WO2018036077A1 - 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法 - Google Patents

一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法 Download PDF

Info

Publication number
WO2018036077A1
WO2018036077A1 PCT/CN2017/000220 CN2017000220W WO2018036077A1 WO 2018036077 A1 WO2018036077 A1 WO 2018036077A1 CN 2017000220 W CN2017000220 W CN 2017000220W WO 2018036077 A1 WO2018036077 A1 WO 2018036077A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
tetrafluoropropene
catalyst
chloro
trifluoropropene
Prior art date
Application number
PCT/CN2017/000220
Other languages
English (en)
French (fr)
Inventor
洪江永
王爱国
杨波
张彦
余国军
赵阳
欧阳豪
潘浩
Original Assignee
浙江衢州巨新氟化工有限公司
浙江衢化氟化学有限公司
浙江工程设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衢州巨新氟化工有限公司, 浙江衢化氟化学有限公司, 浙江工程设计有限公司 filed Critical 浙江衢州巨新氟化工有限公司
Priority to EP17842503.9A priority Critical patent/EP3505504B1/en
Priority to KR1020187017893A priority patent/KR102101281B1/ko
Priority to JP2018534831A priority patent/JP6650523B2/ja
Priority to US16/079,085 priority patent/US10214468B1/en
Publication of WO2018036077A1 publication Critical patent/WO2018036077A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/22Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/27Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/33Indium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/67Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a process for the preparation of a fluorine-containing olefin and a fluorine-containing chloroolefin, and more particularly to a co-production of 1-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene and 1,3 , 3,3-tetrafluoropropene method.
  • Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) and 1,3,3,3-tetrafluoropropene (HFO-1234ze) are important fourth-generation refrigerations.
  • Agent and foaming agent HFO-1234yf has a boiling point of -29.5 ° C, a GWP of 4, and an atmospheric lifetime of 10 days. It can be used as a refrigerant, fire extinguishing agent, propellant, foaming agent, foaming agent, carrier fluid, polishing abrasive, power cycle working fluid. .
  • HFO-1234yf has two types, Z type and E type.
  • Z type has a boiling point of 9 ° C
  • E type has a boiling point of -19 ° C
  • GWP value is 6.
  • Z type can be used as a foaming agent, and type E can be mixed with other substances. Refrigerant use.
  • HFO-1233zd, 1-chloro, 3,3,3 trifluoropropene, referred to as LBA, boiling point 19 ° C, atmospheric lifetime 26 days, ODP value of about zero, GWP value ⁇ 5, is the first choice for a new generation of environmentally friendly foaming agent It is suitable for the foaming of polyurethane insulation materials in the fields of household appliances, building insulation, cold chain transportation and industrial insulation. It is the best alternative foaming agent for CFC, HCFC, HFC and other non-fluorocarbon foaming agents. Compared with the existing foaming agent system (HFC-245fa and cyclopentane), it has better thermal conductivity and energy consumption than the same type of HFC-245fa and cyclopentane refrigerators. Reduced by 7% (compared to the HFC-245fa system) and 12% (compared to the cyclopentane system) and reduced by 3% (HFC-245fa) and 7% (cyclopentane) in terms of overall energy consumption.
  • the 3,3,3-trifluoropropene method has a long route, three wastes, and high product cost; the 1,1,2,3-tetrachloropropene method has fewer reaction steps and high utilization rate of raw materials; the preparation route of hexafluoropropylene method is long, total The yield is not high.
  • Other preparation processes are derived from the intermediate materials of the three routes.
  • the process comprises a liquid or gas phase reaction/purification operation that directly produces a combination of (E) 1-chloro-3,3,3-trifluoropropene (1233zd(E)).
  • 1233zd(E) is contacted with hydrogen fluoride (HF) in the presence of a catalyst to produce 1,1,1,3,3-pentafluoropropane (HFC- with high conversion and selective reaction). 245fa).
  • the third reactor is for dehydrofluorination of HFC-245fa by contact with a caustic solution in a liquid phase or a dehydrofluorination catalyst in a gas phase to produce (E) 1,3,3,3-tetrafluoropropene (1234ze (E) )).
  • One or more purification processes can be performed after this operation to recover the 1234ze(E) product.
  • the shortcomings are liquid phase fluorination and liquid phase dehydrofluorination.
  • the reaction catalyst has a short life span, and the whole process waste liquid is high, and the environmental protection treatment cost is high.
  • Chinese Patent Publication No. CN201180027570A published on February 25, 2015, invented name: joint production of trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-four A comprehensive method of fluoropropylene.
  • a comprehensive manufacturing process comprising a combined liquid phase reaction and purification operation for the direct production of trans-1-chloro-3,3,3-trifluoropropene and 3-chloro-1,1,1,3-tetrafluoro Propane, which is a precursor for the manufacture of trans-1,3,3,3-tetrafluoropropene.
  • the mixture of the combined products is easily separated by conventional distillation, and then 3-chloro-1,1,1,3-tetrafluoropropane is dehydrochlorinated by contact with a caustic solution in the liquid phase or a dehydrochlorination catalyst in the gas phase. Production of trans-1,3,3,3-tetrafluoropropene.
  • the shortcomings are liquid phase fluorination and liquid phase dehydrofluorination.
  • the reaction catalyst has a short life span, and the whole process waste liquid is high, and the environmental protection treatment cost is high.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • TCP 1,1,2,3-tetrachloropropene
  • Hydrogen fluoride is contacted in the gas phase; (2) the reaction mixture is separated to obtain 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) and 1,1,1,2,2-pentafluoropropane (HFC- 245eb), then HCFO-1233xf and HFC-245cb were introduced into the reactor to produce HFO-1234yf.
  • HFO-1233xf and HFC-245eb cannot simultaneously obtain HFO-1234yf under one catalyst system, and pass two-step reaction. In order to synthesize HFO-1234yf.
  • This route is a three-step synthesis of 2,3,3,3-tetrafluoropropene.
  • HCFO-1233xf is converted to HCFC-244bb in a liquid phase reactor.
  • the catalyst is ruthenium halide.
  • the reactor is lined with TFE or PFA. The disadvantage is that The internal corrosion of the reactor is severe, and the drum is packaged. The selection of equipment is difficult.
  • the saponification reaction has more three wastes and the yield is low.
  • the invention aims at the deficiencies of the prior art, and provides a co-production of 1-chloro-3,3,3-trifluoropropene, 2,3,3 with simple process, low investment, low energy consumption and high catalyst conversion rate. , 3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene.
  • the technical scheme adopted by the present invention is: co-production of 1-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene and 1,3,3,
  • the method of 3-tetrafluoropropene includes the following steps:
  • step (b) directly reacting the first reactor reaction product obtained in the step (a) into the second reactor, and performing the reaction under the action of the second reactor catalyst, the reaction temperature is 250 to 450 ° C, and the space velocity is 500 ⁇ . 1500h -1 , obtaining a second reactor reaction product;
  • step (c) the second reactor reaction product obtained in the step (b) is passed to a hydrogen chloride column for separation to obtain a hydrogen chloride column column component and an overhead fraction, the top fraction is divided into hydrogen chloride, and the hydrogen chloride is separately purified to obtain hydrochloric acid;
  • the hydrogen chloride column bottom component is sequentially passed through a water washing tower, an alkali washing tower and a drying tower to remove hydrogen fluoride and hydrogen chloride, and then enters the first rectification column for rectification to obtain a first rectification column column component and an overhead fraction. ;
  • the second distillation column overhead fraction described in the step (e) can be recycled to the first In the second reactor.
  • the molar ratio of hydrogen fluoride to 1,1,1,3,3-pentachloropropane in the step (a) is preferably from 9 to 12:1, and the reaction temperature is preferably from 250 to 320 ° C.
  • the space velocity is preferably 500 to 800 h -1 .
  • the reaction temperature in the step (b) is preferably 300 to 400 ° C, and the space velocity is preferably 800 to 1200 h -1 .
  • the loading amount of chromium in the alumina-supported metal chromium catalyst described in the step (a) is preferably 5 to 15% by weight (% by weight, by mass%).
  • the loading amount of indium in the chromium oxide-supported metal indium catalyst described in the step (a) is preferably from 3 to 10% by weight.
  • the second reactor catalyst described in the step (b) is preferably a mass percentage, and the composition thereof is preferably: 70 to 80% of chromium oxide, 10 to 15% of magnesium oxide, and 5 to 15% of zinc oxide. .
  • the first reactor in the present invention is divided into upper and lower sections, the top of the upper section is fed with hydrogen fluoride and 1,1,1,3,3-pentachloropropane, and the lower section is passed with 1,1,2,3-tetrachloropropene.
  • 1,1,2,3-tetrachloropropene and HF are strong exothermic reactions, which can remove heat from the materials reacted at the top without affecting the conversion of 1,1,2,3-tetrachloropropene.
  • the reaction temperature has a great influence on the activity of the catalyst and the selectivity of the product.
  • the reaction temperature is increased, which contributes to the improvement of the activity of the catalyst, and the appropriate reaction temperature is controlled to make 1,1,1,3,3-pentachlorobenzene.
  • the conversion rate of propane and 1,1,2,3-tetrachloropropene is 100%. Therefore, the temperature of the upper stage of the first reactor of the present invention is selected from 200 to 400 ° C, preferably from 250 to 320 ° C, and the reaction portion of the first reactor is lower. The temperature needs to be brought in by the heat of the upper material.
  • the first reactor undergoes a fluorine-chloride exchange and an olefin addition reaction.
  • the upper catalyst of the first reactor is alumina-supported metal chromium, and the lower catalyst is chromium oxide-supported metal indium.
  • the upper catalyst is supported by alumina, which can prevent the rapid decrease of the specific surface area of the catalyst due to the strong exothermic reaction of hydrogen fluoride and 1,1,1,3,3-pentachloropropane.
  • the addition of chromium increases the activity of the catalyst; Chromium oxide is a carrier-supported metal indium, which further enhances the activity of the catalyst, ensuring that 1,1,1,3,3-pentachloropropane and 1,1,2,3-tetrachloropropene are completely acceptable under suitable temperature conditions. Conversion.
  • the molar ratio has a great influence on the reaction.
  • the HF required for the upper and lower reactions of the first reactor is fed from the upper stage, because theoretically the reaction of 1,1,1,3,3-pentachloropropane per mole is theoretically 5 moles of HF are required, and 3-4 moles of HF are required for each mole of 1,1,2,3-tetrachloropropene reaction in the lower stage.
  • a large amount of HF in the upper stage can carry away heat, and the heat of the lower stage is supplied and taken away by the upper stage, thereby realizing Comprehensive utilization of heat reduces energy consumption; however, the HF excess is too much, and the amount of spent caustic soda is increased after the reaction, so the molar ratio of HF to 1,1,1,3,3-pentachloropropane in the present invention is controlled as 9 to 15:1, preferably 9 to 12:1.
  • HFO-1233zd, HCFO-1233xf and HF undergo chlorofluoro exchange reaction.
  • the temperature is the main factor determining the reaction. The temperature is too high, the conversion of HFO-1233zd and HCFO-1233xf is high, and a large amount of HFO-1234ze is produced.
  • the second reactor of the present invention has a reaction temperature of 250 to 450 ° C, preferably a reaction temperature of 300 to 400 ° C.
  • the reason for the deactivation of the two-step reaction catalyst in the present invention is mainly carbonation, resulting in a decrease in the specific surface area and micropores of the catalyst, and the catalyst activity can be restored by the regeneration method, and the air is introduced proportionally at a temperature of 330 to 380 ° C. Nitrogen removes carbon from the surface of the catalyst.
  • the catalysts of the upper stage and the lower stage of the first reactor of the invention are prepared by a method known in the art: the alumina carrier is immersed in a certain concentration of chromium solution, dried to a certain loading, and then calcined to obtain a catalyst precursor, which is obtained by fluorination.
  • the upper stage catalyst; the chromium oxide carrier is immersed in a certain concentration of indium solution, and after reaching a certain load, drying and calcining to obtain a catalyst precursor, and fluorinating to obtain a lower stage catalyst.
  • the catalyst used in the second reactor may employ a catalyst known in the art as chromium oxide as an active component.
  • the catalyst is prepared by reacting nitrates of chromium, magnesium and zinc with a precipitating agent to form a suspension of hydroxide solids. After filtering, washing, drying and calcining, oxides of chromium, magnesium and zinc are obtained, and then granulating and tableting are carried out to obtain a catalyst precursor, and after fluorination, a catalyst is obtained. Activation of the catalyst can be carried out in other reactors.
  • the first reactor and the second reactor in the present invention may be of an isothermal or adiabatic type, and the material of the reactor may be selected from acid corrosion resistant materials such as Inconel.
  • the present invention has the following advantages:
  • the process is simple.
  • the first reactor is filled with two different catalysts, and two reactions can be carried out at the same time, which simplifies the process flow;
  • the energy consumption is low.
  • the lower part of the first reactor does not need external heating.
  • the temperature required for the reaction is brought in by the heat of the upper part of the reactor, which realizes the comprehensive utilization of heat and reduces the energy consumption;
  • Figure 1 is a process flow diagram of the present invention.
  • 1 is the preheater
  • 2 is the first reactor
  • 3 is the second reactor
  • 4 is the hydrogen chloride column
  • 5 is the water washing tower
  • 6 is the alkali washing tower
  • 7 is the drying tower
  • 8 is the first In the rectification column
  • 9 is a second rectification column
  • 10 is a third rectification column
  • 11 to 21 are pipelines.
  • the flow of the invention is shown in Fig. 1.
  • the first reactor is divided into upper and lower sections, each section is filled with different catalysts, and the raw hydrogen fluoride and HCC-240fa are preheated through the pipeline 11 into the preheater 1 at a certain molar ratio.
  • the tower kettle component and the overhead fraction are obtained, the hydrogen chloride column 4 top fraction is divided into hydrogen chloride, and the hydrogen chloride is separately refined to obtain hydrochloric acid, and the tower kettle component enters the water washing tower 5 through the pipeline 15, and after washing, enters the alkali washing tower through the pipeline 16. 6. After alkali washing, it enters the drying tower 7 through the line 17, and after drying, a mixture of HFO-1234yf, HFO-1234ze, HCFO-1233xf and HFO-1233zd is obtained, and enters the first rectification column 8 through the line 18 to obtain a column reactor component.
  • the first A fractionator 8 is divided into HFO-1234yf and HFO-1234ze, and enters the third rectification column 10 through the line 21, the product HFO-1234yf is obtained from the top of the third rectification column 10, and the product HFO-1234ze is obtained from the column reactor.
  • the first rectification column 8 column component enters the second rectification column 9 through the line 19, and is separated to obtain a column reactor component and an overhead fraction, and the main component of the second rectification column 9 is HCFO-1233xf, entrained. A small amount of HFO-1233zd was recycled to the second reactor, and a second distillation column 9 was charged to obtain the product HFO-1233zd.
  • the first reactor was heated to 350 ° C, activated by HF and nitrogen, HF flow rate: 100 g / h, nitrogen flow rate: 1.5 L / min, activation time was 50 hours; second reactor was heated to 350 ° C, through Activation by HF and nitrogen, HF flow rate: 100 g/h, nitrogen flow rate: 1.5 L/min, activation time of 40 hours, activation of the catalysts of the two reactors was completed.
  • the temperature was raised to 150 ° C at a normal temperature of 1 ° C / min, and the temperature was raised at 150 ° C or higher by 0.5 ° C / min.
  • the feed reaction was started, and HF and HCC-240fa were introduced into the preheater for preheating.
  • the molar ratio of HF to HCC-240fa was 9:1, and the upper temperature of the first reactor was controlled to be 280 ° C, and the space velocity was 500 h -1 ,1 .
  • the molar ratio of 1,2,3-tetrachloropropene to HF is 4:9, and the first reactor obtains a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride, and the organic composition is analyzed by gas chromatography.
  • the activation method of the catalyst was the same as in Example 1.
  • the feed reaction was started, and HF and HCC-240fa were introduced into the preheater for preheating.
  • the molar ratio of HF to HCC-240fa was 10:1, and the upper temperature of the first reactor was controlled to 300 ° C, and the space velocity was 600 h -1 ,1 .
  • the molar ratio of 1,2,3-tetrachloropropene to HF is 5:9.
  • the first reactor obtained a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride.
  • the composition of the organic matter was analyzed by gas chromatography.
  • the activation method of the catalyst was the same as in Example 1.
  • the HF and HCC-240fa are preheated into the preheater, the molar ratio of HF and HCC-240fa is 15:1, and the upper temperature of the first reactor is controlled to 320 ° C, and the space velocity is 1000 h -1 , 1,1
  • the molar ratio of 2,3-tetrachloropropene to HF is 3:9.
  • the first reactor obtains a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride.
  • the composition of the organic matter is analyzed by gas chromatography.
  • the activation method of the catalyst was the same as in Example 1.
  • the molar ratio of HF and HCC-240fa is 12:1, and control the upper temperature of the first reactor to 400 °C, airspeed 300h -1 ,1,1
  • the molar ratio of 2,3-tetrachloropropene to HF is 4:9.
  • the first reactor obtains a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride.
  • the composition of the organic matter is analyzed by gas chromatography.
  • the activation method of the catalyst was the same as in Example 1.
  • the molar ratio of HF and HCC-240fa is 10:1, and control the upper temperature of the first reactor to 300 °C, space velocity 500h -1 , 1,1,2
  • the molar ratio of 3-tetrachloropropene to HF is 4:9.
  • the first reactor obtains a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride, and the composition of the organic matter is analyzed by gas chromatography, as shown in Table 5.
  • the mixture of the first reactor outlet directly enters the second reactor, the second reactor temperature is 330 ° C, the space velocity is 600 h -1 , and the reaction results in HFO-1234yf, HFO-1234ze, HCFO-1233xf, HFO- A mixture of 1233zd, hydrogen chloride and hydrogen fluoride was analyzed by gas chromatography for organic composition, see Table 5.
  • the activation method of the catalyst was the same as in Example 1.
  • the feed reaction was started, and HF and HCC-240fa were introduced into the preheater.
  • the molar ratio of HF to HCC-240fa was 9:1, the upper temperature of the first reactor was 300 ° C, and the space velocity was 600 h -1 , 1 , 1 , 2,
  • the molar ratio of 3-tetrachloropropene to HF is 4:9, the first reactor obtains a mixture of HFO-1233zd, a small amount of HFO-1234ze, HCFO-1233xf, hydrogen chloride and hydrogen fluoride, and the organic composition is analyzed by gas chromatography, as shown in Table 6;
  • the mixture of the first reactor outlet directly enters the second reactor, the second reactor temperature is 300 ° C, the space velocity is 700 h -1 , and the reaction results in HFO-1234yf, HFO-1234ze, HCFO-1233xf, HFO-1233zd.
  • a mixture of hydrogen chloride and hydrogen fluoride was analyzed by

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,将氟化氢和1,1,1,3,3-五氯丙烷混合气与1,1,2,3-四氯丙烯同时通入第一反应器进行反应,得到反应产物;将得到的产物直接进入第二反应器,在催化剂的作用下进行反应,将得到的产物分离氯化氢、水洗、碱洗、干燥后精馏分别得到1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯产品。本发明具有生产灵活、工艺简单、投资小、能耗低,转化率高的优点。

Description

一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法 技术领域
本发明涉及含氟烯烃和含氟氯烯烃的制备方法,尤其涉及一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法。
背景技术
氢氟烯烃(hydrofluoroolefin,HFO),如2,3,3,3-四氟丙烯(HFO-1234yf)和1,3,3,3-四氟丙烯(HFO-1234ze)是重要的第四代制冷剂和发泡剂。HFO-1234yf沸点为-29.5℃,GWP值为4,大气寿命为10天,可作为制冷剂、灭火剂、推进剂、发泡剂、起泡剂、载体流体、抛光研磨剂、动力循环工作流体。HFO-1234yf比较具有前景的用途是制冷剂领域,作为第四代制冷剂用来替代1,1,1,2-四氟乙烷(HFC-134a)。HFO-1234ze有Z型和E型两种,Z型沸点为9℃,E型沸点为-19℃,GWP值为6,Z型可作为发泡剂,E型可以和别的物质混配作为制冷剂使用。
HFO-1233zd,1-氯,3,3,3三氟丙烯,简称LBA,沸点19℃,大气寿命26天,ODP值约为零,GWP值<5,是新一代环保型发泡剂的首选,适用于家用电器、建筑保温、冷链运输和工业保温等领域聚氨酯隔热材料的发泡,是CFC、HCFC、HFC和其它非氟碳发泡剂的最佳替代发泡剂。和现有发泡剂体系(HFC-245fa和环戊烷)相比具有更为优异的导热系数和整机能耗水平,分别比相同型号的HFC-245fa以及环戊烷体系冰箱在导热系数方面降低7%(和HFC-245fa体系相比)和12%(和环戊烷体系相比),并且在整机能耗方面降低了3%(HFC-245fa)和7%(环戊烷)。
HFO-1234yf具有工业化前景的制备方法主要有三种:3,3,3-三氟丙烯法、六氟丙烯法和1,1,2,3-四氯丙烯(TCP)法。3,3,3-三氟丙烯法路线长,三废多,产品成本高;1,1,2,3-四氯丙烯法反应步骤少,原料利用率高;六氟丙烯法制备路线长,总的收率不高。其它制备工艺都是这三条路线的中间原料衍生而来的。
HFO-1234ze具有工业化前景的制备路线主要有两种:1,1,1,3,3-五氟丙烷(HFC-245fa)气相脱HF法和1-氯,3,3,3三氟丙烯加HF法。
如中国专利公开号CN201180052804A,公开日2013年7月3日,发明名称:联合 生产反式-1-氯-3,3,3-三氟丙烯、反式-1,3,3,3-四氟丙烯和1,1,1,3,3-五氟丙烷的集成方法。该发明公开了自单一氯代烃原料1,1,1,3,3-五氯丙烷(HCC-240fa)起始的联合生产(E)1-氯-3,3,3-三氟丙烯、(E)1,3,3,3-四氟丙烯和1,1,1,3,3-五氟丙烷的集成生产方法。该方法包括直接产生(E)1-氯-3,3,3-三氟丙烯(1233zd(E))的结合的液相或气相反应/提纯操作。在第二液相氟化反应器中,1233zd(E)与氟化氢(HF)在催化剂存在下接触以高转化率和选择性反应产生1,1,1,3,3-五氟丙烷(HFC-245fa)。第三反应器用于通过在液相中与苛性碱液接触或在气相中使用脱氟化氢催化剂进行HFC-245fa的脱氟化氢以产生(E)1,3,3,3-四氟丙烯(1234ze(E))。在该操作后可以进行一个或多个提纯过程以回收该1234ze(E)产物。不足之处是液相氟化和液相脱氟化氢,反应催化剂寿命短,整个工艺废液多,环保处理成本高。
如中国专利公开号CN201180027570A,公开日2015年2月25日,发明名称:联合生产反式-1-氯-3,3,3-三氟丙烯和反式-1,3,3,3-四氟丙烯的综合方法。公开的包括结合的液相反应和提纯操作的综合制造方法,其直接生产反式-1-氯-3,3,3-三氟丙烯和3-氯-1,1,1,3-四氟丙烷,其是制造反式-1,3,3,3-四氟丙烯的前体。联合产物的混合物容易地通过常规蒸馏分离,并且随后通过在液相中与苛性碱溶液接触或在气相中使用脱氯化氢催化剂将3-氯-1,1,1,3-四氟丙烷脱氯化氢以生产反式-1,3,3,3-四氟丙烯。不足之处是液相氟化和液相脱氟化氢,反应催化剂寿命短,整个工艺废液多,环保处理成本高。
如中国专利公开号CN102686543A,公开日2012年9月19日,发明名称:1230xa到1234yf的气相氟化。该发明涉及制备2,3,3,3-四氟丙烯(HFO-1234yf)的方法,包括:(1)在氟化催化剂存在下将1,1,2,3-四氯丙烯(TCP)与氟化氢在气相中接触;(2)将反应混合物分离后得到2-氯-3,3,3-三氟丙烯(HCFO-1233xf)和1,1,1,2,2-五氟丙烷(HFC-245eb),再将HCFO-1233xf和HFC-245cb通入反应器生成HFO-1234yf。不足之处是该工艺会生成部分HFC-245cb,在反应过程中要和HFO-1234yf产生平衡问题,HCFO-1233xf和HFC-245eb在一个催化剂体系下不能同时得到HFO-1234yf,要通过两步反应才能合成HFO-1234yf。
如中国专利公开号CN101597209A,公开日2009年12月9日,发明名称:用于制备2,3,3,3-四氟丙烯的一体化方法,该申请案提供一种制备2,3,3,3-四氟丙烯的一体化方法,所述方法包括:将1,1,2,3-四氯丙烯和第一氟化试剂反应生成2-氯-3,3,3-三氟丙烯(HCFO-1233xf)和第一含氯副产物的第一中间体组合物;将第一含氯副产物的第一中 间体组合物和第二氟化试剂反应生成2-氯-1,1,1,2-四氟丙烷(HCFC-244bb)以及第二含氯副产物的第二中间体组合物;然后将HCFC-244bb的至少一部分催化脱氯化氢生成2,3,3,3-四氟丙烯。此路线三步合成2,3,3,3-四氟丙烯,HCFO-1233xf在液相反应器中转化成HCFC-244bb,催化剂为卤化锑,反应器采用内衬TFE或PFA,不足之处是反应器内部腐蚀严重,会鼓包,设备的选择较为困难。第三步皂化反应三废较多,收率低。
发明内容
本发明针对现有技术的不足之处,提供一种工艺简单、投资小、能耗低,催化剂转化率高的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法。
为了解决上述技术问题,本发明采用的技术方案为:一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,包括以下步骤:
(a)将氟化氢和1,1,1,3,3-五氯丙烷(HCC-240fa)预热后按摩尔比9~15∶1通入第一反应器,所述第一反应器分为上、下两段,上段装填氧化铝负载金属铬催化剂,下段装填氧化铬负载金属铟催化剂,氟化氢和1,1,1,3,3-五氯丙烷在第一反应器上段进行反应,反应温度为200~400℃,空速为300~1000h-1,反应产物进入第一反应器下段,与通入第一反应器下段的1,1,2,3-四氯丙烯继续反应,所述1,1,2,3-四氯丙烯与氟化氢的摩尔比为3~5∶9,得到第一反应器反应产物;
(b)将步骤(a)得到的第一反应器反应产物直接进入第二反应器,在第二反应器催化剂的作用下进行反应,所述反应温度为250~450℃,空速为500~1500h-1,得到第二反应器反应产物;
(c)将步骤(b)得到的第二反应器反应产物通入氯化氢塔进行分离,得到氯化氢塔塔釜组分和塔顶馏分,塔顶馏分为氯化氢,将氯化氢另行精制处理得到盐酸;
(d)将氯化氢塔塔釜组分依次通过水洗塔、碱洗塔和干燥塔除去氟化氢和氯化氢后进入第一精馏塔进行精馏,得到第一精馏塔塔釜组分和塔顶馏分;
(e)将第一精馏塔塔釜组分进入第二精馏塔进行分离,得到1-氯-3,3,3-三氟丙烯产品和第二精馏塔塔顶馏分;将第一精馏塔塔顶馏分进入第三精馏塔进行分离,第三精馏塔塔顶得到2,3,3,3-四氟丙烯产品,塔釜得到1,3,3,3-四氟丙烯产品。
作为本发明的优选实施方式,可将步骤(e)中所述的第二精馏塔塔顶馏分循环至第 二反应器中。
作为本发明的优选实施方式,步骤(a)中所述的氟化氢和1,1,1,3,3-五氯丙烷的摩尔比优选为9~12∶1,反应温度优选为250~320℃,空速优选为500~800h-1
作为本发明的优选实施方式,步骤(b)中所述的反应温度优选为300~400℃,空速优选为800~1200h-1
作为本发明的优选实施方式,步骤(a)中所述的氧化铝负载金属铬催化剂中铬的负载量优选为5~15wt%(wt%,质量百分含量)。
作为本发明的优选实施方式,步骤(a)中所述的氧化铬负载金属铟催化剂中铟的负载量优选为3~10wt%。
作为本发明的优选实施方式,步骤(b)中所述的第二反应器催化剂按质量百分比,其组成优选为:氧化铬70~80%,氧化镁10~15%,氧化锌5~15%。
本发明中的第一反应器分为上下两段,上段顶部通入氟化氢和1,1,1,3,3-五氯丙烷,下段通入1,1,2,3-四氯丙烯,由于1,1,2,3-四氯丙烯加HF是强放热反应,可以通过上部反应的物料带走热量,同时不影响1,1,2,3-四氯丙烯的转化率。反应温度对催化剂的活性和产物的选择性有较大的影响,反应温度升高,有助于催化剂活性的提高,控制适当的反应温度,可以使1,1,1,3,3-五氯丙烷和1,1,2,3-四氯丙烯的转化率均达到100%,因此,本发明第一反应器上段温度选择200~400℃,优选250~320℃,第一反应器下段反应所需温度通过上部物料热量带入。
第一反应器发生氟氯交换和烯烃加成反应,第一反应器上段催化剂为氧化铝负载金属铬,下段催化剂为氧化铬负载金属铟。上段催化剂以氧化铝做载体,可以防止由于氟化氢和1,1,1,3,3-五氯丙烷反应强放热而导致催化剂比表面积的迅速下降,铬的加入提高催化剂的活性;下段催化剂以氧化铬为载体负载金属铟,进一步提高催化剂的活性,确保在合适的温度条件下,1,1,1,3,3-五氯丙烷和1,1,2,3-四氯丙烯均能完全转化。
摩尔比对反应有较大的影响,第一反应器上、下两段反应所需要的HF都从上段供入,由于理论上上段每摩尔1,1,1,3,3-五氯丙烷反应需要5摩尔的HF,下段每摩尔1,1,2,3-四氯丙烯反应需要3-4摩尔的HF,上段大量的HF可以带走热量,下段反应热量通过上段提供并带走,实现了热量综合利用,降低了能耗;但HF过量太多,反应后水碱洗废酸量增大,所以本发明中HF和1,1,1,3,3-五氯丙烷的摩尔比控制为9~15∶1,优选为9~12∶1。
第二反应器中HFO-1233zd、HCFO-1233xf和HF发生氟氯交换反应,温度是决定反应的主要因素,温度过高,HFO-1233zd和HCFO-1233xf转化率高,生产大量的HFO-1234ze和HFO-1234yf,联产的HFO-1233zd量减少,催化剂结碳快而失活;温度过低,HFO-1233zd和HCFO-1233xf转化率低,大量的HCFO-1233xf返回到反应器中,HFO-1233zd产率高,HFO-1234ze和HFO-1234yf收率低,因此,可根据市场和产品的需求调整反应温度。本发明第二反应器反应温度选择为250~450℃,优选反应温度为300~400℃。
本发明中两步反应催化剂失活的原因主要是结碳,导致催化剂的比表面积和微孔下降,可通过再生的方法恢复催化剂活性,在温度330~380℃条件下,按比例通入空气和氮气,可除掉催化剂表面的结碳。
本发明第一反应器上段和下段的催化剂采用本领域已知的方法制备:将氧化铝载体浸渍在一定浓度的铬溶液中,达到一定负载量后干燥、焙烧制得催化剂前体,氟化得到上段催化剂;将氧化铬载体浸渍在一定浓度的铟溶液中,达到一定负载量后干燥、焙烧制得催化剂前体,氟化得到下段催化剂。第二反应器中所用催化剂可采用本领域已知的氧化铬为活性组分的催化剂,催化剂的制备方法为:将铬、镁和锌的硝酸盐与沉淀剂反应,生成氢氧化物固体悬浮物,经过滤、洗涤、干燥、焙烧得到铬、镁和锌的氧化物,然后造粒、压片成型得到催化剂前体,氟化后制得催化剂。催化剂的活化可以在其它反应器中进行。
本发明中的第一反应器和第二反应器可采用等温或绝热型式,反应器的材质可以选用耐酸性腐蚀的材料,如Inconel。
与现有技术相比,本发明具有以下优点:
1、工艺简单,第一反应器中装填两种不同的催化剂,可以同时进行两个反应,简化了工艺流程;
2、转化率高,通过调整反应温度,可以使得HCC-240fa和1,1,2,3-四氯丙烯的转化率达到100%;
3、能耗低,第一反应器下段不需外部加热,反应所需温度通过上段物料热量带入,实现了热量综合利用,降低了能耗;
4、投资小,操作弹性大,一套装置可同时生产HFO-1233zd、HFO-1234yf和HFO-1234ze三种产品,且可以根据市场需要灵活调整产品比例,显著降低了设备投资。
附图说明
图1为本发明的工艺流程图。
如图所示:1为预热器,2为第一反应器,3为第二反应器,4为氯化氢塔,5为水洗塔,6为碱洗塔,7为干燥塔,8为第一精馏塔,9为第二精馏塔,10为第三精馏塔,11~21为管线。
具体实施方式
本发明流程如图1所示,第一反应器分为上、下两段,每段装填不同的催化剂,原料氟化氢和HCC-240fa按一定的摩尔比通过管线11进入预热器1预热后,通过管线12进入第一反应器2上段顶部,1,1,2,3-四氯丙烯通入第一反应器2下段,反应后得到含HFO-1233zd、HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,不分离直接通过管线13进入第二反应器3,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,通过管线14进入氯化氢塔4,得到塔釜组分和塔顶馏分,氯化氢塔4塔顶馏分为氯化氢,将氯化氢另行精制处理得到盐酸,塔釜组分通过管线15进入水洗塔5,水洗后通过管线16进入碱洗塔6,碱洗后通过管线17进入干燥塔7,干燥后得到HFO-1234yf、HFO-1234ze、HCFO-1233xf和HFO-1233zd的混合物,通过管线18进入第一精馏塔8,得到塔釜组分和塔顶馏分,第一精馏塔8塔顶馏分为HFO-1234yf和HFO-1234ze,通过管线21进入第三精馏塔10,第三精馏塔10塔顶得到产品HFO-1234yf,塔釜得到产品HFO-1234ze。第一精馏塔8塔釜组分通过管线19进入第二精馏塔9,分离后得到塔釜组分和塔顶馏分,第二精馏塔9塔顶主要组分为HCFO-1233xf,夹带少量的HFO-1233zd,循环至第二反应器中,第二精馏塔9塔釜得到产品HFO-1233zd。
以下结合实施例对本发明做进一步详细描述,但本发明不仅仅局限于以下实施例。
实施例1
先将100ml Cr2O3/In催化剂(In的负载量为3wt%)装入第一反应器的下段,将100ml  Al2O3/Cr催化剂(Cr的负载量为10wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬80%,氧化镁10%,氧化锌10%)装入第二反应器中。
接着将第一反应器升温到350℃,通入HF和氮气进行活化,HF流量:100g/h,氮气流量:1.5L/min,活化时间为50小时;第二反应器升温到350℃,通入HF和氮气进行活化,HF流量:100g/h,氮气流量:1.5L/min,活化时间为40小时,两个反应器的催化剂活化完成。第一反应器和第二反应器升温时,常温到150℃升温速度1℃/min,150℃以上升温速度0.5℃/min。
然后开始投料反应,将HF和HCC-240fa通入预热器预热,HF和HCC-240fa摩尔比为9∶1,控制第一反应器上段温度为280℃,空速500h-1,1,1,2,3-四氯丙烯与HF的摩尔比为4∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表1;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为300℃,空速为800h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表1。
表1:实施例1反应器出口有机物组成
Figure PCTCN2017000220-appb-000001
实施例2
先将100ml Cr2O3/In催化剂(In的负载量为5wt%)装入第一反应器的下段,将100ml Al2O3/Cr催化剂(Cr的负载量为15wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬70%,氧化镁15%,氧化锌15%)装入第二反应器中。
催化剂的活化方法与实施例1相同。
然后开始投料反应,将HF和HCC-240fa通入预热器预热,HF和HCC-240fa摩尔比为10∶1,控制第一反应器上段温度为300℃,空速600h-1,1,1,2,3-四氯丙烯与HF的摩尔比5∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表2;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为320℃,空速为800h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表2。
表2:实施例2反应器出口有机物组成
Figure PCTCN2017000220-appb-000002
实施例3
先将100ml Cr2O3/In催化剂(In的负载量为10wt%)装入第一反应器的下段,将100ml Al2O3/Cr催化剂(Cr的负载量为5wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬80%,氧化镁12%,氧化锌8%)装入第二反应器中。
催化剂的活化方法与实施例1相同。
然后开始投料反应,将HF和HCC-240fa通入预热器预热,HF和HCC-240fa摩尔比15∶1,控制第一反应器上段温度为320℃,空速1000h-1,1,1,2,3-四氯丙烯与HF的摩尔比为3∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表3;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为350℃,空速为1200h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表3。
表3:实施例3反应器出口有机物组成
Figure PCTCN2017000220-appb-000003
实施例4
先将100ml Cr2O3/In催化剂(In的负载量为8wt%)装入第一反应器的下段,将100ml Al2O3/Cr催化剂(Cr的负载量为8wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬80%,氧化镁15%,氧化锌5%)装入第二反应器中。
催化剂的活化方法与实施例1相同。
然后开始投料反应,将HF和HCC-240fa通入预热器预热,HF和HCC-240fa摩尔比12∶1,控制第一反应器上段温度为400℃,空速300h-1,1,1,2,3-四氯丙烯与HF的摩尔比为4∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表4;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为400℃,空速为500h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表4。
表4:实施例4反应器出口有机物组成
Figure PCTCN2017000220-appb-000004
Figure PCTCN2017000220-appb-000005
实施例5
先将100ml Cr2O3/In催化剂(In的负载量为6wt%)装入第一反应器的下段,将100ml Al2O3/Cr催化剂(Cr的负载量为10wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬80%,氧化镁10%,氧化锌10%)装入第二反应器中。
催化剂的活化方法与实施例1相同。
然后开始投料反应,将HF和HCC-240fa通入预热器,HF和HCC-240fa摩尔比10∶1,控制第一反应器上段温度为300℃,空速500h-1,1,1,2,3-四氯丙烯与HF的摩尔比为4∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表5;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为330℃,空速为600h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表5。
表5:实施例5反应器出口有机物组成
Figure PCTCN2017000220-appb-000006
实施例6
先将100ml Cr2O3/In催化剂(In的负载量为8wt%)装入第一反应器的下段,将100ml Al2O3/Cr催化剂(Cr的负载量为10wt%)装入第一反应器的上段;再将200ml铬-镁-锌催化剂(按质量百分比,催化剂组成为:氧化铬75%,氧化镁15%,氧化锌10%)装入第二反应器中。
催化剂的活化方法与实施例1相同。
然后开始投料反应,将HF和HCC-240fa通入预热器,HF和HCC-240fa摩尔比9∶1,第一反应器上段温度为300℃,空速600h-1,1,1,2,3-四氯丙烯与HF的摩尔比为4∶9,第一反应器得到HFO-1233zd、少量HFO-1234ze、HCFO-1233xf、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表6;第一反应器出口的混合物料直接进入第二反应器,第二反应器温度为300℃,空速为700h-1,反应后得到含HFO-1234yf、HFO-1234ze、HCFO-1233xf、HFO-1233zd、氯化氢和氟化氢的混合物,经气相色谱分析有机物组成,见表6。
表6:实施例6反应器出口有机物组成
Figure PCTCN2017000220-appb-000007

Claims (7)

  1. 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于包括以下步骤:
    (a)将氟化氢和1,1,1,3,3-五氯丙烷预热后按摩尔比9~15∶1通入第一反应器,所述第一反应器分为上、下两段,上段装填氧化铝负载金属铬催化剂,下段装填氧化铬负载金属铟催化剂,氟化氢和1,1,1,3,3-五氯丙烷在第一反应器上段进行反应,反应温度为200~400℃,空速为300~1000h-1,反应产物进入第一反应器下段,与通入第一反应器下段的1,1,2,3-四氯丙烯继续反应,所述1,1,2,3-四氯丙烯与氟化氢的摩尔比为3~5∶9,得到第一反应器反应产物;
    (b)将步骤(a)得到的第一反应器反应产物直接进入第二反应器,在第二反应器催化剂的作用下进行反应,所述反应温度为250~450℃,空速为500~1500h-1,得到第二反应器反应产物;
    (c)将步骤(b)得到的第二反应器反应产物通入氯化氢塔进行分离,得到氯化氢塔塔釜组分和塔顶馏分,塔顶馏分为氯化氢,将氯化氢另行精制处理得到盐酸;
    (d)将氯化氢塔塔釜组分依次通过水洗塔、碱洗塔和干燥塔除去氟化氢和氯化氢后进入第一精馏塔进行精馏,得到第一精馏塔塔釜组分和塔顶馏分;
    (e)将第一精馏塔塔釜组分进入第二精馏塔进行分离,得到1-氯-3,3,3-三氟丙烯产品和第二精馏塔塔顶馏分;将第一精馏塔塔顶馏分进入第三精馏塔进行分离,第三精馏塔塔顶得到2,3,3,3-四氟丙烯产品,塔釜得到1,3,3,3-四氟丙烯产品。
  2. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于将步骤(e)中所述的第二精馏塔塔顶馏分循环至第二反应器中。
  3. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于步骤(a)中所述的氟化氢和1,1,1,3,3-五氯丙烷的摩尔比为9~12∶1,反应温度为250~320℃,空速为500~800h-1
  4. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于步骤(b)中所述的反应温度为300~400℃,空速为800~1200h-1
  5. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于步骤(a)中所述的氧化铝负载金属铬催化剂中铬的负载量为5~15wt%。
  6. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于步骤(a)中所述的氧化铬负载金属铟催化剂中铟的负载量为3~10wt%。
  7. 根据权利要求1所述的联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法,其特征在于步骤(b)中所述的第二反应器催化剂按质量百分比,其组成为:氧化铬70~80%,氧化镁10~15%,氧化锌5~15%。
PCT/CN2017/000220 2016-08-25 2017-03-08 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法 WO2018036077A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17842503.9A EP3505504B1 (en) 2016-08-25 2017-03-08 Method for coproduction of 1-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene
KR1020187017893A KR102101281B1 (ko) 2016-08-25 2017-03-08 1-클로로-3,3,3-트리플루오로프로펜, 2,3,3,3-테트라플루오로프로펜 및 1,3,3,3-테트라플루오로프로펜을 공동으로 제조하는 방법
JP2018534831A JP6650523B2 (ja) 2016-08-25 2017-03-08 1−クロロ−3,3,3−トリフルオロプロピレン、2,3,3,3−テトラフルオロプロピレン及び1,3,3,3−テトラフルオロプロピレンの同時生産方法
US16/079,085 US10214468B1 (en) 2016-08-25 2017-03-08 Method for co-production of 1-chloro-3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610733880.2 2016-08-25
CN201610733880.2A CN106349005B (zh) 2016-08-25 2016-08-25 一种联产三氟丙烯类产品和四氟丙烯类产品的方法

Publications (1)

Publication Number Publication Date
WO2018036077A1 true WO2018036077A1 (zh) 2018-03-01

Family

ID=57854555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000220 WO2018036077A1 (zh) 2016-08-25 2017-03-08 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法

Country Status (6)

Country Link
US (1) US10214468B1 (zh)
EP (1) EP3505504B1 (zh)
JP (1) JP6650523B2 (zh)
KR (1) KR102101281B1 (zh)
CN (1) CN106349005B (zh)
WO (1) WO2018036077A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313197A (zh) * 2018-06-27 2021-02-02 阿科玛法国公司 用于生产1-氯-3,3,3-三氟丙烯的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324968B (zh) 2017-07-24 2020-08-04 浙江衢化氟化学有限公司 一种联产低碳发泡剂的方法
CN107652159B (zh) * 2017-10-18 2024-06-21 山东华安新材料有限公司 一种制备2,3,3,3-四氟丙烯的装置及方法
CN107721809B (zh) * 2017-10-19 2020-06-19 浙江衢化氟化学有限公司 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法
CN108383679B (zh) * 2018-04-13 2021-04-13 淄博飞源化工有限公司 一种反式-1-氯-3,3,3-三氟丙烯和2,3,3,3-四氟丙烯的联产方法
WO2020086928A1 (en) * 2018-10-26 2020-04-30 The Chemours Company Fc, Llc Hfo-1234ze and hfo-1234yf compositions and processes for producing and using the compositions
US11209196B2 (en) 2018-10-26 2021-12-28 The Chemours Company Fc, Llc HFO-1234ZE, HFO-1225ZC and HFO-1234YF compositions and processes for producing and using the compositions
BR112021022059A2 (pt) 2018-10-26 2021-12-28 Chemours Co Fc Llc Composições de fluoropropeno, métodos de produção de uma mistura e de resfriamento, processos para transferência de calor, para tratamento de uma superfície e para formação de uma composição, sistema de refrigeração, aparelhos de refrigeração, uso da composição de fluoropropeno e método para substituição de um refrigerante
CN111233623A (zh) * 2020-03-19 2020-06-05 烟台中瑞化工有限公司 一种三氟三氯乙烷脱酸装置
CN113527039B (zh) * 2020-04-22 2023-09-05 陕西中蓝化工科技新材料有限公司 一种HFO-1234ze和HCFO-1233zd联产工艺及联产系统
CN112537997B (zh) * 2020-12-09 2021-06-29 威海新元化工有限公司 一种3,3,3-三氟丙烯和2-氯-3,3,3-三氟丙烯的联产方法及装置
CN117263772A (zh) * 2021-04-15 2023-12-22 浙江省化工研究院有限公司 2,3,3,3-四氟丙烯和1-氯-2,3,3,3-四氟丙烯的联产制备方法
CN113480403A (zh) * 2021-07-14 2021-10-08 山东华安新材料有限公司 一种用于制备氟氯烯烃和含氟烯烃的制备方法
CN114276208B (zh) * 2021-11-26 2024-03-26 西安近代化学研究所 一种1,1,1,2,3,3,3-七氟丙烷的生产设备及生产方法
CN115646480B (zh) * 2022-12-12 2023-05-23 山东东岳化工有限公司 1-氯-3,3,3-三氟丙烯制备用催化剂及其制备方法和应用
CN116143583B (zh) * 2023-04-19 2023-07-07 山东澳帆新材料有限公司 一种2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的联产制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597209A (zh) 2008-03-20 2009-12-09 霍尼韦尔国际公司 用于制备2,3,3,3-四氟丙烯的一体式方法
CN102686543A (zh) 2009-12-23 2012-09-19 阿克马法国公司 1230xa到1234yf的催化气相氟化
CN103180275A (zh) * 2010-10-22 2013-06-26 阿克马法国公司 2,3,3,3-四氟丙烯的制备方法
CN103189338A (zh) * 2010-09-03 2013-07-03 霍尼韦尔国际公司 联合生产反式-1-氯-3,3,3-三氟丙烯、反式-1,3,3,3-四氟丙烯和1,1,1,3,3-五氟丙烷的集成方法
CN104069878A (zh) * 2014-07-07 2014-10-01 浙江师范大学 一种用于HFC-245fa裂解制备HFO-1234yf的催化剂及其制备方法
CN103172488B (zh) * 2006-01-03 2015-10-21 霍尼韦尔国际公司 制备氟化有机化合物的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059493A1 (en) * 2008-11-19 2010-05-27 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US8426656B2 (en) 2010-04-05 2013-04-23 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
US8648221B2 (en) * 2011-01-19 2014-02-11 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
US8436217B2 (en) * 2011-04-25 2013-05-07 Honeywell International Inc. Integrated process to co-produce 1,1,1,3,3-pentafluoropropane, trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
ES2616097T3 (es) * 2011-07-26 2017-06-09 Daikin Industries, Ltd. Procedimiento para preparar 2,3,3,3-tetrafluoropropeno
WO2013111911A1 (en) * 2012-01-25 2013-08-01 Daikin Industries, Ltd. Process for producing fluorine-containing olefin
CN103880590B (zh) * 2012-12-19 2016-10-05 中化蓝天集团有限公司 一种制备1,3,3,3-四氟丙烯的工艺
CN103880589B (zh) * 2012-12-19 2015-07-29 中化蓝天集团有限公司 一种联产制备HFO-1234ze和HFC-245fa的工艺
US9416073B2 (en) * 2014-10-06 2016-08-16 Honeywell International Inc. Method to improve halogenation reactions
JP6176262B2 (ja) * 2015-01-13 2017-08-09 ダイキン工業株式会社 含フッ素オレフィンの製造方法
CN104945221B (zh) * 2015-06-11 2017-07-18 浙江衢州巨新氟化工有限公司 一种联产2,3,3,3‑四氟丙烯和1,3,3,3‑四氟丙烯的方法
GB2540426A (en) * 2015-07-17 2017-01-18 Mexichem Fluor Sa De Cv Process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172488B (zh) * 2006-01-03 2015-10-21 霍尼韦尔国际公司 制备氟化有机化合物的方法
CN101597209A (zh) 2008-03-20 2009-12-09 霍尼韦尔国际公司 用于制备2,3,3,3-四氟丙烯的一体式方法
CN102686543A (zh) 2009-12-23 2012-09-19 阿克马法国公司 1230xa到1234yf的催化气相氟化
CN103189338A (zh) * 2010-09-03 2013-07-03 霍尼韦尔国际公司 联合生产反式-1-氯-3,3,3-三氟丙烯、反式-1,3,3,3-四氟丙烯和1,1,1,3,3-五氟丙烷的集成方法
CN103180275A (zh) * 2010-10-22 2013-06-26 阿克马法国公司 2,3,3,3-四氟丙烯的制备方法
CN104069878A (zh) * 2014-07-07 2014-10-01 浙江师范大学 一种用于HFC-245fa裂解制备HFO-1234yf的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505504A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313197A (zh) * 2018-06-27 2021-02-02 阿科玛法国公司 用于生产1-氯-3,3,3-三氟丙烯的方法

Also Published As

Publication number Publication date
EP3505504A4 (en) 2020-03-04
JP6650523B2 (ja) 2020-02-19
EP3505504A1 (en) 2019-07-03
US20190047925A1 (en) 2019-02-14
EP3505504B1 (en) 2023-08-02
KR20180086480A (ko) 2018-07-31
KR102101281B1 (ko) 2020-04-16
JP2019502706A (ja) 2019-01-31
US10214468B1 (en) 2019-02-26
CN106349005B (zh) 2018-08-28
CN106349005A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018036077A1 (zh) 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法
JP6223350B2 (ja) ヒドロフルオロオレフィンを製造するための方法
JP5992532B2 (ja) 2,3,3,3−テトラフルオロプロペンを調製する方法
CA2743842C (en) Process for the manufacture of hydrofluoroolefins
JP7101478B2 (ja) ヒドロクロロフルオロオレフィンの製造方法、および2,3,3,3-テトラフルオロプロペンの製造方法
JP6362705B2 (ja) 2,3,3,3−テトラフルオロプロペン及び1,3,3,3−テトラフルオロプロペンの同時製造方法
TW201332939A (zh) 用於製備2,3,3,3-四氟丙烯之方法
CN107522592B (zh) 一种联产多种卤代烯烃和氟代烷烃的方法
JP6152476B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN108383679A (zh) 一种反式-1-氯-3,3,3-三氟丙烯和2,3,3,3-四氟丙烯的联产方法
WO2022042128A1 (zh) 一种联产氢氟烃的方法
WO2018047972A1 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
CN106966856B (zh) 一种1,1,1,4,4,4-六氟-2-丁烯的制备方法
JP6216832B2 (ja) 2,3,3,3−テトラフルオロプロペンを調製する方法
JP2016510818A (ja) フッ素化オレフィンの製造プロセス
CN115215722B (zh) 2,3,3,3-四氟丙烯和1-氯-3,3,3-三氟丙烯的联产制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187017893

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017893

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2018534831

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017842503

Country of ref document: EP

Effective date: 20190325