WO2022042128A1 - 一种联产氢氟烃的方法 - Google Patents

一种联产氢氟烃的方法 Download PDF

Info

Publication number
WO2022042128A1
WO2022042128A1 PCT/CN2021/106782 CN2021106782W WO2022042128A1 WO 2022042128 A1 WO2022042128 A1 WO 2022042128A1 CN 2021106782 W CN2021106782 W CN 2021106782W WO 2022042128 A1 WO2022042128 A1 WO 2022042128A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
rectifying tower
product
mixture
reaction
Prior art date
Application number
PCT/CN2021/106782
Other languages
English (en)
French (fr)
Inventor
周黎旸
洪江永
杨波
张彦
吴斌
唐新国
余慧梅
Original Assignee
浙江衢化氟化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衢化氟化学有限公司 filed Critical 浙江衢化氟化学有限公司
Priority to KR1020217041198A priority Critical patent/KR102598657B1/ko
Priority to US17/627,127 priority patent/US11713288B2/en
Priority to EP21859968.6A priority patent/EP4206171A1/en
Priority to JP2021572669A priority patent/JP7316738B2/ja
Publication of WO2022042128A1 publication Critical patent/WO2022042128A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/06Preparation of halogenated hydrocarbons by addition of halogens combined with replacement of hydrogen atoms by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for producing hydrofluorocarbons (HFCs), in particular to a method for co-producing HFCs.
  • HFCs hydrofluorocarbons
  • Hydrofluorocarbons are compounds in which part of the hydrogen atoms in alkanes are replaced by fluorine. These compounds do not contain chlorine, do not destroy the atmospheric ozone layer, and are substitutes for ozone-depleting substances.
  • HFCs include HFC-134a, HFC-125, HFC- 32. HFC-245fa, HFC-227ea, etc. The first few have mature production routes and have been mass-produced industrially.
  • 1,1,1,2,3,3,3-heptafluoropropane (molecular formula CF 3 CHFCF 3 , referred to as HFC-227ea) is a chlorine-free compound, harmless to the atmospheric ozone layer, and is widely used as a halon gas due to its excellent properties. (considered environmentally hazardous fire extinguishing agents) alternatives for gas fire extinguishing systems, also as a medium for storage of atmospherically sensitive substances and as a propellant for medical aerosol formulations, or mixed with ethylene oxide As a disinfectant, etc., heptafluoropropane fire extinguishing system has been widely used in important places such as urban equipment rooms, substations, transportation and libraries.
  • gas phase preparation of 1,1,1,2,3,3,3-heptafluoropropane which discloses a method for reacting hydrogen fluoride and hexafluoropropene in the gas phase and on a fluorination catalyst Method for the preparation of 1,1,1,2,3,3,3-heptafluoropropane.
  • the reaction can be carried out under adiabatic conditions with less catalyst fouling.
  • the use of HFC-227ea as the diluent allows smaller equipment to be used.
  • CN1867530A preparation of 1,1,1,3,3,3-hexafluoropropane and 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,3,3 , a method of at least one of 3-heptafluoropropane.
  • CF3CCl2CF3 and CF3CClFCClF2 are formed in the presence of a chlorofluorination catalyst comprising a ZnCr2O4 /crystalline alpha - chromia composition, which has been Fluorinating agent - treated ZnCr2O4/crystalline alpha - chromia compositions, zinc halide/alpha-chromia compositions, and/or zinc halide/alpha-chromia compositions that have been treated with a fluorinating agent.
  • the catalyst performance is unstable and easy to crystallize.
  • CN1599704A a gas-phase method for producing 1,1,1,2,3,3,3-heptafluoropropane from hydrogen fluoride and hexafluoropropene
  • the invention utilizes the azeotropic composition of HF and HFC-227ea in order to produce substantially no HF to HFC-227ea and recycle unreacted HF to the reactor. Recycling of the azeotropic composition also allows HFC-227ea to be used as a diluent, thereby facilitating temperature control of highly exothermic reactions.
  • CN1152905A the name of the invention: the preparation method of 1,1,1,2,3,3,3-heptafluoropropane
  • the invention relates to the reaction of hexafluoropropane with anhydrous hydrofluoric acid in the presence of antimony catalyst to obtain 1,1,1 ,
  • the preparation method of 2,3,3,3-heptafluoropropane can provide a preparation method for obtaining HFC-227ea in high yield under mild conditions without generating by-products such as olefins.
  • the disadvantage is that the product cost is high, there are many by-products, and the spent catalyst is difficult to handle.
  • the present invention provides a method for co-producing hydrofluorocarbons with high yield, good selectivity and low energy consumption.
  • the technical scheme adopted in the present invention is: a method for co-production of hydrofluorocarbons, comprising the following steps:
  • step (b) the reaction product obtained in step (a) enters the first rectifying tower and is separated to obtain the first rectifying tower overhead fraction and the first rectifying tower tower still product;
  • step (c) the first rectifying tower overhead fraction obtained by step (b) enters the second rectifying tower and separates, and the second rectifying tower tower top obtains hydrogen chloride, and the tower still obtains the second rectifying tower tower still product;
  • step (d) the second rectifying tower still product obtained in step (c) enters the third rectifying tower and separates, and the third rectifying tower tower top obtains difluoromethane product or the mixture containing difluoromethane, the third rectifying tower 1,1,1,2,3,3,3-heptafluoropropane product or mixture containing 1,1,1,2,3,3,3-heptafluoropropane is obtained from the distillation column still.
  • the mixture containing difluoromethane is obtained, it is further separated to obtain a difluoromethane product, and when the third rectifying tower still obtains a mixture containing 1,1,1,2,3,3,3-heptafluoropropane, it is further separated.
  • the 1,1,1,2,3,3,3-heptafluoropropane product was isolated.
  • the general formula of the chlorinated olefin described in step (a) of the present invention is C 2 Cl 4-x Z x , wherein x is 0 or 1, and Z is H or Cl.
  • the chlorinated olefin described in the step (a) is trichloroethylene
  • the top of the third rectifying tower obtains difluoromethane
  • the tower bottom of the third rectifying tower obtains A mixture of 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane, combining said 1,1,1,2-tetrafluoroethane and 1,
  • the mixture of 1,1,2,3,3,3-heptafluoropropane enters the fourth rectification column for separation to obtain 1,1,1,2-tetrafluoroethane products and 1,1,1,2,3, 3,3-heptafluoropropane products.
  • the chlorinated olefin described in step (a) is tetrachloroethylene, and the top of the third rectifying tower obtains difluoromethane and 1,1,1,2,2-pentafluoromethane
  • the mixture of fluoroethane, the third rectifying tower still obtains 1,1,1,2,3,3,3-heptafluoropropane product, and the difluoromethane and 1,1,1,2,
  • the mixture of 2-pentafluoroethane is further separated to obtain a difluoromethane product and a 1,1,1,2,2-pentafluoroethane product, respectively.
  • the chlorinated olefin described in the step (a) is a mixture of trichloroethylene and tetrachloroethylene
  • the third rectifying tower overhead product is difluoromethane and 1,1
  • the mixture of 1,2,2-pentafluoroethane, the product of the third distillation column still is 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,
  • the mixture of 3-heptafluoropropane, the mixture of difluoromethane and 1,1,1,2,2-pentafluoroethane is further separated to obtain difluoromethane product and 1,1,1,2,2-pentafluoroethane respectively Fluoroethane product, the mixture of the 1,1,1,2-tetrafluoroethane and 1,1,1,2,3,3,3-heptafluoropropane enters the fourth rectifying tower for separation, and obtains respectively 1,1,1,2-Tetrafluoroethane products and 1,1,1,2,3,3,
  • the molar ratio of hydrogen fluoride to chlorinated olefins in step (a) is 12-20:1, and the 1,1,1,2,3,3-hexafluoropropene and The molar ratio of dichloromethane is 1-3:1.
  • the pressure of the reaction in step (a) is 0.8-1.2MPa
  • the reaction temperature of the first stage of the reactor is 200-250°C
  • the reaction temperature of the second stage is 280 ⁇ 350°C.
  • the catalyst of the first stage of the reactor described in step (a) is alumina (Al 2 O 3 ) supported chromium (Cr), wherein the mass percentage of chromium is 15-20% .
  • the second-stage catalyst of the reactor described in step (a) is chromium oxide supported iridium (Y) and zinc (Zn), wherein the mass percentage of iridium is 10-20%, The mass percentage of zinc is 15-30%.
  • the catalysts in the third to sixth stages of the reactor described in step (a) are activated carbon supported chromium, magnesium (Mg) and indium (In), wherein the mass percentage of chromium is 25 ⁇ 40%, the mass percentage of magnesium is 5-10%, and the mass percentage of indium is 3-6%.
  • the first distillation column bottom product described in step (b) can be recycled to the reactor to continue the reaction.
  • the present invention co-produces a variety of hydrofluorocarbon (HFCs) products through one reactor, and the reactor can be divided into multiple sections, preferably three to six sections, hydrogen fluoride (HF), trichloroethylene (TCE) and/or tetrachloroethylene (HFCs) products through one reactor, and the reactor can be divided into multiple sections, preferably three to six sections, hydrogen fluoride (HF), trichloroethylene (TCE) and/or tetrachloroethylene (The raw material mixture of PCE) is fed from the top of the reactor, and 1,1,1,2,3,3-hexafluoropropene (HFP) and dichloromethane (R30) are fed side-by-side to give a mixture containing 1,1,1,2 ,3,3,3-heptachloropropane (HFC-227ea), 1,1,1,2-tetrafluoroethane (HFC-134a) and/or 1,1,1,2,2-pentafluoroethane (
  • the first stage of the reactor mainly undergoes an addition reaction, which is a strong exothermic reaction, and the catalyst carbonization speed is fast.
  • the catalyst of the first stage of the present invention is selected to support metal chromium on alumina, and the loading amount of chromium is 15-20% (mass percentage). , the alumina carrier can distribute heat evenly.
  • the present invention further reduces the problems of easy deactivation and short life of the catalyst at high temperature by co-producing multiple hydrofluorocarbons.
  • the second section of the reactor mainly carries out fluorine-chlorine exchange reaction, and the catalyst is chromium oxide supported iridium and zinc, wherein the mass percentage of iridium is 10-20%, and the mass percentage of zinc is 15-30%.
  • the addition of zinc can improve the activity of the fluorine-chlorine exchange reaction.
  • the side line of the reactor is supplemented with HFP and R30 raw materials, and the reaction is carried out using the reaction heat of the first and second stages without external heating.
  • the required reaction temperature realizes comprehensive utilization of heat and reduces energy consumption.
  • the third to sixth stage catalysts are activated carbon supported chromium, magnesium and indium, wherein the mass percentage of chromium is 25-40%, the mass percentage of magnesium is 5-10%, and the mass percentage of indium is 3-6% %.
  • Magnesium is supported on the activated carbon carrier to inhibit the carbonization of the catalyst for the strong exothermic reaction between HFP and HF.
  • the addition of indium improves the activity of the reaction between R30 and HF and reduces the generation of difluorochloromethane (R31).
  • the conversion and selectivity of feedstock decreased with the increase of space velocity.
  • the space velocity is small, the carbon deposition can be reduced, but the space-time yield of the catalyst at this time will also decrease. .
  • Increasing the pressure can increase the contact time between the reaction material and the catalyst, which is beneficial to improve the conversion rate and selectivity, and accelerate the generation speed of HFC-134a/HFC-125 and HFC-32.
  • the molar ratio of hydrogen fluoride and chlorinated olefin is controlled to be 12-20:1, and the molar ratio of 1,1,1,2,3,3-hexafluoropropene to dichloromethane is 1-3 : 1, the reaction pressure is 0.8 ⁇ 1.2MPa, and the reaction temperature is 200 ⁇ 250°C.
  • the reactor of the invention is divided into multiple sections, heat exchange tubes can be used to remove heat between sections, high efficiency and energy saving, each section can be filled with catalysts with different functions according to different reaction properties, and is suitable for the joint production of HFCs products.
  • the reactor in the present invention can be of isothermal or adiabatic type, and the material of the reactor can be selected from acid corrosion-resistant materials, such as Inconel.
  • a baffle plate with holes can be set between each section of the reactor, and the catalyst is loaded in the order from the sixth section to the first section from bottom to top. , to prevent the dispersion of the gas mixture in the axial and radial directions.
  • the catalyst used in the various stages of the reactor of the present invention can be prepared using methods known in the art.
  • the first stage catalyst can be prepared by the following method:
  • Alumina with a diameter of 4mm was dried at 150°C for 10 hours, calcined at 380°C for 5 hours, weighed CrCl 3 ⁇ 6H 2 O or Cr(NO 3 ) 3 ⁇ 6H 2 O, prepared into a chromium salt solution, and immersed After 24 hours, the alumina was dried at 150° C. for 5 hours, and calcined at 350° C. for 3 hours to obtain the desired catalyst.
  • the prepared catalyst was loaded into the reactor, heated to 350°C, dried with nitrogen gas for 6 hours, then cooled to 300°C, fed with anhydrous hydrogen fluoride diluted with nitrogen, and activated to control the hot spot of the catalyst bed not to exceed 300°C. 350 ° C, activated for 48 hours to obtain the activated catalyst.
  • the second stage catalyst can be prepared by the following method:
  • Chromium chloride, iridium chloride and zinc chloride are prepared according to a certain proportion, add precipitant urea, the concentration is 20%, filter and wash after the precipitation reaction, dry at 120°C for 24 hours, and roast at 340°C for 10 hours in a nitrogen environment, Tablet into columnar particles with a diameter of 3 mm and a height of 3 mm to obtain the desired catalyst.
  • the prepared catalyst was loaded into the reactor, heated to 320°C, passed into anhydrous hydrogen fluoride diluted with nitrogen, and activated, and the hot spot of the catalyst bed was controlled not to exceed 350°C, and activated for 48 hours to obtain an activated catalyst.
  • the third to sixth stage catalysts can be prepared by the following methods: soaking activated carbon with a diameter of 1.5 mm and a length of 3-4 mm in 5% nitric acid for 3 hours, drying at 120 ° C for 5 hours, and then impregnating chromium chloride, magnesium chloride and nitric acid in proportion The indium solution was calcined at 400°C for 15 hours in a nitrogen atmosphere to obtain the desired catalyst.
  • the prepared catalyst was loaded into the reactor, heated to 350°C, and anhydrous hydrogen fluoride diluted with nitrogen was introduced into the reactor for activation treatment.
  • the present invention has the following advantages:
  • the process is simple, the reactor is filled with three different catalysts, and three reactions can be carried out, which simplifies the process flow.
  • a set of devices can simultaneously co-produce a variety of HFC products, and each HFC can be controlled by changing the reaction conditions.
  • the conversion rate is high. By adjusting the molar ratio and optimizing the catalyst, reaction temperature, space velocity and other parameters, the conversion rate of TCE/PCE and HFP can reach 100%;
  • the energy consumption is low. Except for the first and second sections, the other sections of the reactor do not need external heating. By directly feeding the materials of the second section into the third to sixth sections in sequence, the required reaction temperature is provided and the comprehensive utilization of heat is realized. , significantly reducing energy consumption;
  • the investment is small, the operation flexibility is large, the reactor is designed in sections, and the catalyst is loaded according to the function, which is flexible and changeable. It realizes the simultaneous co-production of multiple HFCs products in one reactor, and the product ratio can be flexibly adjusted according to market needs. investment in equipment.
  • FIG. 1 is a process flow diagram of Embodiment 1 of the present invention.
  • 1 is the preheater
  • 2 is the reactor
  • 3 is the first rectifying tower
  • 4 is the second rectifying tower
  • 5 is the third rectifying tower
  • 6 is the fourth rectifying tower
  • 7- 16 is the pipeline
  • 2-1 is the first section of the reactor
  • 2-2 is the second section of the reactor
  • 2-3 is the third section of the reactor.
  • the process flow of the present invention is shown in Figure 1, taking the three-stage reactor as an example, the reactor 2 is divided into three sections, the first section of the reactor 2-1, the second section of the reactor 2-2, and the third section of the reactor 2- 3 are respectively filled with catalyst, fresh HF, TCE and/or PCE are preheated by preheater 1, then enter the first section 2-1 of the reactor through pipeline 7 for reaction, the product of the reaction and the HFP and R30 of the side feed are Enter the second section 2-2 of the reactor together to continue the reaction, the product obtained from the second section 2-2 of the reactor enters the third section 2-3 of the reactor for further reaction, and the mixture obtained from the third section 2-3 of the reactor passes through the pipeline 8 enter the first rectifying tower 3 and separate; the first rectifying tower 3 still contains unreacted 1,1,1-trifluoro-2-chloroethane (HCFC-133a) and/or 2,2-dichloroethane Chloro-1,1,1-trifluoroethane (HCFC-123), 2-d
  • the top of the tower contains the light components of HFC-134a and/or HFC-125, HFC-227ea, HFC-32 and HCl, and enters through the pipeline 10.
  • the second rectifying tower 4 the top of the second rectifying tower 4 separates HCl through pipeline 12, and further refining treatment obtains hydrochloric acid, and the tower still contains the mixture of HFC-134a and/or HFC-125, HFC-227ea, HFC-32 Enter the third rectifying column 5 through line 11; the top of the third rectifying column 5 obtains HFC-32 product or the mixture of HFC-32 and HFC-125 through line 14, when the third rectifying column overhead obtains HFC-32 When with the mixture of HFC-125, it is further separated to obtain HFC-32 product and HFC-125 product respectively by the separation operation that is conventional in this area such as rectification;
  • the mixed material of 227ea and HFC-134a when the third rectifying tower still obtains the mixed material of HFC-227ea and HFC-134a, the mixed material of HFC-227ea and HFC-134a enters the fourth rectifying tower through line 13 6 is further separated; the tower top of the fourth rectifying tower 6 obtains
  • the reactor is divided into three sections. First, 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 30%Cr, 10%Mg, 5%In) is loaded into the third reactor. Section, then 100m of activated (iridium-zinc)/chromium oxide catalyst (by mass percentage, the catalyst composition is: 10% Y, 20% Zn) is loaded into the second section of the reactor, and then 100ml of activated Cr/ The Al 2 O 3 catalyst (the mass percentage of Cr is 15%) was charged into the first section of the reactor.
  • the reactor is divided into three sections. First, 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 30%Cr, 5%Mg, 5%In) is loaded into the third reactor. Section, then 100m of activated (iridium-zinc)/chromium oxide catalyst (by mass percentage, the catalyst composition is: 15% Y, 25% Zn) is loaded into the second section of the reactor, and then 100ml of activated Cr/ The Al 2 O 3 catalyst (the mass percentage of Cr is 15%) was charged into the first section of the reactor.
  • the reactor is divided into three sections. First, 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 25%Cr, 5%Mg, 3%In) is loaded into the third reactor. Section, then 100m of activated (iridium-zinc)/chromia catalyst (by mass percentage, the catalyst composition is: 10% Y, 15% Zn) is loaded into the second section of the reactor, and then 100ml of activated Cr/ The Al 2 O 3 catalyst (the mass percentage of Cr is 15%) was charged into the first section of the reactor.
  • the reactor is divided into four sections. First, 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 35%Cr, 10%Mg, 5%In) is loaded into the fourth reactor. section, and then 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 35%Cr, 10%Mg, 5%In) was loaded into the third section of the reactor, and then 100m The activated (iridium-zinc)/chromium oxide catalyst (by mass percentage, the catalyst composition is: 18% Y, 30% Zn) was loaded into the second section of the reactor, and finally 100ml of the activated Cr/Al 2 O 3 catalyst was placed (The mass percentage of Cr is 17%) into the first section of the reactor.
  • the reactor is divided into four sections. First, 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 35%Cr, 10%Mg, 6%In) is loaded into the fourth reactor. section, and then 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 35%Cr, 10%Mg, 6%In) was loaded into the third section of the reactor, and then 100m The activated (iridium-zinc)/chromium oxide catalyst (by mass percentage, the catalyst composition is: 15% Y, 15% Zn) was loaded into the second section of the reactor, and finally 100ml of the activated Cr/Al 2 O 3 catalyst was (The mass percentage of Cr is 17%) into the first section of the reactor.
  • the reactor is divided into four sections, and 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 40%Cr, 10%Mg, 5%In) is loaded into the fourth reactor. section, and then 100ml of activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 40%Cr, 10%Mg, 5%In) was loaded into the third section of the reactor, and then 100m The activated (iridium-zinc)/chromium oxide catalyst (by mass percentage, the catalyst composition is: 20% Y, 15% Zn) was loaded into the second section of the reactor, and finally 100ml of the activated Cr/Al 2 O 3 catalyst was (The mass percentage of Cr is 17%) into the first section of the reactor.
  • the reactor is divided into five sections. First, 100ml of activated (chromium-magnesium-indium)/C catalysts (by mass percentage, the catalyst composition is: 40%Cr, 5%Mg, 3%In) are respectively charged into the reaction The fifth section of the reactor, the fourth section of the reactor and the third section of the reactor, and then 100m of activated (iridium-zinc)/chromium oxide catalysts (by mass percentage, the catalyst composition is: 20% Y, 20% Zn) are loaded. into the second section of the reactor, and finally 100 ml of activated Cr/Al 2 O 3 catalyst (the mass percentage of Cr is 17%) is charged into the first section of the reactor.
  • Adjust the temperature of the reactor to the reaction temperature, start the feeding reaction, HF and TCE are mixed and preheated and then enter the reactor for reaction, and at the same time, 1,1,1,2,3,3-hexafluoropropene and dichloromethane are entered into the reactor.
  • the molar ratio of hydrogen fluoride and TCE is 13:1
  • the molar ratio of 1,1,1,2,3,3-hexafluoropropene and dichloromethane is 2:1
  • the reaction pressure is 1.2MPa
  • the reaction temperature of the first stage of the reactor was 240°C
  • the reaction temperature of the second stage was 320°C.
  • the mixture at the reactor outlet was sampled and analyzed by gas chromatography. The results are shown in Table 1.
  • the reactor is divided into five sections, and 100 ml of each activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 30% Cr, 8% Mg, 4% In) are respectively charged into the reaction
  • the fifth section of the reactor, the fourth section of the reactor and the third section of the reactor, and then 100m of activated (iridium-zinc)/chromium oxide catalysts (by mass percentage, the catalyst composition is: 20% Y, 30% Zn) are loaded. into the second section of the reactor, and finally 100 ml of activated Cr/Al 2 O 3 catalyst (the mass percentage of Cr is 20%) is charged into the first section of the reactor.
  • Adjust the temperature of the reactor to the reaction temperature, start the feeding reaction, HF and TCE are mixed and preheated and then enter the reactor for reaction, and at the same time, 1,1,1,2,3,3-hexafluoropropene and dichloromethane are entered into the reactor.
  • the molar ratio of hydrogen fluoride and TCE is 15:1
  • the molar ratio of 1,1,1,2,3,3-hexafluoropropene and dichloromethane is 1:1
  • the reaction pressure is 0.8MPa
  • the reaction temperature of the first stage of the reactor was 210°C
  • the reaction temperature of the second stage was 310°C.
  • the mixture at the reactor outlet was sampled and analyzed by gas chromatography. The results are shown in Table 1.
  • the reactor is divided into six sections, and 100 ml of each activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 25% Cr, 8% Mg, 6% In) are respectively charged into the reaction
  • Adjust the temperature of the reactor to the reaction temperature, start the feeding reaction, HF and PCE are mixed and preheated to enter the reactor for reaction, and 1,1,1,2,3,3-hexafluoropropene and dichloromethane are entered into the reactor at the same time.
  • the molar ratio of hydrogen fluoride and PCE is 13:1
  • the molar ratio of 1,1,1,2,3,3-hexafluoropropene and dichloromethane is 3:1
  • the reaction pressure is 1.0MPa
  • the reaction temperature of the first stage of the reactor was 210°C
  • the reaction temperature of the second stage was 320°C.
  • the mixture at the reactor outlet was sampled and analyzed by gas chromatography. The results are shown in Table 1.
  • the reactor is divided into six sections, and 100 ml of each activated (chromium-magnesium-indium)/C catalyst (by mass percentage, the catalyst composition is: 30% Cr, 10% Mg, 3% In) are respectively charged into the reaction
  • the sixth section of the reactor, the fifth section of the reactor, the fourth section of the reactor and the third section of the reactor, and then 100m of activated (iridium-zinc)/chromia catalyst (by mass percentage, the catalyst composition is: 10% Y , 30% Zn) was charged into the second section of the reactor, and finally 100 ml of activated Cr/Al 2 O 3 catalyst (the mass percentage of Cr was 20%) was charged into the first section of the reactor.
  • Adjust the temperature of the reactor to the reaction temperature, start the feeding reaction, HF and PCE are mixed and preheated to enter the reactor for reaction, and 1,1,1,2,3,3-hexafluoropropene and dichloromethane are entered into the reactor at the same time.
  • the molar ratio of hydrogen fluoride and PCE is 18:1
  • the molar ratio of 1,1,1,2,3,3-hexafluoropropene and dichloromethane is 2:1
  • the reaction pressure is 1.2MPa
  • the reaction temperature of the first stage of the reactor was 230°C
  • the reaction temperature of the second stage was 320°C.
  • the mixture at the reactor outlet was sampled and analyzed by gas chromatography. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种联产氢氟烃的方法,将氯代烯烃和氟化氢的混合物预热后进入反应器的顶部,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,反应器分为三~六段,每段装填催化剂,反应器出口得到反应产物,将反应产物分离分别得到多种氢氟烃产品。具有收率高,选择性好、能耗低的优点。

Description

一种联产氢氟烃的方法 技术领域
本发明涉及氢氟烃(HFCs)的生产方法,尤其涉及一种联产氢氟烃的方法。
背景技术
氢氟烃(HFCs)是烷烃中部分氢原子被氟取代的化合物,这类化合物不含氯,不破坏大气臭氧层,是消耗臭氧层物质的替代物,HFCs包括HFC-134a、HFC-125、HFC-32、HFC-245fa、HFC-227ea等,前面几种都有成熟的生产路线,已经工业化量产。1,1,1,2,3,3,3-七氟丙烷(分子式CF 3CHFCF 3,简称HFC-227ea)为一无氯化合物,对大气臭氧层无害,由于其优异的性能被广泛作为哈龙气体(被视为对环境有危害的灭火剂)的替代品用于气体灭火系统,也可用作贮存对大气敏感物质的介质以及用作医疗气溶胶制剂的推进剂,或者与环氧乙烷混合作为消毒剂等,七氟丙烷灭火系统已经广泛应用于城市设备机房、变电所、交通运输和图书馆等重要场所。随着氯氟烃和哈龙的逐渐淘汰,作为破坏大气臭氧层物质的主要替代品之一,其工业重要性逐年增加。七氟丙烷披露的制备方法不多,其中较为具有工业开发价值的制备工艺是无水氢氟酸对六氟丙烯的加成。
如CN1271337A,发明名称:气相制备1,1,1,2,3,3,3-七氟丙烷,该专利公开了一种用于通过使氟化氢与六氟丙烯在气相中和在氟化催化剂上进行反应制备1,1,1,2,3,3,3-七氟丙烷的方法。该反应可在绝热条件下进行而较少发生催化剂的污损现象。使用HFC-227ea作为稀释剂使得可以使用较小的设备。
如CN1867530A,发明名称:制备1,1,1,3,3,3-六氟丙烷以及1,1,1,2,3,3-六氟丙烷和1,1,1,2,3,3,3-七氟丙烷中至少之一的方法。所述方法包括(a)将HF、Cl 2与至少一种式CX 3CCl=CX 2所示卤代丙烯(其中每个X独立地为F和Cl)反应,以生成包括CF 3CCl 2CF 3和CF 3CClFCClF 2的产物;(b)将在(a)中生成的CF 3CCl 2CF 3和CF 3CClFCClF 2与氢反应,以生成包含CF 3CH 2CF 3和至少一种选自CHF 2CHFCF 3和CF 3CHFCF 3的化合物的产物;和(c)从在(b)中生成的产物回收CF 3CH 2CF 3和至少一种选自CHF 2CHFCF 3和CF 3CHFCF 3的化合物。在(a)中,CF 3CCl 2CF 3和CF 3CClFCClF 2是在氯氟化催化剂存在 下生成的,所述氯氟化催化剂包括ZnCr 2O 4/晶体α-氧化铬组合物、已经用氟化剂处理过的ZnCr 2O 4/晶体α-氧化铬组合物、卤化锌/α-氧化铬组合物和/或已经用氟化剂处理过的卤化锌/α-氧化铬组合物。催化剂性能不稳定,容易晶化。
如CN1678551A,发明名称:制备2-氯-1,1,1,2,3,3,3-七氟丙烷,六氟丙烯和1,1,1,2,3,3,3-七氟丙烷的方法,包括:(a)将含有氟化氢,氯和至少一种选自卤代丙烯式CX 3CCl=CX 2和卤代丙烷式CX 3CClYCX 3的原料混合物,其中每个X独立地选自F和Cl,Y选自H,Cl和F(其条件是X和Y是F的总数不超过6),和氯氟化催化剂在反应区域接触,产生包括CF 3CClFCF 3,HCl,HF和低氟化的卤代烃中间体的混合物;该方法的特征是所述的氯氟化催化剂包括至少一种选自以下的含铬的成分,(i)结晶α-氧化铬,其中α-氧化铬晶格中至少0.05原子%铬原子被镍,三价钴或二价镍和三价钴两者取代,(ii)(i)的氟化结晶氧化物。
如CN1599704A,发明名称:由氟化氢和六氟丙烯生产1,1,1,2,3,3,3-七氟丙烷的气相方法,该发明利用HF和HFC-227ea的共沸组合物,以便生产基本无HF的HFC-227ea,并将未反应的HF再循环到反应器中。所述共沸组合物的再循环也使得HFC-227ea可以用作稀释剂,从而有助于高放热反应的温度的控制。
如CN1152905A,发明名称:1,1,1,2,3,3,3-七氟丙烷的制备方法,该发明涉及将六氟丙烷在锑催化剂存在下与无水氢氟酸反应得到1,1,1,2,3,3,3-七氟丙烷的制备方法。该发明可提供在温和条件下高收率地得到HFC-227ea而不产生烯烃等副产物的制备方法。不足之处是产品成本高,副产物多,废催化剂难处理。
发明内容
本发明针对现有技术的不足,提供一种收率高,选择性好、能耗低的联产氢氟烃的方法。
为了解决上述技术问题,本发明采用的技术方案为:一种联产氢氟烃的方法,包括以下步骤:
(a)将氯代烯烃和氟化氢的混合物预热后进入反应器的顶部,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入所述反应器的中部进行反应,所述反应器分为三~六段,每段装填催化剂,反应器出口得到反应产物;
(b)将步骤(a)得到的反应产物进入第一精馏塔进行分离,得到第一精馏塔塔顶馏分和第一精馏塔塔釜产物;
(c)将步骤(b)得到的第一精馏塔塔顶馏分进入第二精馏塔进行分离,第二精馏塔塔顶得到氯化氢,塔釜得到第二精馏塔塔釜产物;
(d)将步骤(c)得到的第二精馏塔塔釜产物进入第三精馏塔进行分离,第三精馏塔塔顶得到二氟甲烷产品或含二氟甲烷的混合物,第三精馏塔塔釜得到1,1,1,2,3,3,3-七氟丙烷产品或含1,1,1,2,3,3,3-七氟丙烷的混合物,当第三精馏塔塔顶得到含二氟甲烷的混合物时,将其进一步分离得到二氟甲烷产品,当第三精馏塔塔釜得到含1,1,1,2,3,3,3-七氟丙烷的混合物时,将其进一步分离得到1,1,1,2,3,3,3-七氟丙烷产品。
本发明步骤(a)中所述的氯代烯烃通式为C 2Cl 4-xZ x,其中x为0或1,Z为H或Cl。
作为本发明的优选实施方式,步骤(a)中所述的氯代烯烃为三氯乙烯,所述的第三精馏塔塔顶得到二氟甲烷,所述的第三精馏塔塔釜得到1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物,将所述的1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物进入第四精馏塔进行分离,分别得到1,1,1,2-四氟乙烷产品和1,1,1,2,3,3,3-七氟丙烷产品。
作为本发明的优选实施方式,步骤(a)中所述的氯代烯烃为四氯乙烯,所述的第三精馏塔塔顶得到二氟甲烷和1,1,1,2,2-五氟乙烷的混合物,所述的第三精馏塔塔釜得到1,1,1,2,3,3,3-七氟丙烷产品,将所述的二氟甲烷和1,1,1,2,2-五氟乙烷的混合物进一步分离分别得到二氟甲烷产品和1,1,1,2,2-五氟乙烷产品。
作为本发明的优选实施方式,步骤(a)中所述的氯代烯烃为三氯乙烯和四氯乙烯的混合物,所述的第三精馏塔塔顶产物为二氟甲烷和1,1,1,2,2-五氟乙烷的混合物,所述的第三精馏塔塔釜产物为1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物,将所述的二氟甲烷和1,1,1,2,2-五氟乙烷的混合物进一步分离分别得到二氟甲烷产品和1,1,1,2,2-五氟乙烷产品,将所述的1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物进入第四精馏塔进行分离,分别得到1,1,1,2-四氟乙烷产品和1,1,1,2,3,3,3-七氟丙烷产品。
作为本发明的优选实施方式,步骤(a)中所述的氟化氢与氯代烯烃的摩尔比为12~20:1,所述的1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1~3:1。
作为本发明的优选实施方式,步骤(a)中所述的反应的压力为0.8~1.2MPa,所 述的反应器的第一段的反应温度为200~250℃,第二段的反应温度为280~350℃。
作为本发明的优选实施方式,步骤(a)中所述的反应器的第一段催化剂为氧化铝(Al 2O 3)负载铬(Cr),其中铬的质量百分含量为15~20%。
作为本发明的优选实施方式,步骤(a)中所述的反应器的第二段催化剂为氧化铬负载铱(Y)和锌(Zn),其中铱的质量百分含量为10~20%,锌的质量百分含量为15~30%。
作为本发明的优选实施方式,步骤(a)中所述的反应器的第三~六段催化剂为活性炭负载铬、镁(Mg)和铟(In),其中铬的质量百分含量为25~40%,镁的质量百分含量为5~10%,铟的质量百分含量为3~6%。
作为本发明的优选实施方式,可将步骤(b)中所述的第一精馏塔塔釜产物循环至反应器中继续反应。
本发明通过一个反应器联产多种氢氟烃(HFCs)产品,反应器可分为多段,优选为三~六段,氟化氢(HF)、三氯乙烯(TCE)和/或四氯乙烯(PCE)的原料混合物从反应器顶部进料,1,1,1,2,3,3-六氟丙烯(HFP)和二氯甲烷(R30)侧线进料,得到含1,1,1,2,3,3,3-七氯丙烷(HFC-227ea)、1,1,1,2-四氟乙烷(HFC-134a)和/或1,1,1,2,2-五氟乙烷(HFC-125)、二氟甲烷(HFC-32)的混合产物。
反应器的第一段主要发生加成反应,属于强放热反应,催化剂结碳速度快,本发明第一段催化剂选择氧化铝负载金属铬,铬的负载量为15~20%(质量百分数),氧化铝载体可以均匀热量分布。另外,本发明利用联产多种氢氟烃进一步的降低了催化剂高温易失活和寿命短的问题。
反应器的第二段主要进行氟氯交换反应,催化剂为氧化铬负载铱和锌,其中铱的质量百分含量为10~20%,锌的质量百分含量为15~30%,铱的加入可以抑制CF 2=CHCl和CF 3CF 2Cl的生成,提高选择性,锌的加入可以提高氟氯交换反应的活性。
反应器侧线补充HFP和R30原料,利用第一段和第二段的反应热进行反应,不需外部加热,通过将第二段的物料直接进入第三~六段,提供第三~六段所需要的反应温度,实现了热量综合利用,降低了能耗。第三~六段催化剂为活性炭负载铬、镁和铟,其中铬的质量百分含量为25~40%,镁的质量百分含量为5~10%,铟的质量百分含量为3~6%。镁负载在活性炭载体上,抑制HFP与HF强放热反应催化剂的结碳,铟的加入提高R30和HF反应的活性,减少二氟氯甲烷(R31)的生成。
对于氟氯交换反应,增加HF浓度有利于转化和产品的生成;同时,HF与有机物的摩尔比越大,催化剂的诱导时间也越短,可延长催化剂的寿命。但摩尔比太大,后处理负荷大、能耗高。
原料转化率及选择性随空速的增加而有所下降。空速越大,单位时间内通过催化剂表面的有机物料也会增多,容易积碳,影响催化剂的使用寿命,当空速较小时虽可以减少积碳,但此时的催化剂的时空收率也会减少。
增大压力可使反应物料和催化剂的接触时间增加,有利于提高转化率及选择性,加快HFC-134a/HFC-125、HFC-32的生成速度。
综合考虑以上因素,本发明中控制氟化氢与氯代烯烃的摩尔比为12~20:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1~3:1,反应压力为0.8~1.2MPa,反应温度为200~250℃。
本发明的反应器分为多段,段间可采用换热管移走热量,高效节能,每段可以根据不同的反应性质装填不同功能的催化剂,适用于HFCs产品的联合生产。本发明中的反应器可采用等温或绝热型式,反应器的材质可以选用耐酸性腐蚀的材料,如Inconel。反应器每段之间可设置一带孔挡板,从下到上按照第六段至第一段的顺序装填催化剂,催化剂的外形优选球状或柱状,保持反应气速的通畅,保证均匀的空隙率,防止气体混合物沿轴向和径向的离散。
本发明的反应器的各段中所用催化剂可采用本领域已知的方法制备。如第一段催化剂可采用如下方法制备:
将直径为4mm的氧化铝在150℃烘干10小时,在380℃焙烧5小时,称取CrCl 3·6H 2O或Cr(NO 3) 3·6H 2O,配制成铬盐溶液,浸渍处理后的氧化铝24小时后在150℃烘干5小时,在350℃焙烧3小时,得到所需催化剂。将制得的催化剂装入反应器,升温到350℃,通入氮气干燥6小时,然后降温到300℃,通入用氮气稀释的无水氟化氢,进行活化处理,控制催化剂床层的热点不要超过350℃,活化48小时,得到活化后的催化剂。
第二段催化剂可采用如下方法制备:
将氯化铬、氯化铱和氯化锌按照一定比例配制,加入沉淀剂尿素,浓度为20%,沉淀反应后过滤、洗涤,120℃烘干24小时,氮气环境下340℃焙烧10小时,压片成直径3mm,高度3mm的柱状颗粒,得到所需催化剂。将制得的催化剂装入反应器,升温到320℃,通入用氮气稀释的无水氟化氢,进行活化处理,控制催化剂床层的热点不要 超过350℃,活化48小时,得到活化后的催化剂。
第三~六段催化剂可采用如下方法制备:将直径1.5mm、长度3-4mm的活性炭用5%硝酸浸泡3小时,在120℃烘干5小时,再按比例浸渍氯化铬、氯化镁和硝酸铟溶液,氮气环境下400℃焙烧15小时,得到所需催化剂。将制得的催化剂装入反应器,升温到350℃,通入用氮气稀释的无水氟化氢,进行活化处理,控制催化剂床层的热点不要超过400℃,活化30小时,得到活化后的催化剂。
与现有技术相比,本发明具有以下优点:
1、工艺简单,反应器中装填三种不同的催化剂,可以进行三个反应,简化了工艺流程,通过一套装置可同时联产多种氢氟烃产品,通过改变反应条件可以控制各氢氟烃产品的比例,实现集约化生产;
2、转化率高,通过调整摩尔比,并优化催化剂、反应温度、空速等参数,使TCE/PCE、HFP的转化率达到100%;
3、能耗低,除第一、二段外反应器其它各段不需外部加热,通过将第二段的物料直接依次进入三~六段,提供所需要的反应温度,实现了热量综合利用,显著降低了能耗;
4、投资小,操作弹性大,反应器分段设计,催化剂按功能装填,灵活多变,实现了在一个反应器中同时联产多种HFCs产品,可以根据市场需要灵活调整产品比例,显著降低了设备投资。
附图说明
图1为本发明的实施例1的工艺流程图。
如图所示:1为预热器,2为反应器,3为第一精馏塔,4为第二精馏塔,5为第三精馏塔,6为第四精馏塔,7-16为管线,2-1为反应器第一段,2-2为反应器第二段,2-3为反应器第三段。
具体实施方式
本发明流程如图1所示,以三段反应器为例,反应器2分为三段,反应器第一段2-1、 反应器第二段2-2、反应器第三段2-3分别装填有催化剂,新鲜的HF、TCE和/或PCE经预热器1预热后,通过管线7进入反应器第一段2-1进行反应,反应的产物与侧线进料的HFP和R30一起进入反应器第二段2-2继续进行反应,反应器第二段2-2得到的产物进入反应器第三段2-3进一步反应,反应器第三段2-3得到的混合物通过管线8进入第一精馏塔3进行分离;第一精馏塔3塔釜含未反应的1,1,1-三氟-2-氯乙烷(HCFC-133a)和/或2,2-二氯-1,1,1-三氟乙烷(HCFC-123)、2-二氯-1,1,1,2-四氟乙烷(HCFC-124)、二氟氯甲烷(R31)、HF等的重组分通过管线9返回到反应器2的第二段继续反应,塔顶含有HFC-134a和/或HFC-125、HFC-227ea、HFC-32和HCl的轻组分,通过管线10进入第二精馏塔4;第二精馏塔4塔顶通过管线12分离出HCl,另行精制处理得到盐酸,塔釜含有HFC-134a和/或HFC-125、HFC-227ea、HFC-32的混合物通过管线11进入第三精馏塔5;第三精馏塔5塔顶通过管线14得到HFC-32产品或者HFC-32和HFC-125的混合物,当第三精馏塔塔顶得到HFC-32和HFC-125的混合物时,将其通过本领域常规的分离操作如精馏进一步分离分别得到HFC-32产品和HFC-125产品;第三精馏塔5塔釜得到HFC-227ea产品或者HFC-227ea和HFC-134a的混合物料,当第三精馏塔塔釜得到HFC-227ea和HFC-134a的混合物料时,将HFC-227ea和HFC-134a的混合物料通过管线13进入第四精馏塔6进一步分离;第四精馏塔6塔顶通过管线15得到HFC-134a产品,塔釜通过管线16得到HFC-227ea产品。
以下结合实施例对本发明做进一步详细描述,但本发明不仅仅局限于以下实施例。
实施例1
反应器分为三段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:30%Cr,10%Mg,5%In)装入反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:10%Y,20%Zn)装入反应器第二段,然后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为15%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为12:1,TCE与PCE的摩尔比为1:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为2:1,反应的压力为0.9MPa,反应器第一段的反应温度为200℃,第二段的反应温度为290℃。对反应器出口的混合物取样,经气相色谱分 析,结果如表1。
实施例2
反应器分为三段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:30%Cr,5%Mg,5%In)装入反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:15%Y,25%Zn)装入反应器第二段,然后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为15%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为15:1,TCE与PCE的摩尔比为0.5:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1:1,反应的压力为0.8MPa,反应器第一段的反应温度为230℃,第二段的反应温度为310℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例3
反应器分为三段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:25%Cr,5%Mg,3%In)装入反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:10%Y,15%Zn)装入反应器第二段,然后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为15%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为15:1,TCE与PCE的摩尔比为2:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为3:1,反应的压力为1.0MPa,反应器第一段的反应温度为250℃,第二段的反应温度为300℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例4
反应器分为四段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:35%Cr,10%Mg,5%In)装入反应器第四段,再将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:35%Cr,10%Mg,5%In)装入反应 器第三段,然后将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:18%Y,30%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为17%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为18:1,TCE与PCE的摩尔比为1:2,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1:1,反应的压力为1.2MPa,反应器第一段的反应温度为240℃,第二段的反应温度为330℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例5
反应器分为四段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:35%Cr,10%Mg,6%In)装入反应器第四段,再将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:35%Cr,10%Mg,6%In)装入反应器第三段,然后将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:15%Y,15%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为17%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为18:1,TCE与PCE的摩尔比为3:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为2:1,反应的压力为1.1MPa,反应器第一段的反应温度为230℃,第二段的反应温度为340℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例6
反应器分为四段,先将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:40%Cr,10%Mg,5%In)装入反应器第四段,再将100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:40%Cr,10%Mg,5%In)装入反应器第三段,然后将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:20%Y,15%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为17%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE和PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE和PCE的总摩尔数之比为20:1,TCE与PCE的摩尔比为4:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为3:1,反应的压力为1.0MPa,反应器第一段的反应温度为220℃,第二段的反应温度为350℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例7
反应器分为五段,先分别将各100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:40%Cr,5%Mg,3%In)依次装入反应器第五段、反应器第四段和反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:20%Y,20%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为17%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE的摩尔比为13:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为2:1,反应的压力为1.2MPa,反应器第一段的反应温度为240℃,第二段的反应温度为320℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例8
反应器分为五段,先分别将各100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:30%Cr,8%Mg,4%In)依次装入反应器第五段、反应器第四段和反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:20%Y,30%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为20%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、TCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与TCE的摩尔比为15:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1:1,反应的压力为0.8MPa,反应器第一段的反应温度为210℃,第二段的反应温度为310℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例9
反应器分为六段,先分别将各100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:25%Cr,8%Mg,6%In)依次装入反应器第六段、反应器第五段、反应器第四段和反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:15%Y,20%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为20%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与PCE的摩尔比为13:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为3:1,反应的压力为1.0MPa,反应器第一段的反应温度为210℃,第二段的反应温度为320℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
实施例10
反应器分为六段,先分别将各100ml活化后的(铬-镁-铟)/C催化剂(按质量百分比,催化剂组成为:30%Cr,10%Mg,3%In)依次装入反应器第六段、反应器第五段、反应器第四段和反应器第三段,再将100m活化后的(铱-锌)/氧化铬催化剂(按质量百分比,催化剂组成为:10%Y,30%Zn)装入反应器第二段,最后将100ml活化后的Cr/Al 2O 3催化剂(Cr的质量百分含量为20%)装入反应器第一段。
将反应器温度调整到反应温度,开始投料反应,HF、PCE混合预热后进入反应器进行反应,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入反应器的中部进行反应,氟化氢与PCE的摩尔比为18:1,1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为2:1,反应的压力为1.2MPa,反应器第一段的反应温度为230℃,第二段的反应温度为320℃。对反应器出口的混合物取样,经气相色谱分析,结果如表1。
表1实施例1~10试验结果
Figure PCTCN2021106782-appb-000001
Figure PCTCN2021106782-appb-000002

Claims (10)

  1. 一种联产氢氟烃的方法,其特征在于,包括以下步骤:
    (a)将氯代烯烃和氟化氢的混合物预热后进入反应器的顶部,同时将1,1,1,2,3,3-六氟丙烯和二氯甲烷进入所述反应器的中部进行反应,所述反应器分为三~六段,每段装填催化剂,反应器出口得到反应产物;
    (b)将步骤(a)得到的反应产物进入第一精馏塔进行分离,得到第一精馏塔塔顶馏分和第一精馏塔塔釜产物;
    (c)将步骤(b)得到的第一精馏塔塔顶馏分进入第二精馏塔进行分离,第二精馏塔塔顶得到氯化氢,塔釜得到第二精馏塔塔釜产物;
    (d)将步骤(c)得到的第二精馏塔塔釜产物进入第三精馏塔进行分离,第三精馏塔塔顶得到二氟甲烷产品或含二氟甲烷的混合物,第三精馏塔塔釜得到1,1,1,2,3,3,3-七氟丙烷产品或含1,1,1,2,3,3,3-七氟丙烷的混合物,当第三精馏塔塔顶得到含二氟甲烷的混合物时,将其进一步分离得到二氟甲烷产品,当第三精馏塔塔釜得到含1,1,1,2,3,3,3-七氟丙烷的混合物时,将其进一步分离得到1,1,1,2,3,3,3-七氟丙烷产品。
  2. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的氯代烯烃为三氯乙烯,所述的第三精馏塔塔顶得到二氟甲烷,所述的第三精馏塔塔釜得到1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物,将所述的1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物进入第四精馏塔进行分离,分别得到1,1,1,2-四氟乙烷产品和1,1,1,2,3,3,3-七氟丙烷产品。
  3. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的氯代烯烃为四氯乙烯,所述的第三精馏塔塔顶得到二氟甲烷和1,1,1,2,2-五氟乙烷的混合物,所述的第三精馏塔塔釜得到1,1,1,2,3,3,3-七氟丙烷产品,将所述的二氟甲烷和1,1,1,2,2-五氟乙烷的混合物进一步分离分别得到二氟甲烷产品和1,1,1,2,2-五氟乙烷产品。
  4. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的氯代烯烃为三氯乙烯和四氯乙烯的混合物,所述的第三精馏塔塔顶产物为二氟甲烷和1,1,1,2,2-五氟乙烷的混合物,所述的第三精馏塔塔釜产物为1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物,将所述的二氟甲烷和1,1,1,2,2-五氟乙烷的混合物进一 步分离分别得到二氟甲烷产品和1,1,1,2,2-五氟乙烷产品,将所述的1,1,1,2-四氟乙烷和1,1,1,2,3,3,3-七氟丙烷的混合物进入第四精馏塔进行分离,分别得到1,1,1,2-四氟乙烷产品和1,1,1,2,3,3,3-七氟丙烷产品。
  5. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的氟化氢与氯代烯烃的摩尔比为12~20:1,所述的1,1,1,2,3,3-六氟丙烯与二氯甲烷的摩尔比为1~3:1。
  6. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的反应的压力为0.8~1.2MPa,所述的反应器的第一段的反应温度为200~250℃,第二段的反应温度为280~350℃。
  7. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的反应器的第一段催化剂为氧化铝负载金属铬,其中铬的质量百分含量为15~20%。
  8. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的反应器的第二段催化剂为氧化铬负载铱和锌,其中铱的质量百分含量为10~20%,锌的质量百分含量为15~30%。
  9. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,步骤(a)中所述的反应器的第三~六段催化剂为活性炭负载铬、镁和铟,其中铬的质量百分含量为25~40%,镁的质量百分含量为5~10%,铟的质量百分含量为3~6%。
  10. 根据权利要求1所述的联产氢氟烃的方法,其特征在于,将步骤(b)中所述的第一精馏塔塔釜产物循环至反应器中继续反应。
PCT/CN2021/106782 2020-08-27 2021-07-16 一种联产氢氟烃的方法 WO2022042128A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217041198A KR102598657B1 (ko) 2020-08-27 2021-07-16 하이드로플루오르카본의 병산 방법
US17/627,127 US11713288B2 (en) 2020-08-27 2021-07-16 Method for co-production of hydrofluorocarbons
EP21859968.6A EP4206171A1 (en) 2020-08-27 2021-07-16 Method for coproducing hydrofluorocarbons
JP2021572669A JP7316738B2 (ja) 2020-08-27 2021-07-16 ハイドロフルオロカーボンの同時生産方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010874823.2A CN112125777B (zh) 2020-08-27 2020-08-27 一种联产氢氟烃的方法
CN202010874823.2 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022042128A1 true WO2022042128A1 (zh) 2022-03-03

Family

ID=73847473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106782 WO2022042128A1 (zh) 2020-08-27 2021-07-16 一种联产氢氟烃的方法

Country Status (6)

Country Link
US (1) US11713288B2 (zh)
EP (1) EP4206171A1 (zh)
JP (1) JP7316738B2 (zh)
KR (1) KR102598657B1 (zh)
CN (1) CN112125777B (zh)
WO (1) WO2022042128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020152A (zh) * 2022-12-30 2023-04-28 滨州黄海科学技术研究院有限公司 一种连续化分离六氟丙烯二聚体和六氟丙烯三聚体的系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112125777B (zh) * 2020-08-27 2022-06-03 浙江衢化氟化学有限公司 一种联产氢氟烃的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142220A (zh) * 1993-12-09 1997-02-05 大金工业株式会社 二氟甲烷和1,1,1,2-四氟乙烷的制造方法
CN1152905A (zh) 1994-07-14 1997-06-25 大金工业株式会社 1,1,1,2,3,3,3-七氟丙烷的制备方法
US5902913A (en) * 1992-06-10 1999-05-11 Imperial Chemical Industries Plc Production of hydrofluoroalkanes
CN1271337A (zh) 1997-07-31 2000-10-25 帝国化学工业公司 气相制备1,1,1,2,3,3,3-七氟丙烷
CN1599704A (zh) 2001-10-31 2005-03-23 纳幕尔杜邦公司 由氟化氢和六氟丙烯生产1,1,1,2,3,3,3-七氟丙烷的气相方法
CN1678551A (zh) 2002-08-22 2005-10-05 纳幕尔杜邦公司 制备2-氯-1,1,1,2,3,3,3-七氟丙烷,六氟丙烯和1,1,1,2,3,3,3-七氟丙烷的方法
CN1867530A (zh) 2003-10-14 2006-11-22 纳幕尔杜邦公司 制备1,1,1,3,3,3-六氟丙烷以及1,1,1,2,3,3-六氟丙烷和1,1,1,2,3,3,3-七氟丙烷中至少之一的方法
CN102989496A (zh) * 2012-12-17 2013-03-27 南京信息工程大学 用于制备1,1,1,2,3,3,3-七氟丙烷的催化剂及其制备方法和应用
CN112125777A (zh) * 2020-08-27 2020-12-25 浙江衢化氟化学有限公司 一种联产氢氟烃的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0125120B1 (ko) * 1994-07-04 1997-12-01 김은영 불화탄화수소 화합물들의 병산 제조방법
KR0152580B1 (ko) * 1995-08-23 1998-10-15 김은영 1,1,1,2-테트라플루오로에탄, 펜타플루오로에탄 및 1,1,1-트리플루오로에탄의 병산 방법
US5981813A (en) * 1996-05-22 1999-11-09 Ausimont S.P.A. Fluorination process of halogenated organic compounds
KR20010029521A (ko) * 1996-09-19 2001-04-06 크리스 로저 에이취. 1,1,1,3,3-펜타플루오로프로판 및 1-클로로-3,3,3-트리플루오로프로펜의 기상 제조방법
US6028026A (en) * 1997-08-25 2000-02-22 E. I. Du Pont De Nemours And Company Cubic chromium trifluoride and its use for halogenated hydrocarbon processing
CN100400484C (zh) * 2001-07-06 2008-07-09 昭和电工株式会社 纯化四氯乙烯的方法和生产氢氟烃的方法
CN100560551C (zh) * 2007-12-20 2009-11-18 浙江衢化氟化学有限公司 一种同时制备1,1,1,2-四氟乙烷和1,1,1-三氟乙烷的方法
CN104024185A (zh) * 2011-10-31 2014-09-03 大金工业株式会社 用于制备2-氯-3,3,3-三氟丙烯的方法
MX359832B (es) * 2011-11-04 2018-10-12 Wang Haiyou Proceso para producir 2,3,3,3-tetrafluoropropeno.
CN103319303B (zh) * 2013-05-23 2015-04-15 浙江衢化氟化学有限公司 一种同时制备1,1,1,2-四氟乙烷和二氟甲烷的方法
CN104945221B (zh) 2015-06-11 2017-07-18 浙江衢州巨新氟化工有限公司 一种联产2,3,3,3‑四氟丙烯和1,3,3,3‑四氟丙烯的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902913A (en) * 1992-06-10 1999-05-11 Imperial Chemical Industries Plc Production of hydrofluoroalkanes
CN1142220A (zh) * 1993-12-09 1997-02-05 大金工业株式会社 二氟甲烷和1,1,1,2-四氟乙烷的制造方法
CN1152905A (zh) 1994-07-14 1997-06-25 大金工业株式会社 1,1,1,2,3,3,3-七氟丙烷的制备方法
CN1271337A (zh) 1997-07-31 2000-10-25 帝国化学工业公司 气相制备1,1,1,2,3,3,3-七氟丙烷
CN1599704A (zh) 2001-10-31 2005-03-23 纳幕尔杜邦公司 由氟化氢和六氟丙烯生产1,1,1,2,3,3,3-七氟丙烷的气相方法
CN1678551A (zh) 2002-08-22 2005-10-05 纳幕尔杜邦公司 制备2-氯-1,1,1,2,3,3,3-七氟丙烷,六氟丙烯和1,1,1,2,3,3,3-七氟丙烷的方法
CN1867530A (zh) 2003-10-14 2006-11-22 纳幕尔杜邦公司 制备1,1,1,3,3,3-六氟丙烷以及1,1,1,2,3,3-六氟丙烷和1,1,1,2,3,3,3-七氟丙烷中至少之一的方法
CN102989496A (zh) * 2012-12-17 2013-03-27 南京信息工程大学 用于制备1,1,1,2,3,3,3-七氟丙烷的催化剂及其制备方法和应用
CN112125777A (zh) * 2020-08-27 2020-12-25 浙江衢化氟化学有限公司 一种联产氢氟烃的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116020152A (zh) * 2022-12-30 2023-04-28 滨州黄海科学技术研究院有限公司 一种连续化分离六氟丙烯二聚体和六氟丙烯三聚体的系统及方法

Also Published As

Publication number Publication date
US20220371975A1 (en) 2022-11-24
EP4206171A1 (en) 2023-07-05
US11713288B2 (en) 2023-08-01
CN112125777A (zh) 2020-12-25
KR20220027848A (ko) 2022-03-08
JP7316738B2 (ja) 2023-07-28
JP2022549046A (ja) 2022-11-24
CN112125777B (zh) 2022-06-03
KR102598657B1 (ko) 2023-11-03

Similar Documents

Publication Publication Date Title
US10329227B2 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
US9035111B2 (en) Method for producing fluorinated organic compounds
US7674939B2 (en) Method for producing fluorinated organic compounds
JP6223350B2 (ja) ヒドロフルオロオレフィンを製造するための方法
US7880040B2 (en) Method for producing fluorinated organic compounds
US9388099B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
WO2018036077A1 (zh) 一种联产1-氯-3,3,3-三氟丙烯、2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的方法
US20210163381A1 (en) Method for preparing 1,2-difluoroethylene and/or 1,1,2-trifluoroethane
KR102052141B1 (ko) 2,3,3,3-테트라플루오로프로펜의 제조 방법
WO2022042128A1 (zh) 一种联产氢氟烃的方法
JP2013523882A (ja) テトラフルオロオレフィンを製造するための方法
JP5389446B2 (ja) フッ素化有機化合物の製造方法
JP6152476B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
KR20080066853A (ko) 플루오르화 유기 화합물의 제조 방법
CN116060010B (zh) 引发剂、氟化催化剂以及e-1,1,1,4,4,4-六氟-2-丁烯的制备方法
JP6216832B2 (ja) 2,3,3,3−テトラフルオロプロペンを調製する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572669

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021859968

Country of ref document: EP

Effective date: 20230327