WO2018037604A1 - 画像処理システム及び画像処理方法 - Google Patents

画像処理システム及び画像処理方法 Download PDF

Info

Publication number
WO2018037604A1
WO2018037604A1 PCT/JP2017/010903 JP2017010903W WO2018037604A1 WO 2018037604 A1 WO2018037604 A1 WO 2018037604A1 JP 2017010903 W JP2017010903 W JP 2017010903W WO 2018037604 A1 WO2018037604 A1 WO 2018037604A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination unit
light source
image data
light sources
light
Prior art date
Application number
PCT/JP2017/010903
Other languages
English (en)
French (fr)
Inventor
島崎 浩昭
田中 義人
美馬 邦啓
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018037604A1 publication Critical patent/WO2018037604A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present disclosure relates to an image processing system and method for generating data for duplicating an object having a convex portion.
  • Patent Document 1 discloses an image processing apparatus that generates stereoscopic image data by adding height direction information to a planar original image. This image processing apparatus makes it possible to realistically express shadows and textures by adding height information to each region separated based on focus information of original image data.
  • the present disclosure provides an image processing system and method effective for duplicating an object having a convex portion.
  • the image processing system includes an imaging device and an image processing device.
  • the imaging device includes a first illumination unit, a second illumination unit, and an imaging unit.
  • a 1st illumination part illuminates the object which has a convex part on the surface.
  • the second illumination unit illuminates the object from a direction different from that of the first illumination unit.
  • the imaging unit captures an object illuminated by both the first illumination unit and the second illumination unit, and generates image data including color information of the object.
  • the imaging unit is an object illuminated by one of the first illumination unit and the second illumination unit with light that is less diffusive than the light of each of the first illumination unit and the second illumination unit when generating image data.
  • the image processing device includes height information indicating the height of the surface of the object generated based on the length of the shadow of the convex portion included in the shadow information, and image information generated based on the image data. Output.
  • an object having a convex portion on the surface is illuminated by the first illumination unit, the object is illuminated by the second illumination unit from a direction different from the first illumination unit, and the object is photographed.
  • Image data including color information is generated.
  • an object is treated with light having a lower diffusibility than the light of each of the first illumination unit and the second illumination unit when image data is generated by one of the first illumination unit and the second illumination unit. Illumination is taken and shadow information indicating the shadow of the convex portion is generated.
  • this image processing method generates height information indicating the height of the surface of the object based on the length of the shadow of the convex portion included in the shadow information, and generates image information based on the image data.
  • This image processing method outputs height information and image information.
  • the image processing system and the image processing method according to the present disclosure are effective for duplicating an object having a convex portion.
  • FIG. 1 is a block diagram illustrating a configuration of a replication system according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of the first illumination unit and the second illumination unit in Embodiment 1 (color images illuminated by all of the plurality of light sources in the first illumination unit and all of the plurality of light sources in the second illumination unit)
  • FIG. 3 is a perspective view of the moving device of the imaging apparatus according to the first embodiment.
  • FIG. 4 is a schematic diagram when the moving device of the imaging apparatus according to the first embodiment is viewed from the side.
  • FIG. 5A is a diagram for explaining a relationship between an illumination angle and a shadow at the time of imaging in the first embodiment.
  • FIG. 5B is a diagram for explaining a relationship between an illumination angle and a shadow at the time of imaging in the first embodiment.
  • FIG. 6A is a diagram illustrating a case where specularly reflected light from an object in Embodiment 1 is incident on a camera.
  • FIG. 6B is a diagram illustrating a case where specularly reflected light from an object in Embodiment 1 is incident on the camera.
  • FIG. 7 is a diagram illustrating a case where a shadow image is captured by illumination with all of the plurality of light sources in the first illumination unit.
  • FIG. 8 is a diagram illustrating a case where a shadow image is captured by illumination with one of a plurality of light sources in the first illumination unit.
  • FIG. 9 is a flowchart illustrating a process of generating color image information and height image data by the imaging apparatus and the image processing apparatus (that is, the image processing system) according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of a cross section of a duplicate image formed by printing by the printing apparatus according to the first embodiment.
  • FIG. 11A is a diagram illustrating a part of a flowchart illustrating generation processing of color image information and height image data by the imaging apparatus and the image processing apparatus (that is, the image processing system) according to the second embodiment.
  • FIG. 11B is a diagram illustrating a remaining part of the flowchart illustrating the generation processing of color image information and height image data by the imaging apparatus and the image processing apparatus (that is, the image processing system) according to the second embodiment.
  • FIG. 12A is a diagram illustrating a case where specularly reflected light from an object in the second embodiment is incident on a camera.
  • FIG. 12B is a diagram illustrating a case where specularly reflected light from an object in the second embodiment is incident on the camera.
  • FIG. 13 is a diagram illustrating configurations of the first illumination unit and the second illumination unit in the third embodiment.
  • Embodiment 1 will be described with reference to the drawings.
  • a replication system that can reproduce an object having a convex portion (for example, a painting such as an oil painting) as well as the unevenness of the object along with its color.
  • the image processing system of the present disclosure is used for this duplication system.
  • the image processing system illuminates and shoots an object with highly diffusive light, and obtains color image data including color information of the object. Also, the object is illuminated and photographed with light having low diffusivity, and a shadow image of the object is obtained. The height of the convex portion is calculated from the shadow of the convex portion included in the shadow image. In the image processing system according to the first embodiment, whiteout in color image data and shine due to highlights can be suppressed. Then, the height of the convex portion can be calculated with high accuracy from the shadow image. As a result, the object can be duplicated with high accuracy based on the color image data and the shadow image.
  • FIG. 1 shows a configuration of a replication system according to the first embodiment.
  • the replication system 100 according to the first embodiment includes an imaging device 10 that captures an image of an object (in the first embodiment, a painting) and generates image data, and image information (for processing the generated image data that is necessary for replication of the painting).
  • An image processing apparatus 20 that outputs (height image data and color image data) and a printing apparatus 30 that duplicates a painting by printing based on the image information.
  • the imaging device 10 and the image processing device 20 constitute the image processing system 110 of the first embodiment.
  • the imaging apparatus 10 is a scanner using a line scan camera.
  • the imaging device 10 receives an instruction to start imaging, outputs an image data of a captured picture, a control unit 12 that controls the entire imaging device 10, and captures a picture to generate image data.
  • the camera 13, the 1st illumination part 14 and the 2nd illumination part 15 which illuminate a picture, and the moving apparatus 16 which moves the camera 13, the 1st illumination part 14, and the 2nd illumination part 15 are provided.
  • the input / output unit 11 includes an input unit 11a and a communication unit 11b.
  • the input unit 11a is a keyboard, a mouse, a touch panel, or the like.
  • the communication unit 11b includes an interface circuit for performing communication with an external device in conformity with a predetermined communication standard (for example, Local Area Network: LAN, WiFi).
  • a predetermined communication standard for example, Local Area Network: LAN, WiFi.
  • the imaging apparatus 10 inputs an instruction to start imaging via the input unit 11a or the communication unit 11b, and outputs image data generated by imaging a picture from the communication unit 11b.
  • the controller 12 moves the camera 13, the first illumination unit 14, and the second illumination unit 15 simultaneously with the moving device 16 based on the input imaging start instruction, while simultaneously moving the first illumination unit 14 and the second illumination unit 15. With the picture illuminated by at least one of the parts 15, the picture is taken by the camera 13.
  • the control unit 12 can be realized by a semiconductor element or the like. The function of the control unit 12 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 12 is, for example, a microcontroller, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field-Programmable Gate Array), and an ASIC (Applic The
  • the camera 13 includes an imaging unit 13a and a memory 13b.
  • the imaging unit 13a includes, for example, a CCD (Charge Coupled Device) line sensor or a CMOS (Complementary Metal Oxide Semiconductor) line sensor.
  • the imaging unit 13a scans and images a picture line by line, and captures image data of the picture.
  • the image data captured by the imaging unit 13a is stored in the memory 13b.
  • the memory 13b is realized by, for example, a RAM (Random Access Memory), a DRAM (Dynamic Random Access Memory), a ferroelectric memory, a flash memory, a magnetic disk, or a combination thereof.
  • the first illumination unit 14 and the second illumination unit 15 are scanning illumination light sources.
  • the camera 13 is installed between the first illumination unit 14 and the second illumination unit 15.
  • the image data of the image including the shadow of the convex portion of the painting can be generated by capturing the painting with the camera 13 while the painting is illuminated by one of the first illumination unit 14 and the second illumination unit 15. .
  • FIG. 2 is a schematic diagram showing the configuration of the first illumination unit 14 and the second illumination unit 15.
  • the first illumination unit 14, the second illumination unit 15, and a mechanism (such as a frame 16 e described later) for supporting the camera 13 are omitted.
  • the first illumination unit 14 includes a first light source 14A, a second light source 14B, and a third light source 14C as a plurality of light sources.
  • the second illumination unit 15 includes a first light source 15A, a second light source 15B, and a third light source 15C as a plurality of light sources.
  • the first light source 14A, the second light source 14B, the third light source 14C, the first light source 15A, the second light source 15B, and the third light source 15C are linearly arranged white light emitting diodes (LEDs) having high color rendering properties.
  • LEDs white light emitting diodes
  • a line LED for example, a line LED.
  • the first light source 14A, the second light source 14B, the third light source 14C, the first light source 15A, the second light source 15B, and the third light source 15C are positioned at the same distance from the imaging target 150 of the object (painting) 200, That is, as shown in FIG. 2, the object is arranged on an arc drawn around the imaged part 150. With this arrangement, the image capturing unit 150 is illuminated with the same brightness when any light source is turned on.
  • a camera 13, a first illumination unit 14, and a second illumination unit 15 are connected to the moving device 16.
  • the moving device 16 moves the camera 13, the first illumination unit 14, and the second illumination unit 15 in the scan direction. Thereby, it becomes possible for the camera 13 to pick up a picture line by line while moving.
  • the imaging apparatus 10 generates data of a two-dimensional image by combining image data scanned for each line and captured in the memory 13b, and outputs the data from the communication unit 11b.
  • the image processing device 20 inputs image data and outputs height information indicating the height of the surface of the object.
  • the image processing device 20 controls the entire image processing device 20 and processes the input image data.
  • a control unit 22 that generates height information indicating the height of the convex portion on the surface of the object, and a memory 23.
  • the input / output unit 21 includes an input unit 21a and a communication unit 21b.
  • the input unit 21a is a keyboard, a mouse, a touch panel, or the like.
  • the communication unit 21b includes an interface circuit for performing communication with an external device in compliance with a predetermined communication standard (for example, LAN, WiFi). For example, when the user inputs an instruction for capturing image data via the input unit 21a, the image processing device 20 outputs an image data capture request to the imaging device 10 via the communication unit 21b. The image processing device 20 receives the image data transmitted from the imaging device 10 via the communication unit 21b.
  • a predetermined communication standard for example, LAN, WiFi
  • the control unit 22 calculates the height of the surface of the painting (the height of the convex portion) from the length of the shadow included in the image of the received image data.
  • the control unit 22 generates height information indicating the calculated height. Specifically, height image data in which the height of the surface of the painting is expressed numerically for each pixel is generated as the height information.
  • the generated information is stored in the memory 23. Further, the control unit 22 outputs the generated height information to the printing apparatus 30 via the communication unit 21b.
  • the control unit 22 can be realized by a semiconductor element or the like.
  • the function of the control unit 22 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 22 includes, for example, a microcomputer, CPU, MPU, DSP, FPGA, and ASIC.
  • the memory 23 is realized by, for example, RAM, DRAM, ROM, ferroelectric memory, flash memory, magnetic disk, or a combination thereof.
  • the printing apparatus 30 generates an image that reproduces the height of the surface of the painting (including the convex portion) based on the height information (height image data) received from the image processing apparatus 20.
  • the printing apparatus 30 is, for example, a UV inkjet printer that uses UV ink that is cured by being irradiated with ultraviolet rays.
  • the printing apparatus 30 performs multilayer printing. That is, the printing apparatus 30 generates an image including convex portions by increasing the thickness of the ink as the height value indicated by the height information increases.
  • FIG. 3 is a perspective view of the moving device 16.
  • FIG. 4 is a schematic view of the moving device 16 as viewed from the side. 3 and 4, the right direction of the painting is the positive X direction (left direction is the negative X direction), the downward direction of the object 200 is the positive Y direction (the upward direction is the negative Y direction), and the object 200 The perpendicular direction is defined as the Z direction. 3 and 4, the X direction is a direction (main scanning direction) in which the camera 13 of the imaging device (scanner) 10 captures one line of data, the Y direction is orthogonal to the X direction, and the camera 13. Is a direction (sub-scanning direction) in which each line is scanned while moving.
  • the moving device 16 of the imaging device 10 includes a first guide rail 16b extending in the Y direction, a first movable body 16a moving forward and backward along the first guide rail 16b, and X
  • the second guide rail 16c extends in the direction
  • the second movable body 16d moves forward and backward along the second guide rail 16c
  • the frame 16e connected to the first movable body 16a.
  • the first movable body 16a and the second movable body 16d move forward and backward by driving a motor or the like.
  • the camera 13, the first illumination unit 14, and the second illumination unit 15 are fixed to a frame 16e. With this configuration, the camera 13, the first illumination unit 14, and the second illumination unit 15 are movable in the XY directions.
  • the moving device 16 can also include a third movable body 16f that allows the first illumination unit 14 and the second illumination unit 15 to move up and down.
  • the control unit 12 controls the driving of the moving device 16 so that the camera 13, the first illumination unit 14, and the second illumination unit 15 are integrated with each other at a constant speed in the scan direction.
  • the object 200 is arranged so that the vertical direction of the object 200 is parallel to the Y direction. That is, the object 200 is scanned line by line from top to bottom.
  • the scanning direction is not limited to the vertical direction of the object 200, and may be an arbitrary direction.
  • the scanning direction may be the vertical direction, the horizontal direction, or the diagonal direction of the object 200 according to the arrangement or orientation of the object 200.
  • the camera 13 captures the object 200, acquires color image data (image data) and shadow images (shadow information), and stores them in the memory 13b.
  • the color image data includes color information (RGB or CMYK) for each pixel of the object 200.
  • the first illumination unit 14 illuminates the imaged unit 150 from above the imaged unit 150.
  • the second illumination unit 15 illuminates the imaged unit 150 from below the imaged unit 150.
  • the direction (illumination direction 14b) in which the illumination light of the second light source 14B of the first illumination unit 14 illuminates the object 200 image-capturing unit 150 and the main surface of the object 200 placed flat (a plane when the convex portion is ignored) Is set to an angle ⁇ b.
  • the angle (illumination angle) between the illumination direction 15b in which the illumination light of the second light source 15B of the second illumination unit 15 illuminates the imaged unit 150 and the main surface of the object 200 placed flat is also set to the angle ⁇ b. Is done.
  • This angle ⁇ b is constant, for example 30 °.
  • the object 200 is illuminated from the obliquely upward direction or the obliquely downward direction to generate image data with a shadow.
  • the illumination angle ⁇ b may be an angle at which a shadow appears due to illumination, and 20 ° to 45 ° is particularly suitable.
  • the angle between the illumination direction 14a of the first light source 14A and the main surface of the object 200 is set to ⁇ a.
  • the angle between the illumination direction 15a of the first light source 15A and the main surface of the object 200 is also set to ⁇ a.
  • the angle between the illumination direction 14c of the third light source 14C and the main surface of the object 200 is set to ⁇ c.
  • the angle between the illumination direction 15c of the third light source 15C and the main surface of the object 200 is also set to ⁇ c.
  • the difference ⁇ between the illumination angle ⁇ a and the illumination angle ⁇ b and the difference ⁇ between the illumination angle ⁇ c and the illumination angle ⁇ b are all set to 3 ° to 10 °.
  • the position of the specularly reflected light at the convex portion 201 of the object 200 differs as the illumination angle difference ⁇ between the light sources increases. Accordingly, it is possible to move the position of overexposure or highlight in the color image data to be captured. That is, it is possible to further reduce whiteout or highlight in the color image data generated by the imaging apparatus 10.
  • the structure of the imaging device 10 including the first illumination unit 14 and the second illumination unit 15 increases as the illumination angle difference ⁇ increases, the load on the moving device 16 increases.
  • the illumination angle ⁇ a with respect to the illumination direction 14a and the illumination direction 15a of the first light source 14A and the first light source 15A is suitably 10 ° to 42 °.
  • the illumination angle ⁇ c with respect to the illumination direction 14c and the illumination direction 15c of the third light source 14C and the third light source 15C is suitably 23 ° to 55 °.
  • FIG. 5A shows a shadow generated when the first illumination unit 14 illuminates the object 200 from above.
  • FIG. 5B shows a shadow generated when the second illumination unit 15 illuminates the object 200 from below.
  • FIG. 5A illustrates a case where illumination is performed with the second light source 14B
  • FIG. 5B illustrates a case where illumination is performed using the second light source 15B.
  • the object 200 may include, for example, a convex portion (thickness portion of a paint) 201 formed by repeatedly painting colors such as an oil painting.
  • the duplication system 100 of the first embodiment also duplicates the convex portion 201 of the painting in addition to the color. Therefore, the replication system 100 according to the first embodiment calculates the height of the convex portion 201 of the painting.
  • the diffuse light source is a light source that emits diffuse light with low directivity.
  • the diffusion light source is a light source that irradiates a plurality of lights at different irradiation angles with respect to a certain irradiation position.
  • each of the first illumination unit 14 and the second illumination unit 15 is composed of a plurality of light sources (14A to 14C or 15A to 15C).
  • the first illumination unit 14 irradiates a plurality of lights at different irradiation angles to a certain irradiation position by simultaneously turning on the light sources 14A to 14C.
  • the 1st illumination part 14 functions like a diffused light source, and can radiate
  • the second illumination unit 15 functions like a diffused light source by simultaneously turning on the light sources 15A to 15C.
  • diffused light can reduce the occurrence of shine due to overexposure or highlighting in the generated color image data, as will be described below.
  • 6A and 6B are diagrams showing a case where specularly reflected light from the object 200 enters the camera 13.
  • 6A and 6B show the light source 14A and the light source 14B among the plurality of light sources 14A to 14C and the light sources 15A to 15C in order to facilitate understanding of the description.
  • the position of the object 200 illuminated by the light source 14A and the light source 14B is shown as an irradiation position 220A in FIG. 6A and as an irradiation position 220B in FIG. 6B.
  • a normal line at the irradiation position 220A is a normal line 221A
  • a normal line at the irradiation position 220B is a normal line 221B.
  • the specularly reflected light that the illumination light of the light source 14A is specularly reflected at the irradiation position 220A or the irradiation position 220B is referred to as a specular reflection light 14aa.
  • the regular reflection light that the illumination light of the light source 14B is regularly reflected at the irradiation position 220A or the irradiation position 220B is referred to as regular reflection light 14bb.
  • 6A and 6B differ in the positions of the camera 13 with respect to the object 200 and the light source 14A and the light source 14B of the first illumination unit 14. That is, the irradiation position 220A and the irradiation position 220B are different. For example, FIG.
  • FIG. 6B shows a state in which the camera 13, the light source 14A, and the light source 14B are moved in the scanning direction from the state of FIG. 6A.
  • the emission directions of the regular reflection light 14aa and the regular reflection light 14bb are different between the state of FIG. 6A and the state of FIG. 6B.
  • the illumination light from the light source 14A and the illumination light from the light source 14B are incident on the object 200 at different angles with respect to the normal line 221A of the object 200. Therefore, the regular reflection light 14aa and the regular reflection light 14bb reflected at the irradiation position 220A of the object 200 are emitted at different angles with respect to the normal line 221A. Similarly, in the state of FIG. 6B, the regular reflection light 14aa and the regular reflection light 14bb are emitted at different angles with respect to the normal line 221B. In addition, the irradiation positions 220A and 220B of the object 200 by the light source 14A and the light source 14B are different between the state of FIG.
  • the incident angle with respect to the normal line 221B of the illumination light from the light source 14A and the light source 14B in the state of FIG. 6B is different from the incident angle with respect to the normal line 221A of the illumination light from the light source 14A and the light source 14B in the state of FIG. Therefore, the outgoing angle of the regular reflected light 14aa with respect to the normal line 221B in the state of FIG. 6B is different from the outgoing angle of the regular reflected light 14aa with respect to the normal line 221A in the state of FIG. 6A.
  • the diffused light 14d is also emitted from the irradiation position 220A or the irradiation position 220B.
  • the regular reflection light 14bb is incident on the camera 13, and the regular reflection light 14aa is not incident on the camera 13.
  • the regular reflection light 14bb does not enter the camera 13, and the regular reflection light 14aa enters the camera 13.
  • the light incident on the camera 13 is only specularly reflected light from any one of the light sources, and the intensity of the specularly reflected light is reduced. be able to. This can reduce the occurrence of shine due to overexposure or highlighting in the generated color image data.
  • FIG. 7 is a diagram illustrating a case where a shadow image is captured by illuminating with all of a plurality of light sources (light source 14A, light source 14B, and light source 14C) in the first illumination unit 14.
  • light source 14A light source 14A
  • light source 14B light source 14C
  • FIG. 7 shows that when the object 200 is illuminated from one direction by the light source 14A and the light source 14B of the first illumination unit 14, the light source 14A generates a shade 211A of the convex portion 201, and the light source 14B shades the convex portion 201. 211B is generated.
  • the contour of the shadow of the convex portion 201 is blurred, and it becomes difficult to detect the length of the shadow.
  • the outline of the shadow of the convex portion 201 is further blurred, and as a result, it becomes difficult to calculate the height information of the convex portion 201 with high accuracy.
  • the number of light sources to be lit is changed between when color image data is generated and when a shadow image is generated.
  • the object 200 is illuminated from both directions by both the first illumination unit 14 and the second illumination unit 15, and the first The object 200 is illuminated by all of the plurality of light sources (light source 14A to light source 14C) of one illumination unit 14 and all of the plurality of light sources (light source 15A to light source 15C) of the second illumination unit 15.
  • the first illumination unit 14 and the second illumination unit 15 function as a diffusion light source as described above, and can reduce the occurrence of shine due to whiteout or highlight in the generated color image data.
  • any one of a plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14 or a plurality of light sources of the second illumination unit 15 is used. Illumination is performed by any one of the light sources (light source 15A to light source 15C).
  • the case where it illuminates only with the light source 14B of the 1st illumination part 14 is illustrated. Thereby, it is possible to reduce blurring of the shadow 212 by the convex portion 201, and it is possible to reduce the difficulty of detecting the length of the shadow 212.
  • the illuminance of each of a plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is turned on when generating color image data is set to be one light source that is turned on when a shadow image is captured.
  • the first illumination unit 14 has N light sources and the second illumination unit 15 also has N light sources, 2 ⁇ N light sources to be turned on when generating color image data are used.
  • Each illuminance is set to 1 / (2 ⁇ N) times the illuminance of one light source that is turned on when a shadow image is captured.
  • the amount of specularly reflected light incident on the camera 13 (for example, specularly reflected light 14aa and specularly reflected light 14bb shown in FIGS. 6A and 6B) can be reduced.
  • the occurrence of shine can be further reduced.
  • the total light amount of diffused light (for example, diffused light 14d shown in FIGS. 6A and 6B) lights one light source.
  • the generated color image data is the same as when the image is generated, and the image is reduced in shine due to overexposure or highlighting.
  • FIG. 9 shows generation processing of color image information and height image data by the imaging device 10 and the image processing device 20 (that is, the image processing system 110).
  • the imaging apparatus 10 moves the imaging target 150 from the upper and lower sides (the positive and negative directions of the Y axis) of the imaging target 150 of the object 200 using both the first illumination unit 14 and the second illumination unit 15. Simultaneously illuminate (S1). At this time, the imaging apparatus 10 turns on all of the plurality of light sources (light sources 14A to 14C) in the first illumination unit 14 and all of the plurality of light sources (light sources 15A to 15C) in the second illumination unit 15. Further, the imaging apparatus 10 sets the illuminance of each of the light sources 14A to 14C and the light sources 15A to 15C to be lower than the illuminance of one light source that is illuminated when a shadow image described later is captured.
  • the imaging apparatus 10 sets the illuminance of each of the light sources 14A to 14C and the light sources 15A to 15C to 1/6 times the illuminance of one light source that is illuminated when a shadow image described later is generated. To do. In this state, the imaging apparatus 10 captures the object 200 while moving the camera 13, and acquires color image data (image data) (S2). At this time, the camera 13 moves in the X direction and the Y direction so as to capture an image representing the entire object 200. When both the first illumination unit 14 and the second illumination unit 15 simultaneously illuminate the object 200, color image data that does not include the shadow of the convex portion 201 is obtained.
  • the color image data is image data of a two-dimensional image that includes color information (RGB or CMYK) of each pixel of the object 200 and does not include the shadow of the convex portion 201.
  • the image processing device 20 acquires color image data generated by the imaging device 10.
  • the first illumination unit 14 and the second illumination unit 15 function as diffuse light sources, and illumination light from a plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) is from the object 200.
  • the irradiation position is irradiated at different irradiation angles (see FIGS. 6A and 6B).
  • the illuminance of each of the plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is illuminated when generating color image data is set lower than the illuminance of one light source that is illuminated when a shadow image is captured.
  • the illuminance of each of 2 ⁇ N light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is illuminated when generating color image data is one of the illuminances when the shadow image is generated. 1 / (2 ⁇ N) times the illuminance of the light source.
  • the amount of specularly reflected light at the object 200 can be reduced, and whiteout and highlighting can be achieved.
  • the occurrence of shine due to can be further reduced.
  • the imaging device 10 illuminates the imaging target 150 of the object 200 with only one of the plurality of light sources (light source 14A to light source 14C) in the first illumination unit 14 (S3).
  • the imaging apparatus 10 scans and captures the object 200 with the camera 13 to generate first shadow image data (shadow information).
  • the first shadow image data is image data of a two-dimensional image including the lower shadow S1 of the convex portion 201.
  • the image processing device 20 acquires the first shadow image data generated by the imaging device 10 (S4).
  • the image processing apparatus 20 determines the length (for example, the number of pixels) of the lower shadow S1 included in the first shadow image data. Is calculated (S5).
  • the image processing device 20 calculates the lower height H1 of the convex portion 201 based on the calculated length of the shadow S1 and the illumination angle of the light source of the first illumination unit 14 that is turned on (S6).
  • the imaging apparatus 10 illuminates the imaging target 150 of the object 200 with only one of the plurality of light sources (light source 15A to light source 15C) in the second illumination unit 15 (S7). .
  • the imaging apparatus 10 scans and captures the object 200 with the camera 13 to generate second shadow image data (shadow information).
  • the data of the second shadow image is image data of a two-dimensional image including the shadow S2 on the upper side of the convex portion 201.
  • the image processing device 20 acquires the second shadow image data generated by the imaging device 10 (S8).
  • the image processing apparatus 20 determines the length (for example, the number of pixels) of the shadow S2 above the convex portion 201 included in the second shadow image data based on, for example, the luminance value of each pixel of the object 200 or the color of each pixel. Calculate (S9).
  • the image processing device 20 calculates the height H2 above the convex portion 201 based on the calculated length of the shadow S2 and the illumination angle of the light source of the second illumination unit 15 that is turned on (S10).
  • the image processing apparatus 20 is based on the lower height H1 of the convex portion 201 calculated based on the first shadow image data and the upper length H2 of the convex portion 201 calculated based on the second shadow image data.
  • the height H3 of the entire convex portion 201 is calculated.
  • the overall height of the convex portion 201 is calculated by interpolating the height H3 between the lower height H1 and the upper height H2 of the convex portion 201, for example.
  • the image processing apparatus 20 calculates the height of the entire image of the object 200 (all pixels constituting the image) by calculating the height of all the convex portions 201 included in the object 200, Height image data is generated as height information of the entire image (S11). For example, height image data in which the height of each pixel in the image is represented by a numerical value is generated.
  • any one of the plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14 or the second illumination unit 15 is captured. Illumination is performed by any one of a plurality of light sources (light source 15A to light source 15C).
  • the image processing apparatus 20 outputs the color image information (image information) and the height image data generated based on the color image data to the printing apparatus 30 (S12).
  • FIG. 10 is a diagram illustrating an example of a cross-section of a duplicate image formed by printing by the printing apparatus 30.
  • the printing apparatus 30 prints the transparent ink 72 a plurality of times on the base material (paper, cloth, plastic, etc.) 71 based on the height image data output from the image processing apparatus 20. For example, the larger the numerical value of the height image data, the larger the amount of transparent ink ejected. Since the transparent ink 72 is cured immediately by being irradiated with ultraviolet rays, the upper layer can be printed immediately after the lower layer is printed. A plurality of layers are formed by printing the transparent ink 72 a plurality of times.
  • the convex portion 201 can be represented.
  • the printing apparatus 30 prints an image using the color ink 73 on the upper surface of the transparent ink 72 based on the color image information output from the image processing apparatus 20. Thereby, the object 200 which reproduced the convex part 201 can be duplicated.
  • the shadow of the convex portion of the painting is photographed by capturing the picture in a state where the painting is illuminated at a predetermined angle.
  • the height is calculated. Therefore, when replicating a painting using the replication system, the convex portion of the painting (the height of the painting surface) can be reproduced. This makes it possible to generate a reproduction of a painting that is closer to the real thing.
  • the light that illuminates the object when the imaging device 10 generates a shadow image is diffused more than the light that illuminates the object when the imaging device 10 generates color image data.
  • the nature is low.
  • the first illumination unit 14 includes a plurality of light sources (light source 14A, light source 14B, light source 14C)
  • the second illumination unit 15 includes a plurality of light sources (light source 15A, light source 15B). , Including a light source 15C).
  • all of the plurality of light sources (light source 14A to light source 14C) in the first illumination unit 14 and the plurality of light sources (light source 15A to light source 15C) in the second illumination unit 15 are used. All illuminate the object 200 simultaneously.
  • the first illuminating unit 14 and the second illuminating unit 15 function as diffuse light sources, and illumination light from a plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) is an irradiation position where the object 200 is located.
  • FIGS. 6A and 6B see FIGS. 6A and 6B
  • the illuminance of each of the plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is illuminated when generating color image data is set lower than the illuminance of one light source that is illuminated when a shadow image is captured.
  • the illuminance of each of 2 ⁇ N light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is illuminated when generating color image data is one that is illuminated when a shadow image is captured. 1 / (2 ⁇ N) times the illuminance of the light source. Therefore, the amount of specularly reflected light at the object 200 can be reduced, and the occurrence of shine due to overexposure or highlighting can be further reduced.
  • any one of a plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14 or a plurality of light sources of the second illumination unit 15 is used. Illumination is performed by any one of the light sources (light source 15A to light source 15C). Therefore, blurring of the outline of the shadow 212 by the convex part 201 can be reduced, and it can be reduced that the length of the shadow 212 is difficult to detect.
  • the first illumination is used because a part of the plurality of light sources that are illuminated when generating the color image data and the light source that is illuminated when the shadow image is captured are shared.
  • the device configuration of the unit 14 and the second illumination unit 15 can be reduced.
  • the image processing system 110 of the first embodiment it is not necessary to use a special unevenness measuring device to measure the height of the surface of the object 200. Therefore, it is possible to produce a replica with a sense of unevenness at a low cost.
  • the illuminance of each of a plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) that is illuminated when generating color image data is determined from the illuminance of one light source that is illuminated when a shadow image is captured.
  • the present disclosure is not limited to this, and the illuminance of each of a plurality of light sources (light source 14A to light source 14C, light source 15A to light source 15C) illuminated when generating color image data is illuminated when a shadow image is captured. It may be set similarly to the illuminance of one light source.
  • the first illuminating unit 14 and the second illuminating unit 15 function as a diffused light source as described above, and can reduce the occurrence of shine due to whiteout or highlight in the generated color image data. .
  • the specularly reflected light from the light source is detected only at a certain point in time when the color image data is scanned and imaged. 13 is incident. As a result, only at this time, the generated color image data is lit by highlights. As a result, partially clear shine is generated, resulting in an unnatural color image.
  • the first illumination unit 14 includes a plurality of light sources (light source 14A, light source 14B, light source 14C) and the second illumination unit 15 includes a plurality of light sources (light source 15A, light source 15B, light source 15C)
  • the regular reflection light of the light from the light source enters the camera 13 at a plurality of time points when the color image data is scanned and imaged.
  • the generated color image data is lit by highlights. Therefore, the outline of the shine is blurred and a natural color image can be obtained.
  • the imaging unit 13a when the imaging unit 13a generates color image data, all of the plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14 and the plurality of light sources (light source 15A) of the second illumination unit 15 are used.
  • the light source 15C) simultaneously illuminates the object 200.
  • at least two or more of the plurality of light sources (light sources 14A to 14C) of the first illumination unit 14 and at least two or more of the plurality of light sources (light sources 15A to 15C) of the second illumination unit 15 are simultaneously objects. 200 may be illuminated.
  • Emodiment 2 In the first embodiment, when shooting to generate color image data, as shown in FIG. 2, the object 200 is moved from two directions using both the first illumination unit 14 and the second illumination unit 15. The object 200 was illuminated by all of the plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14 and the plurality of light sources (light source 15A to light source 15C) of the second illumination unit 15. In the second embodiment, when shooting to generate color image data, each of the plurality of light sources (light source 14A to light source 14C) in the first illumination unit 14, and each of the plurality of light sources (light sources 15A to 15C) in the second illumination unit 15.
  • the sequentially illuminated object 200 is photographed to generate a plurality of color image data.
  • the image processing device 20 synthesizes a plurality of color image data, and generates one color image information that does not have white spots or highlights due to highlights.
  • the configuration of the duplication system 100 according to the second embodiment is basically the same as that of the first embodiment described with reference to FIGS. 1 to 5 except that the imaging device 10 and the image processing device 20 of the duplication system 100 are configured.
  • the function and operation of the control unit are different from those described above.
  • the operation of the replication system 100 according to the second embodiment will be described with reference to FIGS. 11A and 11B.
  • FIG. 11A and FIG. 11B show generation processing of color image information and height image data by the imaging device 10 and the image processing device 20 (that is, the image processing system 110).
  • the imaging apparatus 10 captures an image from the top and bottom sides (Y-axis positive and negative directions) of the imaging target 150 of the object 200 by the first light source 14A of the first illumination unit 14 and the first light source 15A of the second illumination unit 15.
  • the unit 150 is illuminated simultaneously (S1A).
  • the camera 13 scans and images the object 200 to generate first color image data (S2A).
  • the image processing device 20 acquires the first color image data generated by the imaging device 10 (S2A).
  • the imaging apparatus 10 is covered by the second light source 14B of the first illumination unit 14 and the second light source 15B of the second illumination unit 15 from the upper and lower sides (the positive and negative directions of the Y axis) of the imaging unit 150 of the object 200.
  • the imaging unit 150 is illuminated simultaneously (S1B).
  • the camera 13 scans and images the object 200 to generate second color image data (S2B).
  • the image processing device 20 acquires the second color image data generated by the imaging device 10 (S2B).
  • the imaging apparatus 10 is covered by the third light source 14C of the first illumination unit 14 and the third light source 15C of the second illumination unit 15 from the upper and lower sides (the positive and negative directions of the Y axis) of the imaging unit 150 of the object 200.
  • the imaging unit 150 is illuminated at the same time (S1C).
  • the camera 13 scans and images the object 200 to generate third color image data (S2C).
  • the image processing device 20 acquires the third color image data generated by the imaging device 10 (S2C).
  • the image processing apparatus 20 generates color image information by synthesizing the first color image data to the third color image data (S2D). Specifically, the image processing device 20 generates color image information by synthesizing regions of the first color image data to the third color image data whose luminance is a predetermined value or less.
  • the predetermined value may be set to a luminance at which no brightening due to overexposure or highlight occurs.
  • step S3 to step S12 shown in the flowchart of FIG. 11B Since this operation is the same as steps S3 to S12 in the flowchart of FIG. 9, description thereof is omitted here.
  • 12A and 12B are diagrams showing a case where specularly reflected light from the object 200 enters the camera 13.
  • 12A and 12B differ in the positions of the light source 14A and the light source 14B of the camera 13 and the illumination unit 14 with respect to the object 200, as in FIGS. 6A and 6B. Accordingly, the irradiation positions 220A and 220B of the object 200 by the light source 14A and the light source 14B are different between the state of FIG. 12A and the state of FIG. 12B.
  • the specularly reflected light 14bb reflected by the object 200 with the illumination light from the light source 14B enters the camera 13, and the specularly reflected light 14aa reflected by the object 200 with the illumination light from the light source 14A enters the camera 13. do not do.
  • no shine occurs due to overexposure or highlight.
  • the specularly reflected light 14bb reflected from the object 200 by the illumination light from the light source 14B does not enter the camera 13, and the specularly reflected light 14aa from the light source 14A reflected from the object 200 is the camera. 13 is incident.
  • the specularly reflected light 14aa from the light source 14A reflected from the object 200 is the camera. 13 is incident.
  • the light source 14A and the light source 14B to be turned on are switched to illuminate the object 200 to generate a plurality of color image data, and no shine due to overexposure or highlight is generated from each of the plurality of color image data. Extract regions. Then, by synthesizing the extracted images, it is possible to generate color image information free from shine due to overexposure or highlighting.
  • the painting when photographing to generate color image data, the painting is illuminated while sequentially switching the light sources to be turned on among the plurality of light sources of the first illumination unit 14 and the second illumination unit 15; First color image data to third color image data are generated. Then, among the first color image data to the third color image data, the color image information is generated by synthesizing the areas whose luminance is a predetermined value or less. In other words, the color image information is generated using a region in which no brightening due to overexposure or highlight occurs among a plurality of color image data. The color image information is generated without using an area in which shine due to overexposure or highlight occurs among a plurality of color image data. Accordingly, it is possible to further reduce the occurrence of shine due to whiteout or highlight in the color image information.
  • any one of the plurality of light sources (light source 14A to light source 14C) of the first illumination unit 14, or the second illumination Illumination is performed by any one of the plurality of light sources (light source 15A to light source 15C) of the unit 15.
  • the illuminance (total luminance), which is the sum of the illuminance of the light source 14B and the illuminance of the light source 15B, which is turned on when the imaging device 10 generates the second color image data, is turned on when the imaging device 10 generates a shadow image.
  • the illuminance (total luminance), which is the sum of the illuminance of the light source 14C and the illuminance of the light source 15C, which is turned on when the imaging device 10 generates the third color image data is turned on when the imaging device 10 generates a shadow image. It may be equal to the illuminance of two light sources.
  • the illumination angles of the two light sources that are turned on when generating the first color image data to the third color image data are the same.
  • the light source 14A and the light source 15A whose illumination angle is ⁇ a are turned on.
  • two light sources having different illumination angles may be used as long as the shadows of the light sources can be offset.
  • the light source 14A and the light source 15B may be turned on when the first color image data is generated.
  • the first illumination unit 14 includes light sources 14A to 14C as a plurality of light sources.
  • the second illumination unit 15 includes light sources 15A to 15C.
  • the light source 14A to the light source 14C and the light source 15A to the light source 15C are light sources that respectively irradiate a certain irradiation position of an object from one direction.
  • the first illumination unit 14 of the third embodiment diffuses differently from the light source (first light source) 14 ⁇ / b> A similar to the light source 14 ⁇ / b> A of the first embodiment and the light source A of the first embodiment.
  • a light source (first diffused light source) 14D irradiates light having higher diffusibility (lower directivity) than the light source 14A. That is, the diffusion light source 14D is a light source that irradiates light from a plurality of directions to an irradiation position where an object is present.
  • the second illumination unit 15 of the third embodiment irradiates light source (second light source) 15A similar to the light source 15A of the first embodiment and light having higher diffusibility (lower directivity) than the light source 15A. And a light source 15D.
  • the diffused light source 14D and the diffused light source 15D are turned on simultaneously to illuminate the object 200. In this state, the camera 13 takes a picture.
  • the object 200 when a shadow image is captured, the object 200 is illuminated using one of the light source 14A and the light source 15A, and is captured by the camera 13.
  • the illuminance (total luminance) of light from the diffused light source 14D and the diffused light source 15D when photographing to generate color image data, and the light from the light source 14A or the light source 15B when capturing a shadow image May be combined with the illuminance.
  • the first to third embodiments have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, and the like have been made as appropriate.
  • the imaging device 10 includes the first illumination unit 14 and the second illumination unit 15 that are arranged in the vertical direction (Y-axis direction) with respect to the camera 13, but the imaging device is limited to this. It is not something.
  • the imaging device 10 further includes a third illumination unit and a fourth illumination unit arranged in the left-right direction (X-axis direction) with respect to the camera 13, and each of the third illumination unit and the fourth illumination unit includes a plurality of light sources. You may prepare. When capturing a shadow image, any one of the plurality of light sources of the third illumination unit or any one of the plurality of light sources of the fourth illumination unit is taken from the left-right direction of the imaged unit 150. Illuminate.
  • the image data with a shadow about the left-right direction of the convex part 201 is obtained.
  • the overall height of the convex portion 201 may be calculated based on the height calculated from the vertical and horizontal shadows of the convex portion 201.
  • all of the plurality of light sources in the first to fourth illumination units may illuminate the object 200 simultaneously.
  • illumination is performed from four directions by the first to fourth illumination units, and each of the plurality of light sources of the first illumination unit, each of the plurality of light sources of the second illumination unit, and each of the plurality of light sources of the third illumination unit
  • the object 200 sequentially illuminated by each of the plurality of light sources of the fourth illumination unit may be sequentially photographed, and a plurality of color image data may be generated and combined.
  • the imaging device 10 is a scanner using a line scan camera, but the imaging device is not limited to a scanner. Since it is only necessary to obtain shaded image data in a form in which the height of the convex portion can be calculated, for example, a normal camera that can obtain a two-dimensional image may be used.
  • the height H of the convex portion is calculated based on the shadow length S of the shadow image and the illumination angles ⁇ of the light sources 14A to 14C and the light sources 15A to 15C.
  • the height H of the convex portion may be calculated based only on the shadow length of the shadow image.
  • a painting is described as an example of the object 200 that is a replication target of the replication system 100 of the present disclosure, but the object 200 is not limited to a painting.
  • a copy object other than a painting for example, wallpaper, floor and ceiling panels, or the like may be used.
  • the idea of the replication system 100 of the present disclosure can be applied when a planar object having convex portions is replicated including the height information of the object surface.
  • the replication system 100 of the present disclosure can be realized by cooperating with hardware resources such as a processor, a memory, and a program.
  • the moving device 16 is configured to move the camera 13, the first illumination unit 14, and the second illumination unit 15 in the scan direction.
  • the camera 13, the first illumination unit 14, and the second illumination The configuration may be such that the part 15 is fixed and the object 200 is moved. In solving the problem of the present disclosure, it is only necessary that the relative positional relationship between the camera 13, the first illumination unit 14, and the second illumination unit 15 is clear, and the scanning method is not essential for solving the problem.
  • the present disclosure is applicable to an image processing apparatus that generates data for copying a planar object (for example, a painting) having a convex portion, and a replication system that replicates the object.
  • a planar object for example, a painting
  • a replication system that replicates the object.
  • Imaging device 11 Input / output part 11a Input part 11b Communication part 12 Control part 13 Camera 13a Imaging part 13b Memory 14 1st illumination part 14A 1st light source (light source) 14B Second light source (light source) 14C Third light source (light source) 14D diffuse light source (first diffuse light source) 15 2nd illumination part 15A 1st light source (light source) 15B Second light source (light source) 15C Third light source (light source) 15D diffused light source (second diffused light source) Reference Signs List 16 Mobile device 20 Image processing device 21 Input / output unit 21a Input unit 21b Communication unit 22 Control unit 23 Memory 30 Printing device 100 Replication system 110 Image processing system

Abstract

画像処理システム(110)は、撮像装置(10)と画像処理装置(20)とを備える。撮像装置(10)は、表面に凸部を有する物体を照明する第1照明部(14)と、第1照明部(14)と異なる方向から物体を照明する第2照明部(15)と、第1照明部(14)及び第2照明部(15)の両方により照明された物体を撮影して、物体の色情報を含む画像データを生成し、第1照明部(14)及び第2照明部(15)の一方により、画像データを生成する時の第1照明部(14)及び第2照明部(15)のそれぞれの光よりも拡散性の低い光で照明された物体を撮影し、凸部の陰影を示す陰影情報を生成する撮像部(13a)と、を有する。画像処理装置(20)は、陰影情報に含まれる凸部の陰影の長さに基づいて生成された、物体の表面の高さを示す高さ情報と、画像データに基づいて生成された画像情報と、を出力する。

Description

画像処理システム及び画像処理方法
 本開示は、凸部を有する物体を複製するためのデータを生成する画像処理システム及び方法に関する。
 特許文献1は、平面の原画像に高さ方向の情報を付加して立体画像データを生成する画像処理装置を開示する。この画像処理装置は、原画像データの焦点情報に基づいて分離した領域毎に高さ情報を付加することによって、陰影や質感をリアルに表現することを可能にしている。
特開2016-63522号公報
 本開示は、凸部を有する物体を複製するのに有効な画像処理システム及び方法を提供する。
 本開示における画像処理システムは、撮像装置と、画像処理装置と、を備える。撮像装置は、第1照明部と、第2照明部と、撮像部と、を有する。第1照明部は、表面に凸部を有する物体を照明する。第2照明部は、第1照明部と異なる方向から物体を照明する。撮像部は、第1照明部及び第2照明部の両方により照明された物体を撮影して、物体の色情報を含む画像データを生成する。また撮像部は、第1照明部及び第2照明部の一方により、画像データを生成する時の第1照明部及び第2照明部のそれぞれの光よりも拡散性の低い光で照明された物体を撮影し、凸部の陰影を示す陰影情報を生成する。画像処理装置は、陰影情報に含まれる凸部の陰影の長さに基づいて生成された、物体の表面の高さを示す高さ情報と、画像データに基づいて生成された画像情報と、を出力する。
 本開示における画像処理方法は、表面に凸部を有する物体を第1照明部で照明するとともに、物体を第1照明部と異なる方向から第2照明部で照明して物体を撮影し、物体の色情報を含む画像データを生成する。またこの画像処理方法は、第1照明部及び第2照明部の一方により、画像データを生成する時の第1照明部及び第2照明部のそれぞれの光よりも拡散性の低い光で物体を照明して撮影し、凸部の陰影を示す陰影情報を生成する。またこの画像処理方法は、陰影情報に含まれる凸部の陰影の長さに基づいて物体の表面の高さを示す高さ情報を生成し、画像データに基づいて画像情報を生成する。またこの画像処理方法は、高さ情報及び画像情報を出力する。
 本開示における画像処理システム及び画像処理方法は、凸部を有する物体を複製するのに有効である。
図1は、実施形態1の複製システムの構成を示すブロック図である。 図2は、実施形態1における第1照明部及び第2照明部の構成を示す図(第1照明部における複数の光源の全て及び第2照明部における複数の光源の全てにより照明して色画像を撮像する場合について説明する図)である。 図3は、実施形態1における撮像装置の移動装置の斜視図である。 図4は、実施形態1における撮像装置の移動装置を側面から見たときの概略図である。 図5Aは、実施形態1における撮像時の照明角度と陰影との関係を説明するための図である。 図5Bは、実施形態1における撮像時の照明角度と陰影との関係を説明するための図である。 図6Aは、実施形態1における物体からの正反射光がカメラに入射する場合を示す図である。 図6Bは、実施形態1における物体からの正反射光がカメラに入射する場合を示す図である。 図7は、第1照明部における複数の光源の全てにより照明して陰影画像を撮像する場合について説明する図である。 図8は、第1照明部における複数の光源のうちの一つにより照明して陰影画像を撮像する場合について説明する図である。 図9は、実施形態1における撮像装置及び画像処理装置(すなわち、画像処理システム)による色画像情報と高さ画像データの生成処理を示すフローチャートである。 図10は、実施形態1における印刷装置による印刷により形成された複製画像の断面の例を示す図である。 図11Aは、実施形態2における撮像装置及び画像処理装置(すなわち、画像処理システム)による色画像情報と高さ画像データの生成処理を示すフローチャートの一部を示す図である。 図11Bは、実施形態2における撮像装置及び画像処理装置(すなわち、画像処理システム)による色画像情報と高さ画像データの生成処理を示すフローチャートの残りの一部を示す図である。 図12Aは、実施形態2における物体からの正反射光がカメラに入射する場合を示す図である。 図12Bは、実施形態2における物体からの正反射光がカメラに入射する場合を示す図である。 図13は、実施形態3における第1照明部及び第2照明部の構成を示す図である。
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施形態1)
 実施形態1について、図面を用いて説明する。実施形態1においては、凸部を有する物体(例えば、油彩画などの絵画)を、その色彩と共に、物体の凹凸感についても再現可能な複製システムを提供する。この複製システムには、本開示の画像処理システムが用いられる。
 実施形態1の画像処理システムは、拡散性の高い光で物体を照明して撮影し、物体の色情報を含む色画像データを得る。また拡散性の低い光で物体を照明して撮影し、物体の陰影画像を得る。陰影画像に含まれる凸部の陰影から凸部の高さを算出する。実施形態1の画像処理システムでは、色画像データにおける白飛びや、ハイライトによるテカリを抑制できる。そして陰影画像から、凸部の高さを高精度に算出できる。その結果、色画像データ及び陰影画像に基づいて、物体を高精度に複製できる。
 1.構成
 図1は、実施形態1の複製システムの構成を示している。実施形態1の複製システム100は、物体(実施形態1において、絵画)を撮像して画像データを生成する撮像装置10と、生成された画像データを処理して絵画の複製に必要な画像情報(高さ画像データ及び色画像データ)を出力する画像処理装置20と、画像情報に基づいた印刷により絵画を複製する印刷装置30と、を備える。撮像装置10と画像処理装置20とは、実施形態1の画像処理システム110を構成する。
 実施形態1の撮像装置10は、ラインスキャンカメラを用いたスキャナである。撮像装置10は、撮像の開始の指示を受け付け、撮像した絵画の画像データを出力する入出力部11と、撮像装置10全体を制御する制御部12と、絵画を撮像して画像データを生成するカメラ13と、絵画を照明する第1照明部14及び第2照明部15と、カメラ13と第1照明部14及び第2照明部15とを移動させる移動装置16と、を備える。
 入出力部11は、入力部11aと通信部11bとを含む。入力部11aは、キーボード、マウス、タッチパネル等である。通信部11bは、所定の通信規格(例えばLocal Area Network:LAN、WiFi)に準拠して外部機器との通信を行うためのインタフェース回路を備える。撮像装置10は、例えば、撮像開始の指示を入力部11a又は通信部11bを介して入力し、絵画を撮像して生成した画像データを通信部11bから出力する。
 制御部12は、入力された撮像開始の指示に基づいて、移動装置16により、カメラ13、第1照明部14及び第2照明部15を同時に移動させながら、第1照明部14及び第2照明部15の少なくとも一方により絵画を照明した状態で、カメラ13により絵画を撮像させる。制御部12は、半導体素子などで実現可能である。制御部12の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部12は、例えば、マイクロコントローラ、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field‐Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)で構成される。
 カメラ13は、撮像部13aとメモリ13bとを含む。撮像部13aは、例えば、CCD(Charge Coupled Device)ラインセンサ又はCMOS(Complementary Metal Oxide Semiconductor)ラインセンサを含む。撮像部13aは、1ラインずつ絵画をスキャン撮像して、絵画の画像データを取り込む。撮像部13aが取り込んだ画像データはメモリ13bに格納される。メモリ13bは、例えば、RAM(Random Access Memory)、DRAM(Dynamic Random Access Memory)、強誘電体メモリ、フラッシュメモリ、又は磁気ディスク、又はこれらの組み合わせによって実現される。
 第1照明部14及び第2照明部15は、スキャン用の照明光源である。実施形態1では、第1照明部14及び第2照明部15の間にカメラ13が設置される。第1照明部14及び第2照明部15の一方によって絵画を照明した状態で、カメラ13で絵画を撮像することによって、絵画の凸部の陰影が含まれる画像の画像データを生成することができる。
 図2は、第1照明部14及び第2照明部15の構成を示す模式図である。なお、図2では、第1照明部14、第2照明部15、及びカメラ13を支持するための機構(後述するフレーム16e等)を省略している。第1照明部14は複数の光源としての第1光源14A、第2光源14B及び第3光源14Cを含む。第2照明部15は複数の光源としての第1光源15A、第2光源15B、及び第3光源15Cを含む。第1光源14A、第2光源14B、第3光源14C、第1光源15A、第2光源15B、及び第3光源15Cは、例えば、高演色性の白色発光ダイオード(LED)を直線状に配置したラインLEDなどである。また、第1光源14A、第2光源14B、第3光源14C、第1光源15A、第2光源15B、及び第3光源15Cは、物体(絵画)200の被撮像部150から同じ距離の位置、つまり、図2のように物体の被撮像部150を中心に描いた円弧上に配置されている。この配置により、いずれの光源を点灯させた時でも、被撮像部150は同じ明るさに照明される。
 図1に戻り、移動装置16には、カメラ13、第1照明部14、及び第2照明部15が連結されている。移動装置16は、カメラ13、第1照明部14、及び第2照明部15をスキャン方向に移動させる。これにより、カメラ13は移動しながら絵画を1ラインずつ撮像することが可能になる。撮像装置10は、ライン毎にスキャンしてメモリ13bに取り込んだ画像データを組み合わせて二次元画像のデータを生成し、通信部11bから出力する。
 画像処理装置20は、画像データを入力して物体の表面の高さを示す高さ情報を出力する入出力部21と、画像処理装置20全体を制御するとともに入力された画像データを処理して、物体の表面の凸部の高さを示す高さ情報を生成する制御部22と、メモリ23とを含む。
 入出力部21は、入力部21aと通信部21bとを含む。入力部21aは、キーボード、マウス、タッチパネル等である。通信部21bは、所定の通信規格(例えばLAN、WiFi)に準拠して外部機器との通信を行うためのインタフェース回路を備える。例えば、ユーザが画像データの取り込みの指示を、入力部21aを介して入力すると、画像処理装置20は、画像データの取り込み要求を、通信部21bを介して撮像装置10に出力する。そして画像処理装置20は、撮像装置10から送信された画像データを、通信部21bを介して受信する。
 制御部22は、受信した画像データの画像に含まれる陰影の長さから、絵画の表面の高さ(凸部の高さ)を算出する。制御部22は、算出した高さを示す高さ情報を生成する。具体的には、高さ情報として、絵画の表面の高さを画素毎に数値で表した高さ画像データを生成する。生成された情報はメモリ23に格納される。また、制御部22は、生成した高さ情報を、通信部21bを介して、印刷装置30に出力する。制御部22は、半導体素子などで実現可能である。制御部22の機能は、ハードウェアのみで構成されてもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現されてもよい。制御部22は、例えば、マイコン、CPU、MPU、DSP、FPGA、ASICで構成される。メモリ23は、例えば、RAM、DRAM、ROM、強誘電体メモリ、フラッシュメモリ、又は磁気ディスク、又はこれらの組み合わせによって実現される。
 印刷装置30は、画像処理装置20から受け取った高さ情報(高さ画像データ)に基づいて、絵画の表面の高さを再現した(凸部を含む)画像を生成する。印刷装置30は、例えば、紫外線を当てることで硬化するUVインクを用いたUVインクジェットプリンタである。印刷装置30は、多層印刷を行う。すなわち印刷装置30は、高さ情報が示す高さの数値が大きいほど、インクを厚く盛り上げて、凸部を含む画像を生成する。
 図3は、移動装置16の斜視図である。図4は、移動装置16を側面から見た時の概略図である。図3及び図4では、絵画の右方向を正のX方向(左方向を負のX方向)とし、物体200の下方向を正のY方向(上方向を負のY方向)とし、物体200の垂線方向をZ方向とする。図3及び図4において、X方向は、撮像装置(スキャナ)10のカメラ13が1ライン分のデータを撮影する方向(主走査方向)であり、Y方向は、X方向に直交し、カメラ13が移動しつつ1ライン毎にスキャンする方向(副走査方向)である。図3及び図4に示すように、撮像装置10の移動装置16は、Y方向に延在する第1ガイドレール16bと、第1ガイドレール16b沿いに進退移動する第1可動体16aと、X方向に延在する第2ガイドレール16cと、第2ガイドレール16c沿いに進退移動する第2可動体16dと、第1可動体16aに連結されたフレーム16eとによって、構成される。第1可動体16a及び第2可動体16dは、モータ等の駆動により進退移動する。図4に示すように、カメラ13と第1照明部14及び第2照明部15は、フレーム16eに固定される。この構成により、カメラ13と第1照明部14及び第2照明部15は、XY方向に移動可能である。なお、移動装置16は、第1照明部14及び第2照明部15を昇降可能にさせる第3可動体16fを有することもできる。カメラ13が物体200をスキャン撮像する時、制御部12は、移動装置16の駆動を制御して、カメラ13と第1照明部14及び第2照明部15とを一体的にスキャン方向に一定速度で平行移動させる。図3及び図4では、物体200の上下方向がY方向と平行になるように物体200が配置されている。すなわち、物体200は、上から下に向けて1ライン毎にスキャンされる。スキャン方向は、物体200の上下方向に限定されるものではなく、任意の方向でもよい。例えば、スキャン方向は、物体200の配置又は向きに応じて、物体200の上下方向、左右方向、又は斜め方向でもよい。
 カメラ13は、物体200を撮像して、色画像データ(画像データ)及び陰影画像(陰影情報)を取得し、これらをメモリ13bに記憶する。色画像データとは、物体200の各画素についての色情報(RGB又はCMYK)を含む。
 ここで、図4を用いて、第1照明部14及び第2照明部15と、カメラ13の直下の物体200の被撮像部150(1ライン分)との位置関係を説明する。第1照明部14は、被撮像部150を被撮像部150の上側から照明する。第2照明部15は、被撮像部150を被撮像部150の下側から照明する。第1照明部14の第2光源14Bの照明光が物体200被撮像部150を照明する方向(照明方向14b)と、平置きされた物体200の主面(凸部を無視した場合の平面)との間の角度(照明角度)は角度θbに設定される。第2照明部15の第2光源15Bの照明光が被撮像部150を照明する照明方向15bと、平置きされた物体200の主面との間の角度(照明角度)も、角度θbに設定される。この角度θbは一定であり、例えば30°である。このように、物体200に対して、斜め上方向または斜め下方向から被撮像部150を照明することによって、陰影付きの画像データを生成することができる。なお、照明角度θbは、照明によって陰影が現れる角度であれば良く、特に、20°~45°が適している。
 さらに、第1光源14Aの照明方向14aと物体200の主面との角度はθaに設定される。第1光源15Aの照明方向15aと物体200の主面との角度もθaに設定される。第3光源14Cの照明方向14cと物体200の主面との角度はθcに設定される。第3光源15Cの照明方向15cと物体200の主面との角度もθcに設定される。照明角度θaと照明角度θbとの差Δθ、及び照明角度θcと照明角度θbとの差Δθは、いずれも3°~10°に設定される。
 各々の光源の照明角度の差Δθが大きいほど、物体200の凸部201での正反射光の位置が異なる。したがって、撮像される色画像データにおける白飛びやハイライトの位置を移動させることができる。つまり撮像装置10で生成される色画像データの白飛びやハイライトをより低減することができる。但し、照明角度の差Δθが大きいほど第1照明部14及び第2照明部15を含む撮像装置10の構造が大きくなるため、移動装置16の負荷が大きくなる。また第1照明部14及び第2照明部15の移動時の揺れが大きくなる問題を発生させる。これらのことから、第1光源14A及び第1光源15Aの照明方向14a及び照明方向15aに関する照明角度θaは、10°~42°が適している。また第3光源14C及び第3光源15Cの照明方向14c及び照明方向15cに関する照明角度θcは、23°~55°が適している。
 図5Aは、第1照明部14が物体200を上側から照明した時に生じる陰影を示している。図5Bは、第2照明部15が物体200を下側から照明した時に生じる陰影を示している。図5Aは、第2光源14Bで照明した時を例示し、図5Bは、第2光源15Bで照明した時を例示している。物体200には、例えば、油彩画などのように色を重ね塗りすることによって形成された凸部(絵の具の厚み部分)201が含まれる場合がある。実施形態1の複製システム100は、絵画を複製する際に、色彩に加え、絵画の凸部201についても複製する。そのために、実施形態1の複製システム100は、絵画の凸部201の高さを算出する。図5Aに示すように、第1照明部14によって物体200を斜め上側から照明すると、凸部201の下側(Y軸の正方向)に凸部201の陰影S1が現れる。画像処理装置20は、この陰影S1の長さ(画素数)と第1照明部14の第2光源14Bの照明角度θbとに基づいて、凸部201の下側の高さH1を算出する[H1=陰影S1の長さ×tan(θb)]。同様に、図5Bに示すように、第2照明部15によって物体200を斜め下側から照明すると、凸部201の上側(Y軸の負方向)に凸部201の陰影S2が現れる。画像処理装置20は、この陰影S2の長さ(画素数)と第2照明部15の第2光源15Bの照明角度θbとに基づいて、凸部201の上側の高さH2を算出する[H2=陰影S2の長さ×tan(θb)]。
 2.動作
 [本開示の課題]
 物体200を二方向から照明した状態で、カメラ13により物体200をスキャン撮像して色画像データを生成する際、白飛びやハイライトによるテカリが発生する場合がある。白飛びやハイライトによるテカリの発生を低減するためには、第1照明部14及び第2照明部15として拡散光光源を用いることが考えられる。ここで、拡散光光源とは、指向性が低い拡散光を出射する光源である。言い換えると、拡散光源は、ある照射位置に対して複数の光を異なる照射角度で照射する光源である。
 上記の課題を解決するため、実施形態11では、図2に示すように、第1照明部14及び第2照明部15をそれぞれ複数の光源(14A~14C、又は15A~15C)で構成する。第1照明部14は、光源14A~光源14Cを同時に点灯することにより、ある照射位置に対して複数の光を異なる照射角度で照射する。これにより、第1照明部14は、拡散光源のように機能し、拡散光のような光を出射することができる。同様に、第2照明部15は、光源15A~光源15Cを同時に点灯することにより、拡散光源のように機能する。このような拡散光により、以下に説明するように、生成された色画像データにおける白飛びやハイライトによるテカリの発生を低減できる。
 図6A及び図6Bは、物体200からの正反射光がカメラ13に入射する場合を示す図である。図6A及び図6Bでは、説明の理解を容易にするために、複数の光源14A~14C及び光源15A~光源15Cのうち、光源14A及び光源14Bを示す。光源14A及び光源14Bで照明される物体200の位置を、図6Aでは照射位置220Aとして示し、図6Bでは照射位置220Bとして示す。照射位置220Aにおける法線を法線221Aとし、照射位置220Bにおける法線を法線221Bとする。光源14Aの照明光が照射位置220A又は照射位置220Bで正反射する正反射光を、正反射光14aaとする。光源14Bの照明光が照射位置220A又は照射位置220Bで正反射する正反射光を、正反射光14bbとする。図6Aと図6Bとは、物体200に対するカメラ13と、第1照明部14の光源14A及び光源14Bの位置が異なる。つまり照射位置220Aと照射位置220Bとは異なる。例えば、図6Aの状態からカメラ13と光源14A及び光源14Bがスキャン方向に移動した状態が図6Bに示されている。これより、正反射光14aa及び正反射光14bbの出射方向は、図6Aの状態と図6Bの状態とで異なる。
 図6Aに示すように、光源14Aからの照明光と光源14Bからの照明光とは、物体200の法線221Aに対して互いに異なる角度で物体200に入射する。したがって、物体200の照射位置220Aで反射する正反射光14aa及び正反射光14bbは法線221Aに対して互いに異なる角度で出射される。図6Bの状態でも同様に、正反射光14aa及び正反射光14bbは、法線221Bに対して互いに異なる角度で出射される。また、図6Aの状態と図6Bの状態とでは、光源14A及び光源14Bによる物体200の照射位置220A、220Bが異なる。このため、図6Bの状態における光源14A及び光源14Bからの照明光の法線221Bに対する入射角度は、図6Aの状態における光源14A及び光源14Bからの照明光の法線221Aに対する入射角度と異なる。よって、図6Bの状態における正反射光14aaの法線221Bに対する出射角度は、図6Aの状態における各正反射光14aaの法線221Aに対する出射角度と異なる。同様に、図6Bの状態における正反射光14bbの法線221Bに対する出射角度は、図6Aの状態における正反射光14bbの法線221Aに対する出射角度と異なる。なお、物体200の表面に微細な凹凸がある場合、照射位置220A又は照射位置220Bから拡散光14dも出射する。
 これより、図6Aの状態では、正反射光14bbはカメラ13に入射し、正反射光14aaはカメラ13に入射しない。一方、図6Bの状態では、正反射光14bbはカメラ13に入射せず、正反射光14aaがカメラ13に入射する。このように、複数の光源(光源14A及び光源14B)を用いても、カメラ13に入射する光は、何れか一つの光源からの光の正反射光のみとなり、正反射光の強度を低減することができる。これにより、生成した色画像データにおける白飛びやハイライトによるテカリの発生を低減できる。
 しかし、これらの第1照明部14及び第2照明部15を用いて陰影画像を生成する際、更に以下のような問題がある。
 図7は、第1照明部14における複数の光源(光源14A、光源14B、及び光源14C)の全てにより照明して陰影画像を撮像する場合について説明する図である。以下では、説明の簡略化のために、第1照明部14の二つの光源14A及び光源14Bのみに着目して説明する。図7に示すように、例えば第1照明部14の光源14A及び光源14Bにより物体200を一方向から照明すると、光源14Aにより凸部201の陰影211Aが生成され、光源14Bにより凸部201の陰影211Bが生成される。このように異なる複数の陰影が存在することで、凸部201の陰影の輪郭がぼやけ、陰影の長さが検出し難くなる。光源14Cからの照明が加わると、凸部201の陰影の輪郭はさらにぼやけ、その結果、凸部201の高さ情報を高精度に算出することが難しくなる。
 この問題を解決するために、実施形態1では、色画像データを生成する時と陰影画像を生成する時とで、点灯する光源の数を変更する。具体的には、色画像データを生成するために撮影する時には、図2に示すように、第1照明部14及び第2照明部15の両方により物体200を二方向から照明し、かつ、第1照明部14の複数の光源(光源14A~光源14C)の全て及び第2照明部15の複数の光源(光源15A~光源15C)の全てにより物体200を照明する。これより、第1照明部14及び第2照明部15は上述したように拡散光源のように機能し、生成される色画像データにおける白飛びやハイライトによるテカリの発生を低減することができる。
 一方、陰影画像を撮像する時には、図8に示すように、第1照明部14の複数の光源(光源14A~光源14C)のうちの何れか1つ、又は、第2照明部15の複数の光源(光源15A~光源15C)のうちの何れか1つにより照明する。図8では、第1照明部14の光源14Bのみで照明する場合を例示している。これにより、凸部201による陰影212がぼやけることを低減することができ、陰影212の長さが検出し難くなることを低減することができる。
 さらに、実施形態1では、色画像データを生成する時に点灯させる複数の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度を、陰影画像を撮像する時に点灯させる一つの光源の照度よりも低く設定する。より具体的には、第1照明部14がN個の光源を有し、第2照明部15もN個の光源を有する場合、色画像データを生成する時に点灯させる2×N個の光源の各々の照度は、陰影画像を撮像する時に点灯させる一つの光源の照度の1/(2×N)倍に設定される。これにより、色画像データを生成する時、カメラ13に入射する正反射光(例えば図6A及び図6Bに示す正反射光14aa、正反射光14bb)の光量を低減でき、白飛びやハイライトによるテカリの発生をより低減することができる。この時、複数の光源(光源14A~光源14C、光源15A~光源15C)により同時に照明するため、拡散光(例えば図6A及び図6Bに示す拡散光14d)の総光量は、1つの光源を点灯させた時と同じで、生成した色画像データは白飛びやハイライトによるテカリを低減させた画像となる。
 [複製システムの動作の流れ]
 図9に、撮像装置10及び画像処理装置20(すなわち、画像処理システム110)による色画像情報と高さ画像データの生成処理を示す。
 まず、撮像装置10は、図4のように第1照明部14及び第2照明部15の両方により、物体200の被撮像部150の上下側(Y軸の正負方向)から被撮像部150を同時に照明する(S1)。この時、撮像装置10は、第1照明部14における複数の光源(光源14A~光源14C)の全て及び第2照明部15における複数の光源(光源15A~光源15C)の全てを点灯させる。さらに、撮像装置10は、光源14A~光源14C、光源15A~光源15Cの各々の照度を、後述の陰影画像を撮像する時に照明する一つの光源の照度よりも低く設定する。より具体的には、撮像装置10は、光源14A~光源14C、光源15A~光源15Cの各々の照度を、後述の陰影画像を生成する時に照明する一つの光源の照度の1/6倍に設定する。この状態で、撮像装置10は、カメラ13を移動させながら物体200を撮像して、色画像データ(画像データ)を取得する(S2)。この時、カメラ13は、物体200の全体を表す画像を撮像するようにX方向及びY方向に移動する。第1照明部14及び第2照明部15の両方が同時に物体200を照明することによって、凸部201の陰影を含まない色画像データが得られる。色画像データは、物体200の各画素の色情報(RGB又はCMYK)を含み、凸部201の陰影を含まない2次元画像の画像データである。画像処理装置20は、撮像装置10によって生成された色画像データを取得する。
 ステップS2の時、第1照明部14及び第2照明部15は拡散光源のように機能し、複数の光源(光源14A~光源14C、光源15A~光源15C)からの照明光は物体200のある照射位置を異なる照射角度で照射する(図6A及び図6B参照)。これより、カメラ13に正反射光が入射する場合でも、何れか一つの光源からの光の正反射光しか入射せず、生成する色画像データにおける白飛びやハイライトによるテカリの発生を低減することができる。
 また、色画像データを生成する時に照明する複数の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度を、陰影画像を撮像する時に照明する一つの光源の照度よりも低く設定する。より具体的には、色画像データを生成する時に照明する2×N個の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度は、陰影画像を生成する時に照明する一つの光源の照度の1/(2×N)倍である。このように色画像データを生成するために撮影する時と陰影画像を撮像する時とで光源の照度を変更することにより、物体200での正反射光の光量を低減でき、白飛びやハイライトによるテカリの発生をより低減することができる。
 次に、撮像装置10は、図5Aに示すように第1照明部14における複数の光源(光源14A~光源14C)の何れか一つのみによって物体200の被撮像部150を照明する(S3)。この状態において、撮像装置10は、カメラ13により、物体200をスキャン撮像して第1陰影画像データ(陰影情報)を生成する。第1陰影画像データは、凸部201の下側の陰影S1を含む2次元画像の画像データである。画像処理装置20は、撮像装置10によって生成された第1陰影画像データを取得する(S4)。画像処理装置20は、例えば物体200の各画素の輝度値又は各画素の色に基づいて、第1陰影画像データに含まれる凸部201の下側の陰影S1の長さ(例えば、画素数)を算出する(S5)。画像処理装置20は、算出した陰影S1の長さと点灯させた第1照明部14の光源の照明角度とに基づいて、凸部201の下側の高さH1を算出する(S6)。
 次に、撮像装置10は、図5Bに示すように第2照明部15における複数の光源(光源15A~光源15C)の何れか一つのみによって物体200の被撮像部150を照明する(S7)。この状態において、撮像装置10は、カメラ13により、物体200をスキャン撮像して第2陰影画像データ(陰影情報)を生成する。第2陰影画像のデータは、凸部201の上側の陰影S2を含む2次元画像の画像データである。画像処理装置20は、撮像装置10によって生成された第2陰影画像データを取得する(S8)。画像処理装置20は、例えば物体200の各画素の輝度値又は各画素の色に基づいて、第2陰影画像データに含まれる凸部201の上側の陰影S2の長さ(例えば、画素数)を算出する(S9)。画像処理装置20は、算出した陰影S2の長さと点灯させた第2照明部15の光源の照明角度とに基づいて、凸部201の上側の高さH2を算出する(S10)。
 画像処理装置20は、第1陰影画像データに基づいて算出した凸部201の下側の高さH1と、第2陰影画像データに基づいて算出した凸部201の上側の長さH2とに基づいて、凸部201全体の高さH3を算出する。凸部201の全体の高さは、例えば、凸部201の下側の高さH1と上側の高さH2とに基づいて、その間の高さH3を補間することによって算出される。
 このようにして、画像処理装置20は、物体200に含まれる全ての凸部201の高さを算出することによって、物体200の画像全体(画像を構成する全画素)の高さを算出し、画像全体の高さ情報として高さ画像データを生成する(S11)。例えば、画像内の各画素の高さを数値で表した高さ画像データを生成する。
 このように、陰影画像を撮像する時には、図8に示すように、第1照明部14の複数の光源(光源14A~光源14C)のうちの何れか1つ、又は、第2照明部15の複数の光源(光源15A~光源15C)のうちの何れか1つにより照明する。これにより、凸部201による陰影212の輪郭がぼやけることを低減することができ、陰影212の長さが検出し難くなることを低減することができる。
 その後、画像処理装置20は、色画像データに基づいて生成される色画像情報(画像情報)と高さ画像データとを印刷装置30に出力する(S12)。
 以上のように生成された色画像情報と高さ画像データとを用いて、印刷装置30は複製画像を生成する。図10は、印刷装置30による印刷により形成された複製画像の断面の例を示す図である。印刷装置30は、画像処理装置20から出力された高さ画像データに基づいて、基材(紙、布、プラスチックなど)71の上に、透明インク72を複数回印刷する。例えば、高さ画像データの数値が大きい画素ほど透明インクの吐出量を多くする。透明インク72は、紫外線を当てることによってすぐに硬化するため、下層を印刷した後すぐに上層を印刷することが可能である。透明インク72を複数回印刷することによって、複数の層が形成される。透明インクの吐出量が多い画素がより高く盛り上がるため、凸部201を表すことができる。印刷装置30は、画像処理装置20から出力された色画像情報に基づいて、透明インク72の上面にカラーインク73を使用して画像を印刷する。これにより、凸部201を再現した物体200を複製することができる。
 3.効果等
 従来の絵画の複製品(レプリカ)は、カメラやスキャナ等によりカラー印刷して生成されていたため平面状であり、絵画に含まれる凸部は再現されていなかった。そのため、従来の絵画の複製品は見る人の視点の変化や、当てる照明の変化が反映されず、実物感が不足していた。また、従来、樹脂等を使用して凹凸感を表現することは可能であったが、手作業で凸部を生成しなければならず、高価であった。
 一方、実施形態1の画像処理システム110によれば、所定の角度で絵画を照明した状態で絵画を撮像することによって、絵画の凸部の陰影を撮影し、この陰影の長さから凸部の高さを算出している。よって、複製システムを用いて絵画を複製する際に、絵画の凸部(絵画表面の高さ)を再現することができる。これにより、より実物に近い絵画の複製物を生成することができる。
 また、実施形態1の画像処理システム110によれば、撮像装置10が陰影画像を生成する時に物体を照明する光は、撮像装置10が色画像データを生成する時に物体を照明する光よりも拡散性が低い。例えば実施形態1の画像処理システム110によれば、第1照明部14は複数の光源(光源14A、光源14B、光源14C)を含み、第2照明部15は複数の光源(光源15A、光源15B、光源15C)を含む。色画像データを撮像する時には、図2に示すように、第1照明部14における複数の光源(光源14A~光源14C)の全て及び第2照明部15における複数の光源(光源15A~光源15C)の全てが同時に物体200を照明する。この時、第1照明部14及び第2照明部15は拡散光源のように機能し、複数の光源(光源14A~光源14C、光源15A~光源15C)からの照明光は物体200のある照射位置に対して異なる照射角度で照射する(図6A及び図6B参照)。これより、カメラ13には、何れか一つの光源からの光の正反射光しか入射せず、生成した色画像データにおける白飛びやハイライトによるテカリの発生を低減することができる。
 また、色画像データを生成する時に照明する複数の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度を、陰影画像を撮像する時に照明する一つの光源の照度よりも低く設定する。より具体的には、色画像データを生成する時に照明する2×N個の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度は、陰影画像を撮像する時に照明する一つの光源の照度の1/(2×N)倍である。そのため、物体200での正反射光の光量を低減でき、白飛びやハイライトによるテカリの発生をより低減することができる。
 一方、陰影画像を撮像する時には、図8に示すように、第1照明部14の複数の光源(光源14A~光源14C)のうちの何れか1つ、又は、第2照明部15の複数の光源(光源15A~光源15C)のうちの何れか1つにより照明する。そのため、凸部201による陰影212の輪郭がぼやけることを低減することができ、陰影212の長さが検出し難くなることを低減することができる。
 また、実施形態1の画像処理システム110によれば、色画像データを生成する時に照明する複数の光源の一部と、陰影画像を撮像する時に照明する光源を共用しているので、第1照明部14及び第2照明部15の装置構成を小さくすることができる。
 また、実施形態1の画像処理システム110によれば、物体200の表面の高さを測定するために、特殊な凹凸測定装置を使用しなくてもよい。よって、安価に、凹凸感のある複製品を作成することができる。
 また、実施形態1の画像処理システム110によれば、高さ情報を得るために、物体200にレーザを照射していないため、物体200に負荷を掛けることなく、凹凸感のある複製品を作成することができる。
 (実施形態1の変形例)
 実施形態1では、色画像データを生成する時に照明する複数の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度を、陰影画像を撮像する時に照明する一つの光源の照度よりも低く設定した。しかし、本開示はこれに限定されず、色画像データを生成する時に照明する複数の光源(光源14A~光源14C、光源15A~光源15C)の各々の照度を、陰影画像を撮像する時に照明する一つの光源の照度と同様に設定されてもよい。この場合でも、第1照明部14及び第2照明部15は上述したように拡散光源のように機能し、生成された色画像データにおける白飛びやハイライトによるテカリの発生を低減することができる。
 なお、第1照明部14及び第2照明部15の各々が光源を1つだけしか有さない場合、色画像データをスキャン撮像する時のある時点のみにおいて光源からの光の正反射光がカメラ13に入射する。これより、この時点のみにおいて、生成した色画像データにハイライトによるテカリが発生する。そのため、部分的にはっきりしたテカリが発生し、不自然な色画像となる。
 これに対して、第1照明部14が複数の光源(光源14A、光源14B、光源14C)を含み、第2照明部15が複数の光源(光源15A、光源15B、光源15C)を含む場合、色画像データをスキャン撮像する時の複数の時点において光源からの光の正反射光がカメラ13に入射する。これより、複数の時点において、生成した色画像データにハイライトによるテカリが発生する。そのため、テカリの輪郭がぼけて、自然な色画像が得られる。
 また実施形態1では、撮像部13aが色画像データを生成する時には、第1照明部14の複数の光源(光源14A~光源14C)の全てと、第2照明部15の複数の光源(光源15A~光源15C)とが同時に物体200を照明する例を挙げた。しかし、第1照明部14の複数の光源(光源14A~光源14C)の少なくとも2つ以上と、第2照明部15の複数の光源(光源15A~光源15C)の少なくとも2つ以上とが同時に物体200を照明してもよい。
 (実施形態2)
 実施形態1では、色画像データを生成するために撮影する時、図2に示すように、第1照明部14及び第2照明部15の両方を用いて、物体200を二方向から物体200を照明し、かつ、第1照明部14の複数の光源(光源14A~光源14C)及び第2照明部15の複数の光源(光源15A~光源15C)の全てにより物体200を照明した。実施形態2では、色画像データを生成するために撮影する時、第1照明部14における複数の光源(光源14A~光源14C)のそれぞれ、及び第2照明部15における複数の光源(光源15A~光源15C)のそれぞれを用いて、順次に照明された物体200を撮影し、複数の色画像データを生成する。そして、画像処理装置20は、複数の色画像データを合成して、白飛びやハイライトによるテカリがない一つの色画像情報を生成する。
 実施形態2にかかる複製システム100の構成は、図1~図5を参照して説明した実施形態1のものと基本的に同様であるが、複製システム100の撮像装置10及び画像処理装置20の制御部の機能、動作が前述のものと異なる。以下、図11A及び図11Bを用いて、実施形態2にかかる複製システム100の動作を説明する。
 図11A及び図11Bに、撮像装置10及び画像処理装置20(すなわち、画像処理システム110)による色画像情報と高さ画像データの生成処理を示す。
 まず、撮像装置10は、第1照明部14の第1光源14A及び第2照明部15の第1光源15Aにより、物体200の被撮像部150の上下側(Y軸の正負方向)から被撮像部150を同時に照明する(S1A)。この状態において、カメラ13により、物体200をスキャン撮像して第1色画像データを生成する(S2A)。画像処理装置20は、撮像装置10によって生成された第1色画像データを取得する(S2A)。
 次に、撮像装置10は、第1照明部14の第2光源14B及び第2照明部15の第2光源15Bにより、物体200の被撮像部150の上下側(Y軸の正負方向)から被撮像部150を同時に照明する(S1B)。この状態において、カメラ13により、物体200をスキャン撮像して第2色画像データを生成する(S2B)。画像処理装置20は、撮像装置10によって生成された第2色画像データを取得する(S2B)。
 次に、撮像装置10は、第1照明部14の第3光源14C及び第2照明部15の第3光源15Cにより、物体200の被撮像部150の上下側(Y軸の正負方向)から被撮像部150を同時に照明する(S1C)。この状態において、カメラ13により、物体200をスキャン撮像して第3色画像データを生成する(S2C)。画像処理装置20は、撮像装置10によって生成された第3色画像データを取得する(S2C)。
 次に、画像処理装置20は、第1色画像データ~第3色画像データを合成して色画像情報を生成する(S2D)。具体的には、画像処理装置20は、第1色画像データ~第3色画像データの、輝度が所定値以下の領域を合成して、色画像情報を生成する。所定値とは、白飛びやハイライトによるテカリが発生しない時の輝度に設定されればよい。
 次に、画像処理装置20により、図11Bのフローチャートに示すステップS3~ステップS12の動作が行われる。この動作は、図9のフローチャートにおけるステップS3~ステップS12と同じであるので、ここでの説明を省略する。
 図12A及び図12Bは、物体200からの正反射光がカメラ13に入射する場合を示す図である。図12Aと図12Bとは、図6A及び図6Bと同様に、物体200に対するカメラ13と照明部14の光源14A及び光源14Bの位置が異なる。これより、図12Aの状態と図12Bの状態とでは、光源14A及び光源14Bによる物体200の照射位置220A、220Bが異なる。
 図12Aの状態では、光源14Bからの照明光が物体200で反射した正反射光14bbはカメラ13に入射し、光源14Aからの照明光が物体200で反射した正反射光14aaはカメラ13に入射しない。このような状態では、第1光源14Aのみを点灯し、第2光源14Bを点灯せずに色画像データを生成すると、白飛びやハイライトによるテカリが発生しない。
 一方、図12Bの状態では、光源14Bからの照明光が物体200で反射した正反射光14bbはカメラ13に入射せず、光源14Aからの照明光が物体200で反射した正反射光14aaはカメラ13に入射する。このような状態では、第2光源14Bのみを点灯し、第1光源14Aを点灯せずに色画像データを生成すると、白飛びやハイライトによるテカリが発生しない。
 このように、点灯させる光源14A及び光源14Bを切り替えて物体200を照明して複数の色画像データを生成し、複数の色画像データのそれぞれから、白飛びやハイライトによるテカリが発生していない領域を抽出する。そして抽出された画像を合成することによって、白飛びやハイライトによるテカリがない色画像情報を生成することができる。
 この実施形態2によれば、色画像データを生成するために撮影する時に、第1照明部14及び第2照明部15の複数の光源のうち点灯させる光源を順次切り替えながら絵画を照明して、第1色画像データ~第3色画像データを生成する。そして第1色画像データ~第3色画像データのうち、輝度が所定値以下の領域を合成して色画像情報を生成する。つまり、色画像情報は、複数の色画像データのうち、白飛びやハイライトによるテカリが発生していない領域を用いて生成される。そして色画像情報は、複数の色画像データのうち、白飛びやハイライトによるテカリが発生している領域を用いずに生成される。従って色画像情報における白飛びやハイライトによるテカリの発生をより低減することができる。
 一方、上述したように、陰影画像を撮像する時には、図8に示すように、第1照明部14の複数の光源(光源14A~光源14C)のうちの何れか1つ、又は、第2照明部15の複数の光源(光源15A~光源15C)のうちの何れか1つにより照明する。これにより、凸部201による陰影212がぼやけることを低減することができ、陰影212の長さが検出し難くなることを低減することができる。
 (実施形態2の変形例)
 撮像装置10が第1色画像データを生成する時に点灯させる、光源14Aの照度及び光源15Aの照度を合わせた照度(総輝度)は、撮像装置10が陰影画像を生成する時に点灯させる、一つの光源の照度と等しくしてもよい。すなわち、第1色画像データを生成する時と、陰影画像を生成する時の、物体を照明する光全体の照度(総輝度)を等しくしてもよい。これにより、第1色画像データと陰影画像とを対比した時のデータの差分は、実質的に凸部の陰影のみと考えられる。したがって、物体を照明する光の照度による差分を考慮しなくてもよいため、制御部22での高さ情報の算出処理が容易となる。
 同様に、撮像装置10が第2色画像データを生成する時に点灯させる、光源14Bの照度及び光源15Bの照度を合わせた照度(総輝度)は、撮像装置10が陰影画像を生成する時に点灯させる、一つの光源の照度と等しくしてもよい。さらに撮像装置10が第3色画像データを生成する時に点灯させる、光源14Cの照度及び光源15Cの照度を合わせた照度(総輝度)は、撮像装置10が陰影画像を生成する時に点灯させる、一つの光源の照度と等しくしてもよい。
 また実施形態2では、第1色画像データ~第3色画像データを生成する時に点灯させる2つの光源の照明角度は同じである。例えば、第1色画像データを生成する時に、照明角度がθaである光源14A及び光源15Aを点灯させている。照明角度の同じ光源を用いることで、互いの光源による陰影を効率よく相殺できる。しかし、互いの光源による陰影が相殺できるのであれば、照明角度の異なる2つの光源を用いてもよい。例えば、第1色画像データを生成する時に、光源14A及び光源15Bを点灯させてもよい。
 (実施形態3)
 実施形態1では、第1照明部14は複数の光源として、光源14A~14Cを有する。同様に第2照明部15は光源15A~光源15Cを有する。光源14A~光源14C及び光源15A~光源15Cは、それぞれ物体のある照射位置を、一つの方向から照射する光源である。
 これに対し、図13に示すように、実施形態3の第1照明部14は、実施形態1の光源14Aと同様の光源(第1光源)14Aと、実施形態1の光源Aとは異なる拡散光源(第1拡散光源)14Dとを有する。拡散光源14Dは、光源14Aよりも拡散性の高い(指向性の低い)光を照射する。すなわち、拡散光源14Dは、物体のある照射位置に対し、複数の方向から光を照射する光源である。同様に実施形態3の第2照明部15は、実施形態1の光源15Aと同様の光源(第2光源)15Aと、光源15Aよりも拡散性の高い(指向性の低い)光を照射する拡散光源15Dとを有する。
 実施形態3では、色画像データを生成するために撮影する時、拡散光源14D及び拡散光源15Dを同時に点灯させ、物体200を照明する。そしてこの状態で、カメラ13により撮影する。
 そして実施形態3では、陰影画像を撮像する時、光源14A及び光源15Aの一方ずつを用いて物体200を照明し、カメラ13により撮影する。
 実施形態3において、色画像データを生成するために撮影する時の、拡散光源14D及び拡散光源15Dによる光の照度(総輝度)と、陰影画像を撮像する時の、光源14A又は光源15Bによる光の照度とを合わせてもよい。これにより、制御部22での高さ情報の算出処理が容易になる。
 (他の実施形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1~実施形態3を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。また、上記実施形態1~実施形態3で説明した構成要素を組み合わせて、新たな実施形態とすることも可能である。そこで、以下、他の実施の形態を例示する。
 上記の実施形態では、撮像装置10は、カメラ13に対して上下方向(Y軸方向)に配置された第1照明部14及び第2照明部15を備えたが、撮像装置はこれに限定されるものではない。撮像装置10は、カメラ13に対して左右方向(X軸方向)に配置された第3照明部及び第4照明部をさらに備え、第3照明部及び第4照明部のそれぞれは複数の光源を備えても良い。陰影画像を撮像する時、第3照明部の複数の光源の何れか一つ、又は、第4照明部の複数の光源の何れか一つは、被撮像部150の左右方向から被撮像部150を照明する。これにより、凸部201の左右方向についての陰影付きの画像データが得られる。この場合、凸部201の上下方向及び左右方向の陰影から算出した高さに基づいて、凸部201の全体の高さを算出しても良い。一方、色画像データを生成する時、第1照明部~第4照明部における複数の光源の全てが同時に物体200を照明すればよい。或いは、第1照明部~第4照明部による四方向から照明し、かつ、第1照明部の複数の光源のそれぞれ、第2照明部の複数の光源のそれぞれ、第3照明部の複数の光源のそれぞれ、及び、第4照明部の複数の光源のそれぞれにより順次に照明された物体200を順次に撮影し、複数の色画像データを生成して合成してもよい。
 上記の実施形態では、撮像装置10は、ラインスキャンカメラを用いたスキャナとしたが、撮像装置はスキャナに限定されるものではない。陰影付きの画像データを、凸部の高さが算出できる形で取得できればよいため、例えば、二次元画像を取得できる通常のカメラであっても良い。
 上記の実施形態では、陰影画像の陰影の長さSと光源14A~光源14C及び光源15A~光源15Cの照明角度θとに基づいて、凸部の高さHを算出するとしたが、光源14A~光源14C及び光源15A~光源15Cの照明角度をそれぞれ固定することで、陰影画像の陰影の長さのみに基づいて、凸部の高さHを算出するとしてもよい。
 上記の実施形態では、本開示の複製システム100の複製対象である物体200として絵画を例として説明したが、物体200は絵画に限定されるものではない。絵画以外の複製対象として、例えば壁紙や、床及び天井のパネル等であってもよい。本開示の複製システム100の思想は、凸部を有する平面状の物体を、物体表面の高さ情報を含めて複製する際に適用できる。
 本開示の複製システム100は、ハードウェア資源、例えば、プロセッサ、メモリ、及びプログラムとの協働などによって、実現可能である。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 例えば、上述の実施形態では移動装置16が、カメラ13、第1照明部14及び第2照明部15をスキャン方向に移動させる構成としているが、例えばカメラ13、第1照明部14及び第2照明部15を固定し、物体200を移動させる構成としても良い。本開示の課題解決においてはカメラ13、第1照明部14及び第2照明部15の相対的な位置関係が明確であればよく、スキャンの方法は課題解決に必須ではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、凸部を有する平面状物体(例えば、絵画)を複製するためのデータを生成する画像処理装置、及び物体を複製する複製システムに適用可能である。
  10  撮像装置
  11  入出力部
  11a 入力部
  11b 通信部
  12  制御部
  13  カメラ
  13a 撮像部
  13b メモリ
  14  第1照明部
  14A 第1光源(光源)
  14B 第2光源(光源)
  14C 第3光源(光源)
  14D 拡散光源(第1拡散光源)
  15  第2照明部
  15A 第1光源(光源)
  15B 第2光源(光源)
  15C 第3光源(光源)
  15D 拡散光源(第2拡散光源)
  16  移動装置
  20  画像処理装置
  21  入出力部
  21a 入力部
  21b 通信部
  22  制御部
  23  メモリ
  30  印刷装置
  100 複製システム
  110 画像処理システム

Claims (15)

  1.  表面に凸部を有する物体を照明する第1照明部と、
     前記第1照明部と異なる方向から前記物体を照明する第2照明部と、
     前記第1照明部及び前記第2照明部の両方により照明された前記物体を撮影して、前記物体の色情報を含む画像データを生成し、
     前記第1照明部及び前記第2照明部の一方により、前記画像データを生成する時の前記第1照明部及び前記第2照明部のそれぞれの光よりも拡散性の低い光で照明された前記物体を撮影し、前記凸部の陰影を示す陰影情報を生成する撮像部と、
    を有する撮像装置と、
     前記陰影情報に含まれる前記凸部の陰影の長さに基づいて生成された、前記物体の前記表面の高さを示す高さ情報と、前記画像データに基づいて生成された画像情報と、を出力する画像処理装置と、
    を備えた、画像処理システム。
  2.  前記第1照明部は複数の光源を有し、
     前記第2照明部は複数の光源を有し、
     前記撮像部が前記陰影情報を生成する時には、前記第1照明部及び前記第2照明部の一方における前記複数の光源の何れか一つが前記物体を照明する、
     請求項1に記載の画像処理システム。
  3.  前記撮像部が前記画像データを生成する時には、前記第1照明部の前記複数の光源の少なくとも2つ以上と、前記第2照明部の前記複数の光源の2つ以上とが同時に前記物体を照明する、
     請求項2に記載の画像処理システム。
  4.  前記第1照明部の前記複数の光源は、第1光源と、前記第1光源よりも拡散性の高い光を照射する第1拡散光源と、を含み、
     前記第2照明部の前記複数の光源は、第2光源と、前記第2光源よりも拡散性の高い光を照射する第2拡散光源と、を含み、
     前記撮像部が前記画像データを生成する時には、前記第1拡散光源及び前記第2拡散光源が前記物体を照明し、
     前記撮像部が前記陰影情報を生成する時には、前記第1光源及び前記第2光源の一方が前記物体を照明する、
     請求項2に記載の画像処理システム。
  5.  前記撮像部が前記画像データを生成する時に点灯させる前記複数の光源の各々の照度は、前記撮像部が前記陰影情報を生成する時に点灯させる一つの前記光源の照度よりも低く設定される、
     請求項2又は3に記載の画像処理システム。
  6.  前記撮像部が前記画像データを生成する時に点灯させる前記複数の光源の数が2×N個である場合、
     前記撮像部が前記画像データを生成する時に点灯させる、前記複数の光源の各々の前記照度は、前記撮像部が前記陰影情報を生成する時に点灯させる一つの前記光源の前記照度の1/(2×N)倍に設定される、
     請求項5に記載の画像処理システム。
  7.  前記撮像部は、
      さらに他の画像データを生成し、
      前記画像データを生成する時、
       前記第1照明部の前記複数の光源のうちの一つ、及び前記第2照明部の前記複数の光源のうちの一つにより照明された前記物体を撮影して前記画像データを生成し、
      前記他の画像データを生成する時、
       前記第1照明部の前記複数の光源のうちの他の一つ、及び前記第2照明部の前記複数の光源のうちの他の一つにより照明された前記物体を撮影して前記他の画像データを生成し、
     前記画像処理装置は、前記画像データ及び前記他の画像データを合成して前記画像情報を生成する、
     請求項2に記載の画像処理システム。
  8.  前記撮像部が前記画像データを生成する時に点灯させる、前記第1照明部の一つの前記光源の照度及び前記第2照明部の一つの前記光源の照度を合わせた照度は、
     前記撮像部が前記陰影情報を生成する時に点灯させる、一つの前記光源の照度と等しい、
     請求項7に記載の画像処理システム。
  9.  前記画像処理装置は、前記画像データの所定値以下の輝度を示す領域と、前記他の画像データの所定値以下の輝度を示す領域とを合成して前記画像情報を生成する、
     請求項7に記載の画像処理システム。
  10.  前記複数の光源のそれぞれと前記物体の被撮像部との距離は互いに等しい、
     請求項2から9のいずれか一つに記載の画像処理システム。
  11.  表面に凸部を有する物体を第1照明部で照明するとともに、前記物体を前記第1照明部と異なる方向から第2照明部で照明して前記物体を撮影し、前記物体の色情報を含む画像データを生成し、
     前記第1照明部及び前記第2照明部の一方により、前記画像データを生成する時の前記第1照明部及び前記第2照明部のそれぞれの光よりも拡散性の低い光で前記物体を照明して撮影し、前記凸部の陰影を示す陰影情報を生成し、
     前記陰影情報に含まれる前記凸部の陰影の長さに基づいて前記物体の前記表面の高さを示す高さ情報を生成し、
     前記画像データに基づいて画像情報を生成し、
     前記高さ情報及び前記画像情報を出力する、画像処理方法。
  12.  前記第1照明部は複数の光源を有し、
     前記第2照明部は複数の光源を有し、
     前記撮像部が前記陰影情報を生成する時に、前記第1照明部及び前記第2照明部の一方における前記複数の光源の何れか一つが前記物体を照明する、
     請求項11に記載の画像処理方法。
  13.  前記画像データを生成する時には、前記第1照明部の前記複数の光源の少なくとも2つ以上と、前記第2照明部の前記複数の光源の少なくとも2つ以上とが同時に前記物体を照明する、
     請求項12に記載の画像処理方法。
  14.  さらに他の画像データを生成し、
     前記画像データを生成する時、
      前記第1照明部の前記複数の光源のうちの一つ、及び前記第2照明部の前記複数の光源のうちの一つにより前記物体を照明して撮影し、前記画像データを生成し、
     前記他の画像データを生成する時、
      前記第1照明部の前記複数の光源のうちの他の一つ、及び前記第2照明部の前記複数の光源のうちの他の一つにより前記物体を照明して撮影し、前記他の画像データを生成し、
     前記画像情報を生成する時、
      前記画像データ及び前記他の画像データを合成して前記画像情報を生成する、
     請求項12に記載の画像処理方法。
  15.  前記第1照明部の前記複数の光源は、第1光源と、前記第1光源よりも拡散性の高い光を照射する第1拡散光源と、を含み、
     前記第2照明部の前記複数の光源は、第2光源と、前記第2光源よりも拡散性の高い光を照射する第2拡散光源と、を含み、
     前記画像データを生成する時には、前記第1拡散光源及び前記第2拡散光源で前記物体を照明して撮影し、
     前記陰影情報を生成する時には、前記第1光源及び前記第2光源の一方で前記物体を照明して撮影する、
     請求項12に記載の画像処理方法。
PCT/JP2017/010903 2016-08-26 2017-03-17 画像処理システム及び画像処理方法 WO2018037604A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-166022 2016-08-26
JP2016166022A JP2019174116A (ja) 2016-08-26 2016-08-26 画像処理システム及び方法

Publications (1)

Publication Number Publication Date
WO2018037604A1 true WO2018037604A1 (ja) 2018-03-01

Family

ID=61246506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010903 WO2018037604A1 (ja) 2016-08-26 2017-03-17 画像処理システム及び画像処理方法

Country Status (2)

Country Link
JP (1) JP2019174116A (ja)
WO (1) WO2018037604A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626330A (zh) * 2018-06-22 2019-12-31 通用汽车环球科技运作有限责任公司 用于检测自主车辆中的对象的系统和方法
JP2020086293A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP2020086295A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
CN115428430A (zh) * 2019-12-09 2022-12-02 技艺股份有限公司 图像处理方法、程序以及图像处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135400A (ja) * 1993-11-09 1995-05-23 Seiwa Denki Kk 実装部品の検査方法
JPH08128816A (ja) * 1994-10-28 1996-05-21 Tosok Corp リード検査方法
JP2000146547A (ja) * 1998-11-17 2000-05-26 Toyota Central Res & Dev Lab Inc 車両の障害物形状検出装置
JP2010078562A (ja) * 2008-09-29 2010-04-08 Juki Corp ボタン認識装置およびボタン認識方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135400A (ja) * 1993-11-09 1995-05-23 Seiwa Denki Kk 実装部品の検査方法
JPH08128816A (ja) * 1994-10-28 1996-05-21 Tosok Corp リード検査方法
JP2000146547A (ja) * 1998-11-17 2000-05-26 Toyota Central Res & Dev Lab Inc 車両の障害物形状検出装置
JP2010078562A (ja) * 2008-09-29 2010-04-08 Juki Corp ボタン認識装置およびボタン認識方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626330A (zh) * 2018-06-22 2019-12-31 通用汽车环球科技运作有限责任公司 用于检测自主车辆中的对象的系统和方法
JP2020086293A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP2020086295A (ja) * 2018-11-29 2020-06-04 株式会社キーエンス 拡大観察装置
JP7268992B2 (ja) 2018-11-29 2023-05-08 株式会社キーエンス 拡大観察装置
JP7268991B2 (ja) 2018-11-29 2023-05-08 株式会社キーエンス 拡大観察装置
CN115428430A (zh) * 2019-12-09 2022-12-02 技艺股份有限公司 图像处理方法、程序以及图像处理装置

Also Published As

Publication number Publication date
JP2019174116A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018037604A1 (ja) 画像処理システム及び画像処理方法
JP6451344B2 (ja) 画像読取装置、画像処理装置及び画像読取方法
TWI526773B (zh) 三維掃描列印裝置
US8203764B2 (en) Phased illumination method for image capture system
JP7067554B2 (ja) 画像処理装置および方法
JP2014240830A (ja) 測定装置およびその制御方法
US20120307317A1 (en) Image reading apparatus
JP2001523827A5 (ja)
JP2018186381A (ja) 画像読取装置、原稿サイズ検知方法
JP2016032219A (ja) 画像読取装置、画像形成装置及び画像読取方法
US10594894B2 (en) Image acquisition apparatus, image forming apparatus and method for controlling the same
WO2018042731A1 (ja) 画像処理システム、及び、画像処理方法
JP5481908B2 (ja) 画像読取装置およびその制御装置、プログラム、制御方法
US20150146267A1 (en) Systems and methods for enhanced object detection
KR101747172B1 (ko) 3d 스캔 영상 생성 장치 및 방법
WO2018042727A1 (ja) 撮像装置、画像処理システム、撮像方法、及び画像処理方法
WO2018037586A1 (ja) 画像処理システム及び画像処理方法
US20210056679A1 (en) Inspection system, inspection apparatus, and inspection method
US20110149353A1 (en) Calibration surface and platen for an image capture device
WO2018020533A1 (ja) 画像処理装置、複製システム、及び複製方法
WO2017221286A1 (ja) 画像処理装置、複製システム、及び複製方法
JP7347067B2 (ja) 画像処理装置およびプログラム
JP2002218498A (ja) 背景分離システム
JP2002071329A (ja) 繊維潜り角測定方法およびシステム
JP2021032887A (ja) 検査システム、検査装置および検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17843095

Country of ref document: EP

Kind code of ref document: A1