WO2018021406A1 - 金属錯体およびそれを用いた電子輸送材料 - Google Patents

金属錯体およびそれを用いた電子輸送材料 Download PDF

Info

Publication number
WO2018021406A1
WO2018021406A1 PCT/JP2017/027043 JP2017027043W WO2018021406A1 WO 2018021406 A1 WO2018021406 A1 WO 2018021406A1 JP 2017027043 W JP2017027043 W JP 2017027043W WO 2018021406 A1 WO2018021406 A1 WO 2018021406A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
synthesis
group
complex
pyridin
Prior art date
Application number
PCT/JP2017/027043
Other languages
English (en)
French (fr)
Inventor
正敬 渡辺
正信 小坪
坂井 由美
健太郎 大和
剛 林田
納戸 光治
Original Assignee
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社 filed Critical 大電株式会社
Priority to KR1020197002967A priority Critical patent/KR102182119B1/ko
Priority to KR1020207026855A priority patent/KR102305222B1/ko
Priority to JP2018530353A priority patent/JP6786603B2/ja
Priority to CN202110250118.XA priority patent/CN112961102B/zh
Priority to CN201780054964.6A priority patent/CN109689665B/zh
Publication of WO2018021406A1 publication Critical patent/WO2018021406A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/04Sodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/06Potassium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass

Definitions

  • the present invention relates to a novel alkali metal complex and alkaline earth metal complex. Moreover, this invention relates to the electron transport material for organic electroluminescent elements using this novel metal complex. More specifically, the present invention relates to an electron transport material that can be formed by a wet method in the manufacture of an organic electroluminescent device having a multilayer structure, and that is excellent in electron injection characteristics, electron transport characteristics, and durability.
  • organic electroluminescent element in which a light-emitting organic layer (organic electroluminescence layer) is provided between an anode and a cathode (hereinafter sometimes referred to as “organic EL element”) has a lower direct current voltage than an inorganic EL element. Therefore, it has the advantages of high brightness and luminous efficiency, and is attracting attention as a next-generation display device. Recently, full-color display panels have been put on the market, and research and development have been actively conducted for increasing the display surface and improving the durability.
  • An organic EL element is an electroluminescent element that emits light by electrically exciting an organic compound by recombination of injected electrons and holes.
  • Research on organic EL devices has been conducted by many companies and research institutions since the report of Tang et al. Of Kodak Co., Ltd. (see Non-Patent Document 1), which showed that organic laminated thin film devices emit light with high brightness.
  • a typical structure of an organic EL element by Kodak is a diamine compound as a hole transport material on an ITO (indium tin oxide) glass substrate as a transparent anode, tris (8-quinolinolato) aluminum (III) as a light emitting material, A green light emission of about 1000 cd / cm 2 was observed at a driving voltage of about 10 V, in which Mg: Ag as a cathode was sequentially laminated.
  • the stacked organic EL element currently being researched and put into practical use basically follows the configuration of Kodak.
  • Organic EL elements are roughly classified into high-molecular organic EL elements and low-molecular organic EL elements depending on their constituent materials.
  • the former is manufactured by a wet method, and the latter is manufactured by either a vapor deposition method or a wet method.
  • it is difficult to balance the hole transport property and the electron transport property in the conductive polymer material used for the fabrication of the polymer organic EL device.
  • Laminated low-molecular-weight organic EL elements with separated light emitting functions are becoming mainstream.
  • Patent Document 1 proposes a metal compound is mixed in an electron injection layer by co-evaporating an organic compound having an electron transport property and a metal compound containing an alkali metal which is a metal having a low work function (electronegativity).
  • Patent Document 2 proposes using a phosphine oxide compound as an electron transport material.
  • Patent Document 3 proposes a method of doping an organic compound having a coordination site with an alkali metal as a configuration of the electron transport layer.
  • the electron injection layer, the electron transport material, and the electron transport layer described in Patent Documents 1 to 3 are all for the purpose of reducing the operating voltage and improving the light emission efficiency. It is hard to say that durability has been improved.
  • the electron transport layer and the electron injection layer are formed by vacuum deposition, a large-scale facility is required, and when two or more materials are deposited at the same time, the deposition rate is precise. It is difficult to make adjustments, and there is a problem that productivity is poor.
  • the production of the stacked low molecular weight organic EL element by the wet method has a problem that it is difficult to select the material, but the latter using the difference in solubility of the constituent materials of each layer.
  • This method is considered suitable.
  • one of the factors that make it difficult to stack using the difference in solubility of the constituent materials of each layer is that most of the conductive polymers and organic semiconductors that can be spin-coated are relatively low in toluene, chloroform, tetrahydrofuran, etc. It is soluble only in a solvent having a high solvent capacity.
  • the present inventors have developed a phosphine oxide oligomer having an electron transporting property that can be spin-coated onto a conductive polymer that is generally soluble in alcohol and generally hardly soluble in alcohol, although it has a relatively high molecular weight.
  • a phosphine oxide oligomer having an electron transporting property that can be spin-coated onto a conductive polymer that is generally soluble in alcohol and generally hardly soluble in alcohol, although it has a relatively high molecular weight.
  • phosphine oxide oligomer By using this phosphine oxide oligomer, a heterostructure of hole injection layer / light emitting layer / electron transport layer by a solution method was realized (Patent Document 4).
  • phosphine oxide derivatives show good electron transport properties when used in organic EL devices, as described in Non-Patent Document 2, the anion-state P—C bond dissociation energy is low and there remains a problem in durability. It was.
  • JP 2005-63910 A Japanese Patent Laid-Open No. 2002-63989 JP 2002-352916 A International Publication No. 2011/021385
  • the present invention has been made in view of the above circumstances, and an alkali metal complex or an alkaline earth metal complex (hereinafter also referred to simply as “metal complex”) having both electron transport properties and alcohol solubility, and such a metal complex.
  • An electron transport material that can be formed by a wet method in the manufacture of an organic electroluminescent device having a multilayer structure and that has excellent electron injection properties, electron transport properties, and durability, and an organic electric field using the electron transport material
  • An object is to provide a light-emitting element.
  • the metal complex having a novel ligand of the present invention has both an electron transport property and alcohol solubility like a phosphine oxide derivative, but has an unstable P—C bond in an anionic state like a phosphine oxide derivative. Therefore, both durability and high electron transportability can be achieved, and it can be suitably used as an electron transport material for organic electroluminescence devices.
  • the first aspect of the present invention that meets the above object relates to the following novel metal complex having both electron transporting properties and alcohol solubility, which is suitable for the electron transporting material according to the third aspect described later.
  • R 1 , R 3 , R 5 and R 7 are each independently a connecting group selected from a divalent phenyl group, naphthyl group, pyridyl group or pyrimidine group
  • R 2 , R 4 , R 6 and R 8 each independently represents a hydrogen atom or a heterocyclic compound residue.
  • M represents an alkali metal or an alkaline earth metal
  • n 1 to n 4 are each independently an integer of 0 to 2
  • l is an integer of 1 or 2.
  • R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group, and m 1 is an integer of 0 to 4 It is.
  • ⁇ 4> The metal complex according to ⁇ 2>, wherein R 2 , R 4 , R 6 and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (9a) to (9d): .
  • R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group, and m 1 is an integer of 0 to 3 It is.
  • ⁇ 5> The metal complex according to ⁇ 2>, wherein R 2 , R 4 , R 6, and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (10a) to (10d): .
  • R 10 to R 12 each independently represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group; 1 to m 3 are each independently an integer of 0 to 3.
  • R 2 , R 4 , R 6, and R 8 are nitrogen-containing cyclic compound residues represented by the following general formulas (11a) to (11d): .
  • R 10 represents R 10, R 11 each independently represent an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or phenanthrolyl group, m 1 Is an integer from 0 to 3, and m 2 is an integer from 0 to 4.
  • ⁇ 7> The metal complex according to any one of ⁇ 1> to ⁇ 6>, wherein M is an alkali metal.
  • ⁇ 8> The metal complex according to ⁇ 7>, wherein the alkali metal is Rb or Cs.
  • the 2nd aspect of this invention concerns on the coordination compound used for the metal complex which is a ligand of the said metal complex.
  • a third aspect of the present invention that meets the above-described object is that the metal complex is used, and can be formed by a wet method in the manufacture of an organic electroluminescent device having a multilayer structure, and has electron injection characteristics, electron transport characteristics, It relates to the following electron transport material excellent in durability.
  • An electron transport material for an organic electroluminescence device comprising the alkali metal complex according to any one of ⁇ 1> to ⁇ 8>.
  • the electron transport material according to ⁇ 11>, wherein the metal alcoside is represented by the following general formula (A) or (B).
  • R 20 and R 21 each independently represents an arbitrary alkylalkoxy group
  • M represents an alkali metal or an alkaline earth metal.
  • the electron transport material is further a halogen salt, carbonate, bicarbonate, hydroxide, or carbon number of 1 to 9 of at least one metal ion of alkali metal ions and alkaline earth metal ions.
  • the electron transport material according to any one of ⁇ 10> to ⁇ 12>, which contains an organic acid salt.
  • a fourth aspect of the present invention that meets the above object relates to a liquid material for constructing an electron transport layer of the next organic electroluminescence device, in which the electron transport material is dissolved in a solvent.
  • a liquid material for constructing an electron transport layer of an organic electroluminescence device obtained by dissolving the electron transport material according to any one of ⁇ 10> to ⁇ 13> in a protic polar solvent.
  • the protic polar solvent is an alcohol solvent having 1 to 10 carbon atoms.
  • the alcohol solvent having 1 to 10 carbon atoms is a monovalent or divalent alcohol.
  • An organic electroluminescent device comprising the electron transport material according to any one of ⁇ 10> to ⁇ 13>.
  • a method for producing an organic electroluminescent device wherein the liquid transport material according to any one of ⁇ 14> to ⁇ 17> is used and an electron transport layer of the organic electroluminescent device is constructed by a wet process.
  • a novel alkali metal complex or alkaline earth metal complex having both electron transporting properties and alcohol solubility and formation of an organic electroluminescent device having a multilayer structure using such a metal complex by a wet method.
  • an electron transport material excellent in electron injection characteristics, electron transport characteristics, and durability and an organic electroluminescent device using the electron transport material.
  • the electron transport material comprising the metal complex of the present invention can achieve both high electron transport properties and high durability, and can be suitably used as an electron transport material for organic electroluminescence devices.
  • FIG. 3 is a diagram showing an NMR chart of a metal complex (L106-M) according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an NMR chart of a metal complex (L107-M) according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an NMR chart of a metal complex (L108-M) according to the first embodiment of the present invention. It is a figure which shows the NMR chart of the metal complex (L109-M) which concerns on the 1st Embodiment of this invention.
  • FIG. 3 is a diagram showing an NMR chart of a metal complex (L116-M) according to the first embodiment of the present invention. It is a figure which shows the NMR chart of the metal complex (L117-M) which concerns on the 1st Embodiment of this invention. It is a figure which shows the NMR chart of the metal complex (L118-M) which concerns on the 1st Embodiment of this invention. It is a figure which shows the NMR chart of the metal complex (L119-M) which concerns on the 1st Embodiment of this invention.
  • the metal complex according to the first embodiment of the present invention is a metal complex represented by the following general formulas (1) to (7) containing at least four or more carbocycles and / or heterocycles. It is.
  • R 1 , R 3 , R 5 and R 7 are each independently a connecting group selected from a divalent phenyl group, naphthyl group, pyridyl group or pyrimidine group.
  • R 2 , R 4 , R 6 and R 8 each independently represents a hydrogen atom or a heterocyclic compound residue, and any one of R 2 , R 4 , R 6 and R 8 represents a heterocyclic compound residue. It is preferably a group.
  • M represents an alkali metal or an alkaline earth metal
  • n 1 to n 4 are each independently an integer of 0 to 2
  • l is an integer of 1 or 2.
  • the metal complex of the present invention contains at least 4 or more carbocycles and / or heterocycles.
  • the phrase “containing at least 4 or more carbocycles and / or heterocycles” means containing 4 or more carbocycles and / or heterocycles in total. Ring), each carbocyclic or heterocyclic ring constituting the condensed ring is counted as one.
  • the basic skeleton phenylpyridine constituting the above formula (1) has two carbocycles and one heterocyclic ring in total
  • the quinoline of the basic skeleton constituting the above formula (2) is a carbocyclic ring as a condensed ring.
  • a total of two heterocycles, and benzoquinoline of the basic skeleton constituting the above formula (3) has two carbocycles and one heterocycle as a condensed ring. And count.
  • the carbocyclic or heterocyclic ring may be simply referred to as “aromatic ring”.
  • the metal complex of the present invention is a metal complex represented by the above formulas (1) to (7), wherein the basic skeleton is a pyridine phenolate complex, the formula (2) is a quinolate complex, 3) is a basic benzoquinolate complex, Formula (4) is a basic benzoxazolyl phenolate complex, Formula (5) is a basic benzothiazolyl phenolate complex, and Formula (6) is The basic skeleton relates to a phenanthroyl phenolate complex, and the formula (7) relates to a benzoimidazolyl phenolate complex having a basic skeleton.
  • M represents an alkali metal or an alkaline earth metal.
  • the alkali metal include metals selected from Li, Na, K, Rb, and Cs
  • examples of the alkaline earth metal include metals selected from Be, Mg, Ca, Sr, and Ba.
  • Rb or Cs is more preferable, and among them, from the viewpoint of both electron injection property and alcohol solubility, Rb or Cs in the order of Li ⁇ Na ⁇ K ⁇ Rb ⁇ Cs.
  • Ba is preferably used as the alkaline earth metal.
  • l (English letter L) represents an integer of 1 or 2. That is, l is 1 when M is an alkali metal, and 1 is 2 when M is an alkaline earth metal.
  • the metal complexes represented by the above formulas (1) to (7) are R 1 , R 3 , R 5 , R 7 (hereinafter referred to as “R 1 etc.”), which are connecting groups connected to the basic skeleton.
  • R 2 , R 4 , R 6 , R 8 (hereinafter referred to as “R 2 etc.”) which are a hydrogen atom or a heterocyclic compound residue.
  • R 1 or the like is a connecting group selected from a divalent phenyl group, naphthyl group, pyridyl group or pyrimidine group, and 0 to 2 substituents can be substituted depending on each skeleton.
  • n 1 to n 4 of the connecting group are each independently an integer of 0 to 2.
  • n 1 etc. is 0, it means that R 2 etc., which is a heterocyclic compound residue, is directly substituted on the basic skeleton.
  • R 2 and the like are a hydrogen atom or a heterocyclic compound residue, and any one of R 2 , R 4 , R 6 and R 8 is preferably a heterocyclic compound residue.
  • the heterocyclic compound residue is preferably a nitrogen-containing cyclic compound residue. The following are mentioned as an example of a nitrogen-containing cyclic compound residue.
  • R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group or a phenanthroyl group, and m 1 represents 0. It is an integer of ⁇ 4. That is, R 2 or the like of the nitrogen-containing cyclic compound residue is composed of a pyridine skeleton, and may have a substituent R 10 .
  • R 10 is a straight chain or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group or a tert-butyl group, a phenyl group or a biphenyl group. , A naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group.
  • M 1 representing the number of substituents R 10 is an integer of 0-4.
  • R 10 represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group, and m 1 represents 0 It is an integer of ⁇ 3. That is, R 2 or the like of the nitrogen-containing cyclic compound residue is composed of a pyrimidine skeleton or a triazine skeleton, and may have a substituent R 10 .
  • R 10 is a straight chain or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group or a tert-butyl group, a phenyl group or a biphenyl group. , A naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group.
  • M 1 representing the number of substituents R 10 is an integer of 0 to 3.
  • R 10 to R 12 are each independently an alkyl group having 1 to 4 carbon atoms, a phenyl group, a biphenyl group, A naphthyl group, a pyridyl group, a bipyridyl group or a phenanthroyl group is represented, and m 1 to m 3 are each independently an integer of 0 to 3. That is, R 2 or the like of the nitrogen-containing cyclic compound residue is composed of a phenanthroline skeleton and may have a substituent.
  • R 10 examples include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, and tert-butyl group, phenyl group, biphenyl Group, naphthyl group, pyridyl group, bipyridyl group or phenanthroyl group. Among these, a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group is preferable.
  • M 1 to m 3 representing the number of substituents R 10 and the like are each independently an integer of 0 to 3.
  • R 10 and R 11 are each independently an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a biphenyl group.
  • m 1 is an integer of 0 to 3
  • m 2 is an integer of 0 to 4. That is, R 2 of the nitrogen-containing cyclic compound residue is composed of a carboline skeleton, and may have a substituent R 10 or the like.
  • R 10 examples include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, and tert-butyl group, phenyl group, biphenyl Group, naphthyl group, pyridyl group, bipyridyl group or phenanthroyl group.
  • a phenyl group, a biphenyl group, a naphthyl group, a pyridyl group, a bipyridyl group, or a phenanthroyl group is preferable.
  • M 1 representing the number of substituents R 10 and the like is an integer of 0 to 3
  • m 2 is an integer of 0 to 4.
  • Metal complex represented by general formula (1) of the present invention examples include the following compounds.
  • M represents an alkali metal or an alkaline earth metal.
  • the ligand has a structure in which two ligands are coordinated to M.
  • M represents an alkali metal or an alkaline earth metal.
  • the ligand has a structure in which two ligands are coordinated to M.
  • M represents an alkali metal or an alkaline earth metal.
  • the ligand has a structure in which two ligands are coordinated to M.
  • (D) Metal complex represented by general formula (4) examples include the following compounds.
  • M represents an alkali metal or an alkaline earth metal. However, when M is an alkaline earth metal, the ligand has a structure in which two ligands are coordinated to M.
  • (E) Metal complex represented by general formula (5) examples include the following compounds.
  • M represents an alkali metal or an alkaline earth metal. However, when M is an alkaline earth metal, the ligand has a structure in which two ligands are coordinated to M.
  • Metal complex represented by general formula (6) of the present invention examples include the following compounds.
  • M represents an alkali metal or an alkaline earth metal.
  • the ligand has a structure in which two ligands are coordinated to M.
  • M represents an alkali metal or an alkaline earth metal.
  • the ligand has a structure in which two ligands are coordinated to M.
  • the metal complex having the structure represented by the general formulas (1) to (7) of the present invention can be synthesized, for example, by the following scheme.
  • a ligand having a structure of general formula (1) can be synthesized as follows.
  • X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, or a diazonio group.
  • the complex having the structure represented by the general formula (1) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • a ligand having the structure of general formula (2) can be synthesized as follows.
  • X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, or a diazonio group.
  • the complex having the structure represented by the general formula (2) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • a ligand having the structure of general formula (3) can be synthesized as follows.
  • X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, or a diazonio group.
  • the complex having the structure represented by the general formula (3) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • a ligand having the structure of general formula (4) can be synthesized as follows.
  • X represents a leaving group such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a triflate group, a tosylate group, a mesylate group, or a diazonio group.
  • the complex having the structure represented by the general formula (4) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • Metal complex having the structure represented by the general formula (5) 1)
  • the ligand having the structure of the general formula (5) can be synthesized as follows.
  • the complex having the structure represented by the general formula (5) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • Metal complex having a structure represented by general formula (6) 1) A ligand having a structure of general formula (6) can be synthesized as follows.
  • the complex having the structure represented by the general formula (6) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • Metal complex having structure represented by general formula (7) Metal complex having structure represented by general formula (7) 1)
  • a ligand having the structure of general formula (7) can be synthesized as follows.
  • the complex having the structure represented by the general formula (7) can be synthesized as follows by the reaction of the ligand and hydroxide.
  • the coordinating compound according to the second embodiment of the present invention is a ligand constituting the metal complex. That is, it is a compound constituting the metal complex represented by the general formulas (1) to (7) containing at least four or more carbocycles and / or heterocycles according to the first embodiment of the present invention.
  • Electron Transport Material is a metal complex represented by the general formulas (1) to (7) described in detail in the first embodiment, particularly And an alkali metal complex or an alkaline earth metal complex.
  • Each of the metal complexes of the present invention has a ring having a chelate bond of “—OM ... N ⁇ ” in the basic skeleton, and is selected from a divalent phenyl group, naphthyl group, pyridyl group or pyrimidine group. connecting group R 1 and the like that, and, it is an element a hydrogen atom or a heterocyclic compound residue R 2 or the like.
  • the structure of the basic skeleton of the metal complex of the present invention When used as an electron transport material, it contributes to imparting solubility in a protic polar solvent such as an alcohol, which will be described later, and contributes to improvement of electron injection properties. Further, the connecting group and the heterocyclic compound residue are considered to contribute to the improvement of electron transport property and film forming property.
  • the metal complex of the present invention has a bond dissociation energy higher than that of the phosphine oxide compound, and an electron transport material having higher durability and longer life can be obtained.
  • the metal complex of the present invention needs to contain at least 4 carbon rings or heterocyclic rings. If the number of carbocycles or heterocycles is 3 or less, it is difficult to obtain an electron transport material having excellent electron injection characteristics, electron transport characteristics, and durability, which is the object of the present application.
  • M represents a metal, particularly an alkali metal or an alkaline earth metal.
  • the alkali metal include metals selected from Li, Na, K, Rb, and Cs
  • examples of the alkaline earth metal include metals selected from Be, Mg, Ca, Sr, and Ba.
  • Rb or Cs is preferable in the order of Li ⁇ Na ⁇ K ⁇ Rb ⁇ Cs from the viewpoints of both electron injection property and alcohol solubility. used.
  • Ba is preferably used as the alkaline earth metal.
  • the metal complex for the electron transport material is preferably a metal complex represented by the formula (1) or the formula (2).
  • the formula (1) physical property values such as drive voltage (V), current efficiency ( ⁇ c ), and relative lifetime of elements using the following complexes of L101-M, L102-M, L106-M, and L115-M Is excellent.
  • L115-M a complex of L115-M is preferable, and among them, the case where M is Rb or Cs, particularly Cs is excellent.
  • the L201-M complex is preferable, and among them, the case where M is Rb or Cs, particularly Cs is excellent. In the case of the L203-M complex, the case where M is Ba is excellent.
  • the electron transport material of the present invention preferably contains a metal alkoxide in order to improve electron injection properties and electron transport properties.
  • the prepared metal alkoxide can be used, but it is also possible to adjust the metal alkoxide by adding an alkali metal or alkaline earth metal to an arbitrary alcohol and reacting with a solvent.
  • R 20 and R 21 each independently represents an arbitrary alkylalkoxy group
  • M represents an alkali metal or an alkaline earth metal.
  • alkylalkoxy group examples include linear or branched alkylalkoxy groups having 1 to 10 carbon atoms, preferably 1 to 7 carbon atoms. Specifically, methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group, 1-butoxy group, 2-butoxy group, isobutoxy group, tert-butoxy group, 1-pentoxy group, 2-pentoxy group, 3 -Pentoxy group, 2-methyl-1-butoxy group, isopentoxy group, tert-pentoxy group, 3-methyl-2-butoxy group, neopentoxy group, 1-hexoxy group, 2-methyl-1-pentoxy group, 4-methyl -2-pentoxy group, 2-ethyl-1-butoxy group, 1-heptoxy group, 2-heptoxy group, 3-heptoxy group, 1-octoxy group, 2-octoxy group, 2-ethyl-1-hexoxy group, 1 -Nonanoxy group, 3,5,5-trimethyl-1-hexoxy group, 1-decanoxy
  • methoxy, ethoxy, 1-propoxy, 2-propoxy, 1-butoxy, 2-butoxy, isobutoxy, tert-butoxy, 1-pentoxy and 1-hexoxy are preferred. . These may be used alone, or any two or more may be mixed and used in an arbitrary ratio.
  • M include alkali metals of Li, Na, K, Rb or Cs, and alkaline earth metals of Be, Mg, Ca, Sr or Ba.
  • Li is preferably used from the viewpoints of film forming properties and electron transport properties.
  • the alkali metal is added to the solvent so as to have a predetermined concentration under an inert gas atmosphere, and is stirred and dissolved. In melting, cooling and heating are performed as necessary. At this time, the following reaction proceeds to prepare a solution in which the metal alkoxide is dissolved.
  • R corresponds to a substituent of a corresponding solvent
  • M represents an alkali metal or an alkaline earth metal.
  • the solvent used with the liquid material mentioned later can be used similarly. Among these, monohydric alcohol is preferable.
  • the metal alkoxide include sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium ethoxide, potassium tert-butoxide, lithium-n-butoxide, lithium-tert-butoxide, cesium-n-heptoxide, etc. Is mentioned. These are suitably used in the range of 0.1 wt% to 50 wt%, more preferably 1 wt% to 40 wt% with respect to the alkali metal complex or alkaline earth metal complex.
  • the electron transport material also includes a halogen salt, carbonate, hydrogen carbonate, hydroxide, or organic acid having 1 to 9 carbon atoms of at least one metal ion selected from alkali metal ions and alkaline earth metal ions. It is preferable to contain a salt. By containing these inorganic or organic acid salts, the electron transport property can be improved and the durability can be improved.
  • inorganic or organic acid salts include lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, beryllium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, lithium bromide, sodium bromide.
  • hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide. These are appropriately used in the range of 0.1 to 50% by weight, more preferably 1% to 40% by weight with respect to the alkali metal complex or alkaline earth metal complex.
  • the invention according to the fourth embodiment of the present invention is a liquid material in which an electron transport material comprising a metal complex having a structure represented by the general formulas (1) to (7) is dissolved in a solvent. It is related to.
  • the solvent is preferably one that hardly swells or dissolves the organic light emitting layer.
  • the solvent is preferably a protic polar solvent.
  • a protic polar solvent By using a protic polar solvent, it is possible to prevent a decrease in efficiency, and as a result, a liquid material having a higher productivity can be used for manufacturing an organic electroluminescent device having a higher efficiency and a higher durability. can get.
  • the solvent it is preferable that the solvent contains an alcohol solvent as a main component.
  • an alcohol having 1 to 10 carbon atoms, preferably 1 to 7 carbon atoms, more preferably a monovalent or divalent alcohol having 1 to 4 carbon atoms is used.
  • monohydric alcohols are preferably used.
  • alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl -2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3, 5, 5-trimethyl-1-hexanol, 1-de 1-undecanol, 1-dodecanol, allyl alcohol, propargy
  • 1-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-methyl-1-butanol, 1-hexanol, 1-heptanol, 1-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxyethoxy) ethanol can be more preferably used.
  • Such an alcohol having a carbon number has a high solubility of the metal compound, and as a result, a liquid material for producing an organic electroluminescent device can be obtained, which is further excellent in efficiency and durability and further excellent in productivity.
  • the liquid material of the present invention contains 0.01 to 10% by weight, preferably 0.1 to 5% by weight, of a metal complex having a structure represented by the general formulas (1) to (7). It is. If the content of the metal complex is less than 0.01% by weight, the film thickness required for the organic electroluminescence device may not be formed. On the other hand, if the content of the metal complex exceeds 10% by weight, it is difficult to dissolve in the solvent. Become.
  • the metal complex further includes a halogen salt, carbonate, bicarbonate, hydroxide of at least one metal ion of the above-mentioned metal alkoxide, alkali metal ion, and alkaline earth metal ion. Or a dopant of an organic acid salt having 1 to 9 carbon atoms. Since these metal compounds are easy to dissociate metal ions, as a result, a liquid material for producing an organic electroluminescent device, which is more excellent in efficiency and durability and further excellent in productivity, can be obtained.
  • the liquid material of the present invention can be prepared by batch-mixing the metal complex represented by the general formulas (1) to (7) and the salt of the metal alkoxide or metal ion. It is preferable to prepare the liquid material by mixing a first solution containing the metal complex represented by (7) to (7) and a second solution containing the metal alcoside or metal ion salt. .
  • the organic electroluminescent element 1 of the present invention includes a plurality of organic compound layers (hole injection layer 4 in order from the anode 3 side) stacked so as to be sandwiched between an anode 3 and a cathode 8.
  • the anode 3 is provided on the transparent substrate 2 and is entirely sealed with a sealing member 9.
  • the hole transport layer 5 and the light emitting layer 6 are made of an organic compound insoluble in an alcohol solvent.
  • the electron transport layer 7 formed by a wet method so that the light-emitting layer 6 is in contact with the light-emitting layer 6 on the surface facing the cathode 8 is composed of one or more electron transport materials soluble in an alcohol solvent. Contains.
  • the substrate 2 serves as a support for the organic electroluminescent element 1. Since the organic electroluminescent element 1 according to the present embodiment is configured to extract light from the substrate 2 side (bottom emission type), each of the substrate 2 and the anode 3 is substantially transparent (colorless transparent, colored transparent or It is made of a translucent material.
  • the constituent material of the substrate 2 include resin materials such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, polycarbonate, and polyarylate, quartz glass, and soda glass. Such glass materials can be used, and one or more of these can be used in combination.
  • the average thickness of the substrate 2 is not particularly limited, but is preferably about 0.1 to 30 mm, and more preferably about 0.1 to 10 mm.
  • the substrate 2 can be either a transparent substrate or an opaque substrate.
  • the opaque substrate include a substrate made of a ceramic material such as alumina, a substrate in which an oxide film (insulating film) is formed on the surface of a metal substrate such as stainless steel, and a substrate made of a resin material.
  • the anode 3 is an electrode that injects holes into a hole injection layer 4 described later.
  • a constituent material of the anode 3 it is preferable to use a material having a large work function and excellent conductivity.
  • the constituent material of the anode 3 include ITO (indium tin oxide), IZO (indium zirconium oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , oxides such as Al-containing ZnO, Au, Pt, and Ag. Cu, alloys containing these, and the like can be used, and one or more of these can be used in combination.
  • the average thickness of the anode 3 is not particularly limited, but is preferably about 10 to 200 nm, and more preferably about 50 to 150 nm.
  • the cathode 8 is an electrode for injecting electrons into the electron transport layer 7, and is provided on the side opposite to the light emitting layer 6 in contact with the electron transport layer 7.
  • a material having a small work function is preferably used as a constituent material of the cathode 8.
  • the constituent material of the cathode 8 include Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb, and alloys containing these. These can be used alone or in combination of two or more (for example, a multi-layer laminate).
  • an alloy when used as the constituent material of the cathode 8, it is preferable to use an alloy containing a stable metal element such as Ag, Al, or Cu, specifically, an alloy such as MgAg, AlLi, or CuLi.
  • an alloy such as MgAg, AlLi, or CuLi.
  • the average thickness of the cathode 8 is not particularly limited, but is preferably about 50 to 10,000 nm, and more preferably about 80 to 500 nm.
  • a material having a small work function or an alloy containing these is set to about 5 to 20 nm so as to have transparency, and a highly transmissive conductive material such as ITO is formed on the upper surface thereof to a thickness of about 100 to 500 nm. It will be formed.
  • the organic electroluminescent element 1 which concerns on this Embodiment is a bottom emission type, the light transmittance of the cathode 8 is not especially requested
  • the hole injection layer 4 has a function of receiving holes injected from the anode 3 and transporting them to the hole transport layer 5.
  • the hole transport layer 5 receives holes injected from the hole injection layer 4. It has a function of transporting to the light emitting layer 6.
  • Examples of the constituent material of the hole injection layer 4 and the hole transport layer 5 include metal or metal-free phthalocyanine compounds such as phthalocyanine, copper phthalocyanine (CuPc), and iron phthalocyanine, polyarylamine, fluorene-arylamine Polymer, fluorene-bithiophene copolymer, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophene, polyalkylthiophene, polyhexylthiophene, poly (p-phenylene vinylene), polytinylene vinylene, pyrene formaldehyde resin Ethylcarbazole formaldehyde resin or a derivative thereof, and the like, and one or more of them can be used in combination.
  • the constituent material of the hole transport layer 5 needs to be insoluble in an alcohol solvent.
  • the said compound can also be used as a mixture with another compound.
  • examples of the mixture containing polythiophene include poly (3,4-ethylenedioxythiophene / styrene sulfonic acid) (PEDOT / PSS).
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene / styrene sulfonic acid)
  • the hole injection layer 4 and the hole transport layer 5 are optimized for hole injection efficiency and transport efficiency, and the radiation emitted from the light emitting layer 6 From the viewpoint of prevention of reabsorption, heat resistance, and the like, one or more appropriate materials are appropriately selected or used in combination.
  • the hole injection layer 4 has a small difference between the hole conduction level (Ev) and the work function of the material used for the anode 3, and has no absorption band in the visible light region in order to prevent reabsorption of emitted light.
  • Materials are preferably used.
  • the hole transport layer 5 does not form an exciplex or charge transfer complex with the constituent material of the light emitting layer 6, and the exciton energy transfer or light emitting layer generated in the light emitting layer 6 can be obtained.
  • a material having a singlet excitation energy larger than the exciton energy of the light emitting layer 6, a large band gap energy, and a shallow electron conduction potential (Ec) is preferably used.
  • examples of materials suitably used for the hole injection layer 4 and the hole transport layer 5 are poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT), respectively. / PSS) and poly (N-vinylcarbazole) (PVK).
  • the hole injection layer 4 and the hole transport layer 5 are formed as two separate layers between the anode 3 and the light emitting layer 6, but if necessary, the anode 3 May be a single hole transport layer for injecting holes from and transporting holes to the light emitting layer 6, or a structure in which three or more layers having the same composition or different compositions are stacked.
  • the average thickness of the hole injection layer 4 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 20 to 100 nm.
  • the average thickness of the hole transport layer 5 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 15 to 50 nm.
  • a light emitting layer 6 is provided on the hole transport layer 5, that is, adjacent to the surface opposite to the anode 3. Electrons are supplied (injected) from the cathode 8 through the electron transport layer 7 and holes are supplied from the hole transport layer 5 to the light emitting layer 6. Then, inside the light emitting layer 6, holes and electrons are recombined, and excitons (excitons) are generated by the energy released during the recombination, and energy (fluorescence and fluorescence) is generated when the excitons return to the ground state. (Phosphorescence) is emitted (emitted).
  • TPQ1 1,3,5-tris [(3-phenyl-6-tri-fluoromethyl) quinoxalin-2-yl] benzene
  • TPQ2 1,3,5-tris [ ⁇ 3 Benzene compounds such as-(4-tert-butylphenyl) -6-trisfluoromethyl ⁇ quinoxalin-2-yl] benzene
  • TPQ2 1,3,5-tris [ ⁇ 3 Benzene compounds such as-(4-tert-butylphenyl) -6-trisfluoromethyl ⁇ quinoxalin-2-yl] benzene
  • TPQ2 1,3,5-tris [ ⁇ 3 Benzene compounds such as-(4-tert-butylphenyl) -6-trisfluoromethyl ⁇ quinoxalin-2-yl] benzene
  • TPQ2 1,3,5-tris [ ⁇ 3 Benzene compounds such as-(4-tert-butylphenyl) -6
  • An electron transport layer 7 is provided between the light emitting layer 6 and the cathode 8.
  • the electron transport layer 7 has a function of transporting electrons injected from the cathode 8 to the light emitting layer 6.
  • the electron transport material according to the third embodiment of the present invention is used as a constituent material of the electron transport layer 7, the electron transport material according to the third embodiment of the present invention is used.
  • the electron transport material of the electron transport layer 7 includes a halogen salt, carbonate, bicarbonate, hydroxide, or a salt of at least one metal ion of alkali metal alkoxide, alkali metal ion, and alkaline earth metal ion. It is desirable to further contain a dopant such as an organic acid salt having 1 to 9 carbon atoms.
  • the average thickness of the electron transport layer is not particularly limited, but is preferably about 1 to 100 nm, and more preferably about 10 to 50 nm.
  • a charge injection layer made of NaF, LiF or the like is usually provided between the cathode 8 and the electron transport layer 7.
  • the luminous efficiency of the light emitting layer can be improved without providing a charge injection layer using an unstable compound such as NaF or LiF, and the degree of freedom in optical design can be improved. be able to.
  • the sealing member 9 is provided so as to cover the organic electroluminescent element 1 (the anode 3, the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7 and the cathode 8). Is hermetically sealed and has a function of blocking oxygen and moisture.
  • the sealing member 9 effects such as improvement of the reliability of the organic electroluminescent element 1, prevention of deterioration and deterioration (improvement of durability), and the like can be obtained.
  • the constituent material of the sealing member 9 examples include Al, Au, Cr, Nb, Ta, Ti, alloys containing these, silicon oxide, various resin materials, and the like.
  • insulation is needed as needed. It is preferable to provide a membrane.
  • the sealing member 9 may be formed in a flat plate shape so as to face the substrate 2 and be sealed with a sealing material such as a thermosetting resin.
  • the organic electroluminescent element 1 can be manufactured as follows, for example. First, the substrate 2 is prepared, and the anode 3 is formed on the substrate 2.
  • the anode 3 is, for example, a chemical vapor deposition method (CVD) such as plasma CVD, thermal CVD, or laser CVD, a dry plating method such as vacuum deposition, sputtering, or ion plating, or a wet method such as electroplating, immersion plating, or electroless plating. It can be formed by using a plating method, a thermal spraying method, a sol-gel method, a MOD method, a metal foil bonding, or the like.
  • CVD chemical vapor deposition method
  • a dry plating method such as vacuum deposition, sputtering, or ion plating
  • a wet method such as electroplating, immersion plating, or electroless plating. It can be formed by using a plating method, a thermal spraying method, a sol-gel method, a MOD method
  • the hole injection layer 4 and the hole transport layer 5 are sequentially formed on the anode 3.
  • the hole injection layer 4 and the hole transport layer 5 may be dried (desorbed) after a hole injection layer forming material obtained by dissolving the hole injection material in a solvent or dispersing in a dispersion medium is supplied onto the anode 3.
  • a hole transport layer forming material obtained by dissolving a hole transport material in a solvent or dispersing in a dispersion medium is supplied onto the hole injection layer 4 and then dried.
  • Examples of the method for supplying the hole injection layer forming material and the hole transport layer forming material include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, and wire bar coating.
  • Various coating methods such as a method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an ink jet printing method can be used.
  • a coating method By using such a coating method, the hole injection layer 4 and the hole transport layer 5 can be formed relatively easily.
  • Examples of the solvent or dispersion medium used in the preparation of the hole injection layer forming material and the hole transport layer forming material include inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, and carbon disulfide, and methyl ethyl ketone.
  • MEK inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, and carbon disulfide, and methyl ethyl ketone.
  • ketone solvents such as acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone, ethylene carbonate, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), glycerin, etc.
  • Alcohol solvents (however, when the hole injection material and the hole transport material are insoluble, they can be used only as a dispersion medium), diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4- Dioxane, tetrahydrofura (THF), tetrahydropyran (THP), anisole, ether solvents such as diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (diethyl carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, hexane, pentane, Aliphatic hydrocarbon solvents such as heptane and cyclohexane, aromatic hydrocarbon solvents such as toluene, xylene and benzene, aromatic heterocyclic compounds solvents such as pyridine, pyrazine, furan, pyrrole
  • the upper surface of the anode 3 may be subjected to oxygen plasma treatment.
  • oxygen plasma treatment includes, for example, a plasma power of about 100 to 800 W, an oxygen gas flow rate of about 50 to 100 mL / min, a conveyance speed of the member to be treated (anode 3) of about 0.5 to 10 mm / sec, and a substrate.
  • the temperature 2 is preferably about 70 to 90 ° C.
  • the light emitting layer 6 is formed on the hole transport layer 5 (one surface side of the anode 3).
  • the light emitting layer 6 is obtained by, for example, supplying a light emitting layer forming material obtained by dissolving a light emitting material in a solvent or dispersing in a dispersion medium onto the hole transport layer 5 and then drying (desolving or dedispersing medium). Can be formed.
  • the method for supplying the light emitting layer forming material and the method for drying are the same as described in the formation of the hole injection layer 4.
  • a liquid material containing a metal complex represented by the general formulas (1) to (7) and a dopant such as a metal alkoxide as necessary is prepared.
  • a solvent that is difficult to swell or dissolve is preferable.
  • the solvent the above-mentioned alcohol solvent, preferably an alcohol having 1 to 10 carbon atoms is preferably used. Thereby, the fall of luminous efficiency can be prevented and the organic electroluminescent element 1 can be manufactured with high productivity.
  • the cathode 8 is formed on the electron transport layer 7.
  • the cathode 8 can be formed by using, for example, a vacuum deposition method, a sputtering method, joining of metal foils, application and firing of metal fine particle ink, or the like.
  • the sealing member 9 is covered so as to cover the obtained organic electroluminescent element 1 and bonded to the substrate 2.
  • the organic electroluminescent element 1 is obtained through the steps as described above.
  • the above manufacturing method even in the formation of the organic layer (the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, and the electron transport layer 7), or in the formation of the cathode 8 when the metal fine particle ink is used. Since no large-scale equipment such as a vacuum apparatus is required, the manufacturing time and manufacturing cost of the organic electroluminescent element 1 can be reduced. In addition, by applying an ink jet method (droplet discharge method), it is easy to fabricate a large-area element and to apply multiple colors.
  • the hole injection layer 4 and the hole transport layer 5 have been described as being manufactured by a liquid phase process.
  • the layer may be formed by a vapor phase process such as vacuum deposition.
  • Such an organic electroluminescent element 1 can be used as, for example, a light source.
  • a display apparatus can be comprised by arrange
  • the driving method of the display device is not particularly limited, and may be either an active matrix method or a passive matrix method.
  • the electrical energy source supplied to the organic electroluminescent element 1 is mainly a direct current, but a pulse current or an alternating current can also be used.
  • the current value and the voltage value are not particularly limited, but the maximum luminance should be obtained with the lowest possible energy in consideration of the power consumption and lifetime of the element.
  • the “matrix” that constitutes the display device refers to a display in which pixels (pixels) for display are arranged in a lattice pattern, and displays characters and images by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, television, and a pixel with a side of mm order is used for a large display such as a display panel.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a passive matrix method or an active matrix method.
  • the former has an advantage that the structure is simple, but the latter active matrix may be superior in consideration of operation characteristics, and therefore, it is necessary to properly use the latter depending on the application.
  • the organic electroluminescent element 1 may be a segment type display device.
  • the “segment type” means that a predetermined pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device, an electromagnetic cooker, etc., the panel display of a car, etc. are mentioned.
  • the matrix display and the segment display may coexist in the same panel.
  • the organic electroluminescent element 1 is used for the purpose of improving the visibility of a display device that does not emit light, and may be a backlight used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, or the like. Good.
  • a backlight for a liquid crystal display device especially a personal computer for which thinning is an issue, can be made thinner and lighter than a conventional backlight made of a fluorescent lamp or a light guide plate.
  • the compound was confirmed by thin layer chromatography and APCI MS.
  • the complex was measured using NMR [(60 MHz) for JEOL JNM-MY60FT and high resolution NMR (500 MHz) for JEOL JNM-ECX-500.
  • APCI MS was measured using LCTPremile XE manufactured by Waters.
  • silica gels C300, NH, and PEI used for column chromatography Wakosil C300 manufactured by Wako Pure Chemical Industries, Chromatorex NH 2 and Chromatorex PEI manufactured by Fuji Silysia Chemical Ltd. were used, respectively.
  • Ligand L103 synthesized in the above (1-3-2) 0.17 g (0.42 mmol) -toluene suspension 4 mL, 50% aqueous cesium hydroxide solution 0.4 mL mL (0.4 mmol) -methanol solution 2 mL was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the resulting residue, and the precipitate was collected by filtration. The obtained precipitate was heated at 260 ° C. under reduced pressure to remove unreacted ligands to obtain 0.17 g (82%) of L103-Cs. NMR of the obtained complex is shown in FIG.
  • Ligand L104 synthesized in the above (1-4-2) 0.17 g (0.42 mmol) -toluene suspension 4 mL, 50% cesium hydroxide aqueous solution 0.4 mL (0.4 mmol) -methanol solution 2 mL was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, heptane was added to the resulting residue, and the precipitate was collected by filtration. The obtained precipitate was heated at 250 ° C. under reduced pressure to remove unreacted ligands to obtain 0.17 g (78%) of L104-Cs. NMR of the obtained complex is shown in FIG.
  • Ligand L105 0.13 g (0.4 mmol) -toluene suspension 4 mL was added dropwise to 50 mL of rubidium hydroxide aqueous solution 0.045 mL (0.38 mmol) -methanol solution 2 mL and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was collected by filtration. The resulting precipitate was heated at 200 ° C. under reduced pressure to remove unreacted ligands to obtain L105-Rb 0.12 g (79%). NMR of the obtained complex is shown in FIG.
  • Ligand L106 0.19 g (0.4 mmol) -methanol suspension 4 mL of 4M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol) -methanol 2 mL was added dropwise and stirred at 40 ° C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. The precipitate was heated at 250 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.05 g (26%) of L106-Li. NMR of the obtained complex is shown in FIG.
  • Ligand L106 synthesized in the above (1-6-2) 0.17 g (0.35 mmol) -methanol suspension 4 mL of potassium hydroxide 0.02 g (0.35 mmol) -methanol 2 mL was added dropwise at 40 ° C. Stir with. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. The precipitate was heated at 250 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.16 g (69%) of L106-K. NMR of the obtained complex is shown in FIG.
  • Ligand L106 synthesized in the above (1-6-2) 0.18 g (0.37 mmol) -methanol suspension 4 mL was added dropwise 50% rubidium hydroxide 0.044 mL (0.37 mmol) -methanol 2 mL 40 Stir at ° C. After 2 hours, the reaction solution was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. The precipitate was heated at 250 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.13 g (63%) of L106-Rb. NMR of the obtained complex is shown in FIG.
  • Ligand L108 synthesized in the above (1-8-2) 0.14 g (0.42 mmol) -methanol suspension 15 mL, 50% cesium hydroxide aqueous solution 0.07 mL (0.4 mmol) -methanol solution 2 mL The solution was added dropwise and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, and the precipitate was collected by filtration. The precipitate was heated at 200 ° C. under reduced pressure to remove the solvent and unreacted ligand, to obtain 0.17 g (77%) of L108-Cs. NMR of the obtained complex is shown in FIG.
  • 1,3-Dibromo-2-benzyloxybenzene (CAS No. 122110-76-3, M010) was prepared by the method of Helgeson et al. (J. Am. Chem. Soc., 111 (16), 6339-50, 1989). ).
  • 6-Bromo-2- (2-benzyloxy-3-bromophenyl) pyridine (M027) 0.36 g (0.80 mmol), 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane -2-yl) dibenzothiophene (M011) 0.55 g (1.76 mmol), tetrakis (triphenylphosphine) palladium 0.056 g (0.048 mmol), 3 M aqueous potassium carbonate solution 1.6 mL (4.8 mmol) in dioxane 3 To 6 mL and stirred at 100 ° C. for 5 hours. After completion of the reaction, water was added and extracted with dichloromethane.
  • Ligand L112 0.13 g (0.2 mmol) -toluene suspension 2 mL of 50% cesium hydroxide aqueous solution diluted with 1 mL of methanol 0.035 mL (0.2 mmol) -Methanol solution 1 mL was added dropwise and stirred at room temperature. After 1 hour, the mixture was concentrated under reduced pressure, and toluene was added to the resulting residue to collect the precipitate. The resulting precipitate was heated at 200 ° C. under reduced pressure to remove the solvent, to obtain 1.22 g (80%) of L112-Cs. NMR of the obtained complex is shown in FIG.
  • Ligand L113 0.14 g (0.3 mmol) -toluene suspension 3 mL was added dropwise with 50% aqueous cesium hydroxide solution 0.05 mL (0.3 mmol) -methanol solution 1.3 mL and stirred at room temperature. After 1 hour, the reaction mixture was concentrated under reduced pressure, toluene was added, and the precipitate was collected by filtration. The resulting precipitate was heated at 220 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain L113-Cs 0.09 g (52%). NMR of the obtained complex is shown in FIG.
  • Ligand L114 synthesized in (1-14-2) 0.57 g (1.2 mmol) -toluene suspension 24 mL, 50% rubidium hydroxide aqueous solution 0.14 mL (1.2 mmol) -methanol solution 6 mL The solution was added dropwise and stirred at room temperature. After 1 hour, the mixture was concentrated under reduced pressure, and the precipitate was collected by filtration. The resulting precipitate was heated at 300 ° C. under reduced pressure to remove unreacted ligand and solvent, and rubidium 2- (6- (4- (4,6-diphenylpyrimidin-2-yl) phenyl) pyridine. -2-yl) phenolate 0.29 g (43%) was obtained. NMR of the obtained complex is shown in FIG.
  • Ligand L114 synthesized in the above (1-14-2) 0.57 g (1.2 mmol) -toluene suspension 24 mL, 50% aqueous cesium hydroxide solution 0.21 mL (1.2 mmol) -methanol solution 6 mL was added dropwise and stirred at room temperature. After 1 hour, the mixture was concentrated under reduced pressure, and the precipitate was collected by filtration. The resulting precipitate was heated at 200 ° C. under reduced pressure to remove unreacted ligand and solvent to obtain L114-Cs 0.60 g (82%). NMR of the obtained complex is shown in FIG.
  • Ligand L201 0.13 g (0.4 mmol) -toluene solution 5 mL was added dropwise 4 M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol) -methanol solution 2 mL and stirred at room temperature. After 1 hour, the resulting precipitate was collected. The obtained precipitate was heated at 220 ° C. under reduced pressure to remove unreacted ligand and solvent, and 0.12 g (92%) of L201-Li was obtained. NMR of the obtained complex is shown in FIG.
  • Ligand L201 synthesized in the above (2-1-2) 0.19 g (0.6 mmol) -toluene solution 12 mL, 50% hydroxide rubidium aqueous solution 0.07 mL (0.6 mmol) -methanol solution 3 mL was added dropwise. And stirred at room temperature. After 1 hour, the precipitate was collected by concentration under reduced pressure. The obtained precipitate was heated at 220 ° C. under reduced pressure to remove unreacted ligand and solvent, and L201-Rb 0.21 g (84%) was obtained. NMR of the obtained complex is shown in FIG.
  • Ligand L201 synthesized in the above (2-1-2) 0.10 g (0.3 mmol) -toluene solution (3 mL), 50% aqueous cesium hydroxide solution 0.05 mL (0.3 mmol) -methanol solution 1.5 mL was added dropwise and stirred at room temperature. After 1 hour, the precipitate was collected by concentration under reduced pressure. The resulting precipitate was heated at 220 ° C. under reduced pressure to remove the unreacted ligand and solvent, and 0.10 g (72%) of L201-Cs was obtained. NMR of the obtained complex is shown in FIG.
  • the obtained residue was purified by column chromatography (PEI, heptane: dichloromethane) to obtain 3.53 g of a yellow solid.
  • the obtained solid was recrystallized from ethyl acetate and then cyclohexane to obtain 2.50 g (77%) of 8-benzyloxy-5,7-bis (4-pyridin-3-ylphenyl) quinoline.
  • the obtained residue was purified by column chromatography (PEI, heptane: dichloromethane) to obtain 736 mg (90%) of a white solid.
  • the obtained crystals were further recrystallized from ethyl acetate-heptane to obtain 633 mg (77%) of 8-hydroxy-5,7-bis (4-pyridin-3-ylphenyl) quinoline (L203).
  • Ligand L203 synthesized in the above (2-3-2) 0.19 g (0.42 mmol) -methanol suspension 4.4 mL, 50% aqueous cesium hydroxide solution 0.07 mL (0.4 mmol) -methanol 2 mL of the solution was added dropwise and stirred at room temperature. After 2 hours, the reaction solution was concentrated under reduced pressure. Toluene was added to the obtained residue, and the precipitate was collected by filtration to obtain 0.21 g (91%) of L203-Cs. NMR of the obtained complex is shown in FIG.
  • 8-Benzyloxyquinoline (CAS No. 84165-42-4, M020) is a method of Sakai et al. (Chem. Commun., 51 (15), 3181-3184, 2015) 2- (2-hydroxyphenyl) Benzoxazole was synthesized by changing to 8-hydroxyquinoline.
  • the obtained residue was dissolved by adding 60 mL of dichloromethane, 34.8 g (400 mmol) of manganese dioxide was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, insoluble material was removed using Celite, water was added to the filtrate, and the mixture was extracted with dichloromethane. The obtained organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained residue was purified by column chromatography (C300, dichloromethane: heptane) to obtain 7.46 g (48%) of 2- (3-bromophenyl) -8-benzyloxyquinoline.
  • a Grignard reagent was prepared by adding 25 mL of 1-bromobutane 3.08 g (22.5 mmol) -THF solution to 0.608 g (25 mmol) of magnesium. Subsequently, a Grignard reagent adjusted to 4.09 g (30 mmol) of zinc chloride at 0 ° C. was added and stirred at room temperature for 15 minutes. To this solution, 2,5-dibromopyridine 5.92 g (25 mmol) -THF solution 25 mL and tetrakis (triphenylphosphine) palladium 0.867 g (0.75 mmol) were added and stirred for 20 hours.
  • Ligand L207 0.14 g (0.5 mmol) -toluene solution 5 mL was added 50% cesium hydroxide 0.17 mL (0.25 mmol) -methanol solution 2.5 mL and stirred at room temperature for 1 hour. After completion of the reaction, it was concentrated under reduced pressure. The obtained residue was further heated at 200 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 0.06 g (28%) of L207-Cs. NMR of the obtained complex is shown in FIG.
  • Ligand L401 0.16 g (0.3 mmol) -methanol suspension 3 mL of 4M lithium hydroxide aqueous solution 0.075 mL (0.3 mmol) -methanol solution 1.5 mL was added dropwise and stirred at room temperature. After 2 hours, insoluble matters were filtered off, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallized from toluene-methanol to obtain 0.16 g (99%) of L401-Li. NMR of the obtained complex is shown in FIG.
  • Ligand L501 0.10 g (0.25 mmol) -toluene suspension, 2.5% mL, 50% cesium hydroxide aqueous solution, 0.04 mL (0.25 mmol) -methanol, 1.25 mL solution, was added dropwise at 40 ° C. Stir for hours. The reaction mixture was concentrated under reduced pressure. The obtained residue was heated at 200 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 501 g (74%) of L501-Cs. NMR of the obtained complex is shown in FIG.
  • Ligand L121 140 mg (0.4 mmol) -toluene solution 4 mL was added dropwise with 4 M lithium hydroxide aqueous solution 0.1 mL (0.4 mmol) -methanol 2 mL solution and stirred at room temperature for 1 hour.
  • the reaction mixture was concentrated under reduced pressure.
  • the obtained residue was heated at 220 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 108 mg (75%) of L121-Li. NMR of the obtained complex is shown in FIG.
  • Ligand L209 129 mg (0.4 mmol) -toluene suspension, 10 mL of 4M lithium hydroxide solution 0.1 mL (0.4 mmol) -methanol in 2 mL was added dropwise and stirred at room temperature for 1 hour. The resulting precipitate was collected by filtration. The resulting precipitate was heated at 220 ° C. under reduced pressure to remove the solvent and unreacted ligand to obtain 100 mg (76%) of L209-Li. NMR of the obtained complex is shown in FIG.
  • Ligand L210 150 mg (0.3 mmol) -ethanol solution To 6 mL of 50% aqueous cesium hydroxide solution 0.04 mL (0.36 mmol) -ethanol solution 1.2 mL was added dropwise and stirred at room temperature for 1 hour. After the resulting precipitate was collected by filtration, the precipitate was washed with dichloromethane to obtain 145 mg (82%) of L210-Rb. NMR of the obtained complex is shown in FIG.
  • Ligand L701 117 mg (0.3 mmol) -toluene 5 mL was added dropwise with a 50% rubidium hydroxide aqueous solution 0.017 mL (0.29 mmol) -methanol 1 mL and refluxed for 2 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the resulting precipitate was collected by filtration. The precipitate was washed with toluene to obtain 112 mg (77%) of L701-Rb. NMR of the obtained complex is shown in FIG.
  • metal complex L101-Rb [Rubidium 2- (pyridin-2-yl) -4- (4- (4,6-diphenylpyrimidin-2-yl) phenyl) phenolate complex] (complex of Example 1 described later) was dissolved in 1-heptanol to prepare a 5 g / L to 15 g / L alcohol solution. Alcohol solutions were similarly prepared for the other metal complexes obtained above. The solvents used are listed in Table 1. All of these were excellent in film formability.
  • a toluene solution of F8BT (10 g / L) was used for the light emitting layer.
  • a compound in Table 1 below was used for the electron transport layer, and a 1-heptanol solution having a concentration of 7.5 g / L was prepared.
  • metal alkoxide Lithium-n-butoxide (LiOBu) and cesium-n-heptoxide (CsOnHep) were used as metal alkoxides.
  • the metal alkoxide was added by adding the metal alkoxide solution to the electron transport material solution before film formation.
  • a reagent manufactured by Kojundo Chemical Laboratory Co., Ltd. was dissolved in the solvent shown in Table 1 at a concentration of 5 g / L in the glove box and used.
  • LiBPP compound described in JP-A-2008-195623
  • ETM2 compound described in Patent Document 4
  • the ITO substrate As a pretreatment of the ITO substrate, it was boiled and washed in 2-propanol for 5 minutes, and then immediately placed in a UV / O 3 treatment apparatus and subjected to O 3 treatment by UV irradiation for 15 minutes.
  • the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer were formed using an IDEN spin coater and then dried under an N 2 atmosphere.
  • a high vacuum vapor deposition apparatus having a chamber thickness of 1 ⁇ 10 ⁇ 4 Pa was used for vapor deposition of the cathode (Al, purity 99.999%) and the electron injection layer (LiF).
  • the deposition rate was 0.1 ⁇ / s for LiF and 5 ⁇ / s for Al.
  • the device was immediately moved into a glove box substituted with nitrogen, and sealed with a glass cap coated with a desiccant.
  • the element structure is as shown in FIG. 1 except that an electron injection layer is provided between the cathode and the electron transport layer.
  • the film thickness of each layer is as follows.
  • Anode ITO (150 nm)
  • Hole injection layer PEDOT: PSS (35 nm)
  • Hole transport layer triphenylamine polymer (20 nm)
  • Light emitting layer F8BT (CAS made by Aldrich: 210347-52-7) (60 nm)
  • Electron transport layer 20 nm
  • Cathode LiF (0.5 nm) / Al (100 nm) or Al (100 nm)
  • the voltage-current-brightness characteristics of the produced organic EL device were measured by applying a voltage from 0V to 10V using a DC voltage / current power source / monitor (DACDT 6241A, 7351A) and measuring the current value every 0.1V.
  • the lifetime of the produced organic EL element was measured using a lifetime evaluation measuring apparatus (manufactured by Kyushu Keiki Co., Ltd.). The element was placed in a constant temperature bath at 25 ° C., and the change in luminance voltage accompanying constant current driving was measured. However, 1.758 was used as the acceleration coefficient for device evaluation. Comparison was made based on a half-time that reached 1/2 of the initial luminance by a driving time converted to 100 cd / m 2 .
  • T (L 0 / L) 1.758 ⁇ T 1 (In the formula, L 0 : initial luminance [cd / m 2 ], L: converted luminance [cd / m 2 ], T 1 : actually measured luminance half time, T: converted luminance half time)
  • the relative lifetime was based on the lifetime (100) of Example 11 [material complex (L201-Cs) + dopant (LiOBu) + electron injection layer].
  • Triphenylamine polymer (CAS: 472960-35-3)
  • LiBPP lithium 2- (2 ′, 2 ′′ -bipyridin-6′-yl) phenolate, cas: 1049805-81-3
  • Example 1 In the production of the organic electroluminescent device of (1) above, L101-Rb was used as the electron transport layer material of Example 1 in Table 1 below, and LiOBu was used as the dopant. Moreover, it implemented together with the case where an electron injection layer was present. Table 1 shows the physical property values of drive voltage (V), current efficiency ( ⁇ c ) and relative life of the obtained device.
  • Example 2 Comparative Examples 1 to 3
  • an element was produced in the same manner as in Example 1 except that the electron transport layer material was changed to the compounds shown in Tables 1 and 2.
  • CsOnHep was used as a dopant.
  • Tables 1 and 2 also show the respective physical property values of drive voltage (V), current efficiency ( ⁇ c ), and relative lifetime of the obtained device.
  • Tables 1 and 2 show materials used in Examples and Comparative Examples, device configurations, and various physical properties of the obtained light-emitting devices.
  • the metal complex having a novel ligand of the present invention can achieve both high durability and electron transport properties, and can be suitably used as an electron transport material for organic electroluminescence devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

新規金属錯体およびかかる金属錯体を使用した、多層構造を有する有機電界発光素子の製造において湿式法により形成が可能な電子輸送材料を提供する。 少なくとも4個以上の炭素環および/または複素環を含む下記一般式(1)から(7)で表される金属錯体。 式(1)から(7)において、R1、R3、R5およびR7はそれぞれ独立に2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基であり、R2、R4、R6およびR8はそれぞれ独立に水素原子または複素環式化合物残基を表す。また、Mはアルカリ金属またはアルカリ土類金属を表し、n1からn4はそれぞれ独立に0~2の整数であり、lは1または2の整数である。

Description

金属錯体およびそれを用いた電子輸送材料
 本発明は、新規なアルカリ金属錯体およびアルカリ土類金属錯体に関する。また、本発明は、かかる新規な金属錯体を用いた有機電界発光素子用の電子輸送材料に関するものである。より具体的には、多層構造を有する有機電界発光素子の製造において湿式法により形成が可能で、かつ電子注入特性、電子輸送特性、耐久性に優れた電子輸送材料に関するものである。
 陽極と陰極との間に発光性有機層(有機エレクトロルミネッセンス層)が設けられた有機電界発光素子(以下、「有機EL素子」ということがある。)は、無機EL素子に比べ、直流低電圧での駆動が可能であり、輝度及び発光効率が高いという利点を有しており、次世代の表示装置として注目を集めている。最近になってフルカラー表示パネルが市販されるに至り、表示面の大型化、耐久性の向上等に向けて盛んに研究開発が行われている。
 有機EL素子は、注入した電子とホール(正孔)との再結合により有機化合物を電気的に励起し発光させる電気発光素子である。有機EL素子の研究は、有機積層薄膜素子が高輝度で発光することを示したコダック社のTangらの報告(非特許文献1参照)以来、多くの企業及び研究機関によりなされている。コダック社による有機EL素子の代表的な構成は、透明陽極であるITO(酸化インジウムスズ)ガラス基板上にホール輸送材料であるジアミン化合物、発光材料であるトリス(8-キノリノラート)アルミニウム(III)、陰極であるMg:Agを順次積層したもので、10V程度の駆動電圧で約1000cd/cm2の緑色発光が観測された。現在研究及び実用化がなされている積層型有機EL素子は、基本的にはこのコダック社の構成を踏襲している。
 有機EL素子は、その構成材料により、高分子系有機EL素子と低分子系有機EL素子に大別され、前者は湿式法により、後者は蒸着法及び湿式法のいずれかにより製造される。高分子系有機EL素子は、素子の作製に用いられる導電性高分子材料における正孔輸送特性と電子輸送特性とのバランスを取るのが困難であるため、近年では、電子輸送、正孔輸送及び発光の機能を分離した積層型低分子系有機EL素子が主流となりつつある。
 積層型低分子系有機EL素子において、発光性有機層と電極との間に設けられる電子輸送層、電子注入層及び正孔輸送層の性能はデバイス特性を大きく左右するため、それらの性能向上に向けた研究開発が盛んになされており、電子輸送層及び電子注入層に関しても、多くの改良研究が報告されている。
 例えば、特許文献1では、電子輸送性の有機化合物と、仕事関数(電気陰性度)の低い金属であるアルカリ金属を含む金属化合物とを共蒸着することにより電子注入層中に金属化合物を混入させ、電子注入層の特性の改善を図る構成が提案されている。
 また、特許文献2では、ホスフィンオキサイド化合物を電子輸送材料として用いることが提案されている。更に、特許文献3では、電子輸送層の構成として、配位部位を有する有機化合物にアルカリ金属をドーピングする方法が提案されている。
 しかし、特許文献1から3に記載の電子注入層、電子輸送材料及び電子輸送層は、いずれも動作電圧の低下や発光効率の向上を図ることが目的であり、湿式法による多層構造の形成や耐久性の向上が図られているとは言い難い。また、これらの発明においては、電子輸送層及び電子注入層を真空蒸着法により成膜するため、大掛かりな設備を必要とすると共に、2種以上の材料を同時に蒸着する際には蒸着速度の精密な調整が困難であり、生産性に劣るという問題もある。
 湿式法による積層型低分子系有機EL素子の製造法には大きく分けて2種類あり、1つは、下層を成膜後、熱や光により架橋や重合を行い不溶化し上層を成膜する方法、もう1つは、下層と上層で溶解性の大きく違う材料を用いる方法である。前者の方法は、材料の選択の幅が広い反面、架橋又は重合反応の終了後に反応開始剤や未反応物を取り除くことが困難であり、耐久性に問題がある。一方、後者の方法は、材料の選択が難しい反面、架橋や重合等の化学反応を伴わないため、前者の方法と比較して高純度で耐久性の高い素子の構築が可能になる。以上述べたように、湿式法による積層型低分子系有機EL素子の製造は、材料の選択が困難であるという問題があるにも関わらず、各層の構成材料の溶解性の違いを利用した後者の方法が適していると考えられる。しかし、各層の構成材料の溶解性の違いを利用した積層を難しくしている要因の1つに、導電性高分子やスピンコート可能な有機半導体の殆どが、トルエン、クロロホルム、テトラヒドロフラン等の比較的溶媒能の高い溶媒にしか溶けず、P型の導電性高分子でホール輸送層を成膜した後、同様の溶媒でN型の導電性高分子をスピンコートすると下地のホール輸送性高分子を浸食することになり、平坦で欠陥の少ないPN界面を有する積層構造を形成できないという問題がある。特にインクジェット法を用いる場合には、溶媒が自然乾燥で除去されるため溶媒の滞留時間が長くなることから、ホール輸送層や発光層の浸食が激しくなり、実用上問題のないデバイス特性を得ることが著しく困難になるおそれがある。
 そこで、本発明者らは、比較的高分子量であるにもかかわらずアルコールに良溶性であり、一般的にアルコールに難溶な導電性高分子上へスピンコートできる電子輸送性を持つホスフィンオキシドオリゴマーを開発し、このホスフィンオキシドオリゴマー使用することにより、溶液法によるホール注入層/発光層/電子輸送層のヘテロ構造を実現した(特許文献4)。
 しかしながら、ホスフィンオキシド誘導体は有機EL素子に用いた際に良好な電子輸送性を示すものの、非特許文献2に記載のようにアニオン状態のP-C結合解離エネルギーが低く耐久性に課題を残していた。
特開2005-63910号公報 特開2002-63989号公報 特開2002-352961号公報 国際公開第2011/021385号
C. W. Tang, S. A. VanSlyke著、「Organic electroluminescent diodes」、Applied Physics Letters(米国)、米国物理学会(The American Institute of Physics)、1987年9月21日、第51巻、第12号、p.913-915 Na Lin, Juan Qiao, Lian Duan, Haifang Li, Liduo Wang, and Yong Qiu著、「Achilles Heels of Phosphine Oxide Materials for OLEDs: Chemical Stability and Degradation Mechanism of a Bipolar Phosphine Oxide/Carbazole Hybrid Host Material」、J. Phys. Chem. C, 2012, 116 (36), pp 19451-19457
 本発明は上記事情に鑑みてなされたものであり、電子輸送性とアルコール可溶性両方を有するアルカリ金属錯体またはアルカリ土類金属錯体(以下、併せて単に「金属錯体」という。)、およびかかる金属錯体を使用した、多層構造を有する有機電界発光素子の製造において湿式法により形成が可能でかつ電子注入特性、電子輸送特性、耐久性に優れた電子輸送材料、ならびにその電子輸送材料を使用した有機電界発光素子を提供することを目的とする。
 本発明の新規な配位子を有する金属錯体は、ホスフィンオキシド誘導体のように電子輸送性とアルコール可溶性の両方を有するが、ホスフィンオキシド誘導体のようにアニオン状態で不安定なP-C結合を有しておらず、耐久性と高い電子輸送性を両立でき、有機電界発光素子用の電子輸送材料として好適に使用できる。
 前記目的に沿う本発明の第1の態様は、後記する第3の態様である電子輸送材料に好適な、電子輸送性とアルコール可溶性の両方を有する次の新規な金属錯体にかかるものである。
<1> 少なくとも4個以上の炭素環および/または複素環を含む下記一般式(1)から(7)で表されることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000006

 式(1)から(7)において、R1、R3、R5およびR7はそれぞれ独立に2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基であり、R2、R4、R6およびR8はそれぞれ独立に水素原子または複素環式化合物残基を表す。また、Mはアルカリ金属またはアルカリ土類金属を表し、n1からn4はそれぞれ独立に0~2の整数であり、lは1または2の整数である。
<2> 前記R2、R4、R6およびR8が、含窒素環式化合物残基である前記<1>に記載の金属錯体。
<3> 前記R2、R4、R6およびR8が、次の一般式(8a)から(8c)で表される含窒素環式化合物残基である前記<2>に記載の金属錯体。
Figure JPOXMLDOC01-appb-C000007


 式(8a)から(8c)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~4の整数である。
<4> 前記R2、R4、R6およびR8が、次の一般式(9a)から(9d)で表される含窒素環式化合物残基である前記<2>に記載の金属錯体。
Figure JPOXMLDOC01-appb-C000008

 式(9a)から(9d)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数である。
<5> 前記R2、R4、R6およびR8が、次の一般式(10a)から(10d)で表される含窒素環式化合物残基である前記<2>に記載の金属錯体。
Figure JPOXMLDOC01-appb-C000009

 式(10a)から(10d)において、R10からR12は、それぞれ独立に炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1からm3はそれぞれ独立に0~3の整数である。
<6> 前記R2、R4、R6およびR8が、次の一般式(11a)から(11d)で表される含窒素環式化合物残基である前記<2>に記載の金属錯体。
Figure JPOXMLDOC01-appb-C000010

 式(11a)から(11d)において、R10、R11はそれぞれ独立に炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数であり、m2は0~4の整数である。
<7> 前記Mが、アルカリ金属である前記<1>から<6>のいずれかに記載の金属錯体。
<8> 前記アルカリ金属が、RbまたはCsである前記<7>に記載の金属錯体。
 また、本願発明の第2の態様は、前記金属錯体の配位子である、金属錯体に用いる配位性化合物にかかるものである。
<9> 前記<1>から<8>のいずれか1項に記載の金属錯体に用いる配位性化合物。
 次に、前記目的に沿う本発明の第3の態様は、上記金属錯体を使用する、多層構造を有する有機電界発光素子の製造において湿式法により形成が可能でかつ電子注入特性、電子輸送特性、耐久性に優れた次の電子輸送材料にかかるものである。
<10> 前記<1>から<8>のいずれかに記載のアルカリ金属錯体からなることを特徴とする有機電界発光素子用の電子輸送材料。
<11> 前記電子輸送材料が、さらに金属アルコシドを含有する前記<10>に記載の電子輸送材料。
<12> 前記金属アルコシドが、下記一般式(A)または(B)で表される前記<11>に記載の電子輸送材料。

 R20- M         (A)
 R20- M - R21   (B)

 式(A)又は(B)において、R20、R21はそれぞれ独立に任意のアルキルアルコキシ基を表し、また、Mはアルカリ金属またはアルカリ土類金属を表す。
<13> 前記電子輸送材料が、さらにアルカリ金属イオンおよびアルカリ土類金属イオンのうちの少なくとも1種の金属イオンのハロゲン塩、炭酸塩、炭酸水素塩、水酸化物、または、炭素数1から9の有機酸塩を含有する前記<10>から<12>のいずれかに記載の電子輸送材料。
 次に、前記目的に沿う本発明の第4の態様は、上記電子輸送材料を溶媒に溶解した、次の有機電界発光素子の電子輸送層を構築するための液状材料にかかるものである。
<14> 前記<10>から<13>のいずれかに記載の電子輸送材料をプロトン性極性溶媒に溶解してなる有機電界発光素子の電子輸送層を構築するための液状材料。
<15> 前記プロトン性極性溶媒が炭素数1~10のアルコール系溶媒である前記<14>に記載の液状材料。
<16> 前記炭素数1~10のアルコール系溶媒が、1価または2価のアルコールである前記<15>に記載の液状材料。
<17> 前記液状材料が、前記<1>から<8>のいずれかに記載のアルカリ金属錯体を0.01から10重量%含有する前記<14>に記載の液状材料。
 更に、前記目的に沿う本発明の他の態様は、次の発明にかかるものである。
<18> 前記<10>から<13>のいずれかに記載の電子輸送材料を使用してなることを特徴とする有機電界発光素子。
<19> 前記<14>から<17>のいずれかに記載の液状材料を使用し、有機電界発光素子の電子輸送層を湿式で構築することを特徴とする有機電界発光素子の製造方法。
 本発明によると、電子輸送性とアルコール可溶性の両方を有する新規なアルカリ金属錯体またはアルカリ土類金属錯体、およびかかる金属錯体を使用した、多層構造を有する有機電界発光素子の製造において湿式法により形成が可能でかつ電子注入特性、電子輸送特性、耐久性に優れた電子輸送材料、ならびにその電子輸送材料を使用した有機電界発光素子が提供される。
 本発明の金属錯体からなる電子輸送材料は、高い電子輸送性と高い耐久性を両立でき、有機電界発光素子用の電子輸送材料として好適に使用できる。
 本発明を適用することにより、高い生産性かつ低コストで製造でき、発光効率に優れ、高い耐久性を有する有機電界発光素子が提供される。
有機電界発光素子の縦断面を模式的に示す図である。 本発明の第1の実施の形態に係る金属錯体(L101-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L102-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L103-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L104-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L105-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L106-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L107-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L108-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L109-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L110-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L111-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L112-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L113-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L114-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L115-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L116-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L117-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L118-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L119-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L120-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L201-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L202-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L203-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L204-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L205-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L206-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L207-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L301-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L401-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L402-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L403-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L501-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L601-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L121-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L209-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L210-M)のNMRチャートを示す図である。 本発明の第1の実施の形態に係る金属錯体(L701-M)のNMRチャートを示す図である。
1 有機電界発光素子
2 基板
3 陽極
4 正孔注入層
5 正孔輸送層
6 発光層
7 電子輸送層
8 陰極
9 封止部材
 続いて、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
[1]金属錯体
 本発明の第1の実施の形態に係る金属錯体は、少なくとも4個以上の炭素環および/または複素環を含む下記一般式(1)から(7)で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000011
 ここに、上記式(1)から(7)において、R1、R3、R5およびR7はそれぞれ独立に2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基であり、R2、R4、R6およびR8はそれぞれ独立に水素原子または複素環式化合物残基を表し、R2、R4、R6およびR8のいずれか1つは複素環式化合物残基であることが好ましい。また、Mはアルカリ金属またはアルカリ土類金属を表し、n1からn4はそれぞれ独立に0~2の整数であり、lは1または2の整数である。
 本発明の金属錯体は、少なくとも4個以上の炭素環および/または複素環を含むものである。本発明において、少なくとも4個以上の炭素環および/または複素環を含むとは、炭素環と複素環のいずれかまたは両方を合計で4以上含むことをいい、多環系骨格の縮環(縮合環)の場合は、縮環を構成する炭素環または複素環をそれぞれ1個とカウントする。例えば、上記式(1)を構成する基本骨格のフェニルピリジンは炭素環と複素環をそれぞれ1個、合計2個有し、上記式(2)を構成する基本骨格のキノリンは縮環として炭素環と複素環をそれぞれ1個、合計2個有し、また、上記式(3)を構成する基本骨格のベンゾキノリンは縮環として炭素環を2個と複素環を1個、合計3個有しているとカウントする。なお、以後、炭素環または複素環を併せ単に「芳香環」ということがある。
 本発明の金属錯体は、上記式(1)から(7)で示される金属錯体であり、式(1)は基本骨格がピリジンフェノラート錯体、式(2)は基本骨格がキノラート錯体、式(3)は基本骨格がベンゾキノラート錯体、式(4)は基本骨格がベンゾオキサゾリルフェノラート錯体、式(5)は基本骨格がベンゾチアゾリルフェノラート錯体、また、式(6)は基本骨格がフェナントロリルフェノラート錯体、式(7)は基本骨格がベンゾイミダゾリルフェノラート錯体に関するものである。
 上記式(1)から(7)で示される金属錯体において、Mはアルカリ金属またはアルカリ土類金属を表わす。アルカリ金属としては、Li,Na,K,RbまたはCsから選ばれる金属が挙げられ、アルカリ土類金属としては、Be,Mg,Ca,SrまたはBaから選ばれる金属が挙げられる。
 後述する電子輸送材料用の金属錯体としては、アルカリ金属がより好ましく、その中でも電子注入性およびアルコール溶解性の両方の観点から、Li<Na<K<Rb<Csの順で、RbまたはCsが好適に使用される。また、アルカリ土類金属としては、Baが好適に使用される。
 また、上記式(1)から(7)で示される金属錯体において、l(英文字のエル)は、1または2の整数を表す。即ち、Mがアルカリ金属の場合は、lは1であり、Mがアルカリ土類金属の場合は、lは2となる。
 そして、上記式(1)から(7)で示される金属錯体は、基本骨格に接続する接続基であるR1、R3、R5、R7(以下、「R1等」という。)、および、水素原子または複素環式化合物残基であるR2、R4、R6、R8(以下、「R2等」という。)を有する。ここに、R1等は2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基であり、各骨格に応じ0~2個置換が可能である。即ち、上記式(1)から(7)において、接続基のn1からn4はそれぞれ独立に0~2の整数である。因みに、n1等が0の場合は、複素環式化合物残基であるR2等が基本骨格に直接置換していることを意味する。
 次に、R2等について詳述する。R2等は、水素原子または複素環式化合物残基であり、R2、R4、R6およびR8のいずれか1つは複素環式化合物残基であることが好ましい。また、複素環式化合物残基としては含窒素環式化合物残基であることが好ましい。含窒素環式化合物残基の例としては、次のものが挙げられる。
(a)次の一般式(8a)から(8c)で表される含窒素環式化合物残基
Figure JPOXMLDOC01-appb-C000012
 ここに、上記式(8a)から(8c)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~4の整数である。
 即ち、含窒素環式化合物残基のR2等が、ピリジン骨格からなるものであり、置換基R10を有していてもよい。R10としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基等の炭素数1~4の直鎖または分岐アルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が挙げられる。また、置換基R10の数を示すm1は、0~4の整数である。
(b)次の一般式(9a)から(9d)で表される含窒素環式化合物残基
Figure JPOXMLDOC01-appb-C000013
 ここに、上記式(9a)から(9d)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数である。
 即ち、含窒素環式化合物残基のR2等が、ピリミジン骨格またはトリアジン骨格からなるものであり、置換基R10を有していてもよい。R10としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基等の炭素数1~4の直鎖または分岐アルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が挙げられる。これらの中でも、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が好ましい。また、置換基R10の数を示すm1は、0~3の整数である。
(c)次の一般式(10a)から(10d)で表される含窒素環式化合物残基
Figure JPOXMLDOC01-appb-C000014
 ここに、上記式(10a)から(10d)において、R10からR12(以下、「R10等」という。)は、それぞれ独立に炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1からm3はそれぞれ独立に0~3の整数である。
 即ち、含窒素環式化合物残基のR2等が、フェナントロリン骨格からなるものであり、置換基を有していてもよい。R10等としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基等の炭素数1~4の直鎖または分岐アルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が挙げられる。これらの中でも、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が好ましい。また、置換基R10等の数を示すm1からm3はそれぞれ独立に0~3の整数である。
(d)次の一般式(11a)から(11d)で表される含窒素環式化合物残基
Figure JPOXMLDOC01-appb-C000015
 ここに、上記式(11a)から(11d)において、R10、R11(以下、「R10等」という。)は、それぞれ独立に、炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数であり、m2は0~4の整数である。
 即ち、含窒素環式化合物残基のR2が、カルボリン骨格からなるものであり、置換基R10等を有していてもよい。R10等としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基等の炭素数1~4の直鎖または分岐アルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が挙げられる。これらの中でも、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基が好ましい。また、置換基R10等の数を示すm1は0~3の整数であり、m2は0~4の整数である。
 次に、本発明の一般式(1)から(7)で表される金属錯体の具体例につき説明する。以下の化合物はあくまでも例示であり本発明の金属錯体はこれらに限定されるものではない。
(A)一般式(1)で表される金属錯体
 本発明の一般式(1)で表される金属錯体としては、次の化合物が例示される。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(B)一般式(2)で表される金属錯体
 本発明の一般式(2)で表される金属錯体としては、次の化合物が例示される。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(C)一般式(3)で表される金属錯体
 本発明の一般式(3)で表される金属錯体としては、次の化合物が例示される。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(D)一般式(4)で表される金属錯体
 本発明の一般式(4)で表される金属錯体としては、次の化合物が例示される。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(E)一般式(5)で表される金属錯体
 本発明の一般式(5)で表される金属錯体としては、次の化合物が例示される。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027

(F)一般式(6)で表される金属錯体
 本発明の一般式(6)で表される金属錯体としては、次の化合物が挙げられる。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000028
(G)一般式(7)で表される金属錯体
 本発明の一般式(7)で表される金属錯体としては、次の化合物が挙げられる。なお、Mは、アルカリ金属またはアルカリ土類金属を表わす。但し、Mがアルカリ土類金属の場合は、各配位子がMに2個配位した構造となる。
Figure JPOXMLDOC01-appb-C000029
 本発明の上記一般式(1)から(7)で表される構造を有する金属錯体は、たとえば、次のスキームにより合成することができる。
(1)一般式(1)で表される構造を有する金属錯体
1)一般式(1)の構造を有する配位子は、次のようにして合成することができる。
 なお、式中、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフラート基、トシラート基、メシラート基、ジアゾニオ基等の脱離基を表す。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
2)一般式(1)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000035
(2)一般式(2)で表される構造を有する金属錯体
1)一般式(2)の構造を有する配位子は、次のようにして合成することができる。
 なお、式中、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフラート基、トシラート基、メシラート基、ジアゾニオ基等の脱離基を表す。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
2)一般式(2)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000038
(3)一般式(3)で表される構造を有する金属錯体
1)一般式(3)の構造を有する配位子は、次のようにして合成することができる。
 なお、式中、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフラート基、トシラート基、メシラート基、ジアゾニオ基等の脱離基を表す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
2)一般式(3)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000041
(4)一般式(4)で表される構造を有する金属錯体
1)一般式(4)の構造を有する配位子は次のようにして合成することができる。
 なお、式中、Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフラート基、トシラート基、メシラート基、ジアゾニオ基等の脱離基を表す。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
2)一般式(4)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000044
(5)一般式(5)で表される構造を有する金属錯体
1)一般式(5)の構造を有する配位子は、次のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
2)一般式(5)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000047
(6)一般式(6)で表される構造を有する金属錯体
1)一般式(6)の構造を有する配位子は、次のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
2)一般式(6)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000050
(7)一般式(7)で表される構造を有する金属錯体
1)一般式(7)の構造を有する配位子は、次のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052

2)一般式(7)で表される構造を有する錯体は、上記配位子と水酸化物の反応により次ようにして合成することができる。
Figure JPOXMLDOC01-appb-C000053
[2]配位性化合物
 本発明の第2の実施の形態に係る配位性化合物は、前記金属錯体を構成する配位子である。即ち、本発明の第1の実施の形態に係る、少なくとも4個以上の炭素環および/または複素環を含む一般式(1)から(7)で表される金属錯体を構成する化合物である。
[3]電子輸送材料
 本発明の第3の実施の形態に係る電子輸送材料は、上記第1の実施の形態で詳述した一般式(1)から(7)で表される金属錯体、特に、アルカリ金属錯体またはアルカリ土類金属錯体からなるものである。
 本発明の金属錯体は、いずれも基本骨格に「-O-M…N≡」のキレート結合をもつ環を有しており、また2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基R1等、および、水素原子または複素環式化合物残基R2等を構成要素とするものである。
 本発明の金属錯体の上記基本骨格の構造は、電子輸送材料として使用した場合に、後述のアルコール等のプロトン性極性溶媒への溶解性付与に寄与し、また電子注入性向上に寄与するものと考えられ、また、上記接続基および複素環式化合物残基は、電子輸送性や成膜性向上に寄与するものと考えられる。そして、本発明の金属錯体は、ホスフィンオキシド化合物に比べ結合解離エネルギーが高く、より耐久性、高寿命に優れた電子輸送材料が得られる。
 本発明の金属錯体は、少なくとも4個以上の炭素環または複素環を含むことが必要である。炭素環または複素環が3個以下では、本願の目的とする電子注入特性、電子輸送特性、耐久性に優れた電子輸送材料を得ることが難しい。
 上記式(1)から(7)で示される金属錯体において、Mは金属、特に、アルカリ金属またはアルカリ土類金属を表わす。アルカリ金属としては、Li,Na,K,RbまたはCsから選ばれる金属が挙げられ、アルカリ土類金属としては、Be,Mg,Ca,SrまたはBaから選ばれる金属が挙げられる。
 電子輸送材料用の金属錯体としては、アルカリ金属がより好ましく、その中でも電子注入性およびアルコール溶解性の両方の観点から、Li<Na<K<Rb<Csの順で、Rb又はCsが好適に使用される。また、アルカリ土類金属としては、Baが好適に使用される。
 上記式(1)から(7)で示される金属錯体の中でも、電子輸送材料用の金属錯体としては、式(1)または式(2)で表される金属錯体が好ましい。式(1)の中でも、下記L101-M,L102-M、L106-MおよびL115-Mの錯体が使用された素子の駆動電圧(V)、電流効率(ηc)および相対寿命等の物性値で優れている。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
 とりわけ、L115-Mの錯体が好適であり、その中でもMがRb又はCs、特にCsである場合が優れている。
 式(2)の中では、下記L201-MおよびL203-Mの錯体が使用された素子の駆動電圧(V)、電流効率(ηc)および相対寿命等の物性値で優れている。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 その中でも、L201-Mの錯体が好適であり、その中でもMがRb又はCs、特にCsである場合が優れている。また、L203-M錯体の場合は、MがBaである場合が優れている。
 本発明の電子輸送材料は、電子注入性および電子輸送性を高めるために、金属アルコシドを含有することが好ましい。
 金属アルコキシドは、調整したものを用いることも可能であるが、任意のアルコールにアルカリ金属またはアルカリ土類金属を添加し、溶媒と反応させることにより金属アルコキシドを調整することも可能である。
 調整した金属アルコキシドを用いる場合は、下記一般式(A)または(B)で表される化合物がより好適に使用される。

 R20- M         (A)
 R20- M - R21   (B)

 式(A)又は(B)において、R20、R21はそれぞれ独立に任意のアルキルアルコキシ基を表し、また、Mはアルカリ金属またはアルカリ土類金属を表す。
 アルキルアルコキシ基としては、炭素数が1~10、好ましくは炭素数が1~7の直鎖または分岐アルキルアルコキシ基が挙げられる。具体的には、メトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、1-ペントキシ基、2-ペントキシ基、3‐ペントキシ基、2-メチル-1-ブトキシ基、イソペントキシ基、tert-ペントキシ基、3‐メチル-2-ブトキシ基、ネオペントキシ基、1-ヘキソキシ基、2-メチル-1-ペントキシ基、4-メチル-2-ペントキシ基、2-エチル-1-ブトキシ基、1-ヘプトキシ基、2-ヘプトキシ基、3‐ヘプトキシ基、1-オクトキシ基、2-オクトキシ基、2-エチル-1-ヘキソキシ基、1-ノナノキシ基、3,5,5-トリメチル-1-ヘキソキシ基、1-デカノキシ基が例示される。中でもメトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、1-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、1-ペントキシ基、1-ヘキソキシ基が好適に使用される。これらは単独で用いてもよく、任意の2以上を任意の割合で混合して用いてもよい。
 Mの具体例としては、Li,Na,K,RbまたはCsのアルカリ金属、Be,Mg,Ca,SrまたはBaのアルカリ土類金属が挙げられる。これらの中でも、Liが成膜性、電子輸送性の観点から好適に使用される。
 また、アルコール溶媒にアルカリ金属またはアルカリ土類金属を添加する場合は、不活性ガス雰囲気下で所定の濃度になるように溶媒にアルカリ金属を添加し撹拌し溶解させる。溶解の際には、必要に応じ冷却、加熱を実施する。このとき、以下の反応が進行し金属アルコキシドが溶解した溶液が調整される。
 下記反応式(C)又は(D)において、Rは対応する溶媒の置換基に対応し、また、Mはアルカリ金属またはアルカリ土類金属を表す。なお、反応に使用する溶媒としては、後述する液状材料で使用される溶媒が同様に使用できる。その中でも、1価のアルコールが好ましい。
Figure JPOXMLDOC01-appb-C000060
 金属アルコシドの具体例としては、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム-tert-ブトキシド、カリウムエトキシド、カリウム-tert-ブトキシド、リチウム-n-ブトキシド、リチウム-tert-ブトキシド、セシウム-n-ヘプトキシド等が挙げられる。
 これらは、アルカリ金属錯体またはアルカリ土類金属錯体に対し0.1重量%から50重量%、より好ましくは1重量%から40重量%の範囲で適宜使用される。
 前記電子輸送材料には、また、アルカリ金属イオンおよびアルカリ土類金属イオンのうちの少なくとも1種の金属イオンのハロゲン塩、炭酸塩、炭酸水素塩、水酸化物または炭素数1~9の有機酸塩を含有することが好ましい。
 これらの無機または有機酸塩を含むことにより、電子輸送性を向上させ、耐久性を向上させることができる。
 これらの無機または有機酸塩の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化セシウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ルビジウム、臭化セシウム、、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、臭化バリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ルビジウム、ヨウ化セシウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化ストロンチウム、ヨウ化バリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ぎ酸リチウム、ぎ酸ナトリウム、ぎ酸カリウム、ぎ酸ルビジウム、ぎ酸セシウム等が挙げられる。水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等が挙げられる。
 これらは、アルカリ金属錯体またはアルカリ土類金属錯体に対し0.1から50重量%、よりこのましくは1重量%から40重量%の範囲で適宜使用される。
[4]液状材料
 本発明の第4の実施の形態に係る発明は、上記一般式(1)から(7)で表される構造を有する金属錯体からなる電子輸送材料を溶媒に溶解した液状材料に係るものである。
 本発明の液状材料では、溶媒は有機発光層を膨潤または溶解し難いものであることが好ましい。これにより、有機電界発光素子に用いる場合に、有機発光層薄膜の変質・劣化や膜厚が極端に薄くなることを防止することができ、その結果、より一層高い効率および耐久性に優れ、またより一層生産性に優れる有機電界発光素子製造用の液状材料が得られる。
 本発明の液状材料では、前記溶媒がプロトン性極性溶媒であることが好ましい。プロトン性極性溶媒を使用することにより、効率の低下を防止することができ、その結果、より一層高い効率および耐久性に優れる有機電界発光素子の製造に用いる、より一層生産性に優れる液状材料が得られる。本発明の液状材料では、前記溶媒は、アルコール系溶媒を主成分とするものであることが好ましい。
 アルコール系溶媒としては、炭素数が1~10のアルコール、好ましくは炭素数1~7、より好ましくは炭素数1~4の1価または2価のアルコールが用いられる。なかでも1価のアルコールが好適に用いられる。
 このようなアルコール系溶媒の具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、1-ノナノール、3,5,5-トリメチル-1-ヘキサノール、1-デカノール、1-ウンデカノール、1-ドデカノール、アリルアルコール、プロパルギルアルコール、ベンジルアルコール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール、α-テルピネオール、アビエチノール、フーゼル油、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、グリセリン、2-エチル-2-(ヒドロキシメチル)-1,3-プロパンジオール、1,2,6-ヘキサントリオール、および、
2-メトキシエタノール、2-エトキシエタノール、2-(メトキシエトキシ)エタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、2-(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、2-フェノキシエタノール、2-(ベンジルオキシ)エタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、ポリエチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジアセトンアルコール、2-クロロエタノール、1-クロロ-2-プロパノール、3‐クロロ-1,2-プロパンジオール、1,3-ジクロロ-2-プロパノール、2,2,2-トリフルオロエタノール、3‐ヒドロキシプロピオノニトリル、アセトンシアノヒドリン、2-アミノエタノール、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール、ジエタノールアミン、N-ブチルジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン、2,2’-チオジエタノール、また、
テトラフルオロプロパノール、ペンタフルオロプロパノール、2,2,2-トリフルオロエタノール、2-(パーフルオロブチル)エタノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、2-(パーフルオロブチル)エチルアルコール、3,3,4,4,5,5,6,6,6-ノナフルオロヘキサノール、1,1,2,2-テトラヒドロパーフルオロヘキシルアルコール、1H,1H,2H,2H-ノナフルオロ-1-ヘキサノール、1H,1H,2H,2H-ノナフルオロ-n-ヘキサノール、1H,1H,2H,2H-ノナフルオロヘキサノール、1H,1H,2H,2H-パーフルオロヘキサン-1-オール、1H,1H,2H,2H-パーフルオロヘキサノール3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、2-(パーフルオロヘキシル)エタノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール、2-(パーフルオロヘキシル)エチルアルコール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタノール、1,1,2,2-テトラヒドロパーフルオロオクタノール、1,1,2,2-テトラヒドロトリデカフルオロオクタノール、1H,1H,2H,2H-パーフルオロ-1-オクタノール、1H,1H,2H,2H-パーフルオロオクタン-1-オール、1H,1H,2H,2H-パーフルオロオクタノール、1H,1H,2H,2H-トリデカフルオロ-n-オクタノール、1H,1H,2H,2H-トリデカフルオロオクタノール、2-(トリデカフルオロヘキシル)エタノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール、パーフルオロヘキシルエタノール等が挙げられる。
 この中でも1-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-メチル-1-ブタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシエトキシ)エタノールがより好適に用いることができる。これらは単独で用いてもよく、任意の2以上を任意の割合で混合して用いてもよい。
 このような炭素数のアルコールは、金属化合物の溶解性が高く、その結果、より一層高い効率および耐久性に優れ、またより一層生産性に優れる有機電界発光素子製造用の液状材料が得られる。
 本発明の液状材料には、上記一般式(1)から(7)で表される構造を有する金属錯体を0.01から10重量%、好ましくは0.1から5重量%含有することが望まれる。金属錯体の含有量が0.01重量%未満では、有機電界発光素子に必要な膜厚が形成できないおそれがあり、一方、金属錯体の含有量が10重量%を超えると溶媒への溶解が難しくなる。
 本発明の液状材料では、前記金属錯体に、更に、前述の金属アルコシドやアルカリ金属イオンおよびアルカリ土類金属イオンのうちの少なくとも1種の金属イオンのハロゲン塩、炭酸塩、炭酸水素塩、水酸化物または炭素数1から9の有機酸塩のドーパントを含有することが好ましい。これらの金属化合物は、金属イオンを解離し易いことから、その結果、より一層高い効率および耐久性に優れ、またより一層生産性に優れる有機電界発光素子製造用の液状材料が得られる。
 本発明の液状材料は、前記一般式(1)から(7)で表される金属錯体および前記金属アルコシドや金属イオンの塩等を一括混合して調製することができるが、前記一般式(1)から(7)で表される金属錯体を含む第1の溶液と、前記金属アルコシドや金属イオンの塩等とを含む第2の溶液とを混合して、前記液状材料を調製することが好ましい。
[5]有機電界発光素子
 次に、本願発明の電子輸送材料(第3の実施形態)を使用してなる、第5の実施の形態である有機電界発光素子について説明する。
 図1に示すように、本発明の有機電界発光素子1は、陽極3と陰極8との間に挟まれるように積層された複数の有機化合物層(陽極3側から順に、正孔注入層4、正孔輸送層5、発光層6、電子輸送層7)を有する有機電界発光素子である。陽極3は透明な基板2上に設けられており、全体が封止部材9で封止されている。正孔輸送層5、発光層6はアルコール系溶媒に不溶な有機化合物からなっている。発光層6が陰極8と対向している側の面で発光層6に接するように湿式法で形成された電子輸送層7は、アルコール系溶媒に可溶な1又は複数の上記電子輸送材料を含んでいる。
 基板2は、有機電界発光素子1の支持体となるものである。本実施の形態に係る有機電界発光素子1は、基板2側から光を取り出す構成(ボトムエミッション型)であるため、基板2及び陽極3は、それぞれ、実質的に透明(無色透明、着色透明又は半透明)な材料より構成されている。基板2の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。
 基板2の平均厚さは、特に限定されないが、0.1~30mm程度であるのが好ましく、0.1~10mm程度であるのがより好ましい。なお、有機電界発光素子1が基板2と反対側から光を取り出す構成(トップエミッション型)の場合、基板2には、透明基板及び不透明基板のいずれも用いることができる。不透明基板の例としては、アルミナ等のセラミックス材料で構成された基板、ステンレス鋼等の金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
 陽極3は、後述する正孔注入層4に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。陽極3の構成材料としては、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウムジルコニウム)、In33、SnO2、Sb含有SnO2、Al含有ZnO等の酸化物、Au、Pt、Ag、Cu又はこれらを含む合金等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。陽極3の平均厚さは、特に限定されないが、10~200nm程度であるのが好ましく、50~150nm程度であるのがより好ましい。
 一方、陰極8は、電子輸送層7に電子を注入する電極であり、電子輸送層7と接する発光層6と反対側に設けられている。この陰極8の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。陰極8の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rb又はこれらを含む合金等が挙げられ、これらのうちの1種又は任意の2種以上を組み合わせて(例えば、複数層の積層体等)用いることができる。
 特に、陰極8の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。このような合金を陰極8の構成材料として用いることにより、陰極8の電子注入効率及び安定性の向上を図ることができる。陰極8の平均厚さは、特に限定されないが、50~10000nm程度であるのが好ましく、80~500nm程度であるのがより好ましい。
 トップエミッション型の場合、仕事関数の小さい材料、またはこれらを含む合金を5~20nm程度とし、透過性を持たせ、さらにその上面にITO等の透過性の高い導電材料を100~500nm程度の厚さで形成する。なお、本実施の形態に係る有機電界発光素子1は、ボトムエミッション型であるため、陰極8の光透過性は特に要求されない。
 陽極3上には、正孔注入層4及び正孔輸送層5が設けられている。正孔注入層4は、陽極3から注入された正孔を受け入れ、正孔輸送層5まで輸送する機能を有し、正孔輸送層5は、正孔注入層4から注入された正孔を発光層6まで輸送する機能を有するものである。正孔注入層4及び正孔輸送層5の構成材料としては、例えば、フタロシアニン、銅フタロシアニン(CuPc)、鉄フタロシアニンのような金属又は無金属のフタロシアニン系化合物、ポリアリールアミン、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂又はその誘導体等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。ただし、正孔輸送層5の構成材料は、アルコール系溶媒に不溶である必要がある。
 また、前記化合物は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。正孔注入層4及び正孔輸送層5には、陽極3及び発光層6に用いられる材料の種類に応じて、正孔の注入効率及び輸送効率の最適化、発光層6からの放射光の再吸収の防止、耐熱性等の観点から適当な1又は複数の材料を適宜選択し、又は組み合わせて用いられる。
 例えば、正孔注入層4には、正孔伝導準位(Ev)と陽極3に用いられる材料の仕事関数との差が小さく、放射光の再吸収を防ぐために可視光領域に吸収帯のない材料が好ましく用いられる。また、正孔輸送層5には、発光層6の構成材料との間で励起錯体(エキサイプレックス)や電荷移動錯体を形成せず、発光層6において生成した励起子のエネルギーの移動や発光層6からの電子注入を防ぐために、発光層6の励起子エネルギーよりも一重項励起エネルギーが大きく、バンドギャップエネルギーが大きく、電子伝導電位(Ec)が浅い材料が好ましく用いられる。陽極3にITOが用いられる場合、正孔注入層4及び正孔輸送層5に好適に用いられる材料の例としては、それぞれ、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)及びポリ(N-ビニルカルバゾール)(PVK)が挙げられる。
 なお、本実施の形態においては、陽極3と発光層6との間に正孔注入層4及び正孔輸送層5が別個の2つの層として形成されているが、必要に応じて、陽極3からの正孔の注入及び発光層6への正孔の輸送を行う単一の正孔輸送層としてもよく、同一組成又は組成が互いに異なる3つ以上の層を積層した構造としてもよい。
 正孔注入層4の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、20~100nm程度であるのがより好ましい。また、正孔輸送層5の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、15~50nm程度であるのがより好ましい。
 正孔輸送層5上、すなわち、陽極3と反対側の面と隣接して、発光層6が設けられている。この発光層6には、陰極8から電子輸送層7を介して電子が、また、正孔輸送層5から正孔がそれぞれ供給(注入)される。そして、発光層6の内部では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーにより励起子(エキシトン)が生成し、励起子が基底状態に戻る際にエネルギー(蛍光やリン光)が放出(発光)される。
 発光層6の構成材料としては、1,3,5-トリス[(3-フェニル-6-トリ- フルオロメチル)キノキサリン-2-イル]ベンゼン(TPQ1)、1,3,5-トリス [{3-(4-tert-ブチルフェニル)-6-トリスフルオロメチル}キノキサリン-2- イル]ベンゼン(TPQ2)のようなベンゼン系化合物、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、fac-トリス(2-フェニルピリジン)イリジウ ム(Ir(ppy)3)のような低分子系のものや、オキサジアゾール系高分子、トリアゾール系高分子、カルバゾール系高分子、ポリフルオレン系高分子、ポリパラフェニレンビニレン系高分子のような高分子系のものが挙げられ、これらの1種または2種以上を組み合わせて用いることができる。このような発光層6の平均厚さは、特に限定されないが、10~150nm程度であるのが好ましく、20~100nm程度であるのがより好ましい。
 発光層6と陰極8との間には、電子輸送層7が設けられている。この電子輸送層7は、陰極8から注入された電子を発光層6まで輸送する機能を有するものである。電子輸送層7の構成材料としては、本発明の第3の実施の形態に係る電子輸送材料が使用される。また、電子輸送層7の電子輸送材料には、アルカリ金属アルコシド、アルカリ金属イオンおよびアルカリ土類金属イオンのうちの少なくとも1種の金属イオンのハロゲン塩、炭酸塩、炭酸水素塩、水酸化物または炭素数1から9の有機酸塩等のドーパントをさらに含有することが望ましい。
 電子輸送層の平均厚さは特に限定されないが、1~100nm程度であるのが好ましく、10~50nm程度であるのがより好ましい。
 陰極8と電子輸送層7との間には、通常、NaFやLiF等からなる電荷注入層が設けられている。本発明の電子輸送材料を用いた電子輸送層では、NaFやLiF等の不安定な化合物を使用する電荷注入層を設けることなく、発光層の発光効率を向上でき、光学設計自由度を向上させることができる。
 次に、封止部材9は、有機電界発光素子1(陽極3、正孔注入層4、正孔輸送層5、発光層6、電子輸送層7及び陰極8)を覆うように設けられ、これらを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材9を設けることにより、有機電界発光素子1の信頼性の向上や、変質及び劣化の防止(耐久性向上)等の効果が得られる。
 封止部材9の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Ti又はこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、封止部材9の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、封止部材9と有機電界発光素子1との間には、必要に応じて、絶縁膜を設けるのが好ましい。また、封止部材9は、平板状として、基板2と対向させ、これらの間を、例えば熱硬化性樹脂等のシール材で封止するようにしてもよい。
 有機電界発光素子1は、例えば、次のようにして製造することができる。
 まず、基板2を用意し、この基板2上に陽極3を形成する。陽極3は、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メッキ法、電界メッキ、浸漬メッキ、無電界メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
 次に、陽極3上に正孔注入層4及び正孔輸送層5を順次形成する。
 正孔注入層4及び正孔輸送層5は、例えば、正孔注入材料を溶媒に溶解又は分散媒に分散してなる正孔注入層形成用材料を陽極3上に供給した後、乾燥(脱溶媒又は脱分散媒)し、次いで正孔輸送材料を溶媒に溶解又は分散媒に分散してなる正孔輸送層形成用材料を正孔注入層4上に供給した後、乾燥することにより形成することができる。正孔注入層形成用材料及び正孔輸送層形成用材料の供給方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いることができる。このような塗布法を用いることにより、正孔注入層4及び正孔輸送層5を比較的容易に形成することができる。
 正孔注入層形成用材料及び正孔輸送層形成用材料の調製に用いる溶媒又は分散媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン、エチレンカーボネイト等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒(ただし、正孔注入材料及び正孔輸送材料が不溶な場合には、分散媒としてのみ使用できる)、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(ジエチルカルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系溶媒、四塩化炭素、クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、又は、これらを含む混合溶媒等が挙げられる。
 なお、乾燥は、例えば、大気圧又は減圧雰囲気中での放置、加熱処理、不活性ガスの吹付け等により行うことができる。
 また、本工程に先立って、陽極3の上面には、酸素プラズマ処理を施すようにしてもよい。これにより、陽極3の上面に親液性を付与すること、陽極3の上面に付着する有機物を除去(洗浄)すること、陽極3の上面付近の仕事関数を調整すること等を行うことができる。
 ここで、酸素プラズマ処理の条件としては、例えば、プラズマパワー100~800W程度、酸素ガス流量50~100mL/min程度、被処理部材(陽極3)の搬送速度0.5~10mm/sec程度、基板2の温度70~90℃程度とするのが好ましい。
 次に、正孔輸送層5上(陽極3の一方の面側)に、発光層6を形成する。
 発光層6は、例えば、発光材料を溶媒に溶解又は分散媒に分散してなる発光層形成用材料を正孔輸送層5上に供給した後、乾燥(脱溶媒又は脱分散媒)することにより形成することができる。発光層形成用材料の供給方法及び乾燥の方法は、正孔注入層4の形成で説明したのと同様である。
 次に、発光層6上に、電子輸送層7をたとえば次の工程にて形成する。
(a)第1の工程 
 まず、前述した一般式(1)から(7)で表される金属錯体、および必要に応じ金属アルコシド等のドーパントを含む液状材料を調製する。
 液状材料の調製に用いる溶媒としては、発光層6が有機発光層の場合、膨潤または溶解し難いものが好ましい。これにより、発光材料の変質・劣化や、有機発光層6が溶解し、膜厚が極端に減少することを防止することができる。その結果、有機電界発光素子1の発光効率の低下を防止することができる。溶媒には、前述したアルコール系溶媒、好ましくは炭素数1~10のアルコールを用いるのが好適である。これにより、発光効率の低下を防止することができ、有機電界発光素子1を生産性よく製造することができる。
(b)第2の工程 
 次に、調製した液状材料を発光層6上に供給した後、乾燥(脱溶媒)する。これにより、一般式(1)から(7)で表される金属錯体を含有する電子輸送層7が得られる。液状材料の供給方法および乾燥の方法は、前記正孔注入層4及び正孔輸送層5の形成で説明したのと同様である。
 次に、電子輸送層7上に、陰極8を形成する。
 陰極8は、例えば、真空蒸着法、スパッタリング法、金属箔の接合、金属微粒子インクの塗布および焼成等を用いて形成することができる。
 最後に、得られた有機電界発光素子1を覆うように封止部材9を被せ、基板2に接合する。以上のような工程を経て、有機電界発光素子1が得られる。
 上記製造方法によれば、有機層(正孔注入層4、正孔輸送層5、発光層6、電子輸送層7)の形成や、金属微粒子インクを使用する場合には陰極8の形成においても、真空装置等の大掛かりな設備を要しないため、有機電界発光素子1の製造時間および製造コストの削減を図ることができる。また、インクジェット法(液滴吐出法)を適用することで、大面積の素子の作製や多色の塗り分けが容易となる。
 なお、本実施の形態では、正孔注入層4及び正孔輸送層5を液相プロセスにより製造することとして説明したが、用いる正孔注入材料及び正孔輸送材料の種類に応じて、これらの層を真空蒸着法等の気相プロセスにより形成するようにしてもよい。
 このような有機電界発光素子1は、例えば光源等として使用することができる。また、複数の有機電界発光素子1をマトリックス状に配置することにより、ディスプレイ装置を構成することができる。
 なお、ディスプレイ装置の駆動方式としては、特に限定されず、アクティブマトリックス方式、パッシブマトリックス方式のいずれであってもよい。
 有機電界発光素子1に供給される電気エネルギー源としては、主に直流電流であるが、パルス電流や交流電流を用いることも可能である。電流値及び電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
 ディスプレイ装置を構成する「マトリックス」とは、表示のための画素(ピクセル)が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパーソナルコンピュータ、モニター、テレビの画像及び文字表示には、通常一辺が300μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリックスの駆動方法としては、パッシブマトリックス方式及びアクティブマトリックス方式のどちらでもよい。前者には、構造が簡単であるという利点があるが、動作特性を考慮した場合、後者のアクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 有機電界発光素子1は、セグメントタイプの表示装置であってもよい。「セグメントタイプ」とは、予め決められた情報を表示するように所定形状のパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器等の動作状態表示、自動車のパネル表示などがあげられる。そして、前記マトリックス表示とセグメント表示は同じパネルの中に共存していてもよい。
 有機電界発光素子1は、自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識等に使用されるバックライトであってもよい。特に液晶表示装置、中でも薄型化が課題となっているパーソナルコンピュータ用途のバックライトとしては、蛍光灯や導光板からなる従来のものに比べ、薄型化、軽量化が可能になる。
 以下、本発明の効果を確認するために行った実施例について説明する。
 化合物の確認は、薄層クロマトグラフィーとAPCI MSにより行った。また錯体は、NMR[(60MHz)は日本電子製JNM-MY60FT、高分解能NMR(500MHz)は日本電子社製JNM-ECX-500を用いて測定した。APCI MSは、Waters社製LCTPremire XEを用いて測定した。
 また、カラムクロマトグラフィーに用いたシリカゲルC300、NH、PEIは、それぞれ和光純薬社製ワコーシルC300、富士シリシア化学社製Chromatorex NH2、Chromatorex PEIを用いた。
[I]金属錯体の合成
[A]一般式(1)で表される金属錯体
[A-1]2-(ピリジン-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L101-M)の合成
[A-1-1]リチウム2-(ピリジン-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L101-Li)の合成
(1-1-1)中間原料の合成:
(1)2-(4-ブロモフェニル)-4,6-ジフェニルピリミジン(CAS No. 457613-56-8, M001)は、Mujica-Fernoudらの方法(WO2013091762A1)を用いて合成した。
(2)4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024)の合成
1)2-(2-アセトキシ-5-ブロモフェニル)ピリジンの合成
 2-(2-アセトキシ-5-ブロモフェニル)ピリジン(CAS No. 862742-97-0, M008)は、Kalyaniらの方法(Org. Lett. ,7(19), 4149 - 4152, 2015)を用いて合成した。
2)2-(2-ヒドロキシ-5-ブロモフェニル)ピリジンの合成
Figure JPOXMLDOC01-appb-C000061
 2-(2-アセトキシ-5-ブロモフェニル)ピリジン(M008) 23.4g(80mmol)、水酸化カリウム 18g(320mmol)、エタノール 280mLを加え、30分間還流した。反応終了後、室温まで冷却、酢酸、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はIPA、続いてシクロヘキサンより再結晶を行い、2-(2-ヒドロキシ-5-ブロモフェニル)ピリジン 16.8g(84%)を得た。
3)2-(2-ベンジロキシ-5-ブロモフェニル)ピリジン (M023)の合成
Figure JPOXMLDOC01-appb-C000062
 2-(2-ヒドロキシ-5-ブロモフェニル)ピリジン 16.8g(67mmol)、炭酸カリウム 27.8g(201mmol)、18-クラウン-6 177mg(0.67mmol)、臭化ベンジル 12.6g(73.7mmol)をアセトン 134mLに加え、1時間還流した。反応終了後、水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮し、2-(2-ベンジロキシ-5-ブロモフェニル)ピリジン(M023) 21.0g(92%)を得た。
4)4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024)の合成
Figure JPOXMLDOC01-appb-C000063
 2-(2-ベンジロキシ-5-ブロモフェニル)ピリジン (M023) 21.0 g (61.7 mmol)、ビス(ピナコラト)ジボロン 18.8 g (74 mmol)、PdCl2(dppf)-CH2Cl2付加体 759mg(0.93mmol)、酢酸カリウム 4.91g(50mmol)をDMF 120mLに加え、120℃で2時間撹拌した。反応終了後、水に注ぎ、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、メタノール:ジクロロメタン)で精製し、得られた固体をメタノールより再結晶を行い、4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 15.7g(66%)を得た。
(1-1-2)配位子の合成:2-(4-(4-ヒドロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン (L101)の合成
(1)L101中間体の合成
Figure JPOXMLDOC01-appb-C000064
 4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 3.87g(10mmol)、2-(4-ブロモフェニル)-4,6-ジフェニルピリミジン(M001) 3.87g(10 mmol)、PdCl2(dppf)-CH2Cl2付加体 0.15g(0.2 mmol)、3M炭酸カリウム水溶液 10mL(30mmol)をジオキサン 60mLに加え、100℃で16時間撹拌した。反応終了後、冷却し、不溶物をろ別した。ろ液は水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルで再結晶を行い、2-(4-(4-ベンジロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン 1.66g(20%)を得た。母液は濃縮後、得られた残渣をカラムクロマトグラフィー(C300、ジクロロメタン:メタノール)により精製し、2-(4-(4-ベンジロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン 1.41g(16%、計36%)を得た。
(2)L101の合成
Figure JPOXMLDOC01-appb-C000065
 2-(4-(4-ベンジロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン 1.70g(3mmol)、10%パラジウム炭素 0.48g(Pd 0.45mmol)を酢酸45mLに加え、5%H2-N2混合ガス雰囲気下、100℃で16時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、2-(4-(4-ヒドロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン(L101) 0.75g(52%)を得た。
(1-1-3)錯体の合成:リチウム2-(ピリジン-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L101-Li)の合成
Figure JPOXMLDOC01-appb-C000066
 配位子L101 0.19g(0.4mmol)-メタノール懸濁液 2mLに4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール溶液 1mLを滴下し、室温で撹拌した。2時間後、沈殿をろ別し、ろ液は減圧下で濃縮した。生じた析出物はトルエン-メタノールで再結晶を行い、L101-Li 0.09g(47%)を得た。得られた錯体のNMRは図2に示す。
[A-1-2]セシウム2-(ピリジン-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L101-Cs)の合成
Figure JPOXMLDOC01-appb-C000067
 上記(1-1-2)で合成した配位子L101 0.19g(0.4 mmol)-メタノール懸濁液 2mLに50%水酸化セシウム水溶液 0.12mL-メタノール溶液 1mLを滴下し、室温で撹拌した。2時間後、沈殿をろ別し、ろ液は減圧下で濃縮した。生じた析出物はトルエン-メタノールで再結晶を行い、L101-Cs 0.08g(31%)を得た。得られた錯体のNMRは図2に示す。
[A-2]2-(ピリジン-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L102-M)の合成
[A-2-1]リチウム2-(ピリジン-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L102-Li)の合成
(1-2-1)中間原料の合成:
(1)3-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル (CAS No. 1381862-91-4, M003)はJungらの方法(US20140158999A1)をもとに2-(3-ブロモフェニル)-4,6-ジフェニルピリミジンを用いて合成した。
(1-2-2)配位子の合成:2-(3-(4-ヒドロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン (L102)の合成
Figure JPOXMLDOC01-appb-C000068
 上記(1-1-1)の(2)の1)で合成した2-(2-アセトキシ-5-ブロモフェニル)ピリジン(M008) 2.25 g (7.7 mmol)、3-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル(M003) 3.04g(7 mmol)、テトラキス(トリフェニルホスフィン)パラジウム 404mg(0.35mmol)、2M炭酸ナトリウム水溶液 7mL (14mmol)をジオキサン 35mLに加え、100℃で16時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:ヘプタン)により精製し、2-(3-(4-ヒドロキシ-3-ピリジン-2-イルフェニル)フェニル-4,6-ジフェニルピリミジン(L102) 1.61g (44 mmol)を得た。
(1-2-3)錯体の合成:リチウム2-(ピリジン-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L102-Li)の合成
Figure JPOXMLDOC01-appb-C000069
 配位子L102 0.19g(0.4 mmol)-メタノール懸濁液 2mLに4M水酸化リチウム水溶液 0.1mL(0.4 mmol)-メタノール溶液 1 mLを滴下し、室温で撹拌した。2時間後、沈殿をろ別し、ろ液は減圧下で濃縮した。生じた析出物はトルエン-メタノールで再結晶を行い、L102-Li 0.05g(24%)を得た。得られた錯体のNMRは図3に示す。
[A-2-2]セシウム2-(ピリジン-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L102-Cs)の合成
Figure JPOXMLDOC01-appb-C000070
 上記(1-2-2)で合成した配位子L102 0.19g(0.4 mmol)-メタノール懸濁液 2mLに50%水酸化セシウム水溶液 0.12mL-メタノール溶液 1mLを滴下し、室温で撹拌した。2時間後、沈殿をろ別し、ろ液は減圧下で濃縮した。生じた析出物はトルエン-メタノールで再結晶を行い、L102-Cs 0.09g(38%)を得た。得られた錯体のNMRは図3に示す。
[A-3]2-(ピリジン-2-イル)-4-(2,6-ジフェニルピリミジン-4-イル)フェノラート錯体(L103-M)の合成
[A-3-1]ルビジウム2-(ピリジン-2-イル)-4-(2,6-ジフェニルピリミジン-4-イル)フェノラート錯体(L103-Rb)の合成
(1-3-2)配位子の合成:2,6-ジフェニル-4-(3-(ピリジン-2-イル)-4-ヒドロキシフェニル)ピリミジン(L103)の合成
(1)L103中間体の合成
Figure JPOXMLDOC01-appb-C000071
 上記(1-1-1)の(2)で合成した4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 2.36g(6.1 mmol)、4-ブロモ-2,6-ジフェニルピリミジン 1.95g(7.32mmol)、テトラキス(トリフェニルホスフィン)パラジウム 423mg(0.366mmol)、2M炭酸ナトリウム水溶液 6.1mL(12.2mmol)をジオキサン 37mLに加え、100℃で4時間撹拌した。反応終了後、水を加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:ヘプタン)で精製し、2,6-ジフェニル-4-(3-(ピリジン-2-イル)-4-ベンジロキシフェニル)ピリミジン 1.61g(54%)を得た。
(2)L103の合成
Figure JPOXMLDOC01-appb-C000072
 2,6-ジフェニル-4-(3-(ピリジン-2-イル)-4-ベンジロキシフェニル)ピリミジン 1.52g(3.1mmol)、10%パラジウム炭素 495mgを酢酸 45mLに加え、5%H2-N2混合ガス雰囲気下80℃で一晩撹拌した。反応終了後、ジクロロメタンで希釈し、NaHCO3水溶液で中和しセライトを用いて不溶物をろ過した。ろ液はジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は減圧下、300℃で昇華精製を行い、2,6-ジフェニル-4-(3-(ピリジン-2-イル)-4-ヒドロキシフェニル)ピリミジン(L103) 808mg(64%)を得た。
(1-3-3)錯体の合成:ルビジウム2-(ピリジン-2-イル)-4-(2,6-ジフェニルピリミジン-4-イル)フェノラート錯体(L103-Rb)の合成
Figure JPOXMLDOC01-appb-C000073
配位子L103 0.17g(0.42mmol)-トルエン懸濁液 4mLに、50%水酸化ルビジウム水溶液 0.4mL(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、得られた残渣にヘプタンを加え沈殿をろ取した。得られた沈殿は減圧下、260℃で加熱し未反応の配位子を取り除きL103-Rb 0.17g(88%)を得た。得られた錯体のNMRは図4に示す。
[A-3-2]セシウム2-(ピリジン-2-イル)-4-(2,6-ジフェニルピリミジン-4-イル)フェノラート錯体(L103-Cs)の合成
Figure JPOXMLDOC01-appb-C000074
 上記(1-3-2)で合成した配位子L103 0.17g(0.42mmol)-トルエン懸濁液 4mLに、50%水酸化セシウム水溶液0.4 mL (0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、得られた残渣にヘプタンを加え沈殿をろ取した。得られた沈殿は減圧下、260℃で加熱し未反応の配位子を取り除きL103-Cs 0.17g(82%)を得た。得られた錯体のNMRは図4に示す。
[A-4]2-(ピリジン-2-イル)-4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェノラート錯体(L104-M)の合成
[A-4-1]ルビジウム2-(ピリジン-2-イル)-4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェノラート錯体(L104-Rb)の合成
(1-4-2)配位子の合成:2-(3-ピリジン-2-イル-4-ヒドロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン(L104)の合成
(1)L104中間体の合成
Figure JPOXMLDOC01-appb-C000075
 上記(1-1-1)の(2)で合成した4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 2.01g(5.2mmol)、2-クロロ-4,6-ジフェニルトリアジン 1.67g(6.24mmol)、テトラキス(トリフェニルホスフィン)パラジウム 361mg(0.312mmol)、2M炭酸ナトリウム水溶液 5.2mL(10.4mmol)をジオキサン 31mLに加え、100℃で4時間撹拌した。反応終了後、水を加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:ヘプタン)で精製し、2-(3-ピリジン-2-イル-4-ベンジロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン 953mg(37%)を得た。
(2)L104の合成
Figure JPOXMLDOC01-appb-C000076
 2-(3-ピリジン-2-イル-4-ベンジロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン 936mg(1.9mmol)、10%パラジウム炭素 303mg(0.285mmol)を1-ブタノール 100mLに加えた。5%H2-N2混合ガス雰囲気下、80℃で16時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いてろ過した。ろ液は減圧下で濃縮し、黄色固体 864mg(113%)を得た。得られた黄色固体は真空下、320℃で昇華精製を行い、2-(3-(ピリジン-2-イル)-4-ヒドロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン(L104) 598mg(78%)を得た。
(1-4-3)錯体の合成:
ルビジウム2-(ピリジン-2-イル)-4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェノラート錯体(L104-Rb)の合成
Figure JPOXMLDOC01-appb-C000077
 配位子L104 0.17g(0.42mmol)-トルエン懸濁液 4mLに、50%水酸化ルビジウム水溶液 0.4mL(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、得られた残渣にヘプタンを加え沈殿をろ取した。得られた沈殿は減圧下、250℃で加熱し未反応の配位子を取り除きL104-Rb 0.13g(65%)を得た。得られた錯体のNMRは図5に示す。
[A-4-2]セシウム2-(ピリジン-2-イル)-4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェノラート錯体(L104-Cs)の合成
Figure JPOXMLDOC01-appb-C000078
 上記(1-4-2)で合成した配位子L104 0.17g(0.42 mmol)-トルエン懸濁液 4mLに、50%水酸化セシウム水溶液 0.4mL(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、得られた残渣にヘプタンを加え沈殿をろ取した。得られた沈殿は減圧下、250℃で加熱し未反応の配位子を取り除きL104-Cs 0.17g(78%)を得た。得られた錯体のNMRは図5に示す。
[A-5]2-(ピリジン-2-イル)-4-(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L105-M)の合成
[A-5-1]ルビジウム2-(ピリジン-2-イル)-4-(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L105-Rb)の合成
(1-5-1)中間原料の合成:
(1)4-(ピリジン-3-イル)フェニルボロン酸ピナコールエステル(CAS No. 929203-04-3, M005)はOnoらの方法(WO2011152466)を用いて合成した。
(1-5-2)配位子の合成:2-(2-ヒドロキシ-5-(4-ピリジン-3-イルフェニル)フェニル)ピリジン(L105)の合成
(1)L105中間体の合成
Figure JPOXMLDOC01-appb-C000079
 上記(1-1-1)の(2)の3)で合成した2-(2-ベンジロキシ-5-ブロモフェニル)ピリジン(M023) 1.52g(4 mmol)、4-ピリジン-3-イルフェニルボロン酸ピナコールエステル(M005) 1.74g(4 mmol)、テトラキス(トリフェニルホスフィン)パラジウム 140mg(0.2mmol)、2M炭酸ナトリム水溶液 8mL(16mL)をジオキサン 32mLに加え100℃で18時間撹拌した。反応終了後、減圧下で濃縮し、水を加えた。ジクロロメタンで抽出後、有機層は硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン)により精製を行い、2-(2-ベンジロキシ-5-(4-ピリジン-3-イルフェニル)フェニル)ピリジン 1.32g(53%)を得た。
(2)L105の合成
Figure JPOXMLDOC01-appb-C000080
 2-(2-ベンジロキシ-5-(4-ピリジン-3-イルフェニル)フェニル)ピリジン 1.99g(4.8mmol)を10%パラジウム炭素 766mg(Pd 0.72mmol)を酢酸に加え、5%H2-N2混合ガス雰囲気下、80℃で24時間撹拌した。反応終了後、ジクロロメタンで反応溶液を希釈し、セライトを用いてパラジウム炭素を取り除いた。ろ液は減圧下で濃縮し、2-(2-ヒドロキシ-5-(4-ピリジン-3-イルフェニル)フェニル)ピリジン(L105) 1.35g(86%)を得た。
(1-5-3)錯体の合成:ルビジウム2-(ピリジン-2-イル)-4-(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L105-Rb)の合成
Figure JPOXMLDOC01-appb-C000081
 配位子L105 0.13g(0.4 mmol)-トルエン懸濁液 4mLに、50%水酸化ルビジウム水溶液 0.045mL(0.38mmol)-メタノール溶液 2mLに滴下し、室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下、200℃で加熱し未反応の配位子を取り除き、L105-Rb 0.12g(79%)を得た。得られた錯体のNMRは図6に示す。
[A-5-2]セシウム2-(ピリジン-2-イル)-4-(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L105-Cs)の合成
Figure JPOXMLDOC01-appb-C000082
 上記(1-5-2)で合成した配位子L105 0.13g(0.4 mmol)-トルエン懸濁液4 mLに、メタノールで希釈した50%水酸化セシウム水溶液 0.066mL(0.38mmol)-メタノール溶液 2mLに滴下し、室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下、200℃で加熱し未反応の配位子を取り除き、L105-Cs 0.14g(78%)を得た。得られた錯体のNMRは図6に示す。
[A-6]2-(ピリジン-2-イル)4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-M)の合成
[A-6-1]リチウム2-(ピリジン-2-イル)4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-Li)の合成
(1-6-1)中間原料の合成:
(1)2-(2-ベンジロキシ-3,5-ジブロモフェニル)ピリジン(M026)の合成
Figure JPOXMLDOC01-appb-C000083
1)1-ベンジロキシ-2,4,6-トリブロモベンゼン(CAS No. 88486-72-0, M006)はSakaiらの方法(Chem. Commun.,51(15), 3181 - 3184, 2015)で2-(2-ヒドロキシフェニル)ベンゾオキサゾールを2,4,6-トリブロモフェノールに変えて合成した。
2)2-ベンジロキシ-3,5-ジブロモフェニルボロン酸(M025)の合成
 2,4,6-トリブロモフェニルベンジルエーテル(M006) 4.21g(10mmol)をジエチルエーテル 50mLに加え-60℃に冷却した。そこへ2.5Mn-ブチルリチウム-ヘキサン溶液 4.8mL(12mmol)を加え、60分間撹拌した。続いて-60℃でトリイソプロポキシボラン 3.46mL(ca.2.82g、15mmol)を加え、-60℃で30分間、室温で15時間撹拌した。反応終了後、1N塩酸50mLを加え、室温で1時間撹拌した。NaHCO3で中和後、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮し、2-ベンジロキシ-3,5-ジブロモフェニルボロン酸(M025)を得た。得られた化合物はさらに精製せず次のブロモピリジンとのカップリング反応に用いた。
3)2-(2-ベンジロキシ-3,5-ジブロモフェニル)ピリジン(M026)の合成
 前の反応で得られた残渣(10 mmolと判断)、2-ブロモピリジン 1.43mL(ca.2.37g、15mmol)、テトラキス(トリフェにルホスフィン)パラジウム 347mg(0.3mmol)、2M炭酸ナトリム水溶液 10mL(20 mmol)をジオキサン 60mLに加え、80℃で22時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:MeOH)で精製し2-(2-ベンジロキシ-3,5-ジブロモフェニル)ピリジン(M026) 1.67g(トリブロモフェニルベンジルエーテルより40%)を得た。
(1-6-2)配位子の合成:2-(2-ヒドロキシ-3,5-ビス(4-ピリジン-3-イルフェニル)フェニル)ピリジン(L106)の合成
(1)L106中間体の合成
Figure JPOXMLDOC01-appb-C000084
 2-(2-ベンジロキシ-3,5-ジブロモフェニル)ピリジン(M026) 3.39g(8 mmol)、上記(1-5-1)の(1)で合成した4-ピリジン-3-イルフェニルボロン酸ピナコールエステル(M005) 5.4g(19.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム 555mg(0.48mmol)、2M炭酸ナトリウム水溶液 16mL(32mmol)をジオキサン 48mLに加え、100℃で15時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)で精製を行い、2-(2-ベンジロキシ-3,5-ビス(4-ピリジン-3-イルフェニル)フェニル)ピリジン 2.44g(53%)を得た。
(2)L106の合成
Figure JPOXMLDOC01-appb-C000085
 2-(2-ベンジロキシ-3,5-ビス(4-ピリジン-3-イルフェニル)フェニル)ピリジン 3.41g(6 mmol)、10%パラジウム炭素 958 mg(0.9 mmol)を酢酸 90 mLに加え5%H2-N2混合ガス雰囲気下、80℃で23時間撹拌した。反応終了後、水、ジクロロメタンを加え、NaHCO3で中和した。不溶物はセライトを用いて取り除き、ろ液は有機層と水層を分け、水層はジクロロメタンで洗浄した。洗液は有機層と合わせ、硫酸マグネシウムで乾燥後、減圧下で濃縮し、2-(2-ヒドロキシ-3,5-ビス(4-ピリジン-3-イルフェニル)フェニル)ピリジン(L106) 2.78g(97%)を得た。
(1-6-3)錯体の合成:リチウム2-(ピリジン-2-イル)4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-Li)の合成
Figure JPOXMLDOC01-appb-C000086
 配位子L106 0.19g(0.4mmol)-メタノール懸濁液 4mLに4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール 2mLを滴下し40℃で撹拌した。2時間後、反応溶液を減圧下で濃縮し、トルエンを加え、沈殿をろ取した。沈殿は減圧下250℃で加熱し溶媒及び未反応の配位子を取り除きL106-Li 0.05g(26%)を得た。得られた錯体のNMRは図7に示す。
[A-6-2]ナトリウム2-(ピリジン-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-Na)の合成
Figure JPOXMLDOC01-appb-C000087
 上記(1-6-2)で合成した配位子L106 0.18g(0.37mmol)-メタノール懸濁液 4mLに水酸化ナトリウム 0.01g(0.37mmol)-メタノール 2mLを滴下し40℃で撹拌した。2時間後、反応溶液を減圧下で濃縮し、トルエンを加え、沈殿をろ取した。沈殿は減圧下250℃で加熱し溶媒及び未反応の配位子を取り除きL106-Na 0.11g(61%)を得た。得られた錯体のNMRは図7に示す。
[A-6-3]カリウム2-(ピリジン-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-K)の合成
Figure JPOXMLDOC01-appb-C000088
 上記(1-6-2)で合成した配位子L106 0.17g(0.35mmol)-メタノール懸濁液 4mLに水酸化カリウム 0.02g(0.35 mmol)-メタノール 2mLを滴下し40℃で撹拌した。2時間後、反応溶液を減圧下で濃縮し、トルエンを加え、沈殿をろ取した。沈殿は減圧下250℃で加熱し溶媒及び未反応の配位子を取り除きL106-K 0.12 g(69%)を得た。得られた錯体のNMRは図7に示す。
[A-6-4]ルビジウム2-(ピリジン-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-Rb)の合成
Figure JPOXMLDOC01-appb-C000089
 上記(1-6-2)で合成した配位子L106 0.18g(0.37mmol)-メタノール懸濁液 4mLに50%水酸化ルビジウム 0.044mL(0.37mmol)-メタノール 2mLを滴下し40℃で撹拌した。2時間後、反応溶液を減圧下で濃縮し、トルエンを加え、沈殿をろ取した。沈殿は減圧下250℃で加熱して溶媒及び未反応の配位子を取り除きL106-Rb 0.13g(63%)を得た。得られた錯体のNMRは図7に示す。
[A-6-4]セシウム2-(ピリジン-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L106-Cs)の合成
Figure JPOXMLDOC01-appb-C000090
 上記(1-6-2)で合成した配位子L106 0.17g(0.35mmol)-メタノール懸濁液 4mLに50%水酸化セシウム 0.061mL(0.35mmol)-メタノール 2mLを滴下し40℃で撹拌した。2時間後、反応溶液を減圧下で濃縮し、トルエンを加え、沈殿をろ取した。沈殿は減圧下250℃で加熱して溶媒及び未反応の配位子を取り除きL106-Cs 0.11g(51%)を得た。得られた錯体のNMRは図7に示す。
[A-7]2-(ピリジン-2-イル)-4-(4-アザカルバゾール-9-イル)フェノラート錯体(107-M)の合成
[A-7-1]リチウム2-(ピリジン-2-イル)-4-(4-アザカルバゾール-9-イル)フェノラート錯体(107-Li)の合成
(1-7-2)配位子の合成:9-(2-ヒドロキシ-3-(ピリジン-2-イル)フェニル)-4-アザカルバゾール(L107)の合成
(1)L107中間体の合成
Figure JPOXMLDOC01-appb-C000091
 上記(1-1-1)の(2)の3)で合成した2-(2-ベンジロキシ-5-ブロモフェニル)ピリジン(M023) 2.04g(6 mmol)、4-アザカルバゾール 1.31g(7.8 mmol)、よう化銅(I) 2.29(12 mmol)、炭酸カリウム 2.49g(18mmol)を1,3-ジメチル-2-イミダゾリジノン 4mLを加え、160℃で12時間撹拌した。反応終了後、セライトを用いて不溶物を取り除き、ろ液は水を加え、トルエンで抽出した。析出物は再度セライトを用いて取り除き、ろ液は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)より精製し、9-(2-ベンジロキシ-3-(ピリジン-2-イル)フェニル)-4-アザカルバゾール 1.30g(50%)を得た。
(2)L107の合成
Figure JPOXMLDOC01-appb-C000092
 9-(2-ベンジロキシ-3-(ピリジン-2-イル)フェニル)-4-アザカルバゾール 1.25g(2.92mmol)、10%パラジウム炭素 133mg(Pd 0.125mmol)を1-ブタノール 6mLに加え、5%H2-N2混合ガス雰囲気下、80℃で18時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、9-(2-ヒドロキシ-3-(ピリジン-2-イル)フェニル)-4-アザカルバゾール(L107) 0.90g(91%)を得た。
(1-7-3)錯体の合成:リチウム2-(ピリジン-2-イル)-4-(4-アザカルバゾール-9-イル)フェノラート錯体(107-Li)の合成
Figure JPOXMLDOC01-appb-C000093
 配位子L107 0.27g(0.8mmol)-トルエン溶液 8mLに、4M水酸化リチウム水溶液 0.2mL-メタノール溶液 4mLを滴下し室温で撹拌した。1時間後、反応混合物を減圧下で濃縮し残渣にトルエンを加え、沈殿をろ取した。得られた沈殿は減圧下200℃で加熱し未反応の配位子及び溶媒を取り除き、L107-Li 0.26g(95%)を得た。得られた錯体のNMRは図8に示す。
[A-8]2-(ピリジン-2-イル)-4-(1-アザカルバゾール-9-イル)フェノラート錯体(L108-M)の合成
[A-8-1]リチウム2-(ピリジン-2-イル)-4-(1-アザカルバゾール-9-イル)フェノラート錯体(L108-Li)の合成
(1-8-1)中間原料の合成:
(1)9-(3-ピリジン-2-イルフェニル)-1-アザカルバゾールの合成
1)2-(3-ブロモフェニル)ピリジン(CAS No. 4373-60-8, M007)はBurnらの方法(WO200206652A1)を用いて合成した。
2)9-(3-ピリジン-2-イルフェニル)-1-アザカルバゾールの合成
Figure JPOXMLDOC01-appb-C000094
 1-アザカルバゾール 1.01g(6mmol)、2-(3-ブロモフェニル)ピリジン(M007) 1.40g(6mmol)、よう化銅(I) 2.29g(12mmol)、炭酸カリウム 2.49g(18mmol)を1,3-ジメチル-2-イミダゾリジノン 12mLに加え、160℃で12時間撹拌した。反応終了後、不溶物をセライトで取り除き、水を加え、トルエンで抽出した。析出物は再度セライトを用いて取り除き、ろ液は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)で精製し、9-(3-ピリジン-2-イルフェニル)-1-アザカルバゾール 0.90g(47%)を得た。
(1-8-2)配位子の合成:9-(2-ヒドロキシ-3-(ピリジン-2-イル)フェニル)-1-アザカルバゾール(L108)の合成
Figure JPOXMLDOC01-appb-C000095
 9-(3-ピリジン-2-イルフェニル)-1-アザカルバゾール 1.15g(3.58mmol)、無水酢酸 7mL(74.1mmol)、(ジアセトキシヨージド)ベンゼン 1.21g(3.76mmmol)、酢酸パラジウム 40mg(0.18mmol)をトルエン 7mLに加え、110℃で1.5時間反応した。反応終了後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:メタノール)で精製し9-(2-アセトキシ-3-(ピリジン-2-イル)フェニル)-1-アザカルバゾール1.37 g (100%)を得た。
 得られた9-(2-アセトキシ-3-(ピリジン-2-イル)フェニル)-1-アザカルバゾール 1.37g(3.6 mmol)、水酸化カリウム 808mg(14.4mmol)をエタノール 15mLに加え、1時間還流した。反応終了後、酢酸、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:メタノール)で精製し、9-(2-ヒドロキシ-3-(ピリジン-2-イル)フェニル)-1-アザカルバゾール(L108) 0.99g(82%)を得た。
(1-8-3)錯体の合成:リチウム 2-(ピリジン-2-イル)-4-(1-アザカルバゾール-9-イル)フェノラート錯体(L108-Li)の合成
Figure JPOXMLDOC01-appb-C000096
 配位子L108 0.51g(1.5mmol)-メタノール懸濁液 15mLに4M水酸化リチウム水溶液 0.38mL(1.5mmol)-メタノール溶液 7.5mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し析出物をろ取した。析出物は減圧下350℃で加熱し溶媒と未反応の配位子を取り除き、L108-Li 0.45g(87%)を得た。得られた錯体のNMRは図9に示す。
[A-8-2]セシウム2-(ピリジン-2-イル)-4-(1-アザカルバゾール-9-イル)フェノラート錯体(L108-Cs)の合成
Figure JPOXMLDOC01-appb-C000097
 上記(1-8-2)で合成した配位子L108 0.14g(0.42 mmol)-メタノール懸濁液 15mLに50%水酸化セシウム水溶液 0.07mL(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、反応混合物は減圧下で濃縮し析出物をろ取した。析出物は減圧下200℃で加熱し溶媒と未反応の配位子を取り除き、L108-Cs 0.17g(77%)を得た。得られた錯体のNMRは図9に示す。
[A-9]2-(ピリジン-2-イル)-4-(2,2’-ビピリジン-5-イル)フェノラート錯体(L109-M)の合成
[A-9-1]セシウム2-(ピリジン-2-イル)-4-(2,2’-ビピリジン-5-イル)フェノラート錯体(L109-Cs)の合成
(1-9-1)中間原料の合成:
(1)5-ブロモ-2,2’-ビピリジン (CAS No. 15862-19-8, M009)はFangらの方法(Synlett, (6), 852 - 854, 2003)を用いて合成した。
(1-9-2)配位子の合成:2-(5-(2,2’-ビピリジル-4-イル)-2-ヒドロキシフェニル)ピリジン(L109)の合成
(1)L109中間体の合成
Figure JPOXMLDOC01-appb-C000098
 上記(1-1-1)の(2)で合成した4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 1.94g(5mmol)、5-ブロモ-2,2’-ビピリジル(M009) 2.82g(12mmol)、テトラキス(トリフェニルホスフィン)パラジウム 347mg(0.3mmol)、2M炭酸ナトリウム水溶液 10mL(20mmol)をジオキサン 30mLに加え、100℃で3時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた固体は酢酸エチルより再結晶を行い、5-(2,2’-ビピリジル-4-イル)-2-ベンジロキシフェニルピリジン 1.46g(70%)を得た。
(2)L109の合成
Figure JPOXMLDOC01-appb-C000099
 5-(2,2’-ビピリジル-4-イル)-2-ベンジロキシフェニルピリジン 1.45g(3.5mmol)、10%パラジウム炭素 559mg(Pd, 0.525mmol)を酢酸 53mLに加え、5%H2-N2混合ガス雰囲気下、100℃で20時間撹拌した。反応終了後、ジクロロメタンと水を加え、NaHCO3を用いて中和した。溶液はさらにジクロロメタン加え、セライトを用いて不溶物をろ別した。ろ液は有機層と水層に分け、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮し、赤色固体 1.05g(粗収率 92%)を得た。得られた残渣はエタノール-ヘプタンより再結晶を行い2-(5-(2,2’-ビピリジル-4-イル)-2-ヒドロキシフェニル)ピリジン(L109) 875mg(77%)を得た。
(1-9-3)錯体の合成:セシウム 2-(ピリジン-2-イル)-4-(2,2’-ビピリジン-5-イル)フェノラート錯体(L109-Cs)の合成
Figure JPOXMLDOC01-appb-C000100
 配位子L109 0.13g(0.4 mmol)-トルエン懸濁液 4mLに、50%水酸化セシウム水溶液 0.07mL-メタノール溶液を滴下し1時間撹拌した。得られた反応混合物は減圧下で濃縮した。得られた残渣にヘプタンを加え、析出物をろ取した。得られた析出物は減圧下、200℃で加熱し溶媒と未反応の配位子を取り除き、L109-Cs 0.11g(63%)を得た。得られた錯体のNMRは図10に示す。
[A-10]6-(ジベンゾチオフェン-4-イル)-2-(ジベンゾチオフェン-4-イル)ピリジン-2-イル)フェノラート錯体(L110-M)の合成
[A-10-1]セシウム6-(ジベンゾチオフェン-4-イル)-2-(ジベンゾチオフェン-4-イル)ピリジン-2-イル)フェノラート錯体(L110-Cs)の合成
(1-10-1)中間原料の合成:
(1)4-ジベンゾチエニルボロン酸ピナコールエステル(CAS No. 912824-84-1, M011)はOnoらの方法(WO2011152466)を3-(4--ブロモフェニル)ピリジンを4-ブロモジベンゾチオフェンに変えて合成した。
(2)2-(2-ベンジロキシ-3-ブロモフェニル)-6-ブロモピリジン(M027)の合成
1)1,3-ジブロモ-2-ベンジロキシベンゼン (CAS NO. 122110-76-3, M010)はHelgesonらの方法(J. Am. Chem. Soc., 111(16), 6339 - 50, 1989)を用いて合成した。
2)2-ベンジロキシ-3-ブロモフェニルボロン酸の合成
Figure JPOXMLDOC01-appb-C000101
 マグネシウム 0.26g(10.0mmol)-THF懸濁液 7mLに、2-ベンジロキシ-1,3-ジブロモベンゼン(M010) 3.42g(10.0 mmol)を滴下し、グリニャール試薬を調製した。調整したグリニャール試薬は-40℃に冷却し、ホウ酸トリメチル 2.08g(40.0mmol)を加え、-40℃で15分間、0℃で30分間撹拌した。反応終了後、3N塩酸 50mLを加えクエンチした。得られた反応混合物は水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮し2-ベンジロキシ-3-ブロモフェニルボロン酸 3.07g(100%)を得た。得られた化合物はこれ以上の精製は行わず次の反応に用いた。
3)2-(2-ベンジロキシ-3-ブロモフェニル)-6-ブロモピリジン(M027)の合成
Figure JPOXMLDOC01-appb-C000102
 2-ベンジロキシ-3-ブロモフェニルボロン酸 3.07g(10.0mmol)、2,6-ジブロモピリジン 2.37g(10.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.35g(0.30mmol)、3M炭酸カリウム水溶液 10mL(30.0mmol)をジオキサン 20mLに加え、80℃で3時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はメタノールで再結晶を行い、2-(2-ベンジロキシ-3-ブロモフェニル)-6-ブロモピリジン(M027) 1.69g(40%)を得た。
(1-10-2)配位子の合成:
 2-(ジベンジチオフェン-4-イル)-2-(2-ヒドロキシ-3-ジベンゾチオフェン-4-イル)フェニルピリジン(L110)の合成
(1)L110中間体の合成
Figure JPOXMLDOC01-appb-C000103
 6-ブロモ-2-(2-ベンジロキシ-3-ブロモフェニル)ピリジン(M027) 0.36g(0.80mmol)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ジベンゾチオフェン(M011) 0.55g(1.76mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.056g(0.048mmol)、3M炭酸カリウム水溶液 1.6mL(4.8mmol)をジオキサン 3.6mLに加え、100℃で5時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ヘプタン:ジクロロメタン)で精製し、得られた結晶はシクロヘキサンより再結晶を行い2-(ジベンジチオフェン-4-イル)-2-(2-ベンジロキシ-3-ジベンゾチオフェン-4-イル)フェニルピリジン 0.25g(50%)を得た。
(2)L110の合成
Figure JPOXMLDOC01-appb-C000104
 2-(ジベンジチオフェン-4-イル)-2-(2-ベンジロキシ-3-ジベンゾチオフェン-4-イル)フェニルピリジン 0.25g(0.40 mmol)、10% パラジウム炭素 0.064g(Pd 0.064mmol)を酢酸 6mLに加え、5%H2-N2ガス気流下、100℃で19時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下で濃縮した。得られた残渣はシクロヘキサンより再結晶を行い、2-(ジベンジチオフェン-4-イル)-2-(2-ヒドロキシ-3-ジベンゾチオフェン-4-イル)フェニルピリジン(L110) 0.10g(47%)を得た。
1H NMR(CDCl3)δ 6.96-8.22 (m, 20H, ArH)、14.15(s, 1H, OH)
(1-10-3)錯体の合成:セシウム6-(ジベンゾチオフェン-4-イル)-2-(ジベンゾチオフェン-4-イル)ピリジン-2-イル)フェノラート錯体(L110-Cs)の合成
Figure JPOXMLDOC01-appb-C000105
 配位子L110 0.19g(0.35mmol)-トルエン懸濁液 7mLに、50%水酸化セシウム水溶液 0.11mL-メタノール 1.8mL溶液を滴下し、室温で1時間撹拌した。得られた反応混合物は減圧下で濃縮し、得られた残渣にヘプタンを加え、析出物をろ取した。得られた析出物は真空下220℃で加熱し、溶媒を取り除き、L110-Cs 0.20g(87%)を得た。得られた錯体のNMRは図11に示す。
[A-11]2,6-ビス(2,2’-ビピリジン-6-イル)フェノラート錯体(L111-M)の合成
[A-11-1]セシウム2,6-ビス(2,2’-ビピリジン-6-イル)フェノラート錯体(L111-Cs)の合成
(1-11-1)中間原料の合成:
(1)2-ベンジロキシ-1,3-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼンの合成
Figure JPOXMLDOC01-appb-C000106
 上記(1-10-1)の(2)の1)で合成した2-ベンジロキシ-1,3-ジブロモベンゼン(M010) 3.42g(10 mmol)、4,4,5,5,-テトラメチル-1,3,2-ジオキサボロラン 5.8mL (ca.5.12g、40mmol)、酢酸パラジウム 67.4mg(0.3mmol)、SPhos 246mg(0.6 mmol)、トリエチルアミン 8.3mL(ca.6.07g、60mmol)をジオキサン40mLに加え、100℃で16時間撹拌した。反応終了後、濃縮し、得られた残渣を水に注いだ。ジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はメタノールを加え-40℃で析出し、2-ベンジロキシ-1,3-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼン 2.99g(68%)を得た。
(1-11-2)配位子の合成:2,6-ビス(2,2’-ビピピリジン-6-イル)フェノール (L111)の合成
(1)L111中間体の合成 
Figure JPOXMLDOC01-appb-C000107
 2-ベンジロキシ-1,3-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ベンゼン 741mg(1.7mmol)、6-ブロモ- 2,2’-ビピリジル 879mg(3.74mmol)、酢酸パラジウム 23mg(0.102mmol)、SPhos(2-ジシクロヘキシルホスフィノ-2’6’-ジメトキシビフェニル)  42mg(0.102mmol)、K3PO4水溶液 3.4mL(10.2 mmol)をジオキサン 6.8mLに加え100℃で1.5時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層はジクロロメタンで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン)で精製を行い、2-ベンジロキシ-1,3-ビス(2,2’-ビピリジン-6-イル)ベンゼン 447mg(53%)を得た。
(2)L111の合成
Figure JPOXMLDOC01-appb-C000108
 2-ベンジロキシ-1,3-ビス(2,2’-ビピピリジン-6-イル)ベンゼン 837mg(1.7 mmol)、10%パラジウム炭素 271mg(Pd 0.255mmol)を酢酸 26mLに加え、5%H2-N2混合ガスを加えながら100℃で19時間反応した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で溶媒を取り除いた。得られた残渣はメタノール-酢酸エチルより再結晶を行い 黄色固体 151mg(22%)を得た。母液は再度濃縮し、カラムクロマトグラフィー(NH、ヘプタン:ジクロロメタン)で精製し、2,6-ビス(2,2’-ビピピリジン-6-イル)フェノール (L111)82 mg (12%)を得た。
(1-11-3)錯体の合成:セシウム2,6-ビス(2,2’-ビピリジン-6-イル)フェノラート錯体(L111-Cs)の合成
Figure JPOXMLDOC01-appb-C000109
 配位子L111 0.12g(0.3mmol)-トルエン懸濁液 3mLに50%水酸化セシウム水溶液 0.05mL(0.3mmol)-メタノール溶液 1.5mLを滴下し、室温で1時間撹拌した。得られた反応混合物は減圧下で濃縮し、残渣にトルエンを加え、析出物をろ取した。得られた析出物は減圧下220℃で加熱し溶媒と未反応の配位子を取り除き、L111-Cs 0.08g(53%)を得た。得られた錯体のNMRは図12に示す。
[A-12]2-(6-(3-(ピリジン-3-イル)フェニル)ピリジン-2-イル)-4,6-ビス(3-ピリジン-3-イルフェニル)フェノラート錯体(L112-M)の合成
[A-12-1]セシウム2-(6-(3-(ピリジン-3-イル)フェニル)ピリジン-2-イル)-4,6-ビス(3-ピリジン-3-イルフェニル)フェノラート錯体(L112-Cs)の合成
(1-12-1)中間原料の合成:
(1)3-(ピリジン-3-イル)フェニルボロン酸ピナコールエステル (CAS No. 939430-30-5, M012) はOnoらの方法(WO2012073541)を用いて合成した。
(2)2-(2-ベンジロキシ-3,5-ジブロモフェニル)-6-ブロモピリジンの合成
Figure JPOXMLDOC01-appb-C000110
 上記(1-6-1)の(1)の2)で合成した2-ベンジロキシ-3,5-ジブロモフェニルボロン酸ピナコールエステル (M025) 7.70g (16.5mmol)、2,6-ジブロモピリジン 5.92g (25mmol)、PdCl2(dppf)-CH2Cl2付加体 204mg (0.25mmol)、3M 炭酸カリウム水溶液 16.5 mL (50mmol)をジオキサン 33mLに加え、80℃で20時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は減圧下で蒸留し、2-(2-ベンジロキシ-3,5-ジブロモフェニル)-6-ブロモピリジン 7.07g (86%、240℃、0.05Torr)を得た。
(1-12-2)配位子の合成:
(1)L112中間体の合成
Figure JPOXMLDOC01-appb-C000111
 2-(2-ベンジロキシ-3,5-ジブロモフェニル)-6-ブロモピリジン 1.25g (2.5 mmol)、3-ピリジン-3-イルフェニルボロン酸ピナコールエステル (M012) 2.53g(9mmol)、PdCl2(dppf)-CH2Cl2付加体 122mg(0.15mmol)、3M炭酸ナトリウム水溶液 10mL(30mmol)をジオキサン 30mLに加え、100℃で4時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー (C300、ジクロロメタン:IPA)で精製し、2-ベンジロキシ-1-6-(3-ピリジン-3-イルフェニル)ピリジン2-イル-3,5-ビス(3-ピリジン-3-イルフェニル)ベンゼン 1.63g (92%)を得た。
(2)L112の合成
Figure JPOXMLDOC01-appb-C000112
 2-ベンジロキシ-1-(6-(3-ピリジン-3-イルフェニル)ピリジン-2-イル)-3,5-ビス(3-ピリジン-3-イルフェニル)ベンゼン 1.63g(2.26mmol)、10%パラジウム炭素 373mg(Pd 0.35mmol)を酢酸 12mLに加え、5%H2-N2混合ガス雰囲気下、100℃で17時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、少量のトルエンに溶解した。このトルエン溶液はヘプタン 200 mLにゆっくり滴下した。生じた析出物はろ取し、2-ヒドロキシ-1-(6-(3-ピリジン-3-イルフェニル)ピリジン-2-イル)-3,5-ビス(3-ピリジン-3-イルフェニル)ベンゼン(L112) 1.28g(90%)を得た。
(1-12-3)錯体の合成:セシウム2-(6-(3-(ピリジン-3-イル)フェニル)ピリジン-2-イル)-4,6-ビス(3-ピリジン-3-イルフェニル)フェノラート錯体(L112-Cs)の合成
Figure JPOXMLDOC01-appb-C000113
 配位子L112 0.13g(0.2mmol)-トルエン懸濁液 2mLにメタノール1mLで希釈した50%水酸化セシウム水溶液 0.035mL(0.2mmol)-メタノール溶液 1mLを滴下し室温で撹拌した。1時間後減圧下で濃縮し、得られた残渣にトルエンを加え析出物を回収した。得られた析出物は減圧下200℃で加熱して溶媒を取り除き、L112-Cs 1.22g(80%)を得た。得られた錯体のNMRは図13に示す。
[A-13]2-(5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L113-M)の合成
[A-13-1]セシウム2-(5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L113-Cs)の合成
(1-13-1)中間原料の合成:
(1)2-(2-ベンジロキシフェニル)-5-ブロモピリジンの合成
1)2-ベンジロキシフェニルボロン酸 (CAS No. 1906612-29-1, M013)はThedeらの方法(Org. Lett., 6(24), 4595 - 4597, 2004)を用いて合成した。
2)2-(2-ベンジロキシフェニル)-5-ブロモピリジンの合成
Figure JPOXMLDOC01-appb-C000114
 2-ベンジロキシフェニルボロン酸(M013) 3.42g(15.0mmol)、2,5-ジブロモピリジン 4.26g(18.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.52g(0.45mmol)、3M炭酸カリウム水溶液 15mL(45mmol)をジオキサン 45mLに加え、100℃で1時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥以後、減圧下で濃縮した。得られた残渣はメタノールで再結晶を行い、2-(2-ベンジロキシフェニル)-5-ブロモピリジン 4.25g(83%)で得た。 
(1-13-2)配位子の合成:2-(3-(6-(2-ヒドロキシフェニル)ピリジン-3-イル)フェニル)-4,6-ジフェニルピリミジン(L113)の合成
(1)L113中間体の合成
Figure JPOXMLDOC01-appb-C000115
 上記(1-2-1)の(1)で合成した3-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル(M003) 0.76g(1.76mmol)、2-(2-ベンジロキシフェニル)-5-ブロモピリジン 0.72g(2.11 mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.061g(0.053 mmol)、2M炭酸ナトリウム水溶液 2.6mL(5.2mmol)をジオキサン 5.9mLに加え、100℃で2時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はクロマトグラフィー(NH、ヘプタン:ジクロロメタン)で精製し白色固体を得た。得られた白色固体はトルエンで再結晶を行い、2-(3-(6-(2-ベンジロキシフェニル)ピリジン-3-イル)フェニル)-4,6-ジフェニルピリミジン 0.77 g(77%)を得た。
(2)L113の合成 
2-(3-(6-(2-ヒドロキシフェニル)ピリジン-3-イル)フェニル)-4,6-ジフェニルピリミジン (L113)の合成
Figure JPOXMLDOC01-appb-C000116
 2-(3-(6-(2-ベンジロキシフェニル)ピリジン-3-イル)フェニル)-4,6-ジフェニルピリミジン 0.76g(1.34mmol)、10% パラジウム炭素 0.19g(Pd 0.17mmol)を酢酸 20 mLに加え5%H2-N2ガス雰囲気下、100℃で19時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下濃縮した。得られた残渣はトルエンを用いて再結晶を行い、2-(3-(6-(2-ヒドロキシフェニル)ピリジン-3-イル)フェニル)-4,6-ジフェニルピリミジン(L113)0.56g (88%)を得た。
(1-13-3)錯体の合成:セシウム2-(5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L113-Cs)の合成
Figure JPOXMLDOC01-appb-C000117
 配位子L113 0.14g(0.3mmol)-トルエン懸濁液 3mLに、50%水酸化セシウム水溶液 0.05mL(0.3mmol)-メタノール溶液1.3mLを滴下し室温で撹拌した。1時間後、反応混合物を減圧下で濃縮しトルエンを加えて析出物をろ取した。得られた析出物は減圧下220℃で加熱をして溶媒と未反応の配位子を取り除きL113-Cs 0.09g(52%)を得た。得られた錯体のNMRは図14に示す。
[A-14]2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L114-M)の合成
[A-14-1]リチウム2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L114-Li)の合成
(1-14-1)中間原料の合成:
(1)4-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル (CAS No. 1613163-88-4, M002)はJungらの方法(US20140158999A1)を用いて合成した。
(2)2-(2-ベンジロキシフェニル)-6-ブロモピリジン(M028)の合成
Figure JPOXMLDOC01-appb-C000118
 上記(1-13-1)の(1)で合成した2-ベンジロキシフェニルボロン酸(M013) 8.50g(37.3mmol)、2,6-ジブロモピリジン 9.28g(39.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム 1.29g(1.12mmol)、3M炭酸カリウム水溶液37.3mL (112mmol)をジオキサン 112mLに加え、100℃で1時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ヘプタン:ジクロロメタン)で精製し、得られた結晶をメタノールで再結晶を行い、2-(2-ベンジロキシフェニル)-6-ブロモピリジン(M028) 8.63g(68%)で得た。
(1-14-2)配位子の合成:4-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン(L114)の合成
(1)L114中間体の合成
Figure JPOXMLDOC01-appb-C000119
 4-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル(M002) 3.47g(7.99mmol)、2-(2-ベンジロキシフェニル)-6-ブロモピリジン(M028) 2.99g(8.79mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.28g(0.24mmol)、2M炭酸ナトリウム水溶液 26.6mL(53.2mL)をジオキサン 26.6mLに加え、100℃で3時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はトルエン-メタノールより再結晶を行い、4-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン 4.00g(88%)を得た。
(2)L114の合成
Figure JPOXMLDOC01-appb-C000120
 4-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン 3.99g(7.03mmol)、10%パラジウム炭素 1.12 g(Pd 1.05mmol)を酢酸 106 mLに加え、5%H2-N2ガス雰囲気下、100℃で17時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下濃縮した。得られた残渣はシクロヘキサンを加え生じた析出物をろ取し、4-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン(L114) 2.60g(77%)を得た。
(1-14-3)錯体の合成:リチウム2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L114-Li)の合成
Figure JPOXMLDOC01-appb-C000121
 配位子L114 0.24g(0.5mmol)-トルエン懸濁液 7.5mLに、4M 水酸化リチウム水溶液 0.13mL(0.52 mmol)-メタノール溶液 2.5mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下280℃で加熱し未反応の配位子と溶媒の除去を行い、L114-Li 0.14g(58%)を得た。得られた錯体のNMRは図15に示す。
(A-14-2)ルビジウム2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L114-Rb)の合成
Figure JPOXMLDOC01-appb-C000122
 上記(1-14-2)で合成した配位子L114 0.57g(1.2mmol)-トルエン懸濁液 24mLに、50%水酸化ルビジウム水溶液 0.14mL(1.2mmol)-メタノール溶液 6mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下 300℃で加熱し未反応の配位子と溶媒の除去を行い、ルビジウム 2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート 0.29g(43%)を得た。得られた錯体のNMRは図15に示す。
(A-14-3)セシウム2-(6-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L114-Cs)の合成
Figure JPOXMLDOC01-appb-C000123
 上記(1-14-2)で合成した配位子L114 0.57g(1.2mmol)-トルエン懸濁液 24 mLに、50%水酸化セシウム水溶液 0.21mL(1.2 mmol)-メタノール溶液 6mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下 200℃で加熱し未反応の配位子と溶媒の除去を行い、L114-Cs 0.60g(82%)を得た。得られた錯体のNMRは図15に示す。
[A-15]2-(6-(3-(4,6-ジフェニル-ピリミジン-2-イル)フェニル)ピリミジン-2-イル)フェノラート錯体(L115-M)の合成
[A-15-1]セシウム2-(6-(3-(4,6-ジフェニル-ピリミジン-2-イル)フェニル)ピリミジン-2-イル)フェノラート錯体(L115-Cs)の合成
(1-15-2)配位子の合成:2-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン(L115)の合成
(1)L115中間体の合成
Figure JPOXMLDOC01-appb-C000124
 上記(1-2-1)の(1)で合成した3-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル(M003) 7.32g(16.9mmol)、上記(1-14-1)の(2)で合成した2-(2-ベンジロキシフェニル)-6-ブロモピリジン(M028) 6.90g(20.3mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.59g(0.51 mmol)、2M炭酸ナトリウム水溶液 25.4mmol(50.8mmol)をジオキサン 56.4mLに加え100℃で3時間撹拌した。反応終了後、水を加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は、トルエンを用いて再結晶を行い、2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン 8.73g(91%)で得た。
(2)L115の合成
Figure JPOXMLDOC01-appb-C000125
 2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン 1.76g(3.10mmol)、10%パラジウム炭素 0.50g (Pd 0.47mmol)を酢酸 47mLに加え5%H2-N2ガス雰囲気下、100℃で19時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下濃縮した。得られた残渣はトルエンを用いて再結晶を行い、2-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニルピリミジン(L115) 1.09g(74%)を得た。
(1-15-3)錯体の合成:セシウム2-(6-(3-(4,6-ジフェニル-ピリミジン-2-イル)フェニル)ピリミジン-2-イル)フェノラート錯体(L115-Cs)の合成
Figure JPOXMLDOC01-appb-C000126
 配位子L115 0.12g(0.25mmol)-トルエン懸濁液 2.5mLに、50%水酸化セシウム水溶液 0.04mL (0.25 mmol)-メタノール溶液1.3 mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し、残渣にトルエンを加え析出物をろ取した。得られた析出物は減圧下220℃で加熱し溶媒と未反応の配位子を取り除き、L115-Cs 0.10g(67%)を得た。得られた錯体のNMRは図16に示す。
[A-16]2-(6-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L116-M)の合成
[A-16-1]セシウム2-(6-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L116-Cs)の合成
(1-16-1)中間原料の合成:
(1)3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029)の合成
1)2-(1-アセトキシ-5-ブロモフェニル)ピリジン(CAS No. 1388112-32-0,M014)は船谷の方法(特開2015-199919)を用いて合成した。
2)2-(3-ブロモフェニル)-6-(2-ベンジロキシフェニル)ピリジンの合成
Figure JPOXMLDOC01-appb-C000127
 上記(1-13-1)の(1)で合成した2-ベンジロキシフェニルボロン酸(M013) 958mg(4.2mmol)、2-ブロモ-6-(3-ブロモフェニル)ピリジン(M014) 1.20g(3.83mmol)、テトラキス(トリフェニルホスフィン)パラジウム 87.8mg(0.0935mmol)、3M炭酸カリウム水溶液 4mL(12mmol)をジオキサン 8mLに加え、60℃で1時間撹拌した。反応終了後、水に注ぎ、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、メタノール:ジクロロメタン)で精製し、2-(3-ブロモフェニル)-6-(2-ベンジロキシフェニル)ピリジン 1.44g(91%)を得た。
3)3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029)の合成
Figure JPOXMLDOC01-appb-C000128
 2-(3-ブロモフェニル)-6-(2-ベンジロキシフェニル)ピリジン 7.98g(19.2mmol)、ビス(ピナコラト)ジボロン 5.94g(23.4mmol)、PdCl2(dppf)-CH2Cl2付加体 314mg(0.384mg)、酢酸カリウム 18.8g(192mmol)をジオキサン 38mLに加え、100℃で1.5時間撹拌した。反応終了後、セライトで不溶物を取り除いた。ろ液は水に注ぎトルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、メタノール:ジクロロメタン)で精製し、3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029) 6.04g(68%)を得た。
(1-16-2)配位子の合成:4-(3-(6-(2-ヒドロキシフェニル)ピリミジン-2-イル)フェニル)-2,6-ジフェニルピリミジン (L116)の合成
(1)L116中間体の合成
Figure JPOXMLDOC01-appb-C000129
 2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029) 1.85g(4.00mmol)、2-ブロモ-4,6-ジフェニルピリミジン 1.24g(4.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.14g(0.12mmol)、3M炭酸カリウム水溶液 4.00mL(12mmol)をジオキサン12mLに加え、100℃で5時間撹拌した。反応終了後、水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はシクロヘキサンより再結晶を行い、4-(3-(6-(2-ベンジロキシフェニル)ピリミジン-2-イル)フェニル)-2,6-ジフェニルピリミジン 1.92g(85%)を得た。
(2)L116の合成
Figure JPOXMLDOC01-appb-C000130
 4-(3-(6-(2-ベンジロキシフェニル)ピリミジン-2-イル)フェニル)-2,6-ジフェニルピリミジン 2.41g(4.25mmol)、10%パラジウム炭素 0.68g (Pd 0.64mmol)を酢酸 65mLに加え、5%H2-N2ガス気流下、100℃で19時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下で濃縮した。得られた残渣はシクロヘキサンより再結晶を行い、4-(3-(6-(2-ヒドロキシフェニル)ピリミジン-2-イル)フェニル)-2,6-ジフェニルピリミジン(L116) 1.80g(89%)を得た。
1H NMR (CDCl3) δ 6.83-8.87 (m, 21H, ArH)、14.71(s, 1H, OH)
(1-16-3)錯体の合成:セシウム2-(6-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L116-Cs)の合成
Figure JPOXMLDOC01-appb-C000131
 酸化セシウム水溶液 0.087mL(0.5mmol)-メタノール 1.5mLを滴下し室温で撹拌した。1時間後減圧下で濃縮し、析出物をろ取した。析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除きL116-Cs 0.22g(74%)を得た。得られた錯体のNMRは図17に示す。
[A-17]2-(6-(3-(4,6-ジフェニル1,3,5-トリアジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L117-M)の合成
[A-17-1]セシウム2-(6-(3-(4,6-ジフェニル1,3,5-トリアジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L117-M)の合成
(1-17-2)配位子の合成:2-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-4,6-ジフェニル-1,3,5-トリアジン (L117)の合成
(1)L117中間体の合成
Figure JPOXMLDOC01-appb-C000132
 上記(1-16-1)の(1)で合成した2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029) 1.85g(200mmol)、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 1.07g(4.00mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.14g(0.12mmol)、3M炭酸カリウム水溶液 4mL(12mmol)をジオキサン 12mLに加え100℃で2時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下でで濃縮した。得られた残渣にシクロヘキサンを加えて生じた析出物をろ取し、2-(3-(2-(2-ベンジロキシフェニル)ピリジン-6-イル)フェニル)-4,6-ジフェニル-1,3,5-トリアジン 1.77g(78%)を得た。
(2)L117の合成
Figure JPOXMLDOC01-appb-C000133
 2-(3-(2-(2-ベンジロキシフェニル)ピリジン-6-イル)フェニル)-4,6-ジフェニル-1,3,5-トリアジン 2.21g(3.89mmol)、10%パラジウム炭素 0.62g(Pd 0.58mmol)を酢酸 80mLに加え5%H2-N2ガス雰囲気下、100℃で17時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下濃縮した。得られた残渣はシクロヘキサンを加え生じた析出物をろ取し、2-(3-(2-(2-ヒドロキシフェニル)ピリジン-6-イル)フェニル)-4,6-ジフェニル-1,3,5-トリアジン(L117) 1.75g(94%)を得た。
1H NMR(CDCl3) δ 6.93-9.37 (21H, ArH)、14.71(s, 1H, OH)
(1-17-3)錯体の合成:セシウム2-(6-(3-(4,6-ジフェニル1,3,5-トリアジン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L117-Cs)の合成
Figure JPOXMLDOC01-appb-C000134
 配位子L117 0.19g(0.4mmol)-トルエン懸濁液 4mLに50%水酸化セシウム水溶液 0.077mL (0.44mmol)-メタノール溶液 2.2mLを滴下し40℃撹拌した。1時間後、溶液は減圧下で濃縮し析出物をろ取した。得られた析出物は減圧下220℃で加熱し溶媒を取り除き、L117-Cs 0.11g(47%)を得た。得られた錯体のNMRは図18に示す。
[A-18]2-(6-(3-(2,6-ジ(ピリジン-3-イル)ピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L118-M)の合成
[A-18-1]セシウム2-(6-(3-(2,6-ジ(ピリジン-3-イル)ピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L118-Cs)の合成
(1-18-1)中間原料の合成:
(1)4-ブロモ-2,6-ジピリジン-3-イルピリミジン(M030)の合成
1)4-アミノ-2,6-ジピリジン-3-イルピリミジンの合成
Figure JPOXMLDOC01-appb-C000135
 4-アミノ-2,6-ジクロロピリミジン 3.28g(20mmol)、3-ピリジルボロン酸 4.92g(40mmol)、PdCl2(dppf)-CH2Cl2付加体 653mg(0.8mmol)、3M炭酸カリウム水溶液 40mL(120mmol)をジオキサン 120mLに加え、100℃で33時間撹拌した。反応終了後、一度濃縮し、水を加え析出物をろ取した。得られた析出物はトルエンを加え、不溶物をろ取し、4-アミノ-2,6-ジピリジン-3-イルピリミジン 4.85g(97%)を得た。
2)4-ブロモ-2,6-ジピリジン-3-イルピリミジン(M030)の合成
Figure JPOXMLDOC01-appb-C000136
 4-アミノ-2,6-ジ(ピリジン-2-イル)ピリミジン 4.99g(20mmol)、臭化銅(II) 5.36g(24mmol)-DMSO懸濁液 60mLに亜硝酸tert-ブチル 2.85mL(ca.24mmol)-DMSO溶液 40mLを加え、65℃で22時間撹拌した。反応終了後、飽和NaHCO3水溶液  200mLを加え室温で1時間撹拌した。沈殿はセライトを用いてろ過し、ろ液は水を加え、ジクロロメタンで抽出した。沈殿はジクロロメタンで抽出し、ろ液を抽出した有機層と合わせた。有機層は硫酸マグネシウムで乾燥後、濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:メタノール)で精製し、4-ブロモ-2,6-ジ(ピリジン-3-イル)ピリミジン(M030) 1.61g(26%)を得た。
(1-18-2)配位子の合成:4-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン (L118)の合成
(1)L118中間体の合成
Figure JPOXMLDOC01-appb-C000137
 上記(1-16-1)の(1)で合成した3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニルボロン酸ピナコールエステル(M029) 2.09g(4.5mmol)、4-ブロモ-2,6-ジ(ピリジン-3-イル)ピリミジン(M030) 1.41g(4.5mmol)、PdCl2(dppf)-CH2Cl2付加体 68mg(0.09 mmol)、3M炭酸カリウム水溶液 9mLをジオキサン 27mLに加え、2時間還流した。反応終了後、濃縮し得られた残渣に水を加えた。ジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣にアセトンを加え化合物を結晶化した。析出した結晶はろ取し、4-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン 1.34g(52%)を得た。
(2)L118の合成
Figure JPOXMLDOC01-appb-C000138
 4-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン 1.31g(2.3mmol)、10%パラジウム炭素 367mg(Pd 0.345mmol)、トルエン 7.1mLを酢酸 14.2mLに加え、5%H2-N2ガス雰囲気下、100℃で19時間撹拌した。反応終了後、ジクロロメタンを加えて希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、4-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン(L118) 1.05g(95%)を得た。
(1-18-3)錯体の合成:セシウム2-(6-(3-(2,6-ジ(ピリジン-3-イル)ピリミジン-4-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L118-Cs)の合成
Figure JPOXMLDOC01-appb-C000139
 配位子L118 0.14g(0.3mmol)-トルエン懸濁液 3mLに、50%水酸化セシウム水溶液 0.052mL(0.3mmol)-メタノール溶液 1.6mLを滴下し、室温で撹拌した。1時間後、反応溶液を減圧下で濃縮し、残渣にトルエンを加え、析出物をろ取した。得られた析出物は減圧下260℃で加熱して未反応の配位子と溶媒を取り除き、L118-Cs 0.15g(83%)を得た。得られた錯体のNMRは図19に示す。
[A-19]2-(6-(3-(1,10-フェナントロリン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L119-M)の合成
[A-19-1]セシウム2-(6-(3-(1,10-フェナントロリン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L119-M)の合成
(1-19-1)中間原料の合成:
(1)3-(1,10-フェナントロリン-2-イル)フェニルボロン酸ピナコールエステル(M031)の合成
1)2-(3-ブロモフェニル)-1,10-フェナントロリン (CAS No. 224030-72-2, M015)はDietrch-Bucheckerらの方法(Chem. A Eur. J., 11(15), 2005)を用いて合成した。
2)3-(1,10フェナントロリン-2-イル)フェニルボロン酸ピナコールエステル(M031)の合成
Figure JPOXMLDOC01-appb-C000140
 2-(3-ブロモフェニル)-1,10フェナントロリン(M015) 1.90g(5.67mmol)、ビス(ピナコラト)ジボロン 1.73g(6.8mmol)、PdCl2(dppf)-CH2Cl2付加体 90mg(0.11mmol)、酢酸カリウム 5.59g(57mmol)をジオキサン 11mLに加え、100℃で16 時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:メタノール)より精製を行い、3-(1,10フェナントロリン-2-イル)フェニルボロン酸ピナコールエステル(M031) 1.42g(65%)を得た。
(1-19-2)配位子の合成:2-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-1,10-フェナントロリン(L119)の合成
(1)L119中間体の合成
Figure JPOXMLDOC01-appb-C000141
 3-(1,10-フェナントロリン-2-イル)フェニルボロン酸(M031) 1.70g(5mmol)、上記(1-14-1)の(2)で合成した2-ブロモ-6-(2-ベンジロキシフェニル)ピリジン(M028) 1.91g(5mmol)、テトラキス(トリフェニルホスフィン)パラジウム 290mg(0.25mmol)、3M炭酸カリウム水溶液 5mL(15mmol)、エタノール 2.5mLをトルエン 25mLに加え、100℃で16時間撹拌した。反応終了後、水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ヘプタン:ジクロロメタン)より精製し、2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-1,10-フェナントロリン 1.27g(50%)を得た。
(2)L119の合成
Figure JPOXMLDOC01-appb-C000142
 2-(3-(6-(2-ベンジロキシフェニル)ピリジン-2-イル)フェニル)-1,10-フェナントロリン 2.10g(4.07mmol)、10%パラジウム炭素 210mg(Pd 0.2mmol)、トルエン 4mLを酢酸 4mLに加え、5%H2-N2混合ガス雰囲気下、100℃で17時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、2-(3-(6-(2-ヒドロキシフェニル)ピリジン-2-イル)フェニル)-1,10-フェナントロリン(L119) 1.43g(82%)を得た。
(1-19-3)錯体の合成:セシウム2-(6-(3-(1,10-フェナントロリン-2-イル)フェニル)ピリジン-2-イル)フェノラート錯体(L119-Cs)の合成
Figure JPOXMLDOC01-appb-C000143
 配位子L119 0.17g(0.4mmol)-トルエン溶液 8mLに50%水酸化セシウム水溶液 0.070mL(0.4 mmol)-メタノール溶液 2mLを滴下し、室温で撹拌した。1時間後、反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取した。得られた析出物は減圧下200℃で加熱して溶媒の除去を行い、L119-Cs 0.18g(81%)を得た。得られた錯体のNMRは図20に示す。
[A-20]2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート錯体(L120-M)の合成
[A-20-1]セシウム 2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート錯体(L120-Cs)の合成
(1-20-1)中間原料の合成:
(1)2-クロロ-1,10-フェナントロリン (CAS No. 7089-68-1, M016)はFerrettiらの方法(J. Organomet. Chem., 771, 59 - 67, 2014)を用いて合成した。
(1-20-2)配位子の合成:2-(5-(1,10-フェナントロリン-2-イル)-2-ヒドロキシフェニル)ピリジン(L120)の合成
(1)L120中間体の合成
Figure JPOXMLDOC01-appb-C000144
 上記(1-1-1)の(2)で合成した4-ベンジロキシ-3-ピリジン―2-イルフェニルボロン酸ピナコールエステル(M024) 3.87g(10mmol)、2-クロロ-1、10-フェナントロリン(M016) 2.15g(10mmol)、テトラキス(トリフェニルホスフィン)パラジウム 578mg (0.5mmol)、3M炭酸セシウム水溶液 10mL(30mmol)、エタノール 3mLをトルエン 30mLに加え、100℃で24時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた固体はシクロヘキサン-酢酸エチルより再結晶を行い、2-(5-(1,10-フェナントロリン-2-イル)-2-ベンジロキシフェニル)ピリジン 3.96g(90%)を得た。
(2)L120の合成
Figure JPOXMLDOC01-appb-C000145
 2-(5-(1,10-フェナントロリン-2-イル)-2-ベンジロキシフェニル)ピリジン 3.96g(9mmol)、10%パラジウム炭素 479mg(Pd, 0.45mmol)を酢酸 50mLに加え、5%H2-N2混合ガス雰囲気下、100℃で20時間撹拌した。反応終了後、ジクロロメタン加え、セライトを用いて不溶物をろ別した。ろ液は減圧下で濃縮した。得られた残渣は昇華精製を行い2-(5-(1,10-フェナントロリン-2-イル)-2-ヒドロキシフェニル)ピリジン(L120) 2.82g(90%)を得た。
(1-20-3)錯体の合成:セシウム2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート錯体(L120-Cs)の合成
Figure JPOXMLDOC01-appb-C000146
 配位子L120 0.28g(0.8mmol)-トルエン溶液 12mLに、50%水酸化セシウム水溶液 0.14mL-メタノール溶液 4mLを滴下し、40℃で1時間撹拌した。得られた反応混合物は減圧下で濃縮した。得られた残渣は減圧下、220℃で加熱し溶媒と未反応の配位子を取り除き、L120-Cs 0.35g(90%)を得た。得られた錯体のNMRは図21に示す。
[B]一般式(2)で表される金属錯体
[B-1]5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-M)の合成 
[B-1-1]リチウム 5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-Li)の合成
(2-1-1)中間原料の合成:
(1)8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル(M018)の合成
1)5-ブロモ-8-ベンジロキシキノリン (CAS No. 202259-06-1, M017)はOmarらの方法(J. Chem. Sci., 127(11), 1937-1943, 2015)を用いて合成した。
2)8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル (CAS No. 675880-76-9, M018)はOnoらの方法(WO2011152466)の3-(4-ブロモフェニル)ピリジンを、1)で合成した5-ブロモ-8-ベンジロキシキノリンに変えて合成した。
(2-1-2)配位子の合成:8-ヒドロキシ-5-(1,10-フェナントロリン-2-イル)キノリン (L201)の合成
(1)L201中間体の合成
Figure JPOXMLDOC01-appb-C000147
 8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル(M018) 361mg(1.0mmol)、上記(1-20-1)の(1)で合成した2-クロロ-1,10-フェナントロリン(M016) 236mg(1.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム 41mg(0.05mmol)、3M炭酸カリウム水溶液 1.0mL、エタノール 0.6mLをトルエン 6mLに加え100℃で 23時間撹拌した。反応終了後、水とトルエンを加えた。不溶物はセライトを用いて取り除き、有機層と水層に分離した。有機層は水で洗浄し、硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:MeOH)で精製し、8-ベンジロキシ-5-(1,10-フェナントロリン-2-イル)キノリン 330mg(79%)を得た。
(2)L201の合成
Figure JPOXMLDOC01-appb-C000148
 8-ベンジロキシ-5-(1,10-フェナントロリン-2-イル)キノリン 207mg(0.5mmol)、10%パラジウム炭素 80mg(Pd 0.075mmol)、トルエン 1.5mLを酢酸 3.1mLに加え、5%H2-N2混合ガスを加えながら100℃で18.5 時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下で濃縮し、8-ヒドロキシ-5-(1,10-フェナントロリン-2-イル)キノリン(L201) 145mg(89%)を得た。
(2-1-3)錯体の合成:リチウム5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-Li)の合成
Figure JPOXMLDOC01-appb-C000149
 配位子L201 0.13g(0.4mmol)-トルエン溶液 5mLに、4M水酸化物リチウム水溶液 0.1mL(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、生じた析出物を回収した。得られた析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除き、L201-Li 0.12g(92%)を得た。得られた錯体のNMRは図22に示す。
[B-1-2]ナトリウム5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-Na)の合成
Figure JPOXMLDOC01-appb-C000150
 上記(2-1-2)で合成した配位子L201 0.13g(0.4mmol)-トルエン溶液 5mLに、水酸化物ナトリウム 0.016g(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、生じた析出物を回収した。得られた析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除き、L201-Na 0.12g(90%)を得た。得られた錯体のNMRは図22に示す。
[B-1-3]カリウム5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-K)の合成
Figure JPOXMLDOC01-appb-C000151
 上記(2-1-2)で合成した配位子L201 0.13g(0.4mmol)-トルエン溶液 12mLに、水酸化物カリウム 0.22g(0.4mmol)-メタノール溶液 2mLを滴下し室温で撹拌した。1時間後、生じた析出物を回収した。得られた析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除き、L201-K 0.10g(84%)を得た。得られた錯体のNMRは図22に示す。
[B-1-4]ルビジウム5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-Rb)の合成
Figure JPOXMLDOC01-appb-C000152
 上記(2-1-2)で合成した配位子L201 0.19g(0.6mmol)-トルエン溶液 12mLに、50%水酸化物ルビジウム水溶液 0.07mL(0.6mmol)-メタノール溶液 3mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し析出物を回収した。得られた析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除き、L201-Rb 0.21g(84%)を得た。得られた錯体のNMRは図22に示す。
[B-1-5]セシウム5-(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L201-Cs)の合成
Figure JPOXMLDOC01-appb-C000153
 上記(2-1-2)で合成した配位子L201 0.10g(0.3mmol)-トルエン溶液 3mLに、50%水酸化物セシウム水溶液 0.05mL(0.3mmol)-メタノール溶液 1.5mLを滴下し室温で撹拌した。1時間後、減圧下で濃縮し析出物を回収した。得られた析出物は減圧下220℃で加熱して未反応の配位子と溶媒を取り除き、L201-Cs 0.10g(72%)を得た。得られた錯体のNMRは図22に示す。
[B-1-6]バリウムビス(5-(1,10-フェナントロリン-2-イル)-8-キノラート)錯体(L201-Ba)の合成
Figure JPOXMLDOC01-appb-C000154
 上記(2-1-2)で合成した配位子L201 0.10g(0.3mmol)-エタノール溶液 5mLに水酸化バリウム 0.05g(0.15mmol)水溶液 1.5mLを滴下し室温で撹拌した。1時間後、1M水酸化ナトリウム水溶液を滴下してpH=11にし、析出物をろ取した。得られた析出物は水で洗浄し、L201-Ba 0.11g(91%)を得た。得られた錯体のNMRは図22に示す。
[B-1-7]ベリリウムビス(5-(1,10-フェナントロリン-2-イル)-8-キノラート)錯体(L201-Be)の合成
Figure JPOXMLDOC01-appb-C000155
 上記(2-1-2)で合成した配位子L201 0.13g(0.4mmol)-メタノール溶液 16mLに硫酸ベリリウム4水和物 0.035g(0.2mmol)-メタノール溶液 4mLを滴下し室温で撹拌した。5時間後、1M水酸化ナトリウム水溶液を滴下してpH=12にし、析出物をろ取した。得られた析出物は水で洗浄した。析出物は、減圧下200℃で加熱し、未反応の配位子を取り除き、L201-Be 0.078g(60%)を得た。得られた錯体のNMRは図22に示す。
[B-2]5-(3-(1,10-フェナントロリン-2-イル)フェニル)-8-キノラート錯体(L202-M)の合成
[B-2-1]セシウム5-(3-(1,10-フェナントロリン-2-イル)フェニル)-8-キノラート錯体(L202-Cs)の合成
(2-2-2)配位子の合成:8-ヒドロキシ-5-(3-(1,10-フェナントロリン-2-イル)フェニル)キノリン (L202)の合成
(1)L202中間体の合成
Figure JPOXMLDOC01-appb-C000156
 上記(2-1-1)の(1)で合成した8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル(M018) 251mg(0.8mmol)、上記(1-19-1)の(1)の1)で合成した2-(3-ブロモフェニル)-1,10-フェナントロリン(M015) 306mg(0.8mmol)、テトラキス(トリフェニルホスフィン)パラジウム 33mg(0.04 mmol)、3M炭酸カリウム水溶液 0.8mL(2.4mmol)、エタノール 0.48mLをトルエン 4.8mLに加え、100℃で16時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:MeOH)より精製し、8-ベンジロキシ-5-(3-(1,10-フェナントロリン-2-イル)フェニル)キノリン 264mg(67%)を得た。
(2)L202の合成
Figure JPOXMLDOC01-appb-C000157
 8-ベンジロキシ-5-(3-(1,10-フェナントロリン-2-イル)フェニル)キノリン 392mg(0.8mmol)、10%パラジウム炭素 128mg (Pd 0.12mmol)、トルエン 2.5mLを酢酸 5mLに加え、5%H2-N2混合ガス雰囲気下、100℃で16時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。得られたろ液は減圧下で濃縮し、カラムクロマトグラフィー(PEI、ジクロロメタン:MeOH)で精製し、8-ヒドロキシ-5-(3-(1,10-フェナントロリン-2-イル)フェニル)キノリン(L202) 195mg(61%)を得た。
(2-2-3)錯体の合成:セシウム5-(3-(1,10-フェナントロリン-2-イル)フェニル)-8-キノラート錯体(L202-Cs)の合成
Figure JPOXMLDOC01-appb-C000158
 配位子L202 0.32g(0.8mmol)-トルエン溶液 8mLに50%水酸化セシウム水溶液 0.14mL(0.8mmol)-メタノール溶液 4mLを滴下し室温で撹拌した。1時間後、反応溶液は減圧下で濃縮し、析出物を回収した。析出物は減圧下200℃で加熱して溶媒を取り除き、L202-Cs 0.31g(74%)を得た。得られた錯体のNMRは図23に示す。
[B-2-2]バリウムビス(5-(3-(1,10-フェナントロリン-2-イル)フェニル)-8-キノラート)錯体(L202-Ba)の合成
Figure JPOXMLDOC01-appb-C000159
 上記(2-2-2)で合成した配位子L202 0.24g(0.6mmol)-エタノール懸濁液 12mLに、水酸化バリウム 0.095g(0.3mmol)水溶液 3mLを滴下し室温で撹拌した。1時間後、1M水酸化ナトリウム水溶液を滴下してpH=11に調整した。生じた析出物はろ取後、析出物は水で洗浄し、L202-Ba 0.27g(95%)を得た。得られた錯体のNMRは図23に示す。
[B-3]5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-M)の合成
[B-3-1]リチウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-Li)の合成
(2-3-1)中間原料の合成:
(1)5,7-ジブロモ-8-ベンジロキシキノリン (CAS No. 84165-50-4, M019)はSakaiらの方法(Chem. Commun.,51(15), 3181-3184, 2015)を2-(2-ヒドロキシフェニル)ベンゾオキサゾールを5,7-ジブロモ-8-ヒドロキシキノリンに変えて合成した。
(2-3-2)配位子の合成:8-ヒドロキシ-5,7-ビス(4-ピリジン-3-イルフェニル)キノリン(L203)の合成
(1)L203中間体の合成
Figure JPOXMLDOC01-appb-C000160
 5,7-ジブロモ-8-ベンジロキシキノリン(M019)2.36g(6mmol)、上記(1-5-1)の(1)で合成した4-ピリジン-3-イルフェニルボロン酸ピナコールエステル(M005) 4.05g (14.4mmol)、テトラキス(トリフェニルホスフィン)パラジウム 416mg(0.36mmol)、2M炭酸ナトリウム水溶液 12mL(24mmol)をジオキサン 36mLに加え、100℃で16時間反応した。反応終了後、ジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(PEI、ヘプタン:ジクロロメタン)で精製し、黄色固体 3.53gを得た。得られた固体は酢酸エチル、続いてシクロヘキサンより再結晶を行い、8-ベンジロキシ-5,7-ビス(4-ピリジン-3-イルフェニル)キノリン 2.50g(77%)を得た。
(2)L203の合成
Figure JPOXMLDOC01-appb-C000161
 8-ベンジロキシ-5,7-ビス(4-ピリジン3-イル)キノリン 975mg(1.8mmmol)、10%パラジウム炭素 287mg(0.27mmol)を酢酸 27mLに加え、5%H2-N2混合ガスを流しながら80℃で5.5時間撹拌した。反応終了後、ジクロロメタンを加えNaHCO3水溶液で中和した。中和した溶液はセライトでろ過し、ろ液はジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(PEI、ヘプタン:ジクロロメタン)で精製し、白色固体 736mg(90%)を得た。得られた結晶はさらに酢酸エチル-ヘプタンより再結晶を行い、8-ヒドロキシ-5,7-ビス(4-ピリジン-3-イルフェニル)キノリン(L203) 633mg(77%)を得た。
(2-3-3)錯体の合成:リチウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-Li)の合成
Figure JPOXMLDOC01-appb-C000162
 配位子L203 0.18g(0.4mmol)-メタノール懸濁液 4mLに、4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール溶液 1mLを滴下し、室温で撹拌した。2時間後反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取し、L203-Li 0.21g(117%)を得た。得られた錯体のNMRは図24に示す。
[B-3-2]ナトリウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-Na)の合成
Figure JPOXMLDOC01-appb-C000163
 上記(2-3-2)で合成した配位子L203 0.19g(0.42mmol)-メタノール懸濁液 4.4mLに、水酸化ナトリウム 0.02g (0.4mmol)-メタノール溶液 1mLを滴下し、室温で撹拌した。2時間後、反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取し、L203-Na 0.18g(93%)を得た。得られた錯体のNMRは図24に示す。
[B-3-3]カリウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-K)の合成
Figure JPOXMLDOC01-appb-C000164
 上記(2-3-2)で合成した配位子L203 0.19g(0.42mmol)-メタノール懸濁液 4.4mLに、水酸化カリウム 0.026g(0.4mmol)-メタノール溶液 2mLを滴下し、室温で撹拌した。2時間後反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取し、L203-K 0.17g(84%)を得た。得られた錯体のNMRは図24に示す。
[B-3-4]ルビジウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-Rb)の合成
Figure JPOXMLDOC01-appb-C000165
 上記(2-3-2)で合成した配位子L203 0.19g(0.42 mmol)-メタノール懸濁液 4.4mLに、50%水酸化ルビジウム水溶液 0.05mL(0.4mmol)-メタノール溶液 2mLを滴下し、室温で撹拌した。2時間後反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取し、L203-Rb 0.21g(97%)を得た。得られた錯体のNMRは図24に示す。
[B-3-5]セシウム5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート錯体(L203-Cs)の合成
Figure JPOXMLDOC01-appb-C000166
 上記(2-3-2)で合成した配位子L203 0.19g(0.42mmol)-メタノール懸濁液 4.4mLに、50%水酸化セシウム水溶液 0.07mL(0.4 mmol)-メタノール溶液 2mLを滴下し、室温で撹拌した。2時間後反応溶液は減圧下で濃縮した。得られた残渣にトルエンを加え、析出物をろ取し、L203-Cs 0.21g(91%)を得た。得られた錯体のNMRは図24に示す。
[B-3-6]バリウムビス(5,7-ビス(4-(ピリジン-3-イル)フェニル)-8-キノラート)錯体(L203-Ba)の合成
Figure JPOXMLDOC01-appb-C000167
 上記(2-3-2)で合成した配位子L203 0.14g(0.3mmol)-エタノール懸濁液 3mLに、水酸化バリウム 0.05g(0.15mmol)水溶液を滴下し、室温で撹拌を行った。1時間後、1M水酸化ナトリウム水溶液を滴下してpH=11に調整した。生じた析出物はろ取し、減圧下300℃で加熱して未反応の配位子を除去し、L203-Ba 0.12g(75%)を得た。得られた錯体のNMRは図24に示す。
[B-4]2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L204-M)の合成
[B-4-1]セシウム2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L204-Cs)の合成
(2-4-1)中間原料の合成:
(1)3-(8-ベンジロキシキノリン-2-イル)フェにボロン酸ピナコールエステル(M032)の合成
1)8-ベンジロキシキノリン (CAS No. 84165-42-4, M020)はSakaiらの方法(Chem. Commun.,51(15), 3181 - 3184, 2015) を2-(2-ヒドロキシフェニル)ベンゾオキサゾールを8-ヒドロキシキノリンに変えて合成した。
2)2-(3-ブロモフェニル)-8-ベンジロキシキノリンの合成
Figure JPOXMLDOC01-appb-C000168
 0℃で1,3-ジブロモベンゼン 14.2g(60mmol)-ジエチルエーテル溶液 120mLに2.5M n-ブチルリチウム-ヘキサン溶液 24mL(60mmol)を加え、0℃で30分間撹拌した。続いて8-ベンジロキシキノリン 9.41g(40 mmol)-ジエチルエーテル溶液 60mLを加え、0℃で 撹拌した。2.5時間後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた残渣はジクロロメタン60 mLを加えて溶解し、二酸化マンガン 34.8g(400mmol)を加え、室温で1時間撹拌した。反応終了後、セライトを用いて不溶物を取り除き、ろ液に水を加え、ジクロロメタンで抽出した。得られた有機層は、硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:ヘプタン)より精製し、2-(3-ブロモフェニル)-8-ベンジロキシキノリン 7.46g(48%)を得た。
3)3-(8-ベンジロキシキノリン-2-イル)フェにボロン酸ピナコールエステル(M032)の合成
Figure JPOXMLDOC01-appb-C000169
 2-(3-ブロモフェニル)-8-ベンジロキシキノリン 7.46g(19.1mmol)、ビス(ピナコラト)ジボロン 5.82g(22.9mmol)、PdCl2(dppf)-CH2Cl2付加体 234mg(0.287mmol)、酢酸カリウム 18.6g(190 mmol)をジオキサン 40mLに加え、100℃で16 時間撹拌した。反応終了後、水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ジクロロメタン:ヘプタン)より精製を行い3-(8-ベンジロキシキノリン-2-イル)フェニルボロン酸ピナコールエステル(M032) 8.37g(100%)を得た。
(2-4-2)配位子の合成:4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジフェニルピリミジン(L204)の合成
(1)L204中間体の合成
Figure JPOXMLDOC01-appb-C000170
 3-(8-ベンジロキシキノリン-2-イル)フェニボロン酸ピナコールエステル(M032) 3.06g(7mmol)、4-ブロモ-2,4-ジフェニルピリミジン 3.27g(10.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム 243mg(0.21mmol)、3M炭酸カリウム水溶液 7mL(21mmol)をジオキサン  21mLに加え、100℃で15時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)より精製を行い、得られた固体をトルエン-シクロヘキサンより再結晶を行い4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジフェニルピリミジン 2.41g(64%)を得た。
(2)L204の合成
Figure JPOXMLDOC01-appb-C000171
 4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジフェニルピリミジン 2.42g(4.47 mmol)、10%パラジウム炭素 713mg(Pd 0.67mmol)、トルエン 5mLを酢酸 10mLに加え、5%H2-N2混合ガス雰囲気下、100℃で24時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジフェニルピリミジン(L204) 1.60g(78%)を得た。
(2-4-3)錯体の合成:セシウム2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L204-Cs)の合成
Figure JPOXMLDOC01-appb-C000172
 配位子L204 0.32mg(0.7mmol)-トルエン懸濁液 7mLに、50%水酸化セシウム水溶液 0.12mL(0.7mmol)-メタノール溶液 3.5mLを滴下し、室温で撹拌した。1時間後、反応溶液を減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下300℃で加熱して未反応の配位子と溶媒を取り除き、L204-Cs 0.38g(94%)を得た。得られた錯体のNMRは図25に示す。
[B-5]2-(3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-8-キノラート錯体(L205-M)の合成
[B-5-1]セシウム2-(3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-8-キノラート錯体(L205-Cs)の合成
(2-5-2)配位子の合成:4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジフェニル-1,3,5-トリアジン(L205)の合成
(1)L205中間体の合成
Figure JPOXMLDOC01-appb-C000173
 上記(2-4-1)の(1)で合成した3-(8-ベンジロキシキノリン-2-イル)フェニボロン酸ピナコールエステル (M032) 3.06g(7mmol)、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン 2.81g(10.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム 243mg(0.21mmol)、3M炭酸カリウム水溶液 7mL(21mmol)をジオキサン 21mLに加え、100℃で16時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)より精製を行い、得られた残渣はトルエン-シクロヘキサンより再結晶を行い、4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジフェニル-1,3,5-トリアジン 2.42g(64%)を得た。
(2)L205の合成
Figure JPOXMLDOC01-appb-C000174
 4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジフェニル-1,3,5-トリアジン 2.42g(4.46mmol)、10%パラジウム炭素 713mg(Pd 0.67mmol)、トルエン 5mLを酢酸 10mLに加え、5%H2-N2混合ガス雰囲気下100℃で16時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジフェニル-1,3,5-トリアジン(L205) 1.38g(70%)を得た。
(2-5-3)錯体の合成:セシウム2-(3-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル)-8-キノラート錯体(L205-Cs)の合成
Figure JPOXMLDOC01-appb-C000175
 配位子L205 0.32g(0.7mmol)-トルエン懸濁液 7mLに、50%水酸化セシウム水溶液 0.12mL(0.7mmol)-メタノール溶液 3.5 mLを滴下し、室温で撹拌した。1時間後、反応溶液を減圧下で濃縮し、析出物をろ取した。得られた析出物は減圧下300℃で加熱して未反応の配位子と溶媒を取り除き、L205-Cs 0.40g(98%)を得た。得られた錯体のNMRは図26に示す。
[B-6]2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L206-M)の合成
[B-6-1]セシウム2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L206-Cs)の合成
(2-6-2)配位子の合成:4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン(L206)の合成
(1)L206中間体の合成
Figure JPOXMLDOC01-appb-C000176
 上記(2-4-1)の(1)で合成した3-(8-ベンジロキシキノリン-2-イル)フェニルボロン酸ピナコールエステル (M032) 1.47g(3.36mmol)、上記(1-18-1)の(1)で合成した4-ブロモ-2,6-ジ(ピリジン-3-イル)ピリミジン(M030) 1.05g(3.36mmol)、PdCl2(dppf)-CH2Cl2付加体 51mg(0.067mmol)、3M炭酸カリウム水溶液 6.7mLをジオキサン 20mLに加え、100℃で1時間撹拌した。反応終了後、減圧下で濃縮し、水を加えた。ジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はアセトンを加えて結晶化させた。析出した結晶はろ取し、4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン 1.25g(68%)を得た。
(2)L206の合成
Figure JPOXMLDOC01-appb-C000177
 4-(3-(8-ベンジロキシキノリン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン 1.2g(2.2mmol)、10%パラジウム炭素 351mg(Pd 0.33mmol)、トルエン 6.8mLを酢酸 13.6mLに加え、5%H2-N2混合ガス雰囲気下、100℃で17.5時間撹拌した。反応終了後、ジクロロメタンで希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、灰色固体 1.08g(粗収率108%)を得た。得られた化合物は昇華精製を行い、4-(3-(8-ヒドロキシキノリン-2-イル)フェニル)-2,6-ジ(ピリジン-3-イル)ピリミジン(L206) 639mg(64%)を得た。
(2-6-3)錯体の合成:セシウム2-(3-(2,6-ジフェニルピリミジン-4-イル)フェニル)-8-キノラート錯体(L206-Cs)の合成
Figure JPOXMLDOC01-appb-C000178
 配位子L206 0.14g(0.3mmol)-トルエン懸濁液 3mLに50%水酸化セシウム水溶液 0.052mL(0.3mmol)-メタノール溶液 1.5mLを滴下し室温で撹拌した。1時間後、反応溶液は減圧下で濃縮し残渣にトルエンを加え、析出物をろ取した。析出物は減圧下260℃で加熱して未反応の配位子と溶媒を取り除き、L206-Cs 0.16g(89%)を得た。得られた錯体のNMRは図27に示す。
[B-7]5-(2-ブチルピリジン-5-イル)キノラート錯体(L207-M)の合成
[B-7-1]セシウム5-(2-ブチルピリジン-5-イル)キノラート錯体(L207-Cs)の合成
(2-7-1)中間原料の合成:
(1)5-ブロモ-2-ブチルピリジンの合成
Figure JPOXMLDOC01-appb-C000179
 マグネシウム 0.608g(25mmol)に1-ブロモブタン 3.08g(22.5mmol)-THF溶液 25mLを加え、グリニャール試薬を調整した。続いて、0℃で塩化亜鉛 4.09g(30mmol)に調整したグリニャール試薬を加え、室温で15分間撹拌した。この溶液に2,5-ジブロモピリジン 5.92g(25 mmol)-THF溶液 25mL、テトラキス(トリフェニルホスフィン)パラジウム 0.867g(0.75mmol)を加え、20時間撹拌した。反応終了後、水に注ぎ、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、ヘプタン:ジクロロメタン)で精製し、5-ブロモ-2-ブチルピリジン 2.02g(42%)を得た。
(2-7-2)配位子の合成:5-(2-ブチルピリジン-5-イル)-8-ヒドロキシキノリン(L207)の合成
(1)L207中間体の合成
Figure JPOXMLDOC01-appb-C000180
 5-ブロモ-2-ブチルピリジン 1.07g(5mmol)、上記(2-1-1)の(1)で合成した8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル (M018)1.81g(5mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.173g(0.15 mmol)、3M炭酸カリウム水溶液 5mLをジオキサン 16.7mLに加え、100℃で5時間撹拌した。反応終了後、水に注ぎ、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣にヘプタンを加え結晶化させ、5-(2-ブチルピリジン-5-イル)-8-ベンジロキシキノリン 1.47g(80%)を得た。
(2)L207の合成
Figure JPOXMLDOC01-appb-C000181
 5-(2-ブチルピリジン-5-イル)-8-ベンジロキシキノリン 1.76 g (4.78 mmol)、10%パラジウム炭素 0.761g(Pd 0.715mmol)を酢酸 68.2mLに加え、5%H2-N2混合ガスを吹き込みながら100℃で19時間撹拌した。反応終了後、ジクロロメタンで希釈しセライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、5-(2-ブチルピリジン-5-イル)-8-ヒドロキシキノリン(L207) 1.00g(75%)を得た。
(2-7-3)錯体の合成:セシウム5-(2-ブチルピリジン-5-イル)キノラート錯体(L207-Cs)の合成
Figure JPOXMLDOC01-appb-C000182
 配位子 L207 0.14g(0.5mmol)-トルエン溶液 5mLに50%水酸化セシウム 0.17mL(0.25mmol)-メタノール溶液 2.5mLを加え、室温で1時間撹拌した。反応終了後、減圧下で濃縮した。得られた残渣はさらに減圧下、200℃で加熱し溶媒と未反応の配位子を取り除きL207-Cs 0.06g(28%)を得た。得られた錯体のNMRは図28に示す。
[C]一般式(3)で表される金属錯体
[C-1]7-(3-(ピリジン-3-イル)フェニル)ベンゾキノリン-10-オレート(L301-M)の合成
[C-1-1]セシウム7-(3-(ピリジン-3-イル)フェニル)ベンゾキノリン-10-オレート(L301-Cs)の合成
(3-1-1)中間原料の合成:
(1)7-ブロモ-10-ヒドロキシベンゾ[h]キノリン(M033)の合成
Figure JPOXMLDOC01-appb-C000183
 -60℃で10-ヒドロキシベンゾ[h]キノリン 1.95 g (10 mmol)-クロロホルム溶液 50 mLにN-ブロモコハク酸イミド 1.78 g (10 mmol)を加え、-60℃で1.5時間撹拌した。 反応終了後、室温まで昇温し、チオ硫酸ナトリウム水溶液を加えた。ジクロロメタンで抽出し、有機層は飽和NaHCO3水溶液で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた残渣はヘプタン-エタノールより再結晶を行い、7-ブロモ-10-ヒドロキシベンゾ[h]キノリン(M033) 2.45 g (89%)を得た。
(3-1-2)配位子の合成:7-(3-(ピリジン-3-イル)フェニル)-10-ヒドロキシ-ベンゾ[h]キノリン(L301)の合成
Figure JPOXMLDOC01-appb-C000184
 7-ブロモ-10-ヒドロキシベンゾ[h]キノリン(M033) 0.822g(3mmol)、上記(1-12-1)の(1)で合成した3-(ピリジン-3-イル)フェニルボロン酸ピナコールエステル(M012) 0.843g(3mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.104g(0.09mmol)、3M炭酸カリウム水溶液 3mL、エタノール 3mLをトルエン 12mLに加え、17時間還流した。反応終了後、1N塩酸を加えて酸性にし、飽和NaHCO3水溶液で中和した。得られた水溶液はジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(ジクロロメタン:メタノール)で精製し、7-(3-(ピリジン-3-イル)フェニル)-10-ヒドロキシベンゾ[h]キノリン(L301) 0.954g(91%)を得た。
(3-1-3)錯体の合成:セシウム7-(3-(ピリジン-3-イル)フェニル)ベンゾキノリン-10-オレート(L301-Cs)の合成
Figure JPOXMLDOC01-appb-C000185
 配位子L301 0.348g(1mmol)-トルエン溶液 10mLに50%水酸化セシウム水溶液 0.174mL(1mmol)-メタノール溶液 5mLを滴下し室温で撹拌した。1時間後、反応溶液は減圧下で濃縮し残渣にトルエンを加え、析出物をろ取した。析出物は減圧下200℃で加熱して未反応の配位子と溶媒を取り除き、L301-Cs 0.413g(86%)を得た。得られた錯体のNMRは図29に示す。
[D]一般式(4)で表される金属錯体
[D-1]2-(ベンゾオキサゾール-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L401-M)の合成
[D-1-1]リチウム2-(ベンゾオキサゾール-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L401-Li)の合成
(4-1-1)中間原料の合成:
(1)1-ベンジロキシ-2-(ベンゾオキサゾル-2-イル)-4-ブロモベンゼン (CAS No. 1696398-77-2, M021) はSakaiらの方法(Chem. Commun.,51(15), 3181 - 3184, 2015)を用いて合成した。
(4-1-2)配位子の合成:2-(2-ヒドロキシ-5-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール(L401)の合成
(1)L401中間体の合成
Figure JPOXMLDOC01-appb-C000186
 2-(2-ベンジロキシ-5-ブロモフェニル)ベンゾオキサゾール(M021) 760mg(2mmol)、上記(1-14-1)の(1)で合成した4-(4,6-ジフェニルピリミジン-3-イル)フェニルボロン酸ピナコールエステル(M002) 869mg(2mmol)、テトラキス(トリフェニルホスフィン)パラジウム 70mg(0.1mmol)、2M炭酸ナトリウム水溶液 4mL(8mmol)をジオキサン 16mLに加え100℃で16時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルより再結晶を行い、2-(2-ベンジロキシ-5-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール 350mg(28%)を得た。
(2)L401の合成
Figure JPOXMLDOC01-appb-C000187
 2-(2-ベンジロキシ-5-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール 350mg(0.576mmol)、10%パラジウム炭素 92mg(0.0864mmol)を1-ブタノール 29mLに加え、5%H2-N2混合ガス雰囲気下、80℃で22時間撹拌した。反応終了後ジクロロメタンで希釈し、セライトを用いて不溶物をろ過した。ろ液は減圧下で濃縮し、2-(2-ヒドロキシ-5-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール(L401) 172mg(57%)を得た。
(4-1-3)錯体の合成:リチウム2-(ベンゾオキサゾール-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L401-Li)の合成
Figure JPOXMLDOC01-appb-C000188
 配位子L401 0.16g(0.3mmol)-メタノール懸濁液 3mLに4M水酸化リチウム水溶液 0.075mL(0.3mmol)-メタノール溶液 1.5mLを滴下し室温で撹拌した。2時間後、不溶物をろ別し、ろ液を減圧下で濃縮した。得られた残渣はトルエン-メタノールで再結晶を行い、L401-Li 0.16g(99%)を得た。得られた錯体のNMRは図30に示す。
[D-2]2-(ベンゾオキサゾール-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L402-M)の合成
[D-2-1]リチウム2-(ベンゾオキサゾール-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L402-Li)の合成
(4-2-2)配位子の合成:2-(2-ヒドロキシ-5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール (L402)の合成
(1)L402中間体の合成
Figure JPOXMLDOC01-appb-C000189
 上記(4-1-1)の(1)で合成した2-(2-ベンジロキシ-5-ブロモフェニル)ベンゾオキサゾール(M021) 1.52g(4mmol)、上記(1-2-1)の(1)で合成した3-(4,6-ジフェニルピリミジン-2-イル)フェニルボロン酸ピナコールエステル(M003) 1.74g(4mmol)、テトラキス(トリフェニルホスフィン)パラジウム 140mg(0.2mmol)、2M炭酸ナトリウム水溶液 8mL(16mmol)をジオキサン 32mLに加え100℃で18時間撹拌した。反応終了後、水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルより再結晶を行い、2-(2-ベンジロキシ-5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール 1.30g(53%)を得た。
(2)L402の合成
Figure JPOXMLDOC01-appb-C000190
 2-(2-ベンジロキシ-5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール 913mg(1.5mmol)、10%パラジウム炭素 239mg(0.225mmol)を1-ブタノール 75mLに加え、5%H2-N2混合ガス雰囲気下、80℃で24時間撹拌した。反応終了後ジクロロメタンで希釈し、セライトを用いて不溶物をろ過した。ろ液は減圧下で濃縮し、2-(2-ヒドロキシ-5-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェニル)ベンゾオキサゾール(L402) 722mg(92%)を得た。
(4-2-3)錯体の合成:リチウム2-(ベンゾオキサゾール-2-イル)-4-(3-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体(L402-Li)の合成
Figure JPOXMLDOC01-appb-C000191
 配位子L402 0.21g(0.4mmol)-メタノール懸濁液 4mLに4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール溶液 2mLを滴下し、室温で撹拌した。2時間後、不溶物をろ別し、ろ液を減圧下で濃縮した。得られた残渣はトルエン-メタノールで再結晶を行い、L402-Li 0.16 g (76%)を得た。得られた錯体のNMRは図31に示す。
[D-3]2-(ベンゾオキサゾール-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L403-M)の合成
[D-3-1]リチウム 2-(ベンゾオキサゾール-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L403-Li)の合成
(4-3-1)中間原料の合成:
(1)2-(2-ベンジロキシ-3,5-ジブロモフェニル)ベンゾオキサゾール(M034)の合成
1)2-(3,5-ジブロモ-2-ヒドロキシフェニル)ベンゾオキサゾールの合成
Figure JPOXMLDOC01-appb-C000192
 3,5-ジブロモサリチル酸 7.40g(25 mmol)、o-アミノフェノール 2.73g(25 mmol)をポリリン酸 25.8g(ca.12.5mL)に加え200℃で 2.5時間撹拌した。反応終了後、反応混合物を氷冷し、水を加えた。生じた析出物をろ取し、紫色固体 8.67g得た。得られた固体はまず酢酸エチル-エタノール、続いて酢酸エチル-トルエンより再結晶を行い、2-(3,5-ジブロモ-2-ヒドロキシフェニル)ベンゾオキサゾール 3.90g(40%)を得た。
2)2-(2-ベンジロキシ-3,5-ジブロモフェニル)ベンゾオキサゾール(M034)の合成
Figure JPOXMLDOC01-appb-C000193
 2-(3,5-ジブロモ-2-ヒドロキシフェニル)ベンゾオキサゾール 3.90g(10.6mmol)、臭化ベンジル1.3mL(ca.1.90g、11.1mmol)、炭酸カリウム 7.32g(53mmol)、18-クラウン-6 28mg(0.106mmol)をアセトン 21mLに加え、2時間還流した。反応終了後、減圧下で濃縮し、得られた残渣に水を加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はシクロヘキサンで再結晶を行い、2-(2-ベンジロキシ-3,5-ジブロモフェニル)ベンゾオキサゾール(M034) 4.23g(86%)を得た。
(4-3-2)配位子の合成:2-(2-ヒドロキシ-3,5ビス(4-ピリジン-3-イルフェニル)フェニル)ベンゾオキサゾール(L403)の合成
(1)L403中間体の合成
Figure JPOXMLDOC01-appb-C000194
 2-(2-ベンジロキシ-3,5-ジブロモフェニル)ベンゾオキサゾール(M034)2.30g(5mmol)、上記(1-5-1)の(2)で合成した4-(3-ピリジル)フェニルボロン酸ピナコールエステル(M005) 3.37g(12mmol)、テトラキス(トリフェニルホスフィン)パラジウム 347mg(0.3mmol)、2M炭酸ナトリウム水溶液 10mL(20mmol)をジオキサン 30mLに加え、100℃で20時間撹拌した。反応終了後、減圧下で濃縮し、水を加えた。続いてジクロロメタンで抽出し有機層は硫酸マグネシウムで乾燥後、濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:ヘプタン)より精製を行い、2-(2-ベンジロキシ-3,5ビス(4-ピリジン-3-イルフェニル)フェニル)ベンゾオキサゾール 2.27g(74%)を得た。
(2)L403の合成
Figure JPOXMLDOC01-appb-C000195
 2-(2-ベンジロキシ-3,5ビス(4-ピリジン-3-イルフェニル)フェニル)ベンゾオキサゾール 1.22g(2mmol)、10%パラジウム炭素 320mg(Pd 0.3mmol)を酢酸 30mLに加え、80℃に加熱した。続いて5%H2-N2混合ガスを加えながら80℃で24時間撹拌した。反応終了後、水、ジクロロメタンを加え、NaHCO3を用いて中和した。セライトを用いてろ過後、有機層と水層を分離した。水層はジクロロメタンで抽出し、先の有機層と合わせた。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ヘプタン:ジクロロメタン)で精製し、2-(2-ヒドロキシ-3,5ビス(4-ピリジン-3-イルフェニル)フェニル)ベンゾオキサゾール(L403) 854mg(82%)を得た。
(4-3-3)錯体の合成:リチウム2-(ベンゾオキサゾール-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L403-Li)の合成
Figure JPOXMLDOC01-appb-C000196
 配位子L403 0.18g(0.35mmol)-トルエン懸濁液 4mLに4M水酸化リチウム水溶液 0.088mL(0.35mmol)-メタノール 2mL溶液を滴下し、室温で2時間撹拌した。得られた反応混合物は減圧下で濃縮し、L403-Li 0.19g(105%)を得た。得られた錯体のNMRは図32に示す。
[D-3-2]セシウム 2-(ベンゾオキサゾール-2-イル)-4,6-ビス(4-(ピリジン-3-イル)フェニル)フェノラート錯体(L403-Cs)の合成
Figure JPOXMLDOC01-appb-C000197
 上記(4-3-2)で合成した配位子L403 0.18g(0.35mmol)-トルエン懸濁液 4mLに50%水酸化セシウム水溶液 0.11mL(0.35mmol)-メタノール 2mL溶液を滴下し、室温で2時間撹拌した。得られた反応混合物は減圧下で濃縮し、L403-Cs 0.20g(90%)を得た。得られた錯体のNMRは図32に示す。
[E]一般式(5)で表される金属錯体
[E-1]2-(ベンゾチアゾール-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート (L501-M)の合成
[E-1-1]セシウム2-(ベンゾチアゾール-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート (L501-Cs)の合成
(5-1-1)中間原料の合成:
(1)4-ベンジロキシ-3-(ベンゾチアゾール-2-イル)フェニルボロン酸ピナコールエステル(M035)の合成
1)2-(5-ブロモ-2-ヒドロキシフェニル)ベンゾチアゾールの合成
Figure JPOXMLDOC01-appb-C000198
 5-ブロモサリチル酸 7.73g(35.6mmol)、2-アミノベンゼンチオール 4.45g(35.6mmol)をポリリン酸 73.3 g(ca.35.6mmol)に加え、180℃で1.5時間撹拌した。反応終了後、反応混合物を氷冷し、水を加えた。生じた析出物をろ取し、得られた固体は酢酸エチル-エタノールより再結晶を行い2-(5-ブロモ-2-ヒドロキシフェニル)ベンゾチアゾール 8.59g(79%)を得た。
2)2-(5-ブロモ-2-ベンジロキシフェニル)ベンゾチアゾールの合成
Figure JPOXMLDOC01-appb-C000199
 2-(5-ブロモ-2-ヒドロキシフェニル)ベンゾチアゾール 3.98g(13mmol)、臭化ベンジル 1.7mL(ca.14.3mmol)、炭酸カリウム 8.26g(59.8mmol)、18-crown-6 31mg(0.177mmol)をアセトンに加え、60℃で反応した。2時間後、TLCで原料の消失を確認し、メタノール 20 mLを加え、さらに60℃で1時間撹拌した。反応終了後、減圧下で濃縮し、得られた残渣は水に注いだ。ジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はシクロヘキサンで再結晶を行い、2-(5-ブロモ-2-ベンジロキシフェニル)ベンゾチアゾール 4.24g(83%)を得た。
3)4-ベンジロキシ-3-(ベンゾチアゾール-2-イル)フェニルボロン酸ピナコールエステル(M035)の合成
Figure JPOXMLDOC01-appb-C000200
 2-(5-ブロモ-2-ベンジロキシフェニル)ベンゾチアゾール 2.59g(4.5mmol)、ビス(ピナコラト)ジボロン 1.14g(4.5mmol)、PdCl2(dppf)-CH2Cl2付加体 61mg(0.075mmol)、酢酸カリウム 2.45g(25mmol)をジオキサン 5mLに加え、100℃で2.5時間撹拌した。反応終了後、水とジクロロメタンを加え、不溶物をセライトを用いて取り除いた。ろ液はジクロロメタンで抽出し、有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はシクロヘキサンより再結晶を行い、4-ベンジロキシ-3-(ベンゾチアゾール-2-イル)フェニルボロン酸ピナコールエステル(M035) 887mg(81%)を得た。
(5-1-2)配位子の合成:2-(2-ヒドロキシ-5-(1,10-フェナントロリン-2-イル)フェニル)ベンゾチアゾール (L501)の合成
(1)L501中間体の合成
Figure JPOXMLDOC01-appb-C000201
 4-ベンジロキシ-3-(ベンゾチアゾール-2-イル)フェニルボロン酸ピナコールエステル(M035) 887mg(2mmol)、上記(1-20-1)の(1)で合成した2-クロロ-1,10-フェナントロリン(M016) 472mg(2.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム 116mg(0.1mmol)、3M炭酸カリウム水溶液 4mL(123mmol)、エタノール 0.8mLをトルエン 8mLに加え、 100℃で2時間撹拌した。反応終了後、水に加え、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルより再結晶を行い、2-(2-ベンジロキシ-5-(1,10-フェナントロリン-2-イル)フェニル)ベンゾチアゾール 775mg(76%)を得た。
(2)L501の合成
Figure JPOXMLDOC01-appb-C000202
 2-(2-ベンジロキシ-5-(1,10-フェナントロリン-2-イル)フェニル)ベンゾチアゾール 743mg(1.5mmol)、10%水酸化パラジウム炭素 80 mg(0.075mmol)を酢酸 8.4mLに加え、5%H2-N2混合ガス雰囲気下、100℃で19時間撹拌した。反応終了後ジクロロメタンで希釈し、セライトを用いて不溶物をろ過した。ろ液は減圧下で濃縮した。得られた残渣はエタノールで再結晶を行い2-(2-ヒドロキシ-5-(1,10-フェナントロリン-2-イル)フェニル)ベンゾオキサゾール(L501) 444mg(73%)を得た。
(5-1-3)錯体の合成:セシウム2-(ベンゾチアゾール-2-イル)-4-(1,10-フェナントロリン-2-イル)フェノラート (L501-Cs)の合成
Figure JPOXMLDOC01-appb-C000203
 配位子L501 0.10g(0.25mmol)-トルエン懸濁液 2.5 mLに50%水酸化セシウム水溶液 0.04mL(0.25mmol)-メタノール 1.25mL溶液を滴下し、40℃で1時間撹拌した。反応混合物は減圧下で濃縮した。得られた残渣は減圧下、200℃で加熱して溶媒、未反応の配位子を取り除き、L501-Cs 0.10g(74%)を得た。得られた錯体のNMRは図33に示す。
[F]一般式(6)で表される金属錯体
[F-1]2,4-(1,10-フェナントロリン-2-イル)フェノラート錯体 (L601-M)の合成
[F-1-1]セシウム2,4-(1,10-フェナントロリン-2-イル)フェノラート錯体 (L601-Cs)の合成
(6-1-1)中間原料の合成:
(1)1-ベンジロキシ-2,4-ジブロモベンゼン (CAS NO. 856380-98-8, M022)はSakaiらの方法(Chem. Commun.,51(15), 3181-3184, 2015) で2-(2-ヒドロキシフェニル)ベンゾオキサゾールを2,4-ジブロモフェノールに変えて合成した。
(2)4-ベンジロキシ-1,3-ベンゼンジボロン酸ビスピナコールエステル(M036)の合成
1)4-ベンジロキシ-1,3-ベンゼンジボロン酸ビスピナコールエステル(M036)の合成
Figure JPOXMLDOC01-appb-C000204
 1-ベンジロキシ-2,4-ジブロモベンゼン(M022) 6.84g(20 mmol)、ビス(ピナコラト)ジボロン 11.2g(44mmol)、PdCl2(dppf)-CH2Cl2付加体 490mg(0.6mmol)、酢酸カリウム 39.3g(400mmol)をジオキサン 80mLに加え、100℃で16時間撹拌した。反応終了後、水に加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮し、4-ベンジロキシ-1,3-ベンゼンジボロン酸ビスピナコールエステル(M036) 10.1g(116%)を得た。得られた化合物はさらに精製せず次の反応に用いた。
(6-1-2)配位子の合成:4-ヒドロキシ-1,3-ビス(1,10-フェナントロリン-2-イル)ベンゼン (L601)の合成
(1)L601中間体の合成
Figure JPOXMLDOC01-appb-C000205
 4-ベンジロキシ-1,3-ベンゼンジボロン酸ビスピナコールエステル(M036) 4.36g(10mmol)、上記(1-20-1)の(1)で合成した2-クロロ-1,10-フェナントロリン(M016) 4.29g(20mmol)、テトラキス(トリフェニルホスフィン)パラジウム 693mg(0.6mmol)、3M炭酸カリウム水溶液 20mL(60mmol)、エタノール 15mLをトルエン 60mLに加え、100℃で17時間撹拌した。反応終了後、水に注ぎトルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はトルエンより再結晶を行い、4-ベンジロキシ-1,3-ビス(1,10-フェナントロリン-2-イル)ベンゼン 6.51g(120%)を得た。得られた化合物はさらに精製せず、次の反応に用いた。
(2)L601の合成
Figure JPOXMLDOC01-appb-C000206
 4-ベンジロキシ-1,3-ビス(1,10-フェナントロリン-2-イル)ベンゼン 5.42g(10mmol)、10%パラジウム炭素 53mg(Pd 0.5mmol)を酢酸 100mLに加え、5%H2-N2混合ガスを加えながら、100℃で16時間撹拌した。反応終了後、室温まで冷却しジクロロメタンで希釈した。不溶物はセライトを用いて取り除き、ろ液は減圧下で濃縮した。得られた残渣はトルエン-酢酸より再結晶を行い、4-ヒドロキシ-1,3-ビス(1,10-フェナントロリン-2-イル)ベンゼン(L601) 3.74g(83%)を得た。
(6-1-3)錯体の合成:セシウム2,4-(1,10-フェナントロリン-2-イル)フェノラート錯体(L601-Cs)の合成
Figure JPOXMLDOC01-appb-C000207
 配位子L601 113mg(0.25mmol)-トルエン懸濁液 3.75mLに50%水酸化セシウム-メタノール 1.25mLを滴下し、40℃で1時間撹拌した。反応終了後、減圧下で溶媒を取り除き、L601-Cs 0.133g(91%)を得た。得られた錯体のNMRは図34に示す。
[A-21]2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-4-イル)フェノラート錯体(L121-M)の合成
[A-21-1]リチウム2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-4-イル)フェノラート錯体(L121-Li)の合成
(1-21-1)配位子の合成:2-(5-(1,10-フェナントロリン-4-イル)-2-ヒドロキシフェニル)ピリジン(L121)の合成
(1)L121中間体の合成
1)4-(4-ベンジロキシ-3-(ピリジン-2-イル)フェニル)-1,10-フェナントロリンの合成
Figure JPOXMLDOC01-appb-C000208
 室温まで冷却後、4-ベンジロキ-3-ピリジン-2-イルフェニルボロン酸ピナコールエステル(M024) 2.40g(6.2mmol)、4-クロロ-1,10-フェナントロリン(M037) 1.40g(6.6mmol)、75%トリス(ジベンジリデンアセトン)ビスパラジウム 76mg(0.062mmol)、トリシクロヘキシルホスフィン 138mg(0.48mmol)、リン酸カリウム 2.24g(10.6mmol)、水 9mLをジオキサン18mLに加え、100℃で 18時間撹拌した。反応終了後、水に加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルより再結晶を行い、4-(4-ベンジロキシ-3-(ピリジン-2-イル)フェニル)-1,10-フェナントロリン 2.41g(81%)を得た。
(2)L121の合成
Figure JPOXMLDOC01-appb-C000209
 4-(4-ベンジロキシ-3-(ピリジン-2-イル)フェニル)-1,10-フェナントロリン 1.32g(3mmol)、10%パラジウム炭素 (Pd 0.15mmol)をジオキサン 19mL加え、5%H2-N2ガス雰囲気下、100℃で19時間撹拌した。反応終了後、ジクロロメタンを加えて希釈し、セライトを用いて不溶物を取り除いた。ろ液は減圧下で濃縮し、得られた残渣はカラムクロマトグラフィー(NH2、ジクロロメタン:メタノール)より精製し、2-(5-(1,10-フェナントロリン-4-イル)-2-ヒドロキシフェニル)ピリジン(L121) 627mg(60%)を得た。
(1-21-2)錯体の合成:リチウム2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-4-イル)フェノラート錯体(L121-Li)の合成
Figure JPOXMLDOC01-appb-C000210
 配位子L121 140mg(0.4mmol)-トルエン溶液 4mLに4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール 2mL溶液を滴下し、室温で1時間撹拌した。反応混合物は減圧下で濃縮した。得られた残渣は減圧下、220℃で加熱して溶媒、未反応の配位子を取り除き、L121-Li 108mg(75%)を得た。得られた錯体のNMRを図35に示す。
[A-21-2]セシウム2-(ピリジン-2-イル)-4-(1,10-フェナントロリン-4-イル)フェノラート錯体(L121-Cs)の合成
Figure JPOXMLDOC01-appb-C000211
 配位子L121 280mg(0.8mmol)-トルエン溶液 8mLに50%水酸化セシウム水溶液 0.14mL(0.8mmol)-メタノール 4mL溶液を滴下し、室温で1時間撹拌した。反応混合物は減圧下で濃縮した。得られた残渣は減圧下、220℃で加熱して溶媒、未反応の配位子を取り除き、L121-Cs 182mg(47%)を得た。得られた錯体のNMRを図35に示す。
[B-9]5-(1,10-フェナントロリン-4-イル)-8-キノラート錯体(L209-M)の合成
[B-9-1]リチウム5-(1,10-フェナントロリン-4-イル)-8-キノラート錯体(L209-Li)の合成
(2-9-1)配位子の合成:8-ヒドロキシ-5-(1,10-フェナントロリン-4-イル)キノリン(L209)の合成
(1)L209中間体の合成
1)8-ベンジロキシ-5-(1,10-フェナントロリン-4-イル)キノリンの合成
Figure JPOXMLDOC01-appb-C000212
 8-ベンジロキシキノリン-5-イルボロン酸ピナコールエステル(M018) 1.44g(4.0mmol)、4-ブロモ-1,10-フェナントロリン(M038) 1.04g(4.0mmol)、75%トリス(ジベンジリデンアセトン)ビスパラジウム 73mg(0.06mmol)、トリシクロヘキシルホスフィン 39mg(0.140mmol)リン酸カリウム 1.44g(6.8mmol)、水 6mLをジオキサン 12mLに加え100℃で 20時間撹拌した。反応終了後、水に加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(NH、ジクロロメタン:MeOH)で精製し、8-ベンジロキシ-5-(1,10-フェナントロリン-4-イル)キノリン 1.13g(68%)を得た。
(2)L209の合成
Figure JPOXMLDOC01-appb-C000213
 8-ベンジロキシ-5-(1,10-フェナントロリン-4-イル)キノリン 580mg(1.4mmol)、10%パラジウム炭素 223mg(Pd 0.21mmol)、ギ酸アンモニウム 882mg(14mmol)をメタノール 28mLに加え、65℃で18時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下で濃縮し、得られた残渣はトルエンで再結晶し、8-ヒドロキシ-5-(1,10-フェナントロリン-4-イル)キノリン(L209) 300mg(66%)を得た。
(2-9-2)錯体の合成:リチウム5-(1,10-フェナントロリン-4-イル)-8-キノラート錯体(L209-Li)の合成
Figure JPOXMLDOC01-appb-C000214
 配位子L209 129mg(0.4mmol)-トルエン懸濁液 10 mLに4M水酸化リチウム水溶液 0.1mL(0.4mmol)-メタノール 2mL溶液を滴下し、室温で1時間撹拌した。生じた析出物をろ取した。得られた析出物は減圧下、220℃で加熱して溶媒、未反応の配位子を取り除き、L209-Li 100mg(76%)を得た。得られた錯体のNMRを図36に示す。
[B-9-2]セシウム5-(1,10-フェナントロリン-4-イル)-8-キノラート錯体(L209-Cs)の合成
Figure JPOXMLDOC01-appb-C000215
 配位子L209 129mg(0.4mmol)をトルエン懸濁液 10mLに50%水酸化セシウム水溶液 0.07mL(0.4mmol)-メタノール 2mL溶液を滴下し、室温で1時間撹拌した。反応混合物は減圧下で濃縮した。得られた残渣は減圧下、220℃で加熱して溶媒、未反応の配位子を取り除き、L209-Cs 147mg(81%)を得た。得られた錯体のNMRを図36に示す。
[B-9-3]バリウムビス(5-(1,10-フェナントロリン-4-イル)-8-キノラート)錯体(L209-Ba)の合成
Figure JPOXMLDOC01-appb-C000216
 配位子L209 97mg(0.3mmol)-エタノール懸濁液 5mLに水酸化バリウム八水和物 47mg(0.15mmol)-水 1.5mL溶液を滴下し、室温で1時間撹拌した。続いて1N水酸化ナトリウム水溶液を滴下しpH=11に調整した。生じた沈殿をろ取し、L209-Ba 110mg(47%)を得た。
[B-10]5,7-ジ(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L210-M)の合成
[B-10-1]ルビジウム5,7-ジ(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L210-Rb)の合成
(2-10-1)配位子の合成:8-ベンジロキシ-5,7-ジ(1,10フェナントロリン-2-イル)キノリン(L210)の合成
(1)L210中間体の合成
1)8-ベンジロキシ-5,7-ビス(4,4,5,5-テトラメチルジオキサボロラン-2-イル)キノリンの合成
Figure JPOXMLDOC01-appb-C000217
 8-ベンジロキシ-5,7-ジブロモキノリン(M019) 1.97g(5mmol)、ビス(ピナコラト)ジボロン 3.81g (15mmol)、PdCl2(dppf)-CH2Cl2付加体 226mg(0.3mmol)、酢酸カリウム 9.81g(100mmol)をジオキサン 20mLに加え、100℃で2時間撹拌した。反応終了後、水に注ぎ、ジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣はカラムクロマトグラフィー(C300、メタノール:ジクロロメタン)で精製し、8-ベンジロキシ-5,7-ビス(4,4,5,5-テトラメチルジオキサボロラン-2-イル)キノリン 1.92g(79%)を得た。
2)8-ベンジロキシ-5,7-ジ(1,10フェナントロリン-2-イル)キノリンの合成
Figure JPOXMLDOC01-appb-C000218
 75%トリス(ジベンジリデンアセトン)ビスパラジウム 148mg(0.162mmol)、トリシクロヘキシルホスフィン 118mg(0.42mmol)リン酸カリウム 4.16g(24mmol)、水 15mLをジオキサン 30mLに加え100℃で30分間撹拌し、触媒を調整した。室温まで冷却後、8-ベンジロキシ-5,7-ビス(4,4,5,5-テトラメチルジオキサボロラン-2-イル)キノリン 2.92g(6mmol)、4-ブロモ-1,10-フェナントロリン(M038) 3.42g(13.2mmol)をこの溶液に加え、100℃で 18時間撹拌した。反応終了後、水に加えジクロロメタンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた残渣は酢酸エチルより再結晶を行い、8-ベンジロキシ-5,7-ジ(1,10フェナントロリン-2-イル)キノリン 2.00g(56%)を得た。
(2)L210の合成
Figure JPOXMLDOC01-appb-C000219
 臭化リチウム 282mg(3.25mmol)―アセトニトリル懸濁液 25mLにクロロ-tert-ブチルジメチルシラン 588mg(3,9mmol)を加え室温で5分間撹拌した。この溶液に8-ベンジロキシ-5,7-ジ(1,10フェナントロリン-2-イル)キノリン 1.48g(2.5mmol)を加え、18時間室温で撹拌した。反応終了後、メタノール25mLを加え、減圧下で濃縮した。得られた残渣は1-ブタノールで再結晶を行い、赤色個体1.44g(114%)を得た。得られた個体のうち663mgを取りジクロロメタン、水で洗浄し、8-ヒドロキシ-5,7-ジ(1,10フェナントロリン-2-イル)キノリン(L210) 506mg(洗浄の操作により81%、反応収率1.14X0.81X100=92%)を得た。
(2-10-2)錯体の合成:ルビジウム5,7-ジ(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L210-Rb)の合成
Figure JPOXMLDOC01-appb-C000220
 配位子L210 150mg(0.3mmol)-エタノール溶液 6mLに50%水酸化セシウム水溶液 0.04mL(0.36mmol)-エタノール 1.2mL溶液を滴下し、室温で1時間撹拌した。生じた析出物をろ取後、析出物はジクロロメタンで洗浄し、L210-Rb 145mg(82%)を得た。得られた錯体のNMRを図37に示す。
[B-10-2]セシウム5,7-ジ(1,10-フェナントロリン-2-イル)-8-キノラート錯体(L210-Cs)の合成
Figure JPOXMLDOC01-appb-C000221
 配位子L210 251mg(0.5mmol)-エタノール溶液 8mLに50%水酸化セシウム水溶液 0.11mL(0.6mmol)-エタノール 2mL溶液を滴下し、室温で2時間撹拌した。生じた析出物をろ取後、析出物はジクロロメタンで洗浄し、L210-Cs 201mg(63%)を得た。得られた錯体のNMRを図37に示す。
[G-1]2-(1-(1,10-フェナントロリン2-イル)ベンゾイミダゾール-2-イル)フェノラート錯体(L701-M)の合成
[G-1-1]ルビジウム2-(1-(1,10-フェナントロリン2-イル)ベンゾイミダゾール-2-イル)フェノラート錯体(L701-Rb)の合成
(7-1-1)配位子の合成:2-(2-ヒドロキシフェニル)ベンゾイミダゾール(L701)の合成
(1)L701中間体の合成
1)2-(2-ベンジロキシフェニル)ベンゾイミダゾールの合成の合成
Figure JPOXMLDOC01-appb-C000222
 60℃でо-フェニレンジアミン 3.03g(28mmol)、亜硫酸水素ナトリウム 9.37g(90mmol)-DMF溶液80mLに2-ベンジロキシベンズアルデヒド 6.48g(30.5mmol)-DMF溶液20mLを加え、滴下終了後、100℃で12時間反応した。反応終了後、水を加え、トルエンで抽出した。有機層は硫酸マグネシウムで乾燥後、減圧下で濃縮した。えられた残渣はシクロヘキサン-酢酸エチルで再結晶を行い、2-(2-ベンジロキシフェニル)ベンゾイミダゾール 6.55g(78%)を得た。
2)2-(2-ベンジロキシフェニル)-1-(1,10フェナントロリン-2-イル)ベンゾイミダゾールの合成
Figure JPOXMLDOC01-appb-C000223
 2-(2-ベンジロキシフェニル)ベンゾイミダゾール 2.40g(8mmol)、75%トリス(ジベンジリデンアセトン)ビスパラジウム 14mg(0.015mmol)、炭酸セシウム 7.82g(24mmol)をキシレンに加え脱気した。この懸濁液に1Mトリ(t-ブチル)ホスフィン-トルエン溶液 0.9mL(0.9mmol)を加え、80℃に加熱した。続いて2-ブロモフェナントロリン 2.49g(9.6mmol)を加え、150℃で20時間反応した。反応終了後、室温まで冷却し、生じた沈殿をろ取した。トルエン、水で洗浄し、IPA-トルエンより再結晶を行い、2-(2-ベンジロキシフェニル)-1-(1,10フェナントロリン-2-イル)ベンゾイミダゾール 1.92g(50%)を得た。
(2)L701の合成
Figure JPOXMLDOC01-appb-C000224
 2-(2-ベンジロキシフェニル)-1-(1,10フェナントロリン-2-イル)ベンゾイミダゾール 670mg(1.4mmol)、10%パラジウム炭素 223mg(Pd 0.21mmol)、ギ酸アンモニウム 882mg(14mmol)を酢酸 28mLに加え、65℃で18時間撹拌した。反応終了後、ジクロロメタンで希釈し、不溶物をセライトを用いて取り除いた。ろ液は減圧下で濃縮し、得られた残渣はトルエンで再結晶し、2-(2-ヒドロキシフェニル)-1-(1,10フェナントロリン-2-イル)ベンゾイミダゾール(L701) 342mg(63%)を得た。
(7-1-2)錯体の合成:ルビジウム2-(1-(1,10-フェナントロリン2-イル)ベンゾイミダゾール-2-イル)フェノラート錯体(L701-Rb)の合成
Figure JPOXMLDOC01-appb-C000225
 配位子L701 117mg(0.3mmol)-トルエン 5mLに50%水酸化ルビジウム水溶液 0.017mL(0.29mmol)-メタノール 1mL溶液を滴下し、2時間還流した。反応終了後、室温まで冷却し、生じた析出物をろ取した。析出物はトルエンで洗浄し、L701-Rb 112mg(77%)を得た。得られた錯体のNMRを図38に示す。
[2]液状材料の製造
 上記で得られた金属錯体を、プロトン性極性溶媒に溶解させて有機電界発光素子の電子輸送層を構築するための液状材料を製造した。
 例えば、金属錯体L101-Rb[ルビジウム2-(ピリジン-2-イル)-4-(4-(4,6-ジフェニルピリミジン-2-イル)フェニル)フェノラート錯体](後述の実施例1の錯体)を1-ヘプタノールに溶解し、5g/L~15g/Lのアルコール溶液を調整した。
 上記で得られたその他の金属錯体についても、同様にアルコール溶液を調整した。使用した溶媒は表1に記載する。これらはいずれも成膜性に優れていた。
[3]有機電界発光素子の製造と評価
(1)有機電界発光素子の製造
 ITO基板はテクノプリント製(膜厚150nm)を使用した。基板洗浄に用いる2-プロパノールは和光純薬製の電子工業用を用い、電子輸送層の成膜に用いるアルコール類、および正孔輸送層、発光層に用いるトルエンは和光純薬製のものを用いた。正孔注入層としてはPEDOT:PSS(Heraeus製のAI4083)を原液のまま用いた。正孔輸送層としてはトリフェニルアミンポリマーにジクミルパーオキサイドを1phr添加したトルエン溶液(5g/L)を用いた。発光層にはF8BTのトルエン溶液(10g/L)を用いた。電子輸送層には下記表1中の化合物を用い、濃度が7.5g/Lの1-ヘプタノール溶液を調整した。
 また、更なる駆動電圧や長寿命化を目的に金属アルコキシドを添加した素子も作製した。金属アルコキシドには、リチウム-n-ブトキシド(LiOBu)とセシウム-n-ヘプトキシド(CsOnHep)を使用した。金属アルコキシドの添加は、成膜前に電子輸送材料の溶液に金属アルコキシド溶液を添加することにより実施した。リチウム-n-ブトキシドの場合は、(株)高純度化学研究所製の試薬をグローブボックス中で表1記載の溶媒に5g/Lの濃度で溶解し使用した。また、セシウム-n-ヘプトキシドの場合(実施例2)は、金属セシウム(シグマアルドリッチ製)をグローブボックス中で2.7g/Lの濃度で1-ヘプタノールに溶解し、セシウム-n-ヘプトキシド換算5g/Lの1-ヘプタノール溶液を調整した。金属アルコキシド溶液調整後に7.5g/L電子輸送材料溶液と5g/Lアルカリ金属アルコキシド溶液を混合し、電子輸送材料に対しドーパントが10重量パーセントになるように混合しその後成膜に供した。
 また、比較例としてLiBPP(特開2008-195623記載化合物)、ETM2(特許文献4記載化合物)も上記と同様に実施した。
 ITO基板の前処理として2-プロパノール中で5分間煮沸洗浄し、その後すぐにUV/O3処理装置に入れ、15分間UV照射によりO3処理を行った。
 正孔注入層および正孔輸送層、発光層、電子輸送層はIDEN製のスピンコーターを用いて形成後、N2雰囲気下で乾燥した。
 陰極(Al、純度99.999%)および電子注入層(LiF)の蒸着にはチャンバー厚1X10-4Paの高真空蒸着装置を用いた。蒸着速度はLiFについては0.1Å/s、Alについては5Å/sとした。陰極の成膜が完了後、素子を窒素置換したグローブボックス内に直ちに移動し、乾燥剤を塗布したガラスキャップで封止した。
 素子構造は、陰極と電子輸送層の間に電子注入層を設けたこと以外は全て図1に示すものであり、各層の膜厚は下記のとおりである。
 陽極:ITO(150nm)
 正孔注入層:PEDOT:PSS (35nm)
 正孔輸送層:トリフェニルアミンポリマー(20nm) 
 発光層:F8BT(アルドリッチ製 CAS:210347-52-7)(60nm)
 電子輸送層:20nm
 陰極:LiF(0.5nm)/Al(100nm)またはAl(100nm)
 作製した有機EL素子の電圧―電流―輝度特製はDC電圧電流電源・モニター(ADCMT製 6241A、7351A)を用いて0Vから10Vまで電圧を印加して0.1V毎に電流値を測定した。
 また、作製した有機EL素子の寿命は寿命評価測定装置(九州計測器製)を用いて測定した。素子を25℃一定の恒温槽内に設置し、定電流駆動に伴う輝度電圧の変化を測定した。ただし、素子評価の加速係数には1.758を使用した。100cd/m2に換算した駆動時間により、初期輝度の1/2に達した半減時間により比較した。
 T=(L0/L)1.758×T1
(式中L0:初期輝度[cd/m2]、L:換算輝度[cd/m2]、T1:実測の輝度半減時間、T:換算した輝度半減時間)
 相対寿命は、実施例11[材料錯体(L201-Cs)+ドーパント(LiOBu)+電子注入層]の寿命を基準(100)とした。
(3)素子材料として使用した化合物を次に示す。
1)トリフェニルアミンポリマー(CAS:472960-35-3)
Figure JPOXMLDOC01-appb-C000226
2)ジクミルパーオキサド(CAS:80-43-3)
Figure JPOXMLDOC01-appb-C000227
3)F8BT(ポリ[(9,9--ジ-n-オクチルフルオレニル-2,7-ジイル)-alt-(ベンゾ[2,1,3]チアジアゾール-4,8-ジイル)],cas:210347-52-7)
Figure JPOXMLDOC01-appb-C000228
4)LiBPP(リチウム2-(2’,2’’-ビピリジン-6’-イル)フェノラート,cas:1049805-81-3)
Figure JPOXMLDOC01-appb-C000229
5)ETM2(1,1’,1’’,1’’’-(9,9’-スピロビ[9H-フルオレン]-2,2’,7,7’-テトラアリル)テトラキス(1,1-ジフェニル-ホスフィンオキシド)),cas:1234510-17-8
Figure JPOXMLDOC01-appb-C000230
(4)実施例、比較例
1)実施例1
 上記(1)の有機電界発光素子の製造において、下記表1の実施例1の電子輸送層材料としてL101-Rbを、ドーパントとしてLiOBuを使用した。また、電子注入層有・無の場合を併せて実施した。得られた素子の駆動電圧(V)、電流効率(ηc)および相対寿命の各物性値を併せて表1に示した。
2)実施例2から30、比較例1から3
 実施例1において、電子輸送層材料を表1、2に示す化合物に代えた以外は実施例1と同様に素子を製造した。なお、実施例2においては、ドーパントとしてCsOnHepを使用した。得られた素子の駆動電圧(V)、電流効率(ηc)および相対寿命の各物性値を併せて表1、2に示した。
(5)評価と考察
 まず、比較例1の類似化合物LiBPP(3個の炭素環および/または複素環を有する)よりも本実施例化合物を使用した素子(実施例1から23)の方が、低駆動電圧、長寿命化していることが分かる。この理由は、定かではないが比較例化合物に対し4個以上の炭素環および/または複素環を有することにより成膜性および電子輸送性が向上していることに起因すると考えられる。
 また、実施例11、12と比較例2、3との比較では、本実施例化合物を使用した素子の大幅な長寿命化が達成されていることが分かる。この理由は、定かではないが比較例のホスフィンオキシド化合物のP-C結合の結合解離エネルギーが低く、低寿命化につながっていると考えられる。一方、本実施例化合物では、P-C結合を有している化合物はなく長寿命化が実現できている。
 また、実施例1、2と実施例3、あるいは実施例11と実施例12との比較により、金属アルコキシドの添加により更なる低駆動電圧、長寿命化が達成されることがわかる。
 因みに、比較例3は、比較例2に対し金属アルコキシドを添加したものである。これによりホスフィンオキシド化合物でも長寿命化、低駆動電圧化が実現されているが、本実施例化合物においては、金属アルコキシド、特にLiOBuの添加により、大幅に長寿命、低駆動電圧化を示しており、本実施例化合物の有用性を示している。
 実施例、比較例で使用した材料、素子の構成および得られた発光素子の諸物性を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000231
Figure JPOXMLDOC01-appb-T000232
 本発明の新規な配位子を有する金属錯体は、高い耐久性と電子輸送性を両立でき、有機電界発光素子用の電子輸送材料として好適に使用できる。

Claims (19)

  1.  少なくとも4個以上の炭素環および/または複素環を含む下記一般式(1)から(7)で表されることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000001

     式(1)から(7)において、R1、R3、R5およびR7はそれぞれ独立に2価のフェニル基、ナフチル基、ピリジル基またはピリミジン基から選ばれる接続基であり、R2、R4、R6およびR8はそれぞれ独立に水素原子または複素環式化合物残基を表す。また、Mはアルカリ金属またはアルカリ土類金属を表し、n1からn4はそれぞれ独立に0~2の整数であり、lは1または2の整数である。
  2.  前記R2、R4、R6およびR8が、含窒素環式化合物残基である請求項1に記載の金属錯体。
  3.  前記R2、R4、R6およびR8が、次の一般式(8a)から(8c)で表される含窒素環式化合物残基である請求項2に記載の金属錯体。
    Figure JPOXMLDOC01-appb-C000002

     式(8a)から(8c)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~4の整数である。
  4.  前記R2、R4、R6およびR8が、次の一般式(9a)から(9d)で表される含窒素環式化合物残基である請求項2に記載の金属錯体。
    Figure JPOXMLDOC01-appb-C000003

     式(9a)から(9d)において、R10は炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数である。
  5.  前記R2、R4、R6およびR8が、次の一般式(10a)から(10d)で表される含窒素環式化合物残基である請求項2に記載の金属錯体。
    Figure JPOXMLDOC01-appb-C000004

     式(10a)から(10d)において、R10からR12はそれぞれ独立に炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1からm3はそれぞれ独立に0~3の整数である。
  6.  前記R2、R4、R6およびR8が、次の一般式(11a)から(11d)で表される含窒素環式化合物残基である請求項2に記載の金属錯体。
    Figure JPOXMLDOC01-appb-C000005

     式(11a)から(11d)において、R10、R11はそれぞれ独立に炭素数1~4のアルキル基、フェニル基、ビフェニル基、ナフチル基、ピリジル基、ビピリジル基またはフェナントロリル基を表し、m1は0~3の整数であり、m2は0~4の整数である。
  7.  前記Mが、アルカリ金属である請求項1から6のいずれか1項に記載の金属錯体。
  8.  前記アルカリ金属が、RbまたはCsである請求項7に記載の金属錯体。
  9.  前記請求項1から8のいずれか1項に記載の金属錯体に用いる配位性化合物。
  10.  前記請求項1から8のいずれか1項に記載の金属錯体からなることを特徴とする有機電界発光素子用の電子輸送材料。
  11.  前記電子輸送材料が、さらに金属アルコシドを含有する請求項10に記載の電子輸送材料。
  12.  前記金属アルコシドが、下記一般式(A)または(B)で表される請求項11に記載の電子輸送材料。

     R20- M       (A)
     R20- M - R21  (B)

     式(A)又は(B)において、R20、R21はそれぞれ独立に任意のアルキルアルコキシ基を表し、また、Mはアルカリ金属またはアルカリ土類金属を表す。
  13.  前記電子輸送材料が、さらにアルカリ金属イオンおよびアルカリ土類金属イオンのうちの少なくとも1種の金属イオンのハロゲン塩、炭酸塩、炭酸水素塩、水酸化物、または、炭素数1から9の有機酸塩を含有する請求項10から12のいずれか1項に記載の電子輸送材料。
  14.  前記請求項10から13のいずれか1項に記載の電子輸送材料をプロトン性極性溶媒に溶解してなる有機電界発光素子の電子輸送層を構築するための液状材料。
  15.  前記プロトン性極性溶媒が炭素数1~10のアルコール系溶媒である請求項14に記載の液状材料。
  16.  前記炭素数1~10のアルコール系溶媒が、1価または2価のアルコールである請求項15に記載の液状材料。
  17.  前記液状材料が、請求項1から8のいずれか1項に記載の金属錯体を0.01から10重量%含有する請求項14に記載の液状材料。
  18.  前記請求項10から13のいずれか1項に記載の電子輸送材料を使用してなることを特徴とする有機電界発光素子。
  19.  前記請求項14から17のいずれか1項に記載の液状材料を使用し、有機電界発光素子の電子輸送層を湿式で構築することを特徴とする有機電界発光素子の製造方法。
PCT/JP2017/027043 2016-07-29 2017-07-26 金属錯体およびそれを用いた電子輸送材料 WO2018021406A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197002967A KR102182119B1 (ko) 2016-07-29 2017-07-26 금속 착체 및 그것을 사용한 전자 수송 재료
KR1020207026855A KR102305222B1 (ko) 2016-07-29 2017-07-26 금속 착체 및 그것을 사용한 전자 수송 재료
JP2018530353A JP6786603B2 (ja) 2016-07-29 2017-07-26 金属錯体およびそれを用いた電子輸送材料
CN202110250118.XA CN112961102B (zh) 2016-07-29 2017-07-26 金属络合物以及使用该金属络合物的电子传输材料
CN201780054964.6A CN109689665B (zh) 2016-07-29 2017-07-26 金属络合物以及使用该金属络合物的电子传输材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150267 2016-07-29
JP2016150267 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021406A1 true WO2018021406A1 (ja) 2018-02-01

Family

ID=61016850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027043 WO2018021406A1 (ja) 2016-07-29 2017-07-26 金属錯体およびそれを用いた電子輸送材料

Country Status (4)

Country Link
JP (2) JP6786603B2 (ja)
KR (2) KR102182119B1 (ja)
CN (2) CN109689665B (ja)
WO (1) WO2018021406A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021066123A1 (ja) * 2019-10-02 2021-04-08
WO2023221249A1 (zh) * 2022-05-20 2023-11-23 闽都创新实验室 一种高效蓝光oled材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989086A (zh) * 2021-03-01 2022-09-02 中国科学院上海有机化学研究所 一种制备含氟苯并喹啉杂环化合物的方法
CN113072560B (zh) * 2021-04-09 2023-11-24 北京八亿时空液晶科技股份有限公司 一种咔唑衍生物及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041056A1 (ja) * 2004-10-13 2006-04-20 Hirose Engineering Co., Ltd. 金属含有配位化合物、配位化合物残基含有高分子化合物、有機エレクトロルミネッセンス材、白色有機エレクトロルミネッセンス材、白色発光素子及び発光素子
JP2006156981A (ja) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd 複合材料、発光素子、発光装置及びそれらの作製方法
JP2007157899A (ja) * 2005-12-02 2007-06-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP2008195623A (ja) * 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
WO2010020352A1 (en) * 2008-08-18 2010-02-25 Merck Patent Gmbh Compounds having electron transport properties, their preparation and use
JP2011505696A (ja) * 2007-11-29 2011-02-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー アルカリ金属クラスター化合物を使用するoledデバイス
JP2011176063A (ja) * 2010-02-24 2011-09-08 Daiden Co Ltd 白色有機電界発光素子及びその製造方法
JP2012089398A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネッセンス素子
CN103923035A (zh) * 2014-05-02 2014-07-16 吉林大学 一类电子传输或主体薄膜材料及其在电致发光器件中的应用
JP2014138100A (ja) * 2013-01-17 2014-07-28 Canon Inc 有機発光素子
WO2015019725A1 (ja) * 2013-08-09 2015-02-12 国立大学法人九州大学 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
CN105601570A (zh) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 一种含杂环配体的化合物及其制备方法、应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475620B2 (ja) * 1995-12-25 2003-12-08 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4876333B2 (ja) 2000-06-08 2012-02-15 東レ株式会社 発光素子
JP2002352961A (ja) 2001-05-25 2002-12-06 Toray Ind Inc 有機電界発光装置
JP2005063910A (ja) 2003-08-20 2005-03-10 Canon Inc 有機発光素子及びその製造方法
CN1544574A (zh) * 2003-11-26 2004-11-10 吉林大学 酚基-吡啶金属配合物和它们作为电致发光材料的应用
JP2008106015A (ja) * 2006-10-27 2008-05-08 Chemiprokasei Kaisha Ltd 新規なフェナントロリン誘導体、そのリチウム錯体、それを用いた電子輸送材料、電子注入材料および有機el素子
JP5722220B2 (ja) 2009-08-18 2015-05-20 大電株式会社 有機電界発光素子
DE102010006121B4 (de) * 2010-01-29 2022-08-11 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
CN103548171B (zh) * 2011-05-20 2016-08-24 国立大学法人山形大学 有机电子器件及其制造方法
JP5900847B2 (ja) * 2011-11-25 2016-04-06 国立大学法人山形大学 有機エレクトロルミネッセンス素子
JP2013028600A (ja) * 2012-07-20 2013-02-07 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041056A1 (ja) * 2004-10-13 2006-04-20 Hirose Engineering Co., Ltd. 金属含有配位化合物、配位化合物残基含有高分子化合物、有機エレクトロルミネッセンス材、白色有機エレクトロルミネッセンス材、白色発光素子及び発光素子
JP2006156981A (ja) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd 複合材料、発光素子、発光装置及びそれらの作製方法
JP2007157899A (ja) * 2005-12-02 2007-06-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP2008195623A (ja) * 2007-02-08 2008-08-28 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
JP2011505696A (ja) * 2007-11-29 2011-02-24 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー アルカリ金属クラスター化合物を使用するoledデバイス
WO2010020352A1 (en) * 2008-08-18 2010-02-25 Merck Patent Gmbh Compounds having electron transport properties, their preparation and use
JP2011176063A (ja) * 2010-02-24 2011-09-08 Daiden Co Ltd 白色有機電界発光素子及びその製造方法
JP2012089398A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法及び該製造方法により製造された有機エレクトロルミネッセンス素子
JP2014138100A (ja) * 2013-01-17 2014-07-28 Canon Inc 有機発光素子
WO2015019725A1 (ja) * 2013-08-09 2015-02-12 国立大学法人九州大学 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
CN103923035A (zh) * 2014-05-02 2014-07-16 吉林大学 一类电子传输或主体薄膜材料及其在电致发光器件中的应用
CN105601570A (zh) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 一种含杂环配体的化合物及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BANERJEE, A. K. ET AL., NATURE, vol. 217, 1968, pages 1147 - 1148 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021066123A1 (ja) * 2019-10-02 2021-04-08
KR20220070298A (ko) 2019-10-02 2022-05-30 다이덴 가부시키가이샤 금속 착체 및 그것을 사용한 전자 수송 재료
JP7267445B2 (ja) 2019-10-02 2023-05-01 大電株式会社 金属錯体およびそれを用いた電子輸送材料
WO2023221249A1 (zh) * 2022-05-20 2023-11-23 闽都创新实验室 一种高效蓝光oled材料及其制备方法和应用

Also Published As

Publication number Publication date
KR20200110819A (ko) 2020-09-25
KR20190024992A (ko) 2019-03-08
JP2020121976A (ja) 2020-08-13
CN112961102A (zh) 2021-06-15
KR102305222B1 (ko) 2021-09-27
KR102182119B1 (ko) 2020-11-23
CN109689665B (zh) 2021-10-01
JP6786603B2 (ja) 2020-11-18
CN109689665A (zh) 2019-04-26
CN112961102B (zh) 2024-03-12
JPWO2018021406A1 (ja) 2019-06-20
JP6932808B2 (ja) 2021-09-08

Similar Documents

Publication Publication Date Title
KR102657297B1 (ko) 유기 전계발광 물질 및 디바이스
JP6196692B2 (ja) 有機電界発光素子の発光層を形成するための発光層形成用材料
JP6932808B2 (ja) 金属錯体およびそれを用いた電子輸送材料
CN108864068B (zh) 一种化合物以及有机发光显示装置
KR101785755B1 (ko) Pholed용의 호스트 물질 및 도펀트로서의 아자보린 화합물
JP4675413B2 (ja) 有機発光素子
JP2009545156A (ja) アントラセン誘導体、それを用いた有機電子素子、およびその有機電子素子を含む電子装置
JP2009194166A (ja) 有機エレクトロルミネッセンス素子
JP5391427B2 (ja) 白色有機電界発光素子及びその製造方法
JP6688608B2 (ja) 有機電子輸送材料及びこれを用いた有機電界発光素子
WO2017115578A1 (ja) 有機電子輸送材料及びこれを用いた有機電界発光素子
JP6419704B2 (ja) 有機電界発光素子及びその製造方法並びに新規カルバゾール誘導体
KR20090069249A (ko) 유기 전기 발광 소자
KR101573125B1 (ko) 전기활성 조성물
KR20110117513A (ko) 인광 호스트 물질 및 이를 이용한 유기전계발광소자
TW202039519A (zh) 有機電致發光元件及化合物
WO2021066123A1 (ja) 金属錯体およびそれを用いた電子輸送材料
KR20150119870A (ko) 다이아자크리센 유도체를 포함하는 전자 소자
KR20200049522A (ko) 올리고피리딘 유도체 및 그것을 이용한 유기 el 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530353

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197002967

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834408

Country of ref document: EP

Kind code of ref document: A1