WO2017069086A1 - コヒーレント光受信装置 - Google Patents

コヒーレント光受信装置 Download PDF

Info

Publication number
WO2017069086A1
WO2017069086A1 PCT/JP2016/080700 JP2016080700W WO2017069086A1 WO 2017069086 A1 WO2017069086 A1 WO 2017069086A1 JP 2016080700 W JP2016080700 W JP 2016080700W WO 2017069086 A1 WO2017069086 A1 WO 2017069086A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
offset
circuit
component
unit
Prior art date
Application number
PCT/JP2016/080700
Other languages
English (en)
French (fr)
Inventor
建吾 堀越
光輝 吉田
聖司 岡本
英一 細谷
山崎 悦史
靖治 大沼
智大 高椋
直樹 三浦
禎之 安田
Original Assignee
日本電信電話株式会社
Nttエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016073735A external-priority patent/JP6288143B2/ja
Application filed by 日本電信電話株式会社, Nttエレクトロニクス株式会社 filed Critical 日本電信電話株式会社
Priority to US15/748,892 priority Critical patent/US10389452B2/en
Priority to CA2996407A priority patent/CA2996407C/en
Priority to EP16857401.0A priority patent/EP3367594B1/en
Priority to CN201680050181.6A priority patent/CN107925485B/zh
Publication of WO2017069086A1 publication Critical patent/WO2017069086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present invention relates to a coherent optical receiver.
  • This application claims priority based on Japanese Patent Application No. 2015-205604 filed in Japan on October 19, 2015 and Japanese Patent Application No. 2016-073735 filed in Japan on March 31, 2016 And the contents thereof are incorporated herein.
  • FIG. 14 is a diagram quoting an example of a transmission system using an optical transmitter and an optical receiver that perform coherent optical data transmission shown in FIG.
  • the transmission system modulates each of the X polarization and the Y polarization with different 50 Gbit / s QPSK (quaternary phase modulation) codes, and then polarization multiplexes the polarization multiplexed QPSK signal with 100 Gbit / s per wavelength. Long distance transmission.
  • multi-level modulation such as 16QAM (Quadrature Amplitude Modulation).
  • QPSK Quadrature Amplitude Modulation
  • 64QAM Quadrature Amplitude Modulation
  • the multi-level modulation signal is handled as a four-lane electric signal in the electric stage. That is, on the transmission side, a signal is generated as an electric signal of 4 lanes, and is converted into a multilevel modulated optical signal by the optical modulator.
  • the optical modulator for example, a Mach-Zehnder interferometer type modulator is applied.
  • Such an optical modulator has imperfections due to errors in bias voltage and the fact that the extinction ratio of the interferometer is not infinite. Such imperfections cause constellation distortion.
  • constellation distortion occurs, the transmitted information cannot be accurately decoded, resulting in an increase in bit error rate and the like.
  • the constellation is also called a signal space diagram and represents data signal points by digital modulation in a two-dimensional complex plane (for example, “Constellation” shown in FIG. 14 or Non-Patent Document 2). (See Fig. 2 etc.)
  • QPSK is quaternary phase modulation, and can be regarded as binary amplitude modulation performed independently for each of the in-phase and quadrature phase components.
  • QPSK constellations are arranged on the same circumference and are 90 degrees apart from each other.
  • 16QAM and 64QAM are modulation schemes having a constellation composed of 16 points and 64 points, respectively. In general, 16QAM and 64QAM constellations are arranged such that 16 points and 64 points are arranged squarely in a signal space. It can be considered that 16QAM is obtained by performing quaternary amplitude modulation independent of each other on each of the in-phase phase component and the quadrature phase component.
  • 64QAM can be regarded as an 8-phase amplitude modulation that is independent of each other for each of the in-phase component and the quadrature component.
  • DC offset Direct Current
  • a bias voltage is applied to the optical modulator so that the light output becomes a null point.
  • a DC offset occurs.
  • the Mach-Zehnder interferometer constituting the optical modulator ideally has an extinction ratio (on / off ratio) of infinity, that is, the optical output is completely zero when it is off.
  • the extinction ratio is not infinite and a DC offset occurs.
  • the optical signal since the DC offset appears in the form of residual carriers, the presence or absence of the DC offset can be confirmed by observing the spectrum of the optical signal.
  • the DC offset and the remaining carrier due to this are also referred to as a direct detection method that is not a coherent detection method using a local oscillation laser (for example, a method in which the intensity of an on / off signal of 1010 is directly detected by a light receiving element, an intensity modulation direct detection, etc. ) Also occurs.
  • the direct detection method the residual carrier appears again as a DC offset in the electric stage on the receiving side, and therefore, the residual carrier can be easily removed by an analog DC block circuit such as a capacitor.
  • IQ crosstalk occurs when the phase difference between the in-phase component and the quadrature component does not accurately become 90 degrees due to the bias voltage error of the optical modulator.
  • the characteristics of the optical modulator applied to the optical transmitter are measured in advance, and the characteristics of the optical modulator are compensated by the digital signal processor on the optical transmitter (For example, refer nonpatent literature 2).
  • the optical transmission device can detect the fluctuation drift of the auto bias control circuit that controls the bias voltage applied to the optical modulator and the imperfection of the optical modulator caused by the error of the signal applied by the auto bias control circuit. There is a problem that it is difficult to compensate with the digital signal processing apparatus on the side.
  • an object of the present invention is to provide a technique capable of compensating for constellation distortion on the receiving side.
  • a local oscillation laser that supplies a laser beam and a multilevel modulated optical signal are received, and the optical signal is demodulated into an electrical analog signal based on the laser beam.
  • a coherent optical reception front-end unit for conversion, an analog-digital converter for converting the analog signal into a digital signal, and compensating for the influence of dispersion due to the wavelength and polarization of the optical signal to reproduce the carrier phase of the digital signal A compensator, a constellation distortion compensator that compensates for the constellation distortion of the multilevel modulation included in the digital signal in which the influence of dispersion is compensated by the compensator, and the digital signal in which the constellation distortion is compensated
  • a coherent optical receiver including an error correction decoding unit that performs error correction.
  • a second aspect of the present invention is the coherent optical receiver according to the first aspect, wherein the constellation distortion compensation unit compensates a DC offset as the constellation distortion for the digital signal.
  • a compensation unit is provided.
  • a third aspect of the present invention is the coherent optical receiver according to the second aspect, wherein the DC offset compensator reduces modulation data components from the digital signal and removes random noise by averaging.
  • An averaging unit that extracts the DC offset included in the digital signal, and a first subtracting circuit that subtracts the DC offset extracted by the averaging unit from the digital signal.
  • a fourth aspect of the present invention is the coherent optical receiver according to the third aspect, wherein the averaging unit includes a temporary determination circuit that extracts the modulated data component from the digital signal, and the temporary determination circuit includes: A second subtracting circuit that subtracts the modulation data component to be extracted from the digital signal; and a filter circuit that averages a subtraction result obtained by subtracting the modulation data component from the digital signal.
  • a fifth aspect of the present invention is the coherent optical receiver according to the third or fourth aspect, wherein the DC offset compensation unit compensates for the DC offset included in the in-phase component signal of the digital signal.
  • the DC offset extracted by the averaging unit is multiplied by a weighting factor corresponding to the amplitude of the quadrature component of the digital signal
  • the DC offset included in the quadrature component signal of the digital signal Is compensated by multiplying the DC offset extracted by the averaging unit by a weighting factor corresponding to the amplitude of the signal of the in-phase component of the digital signal
  • the DC offset multiplied by the weighting factor 1 further includes an offset value adjusting unit that outputs to the subtracting circuit, wherein the first subtracting circuit outputs the weight output from the offset value adjusting unit.
  • the DC offset number is multiplied, subtracted from the digital signal.
  • a sixth aspect of the present invention is the coherent optical receiver according to the fifth aspect, wherein the offset value adjustment unit compensates for the DC offset included in the signal of the in-phase component of the digital signal.
  • the offset value adjustment unit compensates for the DC offset included in the signal of the in-phase component of the digital signal.
  • the digital signal when the amplitude of the signal of the quadrature phase component of the digital signal is smaller than a predetermined threshold, or when the DC offset included in the signal of the quadrature phase component of the digital signal is compensated, When the amplitude of the phase component signal is smaller than the threshold, the weighting factor is set to a value larger than 1.
  • a seventh aspect of the present invention is the coherent optical receiver according to the fifth or sixth aspect, wherein the offset value adjustment unit calculates the DC offset included in the signal of the in-phase component of the digital signal.
  • the offset value adjustment unit calculates the DC offset included in the signal of the in-phase component of the digital signal.
  • the weighting factor is set to a value smaller than 1.
  • An eighth aspect of the present invention is the coherent optical receiver according to the first aspect, wherein the constellation distortion compensator converts the IQ crosstalk as the constellation distortion into an in-phase component and a quadrature of the digital signal.
  • An IQ crosstalk compensation unit that compensates for the phase component signal is provided.
  • a ninth aspect of the present invention is the coherent optical receiver according to the eighth aspect, wherein the IQ crosstalk compensation unit tentatively determines the signal of the in-phase component of the digital signal to perform in-phase phase modulation.
  • a first provisional determination circuit for extracting a data component; and a first coefficient for calculating a leak amount of the in-phase component in the digital signal into the signal of the quadrature component based on the in-phase modulated data component
  • a multiplier circuit, a second provisional determination circuit for temporarily determining a signal of the quadrature phase component of the digital signal and extracting a quadrature phase modulation data component; and the in-phase component of the quadrature phase component of the digital signal
  • a second coefficient multiplying circuit that calculates a leakage amount into the signal based on the quadrature phase modulation data component; and the second relationship from the signal of the in-phase component of the digital signal. It comprises a first subtracting circuit for subtracting the output value of the multiplier circuit, a second subtracting circuit for subtracting the output
  • a tenth aspect of the present invention is the coherent optical receiver according to the ninth aspect, wherein the IQ crosstalk compensation unit includes the in-phase component and the in-phase component included in the quadrature component signal of the digital signal.
  • a first correlation coefficient calculation unit that calculates a first correlation coefficient indicating a correlation with the signal of the in-phase phase component; and the quadrature phase component and the quadrature phase included in the signal of the in-phase phase component of the digital signal
  • a second correlation coefficient calculation unit that calculates a second correlation coefficient indicating a correlation with a component signal, wherein the first coefficient multiplier circuit includes the first in-phase modulation data component in the first phase modulation data component.
  • the second coefficient multiplication circuit multiplies the quadrature phase modulation data component by the second correlation coefficient and outputs the result.
  • An eleventh aspect of the present invention is the coherent optical receiver according to the tenth aspect, wherein the first correlation coefficient calculating unit converts the quadrature phase modulation data component into a norm of the quadrature phase modulation data component.
  • a first signal normalization circuit that divides and squares the output
  • a first inner product calculation circuit that calculates an inner product of the output value of the first signal normalization circuit and the signal of the in-phase component
  • a first averaging circuit that averages the inner product values calculated by the first inner product calculation circuit and outputs the first correlation coefficient
  • the second correlation coefficient calculation unit includes: A second signal normalization circuit that divides and outputs the quadrature phase modulation data component by the square of the norm of the quadrature phase modulation data component; an output value of the second signal normalization circuit; and
  • a second inner product calculating circuit for calculating an inner product with the signal, and the second inner product Comprises a second averaging circuit the inner product value averaged outputs the second correlation coefficient detection circuit calculates a.
  • a twelfth aspect of the present invention is the coherent optical receiver according to the first aspect, wherein the constellation distortion compensator compensates a DC offset as the constellation distortion for the digital signal.
  • An offset compensation unit, and an IQ crosstalk compensation unit that compensates IQ crosstalk as the constellation distortion with respect to the in-phase and quadrature component signals of the digital signal.
  • a thirteenth aspect of the present invention is the coherent optical receiver according to the twelfth aspect, wherein the DC offset compensation unit is provided downstream of the compensation unit, and the IQ cross is provided downstream of the DC offset compensation unit.
  • FIG. 1 is a block diagram showing a configuration of a coherent optical data transmission system 100 according to the present embodiment.
  • the coherent optical data transmission system 100 includes a coherent optical transmitter 1 and a coherent optical receiver 3.
  • the coherent light transmitter 1 and the coherent light receiver 3 are connected via an optical fiber 2.
  • the coherent optical transmission apparatus 1 maps transmission data to a polarization multiplexed 16QAM signal that is a multilevel modulation signal.
  • the coherent transmission apparatus 1 performs modulation based on the mapping result with respect to the laser light output from the transmission laser, and outputs an optical signal generated by the modulation to the optical fiber 2.
  • the coherent light receiving device 3 includes a coherent light receiving front end unit 10, a local oscillation laser 11, an analog / digital converter 12, and a digital signal processing unit 13.
  • the local oscillation laser 11 supplies an oscillation laser beam for demodulation to the coherent light reception front end unit 10.
  • the local oscillation laser 11 operates independently of the transmission laser applied to the coherent optical transmission device 1 and is not frequency-synchronized with the transmission laser.
  • the coherent light reception front end unit 10 performs polarization separation of the received optical signal into X polarization and Y polarization, and then uses the X polarization and Y based on the laser light supplied from the local oscillation laser 11. Demodulate with polarization.
  • the coherent light reception front-end unit 10 includes an in-phase component (I component) of X polarization, an orthogonal phase component (Q component) of X polarization, an in-phase component of Y polarization, and a Y polarization obtained by demodulation.
  • a 4-lane electrical analog signal composed of quadrature components is output.
  • the analog-digital converter 12 converts the 4-lane analog signal into a digital signal.
  • the digital signal processing unit 13 performs signal processing on the converted digital signal converted by the analog-digital converter 12.
  • FIG. 2 is a block diagram showing an internal configuration of the digital signal processing unit 13.
  • the digital signal processing unit 13 includes a compensation unit 20, a constellation distortion compensation unit 30, and an error correction decoding unit 90.
  • the compensator 20 regenerates the carrier phase by compensating for the influence of chromatic dispersion and polarization mode dispersion.
  • the constellation distortion compensation unit 30 compensates for constellation distortion.
  • the error correction decoding unit 90 performs error correction decoding processing on the digital signal subjected to compensation processing by the compensation unit 20 and the constellation distortion compensation unit 30, and outputs the result. For example, SerDes (SeRialize / DESerialize) is applied as a subsequent circuit serving as an output destination of the error correction decoding unit 90.
  • the compensation unit 20 includes a chromatic dispersion compensation unit 21, a polarization separation / polarization mode dispersion compensation unit 22, a frequency offset compensation unit 23, and a carrier phase reproduction unit 24.
  • the chromatic dispersion compensation unit 21 compensates for distortion generated in the main signal received by chromatic dispersion, for example, with a digital filter.
  • the main signal refers to a time-series signal that constitutes data to be transmitted.
  • the 4-lane main signal that is, the in-phase component of the X polarization and the X polarization
  • the analog-to-digital converter 12 outputs main signals of the wave quadrature component, the in-phase component of Y polarization, and the quadrature component of Y polarization to the digital signal processing unit 13.
  • the polarization separation / polarization mode dispersion compensator 22 tracks the fluctuation of the high-speed polarization state of the optical signal in the optical fiber, that is, separates the optical signal into the X polarization and the Y polarization while following the fluctuation. , To compensate for dispersion occurring between the separated polarization modes.
  • the frequency offset compensator 23 compensates for distortion caused by a deviation between the frequency of the laser light supplied from the local oscillation laser 11 and the frequency of the laser light supplied from the transmission laser.
  • the carrier phase reproduction unit 24 removes spontaneous emission light noise and laser phase noise generated from the optical amplifier, and extracts a correct carrier phase, that is, a carrier phase.
  • the carrier phase reproduction unit 24 outputs the 4-lane main signal with the carrier phase reproduced to the constellation distortion compensation unit 30.
  • the compensation unit 20 for example, the one shown in Non-Patent Document 1 is applied.
  • the constellation distortion compensation unit 30 includes a DC offset compensation unit 40 and an IQ crosstalk compensation unit 50.
  • the DC offset compensation unit 40 includes four DC offset compensation units 40-1, 40-2, 40-3, and 40-4 corresponding to four lanes.
  • Each of the four DC offset compensators 40-1, 40-2, 40-3, and 40-4 includes an in-phase component of X polarization, an orthogonal phase component of X polarization, an in-phase component of Y polarization, and Y DC offset compensation is performed independently for each main signal of the orthogonal phase component of the polarization.
  • the DC offset compensators 40-1, 40-2, 40-3, and 40-4 have the same configuration except that the supplied signals are different. Therefore, the internal configuration will be described below using as an example the DC offset compensation unit 40-1 that performs DC offset compensation of the in-phase component of the X polarization shown in FIG.
  • the DC offset compensation unit 40-1 includes a sampling circuit 41-1, a branch circuit 42-1, a subtraction circuit 43-1 and an averaging unit 48-1.
  • the sampling circuit 41-1 samples a part of the time series from the main signal and outputs the sampled signal.
  • the branch circuit 42-1 branches and outputs the signal output from the sampling circuit 41-1.
  • the subtraction circuit 43-1 subtracts the DC offset output from the averaging unit 48-1 from the signal output from the branch circuit 42-1 and outputs the subtraction result.
  • the averaging unit 48-1 averages the signal that has been reduced from the branched main signal to a level at which the modulated data component can be ignored.
  • the averaging unit 48-1 removes random noise included in the signal by averaging and extracts a DC offset.
  • the averaging unit 48-1 includes a modulation data component removal unit 44-1 and a filter circuit 47-1.
  • the modulation data component removal unit 44-1 includes a provisional determination circuit 45-1 and a subtraction circuit 46-1.
  • the provisional determination circuit 45-1 performs provisional determination of the main signal and extracts a modulation data component.
  • the provisional determination process is a process of performing determination based on the phase and amplitude of the main signal, for example, and extracting the modulation data component included in the main signal.
  • the subtraction circuit 46-1 subtracts the modulation data component extracted by the temporary determination from the signal output from the branch circuit 42-1, and outputs the subtraction result as an error signal.
  • the filter circuit 47-1 is, for example, an FIR (Finite Impulse Response) filter, an IIR (Infinite Impulse Response) filter (an IIR filter is also referred to as an exponential weighting filter), or the like.
  • the filter circuit 47-1 averages the error signal.
  • the filter circuit 47-1 removes random noise of the error signal wave included in the error signal by averaging, and extracts a DC offset.
  • the IQ crosstalk compensation unit 50 includes an IQ crosstalk compensation unit 50X and an IQ crosstalk compensation unit 50Y.
  • the IQ crosstalk compensation unit 50X performs IQ crosstalk compensation of the main signal of the in-phase phase component and the quadrature phase component of the X polarization.
  • the IQ crosstalk compensation unit 50Y performs IQ crosstalk compensation of the main signal of the in-phase phase component and the quadrature phase component of the Y polarization.
  • FIG. 4 is a block diagram showing an internal configuration of the IQ crosstalk compensation unit 50X.
  • the IQ crosstalk compensation unit 50Y has the same configuration as the IQ crosstalk compensation unit 50X except that main signals of the in-phase component and the quadrature component of Y polarization are supplied.
  • the configuration will be described using the IQ crosstalk compensation unit 50X illustrated in FIG. 4 as an example.
  • the IQ crosstalk compensation unit 50X includes a branch circuit 51X-1, a branch circuit 51X-2, a provisional determination circuit 53X-1, a provisional determination circuit 53X-2, a coefficient multiplication circuit 54X-1, a coefficient multiplication circuit 54X-2, and a subtraction circuit. 52X-1, a subtraction circuit 52X-2, a correlation coefficient calculation unit 60X-1, and a correlation coefficient calculation unit 60X-2.
  • the branch circuit 51X-1 branches and outputs the main signal of the in-phase component of the X polarization output from the DC offset compensation unit 40-1.
  • the branch circuit 51X-2 branches and outputs the main signal of the quadrature component of the X polarization output from the DC offset compensator 40-2.
  • the temporary determination circuit 53X-1 (first temporary determination circuit) performs a temporary determination on the main signal of the in-phase component output from the branch circuit 51X-1, and extracts the modulated data component of the in-phase.
  • the temporary determination circuit 53X-2 (second temporary determination circuit) performs a temporary determination on the main signal of the quadrature component output from the branch circuit 51X-2, and extracts the modulated data component of the quadrature phase.
  • the coefficient multiplication circuit 54X-1 (first coefficient multiplication circuit) is connected to the correlation coefficient (hereinafter also referred to as ⁇ iq ) output from the correlation coefficient calculation unit 60X-1 and the in-phase output from the provisional determination circuit 53X-1. Multiply by the phase modulation data component and output the multiplication result.
  • the correlation coefficient ( ⁇ iq ) output from the correlation coefficient calculation unit 60X-1 is the degree of leakage from the in-phase phase lane to the quadrature phase lane, that is, the in-phase phase component and the in-phase component included in the main signal of the quadrature phase component. The correlation with the main signal of a phase component is shown.
  • the coefficient multiplication circuit 54X-2 (second coefficient multiplication circuit) includes a correlation coefficient (hereinafter also referred to as ⁇ qi ) output from the correlation coefficient calculation unit 60X-2 and an orthogonal output from the temporary determination circuit 53X-2. Multiply by the phase modulation data component and output the multiplication result.
  • the correlation coefficient ( ⁇ qi ) output from the correlation coefficient calculation unit 60-2 is the degree of leakage from the quadrature phase lane to the in-phase phase lane, that is, the quadrature component included in the main signal of the in-phase component, The correlation with the main signal of a quadrature component is shown.
  • the subtraction circuit 52X-1 (first subtraction circuit) subtracts the multiplication value output from the coefficient multiplication circuit 54X-2 from the main signal of the in-phase component and outputs the subtraction result.
  • the subtraction circuit 52X-2 (second subtraction circuit) subtracts the multiplication value output from the coefficient multiplication circuit 54X-1 from the main signal of the quadrature component and outputs the subtraction result.
  • the correlation coefficient calculation unit 60X-1 includes a signal normalization circuit 61X-1, an inner product calculation circuit 63X-1, and an averaging circuit 64X-1.
  • the signal normalization circuit 61X-1 (first signal normalization circuit) normalizes the in-phase modulation data component output from the provisional determination circuit 53X-1, that is, the magnitude of the in-phase modulation data component. A value obtained by dividing the modulation data component by the square of the length is output.
  • the inner product calculation circuit 63X-1 (first inner product calculation circuit) is an inner product of the output value output from the signal normalization circuit 61X-1 and the main signal of the quadrature component output from the branch circuit 51X-2. And the inner product value obtained by the calculation is output.
  • the averaging circuit 64X-1 (first averaging circuit) calculates the statistical average of the values output from the inner product calculation circuit 63X-1, and outputs the statistical average to the coefficient multiplication circuit 54X-1.
  • the correlation coefficient calculation unit 60X-2 (second correlation coefficient calculation unit) includes a signal normalization circuit 61X-2, an inner product calculation circuit 63X-2, and an averaging circuit 64X-2.
  • the signal normalization circuit 61X-2 (second signal normalization circuit) is a value obtained by normalizing the quadrature modulation data component output from the provisional determination circuit 53X-2, that is, the magnitude of the quadrature modulation data component. A value obtained by dividing the modulation data component by the square of the length is output.
  • the inner product calculation circuit 63X-2 (second inner product calculation circuit) is an inner product of the output value output from the signal normalization circuit 61X-2 and the main signal of the in-phase component output from the branch circuit 51X-1. And the inner product value obtained by the calculation is output.
  • the averaging circuit 64X-2 (second averaging circuit) calculates a statistical average of the values output from the inner product calculation circuit 63X-2, and outputs the statistical average to the coefficient multiplication circuit 54X-2.
  • Main signal Sr k of the in-phase phase component of X-polarized wave is supplied from the carrier phase recovery unit 24 to the DC offset compensator 40-1.
  • Sampling circuit 41-1 outputs the sampling of a part signal of the time series from the main signal Sr k.
  • the main signal Sr k is a signal expressed by the following formula (1).
  • Equation (1) k represents the time of the sampled time series discrete signal.
  • Signal Sr k indicates the k th received signal data component.
  • the signal St k indicates the kth transmission signal.
  • d k is the DC offset for the kth signal.
  • n k is random noise corresponding to the k-th signal.
  • the tentative determination circuit 45-1 tentatively determines the signal branched by the branch circuit 42-1, and outputs a signal SS k ( ⁇ (head) above S) obtained by the tentative determination.
  • the filter circuit 47-1 can extract the DC offset d as shown in the following equation (4).
  • the subtraction circuit 43-1 it is possible to obtain a signal obtained by removing the DC offset by subtracting the DC offset d from the signal Sr k output from the branch circuit 42-1.
  • the DC offset d is not completely invariant and varies slowly with time.
  • the statistical averaging process performed by the filter circuit 47-1 needs to be performed dynamically, that is, to follow the change, not by the entire signal but by the FIR filter or IIR filter.
  • a so-called LPF (Low Pass Filter) in which the IIR filter is 1TAP may be applied.
  • the DC offset compensation units 40-2, 40-3 and 40-4 are similar to the DC offset compensation processing performed by the DC offset compensation unit 40-1 on the main signal of the in-phase component of the X polarization. Each perform a DC offset compensation process on the main signal of the quadrature phase component of the X polarization, the main signal of the in-phase component of the Y polarization, and the main signal of the quadrature component of the Y polarization. As a result, in four lanes, DC offset compensation is performed following the change in DC offset in each lane.
  • IQ crosstalk compensation processing Next, IQ crosstalk compensation processing by the IQ crosstalk compensation unit 50X shown in FIG. 4 will be described. Assuming that the signals of the in-phase phase component and the quadrature phase component of the X polarization supplied to the IQ crosstalk compensation unit 50X are Sri k and Srq k , these are expressed as the following equations (5) and (6). The
  • Sti k and Stq k are transmission signals of the in-phase phase lane and the quadrature phase lane, respectively.
  • ⁇ qi is the level of leakage from the quadrature phase lane to the in-phase phase lane, that is, the phase indicating the correlation between the quadrature component included in the main signal of the in-phase component and the main signal of the quadrature component.
  • ⁇ iq also represents the degree of leakage from the in-phase phase lane to the quadrature phase lane, that is, the correlation between the in-phase component included in the main signal of the quadrature component and the main signal of the in-phase component.
  • n k is random noise.
  • Temporary decision circuit 53X-1 extracts a modulated data component ⁇ Si k of the in-phase phase performs temporary decision of the main signal Sri k of the in-phase phase component output from the branching circuit 51X-1.
  • Temporary decision circuit 53X-1 is extracted as the signal normalization circuit 61X-1 correlation modulated data component ⁇ Si k coefficient calculation unit 60X-1, and outputs to the coefficient multiplying circuits 54X-1.
  • Branch circuit 51X-2 and outputs the branched main signal Srq k of the quadrature phase component.
  • Temporary decision circuit 53X-2 extracts the modulated data component ⁇ Sq k quadrature performs temporary decision of the main signal Srq k of the quadrature phase component output from the branching circuit 51X-2.
  • the provisional determination circuit 53X-2 outputs the extracted modulation data component SSq k to the signal normalization circuit 61X-2 of the correlation coefficient calculation unit 60X-2 and the coefficient multiplication circuit 54X-2.
  • the modulated data component ⁇ Si k, ⁇ Sq k is, (1-BER) is the transmission signal with a high probability of about Sti k, from equal to STQ k, Equation (8) holds.
  • the correlation coefficient ⁇ qi can be calculated based on Sri k and ⁇ Sq k ( ⁇ (head) is above Sq). That is, the signal normalization circuit 61X-2 of the correlation coefficient calculation unit 60X-2 is temporary decision circuit 53X-2 outputs ⁇ Sq k ( ⁇ (head) is on the Sq) based on, ⁇ Sq k /
  • the inner product calculation circuit 63X-2 calculates Sri k ⁇ ⁇ Sq k /
  • the averaging circuit 64X-2 calculates the expression on the left side of Expression (11) to calculate the correlation coefficient ⁇ qi .
  • the correlation coefficient ⁇ qi calculated in this way by the correlation coefficient calculation unit 60X-2 is supplied to the coefficient multiplication circuit 54X-2.
  • the coefficient multiplying circuit 54X-2 multiplies ⁇ Sq k ( ⁇ (head) is above Sq) output from the temporary determination circuit 53X-2 and the correlation coefficient ⁇ qi, and the result of multiplication is subtracted by the subtracting circuit 52X-1 Output to.
  • Subtracting circuit 52X-1 the branch circuit ⁇ from Sri k of 51X-1 outputs Sq k ⁇ ⁇ qi ( ⁇ (head) is on the Sq) X polarized wave that compensates for the effects of IQ crosstalk by subtracting the The signal of the in-phase component of is output.
  • the signal normalization circuit 61X-1 uses the ⁇ Si k ( ⁇ (head) is on Si) output from the temporary determination circuit 53X-1. k /
  • Inner product calculation circuit 63X-1 is, Srq k ⁇ ⁇ Si k /
  • the averaging circuit 64X-1 calculates the expression on the left side of the following expression (12), calculates the correlation coefficient ⁇ iq, and outputs it to the coefficient multiplication circuit 54X-1.
  • the coefficient multiplication circuit 54X-1 multiplies ⁇ Si k ( ⁇ (head) is on Si) output from the temporary determination circuit 53X-1 by the correlation coefficient ⁇ iq, and the result of multiplication is subtracted by the subtraction circuit 52X-2. Output to.
  • the subtraction circuit 52X-2 subtracts ⁇ Si k ⁇ ⁇ iq ( ⁇ (head) is on Si) from Srq k output from the branch circuit 51X-2 to compensate for the influence of IQ crosstalk.
  • the signal of the quadrature phase component of is output.
  • the IQ crosstalk compensation unit 50Y IQ crosstalk compensation processing is performed on the main signal of the in-phase component and the quadrature component. As a result, IQ crosstalk compensation processing is performed in all four lanes.
  • FIG. 5 is a graph showing a result of evaluating the effect of the DC offset compensation by the DC offset compensation unit 40 according to the present embodiment by Monte Carlo simulation. Assuming that the bias voltage of the optical modulator of the coherent optical transmitter 1 drifts in time, a dynamically changing DC offset is given to the simulation conditions.
  • the horizontal axis represents the DC offset drift frequency
  • the vertical axis represents a value called Q value representing the quality of the received signal.
  • the DC offset compensation is not applied due to the dynamic DC offset
  • the reception Q value is reduced by about 3 dB.
  • most of the penalty (decrease in Q value) due to the DC offset can be avoided at most drift frequencies.
  • the DC offset compensator 40 can follow the change in the DC offset if the fluctuation frequency is up to about 10 MHz (0.01 GHz).
  • the DC offset compensator 40-1 uses the provisional decision circuit 45-1 to generate a modulation data component ⁇ S substantially equal to the transmission signal. extracting the k signal, the subtraction circuit 46-1 subtracts the ⁇ S k from the main signal Sri k, can be the subtracted value to extract the DC offset by averaging by the filter circuit 47-1 Become. Then, the DC offset compensator 40-1, the subtracting circuit 43-1 subtracts the DC offset from the main signal Sri k, it is possible to perform the DC offset compensation to remove the DC offset.
  • DC offset compensators 40-2, 40-3 and 40- are also applied to the quadrature phase component of X polarization, the in-phase component of Y polarization and the quadrature phase of Y polarization. 4 performs DC offset compensation.
  • the coherent detection method has a problem in that the DC offset circuit cannot be compensated for by the DC block circuit in the analog electrical stage.
  • the coherent optical receiver 3 is the same as the direct detection method receiver. In addition, it is possible to compensate for the DC offset.
  • the IQ crosstalk compensation unit 50X is substantially equal to the transmission signal from the main signal of the in-phase component and the quadrature component of the X polarization by the provisional determination circuits 53X-1 and 53X-2.
  • modulation data components ⁇ Si k extracts the ⁇ Sq k.
  • the correlation coefficient calculation unit 60X-1 leaks from the in-phase phase lane to the quadrature phase lane based on the modulated data components ⁇ Si k and ⁇ Sq k , that is, the in-phase phase component included in the main signal of the quadrature phase component and Then, ⁇ iq that is a correlation coefficient indicating the correlation with the main signal of the in-phase component is calculated, and the correlation coefficient ⁇ iq is output to the coefficient multiplication circuit 54X-1. Further, the correlation coefficient calculation unit 60X-2 indicates the leakage from the quadrature phase lane to the in-phase phase lane, that is, the correlation between the quadrature component included in the main signal of the in-phase component and the main signal of the quadrature component.
  • Correlation coefficient ⁇ qi is calculated, and correlation coefficient ⁇ qi is output to coefficient multiplication circuit 54X-2.
  • Coefficient multiplying circuits 54X-1 multiplies the correlation coefficient [delta] iq modulated data component ⁇ Si k-phase phase, and outputs the multiplication value to the subtraction circuit 52X-2.
  • the coefficient multiplication circuit 54X-2 multiplies the quadrature-phase modulated data component Sq k by the correlation coefficient ⁇ qi and outputs the multiplication value to the subtraction circuit 52X-1.
  • Subtracting circuit 52X-1 is able to perform crosstalk compensation for phase phase component by subtracting a multiplication value output from the coefficient multiplier circuits 54X-2 from the main signal Sri k of the in-phase phase component output from the branching circuit 51X-1 it can. Further, the subtraction circuit 52X-2 performs crosstalk compensation of the quadrature phase component by subtracting a multiplication value output from the coefficient multiplier circuits 54X-1 from the main signal Srq k of the quadrature phase component output from the branching circuit 51X-2 be able to.
  • the IQ crosstalk compensation unit 50Y performs IQ crosstalk compensation by performing the same IQ crosstalk compensation processing as the IQ crosstalk compensation unit 50X on the in-phase and quadrature components of the Y polarization. Can do. As a result, it is possible to compensate for constellation distortion due to IQ crosstalk only on the reception side, not on the characteristics of the transmission device such as the characteristics of the optical modulator on the transmission side or imperfections.
  • the configuration of the present embodiment can compensate for constellation distortion even when these multi-level modulation schemes are applied, and reduce the bit error rate of transmitted data. Can be made.
  • the configuration of the above-described embodiment performs the DC offset compensation process and the IQ crosstalk compensation process adaptively based on the main signal received by the coherent optical receiver 3, and thus the optical modulator of the coherent optical transmitter 1 It is not necessary to previously measure the characteristics. Further, the configuration of the embodiment can compensate for the constellation distortion if the fluctuation of the constellation distortion is gentle with respect to the symbol rate even when the constellation distortion changes with time. . In addition, the configuration of the present embodiment has a particularly excellent effect in a multi-level modulation scheme of 16QAM or higher.
  • the DC offset compensation unit 40 is provided after the carrier phase reproduction unit 24, so that the local oscillation laser 11 and the coherent light reception front end unit 10 are connected. It is possible to compensate not only for the DC offset that occurs in the section from the analog to digital converter 12 but also for the DC offset that occurs due to the extinction ratio of the optical modulator of the coherent optical transmitter 1.
  • the constellation of the optical signal received by the coherent optical receiver 3 is distorted due to the DC offset generated due to the imperfection of the polarization multiplexing IQ optical modulator provided in the coherent optical transmitter 1.
  • An example of constellation distortion when the optical signal transmitted from the coherent optical transmission device 1 is a polarization multiplexed 16QAM signal will be described with reference to FIGS. 6A and 6B.
  • the received signal constellation is displayed in a square lattice pattern on the IQ plane, as shown in FIG. 6A.
  • the 16QAM signal affected by the DC offset generated due to the fact that the extinction ratio of the polarization multiplexing IQ optical modulator is not infinite, the received signal constellation is distorted as shown in FIG. 6B.
  • the signals located in the vicinity of the I axis are distorted so that the amplitude of the in-phase phase component is drawn to the positive side (right side in the figure).
  • the amplitude of the quadrature component is drawn to the negative side (downward in the figure). Is distorted.
  • the constellation shown in FIG. 6B is the result of a computer simulation assuming that the extinction ratio of the polarization multiplexed IQ optical modulator is 15 dB.
  • FIG. 7 is a diagram schematically showing an in-phase component (I component) signal of X polarization or Y polarization input to the DC offset compensation unit 40.
  • the horizontal axis represents time, and the vertical axis represents amplitude.
  • Each of the signals denoted by reference numerals 1 to 16 shown in FIG. 7 corresponds to the signal denoted by the same reference numeral in the constellation of FIG. 6B.
  • the relationship between the signals denoted by reference numerals 1, 5, 9, and 13 will be described.
  • symbol 4, 8, 12, 16) it is code
  • a relationship similar to the relationship between the signals marked with is established.
  • the signals denoted by reference numerals 5 and 9 should have the same amplitude as the respective signals denoted by reference numerals 1 and 13, but the amplitudes of the respective signals denoted by reference numerals 5 and 9 are actually denoted by reference numerals 1 and 13 respectively. It is larger than the amplitude of each signal.
  • an alternate long and short dash line in FIG. 7 indicates the amplitude of the signal of the in-phase component when no constellation distortion occurs (that is, the constellation in FIG. 6A).
  • the amplitude of the signal St k in the above equation (1) is shown. From FIG.
  • the signals with the symbols 5 and 9 are compensated with a value larger than the DC offset d, and the signals with the symbols 1 and 13 are compensated. Therefore, it is desirable that the compensation be performed with a value smaller than the DC offset d.
  • the signals denoted by reference numerals 5 to 12 on which a relatively large DC offset d k is superimposed are located in the vicinity of the I axis of the constellation. It turns out that it is a signal.
  • the signal located in the vicinity of the I axis is a signal in which an amplitude having a small absolute value is given to the quadrature phase component (Q component) among the four-level amplitude modulation.
  • each of the signals attached with codes 1 to 4 and 13 to 16 on which a relatively small DC offset d k is superimposed gives an amplitude having a large absolute value to the quadrature component among the four-level amplitude modulation. Signal. Therefore, for the in-phase component signal, the DC offset value used for compensation may be adjusted according to the amplitude of the corresponding quadrature component.
  • FIG. 8 is a diagram schematically showing an X-polarized or Y-polarized quadrature phase component (Q component) signal input to the DC offset compensation unit 40.
  • the horizontal axis represents time, and the vertical axis represents amplitude.
  • the signals denoted by reference numerals 1 to 16 shown in FIG. 8 correspond to the signals denoted by the same reference numerals in the constellation of FIG. 6B.
  • a one-dot chain line in FIG. 8 indicates the amplitude of the signal of the quadrature component when no constellation distortion occurs (that is, the constellation in FIG. 6A).
  • FIG. 8 shows that a negative DC offset d k is superimposed on each of the quadrature component signals.
  • the DC offset value used for compensation may be adjusted according to the amplitude of the corresponding in-phase component.
  • FIG. 9 is a block diagram illustrating a configuration of a DC offset compensation unit 40 according to a modification.
  • the difference between the DC offset compensator 40 shown in FIG. 3 and the DC offset compensator 40 shown in FIG. 9 is that the DC offset compensators 40-1, 40-2, 40-3 and 40- shown in FIG. 4 is provided with an offset value adjustment unit 49.
  • the branch circuit 42-1 included in the DC offset compensation unit 40-1 branches and outputs the main signal of the in-phase component of the X polarization output from the sampling circuit 41-1.
  • the branch circuit 42-1 outputs the main signal of the in-phase component of the X polarization to the offset value adjustment unit 49 provided in the DC offset compensation unit 40-2.
  • the branch circuit included in the DC offset compensation unit 40-3 branches the main signal of the in-phase component of the Y polarization output from the sampling circuit included in the DC offset compensation unit 40-3. Output.
  • the branch circuit included in the DC offset compensation unit 40-3 outputs the main signal of the in-phase component of Y polarization to the offset value adjustment unit 49 included in the DC offset compensation unit 40-4.
  • the branch circuit included in the DC offset compensation unit 40-2 branches and outputs the main signal of the quadrature phase component of the X polarization output from the sampling circuit included in the DC offset compensation unit 40-2.
  • the branch circuit included in the DC offset compensation unit 40-2 outputs the main signal of the quadrature phase component of X polarization to the offset value adjustment unit 49 included in the DC offset compensation unit 40-1.
  • the branch circuit included in the DC offset compensation unit 40-4 is similar to the branch circuit included in the DC offset compensation unit 40-2.
  • the main signal is branched and output.
  • the branch circuit included in the DC offset compensation unit 40-4 outputs the main signal of the Y-polarized quadrature component to the offset value adjustment unit 49 included in the DC offset compensation unit 40-3.
  • the offset value adjustment unit 49 adjusts the value of the DC offset d given (subtracted) to the main signal of the in-phase component of X polarization and / or Y polarization according to the amplitude of the corresponding quadrature component.
  • the offset value adjusting unit 49 adjusts the value of the DC offset d to be given (subtracted) to the X-polarized wave and / or Y-polarized quadrature phase component signal in accordance with the amplitude of the corresponding in-phase phase component. More specifically, the DC offset compensator 40-1 adjusts the value of the DC offset d given (subtracted) to the signal of the in-phase component of X polarization in accordance with the amplitude of the corresponding quadrature component.
  • An offset value adjustment unit 49 is provided.
  • an offset value adjuster 49 that adjusts the value of the DC offset d to be given (subtracted) to the signal of the quadrature phase component of the X polarization in accordance with the amplitude of the corresponding in-phase component.
  • an offset value adjustment unit 49 that adjusts the value of the DC offset d to be given (subtracted) to the signal of the in-phase component of the Y polarization according to the amplitude of the corresponding quadrature component.
  • the DC offset compensation unit 40-4 includes an offset value adjustment unit 49 that adjusts the value of the DC offset d to be given (subtracted) to the signal of the quadrature phase component of the Y polarization according to the amplitude of the corresponding in-phase component. Provided. Note that the signals are independent between the X polarization and the Y polarization.
  • the offset value adjustment unit 49 included in the DC offset compensation unit 40-1 corresponding to the in-phase component of the X polarization is the main component of the quadrature phase component of the X polarization output from the branch circuit of the DC offset compensation unit 40-2. a signal Sr k, and inputs the DC offset d of the phase phase component derived by the filter circuit 47-1.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-1 performs the following processing on the input DC offset d.
  • Offset value adjusting unit 49 the amplitude of the main signal Sr k of the corresponding quadrature component when the absolute value is less than the predetermined threshold value is greater than 1 to the DC offset d predetermined weighting factors wl (first A value (hereinafter referred to as “wl multiplication value”) (first multiplication value) multiplied by the weighting coefficient) is output to the subtraction circuit 43-1.
  • wl multiplication value first A value (hereinafter referred to as “wl multiplication value”) (first multiplication value) multiplied by the weighting coefficient
  • weighting factor of 2 (weighting factor of 2) (hereinafter referred to as “ws value”) (second multiplication value) is output to the subtraction circuit 43-1.
  • ws value weighting factor of 2
  • the weight coefficient is a coefficient that satisfies the relationship of wl>1>ws> 0.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-3 corresponding to the in-phase component of the Y polarization is the same as the offset value adjustment unit 49 provided in the DC offset compensation unit 40-1.
  • the offset value adjustment unit 49 included in the DC offset compensation unit 40-3 includes a main signal of the quadrature phase component of the Y polarization output from the DC offset compensation unit 40-4, and the DC offset compensation unit.
  • the DC offset d related to the in-phase component derived by the filter circuit included in 40-3 is input.
  • the offset value adjustment unit 49 included in the DC offset compensation unit 40-3 performs the same processing as the DC offset compensation unit 40-1 on the input DC offset d.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-2 corresponding to the quadrature phase component of the X polarization is the in-phase phase of the X polarization output from the branch circuit 42-1 of the DC offset compensation unit 40-1. a main signal Sr k components, and inputs the DC offset d of the quadrature phase component derived by the filter circuit.
  • the offset value adjustment unit 49 included in the DC offset compensation unit 40-2 performs the following processing on the input DC offset d.
  • Wl offset value adjusting unit 49 when the absolute value of the amplitude of the main signal Sr k of the corresponding phase phase component is less than the predetermined threshold value, obtained by multiplying a predetermined weight coefficient wl greater than 1 to DC offset d The multiplication value is output to the subtraction circuit.
  • the offset value adjusting unit 49 multiplies the smaller predetermined weighting coefficients ws than 1 to DC offset d The obtained ws multiplication value is output to the subtraction circuit.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-4 corresponding to the quadrature phase component of the Y polarization is the same as the offset value adjustment unit 49 provided in the DC offset compensation unit 40-2.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-4 includes the main signal of the in-phase component of the Y polarization output from the DC offset compensation unit 40-3, and the DC offset compensation unit.
  • the DC offset d related to the quadrature component derived by the filter circuit included in 40-4 is input.
  • the offset value adjustment unit 49 included in the DC offset compensation unit 40-4 performs the same processing as the DC offset compensation unit 40-2 on the input DC offset d.
  • the coherent optical receiver 3 can perform appropriate DC offset compensation corresponding to each symbol of the received signal.
  • FIG. 10 is a diagram illustrating a configuration example of the offset value adjustment unit 49.
  • the offset value adjustment unit 49 includes a branching unit 491, a weighting factor wl multiplication unit 492, a weighting factor ws multiplication unit 493, an amplitude determination unit 494, and a selection unit 495.
  • the offset value adjustment unit 49 provided in the DC offset compensation unit 40-1 will be described as an example.
  • the offset value adjustment unit 49 included in the DC offset compensation units 40-2, 40-3, and 40-4 performs the same process as the offset value adjustment unit 49 included in the DC offset compensation unit 40-1.
  • the branching unit 491 branches the DC offset d output from the filter circuit 47-1 into two, and outputs them to the weighting factor wl multiplying unit 492 and the weighting factor ws multiplying unit 493, respectively.
  • the weight coefficient wl multiplication unit 492 calculates a wl multiplication value by multiplying the input DC offset d by the weight coefficient wl.
  • the weight coefficient wl multiplication unit 492 outputs the wl multiplication value to the selection unit 495.
  • the weighting coefficient ws multiplication unit 493 calculates a ws multiplication value by multiplying the input DC offset d by the weighting coefficient ws.
  • the weight coefficient ws multiplication unit 493 outputs the ws multiplication value to the selection unit 495.
  • Amplitude determining unit 494 the absolute value of the amplitude of the main signal Sr k of the quadrature phase component of the X polarization output from the branching circuit of the DC offset compensator 40-2 (
  • the amplitude determination unit 494 outputs a signal indicating the determination result to the selection unit 495.
  • Selecting unit 495 based on a signal amplitude determining unit 494 is output, the absolute value of the amplitude of the main signal Sr k of the quadrature phase component of the X polarization output from the branching circuit of the DC offset compensator 40-2 (
  • the selection unit 495 based on a signal amplitude determining unit 494 is output, the absolute value of the amplitude of the main signal Sr k of the quadrature phase component of the X polarization output from the branching circuit of the DC offset compensator 40-2 If (
  • FIG. 10 shows a mode in which the offset value adjustment unit 49 implements both the weighting factor wl multiplication unit 492 and the weighting factor ws multiplication unit 493. Depending on the state of constellation distortion, The aspect which mounts only any one among these may be sufficient.
  • the in-phase component of the X polarization is the quadrature phase component of the X polarization
  • the in-phase component of the Y polarization is the Y polarization. It is meant to refer to a quadrature component.
  • FIG. 11 is a flowchart for explaining the flow of processing of the offset value adjustment unit 49.
  • the branching unit 491 outputs the DC offset d output from the filter circuit 47-1 to the weighting factor wl multiplying unit 492 and the weighting factor ws multiplying unit 493.
  • the weighting factor wl multiplication unit 492 calculates a wl multiplication value by multiplying the DC offset d output from the branching unit 491 by the weighting factor wl (step S101).
  • the weighting factor wl multiplication unit 492 outputs the calculated wl multiplication value to the selection unit 495.
  • the weighting coefficient ws multiplication unit 493 calculates a ws multiplication value by multiplying the DC offset d output from the branching unit 491 by the weighting coefficient ws (step S102).
  • the weight coefficient ws multiplication unit 493 outputs the calculated ws multiplication value to the selection unit 495.
  • the weighting coefficients wl and ws may be coefficients that are sufficient to compensate the distorted constellation in FIG. 6B in a square lattice shape.
  • the constellation distortion differs depending on the characteristics of the polarization multiplexing IQ optical modulator used in the coherent optical transmission apparatus 1 and the characteristics of the optical fiber 2 that is the propagation path of the signal light.
  • Appropriate numerical weighting factors wl and ws may be set in the offset value adjustment unit 49 in advance.
  • the amplitude determining unit 494 When DC offset d from the filter circuit 47-1 is input, the amplitude determining unit 494 the absolute value of the amplitude of the main signal Sr k of the quadrature phase component of the X polarization opposite
  • the predetermined threshold Eth is a threshold for discriminating which amplitude of the quaternary amplitude modulation the amplitude of the opposing signal is.
  • the selection unit 495 outputs the wl multiplication value output from the weight coefficient wl multiplication unit 492 to the subtraction circuit 43-1 (step S105). .
  • the selection unit 495 outputs the ws multiplication value output from the weight coefficient ws multiplication unit 493 to the subtraction circuit 43-1 (Ste S106).
  • FIG. 12 is a diagram illustrating a result of a computer simulation performed to verify the effect when the offset adjustment unit 49 is provided in the DC offset compensation unit 40.
  • the horizontal axis represents the signal-to-noise ratio (OSNR: Optical Signal-to) between the intensity of the signal light output from the coherent optical transmitter 1 and the intensity of noise applied by the optical fiber 2 and the coherent light reception front end unit 10. -Noise Ratio).
  • the vertical axis represents the Q value that is the quality of the signal received by the coherent optical receiver 3.
  • the Q value of the received signal was plotted while changing the OSNR.
  • the transmission signal is 16QAM.
  • the Q value was derived by averaging the Q values for all symbols of the received signal, and further by averaging the Q values for four different polarization states.
  • a square 70 illustrated in FIG. 12 represents a calculation result when the DC offset compensation unit 40 does not include the offset value adjustment unit 49.
  • a diamond 71 shown in FIG. 12 indicates a calculation result when the offset value adjustment unit 49 is provided. From FIG. 12, it is understood that the Q value is improved by about 0.4 to 0.5 dB by providing the offset value adjusting unit 49 in the DC offset compensating unit 40.
  • FIG. 12 clearly shows that the reception characteristics can be further improved by performing DC offset compensation using the DC offset d multiplied by an appropriate weighting factor according to the symbol of the received signal.
  • the DC offset compensation unit 40 that performs DC offset compensation of the in-phase component of the X polarization and / or Y polarization is given (subtracted) to the signal of the in-phase component of the X polarization and / or Y polarization.
  • the offset value adjustment unit 49 that adjusts the DC offset d according to the amplitude of the corresponding quadrature component, the distortion of the constellation can be further compensated for, and quadrature amplitude such as 16QAM.
  • quadrature amplitude such as 16QAM.
  • the same level of demodulation performance can be provided for any modulation symbol.
  • the offset value adjustment unit 49 calculates the wl multiplication value and the ws multiplication value, and outputs one of the multiplication values according to the determination result.
  • the offset value adjustment unit 49 may be configured to calculate one of the multiplication values according to the determination result and output the multiplication value.
  • FIG. 13 shows the configuration of the offset value adjustment unit 49 in such a configuration.
  • FIG. 13 is a diagram illustrating another configuration example of the offset value adjustment unit 49.
  • the offset value adjustment unit 49a illustrated in FIG. 13 includes an amplitude determination unit 494, a selection unit 495a, and a multiplication unit 496.
  • the offset value adjustment unit 49a included in the DC offset compensation unit 40-1 will be described as an example. Note that the offset value adjustment unit 49a included in the DC offset compensation units 40-2, 40-3, and 40-4 performs the same processing as the offset value adjustment unit 49a included in the DC offset compensation unit 40-1.
  • the selection unit 495a receives the signal output from the amplitude determination unit 494 and the DC offset d output from the filter circuit 47-1. In addition, weighting factors wl and ws are set in the selection unit 495a in advance. The selection unit 495a outputs either the weighting factor wl or ws and the DC offset d to the multiplication unit 496 based on the signal input from the amplitude determination unit 494. Specifically, when the input signal indicates
  • the selection unit 495a outputs the weighting factor ws and the DC offset d to the multiplication unit 496.
  • the multiplication unit 496 receives either the weighting factor wl or ws output from the selection unit 495a and the DC offset d.
  • the multiplier 496 calculates a multiplication value by multiplying the input DC offset d by a weighting coefficient. Specifically, when the weighting factor wl and the DC offset d are input, the multiplication unit 496 calculates the wl multiplication value by multiplying the input DC offset d by the weighting factor wl.
  • the multiplication unit 496 calculates a ws multiplication value by multiplying the input DC offset d by the weighting factor ws.
  • the multiplication unit 496 outputs the calculated multiplication value to the subtraction circuit 43-1.
  • the IQ crosstalk compensation unit 50 is provided after the DC offset compensation unit 40.
  • the IQ crosstalk compensation unit 50 may be connected to the compensation unit 20 and then the DC offset compensation unit 40 may be connected.
  • a sampling circuit is provided in each of the four lanes between the IQ crosstalk compensation units 50X and 50Y and the carrier phase reproduction unit 24. Become.
  • This sampling circuit is connected to, for example, the front stage of the branch circuits 51X-1 and 51X-2 of the IQ crosstalk compensation unit 50X and the front stage of the branch circuit of the IQ crosstalk compensation unit 50Y corresponding thereto.
  • the constellation distortion compensation unit 30 includes both the DC offset compensation unit 40 and the IQ crosstalk compensation unit 50, but may include either one.
  • the local oscillation laser 11 operates independently of the transmission laser applied to the coherent optical transmission device 1 and is not frequency-synchronized with the transmission laser. The configuration of the present embodiment may be applied to what is synchronized.
  • the correlation coefficient calculating units 60X-1 and 60X-2 perform the phase relationship based on the in-phase phase modulation data component and the quadrature phase modulation data component that have been dynamically provisionally determined.
  • the configuration of the present invention is not limited to the embodiment.
  • the correlation coefficient calculation units 60X-1 and 60X-2 calculate the correlation coefficient in advance, and the coefficient multiplication circuits 54X-1 and 54X-2 calculate the correlation
  • the configuration may be such that the number is stored.
  • the correlation coefficient calculation units 60X-1 and 60X-2 are not necessarily provided in the IQ crosstalk compensation unit 50X, and may be configured such that an external arithmetic device calculates the correlation coefficient. Good.
  • the digital signal processing unit 13 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time.
  • the program may be a program for realizing a part of the above-described functions, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the present invention can also be applied to applications where it is essential to compensate for constellation distortion on the receiving side.
  • SYMBOLS 1 Coherent light transmitter, 2 ... Optical fiber, 3 ... Coherent light receiver, 10 ... Coherent light receiving front end part, 11 ... Local oscillation laser, 12 ... Analog-digital converter, 13 ... Digital signal processing part, 20 ... Compensation unit, 21 ... wavelength dispersion compensation unit, 22 ... polarization separation / polarization mode dispersion compensation unit, 23 ... frequency offset compensation unit, 24 ... carrier phase recovery unit, 30 ... constellation distortion compensation unit, 40 (40-1) 40-4) ... DC offset compensation unit, 41-1 ... sampling circuit, 42-1 ... branch circuit, 43-1 ... subtraction circuit, 44-1 ... modulation data component removal unit, 45-1 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

コヒーレント光受信装置は、レーザ光を供給する局部発振レーザと、多値変調された光信号を受信して、レーザ光に基づいて、光信号を復調して電気のアナログ信号に変換するコヒーレント光受信フロントエンド部と、アナログ信号をデジタル信号に変換するアナログデジタル変換器と、光信号の波長や偏波による分散の影響を補償してデジタル信号のキャリア位相を再生する補償部と、補償部により分散の影響が補償されたデジタル信号に含まれる多値変調のコンスタレーション歪を補償するコンスタレーション歪補償部と、コンスタレーション歪が補償されたデジタル信号の誤り訂正を行う誤り訂正復号部と、を備える。

Description

コヒーレント光受信装置
 本発明は、コヒーレント光受信装置に関する。
 本願は、2015年10月19日に日本国に出願された特願2015-205604号と、2016年3月31日に日本国に出願された特願2016-073735号とに基づき優先権を主張し、その内容をここに援用する。
 2010年ごろより商用導入が始まったコヒーレント光データ伝送方式は、いまや長距離光通信を支える主要技術となっており、近年では、メトロ・アクセスネットワークへの適用も検討されるなど、ますます重要性を増している。当初、コヒーレント光データ伝送方式は、100Gbit/sの容量の光チャネルを偏波多重QPSK(Quadrature Phase Shift Keying)変調することにより実現されていた。ここで、偏波多重とは、光信号が有する2つの直交するX偏波成分とY偏波成分との各々に、別々のデータを割り当てる多重方式のことをいう。例えば、図14は、非特許文献1の図1に示されるコヒーレント光データ伝送を行う光送信機と光受信機とによる伝送システムの一例を引用した図である。当該伝送システムは、X偏波とY偏波とのそれぞれを異なる50Gbit/sQPSK(4値位相変調)符号で変調した後、偏波多重し、1波長あたり100Gbit/sの偏波多重QPSK信号とした長距離伝送を行う。
 更なる容量当たりのコスト低減のため、16QAM(Quadrature Amplitude Modulation)などの多値変調を用いたコヒーレント光データ伝送方式により、200Gbit/s以上の大容量光チャネルを実現することが試みられつつある。このような偏波多重QPSK、16QAM、64QAMなどの多値変調を用いる場合に顕在化する問題として、コンスタレーション歪がある。多値変調信号は、電気段においては4レーンの電気信号として扱われる。すなわち、送信側において、4レーンの電気信号として信号は生成され、光変調器により多値変調光信号に変換される。
 光変調器としては、例えば、マッハツェンダー干渉計型の変調器が適用される。このような光変調器では、バイアス電圧の誤差や、干渉計の消光比が無限大でないことなどによる不完全性があり、このような不完全性によりコンスタレーション歪が生じる。コンスタレーション歪が生じると、送信された情報を正確に復号することができず、ビット誤り率の増大等が発生する。ここで、コンスタレーションは、信号空間ダイヤグラムとも呼ばれ、デジタル変調によるデータ信号点を2次元の複素平面状に表したものである(例えば、図14に示される「コンスタレーション」や非特許文献2の図2等を参照)。
 QPSKは、4値位相変調であり、同相位相成分と直交位相成分とのそれぞれに対し独立に2値の振幅変調を行ったものとみなすことができる。QPSKのコンスタレーションは、同一円周上に配置され、互いに90度離れた形となる。これに対し、16QAM、64QAMは、それぞれ16点、64点からなるコンスタレーションを有する変調方式である。16QAM、64QAMのコンスタレーションは、信号空間上に、16点、64点が正方的に配置されるものが一般的である。16QAMは、同相位相成分と直交位相成分とのそれぞれに、互いに独立な4値の振幅変調を行ったものとみなすことができる。64QAMは、同相位相成分と直交位相成分とのそれぞれに、互いに独立な8値の振幅変調を行ったものとみなすことができる。
 コンスタレーション歪の原因の1つとしてDC(Direct Current)オフセットがある。通常、光変調器に対して、光出力がnull点となるようにバイアス電圧が印加される。しかし、このバイアス電圧がnull点からシフトしてしまった場合に、DCオフセットが発生する。また、光変調器を構成するマッハツェンダー干渉計は、消光比(オン/オフ比)が無限大、すなわち、オフのときに光出力が完全に0であることが理想である。しかし、オフのときに光出力が完全に0にならない場合、消光比は無限大ではなくなり、DCオフセットが発生する。光信号では、DCオフセットは、残存キャリアの形で現れるため、光信号のスペクトルを観察することでDCオフセットの有無を確認することができる。
 DCオフセットと、これによるキャリアの残存とは、局部発振レーザを用いるコヒーレント検波方式ではない直接検波方式(例えば、1010のオンオフ信号の強度を受光素子で直接検波する方式、強度変調直接検波などともいう)でも生じる。直接検波方式では、残存キャリアは、受信側の電気段で再びDCオフセットとして現れるため、コンデンサ等によるアナログ的なDCブロック回路で残存キャリアを容易に除去することができる。これに対して、コヒーレント検波方式で、かつ送信レーザの周波数と、受信側の局部発振レーザの周波数とが正確に一致していない場合、残存キャリアは受信側の電気段で直流に変換されず、DCブロック回路で残存キャリアを除去することができない。
 また、コンスタレーション歪として知られているものに、IQ(In-phase / Quadrature)クロストークがある。IQクロストークは、光変調器のバイアス電圧誤差により、同相位相(In-phase)成分と直交位相(Quadrature)成分との位相差が正確に90度にならない場合に発生する。
 これらのコンスタレーション歪の問題に対応するため、光送信装置に適用される光変調器の特性を予め計測しておき、光送信装置側のデジタル信号処理装置により光変調器の特性を補償する技術が開示されている(例えば、非特許文献2参照)。
鈴木扇太 他、「光通信ネットワークの大容量化に向けたディジタルコヒーレント信号処理技術の研究開発」、電子情報通信学会誌 95(12), 2012-12-01, pp.1100-1116 杉原隆嗣、「高速光通信における予等化技術の現状と展望」、電子情報通信学会、信学技報、IEICE Technical Report、OCS2011 - 41 (2011-7)、pp. 83-88
 しかしながら、光変調器の特性を予め計測できない場合や、時間が経過するにつれて特性が変化する場合には、非特許文献2に記載の技術を利用することができないという問題がある。
 特に、光変調器に印加するバイアス電圧を制御するオートバイアスコントロール回路の変動ドリフトや、オートバイアスコントロール回路が印加する信号の誤差に起因して発生する光変調器の不完全性を、光送信装置側のデジタル信号処理装置で補償することは困難であるという問題がある。
 上記事情に鑑み、本発明は、受信側においてコンスタレーション歪を補償することができる技術の提供を目的としている。
 本発明の第一の態様は、レーザ光を供給する局部発振レーザと、多値変調された光信号を受信して、前記レーザ光に基づいて、前記光信号を復調して電気のアナログ信号に変換するコヒーレント光受信フロントエンド部と、前記アナログ信号をデジタル信号に変換するアナログデジタル変換器と、前記光信号の波長や偏波による分散の影響を補償して前記デジタル信号のキャリア位相を再生する補償部と、前記補償部により分散の影響が補償された前記デジタル信号に含まれる前記多値変調のコンスタレーション歪を補償するコンスタレーション歪補償部と、前記コンスタレーション歪が補償された前記デジタル信号の誤り訂正を行う誤り訂正復号部と、を備えるコヒーレント光受信装置である。
 本発明の第二の態様は、上記第一の態様のコヒーレント光受信装置であって、前記コンスタレーション歪補償部は、前記コンスタレーション歪としてのDCオフセットを前記デジタル信号に対して補償するDCオフセット補償部を備える。
 本発明の第三の態様は、上記第二の態様のコヒーレント光受信装置であって、前記DCオフセット補償部は、前記デジタル信号から変調データ成分を低減し、平均化によりランダムノイズを除去して、前記デジタル信号に含まれる前記DCオフセットを抽出する平均化部と、前記平均化部が抽出する前記DCオフセットを、前記デジタル信号から減算する第1の減算回路と、を備える。
 本発明の第四の態様は、上記第三の態様のコヒーレント光受信装置であって、前記平均化部は、前記デジタル信号から前記変調データ成分を抽出する仮判定回路と、前記仮判定回路が抽出する前記変調データ成分を前記デジタル信号から減算する第2の減算回路と、前記デジタル信号から前記変調データ成分を減算した減算結果を平均化するフィルタ回路と、を備える。
 本発明の第五の態様は、上記第三又は第四の態様のコヒーレント光受信装置であって、前記DCオフセット補償部は、前記デジタル信号の同相位相成分の信号に含まれる前記DCオフセットを補償する場合、前記デジタル信号の直交位相成分の信号の振幅に応じた重み係数を前記平均化部が抽出する前記DCオフセットに乗算し、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合、前記デジタル信号の前記同相位相成分の信号の振幅に応じた重み係数を前記平均化部が抽出する前記DCオフセットに乗算し、前記重み係数が乗算された前記DCオフセットを前記第1の減算回路に出力するオフセット値調整部をさらに備え、前記第1の減算回路は、前記オフセット値調整部から出力された前記重み係数が乗算された前記DCオフセットを、前記デジタル信号から減算する。
 本発明の第六の態様は、上記第五の態様のコヒーレント光受信装置であって、前記オフセット値調整部は、前記デジタル信号の前記同相位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記直交位相成分の信号の振幅が所定の閾値より小さいとき、又は、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記同相位相成分の信号の振幅が前記閾値より小さいとき、前記重み係数を1より大きい値とする。
 本発明の第七の態様は、上記第五又は第六の態様のコヒーレント光受信装置であって、前記オフセット値調整部は、前記デジタル信号の前記同相位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記直交位相成分の信号の振幅が所定の閾値以上であるとき、又は、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記同相位相成分の信号の振幅が前記閾値以上であるとき、前記重み係数を1より小さい値とする。
 本発明の第八の態様は、上記第一の態様のコヒーレント光受信装置であって、前記コンスタレーション歪補償部は、前記コンスタレーション歪みとしてのIQクロストークを前記デジタル信号の同相位相成分及び直交位相成分の信号に対して補償するIQクロストーク補償部を備える。
 本発明の第九の態様は、上記第八の態様のコヒーレント光受信装置であって、前記IQクロストーク補償部は、前記デジタル信号の前記同相位相成分の信号を仮判定して、同相位相変調データ成分を抽出する第1の仮判定回路と、前記デジタル信号における前記同相位相成分の前記直交位相成分の信号への漏れ込み分を、前記同相位相変調データ成分に基づいて算出する第1の係数乗算回路と、前記デジタル信号の前記直交位相成分の信号を仮判定して、直交位相変調データ成分を抽出する第2の仮判定回路と、前記デジタル信号における前記直交位相成分の前記同相位相成分の信号への漏れ込み分を、前記直交位相変調データ成分に基づいて算出する第2の係数乗算回路と、前記デジタル信号の前記同相位相成分の信号から前記第2の係数乗算回路の出力値を減算する第1の減算回路と、前記デジタル信号の前記直交位相成分の信号から前記第1の係数乗算回路の出力値を減算する第2の減算回路と、を備える。
 本発明の第十の態様は、上記第九の態様のコヒーレント光受信装置であって、前記IQクロストーク補償部は、前記デジタル信号の前記直交位相成分の信号に含まれる前記同相位相成分と前記同相位相成分の信号との相関を示す第1の相関係数を算出する第1の相関係数算出部と、前記デジタル信号の前記同相位相成分の信号に含まれる前記直交位相成分と前記直交位相成分の信号との相関を示す第2の相関係数を算出する第2の相関係数算出部と、を備え、前記第1の係数乗算回路は、前記同相位相変調データ成分に、前記第1の相関係数を乗じて出力し、前記第2の係数乗算回路は、前記直交位相変調データ成分に、前記第2の相関係数を乗じて出力する。
 本発明の第十一の態様は、上記第十の態様のコヒーレント光受信装置であって、前記第1の相関係数算出部は、前記直交位相変調データ成分を前記直交位相変調データ成分のノルムの二乗で除算して出力する第1の信号規格化回路と、前記第1の信号規格化回路の出力値と、前記同相位相成分の信号との内積を算出する第1の内積算出回路と、前記第1の内積算出回路が算出する内積値を平均化して前記第1の相関係数を出力する第1の平均化回路と、を備え、前記第2の相関係数算出部は、前記直交位相変調データ成分を前記直交位相変調データ成分のノルムの二乗で除算して出力する第2の信号規格化回路と、前記第2の信号規格化回路の出力値と、前記直交位相成分の信号との内積を算出する第2の内積算出回路と、前記第2の内積算出回路が算出する内積値を平均化して前記第2の相関係数を出力する第2の平均化回路と、を備える。
 本発明の第十二の態様は、上記第一の態様のコヒーレント光受信装置であって、前記コンスタレーション歪補償部は、前記コンスタレーション歪としてのDCオフセットを前記デジタル信号に対して補償するDCオフセット補償部と、前記コンスタレーション歪みとしてのIQクロストークを前記デジタル信号の同相位相成分及び直交位相成分の信号に対して補償するIQクロストーク補償部と、を備える。
 本発明の第十三の態様は、上記第十二の態様のコヒーレント光受信装置であって、前記補償部の後段に前記DCオフセット補償部を備え、前記DCオフセット補償部の後段に前記IQクロストーク補償部を備えるか、又は、前記補償部の後段に前記IQクロストーク補償部を備え、前記IQクロストーク補償部の後段に前記DCオフセット補償部を備える。
 この発明によれば、受信側においてコンスタレーション歪を補償することが可能となる。
本実施形態によるコヒーレント光データ伝送システムの構成を示すブロック図である。 本実施形態によるデジタル信号処理部の構成を示すブロック図である。 本実施形態によるDCオフセット補償部の構成を示すブロック図である。 本実施形態によるIQクロストーク補償部の構成を示すブロック図である。 本実施形態に基づくシミュレーションによるDCオフセットの補償効果を示すグラフである。 光信号が偏波多重16QAM信号である場合のコンスタレーションの例を示す図である。 光信号が偏波多重16QAM信号である場合のコンスタレーション歪みの例を示す図である。 DCオフセット補償部に入力されるX偏波又はY偏波の同相位相成分(I成分)の信号を模式的に示した図である。 DCオフセット補償部に入力されるX偏波又はY偏波の直交位相成分(Q成分)の信号を模式的に示した図である。 変形例によるDCオフセット補償部の構成を示すブロック図である。 オフセット値調整部の構成例を示すブロック図である。 オフセット値調整部の処理を示すフローチャートである。 DCオフセット補償部にオフセット値調整部を設けた場合の効果を検証するために行った計算機シミュレーションの結果を示すグラフである。 オフセット値調整部の別の構成例を示すブロック図である。 従来のコヒーレント光データ伝送システムの構成を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本実施形態によるコヒーレント光データ伝送システム100の構成を示すブロック図である。コヒーレント光データ伝送システム100は、コヒーレント光送信装置1と、コヒーレント光受信装置3とを備える。コヒーレント光送信装置1と、コヒーレント光受信装置3とは、光ファイバ2を介して接続されている。
 コヒーレント光送信装置1は、例えば、送信データを多値変調信号である偏波多重16QAM信号などにマッピングする。コヒーレント送信装置1は、送信用レーザが出力するレーザ光に対してマッピング結果に基づいた変調を偏波多重IQ光変調器により行って、変調により生成された光信号を光ファイバ2に出力する。
 コヒーレント光受信装置3は、コヒーレント光受信フロントエンド部10、局部発振レーザ11、アナログデジタル変換器12及びデジタル信号処理部13を備える。
 局部発振レーザ11は、復調用の発振レーザ光をコヒーレント光受信フロントエンド部10に供給する。ここで、局部発振レーザ11は、上記のコヒーレント光送信装置1に適用される送信用レーザとは独立に動作しており、送信用レーザと周波数同期されていないものとする。
 コヒーレント光受信フロントエンド部10は、例えば、図14に示す光受信機の光受信フロントエンドモジュールが適用される。コヒーレント光受信フロントエンド部10は、受信した光信号を、X偏波とY偏波とに偏波分離を行った後、局部発振レーザ11から供給されるレーザ光に基づいてX偏波とY偏波との復調を行う。コヒーレント光受信フロントエンド部10は、復調により得られたX偏波の同相位相成分(I成分)とX偏波の直交位相成分(Q成分)とY偏波の同相位相成分とY偏波の直交位相成分とからなる4レーンの電気的なアナログ信号を出力する。
 アナログデジタル変換器12は、4レーンのアナログ信号をデジタル信号に変換する。
 デジタル信号処理部13は、アナログデジタル変換器12によって変換された変換後のデジタル信号に対して信号処理を行う。
 図2は、デジタル信号処理部13の内部構成を示すブロック図である。デジタル信号処理部13は、補償部20、コンスタレーション歪補償部30及び誤り訂正復号部90を備える。
 補償部20は、波長分散と偏波モード分散とによる影響を補償してキャリア(搬送波)位相を再生する。
 コンスタレーション歪補償部30は、コンスタレーション歪を補償する。
 誤り訂正復号部90は、補償部20、コンスタレーション歪補償部30によって、補償処理がされたデジタル信号の誤り訂正復号処理を行って出力する。誤り訂正復号部90の出力先となる後段の回路としては、例えば、SerDes(SeRialize / DESerialize)などが適用される。
 次に、補償部20及びコンスタレーション歪補償部30の具体的な構成について説明する。まず、補償部20について説明する。
 補償部20は、波長分散補償部21、偏波分離・偏波モード分散補償部22、周波数オフセット補償部23及びキャリア位相再生部24を備える。
 波長分散補償部21は、波長分散によって受信した主信号に発生した歪を、例えば、デジタルフィルタによって補償する。ここで、主信号とは、伝送されるデータを構成する時系列の信号のことをいい、本実施形態では、上述したように4レーンの主信号、すなわちX偏波の同相位相成分とX偏波の直交位相成分とY偏波の同相位相成分とY偏波の直交位相成分との主信号を、アナログデジタル変換器12がデジタル信号処理部13に出力する。
 偏波分離・偏波モード分散補償部22は、光ファイバ中の光信号の高速な偏波状態の変動をトラッキング、すなわち変動に追随しつつ光信号をX偏波とY偏波とに分離し、分離した各々の偏波モード間に生じている分散を補償する。
 周波数オフセット補償部23は、局部発振レーザ11が供給するレーザ光の周波数と、送信用レーザが供給するレーザ光の周波数とのズレによって生じる歪を補償する。
 キャリア位相再生部24は、光増幅器から生じる自然放出光雑音やレーザ位相雑音を除去し、正しい搬送波の位相、すなわちキャリア位相を抽出する。キャリア位相再生部24は、キャリア位相を再生した4レーンの主信号をコンスタレーション歪補償部30へ出力する。なお、補償部20の各機能部については、例えば、非特許文献1に示されるものが適用される。
 次に、コンスタレーション歪補償部30について説明する。
 コンスタレーション歪補償部30は、DCオフセット補償部40及びIQクロストーク補償部50を備える。
 DCオフセット補償部40は、図3に示すように、4つのレーンに対応する4つのDCオフセット補償部40-1、40-2、40-3及び40-4を備えている。4つのDCオフセット補償部40-1、40-2、40-3及び40-4の各々は、X偏波の同相位相成分、X偏波の直交位相成分、Y偏波の同相位相成分及びY偏波の直交位相成分の各々の主信号に対して独立してDCオフセットの補償を行う。DCオフセット補償部40-1、40-2、40-3及び40-4は、供給される信号が異なることを除けば構成は同一である。そのため、以下、図3に示す、X偏波の同相位相成分のDCオフセット補償を行うDCオフセット補償部40-1を一例として内部構成を説明する。
 DCオフセット補償部40-1は、サンプリング回路41-1、分岐回路42-1、減算回路43-1及び平均化部48-1を備える。
 サンプリング回路41-1は、主信号から時系列の一部をサンプリングし、サンプリングした信号を出力する。
 分岐回路42-1は、サンプリング回路41-1が出力する信号を分岐して出力する。
 減算回路43-1は、分岐回路42-1が出力する信号から平均化部48-1が出力するDCオフセットを減算し、減算結果を出力する。
 平均化部48-1は、分岐された主信号から変調データ成分を無視できるレベルまで低減した信号を平均化する。平均化部48-1は、信号に含まれるランダムノイズを平均化により除去してDCオフセットを抽出する。平均化部48-1は、変調データ成分除去部44-1及びフィルタ回路47-1を備える。
 変調データ成分除去部44-1は、仮判定回路45-1及び減算回路46-1を備える。
 仮判定回路45-1は、主信号の仮判定を行って、変調データ成分を抽出する。ここで、仮判定の処理とは、例えば、主信号の位相や振幅に基づいて判定を行い、主信号に含まれる変調データ成分を抽出する処理である。
 減算回路46-1は、仮判定により抽出された変調データ成分を分岐回路42-1が出力する信号から減算し、減算結果をエラー信号として出力する。
 フィルタ回路47-1は、例えば、FIR(Finite Impulse Response:有限長インパルス応答)フィルタ、IIR(Infinite Impulse Response:無限インパルス応答)フィルタ(IIRフィルタを、指数重み付けフィルタともいう)などである。フィルタ回路47-1は、エラー信号の平均化を行う。フィルタ回路47-1は、エラー信号に含まれるエラー信号波のランダムノイズを平均化により除去して、DCオフセットを抽出する。
 図2に戻り、デジタル信号処理部13の説明を続ける。
 IQクロストーク補償部50は、IQクロストーク補償部50Xと、IQクロストーク補償部50Yとを備える。IQクロストーク補償部50Xは、X偏波の同相位相成分と直交位相成分との主信号のIQクロストーク補償を行う。IQクロストーク補償部50Yは、Y偏波の同相位相成分と直交位相成分との主信号のIQクロストーク補償を行う。図4は、IQクロストーク補償部50Xの内部構成を示すブロック図である。なお、IQクロストーク補償部50Yは、Y偏波の同相位相成分と直交位相成分との主信号が供給されることを除けば、IQクロストーク補償部50Xと同一の構成を有する。以下、図4に示す、IQクロストーク補償部50Xを例として構成を説明する。
 IQクロストーク補償部50Xは、分岐回路51X-1、分岐回路51X-2、仮判定回路53X-1、仮判定回路53X-2、係数乗算回路54X-1、係数乗算回路54X-2、減算回路52X-1、減算回路52X-2、相関係数算出部60X-1及び相関係数算出部60X-2を備える。
 分岐回路51X-1は、DCオフセット補償部40-1が出力するX偏波の同相位相成分の主信号を分岐して出力する。
 分岐回路51X-2は、DCオフセット補償部40-2が出力するX偏波の直交位相成分の主信号を分岐して出力する。
 仮判定回路53X-1(第1の仮判定回路)は、分岐回路51X-1が出力する同相位相成分の主信号に対して仮判定を行い、同相位相の変調データ成分を抽出する。
 仮判定回路53X-2(第2の仮判定回路)は、分岐回路51X-2が出力する直交位相成分の主信号に対して仮判定を行い、直交位相の変調データ成分を抽出する。
 係数乗算回路54X-1(第1の係数乗算回路)は、相関係数算出部60X-1が出力する相関係数(以下、δiqともいう)と、仮判定回路53X-1が出力する同相位相の変調データ成分とを乗算し、乗算した結果を出力する。相関係数算出部60X-1から出力される相関係数(δiq)は、同相位相レーンから直交位相レーンへの漏れ込みの程度、すなわち直交位相成分の主信号に含まれる同相位相成分と同相位相成分の主信号との相関を示す。
 係数乗算回路54X-2(第2の係数乗算回路)は、相関係数算出部60X-2が出力する相関係数(以下、δqiともいう)と、仮判定回路53X-2が出力する直交位相の変調データ成分とを乗算し、乗算した結果を出力する。相関係数算出部60-2から出力される相関係数(δqi)は、直交位相レーンから同相位相レーンへの漏れ込みの程度、すなわち同相位相成分の主信号に含まれる直交位相成分と、直交位相成分の主信号との相関を示す。
 減算回路52X-1(第1の減算回路)は、同相位相成分の主信号から係数乗算回路54X-2が出力する乗算値を減算し、減算結果を出力する。
 減算回路52X-2(第2の減算回路)は、直交位相成分の主信号から係数乗算回路54X-1が出力する乗算値を減算し、減算結果を出力する。
 相関係数算出部60X-1(第1の相関係数算出部)は、信号規格化回路61X-1、内積算出回路63X-1及び平均化回路64X-1を備える。
 信号規格化回路61X-1(第1の信号規格化回路)は、仮判定回路53X-1から出力される同相位相の変調データ成分を規格化した値、すなわち、同相位相の変調データ成分の大きさの二乗で変調データ成分を除算した値を出力する。
 内積算出回路63X-1(第1の内積算出回路)は、信号規格化回路61X-1から出力された出力値と分岐回路51X-2から出力された直交位相成分の主信号との内積を算出し、算出により得られた内積値を出力する。
 平均化回路64X-1(第1の平均化回路)は、内積算出回路63X-1が出力する値の統計平均を算出し、統計平均を係数乗算回路54X-1に出力する。
 相関係数算出部60X-2(第2の相関係数算出部)は、信号規格化回路61X-2、内積算出回路63X-2及び平均化回路64X-2を備える。
 信号規格化回路61X-2(第2の信号規格化回路)は、仮判定回路53X-2から出力される直交位相の変調データ成分を規格化した値、すなわち、直交位相の変調データ成分の大きさの二乗で変調データ成分を除算した値を出力する。
 内積算出回路63X-2(第2の内積算出回路)は、信号規格化回路61X-2から出力された出力値と分岐回路51X-1から出力された同相位相成分の主信号との内積を算出し、算出により得られた内積値を出力する。
 平均化回路64X-2(第2の平均化回路)は、内積算出回路63X-2が出力する値の統計平均を算出し、統計平均を係数乗算回路54X-2に出力する。
(DCオフセットの補償処理について)
 次に、図3に示すDCオフセット補償部40-1において行われるDCオフセット補償の処理について説明する。DCオフセット補償部40-1に対してキャリア位相再生部24からX偏波の同相位相成分の主信号Srが供給される。サンプリング回路41-1は、主信号Srから時系列の一部をサンプリングした信号を出力する。ここで、主信号Srは、次式(1)で表される信号である。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、kは、サンプリングされた時系列離散信号の時間を表す。信号Srは、k番目の受信信号データ成分を示す。信号Stは、k番目の送信信号を示す。dは、k番目の信号に対するDCオフセットである。nは、k番目の信号に対応するランダムノイズである。仮判定回路45-1は、分岐回路42-1によって分岐された信号を仮判定して、仮判定で得られた信号^S(^(ヘッド)はSの上)を出力する。
 FEC(Forward Error Correction:前方誤り訂正)前のBER(Bit Error Rate)をPとした場合、Pは概ね10-2程度となるため、1-P程度、すなわち約99%程度の高い確率で、信号^Sは次式(2)を満たすことが期待できる。
Figure JPOXMLDOC01-appb-M000002
 したがって、信号Srから信号^Sを減算すると、式(1)及び式(2)よりDCオフセットとノイズとを抽出することができる。すなわち、減算回路46-1が信号Srから仮判定回路45-1が出力する信号^Sを減算することにより、次式(3)に示すようにk番目のDCオフセットとランダムノイズとの和が求められる。
Figure JPOXMLDOC01-appb-M000003
 ここで、ノイズnはランダムノイズであるため、統計平均を算出することでランダムノイズを除去することができる。フィルタ回路47-1が、統計平均を算出することにより、次式(4)に示すようにDCオフセットdを抽出することができる。
Figure JPOXMLDOC01-appb-M000004
 最後に、減算回路43-1が、分岐回路42-1が出力する信号SrからDCオフセットdを減算することでDCオフセットを除去した信号を得ることができる。実際には、DCオフセットdは、完全に不変量ではなく、時間に対してゆっくりと変動することが想定される。上述した補償部20における位相サイクルスリップが生じた場合、DCオフセットdは瞬時的に不連続に変化する。そのため、フィルタ回路47-1によって行う統計平均の処理は、信号全体ではなく、FIRフィルタやIIRフィルタにより動的に、すなわち変化に追従するように行う必要がある。なお、フィルタ回路47-1として、IIRフィルタを1TAPとした、いわゆるLPF(Low Pass Filter)が適用されてもよい。
 上記のDCオフセット補償部40-1が、X偏波の同相位相成分の主信号に対して行ったDCオフセットの補償処理と同様に、DCオフセット補償部40-2、40-3及び40-4の各々が、X偏波の直交位相成分の主信号、Y偏波の同相位相成分の主信号及びY偏波の直交位相成分の主信号に対してDCオフセットの補償処理を行う。これにより4つのレーンにおいて、各々のレーン内でのDCオフセットの変化に追従した、DCオフセット補償が行われることになる。
(IQクロストークの補償処理について)
 次に、図4に示すIQクロストーク補償部50XによるIQクロストークの補償処理について説明する。IQクロストーク補償部50Xに供給されるX偏波の同相位相成分と直交位相成分との信号をSri、Srqとすると、これらは、次式(5)、次式(6)として表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 式(5)及び式(6)において、Sti、Stqは、それぞれ同相位相レーンと直交位相レーンとの送信信号である。δqiは、上述したように、直交位相レーンから同相位相レーンへの漏れ込みの程度、すなわち同相位相成分の主信号に含まれる直交位相成分と、直交位相成分の主信号との相関を示す相関係数である。また、δiqも、上述したように、同相位相レーンから直交位相レーンへの漏れ込みの程度、すなわち直交位相成分の主信号に含まれる同相位相成分と、同相位相成分の主信号との相関を示す相関係数である。nは、ランダムノイズである。
 分岐回路51X-1は、同相位相成分の主信号Sriを分岐して出力する。仮判定回路53X-1は、分岐回路51X-1が出力する同相位相成分の主信号Sriの仮判定を行い同相位相の変調データ成分^Siを抽出する。仮判定回路53X-1は、抽出した変調データ成分^Siを相関係数算出部60X-1の信号規格化回路61X-1と、係数乗算回路54X-1とに出力する。
 分岐回路51X-2は、直交位相成分の主信号Srqを分岐して出力する。仮判定回路53X-2は、分岐回路51X-2が出力する直交位相成分の主信号Srqの仮判定を行い直交位相の変調データ成分^Sqを抽出する。仮判定回路53X-2は、抽出した変調データ成分^Sqを相関係数算出部60X-2の信号規格化回路61X-2と、係数乗算回路54X-2とに出力する。Sriと^Sq(^(ヘッド)はSqの上)とを乗算し、^Sqのノルムの二乗、すなわち|^Sq(^(ヘッド)はSqの上)で乗算結果を除算して、除算結果の統計平均を算出することにより、次式(7)が得られる。
Figure JPOXMLDOC01-appb-M000007
 上述したように、変調データ成分^Si、^Sqは、(1-BER)程度の高い確率で送信信号であるSti、Stqに等しいことから、式(8)が成り立つ。
Figure JPOXMLDOC01-appb-M000008
 また、StiとStqとは互いに無相関であるため、式(9)が成り立つ。
Figure JPOXMLDOC01-appb-M000009
 また、nは、ランダムノイズであることから、式(10)が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 式(8)、(9)、(10)を、式(7)に適用すると、次式(11)が成立する。
Figure JPOXMLDOC01-appb-M000011
 したがって、Sriと、^Sq(^(ヘッド)はSqの上)とに基づいて、相関係数δqiを算出することができる。すなわち、相関係数算出部60X-2の信号規格化回路61X-2は、仮判定回路53X-2が出力する^Sq(^(ヘッド)はSqの上)に基づいて、^Sq/|^Sq(^(ヘッド)はSqの上)を算出する。内積算出回路63X-2は、Sri×^Sq/|^Sqを算出し、算出結果を平均化回路64X-2に出力する。平均化回路64X-2は、式(11)の左辺の式を演算し、相関係数δqiを算出する。
 このようにして相関係数算出部60X-2によって算出された相関係数δqiが、係数乗算回路54X-2に供給される。係数乗算回路54X-2は、仮判定回路53X-2が出力する^Sq(^(ヘッド)はSqの上)と相関係数δqiとを乗算し、乗算した結果を減算回路52X-1に出力する。減算回路52X-1は、分岐回路51X-1が出力するSriから^Sq×δqi(^(ヘッド)はSqの上)を減算することでIQクロストークによる影響を補償したX偏波の同相位相成分の信号を出力する。
 相関係数算出部60X-1についても同様に、信号規格化回路61X-1は、仮判定回路53X-1が出力する^Si(^(ヘッド)はSiの上)に基づいて、^Si/|^Si(^(ヘッド)はSiの上)を算出する。内積算出回路63X-1は、Srq×^Si/|^Si(^(ヘッド)はSiの上)を算出し、算出結果を平均化回路64X-1に出力する。平均化回路64X-1は、次式(12)の左辺の式を演算し、相関係数δiqを算出して係数乗算回路54X-1に出力する。
Figure JPOXMLDOC01-appb-M000012
 係数乗算回路54X-1は、仮判定回路53X-1が出力する^Si(^(ヘッド)はSiの上)と相関係数δiqとを乗算し、乗算した結果を減算回路52X-2に出力する。減算回路52X-2は、分岐回路51X-2が出力するSrqから^Si×δiq(^(ヘッド)はSiの上)を減算することでIQクロストークによる影響を補償したX偏波の直交位相成分の信号を出力する。
 上記のIQクロストーク補償部50Xが、X偏波の同相位相成分及び直交位相成分の主信号に対して行ったIQクロストークの補償処理と同様に、IQクロストーク補償部50Yが、Y偏波の同相位相成分及び直交位相成分の主信号に対してIQクロストークの補償処理を行う。これにより4つのレーン全てにおけるIQクロストークの補償処理が行われることになる。
 図5は、本実施形態によるDCオフセット補償部40による、DCオフセット補償の効果をモンテカルロシミュレーションにより評価した結果を示すグラフである。コヒーレント光送信装置1の光変調器のバイアス電圧が時間的にドリフトした場合を想定して、動的に変化するDCオフセットをシミュレーションの条件に与えた。図5において、横軸は、DCオフセットのドリフト周波数を示し、縦軸は、受信信号の品質を表すQ値と呼ばれる値を示す。動的なDCオフセットにより、DCオフセット補償を適用しない場合、受信Q値が3dB程度低下する。これに対して、本実施形態によるDCオフセット補償の適用により、ほとんどのドリフト周波数において、DCオフセットによるペナルティ(Q値の低下)のほとんどを回避できている。DCオフセットが動的に変動した場合、変動の周波数が10MHz(0.01GHz)程度までであればDCオフセット補償部40は、DCオフセットの変化への追従が可能である。
 上記の実施形態の構成により、X偏波の同相位相成分の主信号に対して、DCオフセット補償部40-1は、仮判定回路45-1により、送信信号にほぼ等しい変調データ成分の^Sの信号を抽出し、減算回路46-1により、主信号Sriから^Sを減算し、減算した値をフィルタ回路47-1により平均化することでDCオフセットを抽出することが可能となる。そして、DCオフセット補償部40-1は、減算回路43-1により、主信号SriからDCオフセットを減算することで、DCオフセットを除去してDCオフセット補償を行うことが可能となる。X偏波の直交位相成分、Y偏波の同相位相成分及びY偏波の直交位相に対してもDCオフセット補償部40-1と同様にDCオフセット補償部40-2、40-3及び40-4がDCオフセット補償を行う。これにより、送信側の光変調器の特性や不完全性等の送信装置の特性に基づかず、受信側だけでDCオフセットによるコンスタレーション歪を補償することが可能となる。コヒーレント検波方式では、アナログの電気段でDCブロック回路によりDCオフセット補償することができないという問題があったが、本実施形態の構成により、コヒーレント光受信装置3においても直接検波方式の受信装置と同様に、DCオフセットの補償が可能となる。
 また、上記の実施形態の構成により、IQクロストーク補償部50Xは、仮判定回路53X-1及び53X-2により、X偏波の同相位相成分及び直交位相成分の主信号から送信信号にほぼ等しい変調データ成分^Si、^Sqを抽出する。相関係数算出部60X-1は、変調データ成分^Si、^Sqに基づいて、同相位相レーンから直交位相レーンへの漏れ込み、すなわち直交位相成分の主信号に含まれる同相位相成分と、同相位相成分の主信号との相関を示す相関係数であるδiqを算出し、相関係数δiqを係数乗算回路54X-1に出力する。また、相関係数算出部60X-2は、直交位相レーンから同相位相レーンへの漏れ込み、すなわち同相位相成分の主信号に含まれる直交位相成分と、直交位相成分の主信号との相関を示す相関係数δqiを算出し、相関係数δqiを係数乗算回路54X-2に出力する。係数乗算回路54X-1は、同相位相の変調データ成分^Siに相関係数δiqを乗算し、乗算値を減算回路52X-2に出力する。係数乗算回路54X-2は、直交位相の変調データ成分^Sqに相関係数δqiを乗算し、乗算値を減算回路52X-1に出力する。減算回路52X-1は、分岐回路51X-1が出力する同相位相成分の主信号Sriから係数乗算回路54X-2が出力する乗算値を減算して同相位相成分のクロストーク補償を行うことができる。また、減算回路52X-2は、分岐回路51X-2が出力する直交位相成分の主信号Srqから係数乗算回路54X-1が出力する乗算値を減算して直交位相成分のクロストーク補償を行うことができる。IQクロストーク補償部50Yは、IQクロストーク補償部50Xと同様のIQクロストークの補償処理をY偏波の同相位相成分及び直交位相成分に対して行うことにより、IQクロストークの補償を行うことができる。これにより、送信側の光変調器の特性や不完全性等の送信装置の特性に基づかず、受信側だけでIQクロストークによるコンスタレーション歪を補償することが可能となる。
 適用される多値変調方式が、偏波多重のQPSKから、16QAM、64QAMと多値度が大きくなるにつれて、信号点間距離が小さくなり、信号点配置の歪がわずかであってもシンボルエラーの原因となる。そのため、多値度が大きくなるにつれて、DCオフセットやIQクロストークによるコンスタレーション歪の影響も大きくなり、ビット誤り率に無視できない影響を与えることが知られている。上記の本実施形態の構成は、上述したように、これらの多値変調方式を適用した場合であっても、コンスタレーション歪の補償を行うことができ、伝送されたデータのビット誤り率を低減させることができる。
 また、上記の実施形態の構成は、コヒーレント光受信装置3において受信した主信号に基づいて、適応的にDCオフセット補償処理やIQクロストーク補償処理を行うため、コヒーレント光送信装置1の光変調器の特性を予め測定する必要がない。また、実施形態の構成は、コンスタレーション歪が時間的に変化した場合であっても、コンスタレーション歪の変動がシンボルレートに対してゆるやかであれば、コンスタレーション歪みを補償することが可能である。また、本実施形態の構成は、16QAM以上の多値変調方式において、特に優れた効果を奏する。
 また、コヒーレント検波方式の受信装置として、波長分散補償部21と偏波分離・偏波モード分散補償部22との間にDCオフセット補償部40を備える構成の装置もある。しかし、当該装置は、局部発振レーザ11とコヒーレント光受信フロントエンド部10とが接続するミキシング部からアナログデジタル変換器12までの区間で生じるDCオフセットのみの補償しか行えない。これに対し、上記の実施形態の構成は、キャリア位相再生部24の後にDCオフセット補償部40を備えるようにしていることから、局部発振レーザ11とコヒーレント光受信フロントエンド部10とが接続するミキシング部からアナログデジタル変換器12までの区間で生じるDCオフセットの補償のみならず、コヒーレント光送信装置1の光変調器の消光比の影響で生じるDCオフセットの補償も行うことが可能となる。
 コヒーレント光送信装置1に備わる偏波多重IQ光変調器の不完全性により発生するDCオフセットに起因して、コヒーレント光受信装置3で受信した光信号のコンスタレーションは歪む。コヒーレント光送信装置1から送信された光信号が偏波多重16QAM信号の場合のコンスタレーション歪みの例を、図6A及び図6Bを用いて説明する。DCオフセットが発生していない理想的な16QAM信号では、受信信号のコンスタレーションは、図6Aに示すように、IQ平面上にて正方格子状に表示される。しかし、偏波多重IQ光変調器の消光比が無限大でないことに起因して発生するDCオフセットの影響を受けた16QAM信号では、受信信号のコンスタレーションは、図6Bに示すように歪みが発生する。すなわち、I軸の近傍に位置する信号(図6Bにおける符号5~12の各信号)は、同相位相成分の振幅が正側(図中右方)に引き寄せられるように歪む。Q軸の近傍に位置する信号(図6Bにおける符号2、3、6、7、10、11、14、15の各信号)は、直交位相成分の振幅が負側(図中下方)に引き寄せられるように歪む。ここで、図6Bに示したコンスタレーションは、偏波多重IQ光変調器の消光比が15dBであると仮定して計算機シミュレーションした結果である。
 図7は、DCオフセット補償部40に入力されるX偏波又はY偏波の同相位相成分(I成分)の信号を模式的に示した図である。
 図7において横軸は時刻を表し、縦軸は振幅を表す。図7に示される符号1~16が付された信号はそれぞれ、図6Bのコンスタレーションにおいて同じ符号が付された信号に対応する。以下、符号1、5、9、13が付された各信号の関係について説明する。なお、他の信号群(符号2、6、10、14と、符号3、7、11、15と、符号4、8、12、16と)のそれぞれについては、符号1、5、9、13が付された各信号の関係と同様の関係が成り立つ。
 符号5、9が付された各信号は、符号1、13が付された各信号と同じ振幅になるべきところ、実際には符号5、9が付された各信号の振幅は符号1、13の各信号の振幅に比べて大きくなっている。ここで、図7中の一点鎖線は、コンスタレーション歪みが生じていない場合(すなわち、図6Aのコンスタレーション)における同相位相成分の信号の振幅を示している。あるいは、上記の式(1)における信号Stの振幅を示しているとも言える。図7から、符号5、9が付された各信号には、符号1、13が付された各信号に比べて相対的に大きなDCオフセットdが重畳されていることが分かる。なお、上記の式(4)で導出されるDCオフセットd(≒<d>)は、符号1、5、9、13が付された各信号に重畳されたそれぞれのDCオフセットdの平均値である。図3に示されたDCオフセット補償部40は、平均化して導出したDCオフセットd(≒<d>)を用いて符号1、5、9、13が付された各信号を補償している。しかし、コンスタレーション歪みを考慮するならば、符号5、9が付された各信号に対してはDCオフセットdよりも大きな値で補償が行われ、符号1、13が付された各信号に対してはDCオフセットdよりも小さな値で補償が行われることが望ましい。
 ここで、図6Bを参照すると、同相位相成分の信号のうち相対的に大きなDCオフセットdが重畳された符号5~12が付された各信号は、コンスタレーションのI軸の近傍に位置する信号であることが分かる。I軸の近傍に位置する信号とは、4値の振幅変調のうち絶対値が小さい振幅が直交位相成分(Q成分)に与えられた信号である。それに対して、相対的に小さいDCオフセットdが重畳された符号1~4及び13~16が付された各信号は、4値の振幅変調のうち絶対値が大きい振幅が直交位相成分に与えられた信号である。そこで、同相位相成分の信号に対しては、対応する直交位相成分の振幅に応じて、補償に用いるDCオフセット値が調整されるようにすればよい。
 直交位相成分の信号に対しても、上述した説明と同様の関係が成り立つ。図8は、DCオフセット補償部40に入力されるX偏波又はY偏波の直交位相成分(Q成分)の信号を模式的に示した図である。
 図8において横軸は時刻を表し、縦軸は振幅を表す。図8に示される符号1~16が付された信号はそれぞれ、図6Bのコンスタレーションにおいて同じ符号が付された信号に対応する。図8中の一点鎖線は、コンスタレーション歪みが生じていない場合(すなわち、図6Aのコンスタレーション)における直交位相成分の信号の振幅を示している。図8からは、直交位相成分の信号のそれぞれには、負の値のDCオフセットdが重畳されていることが分かる。例えば、符号2、3、6、7、10、11、14、15が付された各信号には、その絶対値が相対的に大きなDCオフセットdが重畳されていることが分かる。そこで、直交位相成分の信号に対しては、対応する同相位相成分の振幅に応じて、補償に用いるDCオフセット値が調整されるようにすればよい。
 以上説明したような、補償に用いるDCオフセット値を調整する構成について図9を用いて説明する。
 図9は、変形例によるDCオフセット補償部40の構成を示すブロック図である。図3に記載のDCオフセット補償部40と図9に記載のDCオフセット補償部40との異なる点は、図9に記載のDCオフセット補償部40-1、40-2、40-3及び40-4のそれぞれに、オフセット値調整部49が備えられる点である。以下、図3に記載のDCオフセット補償部40と異なる点についてのみ説明する。
 DCオフセット補償部40-1が備える分岐回路42-1は、サンプリング回路41-1が出力するX偏波の同相位相成分の主信号を分岐して出力する。例えば、分岐回路42-1は、X偏波の同相位相成分の主信号をDCオフセット補償部40-2が備えるオフセット値調整部49に出力する。DCオフセット補償部40-3が備える分岐回路は、分岐回路42-1と同様に、DCオフセット補償部40-3が備えるサンプリング回路が出力するY偏波の同相位相成分の主信号を分岐して出力する。例えば、DCオフセット補償部40-3が備える分岐回路は、Y偏波の同相位相成分の主信号をDCオフセット補償部40-4が備えるオフセット値調整部49に出力する。
 DCオフセット補償部40-2が備える分岐回路は、DCオフセット補償部40-2が備えるサンプリング回路が出力するX偏波の直交位相成分の主信号を分岐して出力する。例えば、DCオフセット補償部40-2が備える分岐回路は、X偏波の直交位相成分の主信号をDCオフセット補償部40-1が備えるオフセット値調整部49に出力する。DCオフセット補償部40-4が備える分岐回路は、DCオフセット補償部40-2が備える分岐回路と同様に、DCオフセット補償部40-4が備えるサンプリング回路が出力するY偏波の直交位相成分の主信号を分岐して出力する。例えば、DCオフセット補償部40-4が備える分岐回路は、Y偏波の直交位相成分の主信号をDCオフセット補償部40-3が備えるオフセット値調整部49に出力する。
 オフセット値調整部49は、X偏波及び/又はY偏波の同相位相成分の主信号に与える(減算する)DCオフセットdの値を、対応する直交位相成分の振幅に応じて調整する。また、オフセット値調整部49は、X偏波及び/又はY偏波の直交位相成分の信号に与える(減算する)DCオフセットdの値を、対応する同相位相成分の振幅に応じて調整する。より具体的には、DCオフセット補償部40-1には、X偏波の同相位相成分の信号に与える(減算する)DCオフセットdの値を、対応する直交位相成分の振幅に応じて調整するオフセット値調整部49が備えられる。DCオフセット補償部40-2には、X偏波の直交位相成分の信号に与える(減算する)DCオフセットdの値を、対応する同相位相成分の振幅に応じて調整するオフセット値調整部49が備えられる。DCオフセット補償部40-3には、Y偏波の同相位相成分の信号に与える(減算する)DCオフセットdの値を、対応する直交位相成分の振幅に応じて調整するオフセット値調整部49が備えられる。DCオフセット補償部40-4には、Y偏波の直交位相成分の信号に与える(減算する)DCオフセットdの値を、対応する同相位相成分の振幅に応じて調整するオフセット値調整部49が備えられる。なお、X偏波とY偏波の間では、信号はそれぞれ独立である。
 X偏波の同相位相成分に対応するDCオフセット補償部40-1に備えられるオフセット値調整部49は、DCオフセット補償部40-2の分岐回路から出力されたX偏波の直交位相成分の主信号Srと、フィルタ回路47-1によって導出された同相位相成分に係るDCオフセットdとを入力とする。DCオフセット補償部40-1に備えられるオフセット値調整部49は、入力されたDCオフセットdに対して以下の処理を行う。オフセット値調整部49は、対応する直交位相成分の主信号Srの振幅の絶対値が所定の閾値未満である場合には、DCオフセットdに1よりも大きい所定の重み係数wl(第1の重み係数)を乗算した値(以下、「wl乗算値」という。)(第1の乗算値)を減算回路43-1に出力する。一方、対応する直交位相成分の主信号Srの振幅の絶対値が所定の閾値以上である場合には、オフセット値調整部49は、DCオフセットdに1よりも小さい所定の重み係数ws(第2の重み係数)を乗算した値(以下、「ws値」という。)(第2の乗算値)を減算回路43-1に出力する。ここで、重み係数はwl>1>ws>0の関係を満たす係数である。
 Y偏波の同相位相成分に対応するDCオフセット補償部40-3に備えられるオフセット値調整部49も、DCオフセット補償部40-1に備えられるオフセット値調整部49と同様である。具体的には、DCオフセット補償部40-3に備えられるオフセット値調整部49には、DCオフセット補償部40-4から出力されたY偏波の直交位相成分の主信号と、DCオフセット補償部40-3が備えるフィルタ回路によって導出された同相位相成分に係るDCオフセットdとが入力される。DCオフセット補償部40-3に備えられるオフセット値調整部49は、入力されたDCオフセットdに対してDCオフセット補償部40-1と同様の処理を行う。
 X偏波の直交位相成分に対応するDCオフセット補償部40-2に備えられるオフセット値調整部49は、DCオフセット補償部40-1の分岐回路42-1から出力されたX偏波の同相位相成分の主信号Srと、フィルタ回路によって導出された直交位相成分に係るDCオフセットdとを入力とする。DCオフセット補償部40-2に備えられるオフセット値調整部49は、入力されたDCオフセットdに対して以下の処理を行う。オフセット値調整部49は、対応する同相位相成分の主信号Srの振幅の絶対値が所定の閾値未満である場合には、DCオフセットdに1よりも大きい所定の重み係数wlを乗算したwl乗算値を減算回路に出力する。一方、対応する同相位相成分の主信号Srの振幅の絶対値が所定の閾値以上である場合には、オフセット値調整部49は、DCオフセットdに1よりも小さい所定の重み係数wsを乗算したws乗算値を減算回路に出力する。
 Y偏波の直交位相成分に対応するDCオフセット補償部40-4に備えられるオフセット値調整部49も、DCオフセット補償部40-2に備えられるオフセット値調整部49と同様である。具体的には、DCオフセット補償部40-4に備えられるオフセット値調整部49には、DCオフセット補償部40-3から出力されたY偏波の同相位相成分の主信号と、DCオフセット補償部40-4が備えるフィルタ回路によって導出された直交位相成分に係るDCオフセットdとが入力される。DCオフセット補償部40-4に備えられるオフセット値調整部49は、入力されたDCオフセットdに対してDCオフセット補償部40-2と同様の処理を行う。
 上記のような構成により、コヒーレント光受信装置3は、受信信号の各シンボルに応じた適切なDCオフセット補償を行うことができるようになる。
 図10は、オフセット値調整部49の構成例を示す図である。
 オフセット値調整部49は、分岐部491、重み係数wl乗算部492、重み係数ws乗算部493、振幅判定部494及び選択部495を備える。図10では、DCオフセット補償部40-1が備えるオフセット値調整部49を例に説明する。なお、DCオフセット補償部40-2、40-3及び40-4が備えるオフセット値調整部49も、DCオフセット補償部40-1が備えるオフセット値調整部49と同様の処理を行う。
 分岐部491は、フィルタ回路47-1が出力するDCオフセットdを2つに分岐し、それぞれ重み係数wl乗算部492及び重み係数ws乗算部493に出力する。重み係数wl乗算部492は、入力されたDCオフセットdに対して重み係数wlを乗算することによってwl乗算値を算出する。重み係数wl乗算部492は、wl乗算値を選択部495に出力する。重み係数ws乗算部493は、入力されたDCオフセットdに対して重み係数wsを乗算することによってws乗算値を算出する。重み係数ws乗算部493は、ws乗算値を選択部495に出力する。振幅判定部494は、DCオフセット補償部40-2の分岐回路から出力されたX偏波の直交位相成分の主信号Srの振幅の絶対値(|E|)と、所定の閾値(Eth)との大小関係を判定する。振幅判定部494は、判定結果を示す信号を選択部495に出力する。
 選択部495は、振幅判定部494が出力した信号に基づいて、DCオフセット補償部40-2の分岐回路から出力されたX偏波の直交位相成分の主信号Srの振幅の絶対値(|E|)が所定の閾値(Eth)より小さければ重み係数wl乗算部492の出力であるwl乗算値をそのまま出力する。一方、選択部495は、振幅判定部494が出力した信号に基づいて、DCオフセット補償部40-2の分岐回路から出力されたX偏波の直交位相成分の主信号Srの振幅の絶対値(|E|)が所定の閾値(Eth)より大きければ重み係数ws乗算部493の出力であるws乗算値をそのまま出力する。なお、図10には、オフセット値調整部49が、重み係数wl乗算部492と、重み係数ws乗算部493の双方を実装する態様を記載しているが、コンスタレーション歪みの状態によっては、これらのうちいずれか一方のみを実装する態様であってもよい。例えば、対向する信号の振幅の絶対値(|E|)が所定の閾値(Eth)より大きい場合はDCオフセットdの調整が不要である。このような場合には、オフセット値調整部49は、重み係数ws乗算部493を実装せず、分岐部491の2つの出力のうち重み係数wl乗算部492に入力されていない方の出力を直接、選択部495に接続するようにしてもよい。この場合、重み係数wsはws=1と見なせばよい。上記の説明で、“対向する”との表現を用いたが、これは、X偏波の同相位相成分についてはX偏波の直交位相成分、Y偏波の同相位相成分についてはY偏波の直交位相成分を指すことを意味する。
 図11は、オフセット値調整部49の処理の流れを説明するフローチャートである。図11では、DCオフセット補償部40-1が備えるオフセット値調整部49の処理を例に説明する。
 分岐部491は、フィルタ回路47-1から出力されたDCオフセットdを、重み係数wl乗算部492及び重み係数ws乗算部493に出力する。重み係数wl乗算部492は、分岐部491から出力されたDCオフセットdに対して重み係数wlを乗算することによってwl乗算値を算出する(ステップS101)。重み係数wl乗算部492は、算出したwl乗算値を選択部495に出力する。重み係数ws乗算部493は、分岐部491から出力されたDCオフセットdに対して重み係数wsを乗算することによってws乗算値を算出する(ステップS102)。重み係数ws乗算部493は、算出したws乗算値を選択部495に出力する。ここで、重み係数wl及びwsは、図6Bの歪んだコンスタレーションを正方格子状に補償するに足る係数であればよい。コンスタレーション歪みは、コヒーレント光送信装置1に用いられる偏波多重IQ光変調器の特性や、信号光の伝搬路である光ファイバ2の特性などによって異なる。予め適切な数値の重み係数wl及びwsをオフセット値調整部49に設定しておけばよい。
 フィルタ回路47-1よりDCオフセットdが入力されると、振幅判定部494は対向するX偏波の直交位相成分の主信号Srの振幅の絶対値|E|を取得する(ステップS103)。振幅判定部494は、取得した主信号Srの振幅の絶対値|E|と、所定の閾値Ethとの大小関係を比較して、絶対値|E|<所定の閾値Ethを満たすか否か判定する(ステップS104)。所定の閾値Ethは、対向する信号の振幅が、4値の振幅変調のうちどの振幅であるかを判別するための閾値である。例えば、あるレーンの信号の振幅Eが、-E2、-E1、E1、E2(0<E1<E2)の4値で振幅変調されているとする。閾値Ethは、E1とE2の中間付近の値であって、E1とE2、-E1と-E2を適切に判別することができる値であればよい。絶対値|E|<所定の閾値Ethを満たす場合(ステップS104-YES)、選択部495は重み係数wl乗算部492から出力されたwl乗算値を減算回路43-1に出力する(ステップS105)。一方、絶対値|E|<所定の閾値Ethを満たさない場合(ステップS104-NO)、選択部495は重み係数ws乗算部493から出力されたws乗算値を減算回路43-1に出力する(ステップS106)。
 図12は、DCオフセット補償部40にオフセット値調整部49を設けた場合の効果を検証するために行った計算機シミュレーションの結果を示す図である。横軸は、コヒーレント光送信装置1から出力される信号光の強度と、光ファイバ2及びコヒーレント光受信フロントエンド部10で付与される雑音の強度との信号対雑音比(OSNR:Optical Signal-to-Noise Ratio)を示している。縦軸は、コヒーレント光受信装置3で受信した信号の品質であるQ値を示している。OSNRを変化させながら、受信信号のQ値をプロットした。送信信号は16QAMである。Q値は、受信信号のすべてのシンボルに対するQ値を平均して導出し、さらに、異なる4種類の偏波状態に対するQ値を平均して導出した。図12に示す四角70は、DCオフセット補償部40にオフセット値調整部49が備えられていない場合の計算結果を示している。図12に示すひし形71は、オフセット値調整部49が備えられている場合の計算結果を示している。図12から、DCオフセット補償部40にオフセット値調整部49を設けることで、Q値が0.4~0.5dB程度改善したことが分かる。図12は、受信信号のシンボルに応じた適切な重み係数が乗算されたDCオフセットdを用いてDCオフセット補償を行うことで、受信特性がさらに改善できることを明確に示している。
 以上のとおり、X偏波及び/又はY偏波の同相位相成分のDCオフセット補償を行うDCオフセット補償部40に、X偏波及び/又はY偏波の同相位相成分の信号に与える(減算する)DCオフセットdを、対応する直交位相成分の振幅に応じて調整するオフセット値調整部49を備えるようにしたことで、コンスタレーションの歪みをさらに補償することができ、16QAMのような直交位相振幅変調のいずれのシンボルに対しても、同程度に優れた復調性能を提供することができるようになる。
 図10に示す例では、オフセット値調整部49が、wl乗算値及びws乗算値を算出して、判定結果に応じていずれかの乗算値を出力する構成を示した。しかし、オフセット値調整部49は判定結果に応じていずれかの乗算値を算出し、乗算値を出力するように構成されてもよい。このように構成される場合のオフセット値調整部49の構成を図13に示す。図13は、オフセット値調整部49の別の構成例を示す図である。図13に示すオフセット値調整部49aは、振幅判定部494、選択部495a及び乗算部496を備える。図13では、DCオフセット補償部40-1が備えるオフセット値調整部49aを例に説明する。なお、DCオフセット補償部40-2、40-3及び40-4が備えるオフセット値調整部49aも、DCオフセット補償部40-1が備えるオフセット値調整部49aと同様の処理を行う。
 選択部495aは、振幅判定部494が出力した信号と、フィルタ回路47-1が出力するDCオフセットdとを入力とする。また、選択部495aには、予め重み係数wl及びwsが設定されている。選択部495aは、振幅判定部494から入力された信号に基づいて、重み係数wl又はwsのいずれかと、DCオフセットdとを乗算部496に出力する。具体的には、入力された信号が|E|<所定の閾値Ethを示す場合、選択部495aは重み係数wlと、DCオフセットdとを乗算部496に出力する。一方、入力された信号が|E|>所定の閾値Ethを示す場合、選択部495aは重み係数wsと、DCオフセットdとを乗算部496に出力する。
 乗算部496は、選択部495aから出力された重み係数wl又はwsのいずれかと、DCオフセットdとを入力とする。乗算部496は、入力されたDCオフセットdに対して重み係数を乗算することによって乗算値を算出する。具体的には、乗算部496は、重み係数wlと、DCオフセットdとが入力された場合、入力されたDCオフセットdに対して重み係数wlを乗算することによってwl乗算値を算出する。また、乗算部496は、重み係数wsと、DCオフセットdとが入力された場合、入力されたDCオフセットdに対して重み係数wsを乗算することによってws乗算値を算出する。乗算部496は、算出した乗算値を減算回路43-1に出力する。
 以上のように構成されることによって、オフセット値調整部49は、必ずしもwl乗算値及びws乗算値を算出する必要がない。そのため、処理負荷を低減することができる。
 なお、上記の実施形態において、DCオフセット補償部40の後に、IQクロストーク補償部50を備えるようにしているが、本発明は、当該実施の形態に限られない。IQクロストーク補償部50を補償部20に接続し、その後にDCオフセット補償部40を接続するようにしてもよい。この場合、DCオフセット補償部40が備えるサンプリング回路41-1等に代えて、IQクロストーク補償部50X、50Yとキャリア位相再生部24との間の4レーンの各々にサンプリング回路が備えられることになる。このサンプリング回路は、例えば、IQクロストーク補償部50Xの分岐回路51X-1、51X-2の前段、及びこれに対応するIQクロストーク補償部50Yの分岐回路の前段に接続されることになる。
 また、上記の実施形態において、コンスタレーション歪補償部30は、DCオフセット補償部40と、IQクロストーク補償部50の両方を備えるようにしているが、いずれか一方を備えるようにしてもよい。
 また、上記の実施形態において、局部発振レーザ11は、コヒーレント光送信装置1に適用される送信用レーザとは独立に動作しており、送信用レーザと周波数同期されていないものとするとしているが、同期がされているものに、本実施形態の構成を適用してもよい。
 また、上記の実施形態では、相関係数算出部60X-1、60X-2が、動的に仮判定が行われた同相位相変調データ成分と、直交位相変調データ成分とに基づいて、相関係数を算出するようにしているが、本発明の構成は、当該実施の形態に限られない。相関係数の時間的な変化が大きくない場合、相関係数算出部60X-1、60X-2が予め相関係数を算出し、係数乗算回路54X-1、54X-2が算出された相関係数を記憶しておくような構成であってもよい。この場合、相関係数算出部60X-1、60X-2は、IQクロストーク補償部50Xに必ずしも備えられている必要はなく、外部の演算装置が相関係数を算出するという構成であってもよい。
 上述した実施形態におけるデジタル信号処理部13をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、受信側においてコンスタレーション歪を補償することが不可欠な用途にも適用できる。
1…コヒーレント光送信装置,2…光ファイバ,3…コヒーレント光受信装置,10…コヒーレント光受信フロントエンド部,11…局部発振レーザ,12…アナログデジタル変換器,13…デジタル信号処理部,20…補償部,21…波長分散補償部,22…偏波分離・偏波モード分散補償部,23…周波数オフセット補償部,24…キャリア位相再生部,30…コンスタレーション歪補償部,40(40-1~40-4)…DCオフセット補償部,41-1…サンプリング回路,42-1…分岐回路,43-1…減算回路,44-1…変調データ成分除去部,45-1…仮判定回路,46-1…減算回路,47-1…フィルタ回路,48-1…平均化部,49、49a…オフセット値調整部,491…分岐部,492…重み係数wl乗算部,493…重み係数ws乗算部,494…振幅判定部,495、495a…選択部,496…乗算部,50…IQクロストーク補償部,50X…IQクロストーク補償部,50Y…IQクロストーク補償部,51X-1、51X-2…分岐回路,52X-1、52X-2…減算回路,53X-1、53X-2…仮判定回路,54X-1、54X-2…係数乗算回路,60X-1、60X-2…相関係数算出部,61X-1、61X-2…信号規格化回路,63X-1、63X-2…内積算出回路,64X-1、64X-2…平均化回路,90…誤り訂正復号部,100…コヒーレント光データ伝送システム

