WO2018037863A1 - マスクブランク、転写用マスク及び半導体デバイスの製造方法 - Google Patents

マスクブランク、転写用マスク及び半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2018037863A1
WO2018037863A1 PCT/JP2017/028043 JP2017028043W WO2018037863A1 WO 2018037863 A1 WO2018037863 A1 WO 2018037863A1 JP 2017028043 W JP2017028043 W JP 2017028043W WO 2018037863 A1 WO2018037863 A1 WO 2018037863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding film
mask
film
nitrogen
Prior art date
Application number
PCT/JP2017/028043
Other languages
English (en)
French (fr)
Inventor
博明 宍戸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020217014482A priority Critical patent/KR102281354B1/ko
Priority to CN201780050886.2A priority patent/CN109643058B/zh
Priority to JP2017562373A priority patent/JP6297766B1/ja
Priority to US16/327,172 priority patent/US11112690B2/en
Priority to KR1020217022869A priority patent/KR102292434B1/ko
Priority to KR1020197002746A priority patent/KR102254035B1/ko
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN202210271059.9A priority patent/CN114609856A/zh
Priority to SG11201901299SA priority patent/SG11201901299SA/en
Priority to CN202210271072.4A priority patent/CN114675486A/zh
Publication of WO2018037863A1 publication Critical patent/WO2018037863A1/ja
Priority to US17/397,642 priority patent/US11543744B2/en
Priority to US18/073,794 priority patent/US20230099176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Definitions

  • the present invention relates to a mask blank and a transfer mask manufactured using the mask blank.
  • the present invention also relates to a method for manufacturing a semiconductor device using the transfer mask.
  • a fine pattern is formed using a photolithography method.
  • an ArF excimer laser (wavelength: 193 nm) is increasingly used as an exposure light source for manufacturing a semiconductor device.
  • a binary mask is one type of transfer mask.
  • the binary mask is a transfer mask in which a light-shielding film pattern for shielding exposure light is formed on a translucent substrate, as described in Patent Document 1, for example.
  • chromium (Cr ) Or molybdenum silicide (MoSi) based materials have been widely used.
  • the mixed gas of chlorine gas and oxygen gas used for dry etching of the film is highly radical, so the light-shielding film should be dry-etched with sufficient anisotropy. It is difficult to form a fine light-shielding film pattern with sufficient accuracy.
  • MoSi molybdenum silicide
  • a light shielding film on which a transfer pattern is formed has an optical density (for example, 2.F) higher than an ArF excimer laser exposure light (hereinafter referred to as ArF exposure light) irradiated from an exposure apparatus. 5 or more).
  • ArF exposure light ArF excimer laser exposure light
  • the light-shielding film is required to have a reflectance (back surface reflectance, for example, 40% or less) of ArF exposure light incident on the surface on the side in contact with the translucent substrate. It is required to have a reflectance (surface reflectance, for example, 40% or less) of ArF exposure light incident on the surface opposite to the optical substrate side.
  • the SiNx film needs to contain nitrogen to some extent.
  • Some exposure apparatuses perform an operation related to exposure after detecting an alignment mark using long wavelength light having a wavelength of 800 nm to 900 nm.
  • this long wavelength light is referred to as long wavelength detection light LW. If a binary mask made of a single layer SiNx film for the light-shielding film is set in an exposure apparatus using the long wavelength detection light LW and exposure is attempted, the detection sensitivity of alignment mark detection is insufficient and the exposure operation cannot be performed. Problems often occurred.
  • the nitrogen content of the SiNx film constituting the light-shielding film is significantly reduced, the transmittance of long wavelength light can be reduced, and the problem of insufficient detection sensitivity of the alignment mark is solved.
  • a light-shielding film has a new problem that transfer performance as a binary mask is greatly deteriorated because both the surface reflectance and the back surface reflectance with respect to ArF exposure light are increased.
  • the present invention has solved the problem of insufficient sensitivity when performing mark detection using long wavelength light having a wavelength of 800 nm or more and 900 nm or less, while satisfying various optical characteristics for ArF exposure light required for a light shielding film.
  • An object of the present invention is to provide a mask blank having a light-shielding film made of a single layer SiNx film.
  • Another object of the present invention is to provide a transfer mask manufactured using this mask blank.
  • an object of the present invention is to provide a method for manufacturing a semiconductor device using this transfer mask.
  • the present invention has the following configuration.
  • (Configuration 1) A mask blank provided with a light shielding film on a translucent substrate,
  • the light shielding film is a single layer film formed of a material containing silicon and nitrogen,
  • the light shielding film has an optical density of 2.5 or more with respect to exposure light of an ArF excimer laser,
  • the light shielding film has a surface reflectance of 40% or less with respect to the exposure light,
  • the light shielding film has a back surface reflectance of 40% or less with respect to the exposure light
  • the light-shielding film has a transmittance for light having a wavelength of 900 nm of 50% or less
  • the light-shielding film has an extinction coefficient k of 0.04 or more for light having a wavelength of 900 nm
  • the mask blank, wherein the light shielding film has a thickness of 60 nm or less.
  • Configuration 2 The mask according to Configuration 1, wherein the light-shielding film is formed of a material composed of silicon and nitrogen, or a material composed of one or more elements selected from a metalloid element and a nonmetallic element, and silicon and nitrogen. blank.
  • the light-shielding film has a composition gradient portion in which the oxygen content increases toward the surface opposite to the translucent substrate side on the surface layer, and the light-shielding film other than the surface layer is composed of silicon and nitrogen 3.
  • Configuration 4 The mask blank according to any one of configurations 1 to 3, further comprising a hard mask film made of a material containing chromium on the light shielding film.
  • a transfer mask provided with a light-shielding film having a transfer pattern on a translucent substrate The light shielding film is a single layer film formed of a material containing silicon and nitrogen, The light shielding film has an optical density of 2.5 or more with respect to exposure light of an ArF excimer laser, The light shielding film has a surface reflectance of 40% or less with respect to the exposure light, The light shielding film has a back surface reflectance of 40% or less with respect to the exposure light, The light-shielding film has a transmittance for light having a wavelength of 900 nm of 50% or less, The light-shielding film has an extinction coefficient k of 0.04 or more for light having a wavelength of 900 nm, The transfer mask, wherein the light shielding film has a thickness of 60 nm or less.
  • (Configuration 6) The transfer according to Configuration 5, wherein the light shielding film is formed of a material composed of silicon and nitrogen, or a material composed of one or more elements selected from a metalloid element and a nonmetallic element, and silicon and nitrogen. Mask.
  • the light-shielding film has a composition gradient portion in which the oxygen content increases toward the surface opposite to the translucent substrate side on the surface layer, and the light-shielding film other than the surface layer is composed of silicon and nitrogen 7.
  • the light-shielding film of the mask blank of the present invention is formed of a material containing silicon and nitrogen, has a transmittance for light with a wavelength of 900 nm of 50% or less, and an extinction coefficient k of 0.04 or more.
  • a material containing silicon and nitrogen has characteristics that the transmittance increases and the extinction coefficient k decreases as the wavelength increases with respect to light having a wavelength of 800 nm to 900 nm. Due to this optical characteristic, the long wavelength detection light LW can be sufficiently dimmed when the transmittance for light having a wavelength of 900 nm is 50% or less and the extinction coefficient is 0.04 or more. For this reason, it becomes possible to detect the alignment mark formed on the transfer mask manufactured using this mask blank by using the long wavelength detection light LW with sufficient contrast, and exposure due to insufficient alignment mark detection sensitivity. Can solve the problem of not being able to.
  • the light shielding film of the mask blank of the present invention has an optical density of 2.5 or more, Ar reflectance of 40% or less, and Back reflectance of 40% or less with respect to the exposure light of ArF excimer laser. On the other hand, it has optically sufficient exposure transfer characteristics. Furthermore, since the thickness of the light shielding film is 60 nm or less, it becomes possible to keep the bias (EMF bias) related to the electromagnetic effect of the mask pattern and the shadowing effect caused by the mask pattern three-dimensional structure within an allowable range. Moreover, since it is a thin film, it is easy to form a fine light-shielding film pattern. In addition, since the light shielding film is a single layer, the number of steps when producing the light shielding film is small, and manufacturing quality control including defects becomes easy.
  • the light shielding film having a transfer pattern has the same characteristics as the light shielding film of the mask blank of the present invention.
  • the inventors diligently studied the cause of insufficient detection sensitivity of the alignment mark using the long wavelength detection light LW.
  • the lack of alignment mark detection sensitivity is due to the lack of optical contrast, and it has been found that this is caused by the fact that the light shielding film cannot sufficiently attenuate the long wavelength detection light LW. Therefore, research was conducted on a light-shielding film that can sufficiently attenuate the long-wavelength detection light LW.
  • the study was conducted with the fact that the long wavelength detection light LW can be applied even if the wavelength differs depending on the exposure apparatus.
  • a material containing silicon and nitrogen having high ArF light resistance has higher transmittance as the wavelength is longer with respect to light having a wavelength of 800 nm to 900 nm. In other words, the longer the wavelength, the smaller the extinction coefficient k becomes. Therefore, by defining the transmittance of the light shielding film at a wavelength of 900 nm, the light shielding film obtains sufficient light attenuation with respect to the long wavelength detection light LW. In view of the above, by forming the light shielding film from a material containing silicon and nitrogen and defining the transmittance of the light shielding film at a wavelength of 900 nm, the problem of alignment mark detection failure while ensuring high ArF light resistance I thought it could be solved.
  • the optical density of the light-shielding film with respect to ArF exposure light, the reflectances of the front and back surfaces with respect to the exposure light, and the film thickness were defined so that a fine pattern could be transferred.
  • the inventors have found that a film satisfying the above-mentioned definition can be formed by a single layer film having a small number of steps and facilitating defect quality control and manufacturing process control, and has led to the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a mask blank 100 according to an embodiment of the present invention.
  • a mask blank 100 shown in FIG. 1 has a structure in which a light shielding film 2 and a hard mask film 3 are laminated in this order on a translucent substrate 1.
  • the translucent substrate 1 can be formed of synthetic quartz glass, quartz glass, aluminosilicate glass, soda lime glass, low thermal expansion glass (SiO 2 —TiO 2 glass or the like) and the like.
  • synthetic quartz glass has a high transmittance with respect to ArF exposure light (wavelength 193 nm), and is particularly preferable as a material for forming a light-transmitting substrate of a mask blank.
  • the light-shielding film 2 is a single-layer film formed of a material containing silicon and nitrogen, and preferably a material composed of silicon and nitrogen, or one or more elements selected from a metalloid element and a non-metal element, and silicon And a single layer film formed of a material composed of nitrogen.
  • the light-shielding film 2 does not contain a transition metal that can cause a decrease in light resistance to ArF exposure light.
  • the light shielding film 2 may contain any metalloid element in addition to silicon. Among these metalloid elements, it is preferable to include one or more elements selected from boron, germanium, antimony, and tellurium because it can be expected to increase the conductivity of silicon used as a sputtering target.
  • the light shielding film 2 may contain any nonmetallic element in addition to nitrogen.
  • the nonmetallic element in the present invention refers to an element containing a narrowly defined nonmetallic element (nitrogen, carbon, oxygen, phosphorus, sulfur, selenium), halogen, and a noble gas.
  • these nonmetallic elements it is preferable to include one or more elements selected from carbon, fluorine and hydrogen.
  • the light-shielding film 2 is preferable to suppress the oxygen content to 5 atomic% or less, more preferably 3 atomic% or less, except for the surface layer region described later, and does not actively contain oxygen ( XPS (X-ray Photoelectron Spectroscopy) or the like is more preferable. This is because when the silicon nitride-based material film contains oxygen, the extinction coefficient k becomes small and it becomes difficult to obtain sufficient light shielding properties.
  • the translucent substrate 1 is preferably made of a material mainly composed of SiO 2 such as synthetic quartz glass.
  • the difference between the composition of the light-shielding film 2 and the composition of the light-transmitting substrate 1 is reduced, and in dry etching with a fluorine-based gas performed when forming a pattern on the light-shielding film 2, There also arises a problem that it is difficult to obtain etching selectivity with the optical substrate 1.
  • the light shielding film 2 may contain a noble gas.
  • the noble gas is an element that can increase the deposition rate and improve the productivity by being present in the deposition chamber when forming a thin film by reactive sputtering.
  • target constituent particles are ejected from the target, and a thin film is formed on the translucent substrate 1 while taking in the reactive gas in the middle.
  • the noble gas in the film forming chamber is slightly taken in until the target constituent particles jump out of the target and adhere to the translucent substrate 1.
  • Preferable noble gases required for this reactive sputtering include argon, krypton, and xenon.
  • helium and neon having a small atomic weight can be actively incorporated into the thin film.
  • the nitrogen content of the light shielding film 2 is preferably 50 atomic% or less, and more preferably 45 atomic% or less. This is because if the nitrogen content exceeds 50 atomic%, the extinction coefficient with respect to the ArF exposure light and the long wavelength detection light LW becomes small, and it becomes difficult to perform sufficient light shielding and dimming. Further, the nitrogen content of the light shielding film 2 is preferably 25 atomic% or more, and more preferably 30 atomic% or more. This is because if the nitrogen content is less than 25 atomic%, the washing resistance tends to be insufficient, oxidation tends to occur, and the stability of the film over time is likely to be impaired.
  • the silicon content of the light shielding film 2 is preferably 50 atomic% or more, more preferably 55 atomic% or more. This is because if the silicon content is less than 50 atomic%, the extinction coefficient for the ArF exposure light and the long wavelength detection light LW becomes small, and it becomes difficult to perform sufficient light shielding and dimming. Further, the silicon content of the light-shielding film 2 is preferably 75 atomic% or less, and more preferably 65 atomic% or less. This is because if the nitrogen content exceeds 75 atomic%, the washing resistance tends to be insufficient, oxidation tends to occur, and the aging stability of the film tends to be impaired.
  • the light shielding film 2 is preferably formed of a material composed of silicon and nitrogen.
  • the noble gas is an element that is difficult to detect even when a composition analysis such as RBS (Rutherford Backing Scattering Spectrometry) or XPS is performed on the thin film.
  • the noble gas is slightly taken in when the light-shielding film 2 is formed by reactive sputtering. For this reason, it can be considered that the material containing silicon and nitrogen includes a material containing a noble gas.
  • the light shielding film 2 is required to have a thickness of 60 nm or less. By setting the thickness of the light shielding film 2 to 60 nm or less, it becomes possible to keep the bias (EMF bias) related to the electromagnetic effect of the mask pattern and the shadowing effect due to the mask pattern three-dimensional structure within an allowable range. Moreover, since it is a comparatively thin film, it becomes easy to form a fine light-shielding film pattern.
  • the thickness of the light shielding film 2 is more preferably 58 nm or less. On the other hand, the thickness of the light shielding film 2 is preferably 40 nm or more, and more preferably 45 nm or more. If the thickness of the light-shielding film 2 is less than 40 nm, it becomes difficult to ensure the following optical density for ArF exposure light, and sufficient attenuation is obtained for the long-wavelength detection light LW. It becomes difficult.
  • the light shielding film 2 is required to have an optical density (OD value) of 2.5 or more with respect to ArF exposure light, and is preferably 2.8 or more.
  • OD value optical density
  • the optical density of the light shielding film 2 is preferably 4.0 or less in order to reduce the thickness of the light shielding film 2.
  • the light shielding film 2 is required to have a surface reflectance with respect to ArF exposure light (a reflectance on the surface opposite to the light-transmitting substrate 1) of 40% or less, and preferably 38% or less. If the surface reflectance with respect to ArF exposure light exceeds 40%, the reflection of the exposure light becomes too large, resulting in a problem that the projection optical image at the time of transfer exposure deteriorates. Further, the light shielding film 2 preferably has a surface reflectance of 20% or more with respect to ArF exposure light. This is because if the surface reflectance with respect to ArF exposure light is less than 20%, the pattern inspection sensitivity when performing mask pattern inspection using light having a wavelength of 193 nm or a wavelength in the vicinity thereof is lowered.
  • the light-shielding film 2 is required to have a back surface reflectance with respect to ArF exposure light (the reflectance of the surface on the translucent substrate 1 side) of 40% or less, and preferably 35% or less.
  • a back surface reflectance with respect to ArF exposure light exceeds 40%, the reflection of the exposure light becomes too large, resulting in a problem that the projection optical image at the time of transfer exposure is deteriorated.
  • the light shielding film 2 has a refractive index n of 1.6 or more and 2.1 or less for ArF exposure light in order to set the optical density, front surface reflectance, and back surface reflectance of the light shielding film 2 to ArF exposure light within the above ranges. It is preferable that it is 1.7 or more and 2.0 or less. Further, the extinction coefficient k for ArF exposure light is preferably 1.6 or more and 2.1 or less, and more preferably 1.7 or more and 2.0 or less.
  • the light-shielding film 2 is required to have a transmittance for light having a wavelength of 900 nm of 50% or less, and preferably 48% or less.
  • the light shielding film 2 is required to have an extinction coefficient k of 0.04 or more with respect to light having a wavelength of 900 nm, and preferably 0.045 or more. Moreover, it is preferable that the extinction coefficient k with respect to the light of wavelength 900nm of the light shielding film 2 is 0.1 or less.
  • the light-shielding film 2 preferably has a refractive index n for light having a wavelength of 900 nm of 2.5 or more, and more preferably 2.7 or more. Moreover, it is preferable that the refractive index n with respect to the light of wavelength 900nm of the light shielding film 2 is 3.5 or less.
  • the light-shielding film 2 made of a material containing silicon and nitrogen has a higher transmittance with respect to light having a wavelength of 800 nm to 900 nm, and the refractive index n and the extinction coefficient k are both small. It has the characteristic which becomes. Due to this spectral characteristic, when the transmittance for light having a wavelength of 900 nm is 50% or less and the extinction coefficient k is 0.04 or more, the long wavelength detection light having a wavelength in the range of 800 nm to 900 nm by the light shielding film 2. Since the LW can be sufficiently dimmed, the alignment mark formed on the transfer mask manufactured using this mask blank can be detected with sufficient contrast using the long wavelength detection light LW. This can solve the problem that exposure cannot be performed due to insufficient alignment mark detection sensitivity.
  • the light-shielding film 2 has a transmittance for light having a wavelength of 700 nm of preferably 45% or less, and more preferably 40% or less.
  • the light-shielding film 2 preferably has an extinction coefficient k for light having a wavelength of 700 nm of 0.10 or more, and more preferably 0.15 or more.
  • the extinction coefficient k with respect to the light of wavelength 900nm of the light shielding film 2 is 0.5 or less.
  • the light-shielding film 2 preferably has a refractive index n of 2.8 or more for light having a wavelength of 700 nm, more preferably 3.0 or more.
  • the refractive index n of the light shielding film 2 with respect to light having a wavelength of 700 nm is preferably 3.8 or less.
  • an identification mark such as a barcode formed on a transfer mask is read using detection light having a wavelength shorter than 800 nm (for example, a wavelength in the range of 600 nm to 700 nm).
  • the transfer mask manufactured using the mask blank having the light-shielding film 2 having optical characteristics with respect to light having a wavelength of 700 nm as described above can reliably read the identification code with the detection light having a wavelength shorter than 800 nm. it can.
  • the refractive index n and extinction coefficient k of a thin film are not determined only by the composition of the thin film.
  • the film density and crystal state of the thin film are factors that influence the refractive index n and the extinction coefficient k. For this reason, by adjusting various conditions when forming the light shielding film 2 by reactive sputtering, the light shielding film 2 has a desired refractive index n and extinction coefficient k, and the optical density (OD value) with respect to ArF exposure light. ),
  • the back surface reflectance, the front surface reflectance, and the extinction coefficient k with respect to light having a wavelength of 900 nm are formed so as to fall within the prescribed values.
  • the light-shielding film 2 In order to make the light-shielding film 2 in the range of the above-mentioned refractive index n and extinction coefficient k, it is only necessary to adjust the ratio of the mixed gas of noble gas and reactive gas when forming the film by reactive sputtering. I can't. There are a variety of positional relationships such as the pressure in the film formation chamber during reactive sputtering, the power applied to the target, and the distance between the target and the translucent substrate. These film forming conditions are unique to the film forming apparatus, and are appropriately adjusted so that the formed light shielding film 2 has a desired refractive index n and extinction coefficient k.
  • the light-shielding film 2 is a single-layer film composed of a film having a uniform composition in the thickness direction of the layer except a surface layer where natural oxidation occurs, or a film having a tilted film composition.
  • a film that does not actively contain oxygen and contains silicon and nitrogen has high light resistance to ArF exposure light, but has a higher chemical resistance than a film that contains silicon and nitrogen that contains oxygen actively. It tends to be low. Further, in the case of the mask blank 100 using the light shielding film 2 that does not actively contain oxygen as the surface layer on the side opposite to the light transmissive substrate 1 side of the light shielding film 2, the transfer mask 200 produced from the mask blank 100. On the other hand, it is difficult to avoid oxidation of the surface layer of the light shielding film 2 by performing mask cleaning or storage in the air. When the surface layer of the light-shielding film 2 is oxidized, the surface reflectance of the light-shielding film 2 with respect to ArF exposure light changes, causing a problem that the exposure transfer characteristics of the transfer mask 200 change.
  • the surface layer of the light shielding film 2 on the side opposite to the translucent substrate 1 side is positively incorporated with oxygen, but on the other hand, when the entire light shielding film 2 contains oxygen, As described above, there arises a problem that the light shielding property of ArF exposure light and the light attenuation property with respect to the long wavelength detection light LW are lowered.
  • the light-shielding film 2 has a composition gradient portion in which the oxygen content increases toward the surface opposite to the translucent substrate 1 side on the surface layer, and a portion other than the surface layer in the light-shielding film 2 (
  • the light shielding film 2 is preferably made of a material made of silicon and nitrogen.
  • the material composed of silicon and nitrogen constituting the bulk portion of the light shielding film 2 is composed of a material composed of silicon and nitrogen, or one or more elements selected from metalloid elements and nonmetal elements, and silicon and nitrogen. It is a material.
  • the refractive index n and the extinction coefficient k for the ArF exposure light of the light shielding film 2 are all values of the light shielding film 2 including the surface layer, and the extinction coefficient k for light having a wavelength of 900 nm is also used. The value of the entire light shielding film 2 including the surface layer.
  • the light shielding film 2 is formed by sputtering, but any sputtering such as DC sputtering, RF sputtering, and ion beam sputtering can be applied.
  • a target with low conductivity such as a silicon target or a silicon compound target that does not contain a metalloid element or has a low content
  • a silicon target or a target made of a material containing one or more elements selected from a metalloid element and a nonmetal element is used in a sputtering gas containing a nitrogen-based gas and a noble gas.
  • a sputtering gas containing a nitrogen-based gas and a noble gas.
  • the method of forming the light-shielding film 2 on the translucent substrate 1 by reactive sputtering is preferred.
  • any gas can be applied as long as it contains nitrogen.
  • the light shielding film 2 preferably has a low oxygen content except for its surface layer, it is preferable to apply a nitrogen-based gas that does not contain oxygen, and to apply nitrogen gas (N 2 gas). Is more preferable.
  • nitrogen gas nitrogen gas
  • any noble gas can be used as the noble gas used in the formation process of the light shielding film 2. Preferred examples of the noble gas include argon, krypton, and xenon.
  • helium and neon having a small atomic weight can be actively incorporated into the thin film.
  • the final stage in which the light shielding film 2 is formed by sputtering As a method for forming the light shielding film 2 having the composition gradient portion in which the oxygen content increases toward the surface opposite to the light transmitting substrate 1 side, the final stage in which the light shielding film 2 is formed by sputtering.
  • a gas containing oxygen such as in the air
  • a gas containing oxygen in the air etc.
  • Examples include a method of adding a post-treatment such as a light irradiation treatment using a flash lamp or the like, or a treatment in which ozone or oxygen plasma is brought into contact with the surface of the light-shielding film.
  • the surface reflectance of the light shielding film with respect to ArF exposure light is lower (for example, 30% or less)
  • the light shielding film having the single layer structure described above is used, more nitrogen is contained. Is required.
  • the optical density per unit film thickness of the light shielding film is lowered, and it is necessary to increase the thickness of the light shielding film in order to ensure a predetermined light shielding performance.
  • the light-shielding film has a laminated structure of a lower layer and an upper layer from the light-transmitting substrate side, and the lower layer is applied with the material of the light-shielding film having the single-layer structure of the above embodiment. Is preferably formed of a material containing silicon and oxygen.
  • this another form of mask blank has a structure in which a light-shielding film is provided on a light-transmitting substrate, and the light-shielding film has a structure in which a lower layer and an upper layer are sequentially laminated from the light-transmitting substrate side, and the lower layer contains silicon and nitrogen.
  • the upper layer is formed of a material containing silicon and oxygen, the optical density of the light shielding film with respect to ArF exposure light is 2.5 or more, and the surface reflectance of the light shielding film with respect to ArF exposure light is 30% or less.
  • the back surface reflectance of the light shielding film with respect to ArF exposure light is 40% or less, the transmittance of the light shielding film with respect to light with a wavelength of 900 nm is 50% or less, and the extinction of light with a wavelength of 900 nm in the lower layer of the light shielding film
  • the attenuation coefficient k is 0.04 or more, and the thickness of the light shielding film is 60 nm or less.
  • the lower layer of the light shielding film is formed of a material composed of silicon and nitrogen, or a material composed of one or more elements selected from a metalloid element and a nonmetallic element, and silicon and nitrogen. It is preferable.
  • the upper layer of the light shielding film is formed of a material composed of silicon and oxygen, or a material composed of one or more elements selected from metalloid elements and nonmetallic elements, and silicon and oxygen. It is preferable.
  • the specific configuration of the lower layer of this light shielding film is the same as that of the light shielding film having a single layer structure in the above embodiment.
  • This upper layer has almost zero extinction coefficient k for light having a wavelength of 800 nm to 900 nm, and the upper layer hardly contributes to shielding light of these wavelengths. For this reason, it is preferable to ensure the light shielding performance with respect to light having a wavelength of 800 nm to 900 nm only in the lower layer of the light shielding film. In addition, since this upper layer needs to have a function of reducing the surface reflectance, the light shielding performance against ArF exposure light is low. For this reason, it is preferable to ensure a predetermined optical density for ArF exposure light only in the lower layer of the light shielding film.
  • This transfer mask in another form includes a light-shielding film having a transfer pattern on a light-transmitting substrate, and the light-shielding film has a structure in which a lower layer and an upper layer are sequentially stacked from the light-transmitting substrate side, and the lower layer is made of silicon.
  • the upper layer is formed of a material containing silicon and oxygen
  • the optical density of the light shielding film with respect to ArF exposure light is 2.5 or more
  • the surface reflectance of the light shielding film with respect to ArF exposure light is 30% or less
  • the back surface reflectance of the light shielding film with respect to ArF exposure light is 40% or less
  • the light transmittance of the light shielding film with respect to light having a wavelength of 900 nm is 50% or less
  • the wavelength of 900 nm in the lower layer of the light shielding film is
  • the extinction coefficient k with respect to light is 0.04 or more
  • the thickness of the light shielding film is 60 nm or less.
  • other matters relating to the mask blank and transfer mask of this other form are the same as those of the mask blank and transfer mask of the above-described embodiment.
  • a hard mask film 3 made of a material having etching selectivity with respect to an etching gas used when the light shielding film 2 is etched is further laminated on the light shielding film 2. It is more preferable to have a configuration. Since the light-shielding film 2 needs to ensure a predetermined optical density, there is a limit in reducing the thickness thereof. It is sufficient that the hard mask film 3 has a film thickness that can function as an etching mask until dry etching for forming a pattern on the light shielding film 2 immediately below the hard mask film 3 is completed. Not subject to restrictions.
  • the thickness of the hard mask film 3 can be made much thinner than the thickness of the light shielding film 2.
  • the resist film made of an organic material is sufficient to have a thickness sufficient to function as an etching mask until dry etching for forming a pattern on the hard mask film 3 is completed.
  • the thickness of the resist film can be greatly reduced, and problems such as resist pattern collapse can be suppressed.
  • the hard mask film 3 is preferably formed of a material containing chromium (Cr).
  • the material containing chromium has particularly high dry etching resistance against dry etching using a fluorine-based gas such as SF 6 .
  • a fluorine-based gas such as SF 6 .
  • the thickness of the light-shielding film 2 is relatively large, so that a problem of side etching occurs during dry etching of the light-shielding film 2.
  • a material containing chromium since the hard mask film 3 is relatively thin, problems caused by side etching hardly occur.
  • the material containing chromium examples include a material containing one or more elements selected from oxygen, nitrogen, carbon, boron, and fluorine in addition to chromium metal, such as CrN, CrC, CrON, CrCO, and CrCON. .
  • the film tends to be a film having an amorphous structure, and the surface roughness of the film and the line edge roughness when the light-shielding film 2 is dry-etched are preferably suppressed.
  • a material for forming the hard mask film 3 a material containing one or more elements selected from oxygen, nitrogen, carbon, boron and fluorine in chromium is used. Is preferred.
  • a chromium-based material is etched with a mixed gas of a chlorine-based gas and an oxygen gas, but chromium metal does not have a very high etching rate with respect to this etching gas.
  • By including one or more elements selected from oxygen, nitrogen, carbon, boron and fluorine in chromium it is possible to increase the etching rate of the mixed gas of chlorine-based gas and oxygen gas with respect to the etching gas.
  • the material containing chromium forming the hard mask film 3 may contain one or more elements of indium, molybdenum, and tin. By including one or more elements of indium, molybdenum, and tin, the etching rate with respect to the mixed gas of chlorine gas and oxygen gas can be further increased.
  • a material containing a metal such as tantalum can be used in addition to a metal such as tantalum (Ta) or tungsten (W).
  • the material containing tantalum in this case includes, in addition to tantalum metal, a material in which tantalum contains one or more elements selected from nitrogen, boron, and carbon. Specific examples thereof include Ta, TaN, TaO, TaON, TaBN, TaBO, TaBON, TaCN, TaCO, TaCON, TaBCN, TaBOCN, and the like.
  • a resist film of an organic material is formed with a film thickness of 100 nm or less in contact with the surface of the hard mask film 3.
  • a transfer pattern to be formed on the hard mask film 3 may be provided with SRAF (Sub-Resolution Assist Feature) having a line width of 40 nm.
  • SRAF Sub-Resolution Assist Feature
  • the resist film preferably has a film thickness of 80 nm or less.
  • HMDS hexyldisilazane
  • the mask blank of the present invention is a mask blank suitable for a binary mask application, but is not limited to a binary mask, and is not limited to a binary mask. It can also be used as a mask blank for a phase lithography mask.
  • FIG. 4 the cross-sectional schematic diagram of the process of manufacturing the transfer mask (binary mask) 200 from the mask blank 100 which is embodiment of this invention is shown.
  • the transfer mask 200 is a binary mask provided with a light-shielding film 2 (light-shielding film pattern 2a) having a transfer pattern on a light-transmitting substrate 1, and the light-shielding film includes silicon and nitrogen.
  • the light transmittance is 50% or less, the extinction coefficient is 0.04 or more, and the thickness is 60 nm or less. Matters regarding the translucent substrate 1 and the light shielding film 2 in the transfer mask 200 are the same as those of the mask blank 100, and the transfer mask 200 has the same technical features as the mask blank 100.
  • the manufacturing method of the transfer mask 200 of the present invention uses the mask blank 100 described above, and includes a step of forming a pattern including a transfer pattern and an alignment mark on the hard mask film 3 by dry etching, Forming a pattern including a transfer pattern and an alignment mark on the light shielding film 2 by dry etching using the hard mask film 3 having the above pattern (hard mask pattern 3a) as a mask, and removing the hard mask pattern 3a. It is characterized by comprising.
  • Such a transfer mask 200 can detect an alignment mark with sufficient contrast even when an exposure apparatus that performs alignment using the long-wavelength detection light LW is used, so that the mask alignment operation causes an error. Can be done without.
  • the transfer mask 200 has high ArF light resistance, and even after being subjected to integrated irradiation with exposure light of an ArF excimer laser, a CD (Critical Dimension) change (thickness) of the light shielding film pattern 2a is caused. It can be suppressed to a small range.
  • the transfer mask 200 when the transfer mask 200 is set on the mask stage of an exposure apparatus that uses ArF excimer laser that performs alignment using the long wavelength detection light LW as exposure light, and the light shielding film pattern 2a is exposed and transferred to the resist film.
  • the pattern can be transferred to the resist film on the semiconductor device with sufficient accuracy to meet the design specifications with the mask alignment operation.
  • a material containing silicon and nitrogen is applied to the light shielding film 2
  • a material containing chromium is applied to the hard mask film 3.
  • a mask blank 100 (see FIG. 4A) is prepared, and a resist film is formed by spin coating in contact with the hard mask film 3.
  • a pattern to be formed on the light shielding film 2 is exposed and drawn, and further, a predetermined process such as a development process is performed to form a resist pattern 4a (see FIG. 4B).
  • the pattern drawn by the electron beam includes an alignment mark in addition to the transfer pattern.
  • the resist pattern 4a is removed using ashing or a resist stripping solution (see FIG. 4D).
  • a chlorine-based gas such as a mixed gas of chlorine and oxygen
  • the chlorine-based gas is not particularly limited as long as it contains Cl, and examples thereof include Cl 2 , SiCl 2 , CHCl 3 , CH 2 Cl 2 , and BCl 3 .
  • the resist pattern 4a is removed using ashing or a resist stripping solution (see FIG. 4D).
  • the hard mask pattern 3a as a mask, dry etching using a fluorine-based gas is performed to form a pattern (the light shielding film pattern 2a) on the light shielding film 2 (see FIG. 4E).
  • a fluorine-based gas any gas containing F can be used, but SF 6 is preferable. Examples of other SF 6 include CHF 3 , CF 4 , C 2 F 6 , C 4 F 8, and the like, and fluorine-based gas containing C is an etching method for the transparent substrate 1 made of a glass material. The rate is relatively high. SF 6 is preferable because damage to the translucent substrate 1 is small. Incidentally, more preferable the addition of such He as SF 6.
  • the hard mask pattern 3a is removed using a chrome etching solution, and a transfer mask 200 is obtained through a predetermined process such as cleaning (see FIG. 4F).
  • the step of removing the hard mask pattern 3a may be performed by dry etching using a mixed gas of chlorine and oxygen.
  • a chromium etching liquid the mixture containing ceric ammonium nitrate and perchloric acid can be mentioned.
  • the transfer mask of the present invention is not limited to a binary mask, but can be applied to a Levenson type phase shift mask and a CPL mask. That is, in the case of the Levenson type phase shift mask, the light shielding film of the present invention can be used as the light shielding film. In the case of a CPL mask, the light shielding film of the present invention can be used mainly in a region including a light shielding band on the outer periphery. As in the case of the binary mask, the alignment mark can be detected with sufficient contrast using the long wavelength detection light LW in the case of the Levenson type phase shift mask and the CPL mask.
  • a pattern is exposed and transferred onto a resist film on a semiconductor substrate using the transfer mask 200 manufactured using the transfer mask 200 or the mask blank 100. It is characterized by. Since the transfer mask 200 and the mask blank 100 of the present invention have the effects as described above, it is sufficient when the resist film formed on the semiconductor wafer is exposed using the transfer mask of the present invention. Alignment mark detection can be performed with high sensitivity. Therefore, it is possible to manufacture a semiconductor device with high ArF light resistance without causing an exposure operation stop due to insufficient alignment mark detection sensitivity.
  • Example 1 Manufacture of mask blanks
  • a translucent substrate 1 made of synthetic quartz glass having a main surface dimension of about 152 mm ⁇ about 152 mm and a thickness of about 6.25 mm was prepared.
  • the translucent substrate 1 had an end face and a main surface polished to a predetermined surface roughness, and then subjected to a predetermined cleaning process and a drying process.
  • the translucent substrate 1 is installed in a single wafer RF sputtering apparatus, and a mixed gas (flow rate ratio Kr) of krypton (Kr), helium (He) and nitrogen (N 2 ) using a silicon (Si) target.
  • the power of the RF power source is 1.5 kW
  • the reactive sputtering (RF sputtering) is performed on the light-transmitting substrate 1.
  • the composition of the light shielding film 2 is a result obtained by measurement by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 2 shows the results of measuring the spectral transmittance of the light-shielding film 2 after the heat treatment using a spectrophotometer (manufactured by Agilent Technologies, Cary 4000).
  • the transmittance with respect to light having a long wavelength of 800 nm or more and 900 nm or less monotonously increases as the wavelength increases, and the transmittances at wavelengths of 800 nm, 850 nm, 890 nm, and 900 nm are 42.8%, 44.9%, and 46.46, respectively. 7% and 47.0%.
  • the optical density (OD value) with respect to ArF excimer laser light (wavelength 193 nm) was 2.96.
  • the refractive index n and extinction coefficient k of the light shielding film 2 were measured using a spectroscopic ellipsometer (M-2000D manufactured by JA Woollam).
  • the spectral characteristics that is, the measurement results of the refractive index n and the extinction coefficient k for each wavelength are shown in FIG.
  • the refractive index n at a wavelength of 193 nm is 1.830
  • the extinction coefficient k is 1.785
  • the refractive index n at a wavelength of 800 nm is 3.172
  • the extinction coefficient k is 0.093
  • the refractive index n at a wavelength of 850 nm is 3.137.
  • the extinction coefficient k is 0.066, the refractive index n at a wavelength of 890 nm is 3.112, the extinction coefficient k is 0.050, the refractive index n at a wavelength of 900 nm is 3.106, and the extinction coefficient k is 0.047. there were.
  • the translucent substrate 1 on which the heat-shielding light-shielding film 2 is formed is placed in a single-wafer DC sputtering apparatus, and using a chromium (Cr) target, argon (Ar), nitrogen (N 2 ), Then, reactive sputtering (DC sputtering) was performed in a mixed gas atmosphere to form a hard mask film 3 made of a CrN film having a thickness of 5 nm.
  • the film composition ratio measured by XPS was 75 atomic% for Cr and 25 atomic% for N.
  • heat treatment was performed at a lower temperature (280 ° C.) than the heat treatment performed on the light shielding film 2 to adjust the stress of the hard mask film 3.
  • a mask blank 100 having a structure in which the light shielding film 2 and the hard mask film 3 were laminated on the light transmitting substrate 1 was manufactured.
  • a transfer mask (binary mask) 200 of Example 1 was produced in the following procedure. First, a mask blank 100 of Example 1 (see FIG. 4A) was prepared, and a resist film made of a chemically amplified resist for electron beam drawing was formed with a thickness of 80 nm in contact with the surface of the hard mask film 3. . Next, a pattern to be formed on the light shielding film 2 was drawn on the resist film with an electron beam, and predetermined development processing and cleaning processing were performed to form a resist pattern 4a (see FIG. 4B). The pattern drawn by the electron beam includes an alignment mark in addition to the transfer pattern.
  • the resist pattern 4a was removed (see FIG. 4D). Subsequently, using the hard mask pattern 3a as a mask, dry etching using a fluorine-based gas (a mixed gas of SF 6 and He) is performed to form a pattern (the light shielding film pattern 2a) on the light shielding film 2 (FIG. 4E). )reference).
  • a fluorine-based gas a mixed gas of SF 6 and He
  • the hard mask pattern 3a was removed using a chromium etching solution containing ceric ammonium nitrate and perchloric acid, and a transfer mask 200 was obtained through a predetermined process such as cleaning (see FIG. 4F). ).
  • the manufactured transfer mask 200 of Example 1 was set in an exposure apparatus using the long-wavelength detection light LW and the alignment mark was detected, the mark could be detected with sufficient contrast. Then, the mask alignment operation could be executed once without causing an error.
  • the transfer mask 200 was subjected to an intermittent irradiation with ArF excimer laser light at an integrated dose of 40 kJ / cm 2 .
  • the CD change amount of the light-shielding film pattern 2a before and after the irradiation treatment was 1.2 nm or less, and the CD change amount in a range usable as the light-shielding film pattern 2a. From this, it was found that the light-shielding film pattern 2a has practically sufficient ArF resistance.
  • Comparative Example 1 Manufacture of mask blanks
  • the mask blank of Comparative Example 1 was manufactured in the same procedure as the mask blank 100 of Example 1 except that the light shielding film was changed as follows.
  • the formation method of the light shielding film of Comparative Example 1 is as follows.
  • a translucent substrate 1 is installed in a single-wafer RF sputtering apparatus, a silicon (Si) target is used, and a mixed gas of krypton (Kr), helium (He) and nitrogen (N 2 ) is used as a sputtering gas, and the reactivity is increased.
  • a light-shielding film (Si: N 48 atomic%: 52 atomic%) made of silicon and nitrogen was formed to a thickness of 100 nm on the light-transmitting substrate 1 by sputtering (RF sputtering).
  • the translucent substrate 1 on which the light-shielding film was formed was subjected to a heat treatment in the atmosphere at a heating temperature of 500 ° C. and a treatment time of 1 hour.
  • a spectrophotometer manufactured by Agilent Technologies, Cary 4000
  • the transmittances at wavelengths of 800 nm, 850 nm, 890 nm, and 900 nm were 74.2% and 74.74%, respectively. 2%, 73.9% and 73.9%.
  • the optical density (OD value) with respect to ArF excimer laser light (wavelength 193 nm) was 2.9.
  • the refractive index n and the extinction coefficient k of the light shielding film were measured using a spectroscopic ellipsometer (M-2000D manufactured by JA Woollam).
  • the refractive index n at a wavelength of 193 nm is 2.4
  • the extinction coefficient k is 1.0
  • the refractive index n at a wavelength of 800 nm is 2.3
  • the extinction coefficient k is 0, and the refractive index n at a wavelength of 850 nm is 2.3.
  • the extinction coefficient k was 0, the refractive index n at a wavelength of 890 nm was 2.3, the extinction coefficient k was 0, the refractive index n at a wavelength of 900 nm was 2.3, and the extinction coefficient k was 0.
  • the CD change amount of the light-shielding film pattern before and after this irradiation treatment is 1.2 nm or less, which is a CD change amount in a range usable as the light-shielding film pattern, and the light-shielding film pattern has practically sufficient ArF resistance. It was.

Abstract

本発明は、遮光膜パターン(2a)が高いArF耐光性を有し、且つ、波長が800nm以上900nm以下の長波長光を用いてマーク検出を行う際の検出感度が不足するという課題を解決したマスクブランク(100)を提供することを目的としている。透光性基板(1)上に遮光膜(2)を備えたマスクブランクであって、遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上、表面反射率が40%以下、裏面反射率が40%以下であり、900nmの波長の光に対する透過率が50%以下、消衰係数が0.04以上であり、厚さが60nm以下であることを特徴とするマスクブランクである。

Description

マスクブランク、転写用マスク及び半導体デバイスの製造方法
 本発明は、マスクブランク、そのマスクブランクを用いて製造された転写用マスクに関するものである。また、本発明は、前記の転写用マスクを用いた半導体デバイスの製造方法に関するものである。
 半導体デバイスの製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。半導体デバイスのパターンを微細化するに当たっては、転写用マスクに形成されるマスクパターンの微細化に加え、フォトリソグラフィーで使用される露光光源の波長の短波長化が必要となる。近年、半導体装置を製造する際の露光光源にArFエキシマレーザー(波長193nm)が適用されることが増えてきている。
 転写用マスクの一種にバイナリマスクがある。バイナリマスクは、たとえば、特許文献1に記載されているように、透光性基板上に露光光を遮光する遮光膜パターンが形成された転写用マスクであり、その遮光膜としては、クロム(Cr)またはモリブデンシリサイド(MoSi)系の材料が広く用いられてきた。
 遮光膜がクロム系材料からなる場合、その膜をドライエッチングする際に用いられる塩素系ガスと酸素ガスとの混合ガスはラジカル性が高いので、十分な異方性で遮光膜をドライエッチングすることが難しく、微細な遮光膜パターンを十分な精度で形成することが困難になってきた。
 遮光膜材料としてモリブデンシリサイド(MoSi)系の材料を用いた場合は、前記ドライエッチングの問題が少なく微細な遮光膜パターンを高精度に形成しやすいという特徴がある。その一方で、MoSi系膜は、ArFエキシマレーザーの露光光(ArF露光光)に対する耐性(いわゆるArF耐光性)が低いということが近年判明している。
特開2007-33470号公報
 ケイ素と窒素を含有する材料を位相シフト膜に用いた場合、高いArF耐光性を有することが確認されている。このことから、バイナリマスクの遮光膜としてケイ素と窒素を含有する材料の薄膜(SiNx膜)を適用することで高いArF耐光性が得られる可能性を見出し、研究を行った。しかし、遮光膜を単層構造のSiNx膜で形成する場合、以下の問題があることがわかった。
 一般に、バイナリマスクにおいて、転写パターンが形成された遮光膜には、露光装置から照射されるArFエキシマレーザーの露光光(以下、ArF露光光という。)に対して所定以上の光学濃度(たとえば2.5以上。)を有することが求められている。さらに、遮光膜には、透光性基板に接する側の表面に入射するArF露光光に対して所定以下の反射率(裏面反射率。たとえば40%以下。)であることが求められ、同時に透光性基板側とは反対側の表面に入射するArF露光光に対して所定以下の反射率(表面反射率。たとえば40%以下。)であることが求められている。遮光膜に求められる光学濃度の観点では、SiNx膜に含有させる窒素は少ないほど好ましい。しかし、遮光膜に求められる表面反射率と裏面反射率の観点では、SiNx膜には窒素をある程度含有させる必要がある。
 露光装置によっては、波長が800nm以上900nm以下の長波長光を用いてアライメントマーク検出を行ってから露光に係る動作を行うものがある。ここで、この長波長光を長波長検出光LWと呼ぶことにする。遮光膜が単層構造のSiNx膜からなるバイナリマスクを、長波長検出光LWを用いる露光装置にセットして露光を行おうとすると、アライメントマーク検出の検出感度が不足して露光動作に入れないという問題がしばしば発生した。
 遮光膜を構成するSiNx膜の窒素含有量を大幅に少なくすれば、長波長光の透過率を低下させることができ、アライメントマークの検出感度不足の問題は解消する。しかし、そのような遮光膜は、ArF露光光に対する表面反射率及び裏面反射率がともに高くなるため、バイナリマスクとしての転写性能が大きく低下するという問題が新たに生じてしまう。
 本発明は、遮光膜に求められるArF露光光に対する各種の光学特性を満たしながらも、波長が800nm以上900nm以下の長波長光を用いてマーク検出を行う際の感度が不足するという課題を解決した、単層構造のSiNx膜からなる遮光膜を有するマスクブランクを提供することを目的としている。また、本発明は、このマスクブランクを用いて製造される転写用マスクを提供することを目的としている。さらに、本発明は、この転写用マスクを用いた半導体デバイスの製造方法を提供することを目的としている。
 前記の課題を解決するため、本発明は以下の構成を有する。
(構成1)
 透光性基板上に、遮光膜を備えたマスクブランクであって、
 前記遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、
 前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上であり、
 前記遮光膜は、前記露光光に対する表面反射率が40%以下であり、
 前記遮光膜は、前記露光光に対する裏面反射率が40%以下であり、
 前記遮光膜は、900nmの波長の光に対する透過率が50%以下であり、
 前記遮光膜は、900nmの波長の光に対する消衰係数kが0.04以上であり、
 前記遮光膜は、厚さが60nm以下である
ことを特徴とするマスクブランク。
(構成2)
 前記遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする構成1記載のマスクブランク。
(構成3)
 前記遮光膜は、その表層に透光性基板側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有し、前記表層以外の遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする構成1または2に記載のマスクブランク。
(構成4)
 前記遮光膜上にクロムを含有する材料からなるハードマスク膜を備えることを特徴とする構成1から3のいずれかに記載のマスクブランク。
(構成5)
 透光性基板上に、転写パターンを有する遮光膜を備えた転写用マスクであって、
 前記遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、
 前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上であり、
 前記遮光膜は、前記露光光に対する表面反射率が40%以下であり、
 前記遮光膜は、前記露光光に対する裏面反射率が40%以下であり、
 前記遮光膜は、900nmの波長の光に対する透過率が50%以下であり、
 前記遮光膜は、900nmの波長の光に対する消衰係数kが0.04以上であり、
 前記遮光膜は、厚さが60nm以下である
ことを特徴とする転写用マスク。
(構成6)
 前記遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする構成5記載の転写用マスク。
(構成7)
 前記遮光膜は、その表層に透光性基板側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有し、前記表層以外の遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする構成5または6に記載の転写用マスク。
(構成8)
 構成5から7のいずれかに記載の転写用マスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
 本発明のマスクブランクの遮光膜は、ケイ素及び窒素を含有する材料で形成され、且つ900nmの波長の光に対する透過率が50%以下で、消衰係数kが0.04以上である。ケイ素及び窒素を含有する材料は、ArF耐光性が高いことに加え、波長800nm以上900nm以下の光に対して波長が長くなるほど透過率が高くなり、消衰係数kは小さくなる特性を有する。この光学的特性により、900nmの波長の光に対する透過率が50%以下、消衰係数が0.04以上であると長波長検出光LWを十分に減光できる。このため、長波長検出光LWを使って、このマスクブランクを用いて製造された転写用マスクに形成されたアライメントマークを十分なコントラストで検出することが可能になり、アライメントマーク検出感度不足により露光を行うことができないという問題を解決することができる。
 また、本発明のマスクブランクの遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上、表面反射率が40%以下、裏面反射率が40%以下であるので、パターン露光光に対して、光学的に十分な露光転写特性を有する。
 さらに、遮光膜の膜厚が60nm以下であるため、マスクパターンの電磁界効果に係るバイアス(EMFバイアス)及びマスクパターン立体構造起因のシャドーイング効果を許容範囲に収めることが可能になる。また、薄膜であるので、微細な遮光膜パターンを形成しやすい。
 加えて、遮光膜が単層であるため、遮光膜を製造するときの工程数が少なく、欠陥を含む製造品質管理が容易になる。
 また、本発明の転写用マスクは、転写パターンを有する遮光膜が本発明の前記マスクブランクの遮光膜と同じ特性を有する。このような転写用マスクとすることにより、転写パターンを有する遮光膜のArF耐光性が高いことに加え、アライメントマーク検出感度不足により露光を行うことができないという問題を解決することができる。
本発明の実施形態におけるマスクブランクの構成を示す断面図である。 本発明の実施形態における遮光膜の透過率の波長依存性を示す特性図である。 本発明の実施形態における遮光膜の光学係数の波長依存性を示す特性図である。 本発明の実施形態における転写用マスクの製造工程を示す断面図である。
 まず、本発明の完成に至った経緯を述べる。本発明者らは、長波長検出光LWを用いたアライメントマークの検出感度不足の原因を鋭意研究した。その結果、アライメントマーク検出感度不足は光学コントラスト不足によるものであり、これは、遮光膜が長波長検出光LWを十分に減光することができないことに起因していることを突き止めた。
 そこで、長波長検出光LWを十分に減光することができる遮光膜の研究を行った。ここで、長波長検出光LWの波長が露光装置によって異なっていても適用できることを念頭に置いて研究を行った。
 高いArF耐光性をもつケイ素と窒素を含有する材料は、800nm以上900nm以下の波長の光に対して波長が長いほど透過率が高まる。言い換えれば、波長が長いほど消衰係数kが小さくなる分光特性を有する。そこで、波長900nmにおける遮光膜の透過率を規定することにより、遮光膜が長波長検出光LWに対する十分な減光性を得るようにする。以上のことを鑑み、遮光膜をケイ素と窒素を含有する材料で形成し、且つ遮光膜の透過率を波長900nmで規定することにより、高いArF耐光性を確保しつつ、アライメントマーク検出不良の問題を解決できると考えた。
 また、微細なパターンの転写が可能なように、遮光膜のArF露光光に対する光学濃度、露光光に対する表面と裏面の各反射率、及び膜厚を規定した。
 遮光膜について、さらに検討を行った結果、工程数が少なく、欠陥品質管理や製造工程管理が容易になる単層膜で前記規定を満たす膜ができることを見出し、本発明に至った。
[マスクブランク]
 次に、本発明の各実施の形態について説明する。図1は、本発明の実施形態に係るマスクブランク100の構成を示す断面図である。図1に示すマスクブランク100は、透光性基板1上に、遮光膜2及びハードマスク膜3がこの順に積層した構造を有する。
[[透光性基板]]
 透光性基板1は、合成石英ガラスのほか、石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)などで形成することができる。これらの中でも、合成石英ガラスは、ArF露光光(波長193nm)に対する透過率が高く、マスクブランクの透光性基板を形成する材料として特に好ましい。
[[遮光膜]]
 遮光膜2は、ケイ素と窒素を含有する材料で形成される単層膜であって、好ましくは、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成される単層膜である。
 遮光膜2には、ArF露光光に対する耐光性が低下する要因となり得る遷移金属は含有しない。また、遮光膜2には、遷移金属を除く金属元素についても、ArF露光光に対する耐光性が低下する要因となり得る可能性を否定できないため、含有させないことが望ましい。
 遮光膜2は、ケイ素に加え、いずれの半金属元素を含有してもよい。この半金属元素の中でも、ホウ素、ゲルマニウム、アンチモン及びテルルから選ばれる1以上の元素を含有させると、スパッタリングターゲットとして用いるケイ素の導電性を高めることが期待できるため、好ましい。
 遮光膜2は、窒素に加え、いずれの非金属元素を含有してもよい。ここで、本発明における非金属元素は、狭義の非金属元素(窒素、炭素、酸素、リン、硫黄、セレン)、ハロゲン及び貴ガスを含むものをいう。この非金属元素の中でも、炭素、フッ素及び水素から選ばれる1以上の元素を含有させると好ましい。遮光膜2は、後述の表層の領域を除き、酸素の含有量を5原子%以下に抑えることが好ましく、3原子%以下とすることがより好ましく、積極的に酸素を含有させることをしない(XPS(X-ray Photoelectron Spectroscopy)等による組成分析を行ったときに検出下限値以下。)ことがさらに好ましい。窒化ケイ素系材料膜に酸素を含有させると、消衰係数kの値が小さくなって、十分な遮光性が得られにくくなるためである。
 透光性基板1は、合成石英ガラス等のSiOを主成分とする材料が好んで用いられる。遮光膜2が酸素を含有すると、遮光膜2の組成と透光性基板1の組成との差が小さくなり、遮光膜2にパターンを形成するときに行われるフッ素系ガスによるドライエッチングにおいて、透光性基板1とのエッチング選択性が得られにくくなるという問題も生じる。
 遮光膜2は、貴ガスを含有してもよい。貴ガスは、反応性スパッタリングで薄膜を成膜する際に成膜室内に存在することによって成膜速度を大きくし、生産性を向上させることができる元素である。この貴ガスがプラズマ化し、ターゲットに衝突することでターゲットからターゲット構成粒子が飛び出し、途中、反応性ガスを取りこみつつ、透光性基板1上に積層されて薄膜が形成される。このターゲット構成粒子がターゲットから飛び出し、透光性基板1に付着するまでの間に成膜室中の貴ガスがわずかに取り込まれる。この反応性スパッタリングで必要とされる貴ガスとして好ましいものとしては、アルゴン、クリプトン、キセノンが挙げられる。また、薄膜の応力を緩和するために、原子量の小さいヘリウム、ネオンを薄膜に積極的に取りこませることができる。
 遮光膜2の窒素含有量は、50原子%以下であることが好ましく、45原子%以下であることがより好ましい。これは、窒素の含有量が50原子%を超えるとArF露光光及び長波長検出光LWに対する消衰係数が小さくなって、十分な遮光や減光を行うことが困難になるためである。また、遮光膜2の窒素含有量は、25原子%以上であることが好ましく、30原子%以上であることがより好ましい。これは、窒素の含有量が25原子%未満であると洗浄耐性が不足しやすく、また酸化が起こりやすく、膜の経時安定性が損なわれやすいからである。
 また、遮光膜2のケイ素の含有量は、50原子%以上であることが好ましく、好ましくは55原子%以上であることがより好ましい。これは、ケイ素の含有量が50原子%未満であるとArF露光光及び長波長検出光LWに対する消衰係数が小さくなって、十分な遮光や減光を行うことが困難になるためである。また、遮光膜2のケイ素の含有量は、75原子%以下であることが好ましく、65原子%以下であることがより好ましい。これは、窒素の含有量が75原子%を超えると洗浄耐性が不足しやすく、また酸化が起こりやすく、膜の経時安定性が損なわれやすいからである。
 遮光膜2は、ケイ素及び窒素からなる材料で形成することが好ましい。なお、貴ガスは、薄膜に対してRBS(Rutherford Back-Scattering Spectrometry)やXPSのような組成分析を行っても検出することが困難な元素である。しかしながら、上述のように、反応性スパッタリングで遮光膜2を形成する際に、貴ガスがわずかに取り込まれる。このため、前記のケイ素及び窒素からなる材料には、貴ガスを含有する材料も包含しているとみなすことができる。
 遮光膜2は、厚さが60nm以下であることが求められる。遮光膜2の厚さを60nm以下とすることで、マスクパターンの電磁界効果に係るバイアス(EMFバイアス)及びマスクパターン立体構造起因のシャドーイング効果を許容範囲に収めることが可能になる。また、比較的薄膜であるので、微細な遮光膜パターンを形成しやすくなる。遮光膜2の厚さは58nm以下であるとより好ましい。
 一方、遮光膜2は、厚さが40nm以上であることが好ましく、45nm以上であることがより好ましい。遮光膜2の厚さが40nm未満であると、ArF露光光に対して下記の光学濃度を確保することが困難になり、また、長波長検出光LWに対しても十分な減光性を得ることが困難になる。
 遮光膜2は、ArF露光光に対する光学濃度(OD値)が2.5以上であることが求められ、2.8以上であることが好ましい。光学濃度が2.5未満であるとArF露光光に対する遮光性が不足して、このマスクブランクを使用した転写用マスクを用いて露光を行ったとき、その投影光学像(転写像)のコントラストが不足しやすいという問題が生じる。一方、遮光膜2の薄膜化のため、遮光膜2の光学濃度は4.0以下であると好ましい。
 遮光膜2は、ArF露光光に対する表面反射率(透光性基板1側とは反対側の表面の反射率)が40%以下であることが求められ、38%以下であることが好ましい。ArF露光光に対する表面反射率が40%を超えると露光光の反射が大きくなりすぎて転写露光の際の投影光学像が劣化するという問題が生じる。
 また、遮光膜2は、ArF露光光に対する表面反射率が20%以上であることが好ましい。ArF露光光に対する表面反射率が20%未満であると、波長193nmまたはその近傍の波長の光を用いてマスクパターン検査を行うときのパターン検査感度が低下するためである。
 遮光膜2は、ArF露光光に対する裏面反射率(透光性基板1側の面の反射率)が40%以下であることが求められ、35%以下であることが好ましい。ArF露光光に対する裏面反射率が40%を超えると露光光の反射が大きくなりすぎて転写露光の際の投影光学像が劣化するという問題が生じる。
 遮光膜2のArF露光光に対する光学濃度、表面反射率及び裏面反射率を前記の値の範囲にするため、遮光膜2は、ArF露光光に対する屈折率nが1.6以上かつ2.1以下であることが好ましく、1.7以上かつ2.0以下であることがより好ましい。また、ArF露光光に対する消衰係数kが1.6以上かつ2.1以下であることが好ましく、1.7以上かつ2.0以下であることがより好ましい。
 遮光膜2は、波長900nmの光に対する透過率が50%以下であることが求められ、48%以下であることが好ましい。遮光膜2は、波長900nmの光に対する消衰係数kが0.04以上であることが求められ、0.045以上であることが好ましい。また、遮光膜2の波長900nmの光に対する消衰係数kは0.1以下であることが好ましい。遮光膜2は、波長900nmの光に対する屈折率nが2.5以上であることが好ましく、2.7以上であることがより好ましい。また、遮光膜2の波長900nmの光に対する屈折率nは3.5以下であることが好ましい。
 ケイ素と窒素を含有する材料からなる遮光膜2は、前述のように、波長800nm以上900nm以下の光に対して波長が長くなるほど透過率が高くなり、屈折率nおよび消衰係数kはともに小さくなる特性を有する。この分光特性により、900nmの波長の光に対する透過率が50%以下で、消衰係数kが0.04以上であると、遮光膜2により波長が800nm以上900nm以下の範囲にある長波長検出光LWを十分に減光できるので、長波長検出光LWを使って、このマスクブランクを用いて製造された転写用マスクに形成されたアライメントマークを十分なコントラストで検出することが可能になる。このことにより、アライメントマーク検出感度不足により露光が行えないという問題を解決することができる。
 一方、遮光膜2は、波長700nmの光に対する透過率が45%以下であることが好ましく、40%以下であることがより好ましい。遮光膜2は、波長700nmの光に対する消衰係数kが0.10以上であることが好ましく、0.15以上であることがより好ましい。また、遮光膜2の波長900nmの光に対する消衰係数kは0.5以下であることが好ましい。また、遮光膜2は、波長700nmの光に対する屈折率nが2.8以上であることが好ましく、3.0以上であることがより好ましい。また、遮光膜2の波長700nmの光に対する屈折率nは3.8以下であることが好ましい。
 露光装置によっては、転写用マスクに形成されたバーコード等の識別マークを800nmよりも短い波長(例えば、600nm~700nmの範囲の波長。)の検出光を用いて読み取ることが行われる。上記のような波長700nmの光に対する光学特性を有する遮光膜2を有するマスクブランクを用いて製造された転写用マスクは、上記の800nmよりも短い波長の検出光で識別コードを確実に読み取ることができる。
 薄膜の屈折率n及び消衰係数kは、その薄膜の組成だけで決まるものではない。その薄膜の膜密度及び結晶状態なども、屈折率n及び消衰係数kを左右する要素である。このため、反応性スパッタリングで遮光膜2を成膜するときの諸条件を調整して、遮光膜2が所望の屈折率n及び消衰係数kとなって、ArF露光光に対する光学濃度(OD値)、裏面反射率、表面反射率、及び波長900nmの光に対する消衰係数kが規定の値に収まるように成膜する。遮光膜2を、上記の屈折率n及び消衰係数kの範囲にするには、反応性スパッタリングで成膜する際に、貴ガスと反応性ガスの混合ガスの比率を調整することだけに限られない。反応性スパッタリングで成膜する際における成膜室内の圧力、ターゲットに印加する電力、ターゲットと透光性基板との間の距離等の位置関係など多岐にわたる。また、これらの成膜条件は成膜装置に固有のものであり、形成される遮光膜2が所望の屈折率n及び消衰係数kになるように適宜調整されるものである。
 遮光膜2は、自然酸化が起こる表層を除いて層の厚さ方向でその組成が均一な膜、または膜組成傾斜した膜からなる単層膜とする。単層膜とすることにより、製造工程数が少なくなって生産効率が高くなるとともに欠陥を含む製造品質管理が容易になる。
 酸素を積極的に含有させず、かつケイ素と窒素を含有する膜は、ArF露光光に対する耐光性は高いが、酸素を積極的に含有させたケイ素と窒素を含有する膜に比べて耐薬性が低い傾向にある。また、遮光膜2の透光性基板1側とは反対側の表層として、酸素を積極的に含有させない遮光膜2を用いたマスクブランク100の場合、そのマスクブランク100から作製した転写用マスク200に対してマスク洗浄や大気中での保管を行うことによって、遮光膜2の表層が酸化していくことを回避するのは難しい。遮光膜2の表層が酸化すると遮光膜2のArF露光光に対する表面反射率が変化し、転写用マスク200の露光転写特性が変わるという問題が生じる。
 これらのことから、遮光膜2の透光性基板1側とは反対側の表層は積極的に酸素を含有させることが好ましいが、一方で遮光膜2の全体に酸素が含まれていると、前述のように、ArF露光光の遮光性や長波長検出光LWに対する減光性が低下するという問題が生じる。
 このため、遮光膜2は、その表層に透光性基板1側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有し、遮光膜2における表層以外の部分(遮光膜2のバルク部)はケイ素及び窒素からなる材料で形成されていることが望ましい。ここで、遮光膜2のバルク部を構成するケイ素及び窒素からなる材料とは、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料のことである。なお、この場合の遮光膜2のArF露光光に対する屈折率n及び消衰係数kは、いずれも表層を含む遮光膜2の全体での値であり、その波長900nmの光に対する消衰係数kも、表層を含む遮光膜2の全体での値である。
 遮光膜2は、スパッタリングによって形成されるが、DCスパッタリング、RFスパッタリング及びイオンビームスパッタリングなどのいずれのスパッタリングも適用可能である。導電性が低いターゲット(ケイ素ターゲット、半金属元素を含有しないあるいは含有量の少ないケイ素化合物ターゲットなど)を用いる場合においては、RFスパッタリングやイオンビームスパッタリングを適用することが好ましいが、成膜レートを考慮すると、RFスパッタリングを適用することがより好ましい。
 マスクブランク100を製造する方法としては、ケイ素ターゲットまたはケイ素に半金属元素及び非金属元素から選ばれる1以上の元素を含有する材料からなるターゲットを用い、窒素系ガスと貴ガスを含むスパッタリングガス中での反応性スパッタリングによって、透光性基板1上に遮光膜2を形成する方法が好ましい。
 遮光膜形成工程で用いられる窒素系ガスは、窒素を含有するガスであればいずれのガスも適用可能である。上記の通り、遮光膜2は、その表層を除いて酸素含有量を低く抑えることが好ましいため、酸素を含有しない窒素系ガスを適用することが好ましく、窒素ガス(Nガス)を適用することがより好ましい。また、遮光膜2の形成工程で用いられる貴ガスは、いずれの貴ガスも適用可能である。この貴ガスとして好ましいものとしては、アルゴン、クリプトン、キセノンが挙げられる。また、薄膜の応力を緩和するために、原子量の小さいヘリウム、ネオンを薄膜に積極的に取りこませることができる。
 透光性基板1側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有する遮光膜2の形成方法としては、遮光膜2をスパッタリングで成膜している最終段階で徐々に雰囲気ガスとして酸素ガスを添加する方法のほか、遮光膜2をスパッタリングにより成膜した後で、大気中などの酸素を含有する気体中における加熱処理、大気中などの酸素を含有する気体中でのフラッシュランプ等の光照射処理、オゾンや酸素プラズマを遮光膜の表面に接触させる処理などの後処理を追加する方法が挙げられる。
 一方、遮光膜のArF露光光に対する表面反射率をより低くする(例えば30%以下)ことが好ましい場合、上記の単層構造の遮光膜でそれを実現しようとすると、窒素をより多く含有させることが必要となる。この場合、遮光膜の単位膜厚当たりの光学濃度が低下し、所定の遮光性能を確保するためには、遮光膜の膜厚を厚くする必要が生じる。このような低い表面反射率が求められる場合は、遮光膜を透光性基板側から下層と上層の積層構造とし、下層を上記実施の形態の単層構造の遮光膜の材料を適用し、上層をケイ素と酸素を含有する材料で形成することが好ましい。
 すなわち、この別の形態のマスクブランクは、透光性基板上に遮光膜を備え、遮光膜が透光性基板側から下層と上層が順に積層した構造を有し、下層がケイ素と窒素を含有する材料で形成され、上層がケイ素と酸素を含有する材料で形成され、遮光膜のArF露光光に対する光学濃度が2.5以上であり、遮光膜のArF露光光に対する表面反射率が30%以下であり、遮光膜のArF露光光に対する裏面反射率が40%以下であり、遮光膜の900nmの波長の光に対する透過率が50%以下であり、遮光膜の下層における900nmの波長の光に対する消衰係数kが0.04以上であり、遮光膜の厚さが60nm以下であることを特徴とするものである。
 また、この別の形態のマスクブランクにおいて、遮光膜の下層は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることが好ましい。さらに、この別の形態のマスクブランクにおいて、遮光膜の上層は、ケイ素及び酸素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と酸素とからなる材料で形成されていることが好ましい。この遮光膜の下層の具体的な構成については、上記実施の形態の単層構造の遮光膜の場合と同様である。
 この上層は、波長が800nm以上900nm以下の光に対する消衰係数kがほぼゼロであり、上層はこれらの波長の光を遮光することに対してほとんど寄与できない。このため、遮光膜の下層のみで波長が800nm以上900nm以下の光に対する遮光性能を確保することが好ましい。また、この上層は、表面反射率を低減させる機能を有する必要があることから、ArF露光光に対する遮光性能が低い。このため、遮光膜の下層のみでArF露光光に対する所定の光学濃度を確保することが好ましい。
 この別の形態の転写用マスクは、透光性基板上に転写パターンを有する遮光膜を備え、遮光膜が透光性基板側から下層と上層が順に積層した構造を有し、下層がケイ素と窒素を含有する材料で形成され、上層がケイ素と酸素を含有する材料で形成され、遮光膜のArF露光光に対する光学濃度が2.5以上であり、遮光膜のArF露光光に対する表面反射率が30%以下であり、遮光膜のArF露光光に対する裏面反射率が40%以下であり、遮光膜の900nmの波長の光に対する透過率が50%以下であり、遮光膜の下層における900nmの波長の光に対する消衰係数kが0.04以上であり、遮光膜の厚さが60nm以下であることを特徴とするものである。なお、この別の形態のマスクブランクおよび転写用マスクに係るその他の事項(透光性基板、ハードマスク膜に関する事項等)については、上記実施の形態のマスクブランクおよび転写用マスクと同様である。
[[ハードマスク膜]]
 前記遮光膜2を備えるマスクブランク100において、遮光膜2をエッチングするときに用いられるエッチングガスに対してエッチング選択性を有する材料で形成されたハードマスク膜3を遮光膜2の上にさらに積層させた構成とするとより好ましい。遮光膜2は、所定の光学濃度を確保する必要があるため、その厚さを低減するには限界がある。ハードマスク膜3は、その直下の遮光膜2にパターンを形成するドライエッチングが終わるまでの間、エッチングマスクとして機能することができるだけの膜の厚さがあれば十分であり、基本的に光学特性の制限を受けない。このため、ハードマスク膜3の厚さは遮光膜2の厚さに比べて大幅に薄くすることができる。そして、有機系材料のレジスト膜は、このハードマスク膜3にパターンを形成するドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの膜の厚さがあれば十分であるので、従来よりも大幅にレジスト膜の厚さを薄くすることができ、レジストパターン倒れなどの問題を抑制することができる。
 ハードマスク膜3は、クロム(Cr)を含有する材料で形成されていることが好ましい。クロムを含有する材料は、SFなどのフッ素系ガスを用いたドライエッチングに対して特に高いドライエッチング耐性を有している。
 クロムを含有する材料を遮光膜2に用いた場合は、遮光膜2の膜厚が相対的に厚いので、遮光膜2のドライエッチングの際にサイドエッチングの問題が生じるが、ハードマスク膜3としてクロムを含有する材料を用いた場合は、ハードマスク膜3の膜厚が相対的に薄いので、サイドエッチングに起因する問題は生じにくい。
 クロムを含有する材料としては、クロム金属のほか、クロムに酸素、窒素、炭素、ホウ素及びフッ素から選ばれる1以上の元素を含有する材料、たとえばCrN、CrC、CrON、CrCO、CrCONなどが挙げられる。クロム金属にこれらの元素が添加されるとその膜はアモルファス構造の膜になりやすく、その膜の表面ラフネス及び遮光膜2をドライエッチングしたときのラインエッジラフネスが抑えられるので好ましい。
 また、ハードマスク膜3のドライエッチングの観点からも、ハードマスク膜3を形成する材料としては、クロムに酸素、窒素、炭素、ホウ素及びフッ素から選ばれる1以上の元素を含有する材料を用いることが好ましい。
 クロム系材料は、塩素系ガスと酸素ガスとの混合ガスでエッチングされるが、クロム金属はこのエッチングガスに対するエッチングレートがあまり高くない。クロムに酸素、窒素、炭素、ホウ素及びフッ素から選ばれる1以上の元素を含有させることによって、塩素系ガスと酸素ガスとの混合ガスのエッチングガスに対するエッチングレートを高めることが可能になる。また、ハードマスク膜3を形成するクロムを含有する材料に、インジウム、モリブデン及びスズのうち1以上の元素を含有させてもよい。インジウム、モリブデン及びスズのうち1以上の元素を含有させることで、塩素系ガスと酸素ガスとの混合ガスに対するエッチングレートをより高くすることができる。
 クロムを含有する材料以外でハードマスク膜3を形成する材料としては、タンタル(Ta)やタングステン(W)などの金属のほか、タンタルなどの金属を含有する材料も適用可能である。たとえば、この場合におけるタンタルを含有する材料としては、タンタル金属のほか、タンタルに窒素、ホウ素及び炭素から選ばれる1以上の元素を含有させた材料などが挙げられる。その具体例としては、Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCNなどが挙げられる。
 マスクブランク100において、ハードマスク膜3の表面に接して、有機系材料のレジスト膜が100nm以下の膜厚で形成されていることが好ましい。DRAM hp32nm世代に対応する微細パターンの場合、ハードマスク膜3に形成すべき転写パターンに、線幅が40nmのSRAF(Sub-Resolution Assist Feature)が設けられることがある。しかし、この場合でも、レジストパターンの断面アスペクト比が1:2.5と低くすることができるので、レジスト膜の現像時、リンス時等にレジストパターンが倒壊することや脱離することを抑制することができる。なお、レジスト膜は、膜厚が80nm以下であることがより好ましい。
 マスクブランク100においてハードマスク膜3を設けず遮光膜2に接してレジスト膜を直接形成することも可能である。この場合は、構造が簡単で、転写用マスクを製造するときもハードマスク膜3のドライエッチングが不要になるため、製造工程数を削減することが可能になる。なお、この場合、遮光膜2に対してHMDS(hexamethyldisilazane)等の表面処理を行ってからレジスト膜を形成することが好ましい。
 また、本発明のマスクブランクは、下記に記載するように、バイナリマスク用途に適するマスクブランクであるが、バイナリマスク用に限るものではなく、レベンソン型位相シフトマスク用のマスクブランク、あるいはCPL(Chromeless Phase Lithography)マスク用のマスクブランクとしても使用できる。
[転写用マスク]
 図4に、本発明の実施形態であるマスクブランク100から転写用マスク(バイナリマスク)200を製造する工程の断面模式図を示す。
 本発明の実施の形態の転写用マスク200は、透光性基板1上に、転写パターンを有する遮光膜2(遮光膜パターン2a)を備えたバイナリマスクであって、遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上、表面反射率が40%以下、裏面反射率が40%以下であり、900nmの波長の光に対する透過率が50%以下、消衰係数が0.04以上であり、厚さが60nm以下であることを特徴とするものである。
 転写用マスク200における透光性基板1、遮光膜2に関する事項については、マスクブランク100と同様であり、転写用マスク200は、マスクブランク100と同様の技術的特徴を有している。
 また、本発明の転写用マスク200の製造方法は、上記のマスクブランク100を用いるものであって、ドライエッチングによりハードマスク膜3に転写パターン及びアライメントマークなどを含むパターンを形成する工程と、これらのパターンを有するハードマスク膜3(ハードマスクパターン3a)をマスクとするドライエッチングにより遮光膜2に転写パターン及びアライメントマークなどを含むパターンを形成する工程と、ハードマスクパターン3aを除去する工程とを備えることを特徴とするものである。
 このような転写用マスク200は、長波長検出光LWを用いてアライメントを行う露光装置を用いる場合においても、十分なコントラストでアライメントマークの検出を行うことができるので、マスクアライメント動作がエラーを起こすことなく実行することができる。
 その上で、転写用マスク200は、ArF耐光性が高く、ArFエキシマレーザーの露光光を積算照射された後のものであっても、遮光膜パターン2aのCD(Critical Dimension)変化(太り)を小さい範囲に抑制できる。
 これらのことから、長波長検出光LWを用いてアライメントを行うArFエキシマレーザーを露光光とする露光装置のマスクステージに転写用マスク200をセットし、レジスト膜に遮光膜パターン2aを露光転写する際も、マスクアライメント動作を伴って半導体デバイス上のレジスト膜に設計仕様を十分に満たす精度でパターンを転写することができる。
 以下、図4に示す製造工程にしたがって、転写用マスク200の製造方法の一例を説明する。なお、この例では、遮光膜2にはケイ素と窒素を含有する材料を適用し、ハードマスク膜3にはクロムを含有する材料を適用している。
 まず、マスクブランク100(図4(a)参照)を準備し、ハードマスク膜3に接して、レジスト膜をスピン塗布法によって形成する。次に、遮光膜2に対して形成すべきパターンを露光描画し、さらに現像処理等の所定の処理を行い、レジストパターン4aを形成する(図4(b)参照)。なお、電子線描画したパターンには、転写パターンのほかアライメントマークなどが含まれている。
 続いて、レジストパターン4aをマスクとし、塩素と酸素との混合ガスなどの塩素系ガスを用いたドライエッチングを行い、ハードマスク膜3にパターン(ハードマスクパターン3a)を形成する(図4(c)参照)。塩素系ガスとしては、Clが含まれていれば特に制限はなく、たとえば、Cl、SiCl、CHCl、CHCl、BCl等を挙げることができる。塩素と酸素との混合ガスを用いる場合は、たとえば、そのガス流量比をCl:O=4:1にするとよい。
 次に、アッシングやレジスト剥離液を用いてレジストパターン4aを除去する(図4(d)参照)。
 続いて、ハードマスクパターン3aをマスクとし、フッ素系ガスを用いたドライエッチングを行い、遮光膜2にパターン(遮光膜パターン2a)を形成する(図4(e)参照)。フッ素系ガスとしては、Fを含むものであれば用いることができるが、SFが好適である。SFの他としては、たとえば、CHF、CF、C、C等を挙げることができるが、Cを含むフッ素系ガスは、ガラス材料の透光性基板1に対するエッチングレートが比較的高い。SFは透光性基板1へのダメージが小さいので好ましい。なお、SFにHeなどを加えるとさらによい。
 その後、クロムエッチング液を用いてハードマスクパターン3aを除去し、洗浄等の所定の処理を経て、転写用マスク200を得る(図4(f)参照)。なお、このハードマスクパターン3aの除去工程は、塩素と酸素との混合ガスを用いたドライエッチングで行ってもよい。ここで、クロムエッチング液としては、硝酸第二セリウムアンモニウムと過塩素酸を含む混合物を挙げることができる。
 なお、ここでは転写用マスク200がバイナリマスクの場合を説明したが、本発明の転写用マスクはバイナリマスクに限らず、レベンソン型位相シフトマスク及びCPLマスクに対しても適用することができる。すなわち、レベンソン型位相シフトマスクの場合は、その遮光膜に本発明の遮光膜を用いることができる。また、CPLマスクの場合は、主に外周の遮光帯を含む領域に本発明の遮光膜を用いることができる。そして、バイナリマスクの場合と同様に、レベンソン型位相シフトマスク及びCPLマスクの場合においても長波長検出光LWにより十分なコントラストでアライメントマーク検出を行うことができる。
 さらに、本発明の半導体デバイスの製造方法は、前記の転写用マスク200または前記のマスクブランク100を用いて製造された転写用マスク200を用い、半導体基板上のレジスト膜にパターンを露光転写することを特徴としている。
 本発明の転写用マスク200やマスクブランク100は、上記の通りの効果を有するため、本発明の転写用マスクを用いて半導体ウェハ上に形成されたレジスト膜に対して露光を行う際に、十分な感度でアライメントマーク検出を行うことができる。このため、アライメントマーク検出感度不足にともなう露光動作停止を起こすことなく、且つ高いArF耐光性を有して半導体デバイスを製造することができる。
 以下、実施例により、本発明の実施の形態をさらに具体的に説明する。
(実施例1)
[マスクブランクの製造]
 主表面の寸法が約152mm×約152mmで、厚さが約6.25mmの合成石英ガラスからなる透光性基板1を準備した。この透光性基板1は、端面及び主表面が所定の表面粗さに研磨され、その後、所定の洗浄処理及び乾燥処理を施されたものであった。
 次に、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、クリプトン(Kr)、ヘリウム(He)及び窒素(N)の混合ガス(流量比 Kr:He:N=10:100:1、圧力=0.1Pa)をスパッタリングガスとし、RF電源の電力を1.5kWとし、反応性スパッタリング(RFスパッタリング)により、透光性基板1上に、ケイ素及び窒素からなる遮光膜2(Si:N=50原子%:50原子%)を57nmの厚さで形成した。ここで、遮光膜2の組成は、X線光電子分光法(XPS)による測定によって得られた結果である。以下、他の膜に関しても膜組成の測定方法は同様である。
 次に、膜の応力調整を目的に、この遮光膜2が形成された透光性基板1に対し、大気中において加熱温度500℃、処理時間1時間の条件で加熱処理を行った。加熱処理後の遮光膜2の分光透過率を分光光度計(Agilent Technologies社製、Cary4000)を用いて測定した結果を図2に示す。波長800nm以上900nm以下の長波長の光に対する透過率は波長が長くなるとともに単調に増加し、波長800nm、波長850nm、890nm及び900nmの透過率はそれぞれ42.8%、44.9%、46.7%及び47.0%であった。また、ArFエキシマレーザー光(波長193nm)に対する光学濃度(OD値)は2.96であった。
 また、分光エリプソメーター(J.A.Woollam社製 M-2000D)を用いてこの遮光膜2の屈折率nと消衰係数kを測定した。その分光特性、すなわち各波長に対する屈折率nと消衰係数kの測定結果を図3に示す。波長193nmにおける屈折率nは1.830、消衰係数kは1.785、波長800nmにおける屈折率nは3.172、消衰係数kは0.093、波長850nmにおける屈折率nは3.137、消衰係数kは0.066、波長890nmにおける屈折率nは3.112、消衰係数kは0.050、波長900nmにおける屈折率nは3.106、消衰係数kは0.047であった。
 波長193nmにおける遮光膜2の表面反射率及び裏面反射率を分光光度計(日立ハイテクノロジーズ社製、U-4100)を用いて測定したところ、その値は各々37.1%、30.0%であった。
 次に、枚葉式DCスパッタ装置内に加熱処理後の遮光膜2が形成された透光性基板1を設置し、クロム(Cr)ターゲットを用い、アルゴン(Ar)と窒素(N)との混合ガス雰囲気で反応性スパッタリング(DCスパッタリング)を行い、膜厚5nmのCrN膜からなるハードマスク膜3を成膜した。XPSで測定したこの膜の膜組成比は、Crが75原子%、Nが25原子%であった。そして、遮光膜2で行った加熱処理より低い温度(280℃)で熱処理を行い、ハードマスク膜3の応力調整を行った。
 以上の手順により、透光性基板1上に、遮光膜2及びハードマスク膜3が積層した構造を備えるマスクブランク100を製造した。
[転写用マスクの製造]
 次に、この実施例1のマスクブランク100を用い、以下の手順で実施例1の転写用マスク(バイナリマスク)200を作製した。
 まず、実施例1のマスクブランク100(図4(a)参照)を準備し、ハードマスク膜3の表面に接して、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚80nmで形成した。次に、このレジスト膜に対して、遮光膜2に形成すべきパターンを電子線描画し、所定の現像処理及び洗浄処理を行い、レジストパターン4aを形成した(図4(b)参照)。なお、電子線描画したパターンには、転写パターンのほかアライメントマークなどが含まれている。
 次に、レジストパターン4aをマスクとし、塩素と酸素との混合ガス(ガス流量比 Cl:O=4:1)を用いたドライエッチングを行い、ハードマスク膜3にパターン(ハードマスクパターン3a)を形成した(図4(c)参照)。
 次に、レジストパターン4aを除去した(図4(d)参照)。続いて、ハードマスクパターン3aをマスクとし、フッ素系ガス(SFとHeの混合ガス)を用いたドライエッチングを行い、遮光膜2にパターン(遮光膜パターン2a)を形成した(図4(e)参照)。
 その後、硝酸第二セリウムアンモニウムと過塩素酸を含むクロムエッチング液を用いてハードマスクパターン3aを除去し、洗浄等の所定の処理を経て、転写用マスク200を得た(図4(f)参照)。
 製造した実施例1の転写用マスク200を長波長検出光LWを用いる露光装置にセットしてアライメントマークの検出を行ったところ十分なコントラストでマーク検出を行うことができた。そして、マスクアライメント動作を1回もエラーを起こすことなく実行することができた。
 次に、この転写用マスク200に対して、ArFエキシマレーザー光を積算照射量40kJ/cmで間欠照射する処理を行った。この照射処理の前後における遮光膜パターン2aのCD変化量は、1.2nm以下であり、遮光膜パターン2aとして使用可能な範囲のCD変化量であった。このことから、遮光膜パターン2aは実用上十分なArF耐性を有していることがわかった。
 実施例1の転写用マスク200を露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写を行った結果、マスクアライメント不良を起こすことなく、回路パターンを高精度に形成することができた。
(比較例1)
[マスクブランクの製造]
 比較例1のマスクブランクは、遮光膜を下記のようにした以外は、実施例1のマスクブランク100と同様の手順で製造された。
 比較例1の遮光膜の形成方法は以下の通りである。
 枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、クリプトン(Kr)、ヘリウム(He)及び窒素(N)の混合ガスをスパッタリングガスとし、反応性スパッタリング(RFスパッタリング)により、透光性基板1上に、ケイ素及び窒素からなる遮光膜(Si:N=48原子%:52原子%)を100nmの厚さで形成した。
 次に、膜の応力調整を目的に、この遮光膜が形成された透光性基板1に対し、大気中において加熱温度500℃、処理時間1時間の条件で加熱処理を行った。加熱処理後の遮光膜の分光透過率を分光光度計(Agilent Technologies社製、Cary4000)を用いて測定した結果、波長800nm、波長850nm、890nm及び900nmの透過率はそれぞれ74.2%、74.2%、73.9%及び73.9%であった。また、ArFエキシマレーザー光(波長193nm)に対する光学濃度(OD値)は2.9であった。
 また、分光エリプソメーター(J.A.Woollam社製 M-2000D)を用いてこの遮光膜の屈折率nと消衰係数kを測定した。波長193nmにおける屈折率nは2.4、消衰係数kは1.0、波長800nmにおける屈折率nは2.3、消衰係数kは0、波長850nmにおける屈折率nは2.3、消衰係数kは0、波長890nmにおける屈折率nは2.3、消衰係数kは0、波長900nmにおける屈折率nは2.3、消衰係数kは0であった。
 波長193nmにおける遮光膜の表面反射率及び裏面反射率を分光光度計(日立ハイテクノロジーズ社製、U-4100)を用いて測定したところ、その値はそれぞれ21%、15%であった。
[転写用マスクの製造]
 次に、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1の転写用マスク(バイナリマスク)を製造した。
 製造した比較例1の転写用マスクを長波長検出光LWを用いる露光装置にセットしてアライメントマークの検出を行ったところ十分なコントラストでマーク検出を行うことはできなかった。そして、マスクアライメントエラーをしばしば起こした。
 次に、この比較例1の転写用マスクに対して、ArFエキシマレーザー光を積算照射量40kJ/cmで間欠照射する処理を行った。この照射処理の前後における遮光膜パターンのCD変化量は、1.2nm以下であり、遮光膜パターンとして使用可能な範囲のCD変化量であり遮光膜パターンは実用上十分なArF耐性を有していた。
 比較例1の転写用マスク200を露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写を行ったところ、マスクアライメント不良をしばしば起こし、安定して半導体デバイス製造用の露光を行うことはできなかった。
 1 透光性基板
 2 遮光膜
 2a 遮光膜パターン
 3 ハードマスク膜
 3a ハードマスクパターン
 4a レジストパターン
 100 マスクブランク
 200 転写用マスク(バイナリマスク)

Claims (8)

  1.  透光性基板上に、遮光膜を備えたマスクブランクであって、
     前記遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、
     前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上であり、
     前記遮光膜は、前記露光光に対する表面反射率が40%以下であり、
     前記遮光膜は、前記露光光に対する裏面反射率が40%以下であり、
     前記遮光膜は、900nmの波長の光に対する透過率が50%以下であり、
     前記遮光膜は、900nmの波長の光に対する消衰係数kが0.04以上であり、
     前記遮光膜は、厚さが60nm以下である
    ことを特徴とするマスクブランク。
  2.  前記遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする請求項1記載のマスクブランク。
  3.  前記遮光膜は、その表層に透光性基板側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有し、前記表層以外の遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする請求項1または2に記載のマスクブランク。
  4.  前記遮光膜上にクロムを含有する材料からなるハードマスク膜を備えることを特徴とする請求項1から3のいずれかに記載のマスクブランク。
  5.  透光性基板上に、転写パターンを有する遮光膜を備えた転写用マスクであって、
     前記遮光膜は、ケイ素と窒素を含有する材料で形成された単層膜であり、
     前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.5以上であり、
     前記遮光膜は、前記露光光に対する表面反射率が40%以下であり、
     前記遮光膜は、前記露光光に対する裏面反射率が40%以下であり、
     前記遮光膜は、900nmの波長の光に対する透過率が50%以下であり、
     前記遮光膜は、900nmの波長の光に対する消衰係数kが0.04以上であり、
     前記遮光膜は、厚さが60nm以下である
    ことを特徴とする転写用マスク。
  6.  前記遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする請求項5記載の転写用マスク。
  7.  前記遮光膜は、その表層に透光性基板側とは反対側の表面に向かって酸素含有量が増加していく組成傾斜部を有し、前記表層以外の遮光膜は、ケイ素及び窒素からなる材料、または半金属元素及び非金属元素から選ばれる1以上の元素とケイ素と窒素とからなる材料で形成されていることを特徴とする請求項5または6に記載の転写用マスク。
  8.  請求項5から7のいずれかに記載の転写用マスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
PCT/JP2017/028043 2016-08-26 2017-08-02 マスクブランク、転写用マスク及び半導体デバイスの製造方法 WO2018037863A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201780050886.2A CN109643058B (zh) 2016-08-26 2017-08-02 掩模坯料、转印用掩模及半导体器件的制造方法
JP2017562373A JP6297766B1 (ja) 2016-08-26 2017-08-02 マスクブランク、転写用マスク及び半導体デバイスの製造方法
US16/327,172 US11112690B2 (en) 2016-08-26 2017-08-02 Mask blank, transfer mask, and method for manufacturing semiconductor device
KR1020217022869A KR102292434B1 (ko) 2016-08-26 2017-08-02 마스크 블랭크, 전사용 마스크 및 반도체 디바이스의 제조 방법
KR1020197002746A KR102254035B1 (ko) 2016-08-26 2017-08-02 마스크 블랭크, 전사용 마스크 및 반도체 디바이스의 제조 방법
KR1020217014482A KR102281354B1 (ko) 2016-08-26 2017-08-02 마스크 블랭크, 전사용 마스크 및 반도체 디바이스의 제조 방법
CN202210271059.9A CN114609856A (zh) 2016-08-26 2017-08-02 掩模坯料、转印用掩模及半导体器件的制造方法
SG11201901299SA SG11201901299SA (en) 2016-08-26 2017-08-02 Mask blank, transfer mask, and method of manufacturing semiconductor device
CN202210271072.4A CN114675486A (zh) 2016-08-26 2017-08-02 掩模坯料、转印用掩模及半导体器件的制造方法
US17/397,642 US11543744B2 (en) 2016-08-26 2021-08-09 Mask blank, transfer mask, and method for manufacturing semiconductor device
US18/073,794 US20230099176A1 (en) 2016-08-26 2022-12-02 Mask blank, transfer mask, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016165550 2016-08-26
JP2016-165550 2016-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/327,172 A-371-Of-International US11112690B2 (en) 2016-08-26 2017-08-02 Mask blank, transfer mask, and method for manufacturing semiconductor device
US17/397,642 Continuation US11543744B2 (en) 2016-08-26 2021-08-09 Mask blank, transfer mask, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2018037863A1 true WO2018037863A1 (ja) 2018-03-01

Family

ID=61246640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028043 WO2018037863A1 (ja) 2016-08-26 2017-08-02 マスクブランク、転写用マスク及び半導体デバイスの製造方法

Country Status (7)

Country Link
US (3) US11112690B2 (ja)
JP (3) JP6297766B1 (ja)
KR (3) KR102254035B1 (ja)
CN (3) CN114609856A (ja)
SG (3) SG10202007863UA (ja)
TW (3) TWI685880B (ja)
WO (1) WO2018037863A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161889A (ja) * 2016-03-02 2017-09-14 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
CN110716388A (zh) * 2018-07-13 2020-01-21 思而施技术株式会社 空白掩模和光掩模

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609856A (zh) * 2016-08-26 2022-06-10 Hoya株式会社 掩模坯料、转印用掩模及半导体器件的制造方法
JP6932552B2 (ja) * 2017-05-31 2021-09-08 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体デバイスの製造方法
KR20200055871A (ko) * 2018-11-13 2020-05-22 삼성디스플레이 주식회사 기판 식각 방법
JP7331793B2 (ja) * 2020-06-30 2023-08-23 信越化学工業株式会社 フォトマスクの製造方法及びフォトマスクブランク
KR102624206B1 (ko) * 2021-02-25 2024-01-15 인하대학교 산학협력단 ArF 위상반전 블랭크 마스크용 차광막 제조 방법 및 장치
TWI814573B (zh) * 2022-09-07 2023-09-01 致伸科技股份有限公司 具有光線調整結構之鍵盤裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063001A1 (en) * 2002-09-30 2004-04-01 Wu Wei E. Method of making an integrated circuit using a photomask having a dual antireflective coating
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2010044274A (ja) * 2008-08-15 2010-02-25 Shin-Etsu Chemical Co Ltd グレートーンマスクブランク、グレートーンマスク、及び製品加工標識又は製品情報標識の形成方法
JP2010237499A (ja) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd フォトマスクブランク及びフォトマスク
JP2013178372A (ja) * 2012-02-28 2013-09-09 Hoya Corp 転写用マスク及びその製造方法、並びに、マスクブランク及びその製造方法
JP2015191218A (ja) * 2014-03-30 2015-11-02 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2015200883A (ja) * 2014-03-30 2015-11-12 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124572A (ja) * 1988-11-02 1990-05-11 Daicel Chem Ind Ltd 透明樹脂薄膜
JPH08115912A (ja) * 1994-10-14 1996-05-07 Nippon Telegr & Teleph Corp <Ntt> 窒化ケイ素薄膜の作製方法
JPH11184067A (ja) * 1997-12-19 1999-07-09 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク
US7011910B2 (en) * 2002-04-26 2006-03-14 Hoya Corporation Halftone-type phase-shift mask blank, and halftone-type phase-shift mask
KR101052654B1 (ko) * 2004-06-16 2011-07-28 호야 가부시키가이샤 광반투과막, 포토마스크 블랭크 및 포토마스크, 및 광반투과막의 설계 방법
EP1746460B1 (en) * 2005-07-21 2011-04-06 Shin-Etsu Chemical Co., Ltd. Photomask blank, photomask and fabrication method thereof
JP4509050B2 (ja) * 2006-03-10 2010-07-21 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP4883278B2 (ja) * 2006-03-10 2012-02-22 信越化学工業株式会社 フォトマスクブランク及びフォトマスクの製造方法
JP2009122566A (ja) * 2007-11-19 2009-06-04 Dainippon Printing Co Ltd 低反射型フォトマスクブランクスおよびフォトマスク
JP4845978B2 (ja) * 2008-02-27 2011-12-28 Hoya株式会社 フォトマスクブランクおよびフォトマスク並びにフォトマスクの製造方法
WO2009123172A1 (ja) * 2008-03-31 2009-10-08 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
TWI453531B (zh) * 2008-06-25 2014-09-21 Hoya Corp 相位移空白遮罩及相位移遮罩
WO2010050447A1 (ja) * 2008-10-29 2010-05-06 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法
US20100119958A1 (en) * 2008-11-11 2010-05-13 Taiwan Semiconductor Manufacturing Co., Ltd. Mask blank, mask formed from the blank, and method of forming a mask
KR101384111B1 (ko) * 2009-01-09 2014-04-10 주식회사 에스앤에스텍 블랭크 마스크, 이를 이용하는 포토 마스크 및 이를 제조하는 방법
WO2010113474A1 (ja) * 2009-03-31 2010-10-07 Hoya株式会社 マスクブランクおよび転写用マスク
JP4847629B2 (ja) * 2009-06-18 2011-12-28 Hoya株式会社 転写用マスクの製造方法
TWI553399B (zh) * 2009-07-16 2016-10-11 Hoya Corp Mask base and transfer mask
KR101685645B1 (ko) * 2009-10-22 2016-12-12 주식회사 에스앤에스텍 블랭크 마스크, 포토마스크 및 그의 제조방법
JP2011164494A (ja) * 2010-02-12 2011-08-25 Canon Inc 光学素子用の遮光膜、遮光塗料および光学素子
JP5682493B2 (ja) * 2010-08-04 2015-03-11 信越化学工業株式会社 バイナリーフォトマスクブランク及びバイナリーフォトマスクの製造方法
JP5154626B2 (ja) * 2010-09-30 2013-02-27 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、および半導体デバイスの製造方法
JP5653888B2 (ja) * 2010-12-17 2015-01-14 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP6058318B2 (ja) * 2011-09-14 2017-01-11 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法、および半導体デバイスの製造方法
JP4930737B2 (ja) * 2011-09-21 2012-05-16 信越化学工業株式会社 フォトマスクブランク及びバイナリーマスクの製造方法
CN111913344A (zh) * 2013-08-21 2020-11-10 大日本印刷株式会社 相移掩模及使用其的图案形成体的制造方法
JP6544943B2 (ja) * 2014-03-28 2019-07-17 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP6313678B2 (ja) * 2014-07-14 2018-04-18 Hoya株式会社 マスクブランクの製造方法、位相シフトマスクの製造方法および半導体デバイスの製造方法
US10678125B2 (en) * 2016-03-02 2020-06-09 Shin-Etsu Chemical Co., Ltd. Photomask blank and method for preparing photomask
CN114609856A (zh) * 2016-08-26 2022-06-10 Hoya株式会社 掩模坯料、转印用掩模及半导体器件的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040063001A1 (en) * 2002-09-30 2004-04-01 Wu Wei E. Method of making an integrated circuit using a photomask having a dual antireflective coating
JP2007033470A (ja) * 2005-07-21 2007-02-08 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2010044274A (ja) * 2008-08-15 2010-02-25 Shin-Etsu Chemical Co Ltd グレートーンマスクブランク、グレートーンマスク、及び製品加工標識又は製品情報標識の形成方法
JP2010237499A (ja) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd フォトマスクブランク及びフォトマスク
JP2013178372A (ja) * 2012-02-28 2013-09-09 Hoya Corp 転写用マスク及びその製造方法、並びに、マスクブランク及びその製造方法
JP2015191218A (ja) * 2014-03-30 2015-11-02 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2015200883A (ja) * 2014-03-30 2015-11-12 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体装置の製造方法
JP2016212322A (ja) * 2015-05-12 2016-12-15 Hoya株式会社 位相シフトマスクブランク、位相シフトマスクの製造方法及び半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161889A (ja) * 2016-03-02 2017-09-14 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
JP2020170202A (ja) * 2016-03-02 2020-10-15 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
CN110716388A (zh) * 2018-07-13 2020-01-21 思而施技术株式会社 空白掩模和光掩模
JP2020013100A (ja) * 2018-07-13 2020-01-23 エスアンドエス テック カンパニー リミテッド ブランクマスク、フォトマスク及びその製造方法
US10942445B2 (en) 2018-07-13 2021-03-09 S&S Tech Co., Ltd. Blankmask and photomask, and methods of fabricating the same
CN110716388B (zh) * 2018-07-13 2023-05-30 思而施技术株式会社 空白掩模和光掩模

Also Published As

Publication number Publication date
SG10202000604QA (en) 2020-03-30
US20230099176A1 (en) 2023-03-30
TWI727603B (zh) 2021-05-11
TWI765636B (zh) 2022-05-21
JP2019105858A (ja) 2019-06-27
US11543744B2 (en) 2023-01-03
JP2018109775A (ja) 2018-07-12
SG10202007863UA (en) 2020-10-29
KR20210059016A (ko) 2021-05-24
KR20210093383A (ko) 2021-07-27
KR102281354B1 (ko) 2021-07-26
TW202129707A (zh) 2021-08-01
JP6636664B2 (ja) 2020-01-29
KR20190021454A (ko) 2019-03-05
CN109643058B (zh) 2022-03-29
US20190204728A1 (en) 2019-07-04
JP6297766B1 (ja) 2018-03-20
CN114609856A (zh) 2022-06-10
TWI685880B (zh) 2020-02-21
TW201820405A (zh) 2018-06-01
US20210373432A1 (en) 2021-12-02
KR102292434B1 (ko) 2021-08-20
KR102254035B1 (ko) 2021-05-20
JP6495496B2 (ja) 2019-04-03
SG11201901299SA (en) 2019-03-28
TW202020938A (zh) 2020-06-01
CN114675486A (zh) 2022-06-28
CN109643058A (zh) 2019-04-16
JPWO2018037863A1 (ja) 2018-08-23
US11112690B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
JP6495496B2 (ja) マスクブランク、転写用マスク及び半導体デバイスの製造方法
US11624979B2 (en) Mask blank, transfer mask, and method of manufacturing semiconductor device
JP6759486B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP6929656B2 (ja) マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
JP6833773B2 (ja) マスクブランク、転写用マスクおよび半導体デバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017562373

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002746

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843349

Country of ref document: EP

Kind code of ref document: A1