distortion can be compensated with high accuracy.
  • the coefficient calculation unit 17 calculates the first and second coefficients using a least square method algorithm. As a result, the coefficient can be calculated faster and more easily than in the case of using a general minimum mean square error method (Minimum Mean Square Error: MMSE) algorithm.
  • MMSE Minimum Mean Square Error
  • the coefficient calculation unit 17 calculates the first and second coefficients by using an error between the output of the carrier phase recovery unit 13 and the known signal that has been subjected to compensation processing opposite to the compensation in the carrier phase recovery unit 13. To do. Thereby, the influence of the phase rotation compensation is removed, and the coefficient for compensating the IQ distortion can be calculated with high accuracy, so that the performance of the IQ distortion compensation can be improved.
  • the IQ distortion compensation unit 12 by installing the IQ distortion compensation unit 12 at the subsequent stage of the phase fluctuation compensation unit 11, the IQ distortion compensation processing can be performed after the influence of the phase fluctuation is reduced. Therefore, the coefficient for compensating for IQ distortion can be accurately calculated, and the precision of IQ distortion compensation can be improved.
  • FIG. FIG. 7 is a diagram showing an optical transmission distortion compensating apparatus according to Embodiment 2 of the present invention.
  • a skew compensator 18 is provided between the IQ distortion compensator 12 and the carrier phase regenerator 13. With the addition of the skew compensation unit 18, the coefficient derivation formula in the coefficient calculation unit 17 changes. Other configurations are the same as those of the first embodiment.
  • FIG. 8 is a diagram illustrating a skew compensator according to the second embodiment of the present invention.
  • the skew compensation unit 18 mainly performs skew compensation that compensates for a delay difference between an I component signal and a Q component signal during transmission.
  • the skew compensator 18 uses a filter 19 that performs skew compensation of outputs from the I component compensator 15 and the Q component compensator 16, and an error err subjected to compensation processing opposite to the compensation in the carrier phase regenerator 13.
  • a filter coefficient calculation unit 20 that calculates a filter coefficient of the filter 19.
  • the filter 19 is a butterfly type FIR filter in consideration of crosstalk between the I component and the Q component.
  • the tap coefficients of the respective FIR filters are indicated by t 11 , t 12 , t 21 , and t 22 .
  • each has 5 tap coefficients.
  • the filter coefficient calculation unit 20 has an LMS algorithm corresponding to each FIR filter.
  • the output of the carrier phase reproducing unit 13 is obtained by convolving (t 11 + j ⁇ t 21 ) with INsi which is the Real component of the input of the skew compensator 18 and (t 12 + j ⁇
  • the sum of values obtained by convolving t 22 ) is a value obtained by rotating the sum by a phase amount ⁇ .
  • the true value of the long period / known pattern signal is subtracted from the output of the carrier phase reproducing unit 13 expressed by the above equation, and the error err is calculated.
  • the error err subjected to compensation processing opposite to the compensation in the carrier phase recovery unit 13 (err ⁇ e ⁇ j ⁇ ) is supplied to the LMS algorithm for calculating the coefficient of the FIR filter in the skew compensation unit 18.
  • the LMS algorithm for calculating the filter coefficients t 11 and t 12 is supplied with Real [err ⁇ e ⁇ j ⁇ ] that is a real part.
  • E k indicates the number of calculation updates.
  • the update can be performed for each symbol of the long period / known pattern signal.
  • E k is a general error expression input to the LMS at the k-th time. Note that the values of the input signals INsi, INsq, error err, and phase rotation amount ⁇ are different for each k, but the display of k is omitted in the above equation.
  • the initial value is not limited to the above example.
  • the coefficient calculation unit 17 uses an LMS algorithm to obtain polynomial coefficients hi (n) and hq (n) of the I component compensation unit 15 and the Q component compensation unit 16.
  • the formula of the LSM algorithm at that time is shown below.
  • E k indicates the number of calculation updates.
  • the update can be performed for each symbol of the long period / known pattern signal.
  • E k is a general error expression input to the LMS at the k-th time. Note that the values of the input signals INsi, INsq, error err, and phase rotation amount ⁇ are different for each k, but the display of k is omitted in the above equation.
  • the initial value is not limited to the above example.
  • the error E k input to the LMS algorithm is equal to the error of the skew compensation with respect to the error err calculated at the output of the carrier phase regenerator 13.
  • the carrier phase reproduction is restored. In practice, they are given to the reference signal.
  • the term added to the right side of the above err is for the purpose of processing.
  • the coefficient calculation unit 17 calculates the first and second coefficients by using the error err subjected to the compensation process opposite to the compensation in the skew compensation unit 18 and the carrier phase reproduction unit 13. As a result, the influence of skew and phase rotation compensation can be removed and the coefficient for compensating for IQ distortion can be calculated with high accuracy, so that the performance of IQ distortion compensation can be improved.
  • the IQ distortion compensation section 12 is installed at the subsequent stage of the phase fluctuation compensation section 11.
  • the IQ distortion compensation unit 12 may be installed in the subsequent stage.
  • FIG. 9 is a diagram showing an optical transmission distortion compensating apparatus according to Embodiment 3 of the present invention.
  • the adaptive equalization unit 9 and the phase fluctuation compensation unit 11 calculate filter coefficients and compensation amounts for equalization processing and compensation processing based on errors between the known signal and the received signal, respectively.
  • a known signal of the adaptive equalization unit 9 a long period for synchronization arranged at the head position of packet data at a level of several hundred symbols, a short period arranged for every several tens of symbols in a known pattern signal or data, A known pattern signal can be used.
  • the known signal of the phase fluctuation compensator 11 the short cycle / known pattern signal can be used.
  • the adaptive equalization unit 9 and the phase variation compensation unit 11 use the known signal to which the IQ distortion obtained from the calculation result of the coefficient calculation unit 17 is added to filter coefficients for equalization processing and compensation processing. And a compensation amount is calculated. Specifically, IQ distortion is added to a known signal by multiplying or adding a coefficient or compensation amount of an opposite sign. As a result, the coefficient calculation in the adaptive equalization unit 9 and the compensation amount calculation in the phase fluctuation compensation unit 11 can be accurately performed in the equalization process and the compensation process without being affected by the IQ distortion or greatly reduced. Furthermore, the IQ distortion compensation effect can be improved.
  • FIG. FIG. 10 is a diagram showing a transmission device of the coherent optical communication device according to Embodiment 4 of the present invention.
  • the digital signal processing apparatus of the transmitting apparatus 21 that transmits an optical signal is described.
  • DSP Digital Signal Processor
  • the modulators 24 and 25 modulate the output light of the signal light source 23 based on the output signal of the DSP 22. These output lights are multiplexed into orthogonal polarization states by the polarization beam combiner 26 and output to the optical fiber 2.
  • FIG. 11 is a diagram showing an optical transmission distortion compensating apparatus according to Embodiment 4 of the present invention.
  • the IQ distortion compensator 12 on the transmission side predicts the distortion shape by the modulators 24, 25, etc. in the subsequent stage and approximates the distortion with a polynomial.
  • the coefficient calculation unit 17 calculates the first and second coefficients so that the error between the output of the I component compensation unit 15 and the Q component compensation unit 16 and the distortion prediction shape is minimized.
  • an MMSE algorithm Minimum Mean Square Error, minimum mean square error
  • a program for realizing the optical transmission distortion compensation method of Embodiments 1 to 4 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system or a programmable logic device.
  • the optical transmission distortion compensation may be performed by executing.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a WWW system having a homepage providing environment (or display environment).
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included. The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • RAM volatile memory
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

I成分補償部(15)は、直交変調信号のI成分及びQ成分を基にI成分の歪を表す第1の多項式を構成し、第1の係数を第1の多項式の各項に乗じることで、歪が補償されたI成分を算出する。Q成分補償部(16)は、直交変調信号のI成分及びQ成分を基にQ成分の歪を表す第2の多項式を構成し、第2の係数を第2の多項式の各項に乗じることで、歪が補償されたQ成分を算出する。係数算出部(17)は、I成分補償部(15)及びQ成分補償部(16)の出力と既知信号とを比較して第1及び第2の係数を算出する。

Description

光伝送歪補償装置、光伝送歪補償方法及び通信装置
 本発明は、データ通信における直交変調通信に用いられる光伝送歪補償装置、光伝送歪補償方法及び通信装置に関する。
 コヒーレント光通信では、同相位相成分(In phase成分:I成分)と直交位相成分(Quadrature Phase成分:Q成分)のそれぞれに対して独立に振幅変調を行う直交変調が採用される。QPSK(Quadrature Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)などの多値変調により伝送レートの高速化が果たされている。更なる高速化のために64QAM等への多値化も進められている。受信側では、光復調器によって光信号が電気信号に変換されA/D変換された後、伝送路の歪を補償するため、デジタル信号処理によって、波長分散補償、偏波処理・適応等化、誤り訂正が行われ、受信感度の向上を図っている。
 このようなQPSK、16QAM、64QAMなどの多値変調を用いる場合に顕在化する問題として、コンスタレーション歪(IQ歪)がある。多値変調信号は、電気段においては4レーンの電気信号(X偏波のI成分とQ成分、Y偏波のI成分とQ成分)として扱われる。すなわち、送信側において、4レーンの電気信号として信号は生成され、光変調器により多値変調光信号に変換される。
 光変調器としては、例えば、マッハツェンダー干渉計型の変調器が適用される。このような光変調器では、バイアス電圧の誤差や、干渉計の消光比が無限大でないことなどによる不完全性があり、このような不完全性によりコンスタレーションの歪が生じる。コンスタレーション歪が生じると、正確に送信された情報を復号することができず、ビット誤り率の増大等を発生させることになる。ここで、コンスタレーションとは、信号空間ダイヤグラムとも呼ばれ、デジタル変調によるデータ信号点を2次元の複素平面上に表したものである(複素平面上のI成分とQ成分で示される点)。
 例えば、16QAM、64QAMは、それぞれ16点、64点からなるコンスタレーションを有する変調方式であり、信号空間上にそれぞれ16点、64点が正方的に配置されるものが一般的である。16QAMは、同相位相成分と直交位相成分のそれぞれに互いに独立な4値の振幅変調を行ったものとみなすことができ、64QAMは、同相位相成分と直交位相成分のそれぞれに互いに独立な8値の振幅変調を行ったものとみなすことができる。
 コンスタレーション歪の1つとしてDC(Direct Current)オフセットがある。通常、光変調器に対して、光出力がnull点となるようにバイアス電圧が印加される。このバイアス電圧がnull点からシフトしてしまった場合に、DCオフセットが発生する。また、光変調器を構成するマッハツェンダー干渉計は、消光比(オン/オフ比)が無限大、すなわち、オフのときに光出力が完全に0であることが理想であるが、オフのときに完全に0にならない場合、消光比は無限大ではなくなり、DCオフセットが発生する。DCオフセットは、光信号では残存キャリアの形で現れるため、光信号のスペクトルを観察することで確認することができる。
 DCオフセットと、これによるキャリアの残存は、局部発振レーザを用いるコヒーレント検波方式ではない直接検波方式(例えば、1010のオンオフ信号の強度を受光素子で直接検波する方式、強度変調直接検波などともいう)でも生じる。直接検波方式では、残存キャリアは、受信側の電気段で再びDCオフセットとして現れるため、コンデンサ等によるアナログ的なDCブロック回路で容易に除去することができる。これに対して、コヒーレント検波方式で、かつ送信レーザと受信側の局部発振レーザの周波数が正確に一致していない場合、残存キャリアは、受信側の電気段では直流に変換されず、DCブロック回路で除去することができない。
 また、コンスタレーション歪として知られているものに、IQ(In-phase Quadrature)クロストークがある。IQクロストークは、光変調器のバイアス電圧誤差により、同相位相(In-phase)成分と直交位相(Quadrature)成分の位相差が正確に90°にならない場合に発生する。
 これらのコンスタレーション歪の問題に対応するため、光送信装置に適用される光変調器の特性を予め計測しておき、送信装置内のデジタル信号処理装置により光変調器の特性を補償する技術が開示されている(例えば、非特許文献1参照)。また、無線通信において直交変調を使用する場合に、I-Q信号成分間の利得不平衡及び位相不平衡によって引き起こされる直交誤差と呼ばれる歪を受信機側において校正する技術も開示されている(例えば、特許文献1参照)。
日本特開2012-182793号公報
杉原隆嗣、「高速光通信における予等化技術の現状と展望」、電子情報通信学会、信学技報、IEICE Technical Report、OCS2011 - 41 (2011-7)、p. 83-88
 しかしながら、光変調器の特性を予め計測できない場合や、時間が経過するにつれて特性が変化する場合には、非特許文献1に記載の技術を利用することができないという問題がある。特に、光変調器に印加するバイアス電圧を制御するオートバイアスコントロール回路の変動ドリフトや、オートバイアスコントロール回路が印加する誤差に起因して発生する光変調器の不完全性を、送信装置側のデジタル信号処理装置で補償することは困難であるという問題がある。
 また、特許文献1に記載のように受信側においてI-Q信号成分間の不平衡を校正する場合、位相及び利得の調整で一律的に校正するため、非線形的に生ずるコンスタレーションの歪を補償することはできないという問題がある。
 本発明は、上述のような課題を解決するためになされたもので、その目的は非線形的に生ずるコンスタレーション歪を精度よく補償することができる光伝送歪補償装置、光伝送歪補償方法及び通信装置を得るものである。
 本発明に係る光伝送歪補償装置は、直交変調信号のI成分及びQ成分を基にI成分の歪を表す第1の多項式を構成し、第1の係数を前記第1の多項式の各項に乗じることで、歪が補償されたI成分を算出するI成分補償部と、前記直交変調信号のI成分及びQ成分を基にQ成分の歪を表す第2の多項式を構成し、第2の係数を前記第2の多項式の各項に乗じることで、歪が補償されたQ成分を算出するQ成分補償部と、前記I成分補償部及び前記Q成分補償部の出力と既知信号とを比較して前記第1及び第2の係数を算出する係数算出部とを備えることを特徴とする。
 本発明により、非線形的に生ずるコンスタレーション歪を精度よく補償することができる。
本発明の実施の形態1に係るコヒーレント光通信装置の受信装置を示す図である。 歪がない場合の16QAM変調のコンスタレーションを示す図である。 I成分及びQ成分の歪が発生した場合の16QAMのコンスタレーションを示す図である。 本発明の実施の形態1に係る光伝送歪補償装置を示す図である。 本発明の実施の形態1に係るI成分補償部及びQ成分補償部を示す図である。 本発明の実施の形態1に係る係数算出部を示す図である。 本発明の実施の形態2に係る光伝送歪補償装置を示す図である。 本発明の実施の形態2に係るSkew補償部を示す図である。 本発明の実施の形態3に係る光伝送歪補償装置を示す図である。 本発明の実施の形態4に係るコヒーレント光通信装置の送信装置を示す図である。 本発明の実施の形態4に係る光伝送歪補償装置を示す図である。
 本発明の実施の形態に係る光伝送歪補償装置、光伝送歪補償方法及び通信装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係るコヒーレント光通信装置の受信装置を示す図である。受信装置1は、光ファイバ2から受信した光信号を電気信号に変換してデジタル処理する。
 受信装置1において、まず偏波分離器3が光信号を2つの直交偏波成分に分離する。これらの光信号と局発光源4の局発光が90°ハイブリッド回路5,6に入力され、両光を互いに同相及び逆相で干渉させた1組の出力光、直交(90°)及び逆直交(-90°)で干渉させた1組の出力光の計4つの出力光が得られる。これらの出力光はフォトダイオード(不図示)によりそれぞれアナログ信号に変換される。これらのアナログ信号はAD変換器7によりデジタル信号に変換される。
 波長分散補償部8以降の構成は、AD変換器7からデジタル信号として出力された直交変調信号をデジタル処理して歪を補償する光伝送歪補償装置である。ここで、光ファイバ2中を光信号が伝搬する際に、波長分散という効果によって信号波形が歪む。波長分散補償部8は、その歪の大きさを受信信号から推定して補償する。
 光通信において水平偏波と垂直偏波を合成して送信し受信において分離する際に、偏波モード分散という効果によって偏波変動が生じ波形が歪む。適応等化部9は、その歪みを補償する等化処理を行う。偏波分離は最初に光復調器によって行われるが、適応等化部9においてより完全に偏波分離が処理される。送信側で長周期・既知パターン信号や短周期・既知パターン信号を挿入し、受信した該信号との誤差を最小にする方法等が提案されている。
 周波数オフセット補償部10は、送受のローカル信号(キャリア信号)の周波数誤差を補正する。位相変動補償部11は、周波数オフセット補償部10での残留オフセットや適応等化部9で取りきれなかった残留位相変動又は位相スリップを送信側で挿入した短周期・既知パターン信号を利用して補償処理を行う。
 IQ歪補償部12は、DCオフセット、消光比による歪等のIQ平面上の歪み(IQ歪)を補償する。IQ歪の補償は、周波数オフセット補償部10及び位相変動補償部11により位相変動や位相スリップが低減された状態にて行うことが好ましい。
 キャリア位相再生(Carrier Phase Recovery:CPR)部13は、周波数オフセット補償部10及び位相変動補償部11で取りきれなかった位相変動を補償する。仮判定したコンスタレーション(信号点)と受信したコンスタレーション(信号点)とのずれΦを検出し、Φだけ位相回転を行って補正する。この位相回転による補正は、exp(jΦ)を乗ずることで行える。その後、誤り訂正部14が処理を行う。
 なお、光変調器の歪等の静的にあまり変動しない歪は、送信側でもある程度の補償が可能である。しかし、光変調器のバイアス調整等によって発生する動的に変動する歪は、送信側での補償は難しい。受信側における補償は、動的に変動する歪に対応しやすいという特徴がある。
 図2は、歪がない場合の16QAM変調のコンスタレーションを示す図である。図3は、I成分及びQ成分の歪が発生した場合の16QAMのコンスタレーションを示す図である。光通信における受信側におけるコンスタレーションの歪は、単にDC成分が一律にオフセットしたものではなく、弓なり状の歪である。これは、直交変調器及び直交復調器の非線形性によるものと考えられる。以後、IQ平面上で弓なり状に変化する歪成分を弓なり状歪と称する。この弓なり状歪は、従来のように単にDC成分をオフセットするだけでは補償することができない。
 図4は、本発明の実施の形態1に係る光伝送歪補償装置を示す図である。IQ歪補償部12は、位相変動補償部11とキャリア位相再生部13との間に設置され、I成分補償部15、Q成分補償部16、及び係数算出部17を有する。
 I成分補償部15は、位相変動補償部11から出力された直交変調信号のI成分Xi及びQ成分Xqを基にI成分の歪を表すN項の第1の多項式を構成し、係数算出部17から出力されたI成分補償部用の第1の係数を第1の多項式の各項に乗じることで、歪が補償されたI成分を算出する。I成分及びQ成分で構成される第1の多項式の第n項をINi(n)、第1の多項式の第n項の係数をhi(n)とすると、I成分補償部15の出力は以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 Q成分補償部16は、位相変動補償部11から出力された直交変調信号のI成分Xi及びQ成分Xqを基にQ成分の歪を表すN項の第2の多項式を構成し、係数算出部17から出力されたQ成分補償用の第2の係数を第2の多項式の各項に乗じることで、歪が補償されたQ成分を算出する。I成分及びQ成分で構成される第2の多項式の第n項をINq(n)、第2の多項式の第n項の係数をhq(n)とすると、Q成分補償部16の出力は以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 上記の処理はシンボル毎に行われ、係数算出部17において、各項の係数は独立的に最適化される。各項の係数は1次であるため、瞬時値を使用することができ、メモリは不要である。
 キャリア位相再生部13は、I成分補償部15及びQ成分補償部16の出力の位相変動を補償するために、I成分とQ成分で構成される信号ベクトルの位相をφだけ回転する。従って、キャリア位相再生部13の出力は以下の式で表される。
Figure JPOXMLDOC01-appb-M000003
 係数算出部17は、第1及び第2の係数を乗算する前の第1及び第2の多項式の個々の項について、I成分補償部15及びQ成分補償部16の出力と参照信号(既知信号)とを比較して第1及び第2の係数を算出する。具体的には、キャリア位相再生部13の出力と参照信号との誤差が最小になるように第1及び第2の係数を算出する。当該誤差には、キャリア位相再生部13における位相回転補償が含まれるため、それを相殺するために誤差に逆回転の位相が与えられて係数算出部17に供給される。なお、参照信号として、例えば送信信号に同期検出用として挿入された長周期・既知パターン信号(例えば、1万ビット当たり256ビット)を利用できる。長周期・既知パターン信号に疑似的なランダムな信号が設定されることで、図3に示すIQ軸の弓なり状歪が検出されやすくなっている。仮に1と0のみの繰り返しの場合、歪は直線状となり弓なり状歪の検出は難しい。
 図5は、本発明の実施の形態1に係るI成分補償部及びQ成分補償部を示す図である。ここではN=7である。非線形性を表す式として使用されるVoltera級数展開の一部の項を用いて歪を近似している。これは非線形フィルタと等価になる。第1及び第2の多項式の項数の増減、他軸成分の利用、及び次数の増減は、「弓なり状歪は多項式で表現できる」という技術的思想に基づいて設定される。
 I成分補償部15の出力は、位相変動補償部11からのI成分Xi及びQ成分Xqを基にした以下の多項式で表される。
Figure JPOXMLDOC01-appb-M000004
 Q成分補償部16の出力は、位相変動補償部11からのI成分Xi及びQ成分Xqを基にした以下の多項式で表される。
Figure JPOXMLDOC01-appb-M000005
 弓なり状歪は、図3に示すように、I軸に沿って弓なりに変化し、Q軸に沿って弓なりに変化している。これは、I成分に対する2次曲線及び3次曲線、Q成分に対する2次曲線及び3次曲線で疑似的に表せると推察される。上式の第2項、第3項、及び第6項は、それを目的としている。
 第5項は、象限の違いによって弓なりの曲率が変わらないようにするための補正項である。第1項は、送信側でのIQ合成時や受信側でのIQ分離時の増幅率の差、更にはI成分及びQ成分のラインにおける負荷の差において生じる振幅比のズレを振幅を調整して補償するものである。第4項は、変調器の制御信号対変調出力が正弦波に近い形状の非線形性を持つため、それを3次曲線で近似し線形に戻すための項である。第7項は、従来のDCオフセットの補償に対応する。
 なお、上記多項式の各項の係数hi(1)~hi(7)及び係数hq(1)~hq(7)は係数算出部17によりそれぞれ独立的に算出される。
 上記の結果より、I成分補償部15及びQ成分補償部16の出力は以下の信号ベクトルで示される。
Figure JPOXMLDOC01-appb-M000006
 この信号ベクトルは、キャリア位相再生部13の位相回転補償により、位相がΦだけ回転させられる。キャリア位相再生部13の出力CPR_OUTは以下の式で示される。
Figure JPOXMLDOC01-appb-M000007
 送信信号に挿入された長周期・既知パターン信号を受信した際に、CPR_OUTから、長周期・既知パターン信号の真値(参照信号:TSi+jTSq)を減じて、誤差errを計算する。
Figure JPOXMLDOC01-appb-M000008
 ここで、I成分補償部15及びQ成分補償部16では、キャリア位相再生部13による位相回転補償を未だ行っていない。従って、位相回転補償を行った結果と参照信号との誤差errで係数算出を行うと、位相回転補償の影響が含まれ、IQ歪を補償する係数を正しく計算できない。そこで、係数算出部17へ入力するデータは、誤差errに対して位相回転補償を戻す操作を行ってerr×e-jΦとする。これは参照信号に位相回転補償を行ったことと等価である。
 図6は、本発明の実施の形態1に係る係数算出部を示す図である。係数算出部17は、最小二乗法(Least Mean Square、LMS)アルゴリズムを用いてI成分補償部15及びQ成分補償部16の多項式の全項の係数を求める。この時のLSMアルゴリズムは以下の式で示される。
Figure JPOXMLDOC01-appb-M000009

Figure JPOXMLDOC01-appb-I000010
ここで、kは算出の更新の回数を示し、長周期・既知パターン信号においてシンボル毎に更新を行う。Eはk回目に入力される一般的な誤差の表現である。なお、入力信号INi(n)、INq(n)、誤差err及び位相回転量φについてもk毎に値は異なるが、下側の式ではkの表示を省略している。μは1以下の係数である。
 上記の式のように、LSMアルゴリズムは、現状の係数hi(n),hq(n)、誤差err×e-jΦ及び入力信号Xi,Xqとから、誤差が最小になるように次の係数hi(n)k+1,hq(n)k+1を求めていく。入力状況によって収束値が変化する。
 係数の初期値は、例えば、hi(1)=1、hi(2)=hi(3)=hi(4)=hi(5)=hi(6)=hi(7)=0、hq(1)=1、hq(2)=hq(3)=hq(4)=hq(5)=hq(6)=hq(7)=0と設定できる。これは入力信号をそのまま出力することを示している。初期値は上記の例に限定されない。
 以上説明したように、本実施の形態ではIQ歪を多項式で表すことで、弓なり状歪などの非線形的に生ずるコンスタレーション歪を精度よく補償することができる。
 また、係数算出部17は、最小二乗法アルゴリズムを用いて第1及び第2の係数を算出する。これにより、一般的な最小平均自乗誤差法(Minimum Mean Square Error:MMSE)アルゴリズムを用いた場合に比べて高速かつ簡易に係数を算出することができる。
 また、IQ歪補償部12をキャリア位相再生部13の前段に設けることで、IQ歪の影響を受けやすいキャリア位相再生の位相補償精度を向上することができる。
 また、係数算出部17は、キャリア位相再生部13の出力と既知信号との誤差にキャリア位相再生部13における補償と逆の補償処理を行ったものを用いて第1及び第2の係数を算出する。これにより、位相回転補償の影響を取り除いて、IQ歪を補償する係数を精度よく算出できるため、IQ歪補償の性能を向上できる。
 また、IQ歪補償部12を位相変動補償部11の後段に設置することで、IQ歪補償処理を位相変動の影響を低減した後で行うことができる。従って、IQ歪を補償する係数を精度よく算出でき、IQ歪補償の精度も向上できる。
実施の形態2.
 図7は、本発明の実施の形態2に係る光伝送歪補償装置を示す図である。IQ歪補償部12とキャリア位相再生部13との間にSkew補償部18が設けられている。Skew補償部18が加わることに伴い係数算出部17における係数の導出式が変わる。その他の構成は実施の形態1と同様である。
 図8は、本発明の実施の形態2に係るSkew補償部を示す図である。Skew補償部18は、主に送信時におけるI成分の信号とQ成分の信号との遅延差を補償するSkew補償を行うものである。Skew補償部18は、I成分補償部15及びQ成分補償部16の出力のSkew補償を行うフィルタ19と、誤差errにキャリア位相再生部13における補償と逆の補償処理を行ったものを用いてフィルタ19のフィルタ係数を算出するフィルタ係数算出部20とを有する。フィルタ19は、I成分とQ成分とのクロストークも考慮して、バタフライ型のFIRフィルタで構成される。それぞれのFIRフィルタのタップ係数はt11,t12,t21,t22で示される。例えば、5段のFIRフィルタの場合、それぞれ5つのタップ係数を有する。フィルタ係数算出部20は、それぞれのFIRフィルタに対応したLMSアルゴリズムを有する。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-M000012
即ち、キャリア位相再生部13の出力は、Skew補償部18の入力のReal成分であるINsiに(t11+j・t21)を畳み込んだ値と、Imag成分であるINsqに(t12+j・t22)を畳み込んだ値の和を、位相量φだけ回転した値となる。
 Skew補償部18の入力は、I成分補償部15及びQ成分補償部16の出力であることから、上式は以下のようになる。
Figure JPOXMLDOC01-appb-M000013
 実施の形態1と同様に、上式で示されるキャリア位相再生部13の出力から長周期・既知パターン信号の真値が減ぜられ、誤差errが計算される。
Figure JPOXMLDOC01-appb-M000014
 誤差errにキャリア位相再生部13における補償と逆の補償処理を行ったもの(err×e-jΦ)が、Skew補償部18におけるFIRフィルタの係数を算出するLMSアルゴリズムに供給される。フィルタ係数t11,t12を算出するLMSアルゴリズムには、それぞれ実数部であるReal[err・e-jΦ]が供給される。フィルタ係数t21,t22を算出するLMSアルゴリズムには、それぞれ虚数部であるImag[err・e-jΦ]が供給される。
 この時、各フィルタ係数t11,t12,t21,t22に対するLMSアルゴリズムの算出式は以下のようになる。このLMSアルゴリズムを更新していくことで、FIRフィルタのタップ係数のセットが求められる。
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-I000016
 kは算出の更新の回数を示し、ここでは長周期・既知パターン信号のシンボル毎に更新を行うことができる。Eはk回目におけるLMSに入力される一般的な誤差の表現である。なお、入力信号INsi,INsq、誤差err及び位相回転量φの値もk毎に異なるが、上式ではkの表示を省略している。
 係数の初期値は、例えば、t11={0,0,1,0,0}、t12={0,0,0,0,0}、t21={0,0,0,0,0}、t22={0,0,1,0,0}と設定できる。これは入力信号をそのまま出力することを示している。初期値は上記の例に限定されない。
 一方、係数算出部17は、I成分補償部15及びQ成分補償部16の多項式の係数hi(n),hq(n)を求めるため、LMSアルゴリズムを用いる。その時のLSMアルゴリズムの式は以下で示される。
Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-I000018
 kは算出の更新の回数を示し、ここでは長周期・既知パターン信号のシンボル毎に更新を行うことができる。Eはk回目におけるLMSに入力される一般的な誤差の表現である。なお、入力信号INsi,INsq、誤差err及び位相回転量φの値もk毎に異なるが、上式ではkの表示を省略している。
 係数の初期値は、例えば、hi(1)=1、hi(2)=hi(3)=hi(4)=hi(5)=hi(6)=hi(7)=0、hq(1)=1、hq(2)=hq(3)=hq(4)=hq(5)=hq(6)=hq(7)=0と設定できる。これは入力信号をそのまま出力することを示している。初期値は上記の例に限定されない。
 Skew補償部18をIQ歪補償部12の後段に設置した場合、LMSアルゴリズムに入力される誤差Eは、キャリア位相再生部13の出力において算出される誤差errに対して、Skew補償の分とキャリア位相再生の分を戻したものである。実際には、参照信号にそれらを与える。上式のerrの右側に追加されている項はその処理を目的としている。
 上述のように、係数算出部17は、誤差errにSkew補償部18及びキャリア位相再生部13における補償と逆の補償処理を行ったものを用いて第1及び第2の係数を算出する。これにより、Skew及び位相回転補償の影響を取り除いて、IQ歪を補償する係数を精度よく算出できるため、IQ歪補償の性能を向上できる。
 なお、上述のように位相変動や位相スリップが低減された状態でIQ歪補償を実施することで効果が増すために、IQ歪補償部12を位相変動補償部11の後段に設置した。しかし、他に位相変動や位相スリップを除去できる処理部があれば、その後段にIQ歪補償部12を設置してもよい。
実施の形態3.
 図9は、本発明の実施の形態3に係る光伝送歪補償装置を示す図である。適応等化部9及び位相変動補償部11は、それぞれ既知信号と受信信号との誤差に基づいて等化処理及び補償処理のフィルタ係数及び補償量を算出する。例えば、適応等化部9の既知信号として、パケットデータの先頭位置に数百シンボルレベルで配置される同期用の長周期・既知パターン信号やデータ全体に数十シンボル毎に配置される短周期・既知パターン信号が利用できる。位相変動補償部11の既知信号として、上記短周期・既知パターン信号が利用できる。
 未補償の受信信号にはIQ歪が残存しているが、既知信号にはIQ歪が含まれていない。このため、両者の誤差にはIQ歪が残ったままとなる。そこで、本実施の形態では、適応等化部9及び位相変動補償部11は、係数算出部17の算出結果から求めたIQ歪を付加した既知信号を用いて等化処理及び補償処理のフィルタ係数及び補償量を算出する。具体的には、逆符号の係数又は補償量を乗算又は加算することで既知信号にIQ歪を付加する。これにより、適応等化部9における係数計算と位相変動補償部11における補償量計算が、IQ歪の影響を受けない又は大幅に低減された状態で等化処理及び補償処理を精度よく実施でき、さらにIQ歪補償の効果も向上できる。
実施の形態4.
 図10は、本発明の実施の形態4に係るコヒーレント光通信装置の送信装置を示す図である。実施の形態1~3ではIQ歪補償部12を含む光伝送歪補償装置を受信装置1に適用した場合について説明したが、本実施の形態では光信号を送信する送信装置21のデジタル信号処理装置(Digital Signal Processor: DSP)22に適用している。DSP22の出力信号に基づいて信号光源23の出力光を変調器24,25が変調する。それらの出力光が偏波合成器26によって直交する偏波状態に多重されて光ファイバ2に出力される。
 図11は、本発明の実施の形態4に係る光伝送歪補償装置を示す図である。送信側のIQ歪補償部12は、後段の変調器24,25等による歪の形状を予測して多項式でその歪を近似する。係数算出部17は、I成分補償部15及びQ成分補償部16の出力と歪予測形状との誤差が最小になるようにそれぞれ第1及び第2の係数を算出する。この係数算出において、MMSEアルゴリズム(Minimum Mean Square Error、最小平均自乗誤差)アルゴリズムが適用可能である。これにより、後段の変調器等による歪を補償することができる。
 なお、実施の形態1~4では、X偏波のみについて説明を行ったが、Y偏波においても同様の方法が適用できることは言うまでもない。また、実施の形態1~4の光伝送歪補償方法を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステム又はプログラマブルロジックデバイスに読み込ませ、実行することにより光伝送歪補償を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。更に、前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
1 受信装置、9 適応等化部、11 位相変動補償部、13 キャリア位相再生部、15 I成分補償部、16 Q成分補償部、17 係数算出部、18 Skew補償部、19 フィルタ、20 フィルタ係数算出部、21 送信装置

Claims (11)

  1.  直交変調信号のI成分及びQ成分を基にI成分の歪を表す第1の多項式を構成し、第1の係数を前記第1の多項式の各項に乗じることで、歪が補償されたI成分を算出するI成分補償部と、
     前記直交変調信号のI成分及びQ成分を基にQ成分の歪を表す第2の多項式を構成し、第2の係数を前記第2の多項式の各項に乗じることで、歪が補償されたQ成分を算出するQ成分補償部と、
     前記I成分補償部及び前記Q成分補償部の出力と既知信号とを比較して前記第1及び第2の係数を算出する係数算出部とを備えることを特徴とする光伝送歪補償装置。
  2.  前記第1及び第2の多項式の少なくとも一方は、IQ平面上で弓なり状に変化する歪成分を補償する項を含むことを特徴とする請求項1に記載の光伝送歪補償装置。
  3.  前記弓なり状に変化する歪成分を補償する項として、前記第1の多項式は、Q成分の1次の項、Q成分の2次の項、及びQ成分の3次の項の少なくとも一つを含み、前記第2の多項式は、I成分の1次の項、I成分の2次の項、及びI成分の3次の項の少なくとも一つを含むことを特徴とする請求項2に記載の光伝送歪補償装置。
  4.  前記第1の多項式はI成分の3次の項を含み、
     前記第2の多項式はQ成分の3次の項を含み、
     送信変調器の非線形性を補償することを特徴とする請求項1~3の何れか1項に記載の光伝送歪補償装置。
  5.  前記係数算出部は、最小二乗法アルゴリズムを用いて前記第1及び第2の係数を算出することを特徴とする請求項1~4の何れか1項に記載の光伝送歪補償装置。
  6.  前記I成分補償部及び前記Q成分補償部の出力の位相変動を補償するキャリア位相再生部を更に備え、
     前記係数算出部は、前記キャリア位相再生部の出力と前記既知信号との誤差に前記キャリア位相再生部における補償と逆の補償処理を行ったものを用いて前記第1及び第2の係数を算出することを特徴とする請求項1~5の何れか1項に記載の光伝送歪補償装置。
  7.  前記I成分補償部及び前記Q成分補償部と前記キャリア位相再生部との間に設けられたSkew補償部を更に備え、
     前記Skew補償部は、前記I成分補償部及び前記Q成分補償部の出力のSkew補償を行うバタフライ型のフィルタと、前記誤差に前記キャリア位相再生部における補償と逆の補償処理を行ったものを用いて前記フィルタのフィルタ係数を算出するフィルタ係数算出部とを有し、
     前記係数算出部は、前記誤差に前記Skew補償部及び前記キャリア位相再生部における補償と逆の補償処理を行ったものを用いて前記第1及び第2の係数を算出することを特徴とする請求項6に記載の光伝送歪補償装置。
  8.  前記直交変調信号に等化処理を行う適応等化部と、
     前記直交変調信号に補償処理を行う位相変動補償部とを更に備え、
     前記I成分補償部及び前記Q成分補償部は前記適応等化部及び前記位相変動補償部の後段に設けられ、
     前記適応等化部及び前記位相変動補償部は、前記係数算出部の算出結果から求めたIQ歪を付加した既知信号を用いて前記等化処理及び前記補償処理のフィルタ係数及び補償量を算出することを特徴とする請求項1~7の何れか1項に記載の光伝送歪補償装置。
  9.  光信号を受信する受信装置を備え、
     前記受信装置は、請求項1~8の何れか1項に記載の光伝送歪補償装置を有することを特徴とする通信装置。
  10.  光信号を送信する送信装置を備え、
     前記送信装置は、請求項1~5の何れか1項に記載の光伝送歪補償装置を有することを特徴とする通信装置。
  11.  光伝送歪補償装置が行う光伝送歪補償方法であって、
     直交変調信号のI成分及びQ成分を基にI成分の歪を表す第1の多項式を構成し、第1の係数を前記第1の多項式の各項に乗じることで、歪が補償されたI成分を算出するステップと、
     前記直交変調信号のI成分及びQ成分を基にQ成分の歪を表す第2の多項式を構成し、第2の係数を前記第2の多項式の各項に乗じることで、歪が補償されたQ成分を算出するステップと、
     前記歪が補償されたI成分及びQ成分と既知信号とを比較して前記第1及び第2の係数を算出するステップとを備えることを特徴とする光伝送歪補償方法。
PCT/JP2017/022871 2016-08-29 2017-06-21 光伝送歪補償装置、光伝送歪補償方法及び通信装置 WO2018042838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17845848.5A EP3435608B1 (en) 2016-08-29 2017-06-21 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device
CA3022078A CA3022078C (en) 2016-08-29 2017-06-21 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device
US16/094,857 US10374718B2 (en) 2016-08-29 2017-06-21 Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device
CN201780036510.6A CN109314683B (zh) 2016-08-29 2017-06-21 光传输失真补偿装置、光传输失真补偿方法以及通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167086A JP6315040B2 (ja) 2016-08-29 2016-08-29 光伝送歪補償装置、光伝送歪補償方法及び通信装置
JP2016-167086 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018042838A1 true WO2018042838A1 (ja) 2018-03-08

Family

ID=61300596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022871 WO2018042838A1 (ja) 2016-08-29 2017-06-21 光伝送歪補償装置、光伝送歪補償方法及び通信装置

Country Status (6)

Country Link
US (1) US10374718B2 (ja)
EP (1) EP3435608B1 (ja)
JP (1) JP6315040B2 (ja)
CN (1) CN109314683B (ja)
CA (1) CA3022078C (ja)
WO (1) WO2018042838A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479278B1 (ja) * 2018-03-09 2019-03-06 三菱電機株式会社 光受信器及び光送受信システム
JPWO2021124415A1 (ja) * 2019-12-16 2021-06-24
JP2021150823A (ja) * 2020-03-19 2021-09-27 富士通株式会社 伝送装置及び歪み補償方法
WO2022259367A1 (ja) * 2021-06-08 2022-12-15 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
JP7491418B1 (ja) 2023-01-30 2024-05-28 Nttイノベーティブデバイス株式会社 適応等化装置、受信機及び適応等化方法
WO2024157437A1 (ja) * 2023-01-27 2024-08-02 日本電信電話株式会社 光受信装置及び信号処理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206545B1 (ja) * 2016-06-17 2017-10-04 Nttエレクトロニクス株式会社 伝送特性補償装置、伝送特性補償方法及び通信装置
JP7059637B2 (ja) * 2018-01-11 2022-04-26 富士通株式会社 信号処理装置及び信号処理方法
US11270200B2 (en) * 2018-02-26 2022-03-08 Nec Corporation Single-step nonlinearity compensation using artificial intelligence for digital coherent transmission systems
CN110365428B (zh) * 2018-04-09 2021-09-07 富士通株式会社 损伤监测装置、损伤监测及补偿系统及方法
JP7057506B2 (ja) * 2018-09-11 2022-04-20 日本電信電話株式会社 デジタルコヒーレント受信器及びデジタルコヒーレント受信方法
JP6984784B2 (ja) * 2019-02-28 2021-12-22 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性推定システム及び光伝送特性補償システム
WO2021070280A1 (ja) * 2019-10-09 2021-04-15 日本電信電話株式会社 Sn比推定回路、及び適応フィルタ回路
CN113298246B (zh) * 2021-05-27 2023-02-28 山东云海国创云计算装备产业创新中心有限公司 数据处理方法、装置及计算机可读存储介质
JPWO2023067641A1 (ja) * 2021-10-18 2023-04-27
CN115941056B (zh) * 2023-03-15 2023-05-05 北京航空航天大学 基于微波光子的正交调制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060883A (ja) * 1999-08-24 2001-03-06 Hitachi Denshi Ltd 送信機及びデータ伝送装置
JP4268760B2 (ja) * 1998-07-16 2009-05-27 エアロフレックス・インターナショナル・リミテッド Iq変調器における歪み補償装置及び方法
JP2012182793A (ja) 2006-06-06 2012-09-20 Qualcomm Inc 高速同相直交不平衡校正
JP2016034121A (ja) * 2014-07-31 2016-03-10 日本電信電話株式会社 送信機
JP2016072942A (ja) * 2014-10-02 2016-05-09 富士通株式会社 光送信器および波形歪みを補正する方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348755B (en) * 1999-04-01 2001-03-07 Wireless Systems Int Ltd Signal processing
JP5287516B2 (ja) * 2009-05-29 2013-09-11 富士通株式会社 デジタルコヒーレント光受信器
CN102204132B (zh) * 2009-12-15 2014-10-15 穆尔蒂菲有限公司 对光纤中光信号的色度色散进行相干均衡的方法和系统
EP2381595B1 (en) * 2010-04-21 2012-06-20 Alcatel Lucent Phase skew compensation at a coherent optical receiver
JP5637065B2 (ja) * 2011-05-13 2014-12-10 住友電気工業株式会社 増幅回路及び無線通信装置
US8811538B1 (en) * 2013-03-15 2014-08-19 Blackberry Limited IQ error correction
JP6176012B2 (ja) * 2013-09-11 2017-08-09 富士通株式会社 非線形歪み補償装置及び方法並びに通信装置
EP2930865B1 (en) * 2014-04-07 2018-06-06 Alcatel Lucent Transmitter quadrature imbalance compensation at a coherent optical receiver
CN105264780B (zh) * 2014-05-12 2018-06-19 华为技术有限公司 接收机镜像校正方法、装置及基站
JP2016015612A (ja) * 2014-07-02 2016-01-28 日本電気株式会社 受信機および歪み補償方法
CN105680946B (zh) * 2016-01-22 2018-02-16 武汉邮电科学研究院 一种补偿光纤传输非线性损伤的自适应数字信号处理算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268760B2 (ja) * 1998-07-16 2009-05-27 エアロフレックス・インターナショナル・リミテッド Iq変調器における歪み補償装置及び方法
JP2001060883A (ja) * 1999-08-24 2001-03-06 Hitachi Denshi Ltd 送信機及びデータ伝送装置
JP2012182793A (ja) 2006-06-06 2012-09-20 Qualcomm Inc 高速同相直交不平衡校正
JP2016034121A (ja) * 2014-07-31 2016-03-10 日本電信電話株式会社 送信機
JP2016072942A (ja) * 2014-10-02 2016-05-09 富士通株式会社 光送信器および波形歪みを補正する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3435608A4
SUGIHARA TAKASHI: "Recent Progress of Pre-equalization Technology for High-speed Optical Communication", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, SHINGAKUGIHOU, IEICE TECHNICAL REPORT, OCS2011-41, July 2011 (2011-07-01), pages 83 - 88

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479278B1 (ja) * 2018-03-09 2019-03-06 三菱電機株式会社 光受信器及び光送受信システム
WO2019171587A1 (ja) * 2018-03-09 2019-09-12 三菱電機株式会社 光受信器及び光送受信システム
JPWO2021124415A1 (ja) * 2019-12-16 2021-06-24
WO2021124415A1 (ja) * 2019-12-16 2021-06-24 日本電信電話株式会社 光受信装置及び伝送特性推定方法
JP7303459B2 (ja) 2019-12-16 2023-07-05 日本電信電話株式会社 光受信装置及び伝送特性推定方法
JP2021150823A (ja) * 2020-03-19 2021-09-27 富士通株式会社 伝送装置及び歪み補償方法
JP7415165B2 (ja) 2020-03-19 2024-01-17 富士通株式会社 伝送装置及び歪み補償方法
WO2022259367A1 (ja) * 2021-06-08 2022-12-15 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
WO2024157437A1 (ja) * 2023-01-27 2024-08-02 日本電信電話株式会社 光受信装置及び信号処理方法
JP7491418B1 (ja) 2023-01-30 2024-05-28 Nttイノベーティブデバイス株式会社 適応等化装置、受信機及び適応等化方法
WO2024161837A1 (ja) * 2023-01-30 2024-08-08 Nttイノベーティブデバイス株式会社 適応等化回路、適応等化装置、受信機及び適応等化方法

Also Published As

Publication number Publication date
US10374718B2 (en) 2019-08-06
CA3022078A1 (en) 2018-03-08
CN109314683A (zh) 2019-02-05
US20190132051A1 (en) 2019-05-02
EP3435608A1 (en) 2019-01-30
EP3435608B1 (en) 2021-01-13
JP2018037735A (ja) 2018-03-08
EP3435608A4 (en) 2019-11-06
CA3022078C (en) 2020-02-18
CN109314683B (zh) 2021-06-01
JP6315040B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6315040B2 (ja) 光伝送歪補償装置、光伝送歪補償方法及び通信装置
Khanna et al. A robust adaptive pre-distortion method for optical communication transmitters
JP6206545B1 (ja) 伝送特性補償装置、伝送特性補償方法及び通信装置
JP6156807B2 (ja) 受信信号処理装置、通信システム及び受信信号処理方法
Faruk et al. Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation
JP5406989B2 (ja) 光受信器及び光伝送システム
US8131148B2 (en) Optical transmitter error reduction using receiver feedback
US20140079407A1 (en) Updating apparatus and method for equalizer coefficient, receiver and otpical communication system
CN107925485B (zh) 相干光接收装置
US10708035B2 (en) Signal processing device and signal processing method
CN105530050A (zh) 均衡与偏振解复用和相偏估计与补偿的联合处理方法及装置
US20190149393A1 (en) Nonlinearity pre-compensation of high order modulation transmissions
US11539447B2 (en) Subcarrier based adaptive equalization of electrical filtering effects on sub-carrier multiplexed signals
CN113225135B (zh) 低功耗的复模拟lms自适应系统和方法
Zhang et al. Training symbol-based equalization for quadrature duobinary PDM-FTN systems
Jin et al. Adaptive blind Stokes-space based equalizer for RSOP in SV-DD systems with high chromatic dispersion tolerance
Shu et al. Experimental investigation of extended Kalman Filter combined with carrier phase recovery for 16-QAM system
WO2017069086A1 (ja) コヒーレント光受信装置
Gong et al. Coherent optical transmitter IQ imbalance mitigation with embedded carrier phase and frequency offset estimation
US11736199B1 (en) Systems and methods for phase compensation
US12101120B1 (en) Systems and methods for chromatic dispersion pre-compensation
Yadav et al. Widely linear filtering for multiimpairment compensation in dispersion managed mqam modulated optical systems
WO2024157437A1 (ja) 光受信装置及び信号処理方法
WO2023248285A1 (ja) マルチキャリア信号波形等化回路及びマルチキャリア信号波形等化方法
CN117768037A (zh) 一种用于超高阶数相干光传输系统的级联mimo结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3022078

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2017845848

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017845848

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE