WO2014162649A1 - デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法 - Google Patents

デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法 Download PDF

Info

Publication number
WO2014162649A1
WO2014162649A1 PCT/JP2014/000760 JP2014000760W WO2014162649A1 WO 2014162649 A1 WO2014162649 A1 WO 2014162649A1 JP 2014000760 W JP2014000760 W JP 2014000760W WO 2014162649 A1 WO2014162649 A1 WO 2014162649A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
optical
optical modulator
signal
modulator
Prior art date
Application number
PCT/JP2014/000760
Other languages
English (en)
French (fr)
Inventor
安部 淳一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14780356.3A priority Critical patent/EP2983312B1/en
Priority to JP2015509874A priority patent/JP6330802B2/ja
Priority to US14/778,208 priority patent/US9787403B2/en
Publication of WO2014162649A1 publication Critical patent/WO2014162649A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • H04B10/588Compensation for non-linear transmitter output in external modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present invention relates to a digital optical transmitter, an optical communication system using the same, and a digital optical transmission method, and more particularly to a digital optical transmitter including a Mach-Zehnder optical modulator, an optical communication system using the same, and a digital optical transmission method. .
  • optical fiber communication system it is important to reduce the installation cost of an optical fiber that is an optical transmission line and to increase the transmission band utilization efficiency per optical fiber. For this reason, the importance of digital coherent optical communication technology using a digital optical transceiver is increasing.
  • Digital coherent optical communication compensates for waveform distortion such as chromatic dispersion compensation by performing digital signal processing (DSP) on the transmission side or reception side.
  • DSP digital signal processing
  • digital coherent optical communication performs compensation with higher accuracy than analog optical transceivers using modulation schemes such as OOK (on-off keying) that are generally applied in large-capacity optical communication systems. be able to. Therefore, it is possible to improve the performance of the communication device and reduce the cost.
  • An optical communication device applied to digital coherent optical communication is disclosed in Patent Documents 1 and 2, for example.
  • FIG. 19 shows a block diagram of a general optical transmitter applied to digital coherent optical communication.
  • multilevel modulation using QPSK (quadture phase shift keying) modulation, QAM (quadture amplitude modulation) modulation, etc. instead of binary data modulation as in an analog transmitter, Arbitrary waveform modulation using a D / A (digital to analog) converter output is performed in order to perform equalization.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • Such a digital optical transmitter generally uses a Mach-Zehnder (hereinafter referred to as MZ) optical modulator.
  • MZ Mach-Zehnder
  • the MZ type optical modulator is formed by incorporating an optical waveguide type optical phase modulator into an optical waveguide type Mach-Zehnder (hereinafter, MZ) interferometer.
  • MZ optical waveguide type Mach-Zehnder
  • the MZ type optical modulator performs various optical modulations such as intensity modulation and phase modulation by adjusting the applied voltage and the configuration of the interferometer.
  • the present invention has been made in view of the above problems, and even when waveform distortion is applied to the optical modulator, the quality of the output transmission signal can be suitably maintained and the system performance can be maintained. It is an object of the present invention to provide a digital optical transmitter, an optical communication system using the same, and a digital optical transmission method.
  • a digital optical transmitter uses pre-equalization coefficient calculation means for generating a conversion function, and the generated conversion function, from the first data and the second data, Pre-equalization signal generating means for generating the third data and the fourth data, a branching unit for dividing the optical signal into two, and a first for optically modulating one of the optical signals divided based on the third data
  • Pre-equalization signal generating means for generating the third data and the fourth data
  • a branching unit for dividing the optical signal into two, and a first for optically modulating one of the optical signals divided based on the third data
  • a conversion function that adds the first data to the fourth data and the second data to the third data so as to compensate for waveform distortion caused by the optical modulator. It is characterized by being.
  • an optical communication system uses the above digital optical transmitter.
  • a digital optical transmission method includes a branching unit that divides an optical signal into two parts, and a first optical modulator that optically modulates one optical signal divided based on third data.
  • a second optical modulator that optically modulates the other optical signal divided based on the fourth data, and an optical modulator including a coupling unit that couples and outputs the two optical signals that have been optically modulated
  • a conversion function for compensating for signal distortion generated in the optical modulator is generated, and a third function is generated from the first data and the second data by using the generated conversion function.
  • the data and the fourth data are generated, and the conversion function applies the first data to the fourth data and the second data to the third data so as to compensate for waveform distortion generated in the optical modulator. It is a function to be given.
  • the quality of the output transmission signal can be suitably maintained and the system performance can be maintained.
  • FIG. 10 is a diagram for explaining the characteristics of an MZ type IQ optical modulator 209 according to a second embodiment. These are optical signals E + and E ⁇ output from the MZ type IQ optical modulator 209 according to the second embodiment.
  • FIG. 10 is a diagram for explaining the characteristics of an optical signal output from an MZ type IQ optical modulator 209 according to the second embodiment.
  • FIG. 6 is a diagram showing an example in which the characteristics of an optical signal output from an MZ type IQ optical modulator 209 according to the second embodiment are linearly approximated. It is an example of filter functions f1 to f4 of the pre-equalization signal generation unit 202 according to the second embodiment.
  • FIG. 10 shows other optical signals E + and E ⁇ output from the MZ type IQ optical modulator 209 according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example in which characteristics of an optical signal output from an MZ type IQ optical modulator 209 according to the second embodiment are approximated. It is an example of filter functions f1 to f4 of the pre-equalization signal generation unit 202 according to the second embodiment. It is an example of filter functions f1 to f4 of the pre-equalization signal generation unit 202 according to the second embodiment. It is an example of other filter functions f1 to f4 of the pre-equalization signal generation unit 202 according to the second embodiment.
  • FIG. 10 is a diagram for explaining a calculation method of filter functions f1 to f4 of a pre-equalization coefficient calculation unit 203 according to a modification of the second embodiment.
  • FIG. 10 is a diagram for explaining a calculation method of filter functions f1 to f4 of a pre-equalization coefficient calculation unit 203 according to a modification of the second embodiment.
  • It is a block block diagram of the digital optical transmitter / receiver 1600 which concerns on 3rd Embodiment.
  • It is a block block diagram of the digital optical transmitter-receiver 1700 which concerns on 4th Embodiment.
  • It is a block block diagram of the digital optical transmitter / receiver 1800 which concerns on 5th Embodiment.
  • It is a block block diagram of a general digital optical transceiver.
  • FIG. 1 shows a block diagram of the optical transceiver according to the present embodiment.
  • the digital optical transmitter 100 includes a pre-equalization signal generation unit 101, a pre-equalization coefficient calculation unit 102, and an optical modulator 103.
  • the first data and the second data encoded according to the modulation method of the transmission signal are input to the pre-equalization signal generation means 101.
  • the pre-equalization signal generation unit 101 converts the input first data and second data into third data and fourth data using the conversion function input from the pre-equalization coefficient calculation unit 102. And output to the first optical modulator 105 and the second optical modulator 106 of the optical modulation unit 103.
  • the pre-equalization signal generation unit 101 according to the present embodiment performs the above conversion process by digital signal processing.
  • the pre-equalization coefficient calculation unit 102 calculates a conversion function corresponding to the transmission condition and outputs the conversion function to the pre-equalization signal generation unit 101.
  • the pre-equalization coefficient calculator 102 calculates a pre-equalization coefficient for compensating for waveform distortion generated in the optical modulator 103 as a conversion function. Based on this conversion coefficient, the pre-equalization signal generation unit 101 generates the third data by adding the second data corresponding to the extinction ratio and the applied voltage of the optical modulator 103 to the first data. Furthermore, the pre-equalization signal generation means 101 generates the fourth data by adding the first data corresponding to the extinction ratio of the optical modulator 103 and the applied voltage to the second data based on the conversion coefficient. To do.
  • the optical modulator 103 generates and outputs a transmission signal. As shown in FIG. 1, the optical modulator 103 includes a branching unit 104, a first optical modulator 105, a second optical modulator 106, and a coupling unit 107.
  • the branching unit 104 divides the optical signal of the carrier wave output from the light source (not shown) into two, and outputs one to the first optical modulator 105 and the other to the second optical modulator 106. It is desirable to use continuous light as the optical signal of the carrier wave.
  • the first optical modulator 105 optically modulates one optical signal input from the branching unit 104 based on the third data input from the pre-equalization signal generation unit 102, and outputs the first optical signal as the first optical signal.
  • the second optical modulator 106 optically modulates the other optical signal input from the branching unit 104 based on the fourth data input from the pre-equalization signal generating unit 102, and outputs the second optical signal as a second optical signal.
  • the first optical signal is an I-ch (in-phase channel) optical signal
  • the second optical signal is a Q-ch (quadture-channel) optical signal.
  • the combining unit 107 combines the first optical signal input from the first optical modulator 105 and the second optical signal input from the second optical modulator 106 with a predetermined phase difference ⁇ . And output as a transmission signal.
  • the first optical modulator 105 is generated by giving second data corresponding to the characteristics of the optical modulator 103 to the first data from the pre-equalization signal generation unit 102.
  • Third data is input.
  • the second optical modulator 106 is generated by adding the first data corresponding to the characteristics of the optical modulator 103 to the second data from the pre-equalization signal generation unit 102. Data is entered.
  • the waveform distortion peculiar to the optical modulator 103 is compensated, and the quality is improved.
  • a suitably kept transmission signal is output.
  • an encoding unit that performs encoding according to the modulation scheme of the transmission signal on the transmission data can be arranged before the pre-equalization signal generation unit 101.
  • the encoding performed by this encoding unit includes the entire encoding process performed by a general transmitter, such as framer processing, FEC (forward error correction), and precoder, and is limited to encoding for a specific application. It is not a thing.
  • FIG. 2 shows a block diagram of the optical transceiver according to the present embodiment.
  • the digital optical transmitter 200 includes an encoding unit 201, a pre-equalization signal generation unit 202, a pre-equalization coefficient calculation unit 203, a front signal processing unit 204, and an optical modulation unit 205.
  • the optical modulation unit 205 includes a D / A converter (DAC: digital to analog converter) 206, a driver amplifier 207, a light source 208, and an MZ type IQ optical modulator 209.
  • the MZ type IQ optical modulator 209 includes an I-ch optical modulator 210, a Q-ch optical modulator 211, and a ⁇ / 2 phase shifter 212. .
  • FIG. 2 when there are a plurality of units having the same function, they are distinguished by adding -1, -2, etc. to the reference numerals.
  • DAC 206-1 when there are a plurality of units having the same function, they are distinguished by adding -1, -2, etc. to the reference numerals.
  • DAC 206-1 when there are a plurality of units having the same function, they are distinguished by adding -1, -2, etc. to the reference numerals.
  • DAC 206-1 DAC 206-2
  • DAC 206 unless there is a particular need for distinction.
  • Transmission data is input to the encoding unit 201.
  • the encoding unit 201 performs encoding according to the transmission signal modulation scheme on the input transmission data, and outputs the transmission data to the pre-equalization signal generation unit 202 as first data and second data.
  • the pre-equalization signal generation unit 202 Based on the coefficient information from the pre-equalization coefficient calculation unit 203, the pre-equalization signal generation unit 202 generates third data and fourth data from the input first data and second data, respectively. And output to the front signal processing unit 204.
  • the pre-equalization coefficient calculation unit 203 calculates coefficient information for canceling the waveform distortion applied by the optical modulation unit 205 in advance and outputs the coefficient information to the pre-equalization signal generation unit 202. Detailed operations of the pre-equalization signal generation unit 202 and the pre-equalization coefficient calculation unit 203 will be described later.
  • the front signal processing unit 204 performs predetermined signal processing on the two series of data of the input third data and fourth data, and the light modulation unit as 3 ′ data and 4 ′ data, respectively. Output to 205.
  • the front signal processing unit 204 converts the front end such as the DAC 206, the driver amplifier 207, the I-ch optical modulator 210, and the Q-ch optical modulator 211 into the third data and the fourth data. Correction for linearizing the nonlinear characteristic of the device and signal processing for correcting the frequency characteristic are performed.
  • the front signal processing unit 204 will be described in detail.
  • An example of a block diagram of the front signal processing unit 204 is shown in FIG.
  • the front signal processing unit 204 in FIG. 3 includes linearizers 301-1 and 301-2 and band compensation filters 302-1 and 302-2.
  • the third data input to the linearizer 301-1 is converted into a data string for linearizing the nonlinear characteristic of the optical modulation unit 205 and output to the band compensation filter 302-1.
  • the data sequence input to the band compensation filter 302-1 is corrected to a data sequence (third 'data) for optimizing the frequency characteristics of the optical modulation unit 205 and output to the optical modulation unit 205.
  • the third data input to the linearizer 301-1 is converted into a data string for linearizing the nonlinear characteristic of the optical modulation unit 205 and output to the band compensation filter 302-1.
  • the data sequence input to the band compensation filter 302-1 is corrected to a data sequence (third 'data) for optimizing the frequency characteristics of the optical modulation unit 205 and output to
  • the fourth data input to the linearizer 301-2 is converted into a data string for linearizing the nonlinear characteristic of the light modulation unit 205.
  • the converted data sequence is further corrected to a data sequence (fourth data) for optimizing the frequency characteristics of the optical modulation unit 205 in the band compensation filter 302-2 and output to the optical modulation unit 205. .
  • the digital optical transmitter 200 can improve the yield of used parts, and can reduce the cost.
  • the front signal processing unit 204 includes the linearizer 301 and the band compensation filter 302, but the configuration of the front signal processing unit 204 is not limited to this.
  • the front signal processing unit 204 further includes a linear filter such as an FIR (finite impulse response) / IIR (infinite impulse response) filter, a non-linear filter, a clipping processing unit, or the like according to system requirements. Can also be prepared.
  • a linear filter such as an FIR (finite impulse response) / IIR (infinite impulse response) filter, a non-linear filter, a clipping processing unit, or the like according to system requirements. Can also be prepared.
  • the arrangement position it is not necessary to arrange the front signal processing unit 204 after the pre-equalization signal generation unit 202.
  • the front signal processing unit 204 can be arranged in the front stage or both the front stage and the rear stage of the pre-equalization signal generation unit 202.
  • non-linear characteristic is the saturation characteristic of the DAC 206 and the driver amplifier 207.
  • nonlinearity is caused by the fact that the phase change of the optical signal with respect to the drive applied voltage V mod of the I-ch optical modulator 210 or the Q-ch optical modulator 211 is sinusoidal. Characteristics. In this case, the phase change of the optical signal is proportional to, for example, sin (kV mod ) or cos (kV mod ) (k is a constant). These non-linear characteristics do not have to be generated independently, and generally may be generated in combination.
  • the 3 ′ data and the 4 ′ data input to the optical modulation unit 205 are analog signals proportional to the digital signal amplitudes of the 3 ′ data and the 4 ′ data in the DACs 206-1 and 206-2. And output to the driver amplifiers 207-1 and 207-2.
  • the analog signals input to the driver amplifiers 207-1 and 207-2 are amplified to an appropriate electric signal amplitude in the driver amplifiers 207-1 and 207-2, respectively, and then MZ type IQ optical modulation is used as a drive signal. Is output to the device 209.
  • the optical signal output from the light source 208 is input to the MZ type IQ optical modulator 209.
  • the MZ type IQ optical modulator 209 includes an I-ch optical modulator 210, a Q-ch optical modulator 211, and a ⁇ / 2 phase shifter 212.
  • the optical signal from the light source 208 input to the MZ type IQ optical modulator 209 is branched into two optical signals passing through the I-ch optical waveguide and the Q-ch optical waveguide along the optical waveguide.
  • the light passes through the I-ch optical modulator 210, and the other passes through the Q-ch optical modulator 211 and the ⁇ / 2 phase shifter 212.
  • the optical signals passing through the I-ch optical modulator 210 and the Q-ch optical modulator 211 correspond to the drive signals (electrical signals) input from the driver amplifiers 207-1 and 207-2. Light modulation is applied. Further, the phase of the optical signal that has passed through the Q-ch optical modulator 211 changes by ⁇ / 2 in the ⁇ / 2 phase shifter 212. Then, the light that has passed through the I-ch optical modulator 210 and the optical signal that has passed through the Q-ch optical modulator 211 and the ⁇ / 2 phase shifter 212 are combined and output from the MZ type IQ optical modulator 209. Output as a transmission signal.
  • FIG. 4 An example of a configuration diagram of the pre-equalization signal generation unit 202 and the pre-equalization coefficient calculation unit 203 is shown in FIG. 4, and a diagram for explaining the characteristics of the MZ type IQ optical modulator 209 is shown in FIG.
  • the pre-equalization signal generation unit 202 includes a butterfly circuit using four conversion filters 401-1 to 401-4 and two adders 402-1 and 402-2. .
  • the filter functions f1 to f4 of the conversion filters 401-1 to 401-4 are set based on the coefficient information input from the pre-equalization coefficient calculation unit 203.
  • the data string representing the I-ch signal is a I (first data)
  • the data string representing the Q-ch signal is a Q (second data)
  • the output from the pre-equalization signal generation unit 202 If the data strings are a ′ I (third data) and a ′ Q (fourth data), they can be expressed as in equation (1). ... (1) Formula
  • f1 function f3 to a I, f2, f4 and has been described as a function of a Q, is not necessarily limited to the function of a I or a Q, when a constant or a I, It can also be a function of both a Q (f (a I , a Q )).
  • a ′ I (third data) and a ′ Q (fourth data) in Expression (1) are input to the front signal processing unit 204.
  • an MZ type optical modulator constituted by an upper phase modulator 501 and a lower phase modulator 502 can be applied as the MZ type IQ optical modulator 209.
  • the optical signal exp (j ⁇ t) (j: imaginary unit, ⁇ : optical signal frequency) input to the MZ type IQ optical modulator 209 is branched into two optical signals.
  • the electric field strength of the optical signal passing through the upper phase modulator 501 is A + exp (j ⁇ t)
  • the electric field strength of the optical signal passing through the lower phase modulator 502 is A ⁇ exp (j ⁇ t).
  • the phase rotation amount given by the upper phase modulator 501 is given by exp (j ⁇ V / 2V ⁇ ), and the phase rotation amount given by the lower phase modulator 502 is given by exp ( ⁇ j ⁇ V / 2V ⁇ ).
  • V is a driving voltage for driving the upper phase modulator 501 and the lower phase modulator 502
  • the V [pi is the applied voltage phase rotation amount becomes [pi.
  • FIG. 6A shows E + and E ⁇ when A + ⁇ A ⁇
  • the black line represents E +
  • the gray line represents E ⁇ .
  • FIG. 7 shows a constellation when a 4-bit (16 tone) precision data string is input for each of I and Q when the ER of the upper phase modulator 501 and the lower phase modulator 502 is 15 dB.
  • the output waveform from the MZ type IQ optical modulator 209 is distorted.
  • this waveform distortion is uniquely determined using ER as a parameter if ER is determined.
  • FIG. 8 shows a conceptual diagram of the waveform distortion (corresponding to the phase error in FIG. 6B).
  • the dotted line in FIG. 8 illustrates the distortion amount ⁇ a Q of the Q-ch data output from the optical modulation unit 205 when the I-ch data string a I is input to the pre-equalization signal generation unit 202. is there.
  • linear interpolation is performed by linearly approximating the phase error.
  • / ER I ) is used as an approximate expression corresponding to a I and the distortion amount ⁇ a Q.
  • the pre-equalization coefficient calculation unit 203 calculates filter functions f1 to f4 for making ⁇ a Q zero, and the calculated filter functions f1 to f4 are converted into conversion filters 401-1 to 401-1 of the pre-equalization signal generation unit 202.
  • waveform distortion generated in the light modulation unit 205 can be corrected.
  • the correction amounts can be calculated without performing complicated calculations.
  • FIG. 9 shows the configuration of the pre-equalization signal generation unit 202 when the linear approximation of FIG. 8 is used.
  • ) / ER Q , f3 ⁇ k I (1 ⁇
  • ) / ER I and f4 1 are set.
  • the correction signals a ′ I (third data) and a ′ Q (fourth data) at this time are given by the equation (2) by fitting to the above-described equation (1). ... (2) formula
  • ER I and ER Q are extinction ratios of the I-ch optical modulator 210 and the Q-ch optical modulator 211 shown in FIG. 2, respectively.
  • K I and k Q are adjustment coefficients for adjusting the deviation from the ideal correction associated with the linear approximation and other device characteristics in FIG. 7, and are adjusted so that the waveform of the transmitted light is suitable.
  • a ′ I (third data) is generated by adding a Q (second data) corresponding to ER to a I (first data).
  • a ′ Q (fourth data) is generated by adding a I (first data) corresponding to ER to a Q (second data).
  • FIG. 10A shows E + and E ⁇ when V ⁇ + ⁇ V ⁇
  • the black line represents E +
  • the gray line represents E ⁇
  • the waveform distortion can be approximated by a simple primary or secondary calculation.
  • the pre-equalization coefficient calculation unit 203 calculates filter functions f1 to f4 for making ⁇ a Q zero using an approximate expression, and the calculated filter functions f1 to f4 are converted by the pre-equalization signal generation unit 202.
  • the filters 401-1 to 401-4 the waveform distortion generated in the light modulation unit 205 can be corrected.
  • FIG. 12 shows the configuration of the pre-equalization signal generation unit 202 when the linear approximation (dotted line) in FIG. 11 is applied.
  • , f3 ⁇ I
  • , f4 1 is set.
  • the correction signals a ′ I (third data) and a ′ Q (fourth data) at this time are given by the equation (3) by fitting to the above-described equation (1). ... (3) formula
  • ⁇ I and ⁇ Q are ⁇ values of the I-ch optical modulator 210 and the Q-ch optical modulator 211 shown in FIG. 2, respectively.
  • FIG. 13A shows a configuration of the pre-equalization signal generation unit 202 when the pre-equalization signal generation of FIGS. 9 and 12 is continuously performed.
  • data string a I and a Q input is subjected waveform distortion compensation by ⁇ comparable to FIG. 12, after being outputted as a 'I and a' Q, same quenching and 9 Waveform distortion compensation due to the ratio degradation is performed and output as a ′′ I and a ′′ Q.
  • the relationship between a I and a Q and a ′′ I and a ′′ Q at this time is obtained by substituting Equation (2) into Equation (3), and 1 / ER I , 1 / ER Q , ⁇ I and ⁇ IQ are sufficiently small.
  • An approximation is performed in consideration of the value, and a synthesis formula is obtained, which is given by formula (4). ... (4)
  • , f3 ⁇ k I / ER I ⁇ ( ⁇ I ⁇ k I / ER I )
  • , f4 1 can also be set.
  • FIG. 13B shows the configuration of the pre-equalization signal generation unit 202 at this time.
  • the approximation of the synthesis formula is not limited to the approximation of formula (4).
  • the coefficient of the filter function to be set can be modified so that the transmission waveform is suitable according to parameters such as 1 / ER I , 1 / ER Q , ⁇ I , and ⁇ IQ .
  • a 1 to a k are coordinates when the range that the first data (data string a I ) can take is segmented, and b 1 to b k are waveform distortions at the coordinates.
  • the compensation amount can be determined by linear interpolation at the middle coordinates of the segment. That is, the compensation amount in the data input value a 1 + ⁇ n (a m ⁇ a 1 ) that internally divides (a 1 , b 1 ) and (a m , b m ) (where l ⁇ m) into ⁇ n: 1 ⁇ n Is given by b 1 + ⁇ n (b m ⁇ b 1 ).
  • the correction amount d I for the second data can also be determined by applying a similar method. That is, when the range of values taken by c Q is segmented and c 1 to c j and the waveform distortion at these coordinates is d 1 to d j , (c p , d p ) and (c q , D q ) (where p ⁇ q) is internally divided into ⁇ r: 1 ⁇ r, the compensation amount at the data input value c p + ⁇ r (c q ⁇ c p ) is d p + ⁇ r (d q ⁇ d p ) Given in.
  • the pre-equalization coefficient calculation unit 203 sets (a 1 , b 1 ) to (a k , b k ) and (c 1 , d 1 ) to (c j , d j ) set in advance at the segment boundaries. information based on the), determined by calculating a filter function f1 ⁇ f4 at any a I or c Q.
  • FIG. 15 shows an example of segmentation when waveform distortion having an arbitrary shape occurs.
  • FIG. 16 shows a block configuration diagram of the optical transceiver according to the present embodiment.
  • the digital optical transmitter 1600 according to the present embodiment includes a signal quality monitor 1601 and a waveform distortion amount detection unit 1602 in addition to the digital optical transmitter 200 according to the second embodiment of FIG.
  • the same components as those of the digital optical transmitter 200 of FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the signal quality monitor 1601 monitors the transmission signal from the light modulation unit 205.
  • a suitable monitoring method can be selected according to the type of transmission signal and generated distortion, such as a waveform monitor, a spectrum monitor, an error rate monitor, a constellation monitor, and a power monitor.
  • the waveform distortion detection unit 1602 detects the waveform distortion amount based on the monitor signal from the waveform quality monitor 1601 and outputs the detected waveform distortion amount to the pre-equalization coefficient calculation unit 203.
  • pre-equalization by the pre-equalization signal generation unit 202 is adaptively performed even when waveform distortion that varies with time is added to the transmission signal. Can do. Therefore, it is possible to always transmit a high-quality transmission signal.
  • the waveform distortion amount from the waveform distortion amount detection unit 1602 is not necessarily set in the pre-equalization coefficient calculation unit 203 in a feedback manner.
  • the initial value of the waveform distortion amount is set in advance in advance, and when a certain amount of waveform distortion occurs due to long-term fluctuation due to secular change or the like, the setting value of the pre-equalization coefficient calculation unit 203 is set. It can also be updated. In this case, the signal quality of the transmission signal can be easily maintained without performing complicated control.
  • FIG. 17 shows a block diagram of the optical transceiver according to this embodiment.
  • a digital optical transmitter 1700 in FIG. 17 is obtained by arranging a LUT (lookup table) 1701 in place of the pre-equalization coefficient calculator 200 in the digital optical transmitter 200 in FIG.
  • LUT lookup table
  • the same components as those of the digital optical transmitter 200 of FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • filter functions f1 to f4 of the conversion filters 401-1 to 401-4 are registered for each of various waveform distortion amounts.
  • the LUT 1701 extracts the optimum filter functions f 1 to f 4 corresponding to the waveform distortion applied in the optical modulation unit 205 and outputs them to the pre-equalization signal generation unit 202.
  • the digital optical transmitter 1700 can set the filter functions f1 to f4 of the pre-equalization signal generation unit 202 without calculating the pre-equalization coefficient. Therefore, the digital optical transmitter 1700 according to this embodiment can perform high-speed control with a simpler configuration, and can suppress an increase in circuit scale and power consumption.
  • FIG. 18 shows a block diagram of the optical transceiver according to this embodiment.
  • the digital optical transmitter 1800 according to the present embodiment includes a direct current (DC) offset compensation amount calculation means 1801 and an adder 1802 in addition to the digital optical transmitter 100 according to the first embodiment of FIG. Prepare.
  • DC direct current
  • the same components as those of the digital optical transmitter 100 of FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the DC offset compensation amount calculation means 1801 calculates a DC offset amount to be added to the third data and the fourth data, and adds an adder 1802-1 and an adder 1802-2. To adjust the DC offset amount of the third data and the fourth data. At this time, the DC offset amount to be added to the third data is calculated corresponding to the waveform distortion generated in the second optical modulator, and the DC offset amount to be added to the fourth data is calculated by the first optical modulator. Calculation is performed corresponding to the generated waveform distortion. In this case, more accurate waveform distortion compensation can be easily performed.
  • the digital optical transmitter also outputs a pre-equalization signal by a DSP even when a multi-level modulation signal such as QAM or a pre-equalization signal using a complicated transmission waveform is used.
  • a multi-level modulation signal such as QAM or a pre-equalization signal using a complicated transmission waveform is used.
  • the performance required for the optical modulator and the analog front-end device can be relaxed, the yield of used parts can be improved, and a low-cost digital optical transmitter can be provided.
  • the present invention can be applied not only to communication networks for cores and metros but also to all communication networks using light.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明のデジタル光送信機は、光変調器で生じる波形歪みを補償するための変換関数を生成する予等化係数演算手段、生成された変換関数を用いて第1のデータ及び第2のデータを予等化処理して第3のデータ及び第4のデータを出力する予等化信号生成手段、および、光変調器を備える。ここで、変換関数により、第1のデータが光変調器の特性に応じて第4のデータへ付与されると共に第2のデータが光変調器の特性に応じて第3のデータへ付与される。

Description

デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
 本発明はデジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法に関し、特に、マッハツェンダ型光変調器を備えたデジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法に関する。
 インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴い、長距離大容量かつ高信頼な光ファイバ通信システムの導入が進んでいる。光ファイバ通信システムにおいては、光伝送路である光ファイバの敷設コスト低減や、光ファイバ1本当たりの伝送帯域利用効率を高めることが重要である。このため、デジタル光送受信機を用いたデジタルコヒーレント光通信技術の重要性が増している。
 デジタルコヒーレント光通信は、波長分散補償などの波形歪みを、送信側あるいは受信側においてデジタル信号処理(DSP:digital signal processing)を行うことによって補償する。これにより、デジタルコヒーレント光通信は、大容量光通信システムにおいて一般的に応用されているOOK(on-off keying)などの変調方式を用いたアナログ光送受信機と比べて、補償を高精度に行うことができる。従って、通信装置の性能向上、低コスト化などを実現することができる。デジタルコヒーレント光通信に適用される光通信装置は、例えば、特許文献1、2に開示されている。
 デジタルコヒーレント光通信に適用される、一般的な光送信機のブロック構成図を図19に示す。図19のデジタル光送信機においては、アナログ送信機のような2値によるデータ変調ではなく、QPSK(quadrature phase shift keying)変調、QAM(quadrature amplitude modulation)変調等を用いた多値変調や、予等化などを行うためにD/A(digital to analog)変換器出力を用いた任意波形変調等が行われる。
 こうしたデジタル光送信機においては、一般的に、マッハツェンダ(以下MZ:Mach-Zehnder)型光変調器が用いられる。MZ型光変調器は、光導波路型のマッハツェンダ(以下MZ:Mach-Zehnder)型干渉計に光導波路型の光位相変調器を組み込むことによって形成される。MZ型光変調器は、印加電圧と干渉計の構成を調整することにより、強度変調や位相変調などの種々の光変調を行う。
特開2009-171634号公報 国際公開第2012/108421号
 しかしながら、MZ型光変調器を適用したデジタル光送信機においては、QAMなどの多値変調信号や複雑な送信波形を用いる予等化信号を用いた場合、MZ型光変調器を構成する干渉計の不完全性などによって送信波形が歪む。この場合、結果的にシステムの受信特性が劣化する。
 本発明は上記の課題に鑑みてなされたものであり、光変調器において波形歪みが付与されてしまう場合でも、出力される送信信号の品質を好適に保ち、システム性能を維持することが可能なデジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法を提供することを目的とする。
 上記目的を達成するために本発明に係るデジタル光送信機は、変換関数を生成する予等化係数演算手段と、生成された変換関数を用いて、第1のデータ及び第2のデータから、第3のデータ及び第4のデータを生成する予等化信号生成手段と、光信号を2分割する分岐部、第3のデータに基づいて分割された一方の光信号を光変調する第1の光変調器、第4のデータに基づいて分割された他方の光信号を光変調する第2の光変調器、及び、光変調した2つの光信号を結合して出力する結合部を備えた光変調器と、を備え、変換関数は、光変調器で生じる波形歪みを補償するように、第1のデータを第4のデータへ付与すると共に第2のデータを第3のデータへ付与する関数であることを特徴とする。
 上記目的を達成するために本発明に係る光通信システムは、上記のデジタル光送信機を用いることを特徴とする。
 上記目的を達成するために本発明に係るデジタル光送信方法は、光信号を2分割する分岐部、第3のデータに基づいて分割された一方の光信号を光変調する第1の光変調器、第4のデータに基づいて分割された他方の光信号を光変調する第2の光変調器、及び、光変調した2つの光信号を結合して出力する結合部を備えた光変調器を用いたデジタル光送信方法であって、光変調器で生じる信号歪みを補償するための変換関数を生成し、生成した変換関数を用いて、第1のデータ及び第2のデータから、第3のデータ及び第4のデータを生成し、変換関数は、光変調器で生じる波形歪みを補償するように、第1のデータを第4のデータへ付与すると共に第2のデータを第3のデータへ付与する関数であることを特徴とする。
 上述した本発明の態様によれば、光変調器において波形歪みが付与されてしまう場合でも、出力される送信信号の品質を好適に保ち、システム性能を維持することができる。
第1の実施形態に係るデジタル光送受信機100のブロック構成図である。 第2の実施形態に係るデジタル光送受信機200のブロック構成図である。 第2の実施形態に係るフロント信号処理部204のブロック構成図である。 第2の実施形態に係る予等化信号生成部202及び予等化係数演算部203のブロック構成図である。 第2の実施形態に係るMZ型I-Q光変調器209の特性を説明するための図である。 第2の実施形態に係るMZ型I-Q光変調器209から出力される光信号E及びEである。 第2の実施形態に係るMZ型I-Q光変調器209から光信号E、Eが出力された時のEout=E+Eである。 第2の実施形態に係るMZ型I-Q光変調器209から出力される光信号の特性を説明するための図である。 第2の実施形態に係るMZ型I-Q光変調器209から出力される光信号の特性を直線近似した例を示す図である。 第2の実施形態に係る予等化信号生成部202のフィルタ関数f1~f4の一例である。 第2の実施形態に係るMZ型I-Q光変調器209から出力される別の光信号E及びEである。 第2の実施形態に係るMZ型I-Q光変調器209から光信号E、Eが出力された時のEout=E+Eである。 第2の実施形態に係るMZ型I-Q光変調器209から出力される光信号の特性を近似した例を示す図である。 第2の実施形態に係る予等化信号生成部202のフィルタ関数f1~f4の一例である。 第2の実施形態に係る予等化信号生成部202のフィルタ関数f1~f4の一例である。 第2の実施形態に係る予等化信号生成部202の別のフィルタ関数f1~f4の一例である。 第2の実施形態の変形例に係る予等化係数演算部203のフィルタ関数f1~f4の演算方法を説明するための図である。 第2の実施形態の変形例に係る予等化係数演算部203のフィルタ関数f1~f4の演算方法を説明するための図である。 第3の実施形態に係るデジタル光送受信機1600のブロック構成図である。 第4の実施形態に係るデジタル光送受信機1700のブロック構成図である。 第5の実施形態に係るデジタル光送受信機1800のブロック構成図である。 一般的なデジタル光送受信機のブロック構成図である。
 (第1の実施形態)
 本発明の第1の実施形態について説明する。本実施形態に係る光送受信機のブロック構成図を図1に示す。図1において、デジタル光送信機100は、予等化信号生成手段101、予等化係数演算手段102、及び、光変調器103を備える。
 予等化信号生成手段101には、送信信号の変調方式に応じて符号化された第1のデータ及び第2のデータが入力される。予等化信号生成手段101は、入力された第1のデータ及び第2のデータを、予等化係数演算手段102から入力された変換関数を用いて第3のデータ及び第4のデータに変換し、光変調部103の第1の光変調器105及び第2の光変調器106へ出力する。本実施形態に係る予等化信号生成手段101は、デジタル信号処理によって上記の変換処理を行う。
 予等化係数演算手段102は、送信条件に応じた変換関数を演算して予等化信号生成手段101へ出力する。本実施形態に係る予等化係数演算手段102は、変換関数として、光変調器103で生じる波形歪みを補償するための予等化係数を演算する。この変換係数により、予等化信号生成手段101は、第1のデータに光変調器103の消光比及び印加電圧に応じた第2のデータを付与することによって、第3のデータを生成する。さらに、この変換係数により、予等化信号生成手段101は、第2のデータに光変調器103の消光比及び印加電圧に応じた第1のデータを付与することによって、第4のデータを生成する。
 光変調器103は、送信信号を生成して出力する。光変調器103は、図1に示すように、分岐部104、第1の光変調器105、第2の光変調器106、及び、結合部107によって構成される。
 分岐部104は、図示しない光源から出力された搬送波の光信号を2分割し、一方を第1の光変調器105へ、他方を第2の光変調器106へ出力する。搬送波の光信号としては、連続光を用いることが望ましい。
 第1の光変調器105は、分岐部104から入力された一方の光信号を予等化信号生成部102から入力された第3のデータに基づいて光変調し、第1の光信号として出力する。第2の光変調器106は、分岐部104から入力された他方の光信号を予等化信号生成部102から入力された第4のデータに基づいて光変調し、第2の光信号として出力する。本実施形態においては、第1の光信号はI-ch(in-phase channel)の光信号であり、第2の光信号はQ-ch(quadrature-channel)の光信号である。
 結合部107は、第1の光変調器105から入力された第1の光信号および第2の光変調器106から入力された第2の光信号を、所定の位相差φを付与して結合し、送信信号として出力する。
 ここで、光変調器103から出力される送信信号には、光変調器103特有の波形歪みが付与される。本実施形態において、第1の光変調器105には、予等化信号生成部102から、第1のデータに光変調器103の特性に応じた第2のデータを付与することによって生成された第3のデータが入力される。一方、第2の光変調器106には、予等化信号生成部102から、第2のデータに光変調器103の特性に応じた第1のデータを付与することによって生成された第4のデータが入力される。
 そして、上記の第3のデータ及び第4のデータに基づいて第1の変調器105および第2の光変調器106が駆動されることによって光変調器103特有の波形歪みが補償され、品質が好適に保たれた送信信号が出力される。
 なお、予等化信号生成手段101の前段に、送信データに対して送信信号の変調方式に応じた符号化を行う符号化部を配置することもできる。この符号化部で施される符号化は、一般的な送信機で行われる、フレーマ処理、FEC(forward error correction)、プリコーダなどによる符号化処理全体を含み、特定の用途による符号化に限定するものではない。
 (第2の実施形態)
 第2の実施形態について説明する。本実施形態に係る光送受信機のブロック構成図を図2に示す。本実施形態に係るデジタル光送信機200は、符号化部201、予等化信号生成部202、予等化係数演算部203、フロント信号処理部204、及び、光変調部205を備える。図2に示すように、光変調部205は、D/A変換器(DAC:digital to analog converter)206、ドライバアンプ207、光源208、及び、MZ型I-Q光変調器209によって構成される。さらに、図2に示すように、MZ型I-Q光変調器209は、I-ch用光変調器210、Q-ch用光変調器211、及び、π/2位相器212によって構成される。
 ここで、図2では、同一の機能を備えるユニットが複数ある場合には、参照符号に-1、-2等を付して区別している。説明の際には、特に区別する必要がない限り、例えば「DAC206-1」、「DAC206-2」等を「DAC206」と記載する。
 符号化部201に送信データが入力される。符号化部201は、入力された送信データに対して送信信号の変調方式に応じた符号化を行い、第1のデータ及び第2のデータとして予等化信号生成部202へ出力する。
 予等化信号生成部202は、予等化係数演算部203からの係数情報に基づいて、入力された第1のデータ及び第2のデータから第3のデータ及び第4のデータをそれぞれ生成し、フロント信号処理部204へ出力する。
 予等化係数演算部203は、光変調部205で付与される波形歪みを予め打ち消すための係数情報を演算して予等化信号生成部202へ出力する。予等化信号生成部202及び予等化係数演算部203の詳細動作については後述する。
 フロント信号処理部204は、入力された第3のデータ及び第4のデータの2系列のデータに対して所定の信号処理を施し、それぞれ第3’のデータ及び第4’のデータとして光変調部205へ出力する。本実施形態に係るフロント信号処理部204は、第3のデータ及び第4のデータに、DAC206、ドライバアンプ207、I-ch用光変調器210、Q-ch用光変調器211などのフロントエンドデバイスの非線形特性を線形化する補正、及び、周波数特性を補正する信号処理を施す。
 フロント信号処理部204について詳細に説明する。フロント信号処理部204のブロック構成図の一例を図3に示す。図3のフロント信号処理部204は、リニアライザ301-1、301-2、及び、帯域補償フィルタ302-1、302-2から成る。リニアライザ301-1に入力された第3のデータは、光変調部205がもつ非線形特性を線形化するためのデータ列に変換されて、帯域補償フィルタ302-1に出力される。そして、帯域補償フィルタ302-1に入力されたデータ列は、光変調部205がもつ周波数特性を好適化するためのデータ列(第3’のデータ)に補正されて光変調部205へ出力される。
 一方、リニアライザ301-2に入力された第4のデータは、光変調部205がもつ非線形特性を線形化するためのデータ列に変換される。変換されたデータ列はさらに、帯域補償フィルタ302-2において光変調部205がもつ周波数特性を好適化するためのデータ列(第4’のデータ)に補正されて光変調部205へ出力される。
 上述のように、フロント信号処理部204を備えることにより、光変調器やアナログフロントエンドデバイスに求められる性能を緩和することができる。従って、本実施形態に係るデジタル光送信機200は、使用部品の歩留まりを向上することが可能になり、コストを低減することができる。
 ここで、図3では、フロント信号処理部204がリニアライザ301および帯域補償フィルタ302を備える構成を挙げたが、フロント信号処理部204の構成はこれに限定されない。例えば、システム要求に応じて、フロント信号処理部204がさらに、FIR(finite impulse response)/IIR(infinite impulse response)フィルタ等の線形フィルタ、非線形フィルタ、クリッピング処理部等を、単独あるいは複数組み合わせた状態で備えることも出来る。また、配置位置についても予等化信号生成部202の後段にフロント信号処理部204を配置する必要はない。フロント信号処理部204を、予等化信号生成部202の前段もしくは前段・後段の両方に配置することも出来る。
 なお、非線形特性の一例としては、DAC206とドライバアンプ207の飽和特性が挙げられる。また、別の一例としては、I-ch用光変調器210あるいはQ-ch用光変調器211の駆動印加電圧Vmodに対する光信号の位相変化が正弦波特性であることに起因する、非線形特性が挙げられる。この場合、光信号の位相変化は、例えば、sin(kVmod)あるいはcos(kVmod)に比例する(kは定数)。これらの非線形特性は単独に発生するものでなくてもよく、一般的には複合的に発生していても良い。
 図2の説明に戻る。光変調部205に入力された第3’のデータ及び第4’のデータは、DAC206-1、206-2において、第3’のデータ及び第4’のデータのデジタル信号振幅に比例したアナログ信号に変換され、ドライバアンプ207-1、207-2へ出力される。ドライバアンプ207-1、207-2に入力されたアナログ信号は、それぞれドライバアンプ207-1、207-2において適切な電気信号の振幅まで増幅された後、駆動信号としてMZ型I-Q光変調器209へ出力される。
 一方、光源208から出力された光信号は、MZ型I-Q光変調器209に入力される。
 MZ型I-Q光変調器209は、I-ch用光変調器210、Q-ch用光変調器211及びπ/2位相器212から構成される。MZ型I-Q光変調器209に入力された光源208からの光信号は、光導波路に沿ってI-ch光導波路とQ-ch光導波路を通過する2つの光信号に分岐され、一方はI-ch用光変調器210を通過し、他方はQ-ch用光変調器211及びπ/2位相器212を通過する。
 このとき、I-ch用光変調器210及びQ-ch用光変調器211を通過する光信号には、ドライバアンプ207-1、207-2から入力された駆動信号(電気信号)に応じた光変調が施される。さらに、Q-ch用光変調器211を通過した光信号は、π/2位相器212において位相がπ/2変化する。そして、I-ch用光変調器210を通過した光とQ-ch用光変調器211及びπ/2位相器212を通過した光信号が合波され、MZ型I-Q光変調器209から送信信号として出力される。
 次に、予等化信号生成部202及び予等化係数演算部203の動作について詳細に説明する。予等化信号生成部202及び予等化係数演算部203の構成図の一例を図4に、MZ型I-Q光変調器209の特性を説明するための図を図5に示す。
 図4に示すように、予等化信号生成部202は、4つの変換フィルタ401-1~401-4、及び、2つの加算器402-1、402-2を用いたバタフライ回路により構成される。変換フィルタ401-1~401-4のフィルタ関数f1~f4は、予等化係数演算部203から入力された係数情報に基づいて設定される。ここで、I-ch信号を表すデータ列をa(第1のデータ)、Q-ch信号を表すデータ列をa(第2のデータ)とし、予等化信号生成部202からの出力データ列をa’(第3のデータ)及びa’(第4のデータ)とすると、それらは(1)式のように記載できる。
Figure JPOXMLDOC01-appb-I000001
               ・・・(1)式
 (1)式では、f1、f3をaの関数、f2、f4をaの関数として記載したが、必ずしもaあるいはaの関数に限定するものではなく、定数の場合やa、a両方の関数(f(a、a))とすることも出来る。そして、(1)式のa’(第3のデータ)及びa’(第4のデータ)がフロント信号処理部204に入力される。
 一方、図5に示すように、MZ型I-Q光変調器209として、上側位相変調器501および下側位相変調器502によって構成されたMZ型光変調器を適用することができる。MZ型I-Q光変調器209に入力された光信号exp(jωt)(j:虚数単位、ω:光信号周波数)は、2つの光信号に分岐される。分岐された光信号のうち、上側位相変調器501を通過する光信号の電場強度はAexp(jωt)、下側位相変調器502を通過する光信号の電場強度はAexp(jωt)で与えられる。
 このとき、上側位相変調器501で付与される位相回転量はexp(jπV/2Vπ)、下側位相変調器502で付与される位相回転量はexp(-jπV/2Vπ)で与えられる。ここで、Vは上側位相変調器501及び下側位相変調器502を駆動する駆動電圧、Vπは位相回転量がπになる印加電圧である。上側位相変調器501と下側位相変調器502においてそれぞれ位相変調が付与された光信号E及びEは、合波された後、MZ型I-Q光変調器209から送信光信号Eout=E+Eとして出力される。
 先ず、A≠Aの場合について説明する。A≠Aの場合のE及びEを図6Aに、Eout=E+Eを図6Bに示す。図6Aにおいて、黒色の線がEを灰色の線がEを表す。
 図6Bから分かるように、A≠A場合、理想的なA=A場合には打ち消し合うはずのQ成分(図中のQ-component)が発生し、位相誤差が発生する。この位相誤差は、消光比(ER:extinction ratio)=(A+A)/(A-A)に反比例することが一般的な理論計算から知られている。
 上側位相変調器501と下側位相変調器502のERが15dBの場合に、I、Qそれぞれ4bit(16諧調)精度のデータ列を入力した際のコンスタレーション(constellation)を図7に示す。図7に示すように、ERが理想的(ER=∞)でない場合はMZ型I-Q光変調器209からの出力波形が歪む。しかしながら、この波形歪みはERが決定されればERをパラメータとして一意に決定される。
 波形歪みの概念図(図6Bの位相誤差に相当)を図8に示す。図8の点線は、予等化信号生成部202にI-chデータ列aが入力された際の、光変調部205から出力されたQ-chデータの歪み量Δaを図示したものである。本実施形態においては、位相誤差を直線近似することによって線形補完する。図8では、aと歪み量Δaに対応する近似式として、(1-|a|/ER)を用いた。
 図8から分かるように、データ列aと歪み量Δaとは1対1に対応する。従って、予等化係数演算部203において、Δaをゼロにするためのフィルタ関数f1~f4を演算し、演算したフィルタ関数f1~f4を予等化信号生成部202の変換フィルタ401-1~401-4に予め設定しておくことにより、光変調部205で発生する波形歪みを補正することができる。ここで、直線近似を行うことにより、複雑な演算を行うことなく補正量(フィルタ関数f1~f4)を演算出来る。
 図8の直線近似を用いた場合の予等化信号生成部202の構成を図9に示す。図9に示すように、予等化信号生成部202の変換フィルタ401-1~401-4には、フィルタ関数f1=1、f2=-k(1-|a|)/ER、f3=-k(1-|a|)/ER、f4=1、が設定されている。このときの補正信号a’(第3のデータ)及びa’(第4のデータ)は前述の(1)式に当て嵌めることにより、(2)式で与えられる。
Figure JPOXMLDOC01-appb-I000002
               ・・・(2)式
 ここで、ER及びERは、それぞれ図2に示したI-ch用光変調器210、Q-ch用光変調器211の消光比である。また、k及びkは図7の直線近似及びその他のデバイス特性に伴う理想補正からのずれを調整するための調整係数であり、送信光の波形が好適になるようにそれぞれ調整される。
 (2)式から分かるように、a’(第3のデータ)は、a(第1のデータ)にERに応じたa(第2のデータ)が付与されることによって生成され、a’(第4のデータ)は、a(第2のデータ)にERに応じたa(第1のデータ)が付与されることによって生成される。尚、図9ではf1=1、f4=1に設定したが、例えばf1、f4を任意の比例係数p1、p4を設定することもできる。この場合、主信号の振幅を、それぞれp1、p4に比例して調整することも出来る。
 次に、A=Aの場合において、上側位相変調器501と下側位相変調器502のVπが、光導波路の屈折率の違い等により、それぞれVπ+とVπ-である場合について説明する。図10Aは、Vπ+≠Vπ-である場合のE及びEであり、黒色の線がEを灰色の線がEを表す。また、図10BはVπ+≠Vπ-である場合のEout=E+Eである。図10Bから分かるようにVπ+≠Vπ-の場合、理想的なVπ+=Vπ-の場合には本来打ち消し合うはずのQ成分(図中のQ-component)が発生し、位相誤差が発生する。この位相誤差はα=(Vπ+-Vπ-)/(Vπ++Vπ-)=ΔVπ/Vπ(以降αパラメータと呼ぶ)に比例することが一般的な理論計算から知られている。
 しかしながら、この波形歪みはαが決定されればαをパラメータとして一意に決定される。図11は、一例として、α=0.2の場合の波形歪みの理論曲線(図中の実線)を、線形近似(図中の点線)及び2次曲線近似(図中の灰色線)により近似したものである。図11から分かるように、1次あるいは2次の簡易な演算により、波形歪みを近似させることができる。従って、予等化係数演算部203において、近似式を用いてΔaをゼロにするためのフィルタ関数f1~f4を演算し、演算したフィルタ関数f1~f4を予等化信号生成部202の変換フィルタ401-1~401-4に設定することにより、光変調部205で発生する波形歪みを補正することができる。
 図11の線形近似(点線)を適用した場合の、予等化信号生成部202の構成を図12に示す。図12に示すように、予等化信号生成部202の変換フィルタ401-1~401-4には、フィルタ関数f1=1、f2=-α|a|、f3=-α|a|、f4=1、が設定されている。このときの補正信号a’(第3のデータ)及びa’(第4のデータ)は前述の(1)式に当て嵌めることにより、(3)式で与えられる。
Figure JPOXMLDOC01-appb-I000003
               ・・・(3)式
 ここで、α及びαは、それぞれ図2に示したI-ch用光変調器210、Q-ch用光変調器211のα値である。
 さらに、図9及び図12の予等化信号生成を連続して行う場合の予等化信号生成部202の構成を図13Aに示す。図13Aにおいて、入力されたデータ列a及びaは、図12と同等のαによる波形歪み補償が施されて、a’及びa’として出力された後、図9と同等の消光比劣化による波形歪み補償が施されて、a”及びa”として出力される。このときのa及びaとa”及びa”の関係は(3)式に(2)式を代入し、1/ER、1/ER、α、αIQが十分小さな値であることを考慮して近似を行い、合成式を求めることにより、(4)式で与えられる。
Figure JPOXMLDOC01-appb-I000004
               ・・・(4)
 従って、(4)式の予等化を実現する構成として、フィルタ関数の係数にf1=1、f2=-k/ER-(α-k/ER)|a|、f3=-k/ER-(α-k/ER)|a|、f4=1を設定することも出来る。この時の予等化信号生成部202の構成を図13Bに示す。
 なお、合成式の近似は(4)式の近似に限定されない。設定されるフィルタ関数の係数は、1/ER、1/ER、α、αIQなどのパラメータに応じて送信波形が好適になるように変形することができる。
 また、図9、図12、図13は主に線形近似の場合の構成例を示したが、より近似の精度を上げるためには、より高次の近似(例えば、図11の灰色線。)を適用することが望ましい。しかしながら、高次の近似は演算に必要な回路規模が増大する。性能向上と回路規模の増加がトレードオフになるため、システム全体で必要とされる要求性能に応じた近似を行うことが望ましい。
 (第2の実施形態の変形例)
 第2の実施形態の変形例について説明する。本実施形態では、光変調部205において発生する波形歪みに対して第2の実施形態の図8(実線)あるいは図11(点線)に示したような線形近似を適用できない場合について説明する。
 線形近似を適用できない波形歪みの一例を、図14の点線で示す。図14において、a~aは第1のデータ(データ列a)が取りうる範囲をセグメント分けした際の座標であり、b~bはその座標における波形歪みである。
 図14において、セグメントの中間の座標においては、線形補完により補償量を決定することが出来る。すなわち、(a,b)と(a,b)(ただし、l<m)をΔn:1-Δnに内分するデータ入力値a+Δn(a-a)における補償量は、b+Δn(b-b)で与えられる。
 一方、第2のデータ(データ列c)に対する補正量dも同様の手法を適用することによって決定できる。すなわち、cが取る値の範囲をセグメント分けした際の座標をc1~cとし、その座標における波形歪みがd~dである場合、(c,d)と(c,d)(ただし、p<q)とをΔr:1-Δrに内分するデータ入力値c+Δr(c-c)における補償量は、d+Δr(d-d)で与えられる。
 従って、第1のデータを表すデータ列aと第2のデータを表すデータ列cが入力された際のフィルタ関数はそれぞれ、f1=1、f2=-d-Δr(d-d)、f3=-a-Δn(a-a)、f4=1、に設定される。
 このとき、予等化係数演算部203では、予めセグメントの境界で設定された(a,b)~(a,b)及び(c,d)~(c,d)の情報を基に、任意のaあるいはcでのフィルタ関数f1~f4を演算して決定する。
 また、図14に示した予等化係数演算の手法においては、セグメント境界以外での歪み補償量は、線形補完を用いた演算により算出するため、理想補償量からの誤差が発生する。しかしながら、そのような場合にも、図14の上部に示したQAM信号を用いる場合などにおいて(図14は16QAMの場合を図示。)、コンスタレーションの座標位置とセグメント分けの境界を一致させることにより、信号が存在する位置での誤差を小さくすることが出来るため、より精度の高い歪み補償を行うことが出来る。
 さらに、任意の形状をした波形歪みが発生する場合のセグメント分けの例を図15に示す。セグメント分けした後に線形補完により補償量を決定することにより、光変調器やドライバアンプなどのデバイス特性や物性などに起因する種々の波形歪みが発生する場合でも、精度の良い波形歪み補償量を演算することが出来る。
 (第3の実施形態)
 第3の実施形態について説明する。本実施形態に係る光送受信機のブロック構成図を図16に示す。本実施形態に係るデジタル光送信機1600は、図2の第2の実施形態に係わるデジタル光送信機200に加え、信号品質モニタ1601、波形歪み量検出部1602を備える。ここで、図2のデジタル光送信機200と同一のものには同一符号を付して、その説明を省略する。
 信号品質モニタ1601は、光変調部205からの送信信号をモニタする。信号品質モニタ1601としては、波形モニタ、スペクトルモニタ、誤り率モニタ、コンスタレーションモニタ、パワーモニタなど、送信信号と発生する歪みの種類に応じて好適なモニタ手法を選択することが出来る。
 波形歪み検出部1602は、波形品質モニタ1601からのモニタ信号に基づいて波形歪み量を検出し、検出した波形歪み量を予等化係数演算部203に出力する。
 このように構成されたデジタル光送信機1600においては、送信信号に時間的に変動するような波形歪みが付与される場合でも、予等化信号生成部202による予等化を適応的に行うことができる。従って、常に高品質な送信信号を送信することが出来る。
 なお、必ずしも波形歪み量検出部1602からの波形歪み量をフィードバック的に予等化係数演算部203に設定する必要はない。予めプリセット的に波形歪み量の初期値を設定しておき、経年変化等による長時間変動が生じてある一定の大きさの波形歪みが発生した場合、予等化係数演算部203の設定値を更新することも出来る。この場合、複雑な制御を行うことなく、簡易に送信信号の信号品質を維持することが出来る。
 (第4の実施形態)
 第4の実施形態について説明する。本実施形態に係る光送受信機のブロック構成図を図17に示す。図17のデジタル光送信機1700は、図2のデジタル光送信機200において、予等化係数演算部200の代わりにLUT(lookup table)1701を配置したものである。ここで図2のデジタル光送信機200と同一のものには同一符号を付し、その説明を省略する。
 図17において、LUT1701は、種々の波形歪み量ごとに変換フィルタ401-1~401-4のフィルタ関数f1~f4が登録されている。LUT1701は、光変調部205において付与される波形歪みに対応する最適なフィルタ関数f1~f4を抽出して予等化信号生成部202へ出力する。
 LUT1701を備えることにより、デジタル光送信機1700は、予等化係数を演算することなく予等化信号生成部202のフィルタ関数f1~f4を設定することが出来る。従って、本実施形態に係るデジタル光送信機1700は、より簡易な構成で高速制御ができると共に、回路規模及び消費電力の増大化を抑制することができる。
 (第5の実施形態)
 第5の実施形態について説明する。本実施形態に係る光送受信機のブロック構成図を図18に示す。本実施形態に係るデジタル光送信機1800は、図1の第1の実施形態に係るデジタル光送信機100に加え、直流(DC:direct current)オフセット補償量算出手段1801、及び、加算器1802を備える。ここで図1のデジタル光送信機100と同一のものには同一符号を付して、その説明を省略する。
 本実施形態に係るDCオフセット補償量算出手段1801は、第3のデータ、及び、第4のデータに付与する直流的なオフセット量を算出して加算器1802-1、及び、加算器1802-2へ出力することにより、第3のデータ、及び、第4のデータのDCオフセット量を調整する。このとき、第3のデータに付与するDCオフセット量は第2の光変調器で発生する波形歪みに対応して算出し、第4のデータに付与するDCオフセット量は第1の光変調器で発生する波形歪みに対応して算出する。この場合、より精度の高い波形歪み補償を簡易に行うことができる。
 以上説明したように、上述の実施形態に係るデジタル光送信機は、QAMなどの多値変調信号や複雑な送信波形を用いる予等化信号を用いた際にも、DSPによる予等化信号を用いることにより、使用するMZ型光変調器を構成する干渉計の不完全性などに起因する波形歪みを補正することが可能であり、通信品質の劣化を抑制することが出来る。
 またさらに、光変調器やアナログフロントエンドデバイスに求められる性能を緩和することができるので、使用部品の歩留まりを向上することが可能であり、低コストなデジタル光送信機を提供できる。
 本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。また、本願発明は、2013年4月4日に出願された日本出願特願2013-078448を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本願発明は、コアやメトロ用の通信ネットワークだけでなく、光を用いた通信ネットワーク全てにおいて適用することができる。
 100、200、1600、1700、1800  デジタル光送信機
 101  予等化信号生成手段
 102  予等化係数演算手段
 103、205  光変調部
 104  分岐部
 105  第1の光変調器
 106  第2の光変調器
 107  結合部
 201  符号化部
 202  予等化信号生成部
 203  予等化係数演算部
 204  フロント信号処理部
 206  DAC
 207  ドライバアンプ
 208  光源
 209  MZ型I-Q光変調器
 210  I-ch用光変調器
 211  Q-ch用光変調器
 212  π/2位相器
 301  リニアライザ
 302  帯域補償フィルタ
 401  変換フィルタ
 402  加算器
 501  上側位相変調器
 502  下側位相変調器
 1601  信号品質モニタ
 1602  波形歪み量検出部
 1701  LUT
 1801  DCオフセット補償量算出手段
 1802  加算器

Claims (11)

  1. 変換関数を生成する予等化係数演算手段と、
    前記生成された変換関数を用いて、第1のデータ及び第2のデータから、第3のデータ及び第4のデータを生成する予等化信号生成手段と、
    光信号を2分割する分岐部、前記第3のデータに基づいて前記分割された一方の光信号を光変調する第1の光変調器、前記第4のデータに基づいて前記分割された他方の光信号を光変調する第2の光変調器、及び、前記光変調した2つの光信号を結合して出力する結合部を備えた光変調器と、
    を備え、
    前記変換関数は、光変調器で生じる波形歪みを補償するように、前記第1のデータを前記第4のデータへ付与すると共に前記第2のデータを前記第3のデータへ付与する関数であることを特徴とするデジタル光送信機。
  2. 前記変換関数は、前記第1のデータに前記光変調器の消光比及び印加電圧に応じた第2のデータを付与することによって前記第3のデータを生成し、前記第2のデータに前記光変調器の消光比及び印加電圧に応じた第1のデータを付与することによって前記第4のデータを生成する関数である、請求項1に記載のデジタル光送信機。
  3. 前記予等化係数演算手段は、前記光変調器で生じる波形歪みを線形補完により補償するための変換関数を生成する、請求項1または2に記載のデジタル光送信機。
  4. 前記線形補完はセグメント分けされたブロック毎に行われる、請求項3に記載のデジタル光送信機。
  5. 前記光変調器は、MZ型光変調器であり、
    前記予等化信号生成手段は、複数の変換フィルタ及び加算器を用いたバタフライ回路により構成され、
    前記予等化信号生成手段は、前記変換関数として前記変換フィルタのフィルタ関数を生成する、
    請求項1乃至4のいずれか1項に記載のデジタル光送信機。
  6. 前記光変調器から出力された信号から波形歪みを抽出する信号品質モニタ手段をさらに備え、
    前記予等化係数演算手段は、前記抽出された波形歪みに基づいて前記変換関数を生成する、
    請求項1乃至5のいずれか1項に記載のデジタル光送信機。
  7. 複数の波形歪みと変換関数とが対応づけられて登録されたテーブルをさらに備え、
    前記予等化係数演算手段は、前記変換関数を前記テーブルから抽出することによって前記変換関数を生成する、
    請求項1乃至6のいずれか1項に記載のデジタル光送信機。
  8. 前記第3のデータ及び第4のデータに、フロントエンドデバイスの非線形特性を線形化する処理及び周波数特性を補正する処理を施すフロント信号処理手段をさらに備える、請求項1乃至7のいずれか1項に記載のデジタル光送信機。
  9. 前記光変調器で生じる波形歪みを補償するためのDCオフセット補償量を演算して前記第3のデータ及び第4のデータに付与するDCオフセット補償量算出手段をさらに備える、請求項1乃至8のいずれか1項記載のデジタル光送信機。
  10. 請求項1乃至9のいずれか1項に記載のデジタル光送信機を用いることを特徴とする光通信システム。
  11. 光信号を2分割する分岐部、第3のデータに基づいて前記分割された一方の光信号を光変調する第1の光変調器、第4のデータに基づいて前記分割された他方の光信号を光変調する第2の光変調器、及び、前記光変調した2つの光信号を結合して出力する結合部を備えた光変調器を用いたデジタル光送信方法であって、
    前記光変調器で生じる信号歪みを補償するための
    変換関数を生成し、
    前記生成した変換関数を用いて、第1のデータ及び第2のデータから、前記第3のデータ及び第4のデータを生成し、
    前記変換関数は、光変調器で生じる波形歪みを補償するように、前記第1のデータを前記第4のデータへ付与すると共に前記第2のデータを前記第3のデータへ付与する関数であることを特徴とするデジタル光送信方法。
PCT/JP2014/000760 2013-04-04 2014-02-14 デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法 WO2014162649A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14780356.3A EP2983312B1 (en) 2013-04-04 2014-02-14 Digital optical transmitter, optical communication system using same, and digital optical transmission method
JP2015509874A JP6330802B2 (ja) 2013-04-04 2014-02-14 デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
US14/778,208 US9787403B2 (en) 2013-04-04 2014-02-14 Digital optical transmitter, optical communication system using the same, and digital optical transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013078448 2013-04-04
JP2013-078448 2013-04-04

Publications (1)

Publication Number Publication Date
WO2014162649A1 true WO2014162649A1 (ja) 2014-10-09

Family

ID=51657965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000760 WO2014162649A1 (ja) 2013-04-04 2014-02-14 デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法

Country Status (4)

Country Link
US (1) US9787403B2 (ja)
EP (1) EP2983312B1 (ja)
JP (1) JP6330802B2 (ja)
WO (1) WO2014162649A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151615A1 (en) * 2015-03-20 2016-09-29 Nec Corporation Optical transmitter and optical communication method
JP2017044885A (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 光変調器のドライバ装置
WO2017069086A1 (ja) * 2015-10-19 2017-04-27 日本電信電話株式会社 コヒーレント光受信装置
JP2017079459A (ja) * 2015-10-19 2017-04-27 日本電信電話株式会社 コヒーレント光受信装置
JP2017529761A (ja) * 2014-08-13 2017-10-05 ザイリンクス インコーポレイテッドXilinx Incorporated 適応型光チャネル補償
WO2022269782A1 (ja) * 2021-06-23 2022-12-29 日本電信電話株式会社 光伝送システム、送信装置、受信装置及びデバイス特性推定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790909B1 (en) * 2019-05-09 2020-09-29 Lockheed Martin Corporation Efficient multi-channel coherent optical system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082578A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光送信器
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
JP2012129606A (ja) * 2010-12-13 2012-07-05 Fujitsu Ltd 光送信装置および光送信方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356146B1 (en) * 1999-07-13 2002-03-12 Pmc-Sierra, Inc. Amplifier measurement and modeling processes for use in generating predistortion parameters
GB2383707B (en) * 2001-11-30 2005-03-30 Marconi Optical Components Ltd Photonic encoder
US6885241B2 (en) * 2002-03-26 2005-04-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Type-based baseband predistorter function estimation technique for non-linear circuits
US7382985B2 (en) * 2002-12-02 2008-06-03 Nortel Networks Limited Electrical domain mitigation of polarization dependent effects in an optical communications system
US7756421B2 (en) * 2002-10-03 2010-07-13 Ciena Corporation Electrical domain compensation of non-linear effects in an optical communications system
US7382984B2 (en) * 2002-10-03 2008-06-03 Nortel Networks Limited Electrical domain compensation of optical dispersion in an optical communications system
US7023601B2 (en) * 2002-12-02 2006-04-04 Nortel Networks Limited Optical E-field modulation using a Mach-Zehnder interferometer
JP2004247968A (ja) * 2003-02-13 2004-09-02 Fujitsu Ltd 光送信器
US7471736B2 (en) * 2003-09-30 2008-12-30 Alcatel-Lucent Usa Inc. Frequency based modulator compensation
US7558479B1 (en) * 2004-04-15 2009-07-07 Nortel Networks Limited Analysis and control of optical communications systems
JP4422661B2 (ja) * 2005-08-31 2010-02-24 富士通株式会社 差動4位相偏移変調器の駆動電圧設定方法
JP4708241B2 (ja) * 2006-03-28 2011-06-22 三菱電機株式会社 分散予等化光送信器
CN101513003A (zh) * 2006-06-28 2009-08-19 Nxp股份有限公司 用于极性发射机的相位至频率转换
JP4620642B2 (ja) * 2006-07-31 2011-01-26 富士通株式会社 多値変調受信装置
JP5108407B2 (ja) * 2007-07-25 2012-12-26 富士通セミコンダクター株式会社 シンボルタイミングリカバリ回路
WO2009071964A1 (en) * 2007-12-06 2009-06-11 Pgt Photonics S.P.A. System and method for coherent detection of optical signals
US8693876B2 (en) * 2009-01-23 2014-04-08 Ciena Corporation High speed signal generator
JP4893776B2 (ja) 2009-05-07 2012-03-07 富士通株式会社 光変調装置
DE102010004178A1 (de) * 2010-01-07 2011-07-14 Broadband United GmbH, 93047 Vorrichtung und Verfahren zur Kompensation und Identifikation von Nebensprechen
US8977141B2 (en) 2011-02-07 2015-03-10 Nippon Telegraph And Telephone Corporation Digital signal processing apparatus
US8983309B2 (en) * 2012-02-13 2015-03-17 Ciena Corporation Constrained continuous phase modulation and demodulation in an optical communications system
US8913901B2 (en) * 2012-02-20 2014-12-16 Tyco Electronics Subsea Communications Llc System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system
JP2014138361A (ja) * 2013-01-18 2014-07-28 Nippon Telegr & Teleph Corp <Ntt> 光送信器、光通信システム、および光送信器補償方法
JP6073152B2 (ja) * 2013-02-20 2017-02-01 株式会社日立製作所 光多値信号送信器、光多値信号送受信器及び光多値信号処理ic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082578A1 (ja) * 2009-01-16 2010-07-22 三菱電機株式会社 光送信器
JP2012120010A (ja) * 2010-12-02 2012-06-21 Fujitsu Ltd 光送信器および光送信装置
JP2012129606A (ja) * 2010-12-13 2012-07-05 Fujitsu Ltd 光送信装置および光送信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ODA, SHOICHIRO ET AL.: "80x224 Gb/s Unrepeated Transmission over 240 km of Large-Aeff Pure Silica Core Fibre without Remote Optical Pre- amplifier", ECOC 2011 POSTDEADLINE PAPERS, September 2011 (2011-09-01), XP055286905 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529761A (ja) * 2014-08-13 2017-10-05 ザイリンクス インコーポレイテッドXilinx Incorporated 適応型光チャネル補償
WO2016151615A1 (en) * 2015-03-20 2016-09-29 Nec Corporation Optical transmitter and optical communication method
JP2018510572A (ja) * 2015-03-20 2018-04-12 日本電気株式会社 光送信器および光通信方法
US10205528B2 (en) 2015-03-20 2019-02-12 Nec Corporation Optical transmitter and optical communication method
JP2017044885A (ja) * 2015-08-27 2017-03-02 日本電信電話株式会社 光変調器のドライバ装置
WO2017069086A1 (ja) * 2015-10-19 2017-04-27 日本電信電話株式会社 コヒーレント光受信装置
JP2017079459A (ja) * 2015-10-19 2017-04-27 日本電信電話株式会社 コヒーレント光受信装置
US10389452B2 (en) 2015-10-19 2019-08-20 Nippon Telegraph And Telephone Corporation Coherent optical reception device
WO2022269782A1 (ja) * 2021-06-23 2022-12-29 日本電信電話株式会社 光伝送システム、送信装置、受信装置及びデバイス特性推定方法

Also Published As

Publication number Publication date
JPWO2014162649A1 (ja) 2017-02-16
EP2983312B1 (en) 2020-03-25
EP2983312A1 (en) 2016-02-10
EP2983312A4 (en) 2016-12-14
US20160285558A1 (en) 2016-09-29
JP6330802B2 (ja) 2018-05-30
US9787403B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
JP6330802B2 (ja) デジタル光送信機、それを用いた光通信システムおよびデジタル光送信方法
JP4708241B2 (ja) 分散予等化光送信器
JP5128332B2 (ja) 光予等化送信器及び光予等化伝送システム
JP6234777B2 (ja) 光多値送信器および光トランスポンダ
JP4786714B2 (ja) デジタル信号の光送信のための方法および装置
US9559778B2 (en) Optical dispersion compensation in the electrical domain in an optical communications system
JP6176012B2 (ja) 非線形歪み補償装置及び方法並びに通信装置
JP6040288B1 (ja) 光データ伝送システム
US10148465B2 (en) Training assisted joint equalization
JP5915652B2 (ja) 送信装置、送信方法、および通信システム
EP2634934B1 (en) Optical transmitter
WO2015136877A1 (ja) 光送信機、それを用いた光通信システムおよび光送信方法
JP5289428B2 (ja) デジタル信号処理光送信装置
US20120141134A1 (en) Transponder for an optical communications system and optical communications system
JP6032274B2 (ja) 光送信器、光送受信システム及び駆動回路
JP2016208257A (ja) ディジタル光受信装置及びそれを用いた光通信システム
US10205528B2 (en) Optical transmitter and optical communication method
WO2013128835A1 (ja) 光受信器および光通信システム
US20240137127A1 (en) Optical transmitter that transmits multi-level signal
JP2023148267A (ja) 非線形補償回路、及び光送受信機
Paryanti et al. Novel pre distortion for mach-zendher modulator based on symmetric imbalance
WO2013140476A1 (ja) 光送信器、光送受信システム及び駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509874

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014780356

Country of ref document: EP