WO2018030352A1 - エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法 - Google Patents

エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法 Download PDF

Info

Publication number
WO2018030352A1
WO2018030352A1 PCT/JP2017/028620 JP2017028620W WO2018030352A1 WO 2018030352 A1 WO2018030352 A1 WO 2018030352A1 JP 2017028620 W JP2017028620 W JP 2017028620W WO 2018030352 A1 WO2018030352 A1 WO 2018030352A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
epitaxial
less
plane
epitaxial silicon
Prior art date
Application number
PCT/JP2017/028620
Other languages
English (en)
French (fr)
Inventor
直哉 野中
正 川島
勝也 大久保
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112017004005.1T priority Critical patent/DE112017004005B4/de
Priority to KR1020197003455A priority patent/KR102181277B1/ko
Priority to US16/323,438 priority patent/US11462409B2/en
Priority to CN201780048456.7A priority patent/CN109791878B/zh
Priority to JP2018533461A priority patent/JP6702422B2/ja
Publication of WO2018030352A1 publication Critical patent/WO2018030352A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02027Setting crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Definitions

  • Patent Document 1 has a main surface close to the (100) plane, and the main surface is in the [011] direction or the [0-1-1] direction with respect to the ⁇ 100> crystal axis by the following angles ⁇ , [01 A configuration in which an epitaxial film is provided on a silicon wafer inclined by the following angle ⁇ in the [ ⁇ 1] direction or the [0-11] direction is disclosed. 5 ′ ⁇ ⁇ ⁇ 2 °, ⁇ ⁇ 10 ′ or 5 ′ ⁇ ⁇ ⁇ 2 °, ⁇ ⁇ 10 ′
  • a silicon wafer for an epitaxial silicon wafer used for a low withstand voltage power MOSFET device is required to have a very low electrical resistivity, for example, less than 1.0 m ⁇ ⁇ cm.
  • hillock defects that could not be seen at 1.0 m ⁇ ⁇ cm or more may occur frequently. This hillock defect is different from a stacking fault (stacking fault, hereinafter referred to as SF) detected in an epitaxial film on a low resistivity silicon wafer using phosphorus (P) as a dopant.
  • SF stacking fault
  • P phosphorus
  • An object of the present invention is to provide an epitaxial silicon wafer in which generation of hillock defects is suppressed, and a method of manufacturing an epitaxial silicon wafer from which such an epitaxial silicon wafer can be obtained.
  • the epitaxial silicon wafer of the present invention is an epitaxial silicon wafer in which an epitaxial film is provided on a silicon wafer having an electrical resistivity of less than 1.0 m ⁇ ⁇ cm using phosphorus as a dopant, and the silicon wafer has a (100) plane.
  • the [100] axis perpendicular to the (100) plane is inclined by 0 ° 30 ′ or more and 0 ° 55 ′ or less in any direction with respect to the axis perpendicular to the main surface.
  • the density of hillock defects generated in the epitaxial silicon wafer is 1 piece / cm 2 or less.
  • the method for producing an epitaxial silicon wafer of the present invention is a method for producing an epitaxial silicon wafer in which an epitaxial film is provided on a silicon wafer having an electrical resistivity of less than 1.0 m ⁇ ⁇ cm using phosphorus as a dopant.
  • the main surface is an inclined surface, and the [100] axis perpendicular to the (100) plane is inclined by 0 ° 30 ′ or more and 0 ° 55 ′ or less in an arbitrary direction with respect to an axis orthogonal to the main surface.
  • a step of preparing the silicon wafer and a step of forming the epitaxial film on the silicon wafer is a method for producing an epitaxial silicon wafer in which an epitaxial film is provided on a silicon wafer having an electrical resistivity of less than 1.0 m ⁇ ⁇ cm using phosphorus as a dopant.
  • the main surface is an inclined surface
  • the [100] axis perpendicular to the (100) plane is inclined
  • an epitaxial silicon wafer having a hillock defect density of 1 piece / cm 2 or less and suppressed generation of hillock defects can be obtained.
  • the growth temperature of the epitaxial film is preferably 1030 ° C. or higher and lower than 1100 ° C.
  • an epitaxial film is formed at a growth temperature of 1100 ° C. or higher on a silicon wafer doped with high-concentration phosphorus so that the electrical resistivity is less than 1.0 m ⁇ ⁇ cm, a large number of stacking faults (SF) may occur. is there.
  • SF stacking faults
  • FIG. 1 is a cross-sectional view of an epitaxial silicon wafer according to an embodiment of the present invention.
  • [100] Explanatory drawing of the inclination direction of an axis
  • the epitaxial silicon wafer EW includes a silicon wafer WF and an epitaxial film EP provided on the silicon wafer WF.
  • the silicon wafer WF has a diameter of 199.8 mm or more and 200.2 mm or less, and contains red phosphorus so that the electric resistivity is less than 1.0 m ⁇ ⁇ cm.
  • the silicon wafer WF has a surface with an inclined (100) plane as a main surface WF1, and a [100] axis perpendicular to the (100) plane is perpendicular to the main surface WF1 as shown in FIG. 1B [ Inclined by 0 ° 30 ′ or more and 0 ° 55 ′ or less in any direction including the [001] direction, the [00-1] direction, the [010] direction, and the [0-10] direction.
  • the epitaxial silicon wafer EW having such a configuration has a hillock defect density of 1 piece / cm 2 or less per piece.
  • the hillock defect is a defect that can be measured by, for example, a surface inspection apparatus (Magics manufactured by Lasertec Corporation), as shown in the photograph of FIG. This is a convex defect protruding into the surface.
  • the hillock defect has a shape different from the SF on the epitaxial film generated by the minute pits caused by the oxygen and red phosphorus clusters and the defect on the epitaxial film caused by the COP (Crystal Originated Particle) of the substrate.
  • the reason why the number of hillock defects decreases when the tilt angle of the [100] axis is set in the above range is estimated as follows.
  • silicon atoms supplied during the epitaxial growth are adsorbed on the Terrace and moved to a step that is stable in terms of energy. From there, the silicon atoms move to the energetically stable Kink, and Step advances and epitaxial growth takes place. Therefore, when the tilt angle of the [100] axis is as small as less than 0 ° 30 ′, since the Terrace width is wide, the supplied silicon atoms cannot reach Step and Kink, and the oxygen and phosphorus formed on the Terrace surface cannot be reached.
  • the tilt angle of the [100] axis exceeds 0 ° 55 ', there is a concern about quality deterioration such as the roughness of the epitaxial film surface depending on the tilt direction, and the channeling phenomenon during ion implantation changes, resulting in device characteristics. May have an effect.
  • the inclination angle of the [100] axis is preferably 0 ° 55 ′ or less.
  • a method for manufacturing the epitaxial silicon wafer EW Next, a method for manufacturing the epitaxial silicon wafer EW will be described.
  • a silicon wafer WF having the above-described configuration is prepared.
  • the [001] axis includes red phosphorus so that the electrical resistivity is 0.5 m ⁇ ⁇ cm or more and less than 1.0 m ⁇ ⁇ cm, and the central axis is perpendicular to the (100) plane.
  • the silicon single crystal may be sliced not by a plane orthogonal to the central axis but by an inclined plane with respect to the orthogonal plane.
  • a silicon single crystal whose central axis is inclined by 0 ° 30 ′ or more and 0 ° 55 ′ or less in an arbitrary direction with respect to the [100] axis perpendicular to the (100) plane is manufactured. Slicing may be performed in a plane orthogonal to the axis. In addition, the following can be illustrated as manufacturing conditions of the said silicon single crystal.
  • Red phosphorus concentration 7.38 ⁇ 10 19 atoms / cm 3 or more and 1.64 ⁇ 10 20 atoms / cm 3 or less
  • Oxygen concentration 2 ⁇ 10 17 atoms / cm 3 or more and 20 ⁇ 10 17 atoms / cm 3 or less
  • the obtained silicon wafer WF is subjected to lapping, chemical etching, mirror polishing, and other processes as necessary.
  • an epitaxial film EP is formed on one surface of the silicon wafer WF.
  • the method of forming this epitaxial film EP is not particularly limited, and any known vapor deposition method and vapor phase can be used so that the epitaxial film EP required as a substrate for manufacturing a semiconductor device can be vapor-phase grown.
  • a growth apparatus can be used, and the source gas and film formation conditions may be appropriately selected according to the selected method and apparatus. Examples of the conditions for forming the epitaxial film EP include the following. Dopant gas: Phosphine (PH 3 ) gas
  • Raw material source gas Trichlorosilane (SiHCl 3 ) gas
  • Carrier gas hydrogen gas Growth temperature: 1030 ° C. or higher and lower than 1110 ° C.
  • Epitaxial film thickness 0.1 ⁇ m or higher and 10 ⁇ m or lower Electricity of epitaxial film Resistivity: 0.01 ⁇ ⁇ cm or more and 10 ⁇ ⁇ cm or less
  • the epitaxial growth furnace is preferably a single wafer furnace and lamp heating is preferable. As a result, misfit dislocations that occur simultaneously due to thermal stress can also be reduced.
  • a silicon single crystal whose central axis coincides with the [100] axis is manufactured under the following manufacturing conditions, and this silicon single crystal is not a plane orthogonal to the central axis but an inclined plane with respect to the orthogonal plane.
  • the [100] axis perpendicular to the (100) plane is the same as the experimental examples 1, 2, and 3 in the [0-10] direction with respect to the axis perpendicular to the main surface
  • Samples of Experimental Examples 4, 5, and 6 were obtained by performing each treatment under the same conditions as Experimental Examples 1, 2, and 3 except that a silicon wafer inclined by an angle was prepared.
  • Experimental Examples 8, 9, 11, 12, 14, 15, 17, 18, 23, 24, 26, with a substrate resistivity of less than 1.0 m ⁇ ⁇ cm and a hillock defect density of 1 piece / cm 2 or less, 27, 31 to 36 correspond to examples of the present invention, and Experimental Examples 7, 10, 13, 16, 22, 25 in which the substrate resistivity is less than 1.0 m ⁇ ⁇ cm and the hillock defect density exceeds 1 piece / cm 2. , 28, 29 and 30 correspond to comparative examples of the present invention.
  • the substrate resistivity is 0.8 m ⁇ ⁇ cm and 0.6 m ⁇ ⁇ cm, and the inclination direction and inclination angle of the [100] axis and the hillock defect density in Experimental Examples 7 to 18 and 22 to 36.
  • the relationship is shown in FIG. In FIG. 3, [100] represents the [100] axis, and [001], [011], [010], [01-1], [00-1], [0-1-1], [0- 10] and [0-11] represent the tilt direction. Further, two concentric circles indicated by broken lines represent the inclination angle, and represent 0 ° 30 ′ and 0 ° 55 ′ in order from the inside.
  • the (100) plane is inclined to the main surface, and the [100] axis perpendicular to the (100) plane is the [001] direction with respect to the axis perpendicular to the main surface.
  • Experimental examples 8, 9, 11, 12, 14, 15, 17, 18, 23, 24, 26, 27 are formed by forming an epitaxial film on the silicon wafer at a growth temperature of 1030 ° C. or higher and lower than 1100 ° C. , 31 to 36 can be obtained.
  • a plane inclined by a plane equivalent to the (100) plane is a main surface, and an axis equivalent to the [100] axis is perpendicular to the main surface in the [00-1] direction, the [010] direction,
  • the same effect can be obtained when a silicon wafer tilted in a direction equivalent to a predetermined composite angle direction between the [01-1] direction, the [0-11] direction, and the [0-10] direction is used.
  • Experimental Examples 1 to 36 except that an epitaxial film was formed at a growth temperature of 1100 ° C. on a silicon wafer manufactured under the same conditions as in Experimental Examples 1 to 36.
  • Samples of Experimental Examples 37 to 72 were obtained by performing each treatment under the same conditions as in Example 1. Then, the same surface inspection as in Experimental Examples 1 to 36 was performed on each of the samples of Experimental Examples 37 to 72, and the hillock defect density in all samples was 1 piece / cm 2 or less. Accordingly, even when the substrate resistivity is less than 1.0 m ⁇ ⁇ cm and the inclination angle is less than 0 ° 30 ′, the hillock defect density is 1 piece / cm 2 or less when the growth temperature is 1100 ° C. or more. It was confirmed that
  • EP Epitaxial film
  • EW Epitaxial silicon wafer
  • WF Silicon wafer
  • WF1 Main surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

リンをドーパントとした電気抵抗率が1.0mΩ・cm未満のシリコンウェーハWFに、エピタキシャル膜EPが設けられたエピタキシャルシリコンウェーハEWであって、シリコンウェーハWFは、(100)面が傾斜した面を主表面WF1とし、(100)面に垂直な[100]軸が主表面WF1に直交する軸に対して任意の方向に0°16'以上0°55'以下だけ傾斜しており、エピタキシャルシリコンウェーハEWに発生しているヒロック欠陥密度が1個/cm以下である。

Description

エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法
 本発明は、エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法に関する。
 従来、エピタキシャルシリコンウェーハの欠陥発生を抑制するための検討がなされている(例えば、特許文献1参照)。
 特許文献1には、(100)面に近い主表面を持ち、この主表面が<100>結晶軸に対し、[011]方向または[0-1-1]方向に以下の角度θ、[01-1]方向または[0-11]方向に以下の角度φだけ傾斜したシリコンウェーハに、エピタキシャル膜を設けた構成が開示されている。
  5′≦θ≦2°、φ≦10′または、5′≦φ≦2°、θ≦10′
特開昭62-226891号公報
 ところで、近年、低耐圧パワーMOSFETデバイスに用いられるエピタキシャルシリコンウェーハ用のシリコンウェーハとして、電気抵抗率が例えば1.0mΩ・cm未満といった非常に低いものが要求されている。しかし、このような電気抵抗率が非常に低いシリコンウェーハを用いたエピタキシャルシリコンウェーハでは、1.0mΩ・cm以上の場合には見られなかったヒロック(hillock)欠陥が多発するおそれがある。
 このヒロック欠陥は、リン(P)をドーパントとした低抵抗率のシリコンウェーハ上のエピタキシャル膜において検出される積層欠陥(スタッキングフォルト、以下、SFという)とは異なった性状であり、基板の微小の傾角度に依存することを突き止め本発明を完成するに至った。
 本発明の目的は、ヒロック欠陥の発生が抑制されたエピタキシャルシリコンウェーハ、および、このようなエピタキシャルシリコンウェーハを得られるエピタキシャルシリコンウェーハの製造方法を提供することにある。
 本発明のエピタキシャルシリコンウェーハは、リンをドーパントとした電気抵抗率が1.0mΩ・cm未満のシリコンウェーハに、エピタキシャル膜が設けられたエピタキシャルシリコンウェーハであって、前記シリコンウェーハは、(100)面が傾斜した面を主表面とし、前記(100)面に垂直な[100]軸が前記主表面に直交する軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜しており、前記エピタキシャルシリコンウェーハに発生しているヒロック欠陥密度が1個/cm以下であることを特徴とする。
 本発明のエピタキシャルシリコンウェーハの製造方法は、リンをドーパントとした電気抵抗率が1.0mΩ・cm未満のシリコンウェーハに、エピタキシャル膜が設けられたエピタキシャルシリコンウェーハの製造方法であって、(100)面が傾斜した面を主表面とし、前記(100)面に垂直な[100]軸を前記主表面に直交する軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜させた前記シリコンウェーハを準備する工程と、前記シリコンウェーハに前記エピタキシャル膜を形成する工程とを備えていることを特徴とする。
 本発明のエピタキシャルシリコンウェーハの製造方法によれば、ヒロック欠陥密度が1個/cm以下となり、ヒロック欠陥の発生が抑制されたエピタキシャルシリコンウェーハを得られる。
 本発明のエピタキシャルシリコンウェーハの製造方法において、前記エピタキシャル膜の成長温度は、1030℃以上1100℃未満であることが好ましい。
 電気抵抗率が1.0mΩ・cm未満となるように高濃度のリンをドープしたシリコンウェーハに対し、1100℃以上の成長温度でエピタキシャル膜を形成すると、積層欠陥(SF)が多数発生するおそれがある。
 本発明によれば、1030℃以上1100℃未満の成長温度でエピタキシャル膜を形成することで、ヒロック欠陥に加えてSFの発生が抑制されたエピタキシャルシリコンウェーハを得られる。
本発明の一実施形態に係るエピタキシャルシリコンウェーハの断面図。 [100]軸の傾斜方向の説明図。 ヒロック欠陥の写真。 本発明の実施例に係る基板抵抗率が0.8mΩ・cm、0.6mΩ・cmの場合における[100]軸の傾斜方向および傾斜角度と、ヒロック欠陥密度との関係を示す図。
[実施形態]
 以下、本発明の一実施形態について図面を参照して説明する。
〔エピタキシャルシリコンウェーハの構成〕
 図1Aに示すように、エピタキシャルシリコンウェーハEWは、シリコンウェーハWFと、このシリコンウェーハWFに設けられたエピタキシャル膜EPとを備えている。
 シリコンウェーハWFは、直径が199.8mm以上200.2mm以下であり、電気抵抗率が1.0mΩ・cm未満になるように赤リンを含んでいる。シリコンウェーハWFは、(100)面が傾斜した面を主表面WF1としており、(100)面に垂直な[100]軸が主表面WF1に直交する軸に対して、図1Bに示すような[001]方向、[00-1]方向、[010]方向および[0-10]方向を含む任意の方向に0°30′以上0°55′以下だけ傾斜している。
 このような構成のエピタキシャルシリコンウェーハEWにおける1枚あたりのヒロック欠陥密度は、1個/cm以下である。
 ヒロック欠陥とは、例えば表面検査装置(レーザーテック社製Magics)で測定可能な欠陥であり、図2の写真に示すように、サイズが3μm以上10μm以下の略円形、かつ、エピタキシャル膜の表面からわずかに突出した凸形状の欠陥である。ヒロック欠陥は、酸素と赤リンのクラスターに起因する微小ピットにより発生するエピタキシャル膜上のSFや、基板のCOP(Crystal Originated Particle)を起因としたエピタキシャル膜上の欠陥とは異なった形状を有する。
 ここで、[100]軸の傾斜角度を上記範囲にした場合に、ヒロック欠陥数が減少する理由は以下のように推測される。
 一般的に、エピタキシャル膜の成長は、エピタキシャル成長中に供給されたシリコン原子が、Terraceに吸着し、エネルギー的に安定なStepに移動する。そこからさらに、シリコン原子がエネルギー的に安定なKinkへ移動することで、Stepが前進しエピタキシャル成長が行われる。
 そこで、[100]軸の傾斜角度が0°30′未満と小さい場合は、Terrace幅が広いため、供給されたシリコン原子はStepおよびKinkに到達できず、Terrace面に形成された酸素とリンのクラスター(微小析出物)に起因した微小ピットにトラップされ,そのシリコン原子を成長核とした異常生成によりヒロック欠陥が発生すると考えられる。
 一方、[100]軸の傾斜角度が0°30′以上と大きい場合は、Terrace幅は狭いため、供給されたシリコン原子は容易にStepおよびKinkに到達できるようになりヒロック欠陥は減少する。
 また、[100]軸の傾斜角度が0°55′を超える場合、傾斜方向によってはエピタキシャル膜表面の粗さなどの品質劣化が懸念され、イオン注入時のチャネリング現象が変化して、デバイス特性に影響を及ぼすおそれがある。このことから、[100]軸の傾斜角度は、0°55′以下であることが好ましい。
〔エピタキシャルシリコンウェーハの製造方法〕
 次に、上記エピタキシャルシリコンウェーハEWの製造方法について説明する。
 まず、上述の構成を有するシリコンウェーハWFを準備する。シリコンウェーハWFを得る方法としては、電気抵抗率が0.5mΩ・cm以上1.0mΩ・cm未満になるように赤リンを含み、かつ、中心軸が(100)面に垂直な[001]軸と一致するシリコン単結晶を製造し、このシリコン単結晶をその中心軸に対する直交面ではなく、この直交面に対する傾斜面でスライスしてもよい。また、中心軸が(100)面に垂直な[100]軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜したシリコン単結晶を製造し、このシリコン単結晶をその中心軸に対する直交面でスライスしてもよい。
 なお、上記シリコン単結晶の製造条件としては、以下のものが例示できる。
   赤リン濃度:7.38×1019atoms/cm以上1.64×1020atoms/cm以下
   酸素濃度:2×1017atoms/cm以上20×1017atoms/cm以下
 そして、この得られたシリコンウェーハWFに対し、必要に応じて、ラッピング、化学エッチング、鏡面研磨、その他の処理を行う。
 その後、シリコンウェーハWFの一方の面にエピタキシャル膜EPを形成する。
 このエピタキシャル膜EPを形成する方法は、特に限定されるものでなく、半導体デバイスの製造用基板として要求されるエピタキシャル膜EPを気相成長できるよう、公知のいずれの気相成膜方法並びに気相成長装置を用いることができ、選択した方法や装置などに応じてソースガスや成膜条件を適宜選定するとよい。
 なお、エピタキシャル膜EPの形成条件としては、以下のものが例示できる。
   ドーパントガス:フォスフィン(PH)ガス
   原料ソースガス:トリクロロシラン(SiHCl)ガス
   キャリアガス:水素ガス
   成長温度:1030℃以上1110℃未満
   エピタキシャル膜の厚さ:0.1μm以上10μm以下
   エピタキシャル膜の電気抵抗率:0.01Ω・cm以上10Ω・cm以下
 また、シリコンウェーハの直径が200mm以上の場合は、エピタキシャル成長炉は枚葉炉でランプ加熱が好ましい。これにより熱ストレスにより同時に発生するミスフィット転位も低減させることができる。
 次に、本発明を実施例および比較例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
[エピタキシャルシリコンウェーハの製造方法]
〔実験例1〕
 まず、表1に示すように、電気抵抗率(基板抵抗率)が1.0mΩ・cmであり、かつ、(100)面が傾斜した面を主表面とし、(100)面に垂直な[100]軸が主表面に直交する軸に対して[001]方向に0°15′だけ傾斜したシリコンウェーハを準備した。シリコンウェーハの直径は、200mmである。
 上記シリコンウェーハを得る際、以下の製造条件で中心軸が[100]軸と一致するシリコン単結晶を製造し、このシリコン単結晶をその中心軸に対する直交面ではなく、この直交面に対する傾斜面でスライスした。
   赤リン濃度:7.38×1019atoms/cm
   酸素濃度:7.4×1017atoms/cm
 そして、このシリコンウェーハ上に以下の条件でエピタキシャル膜を成長させて、実験例1のサンプルを得た。
   ドーパントガス:フォスフィン(PH)ガス
   原料ソースガス:トリクロロシラン(SiHCl)ガス
   キャリアガス:水素ガス
   成長温度:1040℃(1030℃以上1050℃以下)
   エピタキシャル膜の厚さ:5μm
   エピタキシャル膜の電気抵抗率:0.2Ω・cm
〔実験例2~6〕
 シリコン単結晶の切断条件を変更して、表1に示すように、(100)面に垂直な[100]軸が主表面に直交する軸に対して実験例1とそれぞれ同じ方向に0°30′,0°45′だけ傾斜したシリコンウェーハを準備したこと以外は、実験例1と同じ条件で各処理を行い実験例2,3のサンプルを得た。
 シリコン単結晶の切断条件を変更して、(100)面に垂直な[100]軸が主表面に直交する軸に対して[0-10]方向に、実験例1,2,3とそれぞれ同じ角度だけ傾斜したシリコンウェーハを準備したこと以外は、実験例1,2,3と同じ条件で各処理を行い実験例4,5,6のサンプルを得た。
〔実験例7~18〕
 シリコン単結晶の赤リン濃度を調整して、表1~2に示すように、基板抵抗率を0.8mΩ・cm、0.6mΩ・cmとしたこと以外は、実験例1~6と同じ条件で各処理を行い、実験例7~18のサンプルを得た。
〔実験例19~27〕
 シリコン単結晶の切断条件を変更して、表1~2に示すように、(100)面に垂直な[100]軸が主表面に直交する軸に対して[0-11]方向に、実験例1~3,7~9,13~15とそれぞれ同じ角度だけ傾斜したシリコンウェーハを準備したこと以外は、実験例1~3,7~9,13~15と同じ条件で各処理を行い実験例19~21,22~24,25~27のサンプルを得た。
〔実験例28~29〕
 シリコン単結晶の切断条件を変更して、表2に示すように、(100)面に垂直な[100]軸が主表面に直交する軸に対して実験例13とそれぞれ同じ方向に0°20′,0°25′だけ傾斜したシリコンウェーハを準備したこと以外は、実験例13と同じ条件で各処理を行い実験例28,29のサンプルを得た。
〔実験例30~36〕
 シリコン単結晶の切断条件を変更して、表2に示すように、(100)面に垂直な[100]軸が主表面に直交する軸に対して[0-11]方向と[0-10]方向の間の所定の合成角方向に、0°20′,0°35′,0°45′,0°55′だけ傾斜したシリコンウェーハを準備したこと以外は、実験例25と同じ条件で各処理を行い実験例30~36のサンプルを得た。なお、「[0-11]方向と[0-10]方向の間の所定の合成角」とは、表2に示す[0-10]方向の角度と[001]方向の角度との合成角度である。
[評価]
 表面検査装置(レーザーテック社製Magics)を用いて、実験例1~18の各サンプル1枚ずつにおける表面検査を行い、ヒロック欠陥密度を評価した。その結果を表1に示す。
 表1~2に示すように、実験例7,10,13,16,22,25,28~30ではヒロック欠陥密度が1個/cmを超え、それ以外の実験例では、ヒロック欠陥密度が1個/cm以下であった。
 これは、酸素と赤リンのクラスターに起因する微小ピットにより発生するエピタキシャル膜上のSFとは異なった挙動と考えられ、詳細な発生機構は解明されていないが結晶の微小面方位に強く依存する挙動である。
 このことから、基板抵抗率が1.0mΩ・cm未満、ヒロック欠陥密度が1個/cm以下の実験例8,9,11,12,14,15,17,18,23,24,26,27,31~36が本発明の実施例に相当し、基板抵抗率が1.0mΩ・cm未満、ヒロック欠陥密度が1個/cmを超える実験例7,10,13,16,22,25,28,29,30が本発明の比較例に相当する。
 また、基板抵抗率が0.8mΩ・cm、0.6mΩ・cmの場合であって、実験例7~18,22~36における[100]軸の傾斜方向および傾斜角度と、ヒロック欠陥密度との関係を図3に示す。
 図3において、[100]は[100]軸を表し、[001]、[011]、[010]、[01-1]、[00-1]、[0-1-1]、[0-10]、[0-11]は傾斜方向を表す。また、破線で示す2個の同心円は傾斜角度を表し、内側から順に0°30′、0°55′を表す。さらに、ヒロック欠陥密度が1個/cm以下の場合を「○」で示し、1個/cmを超える場合を「×」で示す。
 表1~2および図3に示すように、(100)面が傾斜した面を主表面とし、(100)面に垂直な[100]軸が主表面に直交する軸に対して[001]方向、[0-10]方向、[0-11]方向、[0-11]方向と[0-10]方向の間の所定の合成角方向に0°30′以上0°55′以下だけ傾斜したシリコンウェーハに対して、1030℃以上1100℃未満の成長温度でエピタキシャル膜を形成することで、ヒロック欠陥の発生が抑制されたエピタキシャルシリコンウェーハを得られることが確認できた。
 また、[001]方向、[010]方向、[00-1]方向および[0-10]方向、ならびに、[011]方向、[01-1]方向、[0-1-1]および[0-11]方向は、それぞれ等価であるため、任意の方向に傾斜した場合にも、実験例1~36と同様の結果が得られる。
 このことから、(100)面が傾斜した面を主表面とし、(100)面に垂直な[100]軸が主表面に直交する軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜したシリコンウェーハに対して、つまり、図3における0°30′を表す円と0°55′を表す円との間の領域Aに含まれる任意の方向に、任意の角度だけ傾斜したシリコンウェーハに対して、1030℃以上1100℃未満の成長温度でエピタキシャル膜を形成することで、実験例8,9,11,12,14,15,17,18,23,24,26,27,31~36と同様の効果を得られる。
 さらに、(100)面と等価な面が傾斜した面を主表面とし、[100]軸と等価な軸が主表面に直交する軸に対して、[00-1]方向、[010]方向、[01-1]方向、[0-11]方向と[0-10]方向の間の所定の合成角方向とそれぞれ等価な方向に傾斜したシリコンウェーハを用いた場合も、同じ効果を奏する。
 また、基板抵抗率が1.0mΩ・cm以上の実験例1~6,19~21は、本発明の参考例に相当し、基板抵抗率が1.0mΩ・cm未満の場合にヒロック欠陥密度が1個/cmを超える0°30′未満の傾斜角度のときでも、ヒロック欠陥密度が1個/cm以下となることが確認できた。
 なお、表1~2には示さないが、実験例1~36とそれぞれ同じ条件で製造したシリコンウェーハに対して、1100℃の成長温度でエピタキシャル膜を形成したこと以外は、実験例1~36と同じ条件で各処理を行い実験例37~72のサンプルを得た。
 そして、実験例37~72のサンプル各1枚に対して、実験例1~36と同様の表面検査を行ったところ、全てのサンプルにおいてヒロック欠陥密度が1個/cm以下であった。
 このことから、基板抵抗率が1.0mΩ・cm未満、かつ、傾斜角度が0°30′未満の場合であっても、成長温度が1100℃以上のときにはヒロック欠陥密度が1個/cm以下になることが確認できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 EP…エピタキシャル膜、EW…エピタキシャルシリコンウェーハ、WF…シリコンウェーハ、WF1…主表面。

Claims (3)

  1.  リンをドーパントとした電気抵抗率が1.0mΩ・cm未満のシリコンウェーハに、エピタキシャル膜が設けられたエピタキシャルシリコンウェーハであって、
     前記シリコンウェーハは、(100)面が傾斜した面を主表面とし、前記(100)面に垂直な[100]軸が前記主表面に直交する軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜しており、
     前記エピタキシャルシリコンウェーハに発生しているヒロック欠陥密度が1個/cm以下であることを特徴とするエピタキシャルシリコンウェーハ。
  2.  リンをドーパントとした電気抵抗率が1.0mΩ・cm未満のシリコンウェーハに、エピタキシャル膜が設けられたエピタキシャルシリコンウェーハの製造方法であって、
     (100)面が傾斜した面を主表面とし、前記(100)面に垂直な[100]軸を前記主表面に直交する軸に対して任意の方向に0°30′以上0°55′以下だけ傾斜させた前記シリコンウェーハを準備する工程と、
     前記シリコンウェーハに前記エピタキシャル膜を形成する工程とを備えていることを特徴とするエピタキシャルシリコンウェーハの製造方法。
  3.  請求項2に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記エピタキシャル膜の成長温度は、1030℃以上1100℃未満であることを特徴とするエピタキシャルシリコンウェーハの製造方法。
PCT/JP2017/028620 2016-08-10 2017-08-07 エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法 WO2018030352A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112017004005.1T DE112017004005B4 (de) 2016-08-10 2017-08-07 Verfahren zur herstellung von siliziumepitaxialwafern
KR1020197003455A KR102181277B1 (ko) 2016-08-10 2017-08-07 에피택셜 실리콘 웨이퍼의 제조 방법
US16/323,438 US11462409B2 (en) 2016-08-10 2017-08-07 Epitaxial silicon wafer, and method for manufacturing epitaxial silicon wafer
CN201780048456.7A CN109791878B (zh) 2016-08-10 2017-08-07 外延硅晶片及外延硅晶片的制造方法
JP2018533461A JP6702422B2 (ja) 2016-08-10 2017-08-07 エピタキシャルシリコンウェーハの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157965 2016-08-10
JP2016-157965 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030352A1 true WO2018030352A1 (ja) 2018-02-15

Family

ID=61162262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028620 WO2018030352A1 (ja) 2016-08-10 2017-08-07 エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法

Country Status (6)

Country Link
US (1) US11462409B2 (ja)
JP (1) JP6702422B2 (ja)
KR (1) KR102181277B1 (ja)
CN (1) CN109791878B (ja)
DE (1) DE112017004005B4 (ja)
WO (1) WO2018030352A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103333A (ja) * 2012-11-22 2014-06-05 Shin Etsu Handotai Co Ltd シリコンウェーハの熱処理方法
WO2014175120A1 (ja) * 2013-04-24 2014-10-30 Sumco Techxiv株式会社 単結晶の製造方法およびシリコンウェーハの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226891A (ja) 1986-03-28 1987-10-05 Shin Etsu Handotai Co Ltd 半導体装置用基板
US6846754B2 (en) 2002-02-22 2005-01-25 Showa Denko Kabushiki Kaisha Boron phosphide-based semiconductor layer and vapor phase growth method thereof
JP4089354B2 (ja) * 2002-08-30 2008-05-28 株式会社Sumco エピタキシャルウェーハとその製造方法
GB0407804D0 (en) * 2004-04-06 2004-05-12 Qinetiq Ltd Manufacture of cadmium mercury telluride
JP2007180270A (ja) * 2005-12-28 2007-07-12 Sumitomo Chemical Co Ltd 化合物半導体エピタキシャル基板の製造方法
JP2008091887A (ja) * 2006-09-05 2008-04-17 Sumco Corp エピタキシャルシリコンウェーハおよびその製造方法
JP5544986B2 (ja) * 2010-04-01 2014-07-09 信越半導体株式会社 貼り合わせsoiウェーハの製造方法、及び貼り合わせsoiウェーハ
JP6009237B2 (ja) * 2012-06-18 2016-10-19 Sumco Techxiv株式会社 エピタキシャルシリコンウェーハの製造方法、および、エピタキシャルシリコンウェーハ
CN103903338A (zh) * 2012-12-26 2014-07-02 鸿富锦精密工业(武汉)有限公司 自动售货机
JP5892232B1 (ja) 2014-12-24 2016-03-23 株式会社Sumco 単結晶の製造方法およびシリコンウェーハの製造方法
US10867791B2 (en) * 2017-04-06 2020-12-15 Sumco Corporation Method for manufacturing epitaxial silicon wafer and epitaxial silicon wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103333A (ja) * 2012-11-22 2014-06-05 Shin Etsu Handotai Co Ltd シリコンウェーハの熱処理方法
WO2014175120A1 (ja) * 2013-04-24 2014-10-30 Sumco Techxiv株式会社 単結晶の製造方法およびシリコンウェーハの製造方法

Also Published As

Publication number Publication date
US11462409B2 (en) 2022-10-04
CN109791878A (zh) 2019-05-21
DE112017004005B4 (de) 2024-07-18
KR102181277B1 (ko) 2020-11-20
JP6702422B2 (ja) 2020-06-03
DE112017004005T5 (de) 2019-04-18
KR20190025709A (ko) 2019-03-11
JPWO2018030352A1 (ja) 2019-06-13
US20190181007A1 (en) 2019-06-13
CN109791878B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
JP5544986B2 (ja) 貼り合わせsoiウェーハの製造方法、及び貼り合わせsoiウェーハ
TWI540618B (zh) Silicon wafer and its manufacturing method
JP5131675B2 (ja) 炭化ケイ素基板の製造方法
CN104781919A (zh) 半导体外延晶片的制造方法、半导体外延晶片以及固体摄像元件的制造方法
KR101856012B1 (ko) 에피택셜 웨이퍼의 제조방법 및 에피택셜 웨이퍼
JP6448805B2 (ja) エピタキシャルにコーティングされた半導体ウェハとエピタキシャルにコーティングされた半導体ウェハの製造方法
TWI688002B (zh) 磊晶矽晶圓的製造方法、磊晶矽晶圓及固體攝像元件的製造方法
JP6442818B2 (ja) シリコンウェーハおよびその製造方法
WO2018030352A1 (ja) エピタキシャルシリコンウェーハ、および、エピタキシャルシリコンウェーハの製造方法
JP5359991B2 (ja) シリコンエピタキシャルウェーハ及びその製造方法
JP2010153637A (ja) 貼り合わせウェーハの製造方法
CN111051581B (zh) 碳化硅外延晶片
JP6442817B2 (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP6248458B2 (ja) 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP6598140B2 (ja) エピタキシャルウェーハの製造方法
JP6540607B2 (ja) 接合ウェーハの製造方法および接合ウェーハ
JP2018164006A (ja) 貼り合わせウェーハの製造方法及び貼り合わせウェーハ
JP7380179B2 (ja) 多層soiウェーハ及びその製造方法並びにx線検出センサ
WO2020136973A1 (ja) シリコンエピタキシャルウェーハの製造方法及びシリコンエピタキシャルウェーハ
WO2020136972A1 (ja) シリコンエピタキシャルウェーハの製造方法及びシリコンエピタキシャルウェーハ
CN109075039B (zh) 外延晶片的制造方法
JP2024066069A (ja) (111)面を主面とする単結晶ダイヤモンド膜
JP2012064802A (ja) 貼り合わせウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533461

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003455

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839423

Country of ref document: EP

Kind code of ref document: A1