Claims (13)

  1.  レーザ光を供給する局部発振レーザと、
     多値変調された光信号を受信して、前記レーザ光に基づいて、前記光信号を復調して電気のアナログ信号に変換するコヒーレント光受信フロントエンド部と、
     前記アナログ信号をデジタル信号に変換するアナログデジタル変換器と、
     前記光信号の波長や偏波による分散の影響を補償して前記デジタル信号のキャリア位相を再生する補償部と、
     前記補償部により分散の影響が補償された前記デジタル信号に含まれる前記多値変調のコンスタレーション歪を補償するコンスタレーション歪補償部と、
     前記コンスタレーション歪が補償された前記デジタル信号の誤り訂正を行う誤り訂正復号部と、
     を備えるコヒーレント光受信装置。
  2.  前記コンスタレーション歪補償部は、
     前記コンスタレーション歪としてのDCオフセットを前記デジタル信号に対して補償するDCオフセット補償部を備える、請求項1に記載のコヒーレント光受信装置。
  3.  前記DCオフセット補償部は、
     前記デジタル信号から変調データ成分を低減し、平均化によりランダムノイズを除去して、前記デジタル信号に含まれる前記DCオフセットを抽出する平均化部と、
     前記平均化部が抽出する前記DCオフセットを、前記デジタル信号から減算する第1の減算回路と、
     を備える、請求項2に記載のコヒーレント光受信装置。
  4.  前記平均化部は、
     前記デジタル信号から前記変調データ成分を抽出する仮判定回路と、
     前記仮判定回路が抽出する前記変調データ成分を前記デジタル信号から減算する第2の減算回路と、
     前記デジタル信号から前記変調データ成分を減算した減算結果を平均化するフィルタ回路と、
     を備える、請求項3に記載のコヒーレント光受信装置。
  5.  前記DCオフセット補償部は、
     前記デジタル信号の同相位相成分の信号に含まれる前記DCオフセットを補償する場合、前記デジタル信号の直交位相成分の信号の振幅に応じた重み係数を前記平均化部が抽出する前記DCオフセットに乗算し、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合、前記デジタル信号の前記同相位相成分の信号の振幅に応じた重み係数を前記平均化部が抽出する前記DCオフセットに乗算し、前記重み係数が乗算された前記DCオフセットを前記第1の減算回路に出力するオフセット値調整部をさらに備え、
     前記第1の減算回路は、前記オフセット値調整部から出力された前記重み係数が乗算された前記DCオフセットを、前記デジタル信号から減算する、請求項3又は4に記載のコヒーレント光受信装置。
  6.  前記オフセット値調整部は、前記デジタル信号の前記同相位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記直交位相成分の信号の振幅が所定の閾値より小さいとき、又は、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記同相位相成分の信号の振幅が前記閾値より小さいとき、前記重み係数を1より大きい値とする、請求項5に記載のコヒーレント光受信装置。
  7.  前記オフセット値調整部は、前記デジタル信号の前記同相位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記直交位相成分の信号の振幅が所定の閾値以上であるとき、又は、前記デジタル信号の前記直交位相成分の信号に含まれる前記DCオフセットを補償する場合において前記デジタル信号の前記同相位相成分の信号の振幅が前記閾値以上であるとき、前記重み係数を1より小さい値とする、請求項5又は6に記載のコヒーレント光受信装置。
  8.  前記コンスタレーション歪補償部は、
     前記コンスタレーション歪みとしてのIQクロストークを前記デジタル信号の同相位相成分及び直交位相成分の信号に対して補償するIQクロストーク補償部を備える、請求項1に記載のコヒーレント光受信装置。
  9.  前記IQクロストーク補償部は、
     前記デジタル信号の前記同相位相成分の信号を仮判定して、同相位相変調データ成分を抽出する第1の仮判定回路と、
     前記デジタル信号における前記同相位相成分の前記直交位相成分の信号への漏れ込み分を、前記同相位相変調データ成分に基づいて算出する第1の係数乗算回路と、
     前記デジタル信号の前記直交位相成分の信号を仮判定して、直交位相変調データ成分を抽出する第2の仮判定回路と、
     前記デジタル信号における前記直交位相成分の前記同相位相成分の信号への漏れ込み分を、前記直交位相変調データ成分に基づいて算出する第2の係数乗算回路と、
     前記デジタル信号の前記同相位相成分の信号から前記第2の係数乗算回路の出力値を減算する第1の減算回路と、
     前記デジタル信号の前記直交位相成分の信号から前記第1の係数乗算回路の出力値を減算する第2の減算回路と、
     を備える、請求項8に記載のコヒーレント光受信装置。
  10.  前記IQクロストーク補償部は、
     前記デジタル信号の前記直交位相成分の信号に含まれる前記同相位相成分と前記同相位相成分の信号との相関を示す第1の相関係数を算出する第1の相関係数算出部と、
     前記デジタル信号の前記同相位相成分の信号に含まれる前記直交位相成分と前記直交位相成分の信号との相関を示す第2の相関係数を算出する第2の相関係数算出部と、
     を備え、
     前記第1の係数乗算回路は、前記同相位相変調データ成分に、前記第1の相関係数を乗じて出力し、
     前記第2の係数乗算回路は、前記直交位相変調データ成分に、前記第2の相関係数を乗じて出力する、請求項9に記載のコヒーレント光受信装置。
  11.  前記第1の相関係数算出部は、
     前記直交位相変調データ成分を前記直交位相変調データ成分のノルムの二乗で除算して出力する第1の信号規格化回路と、
     前記第1の信号規格化回路の出力値と、前記同相位相成分の信号との内積を算出する第1の内積算出回路と、
     前記第1の内積算出回路が算出する内積値を平均化して前記第1の相関係数を出力する第1の平均化回路と、
     を備え、
     前記第2の相関係数算出部は、
     前記直交位相変調データ成分を前記直交位相変調データ成分のノルムの二乗で除算して出力する第2の信号規格化回路と、
     前記第2の信号規格化回路の出力値と、前記直交位相成分の信号との内積を算出する第2の内積算出回路と、
     前記第2の内積算出回路が算出する内積値を平均化して前記第2の相関係数を出力する第2の平均化回路と、
     を備える、請求項10に記載のコヒーレント光受信装置。
  12.  前記コンスタレーション歪補償部は、
     前記コンスタレーション歪としてのDCオフセットを前記デジタル信号に対して補償するDCオフセット補償部と、
     前記コンスタレーション歪みとしてのIQクロストークを前記デジタル信号の同相位相成分及び直交位相成分の信号に対して補償するIQクロストーク補償部と、を備える、請求項1に記載のコヒーレント光受信装置。
  13.  前記コンスタレーション歪補償部は、
     前記補償部の後段に前記DCオフセット補償部を備え、前記DCオフセット補償部の後段に前記IQクロストーク補償部を備えるか、又は、前記補償部の後段に前記IQクロストーク補償部を備え、前記IQクロストーク補償部の後段に前記DCオフセット補償部を備える、請求項12に記載のコヒーレント光受信装置。
PCT/JP2016/080700 2015-10-19 2016-10-17 コヒーレント光受信装置 WO2017069086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/748,892 US10389452B2 (en) 2015-10-19 2016-10-17 Coherent optical reception device
CA2996407A CA2996407C (en) 2015-10-19 2016-10-17 Coherent optical reception device
EP16857401.0A EP3367594B1 (en) 2015-10-19 2016-10-17 Coherent light-receiving device
CN201680050181.6A CN107925485B (zh) 2015-10-19 2016-10-17 相干光接收装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015205604 2015-10-19
JP2015-205604 2015-10-19
JP2016073735A JP6288143B2 (ja) 2015-10-19 2016-03-31 コヒーレント光受信装置
JP2016-073735 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017069086A1 true WO2017069086A1 (ja) 2017-04-27

Family

ID=58557045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080700 WO2017069086A1 (ja) 2015-10-19 2016-10-17 コヒーレント光受信装置

Country Status (1)

Country Link
WO (1) WO2017069086A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118911A1 (en) * 2017-12-14 2019-06-20 Elenion Technologies, Llc Coherent optical receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253655A (ja) * 2011-06-06 2012-12-20 Fujitsu Ltd 受信機及び相互位相変調緩和方法
JP2014509121A (ja) * 2011-01-22 2014-04-10 ヴィアサット,インコーポレイテッド デジタル復調器アーキテクチャ
WO2014162649A1 (ja) * 2013-04-04 2014-10-09 日本電気株式会社 デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
WO2015136877A1 (ja) * 2014-03-10 2015-09-17 日本電気株式会社 光送信機、それを用いた光通信システムおよび光送信方法
WO2015154962A1 (en) * 2014-04-07 2015-10-15 Alcatel Lucent Transmitter quadrature imbalance compensation at a coherent optical receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509121A (ja) * 2011-01-22 2014-04-10 ヴィアサット,インコーポレイテッド デジタル復調器アーキテクチャ
JP2012253655A (ja) * 2011-06-06 2012-12-20 Fujitsu Ltd 受信機及び相互位相変調緩和方法
WO2014162649A1 (ja) * 2013-04-04 2014-10-09 日本電気株式会社 デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
WO2015136877A1 (ja) * 2014-03-10 2015-09-17 日本電気株式会社 光送信機、それを用いた光通信システムおよび光送信方法
WO2015154962A1 (en) * 2014-04-07 2015-10-15 Alcatel Lucent Transmitter quadrature imbalance compensation at a coherent optical receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019118911A1 (en) * 2017-12-14 2019-06-20 Elenion Technologies, Llc Coherent optical receiver
US10567087B2 (en) 2017-12-14 2020-02-18 Elenion Technologies, Llc Coherent optical receiver

Similar Documents

Publication Publication Date Title
US8184992B2 (en) Optical field receiver and optical transmission system
US9112614B2 (en) Correction of a local-oscillator phase error in a coherent optical receiver
JP6288143B2 (ja) コヒーレント光受信装置
US9166682B2 (en) Carrier phase estimator for non-linear impairment monitoring and mitigation in coherent optical systems
US8340534B2 (en) Side band pilot tone for digital signal processing in polarization multiplexed coherent optical communication system
WO2012004890A1 (ja) 光受信器及び光伝送システム
JP5824883B2 (ja) 受信機及び相互位相変調緩和方法
US10014954B2 (en) Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
US8942573B2 (en) Blind equalization algorithms for adaptive polarization recovery and PMD compensation
EP2583424A1 (en) Method for phase and oscillator frequency estimation
US20150063813A1 (en) Clock recovery method for ultra dense wdm systems
US9143265B2 (en) Optical polarization multilevel signal receiving apparatus, optical polarization multilevel signal transmitting apparatus, and optical polarization multilevel signal transmission apparatus
Kikuchi et al. Incoherent 32-level optical multilevel signaling technologies
US9871597B2 (en) Apparatus and method for blind LOFO estimation in coherent optical receiver
WO2017069086A1 (ja) コヒーレント光受信装置
RU2664019C9 (ru) Устройство и способ адаптивной компенсации искажений и восстановления несущей сигнала для когерентных приёмников
Morsy-Osman et al. Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems
EP4099584B1 (en) Mitigation of equalization-enhanced phase noise in a coherent optical receiver
JP5750177B1 (ja) 光受信装置、光通信システムおよび偏波間クロストーク補償方法
Fatadin et al. DSP techniques for 16-QAM coherent optical systems
Pakala Kalman Filtering for Mitigation of Optical Fiber Transmission Impairments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2996407

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE