WO2017221286A1 - 画像処理装置、複製システム、及び複製方法 - Google Patents

画像処理装置、複製システム、及び複製方法 Download PDF

Info

Publication number
WO2017221286A1
WO2017221286A1 PCT/JP2016/004919 JP2016004919W WO2017221286A1 WO 2017221286 A1 WO2017221286 A1 WO 2017221286A1 JP 2016004919 W JP2016004919 W JP 2016004919W WO 2017221286 A1 WO2017221286 A1 WO 2017221286A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
information
convex portion
shadow
height distribution
Prior art date
Application number
PCT/JP2016/004919
Other languages
English (en)
French (fr)
Inventor
島崎 浩昭
美馬 邦啓
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017221286A1 publication Critical patent/WO2017221286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J5/00Devices or arrangements for controlling character selection
    • B41J5/30Character or syllable selection controlled by recorded information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J21/00Column, tabular or like printing arrangements; Means for centralising short lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to an image processing device that generates data for duplicating an object having a convex portion, a duplication system that duplicates an object having a convex portion, and a duplication method.
  • FIG. 1 is a block diagram illustrating a configuration of a replication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining imaging of a picture by the imaging apparatus according to the first embodiment.
  • FIG. 3 is a side view of the imaging apparatus according to the first embodiment.
  • FIG. 4A is a diagram for explaining a relationship between an illumination angle and a shadow at the time of imaging in the first embodiment.
  • FIG. 4B is a diagram for explaining a relationship between an illumination angle and a shadow at the time of imaging in the first embodiment.
  • FIG. 5 is a flowchart for explaining the image processing operation according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a cross section of a duplicate image formed by printing by the printing apparatus according to the first embodiment.
  • the input / output unit 11 includes an input unit 11a and a communication unit 11b.
  • the input unit 11a is a keyboard, a mouse, a touch panel, or the like.
  • the communication unit 11b includes an interface circuit for performing communication with an external device in conformity with a predetermined communication standard (for example, Local Area Network: LAN, WiFi).
  • a predetermined communication standard for example, Local Area Network: LAN, WiFi.
  • the imaging device 10 inputs an instruction to start imaging via the input unit 11a or the communication unit 11b. And the imaging device 10 outputs the image data produced
  • the control unit 12 controls the entire imaging apparatus 10. For example, the control unit 12 controls the moving device 16 based on the imaging start instruction input by the input unit 11a, and moves the camera 13, the first illumination unit 14, and the second illumination unit 15 simultaneously. In addition, the control unit 12 illuminates at least one of the first illumination unit 14 and the second illumination unit 15 with the camera 13, the first illumination unit 14, and the second illumination unit 15 moving simultaneously. Let And the control part 12 controls the camera 13 in the state in which the painting is illuminated, and makes the camera 13 image a painting.
  • the control unit 12 can be realized by a semiconductor element or the like. The function of the control unit 12 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 12 includes, for example, a microcomputer, a central processing unit: CPU, a micro-processing unit: MPU, a digital signal processor: DSP, a field-programmable gate array: FPGA, and an application spec.
  • the camera 13 includes an imaging unit 13a and a memory 13b.
  • the imaging unit 13a includes, for example, a Charge Coupled Device (CCD) line sensor or a Complementary Metal Oxide Semiconductor (CMOS) line sensor.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the camera 13 scans and images a picture line by line.
  • the imaging unit 13a generates and captures image data of a picture for each line.
  • the image data includes color information (RGB or CMYK) for each pixel.
  • the image data captured by the imaging unit 13a is stored in the memory 13b. When the image data for each line stored in the memory 13b is combined, two-dimensional image data is generated.
  • the memory 13b can be realized by, for example, a Random Access Memory: RAM, a Dynamic Random Access Memory: DRAM, a ferroelectric memory, a flash memory, a magnetic disk, or a combination thereof.
  • the first illumination unit 14 and the second illumination unit 15 are scanning illumination light sources.
  • the first illuminating unit 14 and the second illuminating unit 15 are a high color rendering straight tube type fluorescent lamp, a line LED illumination in which high color rendering white light emitting diodes (LEDs) are linearly arranged, or the like. is there.
  • the first illumination unit 14 and the second illumination unit 15 are installed on both sides of the camera 13. Furthermore, the 1st illumination part 14 and the 2nd illumination part 15 are arrange
  • the moving device 16 is connected to the camera 13, the first illumination unit 14, and the second illumination unit 15.
  • the moving device 16 moves the camera 13, the first illumination unit 14, and the second illumination unit 15 in the scan direction.
  • the camera 13 can capture the picture line by line while moving.
  • the image processing device 20 includes an input / output unit 21, a control unit 22, and a memory 23.
  • the control unit 22 controls the entire image processing apparatus 20.
  • the control unit 22 calculates the height of the convex portion formed on the surface of the painting from the length of the shadow included in the image of the image data received by the communication unit 21b.
  • Information indicating the calculated height is defined as height information.
  • height information of all the convex portions existing in the entire desired region of the surface of the object is generated.
  • the control part 22 produces
  • height data that represents the height of the surface of the painting as a numerical value for each pixel is generated as the height distribution information. This data is, for example, data in which the numerical value increases as the height of the convex portion increases.
  • the positive direction in the X-axis direction is the right direction
  • the negative direction in the X-axis direction is the left direction
  • the positive direction in the Y-axis direction is the downward direction
  • the negative direction in the Y-axis direction is the upward direction.
  • the moving device 16 of the imaging device 10 includes one first movable body 16a, four second movable bodies 16d, two first guide rails 16b, and two A second guide rail 16c and a frame 16e are provided.
  • the two first guide rails 16b are arranged in parallel to the Y-axis direction. Each first guide rail 16 b is disposed at a position facing the painting 200.
  • the two second guide rails 16c are arranged in parallel to the X-axis direction.
  • the two second guide rails 16 c are arranged one by one at both ends of the painting 200 in the Y-axis direction.
  • the four second movable bodies 16d are arranged one by one at both ends of each first guide rail 16b. Each second movable body 16d moves forward and backward in the X-axis direction along each second guide rail 16c.
  • the first movable body 16a and the second movable body 16d move forward and backward by driving a motor or the like.
  • the frame 16e is connected to the first movable body 16a.
  • the camera 13, the first illumination unit 14, and the second illumination unit 15 are fixed to the frame 16e. With this configuration, the camera 13, the first illumination unit 14, and the second illumination unit 15 are movable in the XY directions.
  • the moving device 16 can also include a third movable body that allows the first illumination unit 14 and the second illumination unit 15 to move up and down in the Z-axis direction.
  • the control unit 12 drives and controls the moving device 16 so that the camera 13, the first illumination unit 14, and the second illumination unit 15 are integrated at a constant speed in the scan direction.
  • the scanning direction is not limited to the vertical direction of the painting 200 and may be any direction.
  • the scanning direction may be a vertical direction, a horizontal direction, or an oblique direction depending on the arrangement or orientation of the painting 200.
  • the illumination light of the first illumination unit 14 and the second illumination unit 15 illuminates the imaged part 150 (for one line) of the painting 200 directly under the camera 13.
  • the angle (illumination angle) ⁇ between the illumination directions 14a and 15a of the illumination light of the first illumination unit 14 and the second illumination unit 15 to the image capturing unit 150 and the main surface of the painting 200 is the same constant angle. Is set to be
  • the illumination angle ⁇ is, for example, 30 °.
  • the 1st illumination part 14 and the 2nd illumination part 15 illuminate the to-be-imaged part 150 from the upper side direction and lower side direction in the Y-axis direction of the to-be-imaged part 150, respectively.
  • the illumination angle ⁇ may be an angle at which a shadow appears due to illumination, and 20 ° to 45 ° is particularly suitable.
  • FIG. 4A and FIG. 4B show a state when such an imaging apparatus 10 illuminates a painting 200 having a convex portion 201 on the surface.
  • the convex portion 201 is a thickness portion of the paint.
  • FIG. 4A shows a shadow S1 that is generated when the first lighting unit 14 illuminates the painting 200 from an oblique upper side.
  • FIG. 4B shows a shadow S ⁇ b> 2 that occurs when the second illumination unit 15 illuminates the painting 200 from obliquely below.
  • FIG. 5 shows a process of generating height distribution information by the control unit 22 of the image processing apparatus 20.
  • both the first illumination unit 14 and the second illumination unit 15 of the imaging apparatus 10 are illuminated at an illumination angle ⁇ from the upper and lower sides (Y axis positive / negative direction) of the imaging target unit 150 of the painting 200. Illuminate at the same time.
  • the camera 13 of the imaging apparatus 10 scans and captures the painting 200 and generates first image data as color image data (color information).
  • the first image data includes color information (RGB or CMYK) of each pixel where the painting 200 is captured.
  • the first image data is image data of a two-dimensional image that does not include the shadow of the convex portion 201.
  • FIG. 12A is a diagram schematically showing color image data (first image data). That is, FIG. 12A is shooting data obtained by shooting a picture.
  • the painting is an oil painting, and the one that exists in the foreground in the actual landscape is described with a higher level of paint. For example, the rising height of the paint is adjusted so that the one in the foreground appears to rise in the order of trees, clouds in front of the mountains, mountains, clouds in the back of the mountains, and sky.
  • paintings are colored as the painter intended.
  • the brightness of each drawn part is not related to the unevenness of the actual paint.
  • the cloud color is white and the sky color is blue.
  • the color of the leaves of the tree is green with different shades depending on the type of tree.
  • the image processing device 20 inputs the first image data (color image data) generated by the imaging device 10 as described above (S501).
  • This second image data is image data of a two-dimensional image including a shadow S1 on the lower side of the convex portion 201.
  • the image processing apparatus 20 inputs the second image data (shadow image data) (S502).
  • the control unit 22 of the image processing apparatus 20 calculates the length (for example, the number of pixels) of the shadow S1 on the lower side of the convex portion 201 based on, for example, the luminance value or color of the pixels (S503). Based on the length of the shadow S1 and the illumination angle ⁇ of the first illumination unit 14, the control unit 22 calculates the height H1 of the lower side of the convex portion 201 in the Y-axis direction (S504).
  • the third image data is image data of a two-dimensional image including the shadow S2 above the convex portion 201.
  • the control unit 22 inputs the third image data (shadow image data) (S505).
  • the control unit 22 calculates the length (for example, the number of pixels) of the shadow S2 on the upper side of the convex portion 201 included in the third image based on, for example, the luminance value or the color (S506).
  • the control unit 22 calculates the height H2 of the upper side of the convex portion 201 in the Y-axis direction based on the length of the shadow S2 and the illumination angle ⁇ of the second illumination unit 15 (S507).
  • the control unit 22 Based on the height H1 of the convex portion 201 calculated based on the second image data and the height 201 of the convex portion 201 calculated based on the third image data, the control unit 22 The total height H3 is calculated.
  • the overall height of the convex portion 201 can be calculated, for example, by interpolating the height H3 between the lower height H1 and the upper height H2 of the convex portion 201.
  • the height H3 is set as height information.
  • the height of the convex portion 201 is the height H3 calculated based on the height H1 and the height H2, but the height of the convex portion 201 is the height H1 or the height H2. It is good also as one of these.
  • the imaging device 10 is laterally (X-axis direction) with respect to the camera 13. You may further provide the 3rd illumination part and the 4th illumination part which are arrange
  • the third illumination unit and the fourth illumination unit illuminate the imaged unit 150 at the same illumination angle ⁇ from the left-right direction of the imaged unit 150.
  • image data including shadows formed in the left-right direction of the convex portion 201 is obtained.
  • the overall height of the convex portion 201 may be calculated based on the height calculated from the vertical and horizontal shadows of the convex portion 201.
  • the control unit 22 calculates the heights of all the convex portions 201 included in the painting 200. Then, the control unit 22 calculates the height of the entire image of the painting 200 (all pixels constituting the image), and generates height distribution information indicating the height distribution of the entire image (S508).
  • the height distribution information is, for example, data representing the height of each pixel in the image as a numerical value.
  • FIG. 12B an image as shown in FIG. 12B is obtained.
  • the portion where the swell of the paint is low is black
  • the portion where the swell of the paint is high is expressed in white.
  • the painting includes fine convex portions due to the traces of the brush, the shadows due to such fine convex portions are also reflected in the height distribution information of FIG. 12B.
  • Numeral data of such height distribution information is output from the image processing apparatus 20 to the printing apparatus 30.
  • the color image data is also output from the image processing apparatus 20 to the printing apparatus 30 (S509).
  • FIG. 6 shows an example of a cross section of an image duplicated by printing by the printing apparatus 30.
  • the printing device 30 prints the transparent ink 72 a plurality of times on the base material 71 (paper, cloth, plastic, etc.) based on the height distribution information output from the image processing device 20. For example, the larger the numerical value of the height distribution information, the larger the discharge amount of the transparent ink 72 is required.
  • the transparent ink 72 is cured immediately by being exposed to ultraviolet rays, the upper layer can be printed immediately after the lower layers of a plurality of layers are printed.
  • the printing apparatus 30 prints the color ink 73 on the upper surface of the transparent ink 72 based on the color image data output from the image processing apparatus 20. Thereby, the painting 200 which reproduced the convex part 201 can be duplicated.
  • a shadow of a convex portion of a painting is photographed by imaging the painting in a state where the painting is illuminated at a predetermined angle, and the height of the convex portion is calculated from the length of the shadow. Is calculated. Therefore, when replicating a painting, the convex portion (the height of the painting surface) of the painting can be reproduced. This makes it possible to generate a reproduction of a painting that is closer to the real thing.
  • the replication system 100 of the present disclosure it is not necessary to use a special unevenness measuring device to measure the height of the surface of the painting 200. Therefore, it is possible to produce a replica with a sense of unevenness at a low cost.
  • the replication system 100 of the present disclosure it is not necessary to irradiate the painting with a laser in order to obtain height information. Therefore, it is possible to create a duplicate with a sense of unevenness without imposing a load on the painting.
  • the painting 200 is illuminated from each of the upward direction and the downward direction, and the height H1 and the height H2 are calculated from the shadow S1 and the shadow S2 of the convex portion 201. And the height H3 of the convex part 201 is produced
  • the painting 200 may be illuminated from each of the left direction, the right direction, and the diagonal direction, and the height information may be generated based on the shadow of each convex portion 201. Thereby, the convex part 201 can be reproduced more faithfully.
  • the object including the convex portions can be duplicated based on the image data captured by the imaging device 10.
  • Embodiment 2 As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, substitutions, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, and it can also be set as a new embodiment. Thus, Embodiment 2 will be exemplified below.
  • the image processing apparatus 20 may instruct the printing apparatus 30 in a plurality of times. That is, the image processing apparatus 20 may divide the height distribution information into a plurality of height distribution information, and give an instruction to the printing apparatus 30 based on each height distribution information. For example, when the width of the convex portion is narrow, it is difficult to form the convex portion by raising the ink high by one printing. However, it is possible to increase the ink level by printing in multiple times and stacking the ink layers.
  • the width of the convex portion 201 and the surface direction of the main surface of the object (the X direction in FIG. 7).
  • height information is divided and generated by a width W in the Y direction).
  • the height information is divided by the width W of the convex portion 201 in the Y direction.
  • the image processing apparatus 20 identifies the wide convex part 202 as the first layer and narrows the width.
  • the convex portion 201 is identified as the second layer.
  • the 1st height distribution information like FIG. 8B is produced
  • second height distribution information as shown in FIG. 8C is generated.
  • the first height distribution information and the second height distribution information may be generated by being divided from one height distribution information, or may be generated separately in advance.
  • the image processing device 20 first instructs the printing device 30 to perform printing based on the first height distribution information shown in FIG. 8B. Further, the image processing apparatus 20 instructs the number of times of printing based on the first height distribution information to be one time. Therefore, first, as shown in FIG. 8D, the ink layer 302 corresponding to the wide convex portion 202 is printed. The ink layer 302 is formed by one printing.
  • the image processing apparatus 20 instructs the printing apparatus 30 to perform printing based on the second height distribution information shown in FIG. 8C. Further, the image processing apparatus 20 instructs the number of times of printing based on the second height distribution information to be twice. Then, as shown in FIG. 8E, the ink layer 301 corresponding to the narrow convex portion 201 is formed by two printings. In this way, a plurality of ink layers (ink layer 301a and ink layer 301b) are formed. Note that the number of times of printing may be two or more.
  • the image processing apparatus 20 instructs the number of times of printing to be a plurality of times (twice in FIG. 8E). Accordingly, the ink can be raised to a higher level, and the same height as the original convex portion 201 can be reproduced.
  • the wide ink layer 302 it is relatively easy to form the wide ink layer 302 by raising the ink level by one printing. Since the ink layer 302 can be formed by one printing, the total number of printing times and printing time can be suppressed.
  • each convex portion when a plurality of convex portions (for example, the convex portion 201 and the convex portion 202) are formed on the surface of the object, each convex portion includes the first layer and the second layer depending on the width of each convex portion. Identify at least one of the multiple layers. And by instructing the number of times of printing for each layer, it is possible to print efficiently and accurately.
  • the width of the convex portion 201 is less than a predetermined value, the number of times of printing may be increased as compared with the case where the width of the convex portion 201 is equal to or larger than the predetermined value.
  • the predetermined value in the second embodiment is in the range of 0.2 mm to 0.5 mm. The predetermined value varies depending on the printing characteristics of the printing apparatus 30 and the ink curing characteristics.
  • the convex portion when the width of the convex portion is the predetermined value “greater than”, the convex portion is identified as the first layer, and when the width of the convex portion is the predetermined value “less than”, the convex portion is the second value. If the width of the convex portion is identified as a layer, but the width of the convex portion is “larger”, the convex portion is identified as the first layer. May be identified as In the second embodiment, the first layer and the second layer are identified by the width of the convex portion. However, the second layer is identified by any one of three or more layers including the third layer and the fourth layer. May be.
  • the height information is divided by the width W in the surface direction (X direction or Y direction in FIG. 7) of the main surface of the object.
  • the height information may be divided according to (spatial frequency). That is, when forming the convex part 201 and the convex part 202 having different areas (spatial frequencies) as shown in FIG. 8A, the height information (the first information indicating the height of the convex part 202 having a large area (low spatial frequency). (1 height information) and height information (second height information) indicating the height of the convex portion 201 having a small area (high spatial frequency) may be used.
  • first height information and the second height information may be calculated from each shadow information when the object is illuminated from two or more directions. Thereby, the convex part of an object can be duplicated more faithfully.
  • the first height information and the second height information are generated based on the shadow information output from the imaging device 10 and the illumination angle, as in the first embodiment.
  • the method for generating the first height information and the second height information is not limited to this method.
  • the first height information and the second height information may be obtained and input to the image processing device 20 using an existing special unevenness measuring device, a laser, or the like.
  • the convex portion is identified as at least one of a plurality of layers including the first layer and the second layer under a predetermined condition, and printing is performed for each layer. By doing this, replicas can be replicated efficiently and accurately.
  • the third embodiment similarly to the second embodiment, when the convex portion is reproduced by printing, the printing is performed in a plurality of times. That is, the image processing apparatus 20 divides the height distribution information into a plurality of height distribution information. In particular, in the third embodiment, the height distribution information is divided according to the shape of the convex portion of the painting 200.
  • FIG. 9 is a diagram for explaining image duplication in the third embodiment.
  • the shape of the convex portion 203 of the painting 200 is a multistage shape that is identified by being divided into multiple stages (two stages in FIG. 9) in the height direction.
  • the convex portion 203 is identified by being divided into a lower portion 203a (first step) and an upper portion 203b (second step) by a multi-stage boundary line.
  • the control unit 22 of the image processing apparatus 20 identifies the lower part 203a as the first layer and the upper part 203b as the second layer. Further, the control unit 22 generates height information (first height information) of the lower portion 203a and height information (second height information) of the upper portion 203b.
  • the height information of the lower part 203a is calculated from the shadow S1a and the shadow S2a.
  • the height information of the upper part 203b is calculated from the shadow S1b and the shadow S2b.
  • the control part 22 produces
  • control unit 22 generates height distribution information (second height distribution information) of the entire surface of the object based on the second height information indicating the height of the upper portion 203b. Then, the control unit 22 instructs the printing apparatus 30 to perform printing based on the first height distribution information and printing based on the second height distribution information separately via the communication unit 21b. I do. Thereby, the convex part 203 with the clear boundary of the upper part 203b and the lower part 203a can be formed.
  • second height distribution information second height distribution information
  • FIG. 10A shows the height distribution information of the convex part 201 and the convex part 203 generated by the replication system of the third embodiment.
  • the height distribution information is divided into first height distribution information and second height distribution information. That is, in the third embodiment, the control unit 22 of the image processing apparatus 20 sequentially searches the height information of the convex portions 201 and 203 by the widths of the convex portions 201 and 203 as in the second embodiment.
  • the control unit 22 Since the width of the lower portion of the convex portion 203 (lower portion 203a shown in FIG. 10B) is equal to or greater than a predetermined value, the control unit 22 identifies the lower portion 203a as the first layer. And the control part 22 produces
  • the control unit 22 identifies the convex portion 201 and the upper portion 203b as the second layer. . And the control part 22 produces
  • control unit 22 designates the divided first height distribution information and second height distribution information via the communication unit 21b, and instructs the printing apparatus 30 to print twice.
  • the printing apparatus 30 first performs printing based on the first height distribution information. As a result, as shown in FIG. 10D, the ink layer 303a corresponding to the lower portion 203a of the convex portion 203 is printed. Then, the ink layer 303a is cured by irradiating UV.
  • the ink layer 301 corresponding to the convex portion 201 and the ink layer 303b corresponding to the upper portion 203b of the convex portion 203 are printed.
  • the ink layer 303a is already cured, it is possible to prevent the upper ink layer 303b from flowing into the lower ink layer 303a and the periphery of the ink layer 303b from becoming gentle. That is, the edge of the upper ink layer 303b can be clearly formed.
  • FIG. 10F shows an ink layer 401 and an ink layer 403 that have been duplicated by another duplication system for comparison with the third embodiment.
  • the ink layer 401 is a copy of the projection 201 and the ink layer 403 is a copy of the projection 203.
  • UV ink that is cured by being irradiated with ultraviolet rays is used as ink used in the printing apparatus.
  • the height distribution information is not divided and generated. Therefore, in the comparative example, the printing device prints the two-tiered ink layer 403 at a time.
  • the upper part (the part corresponding to the upper part 203b) of the ink layer 403 is raised in a state where the lower part (the part corresponding to the lower part 203a) of the ink layer 403 is not cured. Therefore, as shown in FIG. 10F, the upper ink flows downward, and the upper outer periphery forms a gentle (no edge) ink layer 403. As a result, there arises a problem that it is difficult to express a multistage shape such as the convex portion 203.
  • the width of the upper portion 203b is less than a predetermined value, ink may sag from the center of the upper portion 203b, and the height of the upper portion 203b may be lower than a desired height.
  • the predetermined value is in the range of 0.5 mm to 0.8 mm. This value varies depending on the printing characteristics of the printing apparatus and the ink curing characteristics.
  • the height information is divided by the width W in the surface direction (X direction or Y direction in FIG. 7) of the main surface of the object, but the height information is divided by the area (spatial frequency) of the convex portion. May be. Further, the height information may be divided by searching the convex portion in the height direction and detecting a multi-level step (boundary between the lower portion 203a and the upper portion 203b shown in FIG. 10A).
  • a multi-level step boundary between the lower portion 203a and the upper portion 203b shown in FIG. 10A.
  • FIG. 11A shows height distribution information generated by the replication system according to another embodiment of the third embodiment.
  • 11B and 11C show an example in which a convex portion is searched in the height direction and the height distribution information is divided.
  • the control unit 22 of the image processing apparatus 20 searches the height distribution information shown in FIG. 11A from the lower one by the search process. In the search process, a multi-level step is detected. Then, the control unit 22 identifies the convex part 201, the lower part 203a of the convex part 203, and the lower part 204a of the convex part 204 shown in FIG. The control unit 22 generates first height distribution information as shown in FIG. 11B based on the height information (first height information) of each lower layer. Further, the control unit 22 identifies the upper portion 203b of the convex portion 203 and the upper portion 204b of the convex portion 204 shown in FIG. 11C as upper layer portions (referred to as a second layer). And the control part 22 produces
  • the width W of the main surface of the object (the X direction or the Y direction in FIG. 7), or the convex portion
  • control unit 22 identifies the first layer as the width W in the surface direction of the main surface of the object of the lower part 203a of the convex part 203 and the lower part 204a of the convex part 204 is equal to or greater than a predetermined value (W1). To do. And the control part 22 produces
  • control unit 22 identifies the second layer because the width W of the upper portion 204b of the convex portion 204 is not less than the predetermined value W2 and less than the predetermined value W1. And the control part 22 produces
  • the control part 22 identifies as a 3rd layer. And the control part 22 produces
  • the convex portion when the width W of the convex portion is larger than the predetermined value W1, the convex portion may be identified as the first layer.
  • the convex portion may be identified as the second layer when the width W of the convex portion is larger than the predetermined value W2 and equal to or smaller than the predetermined value W1.
  • the convex portion may be identified as the third layer when the width W of the convex portion is equal to or smaller than the predetermined value W2.
  • the printing apparatus 30 performs printing based on the first height distribution information shown in FIG. 11D, the second height distribution information shown in FIG. 11E, and the third height distribution information shown in FIG. 11F.
  • the printing apparatus 30 performs printing in the order of the first height distribution information in FIG. 11D and the second height distribution information in FIG. 11E based on the height distribution information. Thereafter, when printing based on the third height distribution information shown in FIG. 11F, first, as shown in FIG.
  • the ink layer 301c for the lower layer of the convex portion 201 and the ink layer 303c for the lower layer of the upper portion 203b are printed. Then, the ink layer 301c and the ink layer 303c are cured, and the ink layer 301d for the upper layer of the convex portion 201 and the ink layer 303d for the upper layer of the upper portion 203b are printed again based on the same third height distribution information. Thereby, the ink can be easily raised high.
  • the height information of the convex portion 201, the convex portion 203, and the convex portion 204 is generated based on the shadow information output from the imaging device 10 and the illumination angle, as in the first embodiment.
  • the method of generating the first height information and the second height information is not limited to this method.
  • the first height information and the second height information may be obtained using an existing special unevenness measuring device, a laser, or the like.
  • the convex portion 201, the convex portion 203, and the convex portion 204 are formed of a plurality of layers including a first layer and a second layer under predetermined conditions. By replicating at least one of these and performing printing for each layer, a replica can be efficiently and accurately replicated.
  • the imaging device 10 is a scanner using a line scan camera, but the imaging device is not limited to a scanner. Since it is only necessary to obtain shaded image data in a form in which the height of the convex portion can be calculated, for example, a normal camera that can obtain a two-dimensional image may be used.
  • a painting is described as an example of a replication target of the replication system 100 of the present disclosure, but the replication target is not limited to a painting.
  • sculpture may be used.
  • the area between the recesses is recognized as a projection.
  • the idea of the replication system 100 of the present disclosure can be applied when a planar object having convex portions is replicated including the height information of the object surface.
  • the image processing device 20 is independent of each of the imaging device 10 and the printing device 30, but may be integrated with the imaging device 10 or the printing device 30.
  • the communication unit 11b and the communication unit 21b may not be provided.
  • each control part 12 and control part 22 may be united.
  • the duplication system 100 of the embodiment may be configured to duplicate a desired region of an object.
  • the user may be able to freely set the area of the image data output by the imaging device 10.
  • region of the height distribution information which the image processing apparatus 20 outputs may be able to set freely.
  • the user may be able to freely set the area where the printing apparatus 30 prints.
  • the replication system 100 of the present disclosure can be realized by cooperating with hardware resources such as a processor, a memory, and a program.
  • the moving device 16 is configured to move the camera 13, the first illumination unit 14, and the second illumination unit 15 in the scan direction.
  • the camera 13, the first illumination unit 14, and the first illumination unit 15 2 It is good also as a structure which fixes the illumination part 15 and moves the painting 200.
  • FIG. In solving the problem of the present disclosure, it is only necessary that the relative positional relationship between the camera 13, the first illumination unit 14, and the second illumination unit 15 is clear, and the scanning method is not essential for solving the problem.
  • the present disclosure can be applied to an image processing apparatus that generates data for reproducing a planar object (for example, a painting) having a convex portion, and a reproduction system that duplicates a painting.
  • a planar object for example, a painting
  • a reproduction system that duplicates a painting.
  • Imaging device 11 Input / output part 11a Input part 11b Communication part 12 Control part 13 Camera 13a Imaging part 13b Memory 14 1st illumination part 15 2nd illumination part 16 Mobile device 20 Image processing apparatus 21 Input / output part 21a Input part 21b Communication part 22 Control Unit 23 Memory 30 Printing Device 71 Base Material 72 Transparent Ink 73 Color Ink 100 Replication System 150 Imaged Part 200 Painting 201, 202, 203, 204 Protruding Part 203a, 204a Lower 203b, 204b Upper 301, 301a, 301b, 301c , 301d Ink layer 302 Ink layer 303a, 303b, 303c, 303d Ink layer 401, 403 Ink layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

画像処理装置(20)は、入力部(21a)と、制御部(22)と、出力部(21b)とを備える。入力部(21a)は、凸部を有する物体を、所定の方向から照明して得られる、凸部の陰影を示す陰影情報を入力する。制御部(22)は、所定の方向と物体の主面とがなす角度、及び陰影情報に基づいて、凸部の高さを示す高さ情報を生成する。出力部(21b)は、高さ情報に基づいて得られる、物体の表面の高さ分布を示す高さ分布情報を出力する。

Description

画像処理装置、複製システム、及び複製方法
 本開示は、凸部を有する物体を複製するためのデータを生成する画像処理装置、凸部を有する物体を複製する複製システム、及び複製方法に関する。
 特許文献1は、平面の原画像に高さ方向の情報を付加して立体画像データを生成する画像処理装置を開示する。この画像処理装置は、原画像データの焦点情報に基づいて分離した領域毎に高さ情報を付加することによって、陰影や質感をリアルに表現することを可能にしている。
特開2016-63522号公報
 本開示は、凸部を有する物体を複製するのに有効な画像処理装置、複製システム、及び複製方法を提供する。
 本開示にかかる画像処理装置は、入力部と、制御部と、出力部とを備える。入力部は、凸部を有する物体を、所定の方向から照明して得られる、凸部の陰影を示す陰影情報を入力する。制御部は、所定の方向と物体の主面とがなす角度、及び陰影情報に基づいて、凸部の高さを示す高さ情報を生成する。出力部は、高さ情報に基づいて得られる、物体の表面の高さ分布を示す高さ分布情報を出力する。
 本開示にかかる複製システムは、撮像装置と、画像処理装置と、印刷装置とを備える。撮像装置は、照明部と、撮像部とを有する。照明部は、凸部を有する物体を、複数の方向から照明する。撮像部は、照明部を用いて、物体を複数の方向のうち所定の方向から照明して撮影し、凸部の陰影を示す陰影情報を生成する。また撮像部は、照明部を用いて、物体を複数の方向から同時に照明して撮影し、物体の色の情報を含む色情報を生成する。画像処理装置は、入力部と、制御部と、出力部とを有する。入力部は、陰影情報及び色情報を入力する。制御部は、所定の方向と物体の主面とがなす角度、及び陰影情報に基づいて、凸部の高さを示す高さ情報を生成する。出力部は、高さ情報に基づいて得られる、物体の表面の高さ分布を示す高さ分布情報、及び色情報を出力する。印刷装置は、高さ分布情報及び色情報に基づいて印刷し、物体の複製物を生成する。
 本開示にかかる複製方法では、凸部を有する物体を所定の方向から照明して撮影して、凸部の陰影を示す陰影情報を生成し、物体を複数の方向から同時に照明して撮影し、物体の色の情報を含む色情報を生成する。またこの複製方法では、所定の方向と物体の主面とがなす角度、及び陰影情報に基づいて、凸部の高さを示す高さ情報を生成し、高さ情報に基づいて、物体の表面の高さ分布を示す高さ分布情報を生成する。またこの複製方法は、高さ分布情報及び色情報に基づいて印刷し、物体の複製物を生成する。
 本開示における画像処理装置、複製システム、及び複製方法は、凸部を有する物体を複製するのに有効である。
図1は、実施形態1の複製システムの構成を示すブロック図である。 図2は、実施形態1における撮像装置による絵画の撮像を説明するための図である。 図3は、実施形態1における撮像装置の側面図である。 図4Aは、実施形態1における撮像時の照明角度と陰影との関係を説明するための図である。 図4Bは、実施形態1における撮像時の照明角度と陰影との関係を説明するための図である。 図5は、実施形態1における画像処理の動作を説明するためのフローチャートである。 図6は、実施形態1における印刷装置による印刷により形成された複製画像の断面の例を示す図である。 図7は、実施形態2における画像の複製を説明するための図である。 図8Aは、実施形態2における高さ分布情報の生成及び印刷処理を説明するための図である。 図8Bは、実施形態2における高さ分布情報の生成及び印刷処理を説明するための図である。 図8Cは、実施形態2における高さ分布情報の生成及び印刷処理を説明するための図である。 図8Dは、実施形態2における高さ分布情報の生成及び印刷処理を説明するための図である。 図8Eは、実施形態2における高さ分布情報の生成及び印刷処理を説明するための図である。 図9は、実施形態3における画像の複製を説明するための図である。 図10Aは、実施形態3における高さ分布情報の生成及び印刷処理を説明するための図である。 図10Bは、実施形態3における高さ分布情報の生成及び印刷処理を説明するための図である。 図10Cは、実施形態3における高さ分布情報の生成及び印刷処理を説明するための図である。 図10Dは、実施形態3における高さ分布情報の生成及び印刷処理を説明するための図である。 図10Eは、実施形態3における高さ分布情報の生成及び印刷処理を説明するための図である。 図10Fは、比較例における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Aは、実施形態3の他の実施の形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Bは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Cは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Dは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Eは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Fは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を説明するための図である。 図11Gは、実施形態3の他の実施形態における高さ分布情報の生成及び印刷処理を示す図である。 図12Aは、実施形態1の色画像データを模式的に示す図である。 図12Bは、実施形態1の高さ分布情報を画像イメージで表す図である。
 以下、適宜図面を参照しながら、実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者らは、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施形態1)
 実施形態1について、図面を用いて説明する。例えば、油彩画などの絵画には、絵の具を重ね塗りすることによって形成された凸部(絵の具の厚み部分)が含まれる場合がある。実施形態1においては、物体(絵画等)の色彩と共に、物体の凸部も再現する。つまり実施形態1の複製システムは、物体の凹凸感及び色彩を再現した複製物(レプリカ)を生成できる。
 1.構成
 図1は、実施形態1の複製システムの構成を示している。実施形態1の複製システム100は、撮像装置10と、画像処理装置20と、印刷装置30とを備えている。撮像装置10は、物体(実施形態1において、絵画)を撮像して画像データを生成する。画像処理装置20は、撮像装置10で生成された画像データを処理して、絵画の複製に必要な画像情報(高さ分布情報及び色画像データ等)を出力する。印刷装置30は、画像処理装置20から出力された画像情報に基づいて印刷を行い、絵画を複製する。以下、撮像装置10、画像処理装置20、及び印刷装置30の構成について説明する。
 1-1.撮像装置の構成
 実施形態1の撮像装置10は、ラインスキャンカメラを用いたスキャナである。撮像装置10は、入出力部11と、制御部12と、カメラ13と、第1照明部14と、第2照明部15と、移動装置16とを備える。
 入出力部11は、入力部11aと、通信部11bとを含む。入力部11aは、キーボード、マウス、タッチパネル等である。通信部11bは、所定の通信規格(例えばLocal Area Network:LAN、WiFi)に準拠して外部機器との通信を行うためのインタフェース回路を備える。撮像装置10は、例えば、撮像開始の指示を、入力部11a又は通信部11bを介して入力する。そして撮像装置10は、絵画を撮像して生成した画像データを、通信部11bから出力する。
 制御部12は、撮像装置10全体を制御する。例えば制御部12は、入力部11aによって入力された撮像開始の指示に基づいて、移動装置16を制御し、カメラ13、第1照明部14、及び第2照明部15を同時に移動させる。また制御部12は、カメラ13、第1照明部14、及び第2照明部15が同時に移動している状態で、第1照明部14と第2照明部15の少なくともいずれか一方に絵画を照明させる。そして制御部12は、絵画が照明されている状態で、カメラ13を制御し、カメラ13に絵画を撮像させる。制御部12は、半導体素子などで実現可能である。制御部12の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部12は、例えば、マイクロコンピュータ、Central Processing Unit:CPU、Micro-Processing Unit:MPU、Digital Signal Processor:DSP、Field-Programmable Gate array:FPGA、Application Specific Integrated Circuit:ASIC等で構成される。
 カメラ13は、撮像部13aと、メモリ13bとを含む。撮像部13aは、例えば、Charge Coupled Device(CCD)ラインセンサ又はComplementary Metal Oxide Semiconductor(CMOS)ラインセンサを含む。カメラ13は、絵画を1ラインずつスキャン撮像する。撮像部13aは、ライン毎に絵画の画像データを生成し、取り込む。画像データは、各画素についての色情報(RGB又はCMYK)を含む。撮像部13aに取り込まれた画像データは、メモリ13bに格納される。メモリ13bに格納されたライン毎の画像データを組み合わせると、二次元の画像データが生成される。なおメモリ13bは、例えば、Random Access Memory:RAM、Dynamic Random Access Memory:DRAM、強誘電体メモリ、フラッシュメモリ、又は磁気ディスク、又はこれらの組み合わせによって実現できる。
 第1照明部14及び第2照明部15は、スキャン用の照明光源である。具体的には、第1照明部14及び第2照明部15は、高演色性の直管型蛍光灯や、高演色性の白色発光ダイオード(LED)を直線状に配置したラインLED照明などである。実施形態1において、第1照明部14及び第2照明部15は、カメラ13の両側に設置される。さらに第1照明部14及び第2照明部15は、物体(絵画)の主面と垂直な面に対し、対称な位置に配置される。第1照明部14及び第2照明部15の一方によって絵画を照明した状態で、カメラ13で絵画を撮像すれば、絵画の凸部の陰影が含まれる画像データを生成できる。一方で、第1照明部14及び第2照明部15の両方によって絵画を照明した状態で、カメラ13で絵画を撮像すれば、凸部の陰影が含まれない画像データを生成できる。
 移動装置16は、カメラ13、第1照明部14、及び第2照明部15に連結されている。移動装置16は、カメラ13、第1照明部14、及び第2照明部15をスキャン方向に移動させる。これによりカメラ13は、移動しながら絵画を1ラインずつ撮像することが可能になる。
 1-2.画像処理装置の構成
 画像処理装置20は、入出力部21と、制御部22と、メモリ23とを備える。
 入出力部21は、入力部21aと、通信部21bとを含む。通信部21bは、入力部及び出力部として機能する。入力部21aは、キーボード、マウス、タッチパネル等である。通信部21bは、所定の通信規格(例えばLAN、WiFi)に準拠して外部機器との通信を行うためのインタフェース回路を備える。例えば、ユーザが画像データの取り込みの指示を、入力部21aを介して入力すると、通信部21bは、画像データの取り込み要求を撮像装置10へ出力する。撮像装置10から画像データが送信されると、通信部21bはその画像データを受信する。さらに通信部21bは、制御部22で生成される高さ分布情報を、印刷装置30へ出力する。さらに通信部21bは、撮像装置10から送信された画像データを、色画像データ(色情報)として印刷装置30へ出力する。
 制御部22は、画像処理装置20全体を制御する。また制御部22は、通信部21bで受信した画像データの画像に含まれる陰影の長さから、絵画の表面に形成された凸部の高さを算出する。算出された高さを示す情報を、高さ情報とする。さらに、物体の表面のうち、所望の領域全体において、存在する全ての凸部の高さ情報を生成する。これにより制御部22は、物体の表面のうち所望の領域全体の高さ分布を示す、高さ分布情報を生成する。具体的には、高さ分布情報として、絵画の表面の高さを画素毎に数値で表した高さデータを生成する。このデータは、例えば、凸部の高さが高いほど、数値が大きくなるようなデータである。制御部22は、生成した高さ分布情報を、メモリ23に格納する。また制御部22は、生成した高さ分布情報を、通信部21bを介して、印刷装置30に出力する。制御部22は、半導体素子などで実現可能である。制御部22の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部22は、例えば、マイコン、CPU、MPU、DSP、FPGA、ASICで構成することができる。メモリ23は、例えば、RAM、DRAM、ROM、強誘電体メモリ、フラッシュメモリ、又は磁気ディスク、又はこれらの組み合わせによって実現できる。
 1-3.印刷装置の構成
 印刷装置30は、画像処理装置20から受け取った高さ分布情報と、色画像データとに基づいて、絵画の表面の高さを再現した画像、すなわち凸部を含む画像を生成する。印刷装置30は、例えば、Ultra Violet(UV)インクを用いたUVインクジェットプリンタである。UVインクは、紫外線を当てることで硬化する。印刷装置30は、多層印刷が可能である。印刷装置30は、高さ分布情報に示される高さの数値が大きいほど、インクを厚く盛り上げて、凸部を含む画像を生成する。
 1-4.撮像時の状態
 図2は、撮像装置10で絵画200を撮像している状態を示している。図3は、撮像装置10の側面図を示す。図3の側面図は、概略図である。ここで、絵画200の主面を、絵画200が正面から視認された時の面とする。すなわち絵画200の主面とは、凹凸が無視された平面を指す。そして絵画200の主面を、X軸及びY軸で規定される面とし、凸部の高さをZ軸方向の高さとして説明する。X軸、Y軸、及びZ軸は、互いに直交する関係である。実施形態1では、説明の便宜上、X軸方向における正方向を右方向、X軸方向における負方向を左方向とする。またY軸方向における正方向を下方向とし、Y軸方向における負方向を上方向とする。
 図2及び図3に示すように、撮像装置10の移動装置16は、一つの第1可動体16aと、四つの第2可動体16dと、二本の第1ガイドレール16bと、二本の第2ガイドレール16cと、フレーム16eとを備えている。
 二本の第1ガイドレール16bは、それぞれY軸方向に平行に配置されている。各第1ガイドレール16bは、絵画200と対向する位置に配置されている。
 二本の第2ガイドレール16cは、それぞれX軸方向に平行に配置されている。二本の第2ガイドレール16cは、絵画200のY軸方向の両端に一本ずつ配置されている。
 第1可動体16aは、二本の第1ガイドレール16bに沿って、Y軸方向に進退移動する。
 四つの第2可動体16dは、各第1ガイドレール16bの両端に、一つずつ配置されている。各第2可動体16dは、各第2ガイドレール16cに沿って、X軸方向に進退移動する。第1可動体16a及び第2可動体16dは、モータ等の駆動により進退移動する。
 フレーム16eは、第1可動体16aに連結されている。カメラ13と、第1照明部14と、第2照明部15とは、フレーム16eに固定される。この構成により、カメラ13と、第1照明部14と、第2照明部15とは、XY方向に移動可能である。なお、移動装置16は、第1照明部14及び第2照明部15をZ軸方向に昇降可能にさせる第3可動体を有することもできる。カメラ13が絵画200をスキャン撮像するとき、制御部12は、移動装置16を駆動制御して、カメラ13と第1照明部14及び第2照明部15とを一体的にスキャン方向に一定速度で平行移動させる。スキャン方向は、絵画200の上下方向に限定されるものではなく、任意の方向でもよい。例えば、スキャン方向は、絵画200の配置又は向きに応じて、上下方向、左右方向、又は斜め方向でもよい。
 実施形態1においては、第1照明部14及び第2照明部15の照明光は、カメラ13の直下の絵画200の被撮像部150(1ライン分)を照明する。第1照明部14及び第2照明部15の照明光の、被撮像部150への照明方向14a,15aと、絵画200の主面との間の角度(照明角度)θは、同じ一定の角度となるように設定される。照明角度θは、例えば30°である。第1照明部14と第2照明部15とは、被撮像部150に対して、被撮像部150のY軸方向における上側方向と下側方向から、それぞれ照明する。このように、斜め上方向または斜め下方向から被撮像部150を照明することによって、陰影付きの画像データを生成することができる。なお、照明角度θは、照明によって陰影が現れる角度であれば良く、特に、20°~45°が適している。
 このような撮像装置10で、表面に凸部201を有する絵画200を照明した時の状態を、図4Aおよび図4Bに示す。凸部201は、絵の具の厚み部分である。図4Aは、第1照明部14が絵画200を斜め上側から照明したときに生じる陰影S1を示している。図4Bは、第2照明部15が絵画200を斜め下側から照明したときに生じる陰影S2を示している。
 図4Aに示すように、第1照明部14によって絵画200を斜め上側から照明すると、凸部201の下方側(Y軸の正方向)に凸部201の陰影S1が現れる。画像処理装置20の制御部22は、この陰影S1の長さを、画素数から算出できる。さらに制御部22は、陰影S1の長さと第1照明部14の照明角度θとに基づいて、凸部201の下方側の高さH1を算出できる(H1=陰影S1の長さ×tanθ)。同様に、第2照明部15によって絵画200を斜め下側から照明すると、凸部201の上方側(Y軸の負方向)に凸部201の陰影S2が現れる。画像処理装置20の制御部22は、この陰影S2の長さ(画素数)と第2照明部15の照明角度θとに基づいて、凸部201の上方側の高さH2を算出できる(H2=陰影S2の長さ×tanθ)。
 2.動作
 図5に、画像処理装置20の制御部22による高さ分布情報の生成処理を示す。
 まず、図3のように、撮像装置10の第1照明部14及び第2照明部15の両方は、絵画200の被撮像部150の上下側(Y軸の正負方向)から、照明角度θで同時に照明する。この状態で、撮像装置10のカメラ13は、絵画200をスキャン撮像して、色画像データ(色情報)としての第1の画像データを生成する。第1の画像データは、絵画200を撮影した各画素の色情報(RGB又はCMYK)を含む。第1の画像データは、凸部201の陰影を含まない2次元画像の画像データである。このように、第1照明部14及び第2照明部15の両方が同時に絵画200を照明することによって、凸部201の陰影を含まない画像データが得られる。ここで図12Aは、色画像データ(第1の画像データ)を模式的に示す図である。つまり、図12Aは、絵画を撮影した撮影データである。絵画は油絵であり、実際の風景で手前に存在するものほど、絵の具を高く盛り上げて描写されているとする。例えば木々、山の手前にある雲、山、山の奥にある雲、空、の順に、手前にあるものほど盛り上がって見えるように、絵の具の盛り上がる高さが調整されている。一方で絵画には、画家の意図通りに色が付けられている。したがって、描かれている各部分の輝度は、実際の絵の具の凹凸とは関係がない。例えば、雲の色は白く、空の色は青く描かれている。また木の葉の色は、木の種類によって濃淡が異なる緑色である。画像処理装置20は、上記のようにして撮像装置10によって生成された第1の画像データ(色画像データ)を入力する(S501)。
 次に、図4Aのように、第1照明部14のみが、絵画200の被撮像部150を照明する。この状態で、カメラ13により、絵画200をスキャン撮像して、陰影画像データ(陰影情報)としての第2の画像データを生成する。この第2の画像データは、凸部201の下方側の陰影S1を含む2次元画像の画像データである。画像処理装置20は、第2画像のデータ(陰影画像データ)を入力する(S502)。画像処理装置20の制御部22は、例えば画素の輝度値又は色に基づいて、凸部201の下方側の陰影S1の長さ(例えば、画素数)を算出する(S503)。制御部22は、陰影S1の長さと第1照明部14の照明角度θとに基づいて、凸部201の、Y軸方向における下方側の辺の高さH1を算出する(S504)。
 次に、図4Bのように、第2照明部15のみが、絵画200の被撮像部150を照明する。この状態で、カメラ13により、絵画200をスキャン撮像して、陰影画像データ(他の陰影情報)としての第3の画像データを生成する。第3の画像データは、凸部201の上方側の陰影S2を含む2次元画像の画像データである。制御部22は、第3画像のデータ(陰影画像データ)を入力する(S505)。制御部22は、例えば輝度値又は色に基づいて、第3画像に含まれる凸部201の上方側の陰影S2の長さ(例えば、画素数)を算出する(S506)。制御部22は、陰影S2の長さと第2照明部15の照明角度θとに基づいて、凸部201の、Y軸方向における上方側の辺の高さH2を算出する(S507)。
 制御部22は、第2の画像データに基づいて算出された凸部201の高さH1と、第3の画像データに基づいて算出された凸部201高さH2とに基づいて、凸部201の全体の高さH3を算出する。凸部201の全体の高さは、例えば、凸部201の下方側の高さH1と上方側の高さH2とに基づいて、その間の高さH3を補間することによって算出できる。実施形態1では、高さH3を、高さ情報とする。なお、実施形態1では、凸部201の高さを、高さH1と高さH2に基づいて算出された高さH3とするが、凸部201の高さを、高さH1あるいは高さH2の一方としてもよい。
 なお、撮像装置10は、カメラ13に対して上下方向(Y軸方向)に配置された第1照明部14及び第2照明部15に加え、カメラ13に対して左右方向(X軸方向)に配置された第3照明部及び第4照明部をさらに備えても良い。この場合、第3照明部及び第4照明部は、被撮像部150の左右方向から互いに同じ照明角度θで被撮像部150を照明する。これにより、凸部201の左右方向にできる陰影が含まれた画像データが得られる。この場合、凸部201の上下方向及び左右方向の陰影から算出された高さに基づいて、凸部201の全体の高さを算出しても良い。
 このようにして制御部22は、絵画200に含まれる全ての凸部201の高さを算出する。そして制御部22は、絵画200の画像全体(画像を構成する全画素)の高さを算出し、画像全体の高さ分布を示す高さ分布情報を生成する(S508)。高さ分布情報は、例えば、画像内の各画素の高さを数値で表したデータである。この数値のデータに基づき、高さ分布情報を画像イメージで表すと、図12Bに示すような画像となる。図12Bの画像では、図12Aの画像とは異なり、絵の具の盛り上がりが低い部分は黒く、絵の具の盛り上りが高くなるほど白く表される。絵画に、筆の跡による細かい凸部が含まれる場合、そのような細かい凸部による陰影も、図12Bの高さ分布情報に反映される。
 このような高さ分布情報の数値データは、画像処理装置20から印刷装置30へ出力される。また同様に、色画像データも、画像処理装置20から印刷装置30へ出力される(S509)。
 図6は、印刷装置30による印刷により複製された画像の断面の例を示す。印刷装置30は、画像処理装置20から出力された高さ分布情報に基づいて、基材71(紙、布、プラスチックなど)の上に、透明インク72を複数回印刷する。例えば、高さ分布情報の数値が大きい画素ほど透明インク72の吐出量を多く必要とする。透明インク72の吐出量が多い画素では、透明インク72を複数回印刷することによって複数の層を形成する。透明インク72は、紫外線を当てることによってすぐに硬化するため、複数の層の下層を印刷した後すぐに上層を印刷することが可能である。つまり、層が多くて、透明インク72の吐出量が多い画素では、表面がより高く盛り上がるため、凸部201を表すことができる。印刷装置30は、画像処理装置20から出力された色画像データに基づいて、透明インク72の上面にカラーインク73で印刷する。これにより、凸部201を再現した絵画200を複製することができる。
 3.効果等
 従来の絵画の複製品(レプリカ)は、カメラやスキャナ等によりカラー印刷して生成されていたため平面状であり、絵画に含まれる凸部は再現されていなかった。そのため、従来の絵画の複製品は、見る人の視点の変化や、当てる照明の変化が反映されず、実物感が不足していた。また、従来、樹脂等を使用して凹凸感を表現することは可能であったが、手作業で凸部を生成しなければならず、高価であった。
 一方、本開示の複製システム100によれば、所定の角度で絵画を照明した状態で絵画を撮像することによって、絵画の凸部の陰影を撮影し、この陰影の長さから凸部の高さを算出している。よって、絵画を複製する際に、絵画の凸部(絵画表面の高さ)を再現することができる。これにより、より実物に近い絵画の複製物を生成することができる。
 本開示の複製システム100によれば、絵画200の表面の高さを測定するために、特殊な凹凸測定装置を使用しなくてもよい。よって、安価に、凹凸感のある複製品を作成することができる。
 また、本開示の複製システム100によれば、高さ情報を得るために、絵画にレーザを照射しなくてもよい。したがって、絵画に負荷を掛けることなく、凹凸感のある複製品を作成することができる。
 また本開示の複製システム100では、絵画200を上方向及び下方向のそれぞれから照明し、凸部201の陰影S1及び陰影S2から、高さH1及び高さH2を算出している。そして高さH1及び高さH2から、凸部201の高さH3を生成している。このように、複数の方向からそれぞれ照明した場合の各陰影情報に基づいて高さ情報を生成することで、より忠実に凸部201を再現できる。さらに、絵画200を左方向、右方向及び斜め方向のそれぞれから照明し、それぞれの凸部201の陰影にも基づいて、高さ情報を生成してもよい。これにより、より忠実に凸部201を再現できる。
 また本開示の複製システム100では、凸部の数、位置、形をユーザが把握していない場合も、撮像装置10により撮像された画像データに基づいて、凸部を含めて物体を複製できる。
 (実施形態2)
 以上のように、本出願において開示する技術の例示として、実施形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置換、付加、省略などを行った実施形態にも適用可能である。また、上記実施形態1で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。そこで、以下、実施形態2を例示する。
 印刷装置30での印刷により凸部を形成する際に、画像処理装置20から印刷装置30へ複数回に分けて指示を行っても良い。すなわち、画像処理装置20は、高さ分布情報を複数の高さ分布情報に分割し、それぞれの高さ分布情報に基づいて、印刷装置30に指示を行っても良い。例えば、凸部の幅が狭い場合には、1回の印刷でインクを高く盛り上げて凸部を形成することが難しい。しかし、複数回に分けて印刷してインクの層を積み上げることで、インクを高く盛り上げることができる。
 例えば、図7に示すように、凸部201を撮影し、インク層で凸部201を再現する際に、凸部201の幅であって、物体の主面の面方向(図7のX方向、又はY方向)の幅Wによって高さ情報を分割して生成する。図7では、凸部201のY方向における幅Wによって、高さ情報を分割する。
 具体的には、図8Aのように幅の異なる凸部201と凸部202とを印刷する場合に、画像処理装置20は、幅の広い凸部202を第1層として識別し、幅の狭い凸部201を第2層として識別する。そして幅の広い凸部202の高さを表す第1高さ情報に基づいて、図8Bのような第1高さ分布情報を生成する。また、幅の狭い凸部201の高さを表す第2高さ情報に基づいて、図8Cのような第2高さ分布情報を生成する。第1高さ分布情報及び第2高さ分布情報は、一つの高さ分布情報から分割されて生成されてもよく、予め分離して生成されてもよい。
 画像処理装置20は、印刷装置30に対して印刷指示を行う際には、まず、図8Bに示す第1高さ分布情報に基づいて印刷をするように指示する。また画像処理装置20は、第1高さ分布情報に基づく印刷の回数を、1回と指示する。したがって、初めに、図8Dのように、幅の広い凸部202に対応するインク層302が印刷される。インク層302は、1回の印刷で形成される。
 その後、画像処理装置20は、印刷装置30に対し、図8Cに示す第2高さ分布情報に基づいて印刷をするように指示する。また画像処理装置20は、第2高さ分布情報に基づく印刷の回数を、2回と指示する。すると、図8Eに示すように、幅の狭い凸部201に対応するインク層301が、二回の印刷で形成される。こうすることで、複数のインク層(インク層301aおよびインク層301b)が形成される。なお、印刷の回数は、二回以上であってもよい。
 ここで、幅の狭いインク層301を、1回の印刷で形成することは難しい。その理由は、インクが硬化する前に垂れてしまうからである。それに対し実施形態2の画像処理装置20は、印刷回数を複数回(図8Eでは2回)と指示する。よってインクをより高く盛り上げられるようになり、元の凸部201と同様の高さを再現できる。一方、幅が広いインク層302を、1回の印刷でインクを高く盛り上げて形成することは、比較的容易である。インク層302を1回の印刷で形成できるため、トータルの印刷回数、印刷時間を抑えることができる。
 このように、物体の表面に複数の凸部(例えば凸部201及び凸部202)が形成されている場合、各凸部の幅によって、各凸部を、第1層及び第2層を含む複数の層の少なくとも一つに識別する。そして層毎に印刷回数を指示することで、効率よく的確に印刷できる。
 なお、上記のように、幅の狭い凸部201を、1回の印刷でインクを高く盛り上げて再現することは難しい。しかし印刷回数を増加させることで、インクを高く盛り上げることが可能になる。そのため、凸部201の幅が所定値未満のときは、凸部201の幅が所定値以上の場合に比べて、印刷回数を増加させればよい。実施形態2の所定値は、0.2mm~0.5mmの範囲である。なお、この所定値は、印刷装置30の印刷特性やインクの硬化特性によって変化する。
 なお、実施形態2では、凸部の幅が所定値「以上」の場合、その凸部を第1層として識別し、凸部の幅が所定値「未満」の場合、その凸部を第2層として識別したが、凸部の幅が所定値「より大きい」場合、その凸部を第1層として識別し、凸部の幅が所定値「以下」の場合、その凸部を第2層として識別してもよい。また実施形態2では、凸部の幅によって第1層及び第2層の二つの層のいずれかに識別したが、第3層、第4層等も含めた三以上の層のいずれかに識別してもよい。
 なお、実施形態2の説明において、物体の主面の面方向(図7のX方向、又はY方向)の幅Wによって高さ情報を分割する、と記載したが、これは凸部の面積(空間周波数)によって高さ情報を分割するようにしても良い。すなわち、図8Aのように面積(空間周波数)の異なる凸部201と凸部202とを形成する場合に、面積の広い(空間周波数の低い)凸部202の高さを表す高さ情報(第1高さ情報)と、面積の狭い(空間周波数の高い)凸部201の高さを表す高さ情報(第2高さ情報)とに分割するのでも良い。
 また第1高さ情報及び第2高さ情報は、二以上の方向からそれぞれ物体を照明した場合の各陰影情報から算出してもよい。これにより、より忠実に物体の凸部を複製できる。
 また実施形態2では、第1高さ情報及び第2高さ情報を、実施形態1と同様に、撮像装置10から出力された陰影情報と、照明角度とに基づいて生成しているが、第1高さ情報及び第2高さ情報の生成方法は、この方法に限られない。既存の特殊な凹凸測定装置やレーザ等を用いて、第1高さ情報及び第2高さ情報を得て、画像処理装置20へ入力してもよい。いずれの方法で高さ情報を得る場合でも、実施形態2に示すように、凸部を所定条件で第1層及び第2層を含む複数の層の少なくともいずれかに識別し、層毎に印刷を行うことで、効率よく、的確にレプリカを複製できる。
 (実施形態3)
 実施形態3は、実施形態2と同様に、印刷により凸部を再現する際に、複数回に分けて印刷を行う。すなわち、画像処理装置20は、高さ分布情報を複数の高さ分布情報に分割する。特に実施形態3では、絵画200の凸部の形状に合わせて、高さ分布情報を分割する。図9は、実施形態3における画像の複製を説明するための図である。
 図9に示すように、絵画200の凸部203の形状は、高さ方向に多段(図9では2段)に分割して識別される多段形状である。凸部203は、多段形状の境界線で下部203a(第1段)と上部203b(第2段)とに分割して識別される。
 つまり画像処理装置20の制御部22は、下部203aを第1層として識別し、上部203bを第2層として識別する。また制御部22は、下部203aの高さ情報(第1高さ情報)と、上部203bの高さ情報(第2高さ情報)とをそれぞれ生成する。下部203aの高さ情報は陰影S1aと陰影S2aから算出される。上部203bの高さ情報は陰影S1bと陰影S2bから算出される。そして制御部22は、下部203aの高さを表す第1高さ情報に基づいて、物体(例えば絵画200)の表面全体の高さ情報(第1高さ分布情報)を生成する。また制御部22は、上部203bの高さを表す第2高さ情報に基づいて、物体の表面全体の高さ分布情報(第2高さ分布情報)を生成する。そして制御部22は、通信部21bを介して、印刷装置30に対し、第1高さ分布情報に基づく印刷と、第2高さ分布情報に基づく印刷とを、それぞれ分けて行うよう、印刷指示を行う。これにより、上部203bと下部203aの境界が明確な凸部203を形成できる。
 図10Aは、実施形態3の複製システムで生成される凸部201及び凸部203の高さ分布情報を示す。
 実施形態3では、高さ分布情報が、第1高さ分布情報及び第2高さ分布情報に分割される。つまり実施形態3では、画像処理装置20の制御部22は、凸部201及び凸部203の高さ情報を、実施形態2と同様に、凸部201及び凸部203の幅によって順次検索する。
 凸部203の下部(図10Bに示す下部203a)の幅は、所定値以上であるため、制御部22は、下部203aを第1層として識別する。そして制御部22は、第1層の高さを示す第1高さ情報に基づいて、図10Bに示す第1高さ分布情報を生成する。
 また凸部201の幅及び凸部203の上部(図10Cに示す上部203b)の幅は、所定値未満であるため、制御部22は、凸部201及び上部203bを、第2層として識別する。そして制御部22は、第2層の高さを示す第2高さ情報に基づいて、図10Cに示す第2高さ分布情報を生成する。
 そして、制御部22は、通信部21bを介して、分割した第1高さ分布情報及び第2高さ分布情報をそれぞれ指定して、印刷装置30に対して2回の印刷指示を行う。
 印刷装置30は、まず第1高さ分布情報に基づいて印刷を行う。これにより、図10Dに示すように、凸部203の下部203aに対応するインク層303aを印刷する。そしてUVを照射してインク層303aを硬化させる。
 次に、図10Eのように、第2高さ分布情報に基づいて印刷を行う。これにより、図10Eに示すように、凸部201に対応するインク層301と、凸部203の上部203bに対応するインク層303bとを印刷する。このとき、インク層303aはすでに硬化しているので、上段のインク層303bが下段のインク層303aに流れてインク層303bの周辺がなだらかになることを抑制できる。つまり、上段のインク層303bのエッジを明瞭に形成できる。
 これに対し、図10Fには、実施形態3と比較するための他の複製システムによって複製されたインク層401及びインク層403を示す。インク層401は、凸部201を複製したものであり、インク層403は、凸部203を複製したものである。この比較例では、実施形態3と同様に、印刷装置で用いるインクとして、紫外線を当てることで硬化するUVインクを用いる。比較例では、実施形態3と異なり、高さ分布情報が分割して生成されない。したがって比較例では、印刷装置で、2段形状のインク層403を1回で印刷する。このような比較例では、インク層403の下段部分(下部203aに相当する部分)が硬化していない状態で、インク層403の上段部分(上部203bに相当する部分)を盛り上げることになる。したがって、図10Fに示すように、上段のインクが下段へ流れてしまい、上段の外周がなだらかな(エッジがない)インク層403となる。その結果、凸部203のような多段形状を表現しにくいという課題が発生する。特に、上部203bの幅が所定値未満になると、上部203bの中央部からインクが垂れてしまい、上部203bの高さが所望の高さよりも低くなる場合がある。所定値は、0.5mm~0.8mmの範囲である。なお、この値は印刷装置の印刷特性やインクの硬化特性によって変化する。
 なお、実施形態3では物体の主面の面方向(図7のX方向、又はY方向)の幅Wによって高さ情報を分割したが、凸部の面積(空間周波数)によって高さ情報を分割してもよい。さらに、凸部を高さ方向に検索処理し、多段形状の段差(図10Aに示す下部203aと上部203bの境界)を検出して、高さ情報を分割してもよい。以下、さらに具体例を挙げて説明する。
 図11Aは、実施形態3の他の実施の形態における複製システムで生成される高さ分布情報を示す。図11B及び図11Cは、凸部を高さ方向に検索処理し、高さ分布情報を分割する例を示す。
 まず、画像処理装置20の制御部22は、図11Aに示す高さ分布情報を、検索処理により高さの低い方から検索する。検索処理では、多段形状の段差を検出する。そして制御部22は、図11Bに示す凸部201、凸部203の下部203a及び凸部204の下部204aを下層部(第1層とする)として識別する。制御部22は、各下層部の高さ情報(第1高さ情報)に基づいて、図11Bに示すような第1高さ分布情報を生成する。また制御部22は、図11Cに示す凸部203の上部203b及び凸部204の上部204bを上層部(第2層とする)として識別する。そして制御部22は、各上層部の高さ情報(第2高さ情報)に基づいて、図11Cに示すような第2高さ分布情報を生成する。これにより、高さ分布情報を第1高さ分布情報及び第2高さ分布情報に分割できる。
 さらに、図11Aの高さ分布情報を分割する方法として、図10B及び図10Cと同様に、物体の主面の面方向(図7のX方向、又はY方向)の幅W、又は凸部の面積(空間周波数)によって分割する方法もある。
 すなわち、制御部22は、凸部203の下部203a及び凸部204の下部204aの、物体の主面の面方向の幅Wが所定値(W1とする)以上であるため、第1層として識別する。そして制御部22は、各第1層の高さを示す第1高さ情報に基づいて、図11Dに示す第1高さ分布情報を生成する。
 さらに制御部22は、凸部204の上部204bの幅Wが所定値W2以上所定値W1未満であるため、第2層として識別する。そして制御部22は、第2層の高さを示す第2高さ情報に基づいて、図11Eに示す第2高さ分布情報を生成する。
 また制御部22は、凸部201及び凸部203の上部203bの幅Wが所定値(W2とする)未満であるため、第3層として識別する。そして制御部22は、各第3層の高さを示す第3高さ情報に基づいて図11Fに示す第3高さ分布情報を生成する。
 なお、凸部の幅Wが所定値W1より大きい時に、凸部を第1層として識別してもよい。そして凸部の幅Wが所定値W2より大きく、所定値W1以下の時に、凸部を第2層として識別してもよい。さらに凸部の幅Wが所定値W2以下の時に、凸部を第3層として識別してもよい。
 印刷装置30は、図11Dに示す第1高さ分布情報と、図11Eに示す第2高さ分布情報と、図11Fに示す第3高さ分布情報に基づいて印刷を行う。ここで、印刷装置30が一度に印刷可能な高さよりも高くインクを盛り上げて印刷したい場合や、ディテールを強調したい場合、必要に応じて、図11Gのように、一つの高さ分布情報に基づく印刷を、複数回に分けて実行できる。すなわち印刷装置30は、図11Dの第1高さ分布情報、図11Eの第2高さ分布情報の順に、各高さ分布情報に基づいて印刷する。その後、図11Fに示す第3高さ分布情報に基づいて印刷する時に、まず、図11Gのように凸部201の下層に対するインク層301cと、上部203bの下層に対するインク層303cとを印刷する。そしてインク層301c及びインク層303cを硬化させ、再度同じ第3高さ分布情報に基づいて、凸部201の上層に対するインク層301dと上部203bの上層に対するインク層303dとを印刷する。これにより、インクを容易に高く盛り上げることができる。
 実施形態3では、凸部201、凸部203、及び凸部204の高さ情報を、実施形態1と同様に、撮像装置10から出力された陰影情報と、照明角度とに基づいて生成してもよいが、第1高さ情報及び第2高さ情報の生成方法は、この方法に限られない。既存の特殊な凹凸測定装置やレーザ等を用いて、第1高さ情報及び第2高さ情報を得てもよい。いずれの方法で高さ情報を得る場合でも、実施形態3に示すように、凸部201、凸部203、及び凸部204を、所定条件で、第1層及び第2層を含む複数の層の少なくともいずれかに識別し、層毎に印刷を行うことで、効率よく、的確にレプリカを複製できる。
 上記の実施形態では、撮像装置10は、ラインスキャンカメラを用いたスキャナとしたが、撮像装置はスキャナに限定されるものではない。陰影付きの画像データを、凸部の高さが算出できる形で取得できればよいため、例えば、二次元画像を取得できる通常のカメラであっても良い。
 上記の実施形態では、本開示の複製システム100の複製対象として絵画を例として説明したが、複製対象は絵画に限定されるものではない。例えば絵画以外にも、彫刻でもよい。この場合は、凹部と凹部との間の領域が、凸部として認識される。本開示の複製システム100の思想は、凸部を有する平面状の物体を、物体表面の高さ情報を含めて複製する際に適用できる。
 上記の実施形態では、画像処理装置20は、撮像装置10及び印刷装置30のそれぞれと独立しているが、撮像装置10あるいは印刷装置30と一体であってもよい。画像処理装置20と撮像装置10とが一体の場合は、それぞれの通信部11b及び通信部21bがなくてもよい。またそれぞれの制御部12及び制御部22が一体となっていてもよい。
 また実施形態の複製システム100は、物体の所望の領域を複製できるように構成されていてもよい。例えば撮像装置10が出力する画像データの領域を、ユーザが自由に設定できてもよい。あるいは画像処理装置20が出力する高さ分布情報の領域を、ユーザが自由に設定できてもよい。あるいは印刷装置30が印刷する領域を、ユーザが自由に設定できてもよい。
 本開示の複製システム100は、ハードウェア資源、例えば、プロセッサ、メモリ、及びプログラムとの協働などによって、実現可能である。
 添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 例えば、上述の実施形態では移動装置16が、カメラ13、第1照明部14、及び第2照明部15をスキャン方向に移動させる構成としているが、例えばカメラ13、第1照明部14、及び第2照明部15を固定し、絵画200を移動させる構成としても良い。本開示の課題解決においてはカメラ13、第1照明部14、及び第2照明部15の相対的な位置関係が明確であればよく、スキャンの方法は課題解決に必須ではない。
 また、上述の実施形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、凸部を有する平面状物体(例えば、絵画)を複製するためのデータを生成する画像処理装置、及び絵画を複製する複製システムに適用可能である。
  10 撮像装置
  11 入出力部
  11a 入力部
  11b 通信部
  12 制御部
  13 カメラ
  13a 撮像部
  13b メモリ
  14 第1照明部
  15 第2照明部
  16 移動装置
  20 画像処理装置
  21 入出力部
  21a 入力部
  21b 通信部
  22 制御部
  23 メモリ
  30 印刷装置
  71 基材
  72 透明インク
  73 カラーインク
  100 複製システム
  150 被撮像部
  200 絵画
  201,202,203,204 凸部
  203a,204a 下部
  203b,204b 上部
  301,301a,301b,301c,301d インク層
  302 インク層
  303a,303b,303c,303d インク層
  401,403 インク層

Claims (7)

  1.  凸部を有する物体を、所定の方向から照明して得られる、前記凸部の陰影を示す陰影情報を入力する入力部と、
     前記所定の方向と前記物体の主面とがなす角度、及び前記陰影情報に基づいて、前記凸部の高さを示す高さ情報を生成する制御部と、
     前記高さ情報に基づいて得られる、前記物体の表面の高さ分布を示す高さ分布情報を出力する出力部と、
    を備える画像処理装置。
  2.  前記高さ分布情報は、前記物体の前記表面を所定間隔で画素を並べた画像データ形式で表現し、前記表面の高さを前記画素毎に数値で表したデータである、
    請求項1に記載の画像処理装置。
  3.  前記入力部は、さらに前記物体の色の情報を含む色情報を入力し、
     前記出力部は、さらに前記色情報を出力する、
    請求項1又は請求項2に記載の画像処理装置。
  4.  前記色情報は、複数の方向から同時に照明された前記物体を撮影して得られる撮影データである、
    請求項3に記載の画像処理装置。
  5.  前記入力部は、さらに、前記物体を前記所定の方向とは異なる他の方向から照明して得られる、前記凸部の陰影を示す他の陰影情報を入力し、
     前記制御部は、前記他の方向と前記物体の前記主面とがなす角度、及び前記他の陰影情報を併用して、前記高さ情報を生成する、
    請求項1から請求項4のいずれか一つに記載の画像処理装置。
  6.  凸部を有する物体を、複数の方向から照明する照明部と、
     前記照明部を用いて、前記物体を前記複数の方向のうち所定の方向から照明して撮影し、前記凸部の陰影を示す陰影情報を生成し、前記照明部を用いて、前記物体を前記複数の方向から同時に照明して撮影し、前記物体の色の情報を含む色情報を生成する撮像部と、を有する撮像装置と、
     前記陰影情報及び前記色情報を入力する入力部と、
     前記所定の方向と前記物体の主面とがなす角度、及び前記陰影情報に基づいて、前記凸部の高さを示す高さ情報を生成する制御部と、
     前記高さ情報に基づいて得られる、前記物体の表面の高さ分布を示す高さ分布情報、及び前記色情報を出力する出力部と、を有する画像処理装置と、
     前記高さ分布情報及び前記色情報に基づいて印刷し、前記物体の複製物を生成する印刷装置と、
    を備える複製システム。
  7.  凸部を有する物体を所定の方向から照明して撮影して、前記凸部の陰影を示す陰影情報を生成し、
     前記物体を複数の方向から同時に照明して撮影して、前記物体の色の情報を含む色情報を生成し、
     前記所定の方向と前記物体の主面とがなす角度、及び前記陰影情報に基づいて、前記凸部の高さを示す高さ情報を生成し、
     前記高さ情報に基づいて、前記物体の表面の高さ分布を示す高さ分布情報を生成し、
     前記高さ分布情報及び前記色情報に基づいて印刷し、前記物体の複製物を生成する、
    複製方法。
PCT/JP2016/004919 2016-06-20 2016-11-18 画像処理装置、複製システム、及び複製方法 WO2017221286A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121666 2016-06-20
JP2016121666A JP2019143972A (ja) 2016-06-20 2016-06-20 画像処理装置、複製システム、及び複製方法

Publications (1)

Publication Number Publication Date
WO2017221286A1 true WO2017221286A1 (ja) 2017-12-28

Family

ID=60784022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004919 WO2017221286A1 (ja) 2016-06-20 2016-11-18 画像処理装置、複製システム、及び複製方法

Country Status (2)

Country Link
JP (1) JP2019143972A (ja)
WO (1) WO2017221286A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015297A (ja) * 2002-06-05 2004-01-15 Keio Gijuku 対象物表面の色を再現した立体画像を作成する立体観察装置および方法
WO2013080439A1 (ja) * 2011-11-28 2013-06-06 パナソニック株式会社 立体画像処理装置及び立体画像処理方法
JP2013205202A (ja) * 2012-03-28 2013-10-07 Azbil Corp 半田ツノ外観検査装置
JP2015049806A (ja) * 2013-09-03 2015-03-16 株式会社アイジェット 3次元データの作成方法、それを用いた3次元造形物及びその製造方法
JP2015076023A (ja) * 2013-10-11 2015-04-20 カシオ計算機株式会社 画像処理装置、立体データ生成方法、及びプログラム
JP2016063522A (ja) * 2014-09-22 2016-04-25 カシオ計算機株式会社 画像処理装置、および方法、ならびにプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015297A (ja) * 2002-06-05 2004-01-15 Keio Gijuku 対象物表面の色を再現した立体画像を作成する立体観察装置および方法
WO2013080439A1 (ja) * 2011-11-28 2013-06-06 パナソニック株式会社 立体画像処理装置及び立体画像処理方法
JP2013205202A (ja) * 2012-03-28 2013-10-07 Azbil Corp 半田ツノ外観検査装置
JP2015049806A (ja) * 2013-09-03 2015-03-16 株式会社アイジェット 3次元データの作成方法、それを用いた3次元造形物及びその製造方法
JP2015076023A (ja) * 2013-10-11 2015-04-20 カシオ計算機株式会社 画像処理装置、立体データ生成方法、及びプログラム
JP2016063522A (ja) * 2014-09-22 2016-04-25 カシオ計算機株式会社 画像処理装置、および方法、ならびにプログラム

Also Published As

Publication number Publication date
JP2019143972A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
EP3018903B1 (en) Method and system for projector calibration
CN1159566C (zh) 三维成像系统
US10759110B2 (en) Light homogenization method for multi-source large-scale surface exposure 3D printing
CN106127842B (zh) 一种结合光源分布与反射特性的面曝光3d打印的方法及系统
JP2017201518A (ja) 画像処理装置および画像処理方法
KR20150050450A (ko) 장면의 깊이 맵을 생성하기 위한 방법 및 장치
MX2007006105A (es) Aparato de inspeccion de apariencia externa.
TW201509698A (zh) 立體列印系統以及立體列印方法
US11353845B2 (en) Model-adaptive multi-source large-scale mask projection 3D printing system
Elkhuizen et al. Gloss, color, and topography scanning for reproducing a painting’s appearance using 3D printing
WO2018037604A1 (ja) 画像処理システム及び画像処理方法
NL1034969C2 (nl) Systeem alsmede werkwijze voor het vervaardigen van een driedimensionale reproductie van een van relief voorzien oppervlak.
JP6425571B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US10740916B2 (en) Method and device for improving efficiency of reconstructing three-dimensional model
WO2018042731A1 (ja) 画像処理システム、及び、画像処理方法
WO2017221286A1 (ja) 画像処理装置、複製システム、及び複製方法
JP2019179463A (ja) 画像処理装置、その制御方法、プログラム、記録媒体
WO2018020533A1 (ja) 画像処理装置、複製システム、及び複製方法
CN1482491A (zh) 三维摄影技术方法
WO2018042727A1 (ja) 撮像装置、画像処理システム、撮像方法、及び画像処理方法
JP2015122616A (ja) 画像処理装置、画像処理方法及びプログラム
WO2018037586A1 (ja) 画像処理システム及び画像処理方法
CN103299156B (zh) 创建三维图像文件的系统和方法
JP2006270580A (ja) 撮影装置、画像撮影方法、画像撮影プログラム、画像出力装置
JP2014157518A (ja) 立体データの生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP