WO2015019725A1 - 有機金属錯体、発光材料、遅延蛍光体および有機発光素子 - Google Patents

有機金属錯体、発光材料、遅延蛍光体および有機発光素子 Download PDF

Info

Publication number
WO2015019725A1
WO2015019725A1 PCT/JP2014/066502 JP2014066502W WO2015019725A1 WO 2015019725 A1 WO2015019725 A1 WO 2015019725A1 JP 2014066502 W JP2014066502 W JP 2014066502W WO 2015019725 A1 WO2015019725 A1 WO 2015019725A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
organometallic complex
general formula
light emitting
Prior art date
Application number
PCT/JP2014/066502
Other languages
English (en)
French (fr)
Inventor
坂井 由美
浩 宮▲崎▼
安達 千波矢
直人 能塚
Original Assignee
国立大学法人九州大学
新日鉄住金化学株式会社
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 新日鉄住金化学株式会社, 大電株式会社 filed Critical 国立大学法人九州大学
Priority to EP14834011.0A priority Critical patent/EP3031805B1/en
Priority to US14/910,791 priority patent/US9957260B2/en
Priority to CN201480044013.7A priority patent/CN105636949B/zh
Priority to JP2015530745A priority patent/JP6542122B2/ja
Priority to KR1020167006180A priority patent/KR102207643B1/ko
Publication of WO2015019725A1 publication Critical patent/WO2015019725A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B17/00Azine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B21/00Thiazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organometallic complex useful as a light-emitting material and an organic light-emitting device using the same.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • research on organic electroluminescence devices using organometallic complexes having a heterocyclic compound as a ligand can be seen.
  • Patent Documents 1 and 2 describe that a chelate compound represented by the following general formula is used as a light-emitting material or a host material of a light-emitting layer.
  • X and Z are any element selected from C, S, Se, Te, N, and P
  • Y is any element selected from C, N, and P
  • A1 is the above
  • A2 is a group of an aromatic compound or a heterocyclic compound in which a hydroxyl group is bonded to the ortho position with respect to Y, and A2 is bonded to each carbon to which X and Z are bonded to constitute an aromatic compound or a heterocyclic compound A1 and A2 are defined as optionally having a substituent.
  • Patent Document 3 describes an example in which an oxazole metal complex represented by the following general formula is used as a material for an organic light emitting layer.
  • R 1 to R 8 represented by the following general formula are each independently a hydrogen atom, halogen atom, alkyl group, aralkyl group, alkenyl group, allyl group, cyano group, amino group, amide group, alkoxycarbonyl group.
  • a carboxyl group, an alkoxy group, an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group, M represents beryllium, zinc, cadmium, aluminum, Indicate gallium, indium, scandium, yttrium, magnesium, calcium, strontium, cobalt, copper or nickel, where n is defined to be an integer from 1 to 3.
  • Patent Documents 4 and 5 describe that a metal complex having a skeleton similar to the oxazole skeleton described in Patent Document 3 is used for the light-emitting material or the host material of the light-emitting layer. It is described that a metal complex having phenylbenzoxazole as a ligand is used as a host material of a light emitting layer.
  • the luminescent properties of the organometallic complexes described in each of the above patent documents are not fully satisfactory. Accordingly, the present inventors have conducted extensive studies for the purpose of deriving a general formula of an organometallic complex useful as a light-emitting material and generalizing the configuration of an organic light-emitting device having higher light emission efficiency.
  • the ligand mainly functions as an acceptor, and the lack of donor properties causes the light emission characteristics not to be sufficiently improved. I thought it was. Then, it has been found that by introducing a heterocyclic group having a donor property into a ligand having an oxazole skeleton or a skeleton similar thereto, the emission characteristics of the organometallic complex are remarkably improved. Furthermore, it has been found that these organometallic complex groups include those useful as delayed fluorescent materials, and it has been clarified that an organic light-emitting device with high emission efficiency can be provided at low cost. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
  • X represents an oxygen atom, a sulfur atom, or —N (R 7 ) —.
  • Y represents an oxygen atom, a sulfur atom, or —N (—SO 2 —R 8 ) —.
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • Z 1 and Z 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a group represented by any one of the following general formulas (A) to (E) .
  • any one of Z 1 and Z 2 is a group represented by any one of the following general formulas (A) to (E).
  • M represents Group 1, Group 2, Group 11, Group 12, or Group 13 excluding hydrogen in the periodic table.
  • L represents a ligand not included in the general formula of the ligand described above M.
  • n is an integer of 1 to 3
  • m is an integer of 0 to 2.
  • R 21 to R 28 , R 31 to R 38 , R 41 to R 49 , R 51 to R 70 each independently represents a hydrogen atom or a substituent.
  • a light-emitting material comprising the organometallic complex according to any one of [1] to [10].
  • a delayed phosphor comprising the organometallic complex according to any one of [1] to [10].
  • An organic light emitting device comprising the light emitting material according to [11].
  • the organic light-emitting device according to [13] which emits delayed fluorescence.
  • the organometallic complex of the present invention is useful as a light emitting material.
  • the organometallic complex of the present invention includes those that emit delayed fluorescence.
  • An organic light-emitting device using the organometallic complex of the present invention as a light-emitting material can achieve high luminous efficiency.
  • 6 shows an absorption spectrum and an emission spectrum of compound 25 of Example 5. It is an immediate fluorescence spectrum and phosphorescence spectrum of the compound 25 of Example 5. 6 is a transient decay curve of Compound 25 of Example 5. It is the absorption spectrum and emission spectrum of the compound 51 of Example 6. 7 is a transient decay curve of Compound 51 of Example 6. 6 shows an absorption spectrum and an emission spectrum of the compound 55 of Example 7. 10 is a transient decay curve of Compound 55 of Example 7. 6 shows an absorption spectrum and an emission spectrum of the compound 67 of Example 8. 10 is a transient decay curve of Compound 67 of Example 8. 2 shows an absorption spectrum and an emission spectrum of Comparative Compound A of Comparative Example 1. 2 is a transient decay curve of Comparative Compound A of Comparative Example 1.
  • Example 2 shows an absorption spectrum and an emission spectrum of Comparative Compound A of Comparative Example 2.
  • 4 is a transient decay curve of Comparative Compound B of Comparative Example 2.
  • 10 is a transient decay curve of a thin film of Compound 1 of Example 9.
  • 4 is a transient decay curve of a thin film of Compound 2 of Example 10. It is an immediate fluorescence spectrum and phosphorescence spectrum of the compound 2 of Example 10.
  • 4 is a transient decay curve of a thin film of Compound 3 of Example 11. It is the fluorescence spectrum and phosphorescence spectrum of the compound 3 of Example 11.
  • 4 is a transient decay curve of a thin film of the compound 13 of Example 12.
  • 10 is a transient decay curve of a thin film of the compound 25 of Example 13.
  • 10 is a transient decay curve of a thin film of the compound 51 of Example 14. It is the fluorescence spectrum and phosphorescence spectrum of the compound 51 of Example 14. 10 is a transient decay curve of a thin film of the compound 55 of Example 15. 2 shows an immediate fluorescence spectrum and a phosphorescence spectrum of the compound 55 of Example 15. 10 is a transient decay curve of a thin film of Compound 67 of Example 16. It is an immediate fluorescence spectrum and phosphorescence spectrum of the compound 67 of Example 16. 2 is an emission spectrum of an organic electroluminescent element of the compound 1 of Example 17. 6 is a graph showing voltage-current density characteristics of an organic electroluminescent element of Compound 1 of Example 17.
  • FIG. 4 is a graph showing the current density-external quantum efficiency characteristics of each of the organic electroluminescence elements of Compound 1 of Example 17, Compound 13 of Example 20, and Compound 25 of Example 21.
  • FIG. 2 is an emission spectrum of an organic electroluminescent element of the compound 2 of Example 18.
  • 14 is a graph showing voltage-current density characteristics of an organic electroluminescence element of the compound 2 of Example 18.
  • 10 is a graph showing the current density-external quantum efficiency characteristics of the organic electroluminescence device of Compound 2 of Example 18.
  • 2 is an emission spectrum of an organic electroluminescent element of the compound 3 of Example 19.
  • 10 is a graph showing voltage-current density characteristics of an organic electroluminescent element of Compound 3 of Example 19.
  • 14 is a graph showing the current density-external quantum efficiency characteristics of the organic electroluminescence device of Compound 3 of Example 19.
  • 2 is an emission spectrum of an organic electroluminescent element of the compound 13 of Example 20.
  • 10 is a graph showing voltage-current density characteristics of an organic electroluminescence element of the compound 13 of Example 20.
  • 2 is an emission spectrum of an organic electroluminescent element of the compound 25 of Example 21.
  • 4 is a graph showing voltage-current density characteristics of an organic electroluminescence element of the compound 25 of Example 21.
  • 2 is an emission spectrum of an organic electroluminescent element of the compound 55 of Example 23.
  • 14 is a graph showing voltage-current density characteristics of an organic electroluminescence element of the compound 55 of Example 23.
  • 14 is a graph showing current density-external quantum efficiency characteristics of an organic electroluminescent device of Compound 55 in Example 23.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
  • the organometallic complex represented by the general formula ( 1 ) has the following general formulas (A) to (4) at the 4-position (Z 2 ) or the 5-position (Z 1 ) of the heterocyclic compound as a ligand.
  • the presence of the group represented by any of (E) is considered to cause many exciton transitions between levels in the ligand. For this reason, this organometallic complex can obtain high luminous efficiency.
  • the organometallic complex represented by the general formula (1) will be described in detail.
  • the organometallic complex represented by the general formula (1) is a novel compound. This organometallic complex has a heterocyclic compound serving as a ligand and a central metal M.
  • X represents an oxygen atom, a sulfur atom, or —N (R 7 ) —.
  • R 7 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • X is preferably an oxygen atom.
  • the alkyl group that can be employed as R 7 may be linear, branched, or cyclic. Preference is given to a linear or branched alkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methyl group, an ethyl group, n-propyl group, isopropyl group) is even more preferable.
  • Examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • the aryl group that can be employed as R 7 may be composed of one aromatic ring or may have a structure in which two or more aromatic rings are fused.
  • the aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms (ie, a phenyl group, 1-naphthyl). Group, 2-naphthyl group) is even more preferred.
  • the alkyl group may be further substituted or unsubstituted.
  • the substituent in the case of being substituted include an alkoxy group, an aryl group, and an aryloxy group, and the description of the aryl group as the substituent and a preferable range thereof can be referred to the description of the aryl group. it can.
  • the aryl group may be further substituted or unsubstituted.
  • the substituent in the case of being substituted include an alkyl group, an alkoxy group, an aryl group, and an aryloxy group.
  • the alkyl group and the aryl group Reference can be made to the description.
  • the alkoxy group that can be employed as the substituent may be linear, branched, or cyclic. Preferred is a linear or branched alkoxy group.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methoxy group, an ethoxy group, n-propoxy group, isopropoxy group) is even more preferable.
  • Examples of the cyclic alkoxy group include a cyclopentyloxy group, a cyclohexyloxy group, and a cycloheptyloxy group.
  • the aryloxy group that can be employed as the substituent may be composed of one aromatic ring or may have a structure in which two or more aromatic rings are fused.
  • the aryloxy group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms, and more preferably 6 to 10 carbon atoms (ie, phenyloxy group, 1 -Naphtyloxy group, 2-naphthyloxy group) is even more preferable.
  • R 7 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group exemplified above, an alkyl group having 1 to 6 carbon atoms, and an aralkyl group having 7 to 15 carbon atoms. And aryl groups having 6 to 14 carbon atoms are preferred.
  • Y represents an oxygen atom, a sulfur atom, or —N (—SO 2 —R 8 ) —.
  • R 8 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted alkyl group that can be adopted as R 8 , or the substituted or unsubstituted aryl group is the description of the substituted or unsubstituted alkyl group that can be adopted as R 7 , or the substituted or unsubstituted aryl group described above.
  • a preferred range can be referred to.
  • those in which Y is an oxygen atom can be preferably employed.
  • R 1 to R 6 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted alkyl group that can be adopted as R 1 to R 6 , or the substituted or unsubstituted aryl group is the above substituted or unsubstituted alkyl group that can be adopted as R 7 , or substituted or unsubstituted aryl Reference can be made to the group descriptions and preferred ranges.
  • Z 1 and Z 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a group represented by any one of the following general formulas (A) to (E) .
  • any one of Z 1 and Z 2 is a group represented by any one of the following general formulas (A) to (E).
  • the substituted or unsubstituted alkyl group that can be employed as Z 1 and Z 2 , or the substituted or unsubstituted aryl group is the same as the substituted or unsubstituted alkyl group that can be employed as R 7 , or a substituted or unsubstituted aryl group. Reference can be made to the group descriptions and preferred ranges.
  • R 1 to R 6 , R 7 , R 8 , Z 1 and Z 2 may be the same as or different from each other.
  • the group represented by any of the following general formulas (A) to (E) is a heterocyclic group having a donor property. For this reason, it is considered that an organometallic complex in which these groups exist in the ligand causes many exciton transitions between the levels in the ligand, and high luminous efficiency can be obtained.
  • the group represented by any of the following general formulas (A) to (E) may be either Z 1 (5-position) or Z 2 (4-position), but Z 2 is preferred.
  • R 21 to R 28 , R 31 to R 38 , R 41 to R 49 , and R 51 to R 70 each independently represent a hydrogen atom or a substituent.
  • substituents that can be taken by R 21 to R 28 , R 31 to R 38 , R 41 to R 49 , and R 51 to R 70 include a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, carbon An alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an alkyl-substituted amino group having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, and 3 to 3 carbon atoms 40 heteroaryl groups, alkenyl groups having 2 to 10 carbon atoms, alkynyl groups having 2 to 10 carbon atoms, alkoxycarbonyl
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon
  • substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 6 to 15 carbon atoms.
  • it is an unsubstituted aryl group or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • the number of substituents in the general formulas (A) to (E) is not limited, and all of R 21 to R 28 , R 31 to R 38 , R 41 to R 49 , and R 51 to R 70 are unsubstituted (that is, hydrogen Atom). Further, when there are two or more substituents in each of the general formulas (A) to (E), these substituents may be the same or different. When a substituent is present in the general formulas (A) to (E), the substituent is preferably any one of R 22 to R 27 in the case of the general formula (A).
  • R 32 to R 37 is preferably any of R 42 to R 47 and R 49 if it is general formula (C), and if it is general formula (D) R 52 , R 53 , R 56 , R 57 , R 59 , R 60 are preferable, and in the case of the general formula (E), R 62 , R 63 , R 66 , R 67 , R 69 , R 70 is preferred.
  • R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 25 and R 26 , R 26 and R 27 , R 27 and R 28 , R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 41 and R 42 , R 42 and R 43 , R 43 and R 44 R 45 and R 46 , R 46 and R 47 , R 47 and R 48 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 59 and R 60 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 65 and R 66 , R 66 and R 67 , R 67 and R 68 , R 69 and R 70 may be bonded to each other to
  • the cyclic structure may be an aromatic ring or an alicyclic ring, may contain a hetero atom, and the cyclic structure may be a condensed ring of two or more rings.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • the groups represented by the general formulas (A) to (E) present in the general formula (1) are all groups represented by any one of the general formulas (A) to (E). It is preferable. For example, the case where it is group represented by general formula (A), and the case where all are represented by general formula (B) can be illustrated preferably.
  • the number n of ligands having a specific structure constituting the organometallic complex represented by the general formula (1) is an integer of 1 to 3.
  • the organometallic complex represented by the general formula (1) has a plurality of ligands (when n is 2 or more), the plurality of ligands may be the same as or different from each other. Are preferably the same.
  • the organometallic complex represented by the general formula (1) may have L as a ligand not included in the general formula of the ligand described above M in the general formula (1).
  • the number m of such ligands L is an integer of 0-2.
  • m is preferably 0 or 1, and may be 0.
  • the ligand L include a substituted or unsubstituted aryloxy ligand.
  • the substituted or unsubstituted aryloxy ligand include a substituted or unsubstituted phenoxy ligand and a substituted or unsubstituted naphthoxy ligand.
  • substituents for these aryloxy groups include those exemplified as the substituents that can be taken by the above R 21 to R 28 , R 31 to R 38 , R 41 to R 49 , and R 51 to R 70. it can.
  • a substituted or unsubstituted diarylamino group can be preferably used.
  • a diphenylamino group can be preferably used.
  • M is a central metal of the organometallic complex represented by the general formula (1).
  • M represents a Group 1, Group 2, Group 11, Group 12, or Group 13 element excluding hydrogen in the periodic table.
  • the group 1 elements excluding hydrogen are specifically lithium, sodium, potassium, rubidium, cesium, and francium.
  • Group 2 elements are beryllium, magnesium, calcium, strontium, barium, and radium,
  • Group 11 elements are copper, silver, gold, and roentgenium, and
  • Group 12 elements are zinc, cadmium, mercury, and copernicium. is there.
  • Group 13 elements are boron, aluminum, gallium, indium, and thallium. Of these, M is preferably lithium, magnesium, aluminum, or zinc.
  • M is a trivalent metal such as aluminum
  • n in the general formula (1) is 2 and m is preferably 1.
  • M is a divalent metal such as zinc
  • n in the general formula (1) is 2 and m is preferably 0.
  • organometallic complex represented by the general formula (1) will be exemplified.
  • organometallic complex represented by the general formula (1) that can be used in the present invention should not be limitedly interpreted by these specific examples.
  • the molecular weight of the organometallic complex represented by the general formula (1) is, for example, when the organic layer containing the organometallic complex represented by the general formula (1) is intended to be formed by vapor deposition. It is preferably 1500 or less, more preferably 1200 or less, even more preferably 1000 or less, and even more preferably 800 or less. The lower limit of the molecular weight is the molecular weight of the minimum compound represented by the general formula (1).
  • the organometallic complex represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by previously polymerizing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group in any of R 1 to R 8 of the general formula (1) and polymerizing it alone or copolymerizing with other monomers, It is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material.
  • dimers and trimers are obtained by reacting compounds having a structure represented by the general formula (1) and used as a luminescent material.
  • a polymer having a repeating unit including a structure represented by the general formula (1) a polymer including a structure represented by the following general formula (2) or (3) can be given.
  • Q represents a group including the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 is any one of R 1 to R 8 in the structure of the general formula (1) constituting Q, R 9 in the structure of the formula (C), and a structure of the formula (D).
  • R 10 or R 11 can be bonded to either R 12 or R 13 of the structure of formula (E).
  • Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • repeating unit examples include structures represented by the following formulas (4) to (7).
  • a hydroxy group is introduced into any one of R 1 to R 8 of the structure of the general formula (1), and this is used as a linker as described below. It can be synthesized by reacting a compound to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. For example, although a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene or styrene can be mentioned, the repeating unit is not limited to the exemplified repeating unit.
  • the organometallic complex represented by the general formula (1) can be synthesized by combining known reactions.
  • the ligand can be synthesized by coordinating with zinc.
  • combination of a ligand although the path
  • A represents a halogen atom, and examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom, a bromine atom, and an iodine atom are preferable.
  • the details of the above reaction can be referred to the synthesis examples described below.
  • the organometallic complex represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
  • organometallic complexes satisfying the following formulas (I) and (II) have excellent luminescent properties and are useful.
  • Formula (II) S L ⁇ T L ⁇ 0.2 eV In the above formulas (I) and (II), S C represents the energy in the singlet excited state of the organometallic complex, T C represents the energy in the triplet excited state of the organometallic complex, and S L represents the energy The energy in the singlet excited state of the ligand constituting the organometallic complex is represented, and T L represents the energy in the triplet excited state of the ligand constituting the organometallic complex.
  • “energy in a singlet excited state” and “energy in a triplet excited state” refer to values measured in accordance with measurement methods described in Examples described later.
  • the value of S C ⁇ T C and the value of S L ⁇ T L may be referred to as “energy difference ⁇ E ST ”.
  • Organometallic complexes of the present invention by the energy difference Delta] E ST ligand constituting the organic metal complex itself and the organometallic complex are both less and smaller 0.2 eV, it is possible to obtain high luminous efficiency. Then, in particular, by the energy difference of the ligand Delta] E ST is small, as compared with the light emitting material of a conventional organic metal complex, increasing remarkably the luminous efficiency.
  • the organometallic complex which was excellent in the luminescent property can be provided by carrying out molecular design so that Formula (I) and Formula (II) may be satisfy
  • S C -T C and S L -T L are calculated for various chemical structures using a known calculation method, and a structure in which calculation results satisfying formulas (I) and (II) are obtained. It is possible to provide an organometallic complex having excellent light emission characteristics by actually producing an organometallic complex having the same. In addition, by calculating for various structures, it is possible to generalize the structure that can obtain the calculation results satisfying the formula (I) and the formula (II), and to derive a general formula of an organometallic complex having excellent emission characteristics. It is.
  • the value of S C -T C (energy difference ⁇ E ST ) of the organometallic complex is preferably 1.0 eV or less, more preferably 0.7 eV or less, and even more preferably 0.3 eV or less. .
  • the S C -T C value (energy difference ⁇ E ST ) of the ligand constituting the organometallic complex is preferably 1.0 eV or less, more preferably 0.7 eV or less, and ⁇ 0. More preferably, it is 3 eV or less.
  • Energy S C of the singlet excited state of the organic metal complex is preferably from 1.5 ⁇ 3.5 eV, more preferably 1.7 ⁇ 3.3 eV, at 1.9 ⁇ 3.1 eV More preferably it is.
  • the energy T C in the triplet excited state of the organometallic complex is preferably 0.5 to 3.5 eV, more preferably 1.0 to 3.2 eV, and 1.7 to 3.1 eV. More preferably it is.
  • the organometallic complex represented by the general formula (1) of the present invention is useful as a light emitting material of an organic light emitting device. For this reason, the organometallic complex represented by the general formula (1) of the present invention can be effectively used as a light emitting material in the light emitting layer of the organic light emitting device.
  • the organometallic complex represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to an invention of a luminescent material composed of an organometallic complex represented by the general formula (1), an invention of a delayed phosphor having a structure represented by the general formula (1), and a general formula (1).
  • An invention using the organometallic complex represented as a delayed phosphor and an invention of a method of emitting delayed fluorescence using the organometallic complex represented by the general formula (1) are also provided.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • the organometallic complex represented by the general formula (1) of the present invention As a light-emitting material of a light-emitting layer, an excellent organic material such as an organic photoluminescence element (organic PL element) or an organic electroluminescence element (organic EL element) is used. A light-emitting element can be provided.
  • the compound represented by the general formula (1) of the present invention may have a function of assisting light emission of another light emitting material included in the light emitting layer as a so-called assist dopant.
  • the compound represented by the general formula (1) of the present invention contained in the light emitting layer includes the lowest excitation singlet energy level of the host material contained in the light emitting layer and the lowest excitation of other light emitting materials contained in the light emitting layer. It may have the lowest excited singlet energy level between singlet energy levels.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As a luminescent material, the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used. In order for the organic electroluminescence device and the organic photoluminescence device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission, and includes a hole injection layer and an electron injection layer, Further, it may be present between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the organometallic complex represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer. At that time, the organometallic complex represented by the general formula (1) used for the light emitting layer and the organometallic complex represented by the general formula (1) used for a layer other than the light emitting layer are the same or different. Also good.
  • the organometallic complex represented by the general formula (1) is used for the injection layer, the blocking layer, the hole blocking layer, the electron blocking layer, the exciton blocking layer, the hole transport layer, the electron transport layer, and the like. Also good.
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
  • R and R 2 to R 7 each independently represent a hydrogen atom or a substituent.
  • n represents an integer of 3 to 5.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • an organic light-emitting device having greatly improved light emission efficiency can be obtained by including an organometallic complex represented by the general formula (1) in a light-emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • source meter manufactured by Keithley: 2400 series
  • semiconductor parameter analyzer manufactured by Agilent Technologies: E5273A
  • optical power meter measuring device manufactured by Newport: 1930C
  • optical spectrometer Ocean Optics, USB2000
  • spectroradiometer Topcon, SR-3
  • streak camera Haamamatsu Photonics C4334
  • the solution was deaerated and then stirred for 19 hours at 110 ° C. in a nitrogen atmosphere under light shielding.
  • the reaction solution was cooled to room temperature and then filtered, and the solvent was distilled under reduced pressure.
  • Methylene chloride was added to the residue, washed with water, and the organic layer was dried over anhydrous sodium sulfate.
  • the crude product was obtained by distilling off the solvent under reduced pressure. After removing 10H-phenoxazine from the crude product by column chromatography (carrier: SiO 2 , eluent: methylene chloride), the product was eluted with ethyl acetate and distilled under reduced pressure to obtain a brown oily compound.
  • the oily product obtained 0.56 g of 10% palladium carbon, 3 mL of 7M aqueous ammonium formate solution and 70 mL of tetrahydrofuran were added to the reaction vessel, and the mixture was stirred at 40 ° C. for 4 hours in a nitrogen atmosphere and cooled to room temperature.
  • the solvent was distilled under reduced pressure. Methylene chloride was added to the residue, washed with water, and the organic layer was dried over anhydrous sodium sulfate.
  • the crude product obtained by distilling the solvent under reduced pressure was dissolved in a small amount of methylene chloride, and reprecipitation was performed by adding n-hexane. The precipitated solid was filtered to obtain 0.66 g of a yellowish white powder compound.
  • a sublimation purification apparatus (p-100MKIII organic device raw material purification apparatus, manufactured by ALS Technology) was used.
  • the structure of the obtained powder is identified using a matrix-assisted laser desorption ionization time-of-flight mass spectrometer (AXIMA-CFR Plus, Shimadzu Corporation) and elemental analyzer (Yanako CHN Coder MT-5, manufactured by Yanagimoto Seisakusho) did.
  • Anal Calc for C 62 H 40 N 6 O 4 Zn C, 74.60; H, 3.95; N, 8.39. Found: C, 74.59; H, 4.04; N, 8.42, MS (m / z) 997.61 [M + H ] +.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • Example 1 Evaluation of optical properties of organometallic complexes
  • Example 1 Evaluation of Optical Properties of Compound 1
  • a toluene solution (concentration: 1.0 ⁇ 10 ⁇ 5 mol / L) of Compound 1 was prepared in a glove box under an Ar atmosphere.
  • FIG. 2 shows the results of measuring the absorption spectrum and emission spectrum of 420 nm excitation light for the solution of Compound 1
  • FIG. 3 shows the results of measuring the immediate fluorescence spectrum and the phosphorescence spectrum
  • FIG. 4 shows the transient decay curve. From Figure 3, it was found that Delta] E ST of compound 1 is about 0 eV.
  • FIG. 1 shows the results of measuring the absorption spectrum and emission spectrum of 420 nm excitation light for the solution of Compound 1
  • FIG. 3 shows the results of measuring the immediate fluorescence spectrum and the phosphorescence spectrum
  • FIG. 4 shows the transient decay curve. From Figure 3, it was found that Delta] E ST of compound 1 is about 0 eV.
  • Example 2 Evaluation of Optical Properties of Compound 2 A solution of Compound 2 was prepared in the same manner as Example 1 except that Compound 2 was used instead of Compound 1.
  • FIG. 5 shows the results of measuring the absorption spectrum and the emission spectrum of 420 nm excitation light for this compound 2 solution
  • FIG. 6 shows the transient decay curve. From FIG. 6, delayed fluorescence was confirmed in the solution of Compound 2 subjected to nitrogen bubbling, and such delayed fluorescence was hardly confirmed in the solution of Compound 2 without nitrogen bubbling.
  • the low photoluminescence quantum efficiency in the solution of compound 2 without nitrogen bubbling is that the compound 2 is a fluorescent substance exhibiting delayed fluorescence. It is presumed that inter-term crossing to the term state was inhibited.
  • Example 3 Evaluation of Optical Properties of Compound 3 A solution of compound 3 was prepared in the same manner as in Example 1 except that compound 3 was used instead of compound 1.
  • FIG. 7 shows the results of measuring the absorption spectrum and the emission spectrum of 420 nm excitation light for this compound 3 solution, and
  • FIG. 8 shows the transient decay curve. From FIG. 8, delayed fluorescence was confirmed in the solution of Compound 3 subjected to nitrogen bubbling, and such delayed fluorescence was hardly confirmed in the solution of Compound 3 without nitrogen bubbling.
  • Example 4 Evaluation of Optical Properties of Compound 13 A solution of compound 13 was prepared in the same manner as in Example 1 except that compound 13 was used instead of compound 1.
  • FIG. 9 shows the results of measuring the absorption spectrum and emission spectrum of 420 nm excitation light for this solution of Compound 13
  • FIG. 10 shows the results of measuring the immediate fluorescence spectrum and phosphorescence spectrum
  • FIG. 11 shows the transient decay curve. From FIG. 10, it was found that ⁇ E ST of compound 13 was 0.18 eV. Further, ⁇ E ST of the ligand was 0.16 eV. In addition, from FIG. 11, delayed fluorescence was confirmed in the solution of the compound 13 that was bubbled with nitrogen, and the photoluminescence quantum efficiency was 36.2%.
  • Example 5 Evaluation of Optical Properties of Compound 25
  • a solution of compound 25 was prepared in the same manner as in Example 1 except that compound 25 was used instead of compound 1.
  • FIG. 12 shows the results of measuring the absorption spectrum and emission spectrum of 400 nm excitation light for the solution of Compound 25
  • FIG. 13 shows the results of measuring the immediate fluorescence spectrum and phosphorescence spectrum
  • FIG. 14 shows the transient decay curve. From Figure 13, Delta] E ST compound 25 was found to be 0.05 eV. Further, ⁇ E ST of the ligand was 0.14 eV. In addition, from FIG. 14, delayed fluorescence was confirmed in the solution of the compound 25 that was bubbled with nitrogen, and the photoluminescence quantum efficiency was 58.5%.
  • Example 6 Evaluation of Optical Properties of Compound 51
  • a solution of compound 51 was prepared in the same manner as in Example 1 except that compound 51 was used instead of compound 1.
  • FIG. 15 shows a result of measuring an absorption spectrum and an emission spectrum by 420 nm excitation light of this solution of compound 51
  • FIG. 16 shows a transient decay curve. From FIG. 16, delayed fluorescence was confirmed in the solution of compound 51 that was subjected to nitrogen bubbling, and such delayed fluorescence was hardly confirmed in the solution of compound 51 that was not subjected to nitrogen bubbling.
  • the photoluminescence quantum efficiency of the solution of the compound 51 without nitrogen bubbling is low because the compound 51 is a fluorescent material exhibiting delayed fluorescence, and in the solution without nitrogen bubbling, the excitation singlet of the excitons in the excited triplet state is caused by oxygen. It is presumed that inter-term crossing to the term state was inhibited.
  • Example 7 Evaluation of optical properties of compound 55
  • a solution of compound 55 was prepared in the same manner as in Example 1, except that compound 55 was used instead of compound 1.
  • FIG. 17 shows a result of measuring an absorption spectrum and an emission spectrum by 420 nm excitation light of this solution of Compound 55
  • FIG. 18 shows a transient decay curve. From FIG. 18, delayed fluorescence was confirmed in the solution of the compound 55 that was subjected to nitrogen bubbling, and such delayed fluorescence was hardly confirmed in the solution of the compound 55 that was not subjected to nitrogen bubbling.
  • the photoluminescence quantum efficiency of the solution of the compound 55 without nitrogen bubbling is low because the compound 55 is a fluorescent material exhibiting delayed fluorescence, and in the solution without nitrogen bubbling, the excited singlet of the excited triplet state excitons is caused by oxygen. It is presumed that inter-term crossing to the term state was inhibited.
  • Example 8 Evaluation of Optical Properties of Compound 67
  • a solution of compound 25 was prepared in the same manner as in Example 1 except that compound 67 was used instead of compound 1.
  • FIG. 19 shows the results of measuring the absorption spectrum and the emission spectrum of 400 nm excitation light for this compound 25 solution
  • FIG. 20 shows the transient decay curve. From FIG. 20, delayed fluorescence was confirmed in the solution of the compound 67 which was bubbled with nitrogen, and the photoluminescence quantum efficiency was 69.2%. On the other hand, in the solution of compound 67 without nitrogen bubbling, such delayed fluorescence was hardly confirmed, and the photoluminescence quantum efficiency was 15.8%. The photoluminescence quantum efficiency is low in the solution of the compound 67 without nitrogen bubbling.
  • the compound 67 is a fluorescent substance that exhibits delayed fluorescence. It is presumed that the reverse intersystem crossing to the term state was inhibited.
  • Comparative Example 1 Evaluation of Optical Properties of Comparative Compound A
  • a solution of Comparative Compound A was prepared in the same manner as in Example 1 except that Comparative Compound A having the following structure was used instead of Compound 1.
  • FIG. 21 shows the results of measuring the absorption spectrum and the emission spectrum of 400 nm excitation light for this comparative compound A solution
  • FIG. 22 shows the transient decay curve. From FIG. 22, delayed fluorescence was confirmed in the solution of Comparative Compound A that was nitrogen-bubbled, and the photoluminescence quantum efficiency was 37.3% for the solution that was bubbled with nitrogen and 17.7% for the solution that was not bubbled, It was a value lower than the compound of each Example.
  • Comparative Example 2 Evaluation of optical properties of Comparative Compound B
  • a solution of Comparative Compound B was prepared in the same manner as in Example 1 except that Comparative Compound B having the following structure was used instead of Compound 1.
  • FIG. 23 shows a result of measuring an absorption spectrum and an emission spectrum by 380 nm excitation light of this solution of Comparative Compound 1, and
  • FIG. 24 shows a transient decay curve. From FIG. 24, delayed fluorescence was confirmed in the solution of the comparative compound B subjected to nitrogen bubbling, and the photoluminescence quantum efficiency was 38.9% for the nitrogen bubbled solution and 7.5% for the solution without bubbling. It was a value lower than the compound of each Example.
  • Example 9 Compound 1 and mCBP were deposited from different deposition sources on a quartz substrate by a vacuum deposition method under a vacuum degree of 10 ⁇ 4 Pa or less, and a co-deposited thin film having a concentration of Compound 1 of 6.0% by weight was formed to 100 nm. The thickness was formed.
  • FIG. 25 shows the results of measuring the photoluminescence transient decay curve of this thin film with 325 nm excitation light at 5K, 50K, 100K, 150K, 200K, 250K, and 300K. Compound 1 was confirmed to be a thermally activated delayed phosphor.
  • Example 10 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 2 instead of Compound 1.
  • the transient decay curve of Compound 2 is shown in FIG. 26, and the results of measuring the immediate fluorescence spectrum and phosphorescence spectrum are shown in FIG. Delta] E ST of compound 2 is 0.14 eV, it was confirmed Compound 2 is also delayed fluorescent substance of heat activated.
  • Example 11 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 3 instead of Compound 1.
  • FIG. 28 shows the transient decay curve of Compound 3
  • FIG. 29 shows the results of measurement of the fluorescence spectrum and phosphorescence spectrum.
  • the ⁇ E ST of compound 3 was 0.12 eV, and it was confirmed that compound 3 was also a thermally activated delayed phosphor.
  • Example 12 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 13 instead of Compound 1. A transient decay curve of Compound 13 is shown in FIG. Compound 13 was also confirmed to be a thermally activated delayed phosphor.
  • Example 13 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 25 instead of Compound 1. A transient decay curve of Compound 25 is shown in FIG. Compound 25 was also confirmed to be a thermally activated delayed phosphor.
  • Example 14 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 51 instead of Compound 1.
  • the transient decay curve of Compound 51 is shown in FIG. 32, and the results of measuring the fluorescence spectrum and phosphorescence spectrum are shown in FIG.
  • the ⁇ E ST of the compound 51 was 0.33 eV, and it was confirmed that the compound 51 is also a thermally activated delayed phosphor.
  • Example 15 A thin film was prepared and evaluated in the same manner as in Example 9 using Compound 55 instead of Compound 1.
  • FIG. 34 shows the transient decay curve of Compound 55
  • FIG. 35 shows the results of measuring the immediate fluorescence spectrum and the phosphorescence spectrum.
  • the ⁇ E ST of the compound 55 was 0.14 eV, and it was confirmed that the compound 55 is also a thermally activated delayed phosphor.
  • Example 16 A thin film was prepared and evaluated by spin casting using Compound 67 instead of Compound 1 and mCBP as a host material. A transient decay curve of Compound 67 is shown in FIG. Compound 67 was also confirmed to be a thermally activated delayed phosphor. In addition, FIG. 37 shows the results of measuring the immediate fluorescence spectrum and phosphorescence spectrum of Compound 67. From Figure 37, Delta] E ST compound 67 was found to be 0.13 eV.
  • Example 17 Production and evaluation of organic electroluminescence elements.
  • ITO indium tin oxide
  • ⁇ -NPD was formed on ITO to a thickness of 35 nm.
  • Compound 1 and mCBP were co-evaporated from different vapor deposition sources to form a layer having a thickness of 15 nm as a light emitting layer. At this time, the concentration of Compound 1 was 6.0% by weight.
  • TPBi is formed to a thickness of 65 nm
  • further lithium fluoride (LiF) is vacuum-deposited to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 80 nm to form a cathode.
  • a luminescence element was obtained.
  • the emission spectrum of the manufactured organic electroluminescence element is shown in FIG. 38
  • the voltage-current density characteristic is shown in FIG. 39
  • the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 1 as the light emitting material achieved a high external quantum efficiency of 15.0%.
  • Example 18 Production and Evaluation of Organic Electroluminescence Device Using Compound 2
  • An organic electroluminescence device was produced by the same method as in Example 17 using Compound 2 instead of Compound 1.
  • the emission spectrum of the manufactured organic electroluminescence element is shown in FIG. 41
  • the voltage-current density characteristic is shown in FIG. 42
  • the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 2 as the light emitting material achieved a high external quantum efficiency of 11.6%.
  • Example 19 Preparation and evaluation of organic electroluminescent element using compound 3
  • ITO indium tin oxide
  • ⁇ -NPD was formed on ITO to a thickness of 35 nm
  • mCP was formed to a thickness of 10 nm.
  • Compound 3 and mCP were co-evaporated from different deposition sources to form a layer having a thickness of 30 nm to form a light emitting layer. At this time, the concentration of Compound 3 was 10.0% by weight.
  • PPT is formed to a thickness of 10 nm
  • TPBi is formed to a thickness of 25 nm
  • lithium fluoride (LiF) is vacuum-deposited to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 80 nm.
  • a cathode was formed, and an organic electroluminescence element was obtained.
  • the emission spectrum of the produced organic electroluminescence device is shown in FIG. 44, the voltage-current density characteristic is shown in FIG. 45, and the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 3 as the light emitting material achieved a high external quantum efficiency of 10.1%.
  • Example 20 Production and evaluation of organic electroluminescence device using compound 13 An organic electroluminescence device was produced in the same manner as in Example 17 except that compound 13 was used instead of compound 1.
  • the emission spectrum of the manufactured organic electroluminescence element is shown in FIG. 47, the voltage-current density characteristic is shown in FIG. 48, and the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescent device using Compound 13 as the light emitting material achieved a high external quantum efficiency of 10.4%.
  • Example 21 Production and Evaluation of Organic Electroluminescence Device Using Compound 25
  • An organic electroluminescence device was produced in the same manner as in Example 17 except that compound 25 was used instead of compound 1.
  • FIG. 49 shows the emission spectrum of the manufactured organic electroluminescence device
  • FIG. 50 shows the voltage-current density characteristic
  • FIG. 40 shows the current density-external quantum efficiency characteristic.
  • the organic electroluminescence device using Compound 25 as the light emitting material achieved a high external quantum efficiency of 7.1%.
  • Example 22 Production and evaluation of organic electroluminescence device using compound 51 Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed. And a degree of vacuum of 5.0 ⁇ 10 ⁇ 4 Pa. First, ⁇ -NPD was formed on ITO to a thickness of 35 nm, and mCBP was formed to a thickness of 10 nm. Next, compound 51 and mCP were co-evaporated from different vapor deposition sources to form a layer having a thickness of 30 nm to form a light emitting layer. At this time, the concentration of the compound 51 was 10.0% by weight.
  • ITO indium tin oxide
  • TPBi is formed to a thickness of 25 nm
  • lithium fluoride (LiF) is further vacuum-deposited to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 80 nm to form a cathode.
  • a luminescence element was obtained. The light emission by the manufactured organic electroluminescent element was confirmed.
  • Example 23 Production and evaluation of organic electroluminescence device using compound 55 An organic electroluminescence device was produced in the same manner as in Example 17 except that compound 55 was used instead of compound 1. However, the concentration of the compound 55 in the light emitting layer was changed to 10.0% by weight, and the thickness of the light emitting layer was also changed to 30 nm.
  • FIG. 51 shows the emission spectrum of the manufactured organic electroluminescence device
  • FIG. 52 shows the voltage-current density characteristic
  • FIG. 53 shows the current density-external quantum efficiency characteristic.
  • the organic electroluminescence device using Compound 55 as the light emitting material achieved a high external quantum efficiency of 10.7%.
  • the compound of the present invention is useful as a luminescent material. For this reason, the compound of this invention is effectively used as a luminescent material for organic light emitting elements, such as an organic electroluminescent element. Since the compounds of the present invention include those that emit delayed fluorescence, it is also possible to provide an organic light-emitting device with high luminous efficiency. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 下記一般式で表される有機金属錯体は、有機エレクトロルミネッセンス素子等に用いる発光材料として有用である。XはO、Sまたは-N(R7)-;YはO、Sまたは-N(-SO2-R8)-;R1~R8はH、アルキル基またはアリール基;Z1およびZ2の少なくとも一方はフェノキサジン-10-イル基、フェノチアジン-10-イル基、フェナジン-10-イル基等;Mは周期律表の水素を除く第1、2、11、12または13族元素;Lは配位子;nは1~3;mは0~2の整数である。

Description

有機金属錯体、発光材料、遅延蛍光体および有機発光素子
 本発明は、発光材料として有用な有機金属錯体とそれを用いた有機発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、複素環化合物を配位子にもつ有機金属錯体を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 特許文献1,2には、下記一般式で表されるキレート化合物を、発光層の発光材料またはホスト材料として用いることが記載されている。下記の一般式におけるX及びZはC,S,Se,Te,N,Pから選択される何れかの元素、YはC,N,Pから選択される何れかの元素で、またA1は上記のYに対してオルト位に水酸基が結合された芳香族化合物若しくは複素環化合物の基であり、A2は上記のX,Zが結合した各炭素と結合して芳香族化合物若しくは複素環化合物を構成し、A1及びA2は置換基を有していてもよいと規定されている。
Figure JPOXMLDOC01-appb-C000004
 特許文献3には、下記一般式で表されるオキサゾール金属錯体を、有機発光層の材料として用いた例が記載されている。下記の一般式で表されるR1ないしR8は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、アリル基、シアノ基、アミノ基、アミド基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を示し、Mは、ベリリウム、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、スカンジウム、イットリウム、マグネシウム、カルシウム、ストロンチウム、コバルト、銅又はニッケルを示し、nは1から3までの整数であると規定されている。
Figure JPOXMLDOC01-appb-C000005
 また、特許文献4,5には、特許文献3に記載のオキサゾール骨格と同様の骨格を有する金属錯体を発光層の発光材料またはホスト材料に用いることが記載され、特許文献6、7には、フェニルベンゾオキサゾールを配位子とする金属錯体を発光層のホスト材料として用いることが記載されている。
特開平9-279136号公報 米国特許5,779,937号公報 特開平6-336586号公報 特開2000-100569号公報 特開2005-11610号公報 特許第4278186号公報 国際公開O098/51757号公報
 しかしながら、上記の各特許文献に記載される有機金属錯体の発光特性は十分に満足しうるものではない。そこで、本発明者らは、発光材料として有用な有機金属錯体の一般式を導きだし、さらに発光効率が高い有機発光素子の構成を一般化することを目的として鋭意検討を進めた。
 本発明者らは、上記の各文献に記載される有機金属錯体では、配位子が主としてアクセプターとして機能するものであり、ドナー性が不足していることが発光特性を十分に改善できない原因になっていると考えた。そして、オキサゾール骨格またはこれに類似する骨格を有する配位子にドナー性を有する複素環基を導入することにより、有機金属錯体の発光特性が格段に改善することを見出した。さらに、これらの有機金属錯体群に、遅延蛍光材料として有用なものが含まれることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 下記一般式(1)で表される有機金属錯体。
Figure JPOXMLDOC01-appb-C000006
[一般式(1)において、Xは酸素原子、硫黄原子、または-N(R7)-を表す。Yは酸素原子、硫黄原子、または-N(-SO2-R8)-を表す。R1~R8は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表す。Z1およびZ2は、各々独立に水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または下記一般式(A)~(E)のいずれかで表される基を表す。ただし、Z1およびZ2のいずれか1つは下記一般式(A)~(E)のいずれかで表される基である。Mは周期律表の水素を除く第1族、第2族、第11族、第12族または第13族を表す。LはMの上方に記載される配位子の一般式に包含されない配位子を表す。nは1~3の整数であり、mは0~2の整数である。]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[一般式(A)~(E)において、R21~R28、R31~R38、R41~R49、R51~R70は、各々独立に水素原子または置換基を表す。R21とR22、R22とR23、R23とR24、R25とR26、R26とR27、R27とR28、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R59とR60、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R69とR70は互いに結合して環状構造を形成していてもよい。]
[2] 一般式(1)のZ2が、前記一般式(A)~(E)のいずれかで表される基であることを特徴とする[1]に記載の有機金属錯体。
[3] 一般式(1)のZ1が、前記一般式(A)~(E)のいずれかで表される基であることを特徴とする[1]に記載の有機金属錯体。
[4] 一般式(1)のZ1またはZ2が、前記一般式(A)または前記一般式(B)で表される基であることを特徴とする[1]~[3]のいずれか1項に記載の有機金属錯体。
[5] 一般式(1)のMが、ZnまたはLiであることを特徴とする[1]~[4]のいずれか1項に記載の有機金属錯体。
[6] 一般式(1)のYが酸素原子であることを特徴とする[1]~[5]のいずれか1項に記載の有機金属錯体。
[7] 一般式(1)のmが1または2であることを特徴とする[1]~[6]のいずれか1項に記載の有機金属錯体。
[8] Zが置換もしくは無置換のアリールオキシ配位子であることを特徴とする[7]に記載の有機金属錯体。
[9] Zが置換もしくは無置換のジアリールアミノ基で置換されたアリールオキシ配位子であることを特徴とする[8]に記載の有機金属錯体。
[10] 下記の式(I)および式(II)を満たすことを特徴とする有機金属錯体。
 式(I)     SC-TC≦0.2eV
 式(II)    SL-TL≦0.2eV
[式(I)および式(II)において、SCは有機金属錯体の一重項励起状態でのエネルギーを表し、TCは有機金属錯体の三重項励起状態でのエネルギーを表し、SLは該有機金属錯体を構成する配位子の一重項励起状態でのエネルギーを表し、TLは該有機金属錯体を構成する配位子の三重項励起状態でのエネルギーを表す。]
[11] [1]~[10]のいずれか1項に記載の有機金属錯体からなる発光材料。
[12] [1]~[10]のいずれか1項に記載の有機金属錯体からなる遅延蛍光体。
[13] [11]に記載の発光材料を含むことを特徴とする有機発光素子。
[14] 遅延蛍光を放射することを特徴とする[13]に記載の有機発光素子。
[15] 有機エレクトロルミネッセンス素子であることを特徴とする[13]または[14]に記載の有機発光素子。
 本発明の有機金属錯体は、発光材料として有用である。また、本発明の有機金属錯体の中には遅延蛍光を放射するものが含まれている。本発明の有機金属錯体を発光材料として用いた有機発光素子は、高い発光効率を実現しうる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 実施例1の化合物1の吸光スペクトルと発光スペクトルである。 実施例1の化合物1の即時蛍光スペクトルとりん光スペクトルである。 実施例1の化合物1の過渡減衰曲線である。 実施例2の化合物2の吸光スペクトルと発光スペクトルである。 実施例2の化合物2の過渡減衰曲線である。 実施例3の化合物3の吸光スペクトルと発光スペクトルである。 実施例3の化合物3の過渡減衰曲線である。 実施例4の化合物13の吸光スペクトルと発光スペクトルである。 実施例4の化合物13の即時蛍光スペクトルとりん光スペクトルである。 実施例4の化合物13の過渡減衰曲線である。 実施例5の化合物25の吸光スペクトルと発光スペクトルである。 実施例5の化合物25の即時蛍光スペクトルとりん光スペクトルである。 実施例5の化合物25の過渡減衰曲線である。 実施例6の化合物51の吸光スペクトルと発光スペクトルである。 実施例6の化合物51の過渡減衰曲線である。 実施例7の化合物55の吸光スペクトルと発光スペクトルである。 実施例7の化合物55の過渡減衰曲線である。 実施例8の化合物67の吸光スペクトルと発光スペクトルである。 実施例8の化合物67の過渡減衰曲線である。 比較例1の比較化合物Aの吸光スペクトルと発光スペクトルである。 比較例1の比較化合物Aの過渡減衰曲線である。 比較例2の比較化合物Aの吸光スペクトルと発光スペクトルである。 比較例2の比較化合物Bの過渡減衰曲線である。 実施例9の化合物1の薄膜の過渡減衰曲線である。 実施例10の化合物2の薄膜の過渡減衰曲線である。 実施例10の化合物2の即時蛍光スペクトルとりん光スペクトルである。 実施例11の化合物3の薄膜の過渡減衰曲線である。 実施例11の化合物3の蛍光スペクトルとりん光スペクトルである。 実施例12の化合物13の薄膜の過渡減衰曲線である。 実施例13の化合物25の薄膜の過渡減衰曲線である。 実施例14の化合物51の薄膜の過渡減衰曲線である。 実施例14の化合物51の蛍光スペクトルとりん光スペクトルである。 実施例15の化合物55の薄膜の過渡減衰曲線である。 実施例15の化合物55の即時蛍光スペクトルとりん光スペクトルである。 実施例16の化合物67の薄膜の過渡減衰曲線である。 実施例16の化合物67の即時蛍光スペクトルとりん光スペクトルである。 実施例17の化合物1の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例17の化合物1の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例17の化合物1、実施例20の化合物13、実施例21の化合物25の各有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を合わせて示すグラフである。 実施例18の化合物2の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例18の化合物2の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例18の化合物2の有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。 実施例19の化合物3の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例19の化合物3の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例19の化合物3の有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。 実施例20の化合物13の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例20の化合物13の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例21の化合物25の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例21の化合物25の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例23の化合物55の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例23の化合物55の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例23の化合物55の有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。
[有機金属錯体]
(一般式(1)で表される有機金属錯体)
 一般式(1)で表される有機金属錯体は、後述するように、配位子である複素環化合物の4位(Z2)または5位(Z1)に下記の一般式(A)~(E)のいずれかで表される基が存在することにより、配位子内で励起子の準位間遷移が多く生じるものと考えられる。このため、この有機金属錯体は、高い発光効率を得ることができる。以下、一般式(1)で表される有機金属錯体について詳細に説明する。
 一般式(1)で表される有機金属錯体は新規化合物である。この有機金属錯体は、配位子となる複素環化合物と中心金属Mとを有している。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、Xは酸素原子、硫黄原子、または-N(R7)-を表す。R7は、水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表す。例えばXが酸素原子であるものを好ましく採用することができる。
 R7として採用しうるアルキル基は、直鎖状であっても、分枝状であっても、環状であってもよい。好ましいのは直鎖状または分枝状のアルキル基である。アルキル基の炭素数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~3であること(すなわちメチル基、エチル基、n-プロピル基、イソプロピル基)がさらにより好ましい。環状のアルキル基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。
 R7として採用しうるアリール基は、1つの芳香環からなるものであってもよいし、2以上の芳香環が融合した構造を有するものであってもよい。アリール基の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であること(すなわちフェニル基、1-ナフチル基、2-ナフチル基)がさらにより好ましい。
 上記アルキル基は、さらに置換されていてもよいし、置換されていなくてもよい。置換されている場合の置換基としては、例えばアルコキシ基、アリール基、アリールオキシ基を挙げることができ、置換基としてのアリール基の説明と好ましい範囲については上記アリール基の記載を参照することができる。
 また、上記アリール基は、さらに置換されていてもよいし、置換されていなくてもよい。置換されている場合の置換基としては、例えばアルキル基、アルコキシ基、アリール基、アリールオキシ基を挙げることができ、アルキル基とアリール基の説明と好ましい範囲については上記アルキル基と上記アリール基の記載を参照することができる。
 置換基として採用しうるアルコキシ基は、直鎖状であっても、分枝状であっても、環状であってもよい。好ましいのは直鎖状または分枝状のアルコキシ基である。アルコキシ基の炭素数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~3であること(すなわちメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基)がさらにより好ましい。環状のアルコキシ基としては、例えばシクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基を挙げることができる。
 置換基として採用しうるアリールオキシ基は、1つの芳香環からなるものであってもよいし、2以上の芳香環が融合した構造を有するものであってもよい。アリールオキシ基の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であること(すなわちフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基)がさらにより好ましい。
 R7として採用しうる基は、以上に例示した置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基のうち、炭素数が1~6のアルキル基、炭素数が7~15のアラルキル基、および炭素数が6~14のアリール基が好適である。
 Yは酸素原子、硫黄原子、または-N(-SO2-R8)-を表す。R8は、水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表す。R8として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基は、上記のR7として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基の説明と好ましい範囲を参照することができる。例えばYが酸素原子であるものを好ましく採用することができる。
 R1~R6は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表す。R1~R6として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基は、上記のR7として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基の説明と好ましい範囲を参照することができる。
 Z1およびZ2は、各々独立に水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または下記一般式(A)~(E)のいずれかで表される基を表す。ただし、Z1およびZ2のいずれか1つは下記一般式(A)~(E)のいずれかで表される基である。Z1およびZ2として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基は、上記のR7として採用しうる置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基の説明と好ましい範囲を参照することができる。R1~R6、R7、R8、Z1、Z2は、互いに同一であっても異なっていてもよい。
 下記一般式(A)~(E)のいずれかで表される基はドナー性を有する複素環基である。このため、これらの基が配位子に存在する有機金属錯体は、配位子内で励起子の準位間遷移が多く生じるものと考えられ、高い発光効率を得ることができる。下記一般式(A)~(E)のいずれかで表される基は、Z1(5位)およびZ2(4位)のいずれであってもよいが、Z2であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 一般式(A)~(E)において、R21~R28、R31~R38、R41~R49、R51~R70は、各々独立に水素原子または置換基を表す。
 R21~R28、R31~R38、R41~R49、R51~R70がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~20のジアルキル置換アミノ基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 一般式(A)~(E)における置換基の数は制限されず、R21~R28、R31~R38、R41~R49、R51~R70のすべてが無置換(すなわち水素原子)であってもよい。また、一般式(A)~(E)のそれぞれにおいて置換基が2つ以上ある場合、それらの置換基は同一であっても異なっていてもよい。一般式(A)~(E)に置換基が存在している場合、その置換基は一般式(A)であればR22~R27のいずれかであることが好ましく、一般式(B)であればR32~R37のいずれかであることが好ましく、一般式(C)であればR42~R47、R49のいずれかであることが好ましく、一般式(D)であればR52、R53、R56、R57、R59、R60のいずれかであることが好ましく、一般式(E)であればR62、R63、R66、R67、R69、R70のいずれかであることが好ましい。
 一般式(A)~(E)において、R21とR22、R22とR23、R23とR24、R25とR26、R26とR27、R27とR28、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R59とR60、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R69とR70は互いに結合して環状構造を形成していてもよい。
 環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 一般式(1)中に存在する一般式(A)~(E)で表される基は、すべてが一般式(A)~(E)のいずれか1つの一般式で表される基であることが好ましい。例えば、一般式(A)で表される基である場合や、すべてが一般式(B)で表される場合を好ましく例示することができる。
 一般式(1)で表される有機金属錯体を構成する特定構造の配位子の数nは、1~3の整数である。一般式(1)で表される有機金属錯体が、複数の配位子を有する場合(nが2以上である場合)、複数の配位子は互いに同一であっても異なっていてもよいが、同一であることが好ましい。
 一般式(1)で表される有機金属錯体は、一般式(1)においてMの上方に記載される配位子の一般式に包含されない配位子としてLを有していてもよい。このような配位子Lの数mは、0~2の整数である。mは0または1であることが好ましく、0であってもよい。
 配位子Lとしては、置換もしくは無置換のアリールオキシ配位子などを挙げることができる。置換もしくは無置換のアリールオキシ配位子として、置換もしくは無置換のフェノキシ配位子、置換もしくは無置換のナフトキシ配位子などを例示することができる。これらのアリールオキシ基に対する置換基としては、上記のR21~R28、R31~R38、R41~R49、R51~R70がとりうる置換基として例示した置換基を挙げることができる。なかでも、置換もしくは無置換のジアリールアミノ基を好ましく用いることができ、例えばジフェニルアミノ基を好ましく採用することができる。
 Mは、一般式(1)で表される有機金属錯体の中心金属である。Mは、周期律表の水素を除く第1族、第2族、第11族、第12族または第13族元素を表す。水素を除く第1族元素は、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムである。第2族元素は、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムであり、第11族元素は、銅、銀、金、レントゲニウムであり、第12族元素は、亜鉛、カドミウム、水銀、コペルニシウムである。第13族元素は、ホウ素、アルミニウム、ガリウム、インジウム、タリウムである。このうち、Mとしてはリチウム、マグネシウム、アルミニウム、亜鉛であることが好ましい。
 Mがアルミニウムなどの3価の金属であるとき、一般式(1)のnは2であり、mは1であることが好ましい。また、Mが亜鉛などの2価の金属であるとき、一般式(1)のnは2であり、mは0であることが好ましい。
 以下において、一般式(1)で表される有機金属錯体の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される有機金属錯体はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 一般式(1)で表される有機金属錯体の分子量は、例えば一般式(1)で表される有機金属錯体を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される有機金属錯体は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のR1~R8のいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしを反応させることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(2)または(3)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 一般式(2)または(3)において、Qは一般式(1)で表される構造を含む基を表し、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(2)または(3)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 L1およびL2で表される連結基は、Qを構成する一般式(1)の構造のR1~R8いずれか、式(C)の構造のR9、式(D)の構造のR10またはR11、式(E)の構造のR12またはR13のいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(4)~(7)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000023
 これらの式(4)~(7)を含む繰り返し単位を有する重合体は、一般式(1)の構造のR1~R8のいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000024
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができるが、例示された繰り返し単位に限定されるものではない。
[一般式(1)で表される有機金属錯体の合成方法]
 一般式(1)で表される有機金属錯体は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(1)のXおよびYが酸素原子、Z2が式(A)で表される基、Mが亜鉛である有機金属錯体は、以下の合成経路により配位子を合成し、この配位子を亜鉛に配位させることにより合成することができる。なお、配位子の合成において、中間生成物1の合成経路は、経路Aを用いてもよいし、経路Bを用いてもよいが、経路Aを用いることが好ましい。これにより、中間生成物1を高い収率で得ることができる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 上記の反応式におけるR1~R6、Z1の説明については、一般式(1)における対応する記載を参照することができる。Aはハロゲン原子を表し、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子、ヨウ素原子が好ましい。
 上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1)で表される有機金属錯体は、その他の公知の合成反応を組み合わせることによっても合成することができる。
(有機金属錯体のエネルギー差ΔEST
 本発明者らは、下記の式(I)および式(II)を満たす有機金属錯体が、発光特性が優れており有用であることを見出した。
 式(I)     SC-TC≦0.2eV
 式(II)    SL-TL≦0.2eV
 上記式(I)および式(II)において、SCは有機金属錯体の一重項励起状態でのエネルギーを表し、TCは有機金属錯体の三重項励起状態でのエネルギーを表し、SLは該有機金属錯体を構成する配位子の一重項励起状態でのエネルギーを表し、TLは該有機金属錯体を構成する配位子の三重項励起状態でのエネルギーを表す。本明細書中において、「一重項励起状態でのエネルギー」と「三重項励起状態でのエネルギー」は、後述の実施例に記載される測定法にしたがって測定される値をいう。また、以下の説明では、SC-TCの値及びSL-TLの値を、「エネルギー差ΔEST」ということがある。
 本発明の有機金属錯体は、有機金属錯体自体および該有機金属錯体を構成する配位子のエネルギー差ΔESTがともに0.2eV以下と小さいことにより、高い発光効率を得ることができる。そして、特に、配位子のエネルギー差ΔESTが小さいことにより、従来の有機金属錯体系の発光材料に比べて、発光効率を格段に高めることができる。
 このため、式(I)と式(II)を満たすように分子設計をすることにより、発光特性が優れた有機金属錯体を提供することができる。例えば、公知の計算法を用いて様々な化学構造についてSC-TCやSL-TLを算出し、式(I)と式(II)を満たすような計算結果が得られた構造を持つ有機金属錯体を実際に製造することにより、発光特性に優れた有機金属錯体を提供することが可能である。また、種々の構造について計算することにより、式(I)と式(II)を満たすような計算結果が得られる構造を一般化し、発光特性が優れた有機金属錯体の一般式を導き出すことも可能である。
 有機金属錯体のSC-TCの値(エネルギー差ΔEST)は、1.0eV以下であることが好ましく、0.7eV以下であることがより好ましく、0.3eV以下であることがさらに好ましい。該有機金属錯体を構成する配位子のSC-TCの値(エネルギー差ΔEST)は、1.0eV以下であることが好ましく、0.7eV以下であることがより好ましく、~0.3eV以下であることがさらに好ましい。
 有機金属錯体の一重項励起状態でのエネルギーSCは、1.5~3.5eVであることが好ましく、1.7~3.3eVであることがより好ましく、1.9~3.1eVであることがさらに好ましい。有機金属錯体の三重項励起状態でのエネルギーTCは、0.5~3.5eVであることが好ましく、1.0~3.2eVであることがより好ましく、1.7~3.1eVであることがさらに好ましい。
[有機発光素子]
 本発明の一般式(1)で表される有機金属錯体は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される有機金属錯体は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される有機金属錯体の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される有機金属錯体からなる発光材料の発明と、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される有機金属錯体を遅延蛍光体として使用する発明と、一般式(1)で表される有機金属錯体を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の一般式(1)で表される有機金属錯体を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。このとき、本発明の一般式(1)で表される化合物は、いわゆるアシストドーパントとして、発光層に含まれる他の発光材料の発光をアシストする機能を有するものであってもよい。すなわち、発光層に含まれる本発明の一般式(1)で表される化合物は、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位の間の最低励起一重項エネルギー準位を有するものであってもよい。
 有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される有機金属錯体を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される有機金属錯体と、発光層以外の層に用いる一般式(1)で表される有機金属錯体は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される有機金属錯体を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R2~R7は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000032
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000039
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000040
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000044
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000045
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される有機金属錯体を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
[有機金属錯体の合成]
(合成例1) 化合物1の合成
Figure JPOXMLDOC01-appb-C000046
[スキーム1] 2-ベンゾオキサゾール-2-イル-4-ブロモフェノールの合成
 4-ブロモサリチルアルデヒド(4.84g、24.1mmol)、2-アミノフェノール(3.15g、28.8mmol)を酢酸(120ml)に加えた。20分撹拌し、酢酸鉛(IV)(11.7g、26.4)を加え1時間撹拌し、さらに110℃で一晩撹拌した。冷却後、氷水に入れて水酸化ナトリウム水溶液で中和した。沈殿物をろ過し、酢酸エチルで抽出した。シリカゲルのカラムクロマトグラフィーで精製した(ヘキサン/ジクロロメタン=70/30)。収量:3.25g、収率:46.7%
1H NMR(500MHz, CDCl3) : δ(ppm) 11.6(1H), 7.88(d, J=8.5Hz, 1H), 7.75-7.73(m, 1H), 7.63-7.60(m, 1H), 7.41-7.39(m, 2H), 7.33(d, J=2.0Hz, 1H), 7.16(dd, J=2.0Hz, J=1.5Hz, 1H)
MS: m/z=288([M-2]+), 290([M]+)
[スキーム2] 2-(2-(ベンジルオキシ)-4-ブロモフェニル)ベンゾ(d)オキサゾールの合成
 2-ベンゾオキサゾール-2-イル-4-ブロモフェノール(1.00g,3.46mmol)と炭酸セシウム(1.18g,3.63mmol)のアセトニトリル(17ml)溶液を撹拌した。これにベンジルブロマイド(0.42ml,3.53mmol)を加え、80℃で2.5時間撹拌した。反応終了後、ジクロロメタンで抽出した。さらに有機層を0.2Nの水酸化ナトリウム水溶液、食塩水で洗浄した。エバポレーターで濃縮後、ヘキサンで再結晶した。収量:1.01g、収率:76.5%
1H NMR (500MHz, CDCl3) : δ(ppm) 8.08(d, J=8.0Hz, 1H), 7.84-7.82(m, 1H), 7.62-7.58(m, 3H), 7.45-7.42(m, 2H), 7.40-7.36(m, 3H), 7.32-7.30(m, 2H), 5.32(s, 2H)
MS:m/z=378([M-2]+), 380([M]+)
[スキーム3] 10-(4-(ベンゾ[d]オキサゾール-2-イル)-3-(ベンジルオキシ)フェニル)-10H-フェノキサジンの合成
 2-(2-(ベンジルオキシ)-4-ブロモフェニル)ベンゾ(d)オキサゾール(1.14g,3.00mmol)、フェノキサジン(0.69g,3.75mmol)、酢酸パラジウム(0.07g,0.30mmol)、炭酸カリウム(1.24g,9.00mmol)のトルエン(15ml)溶液を脱気した。これにトリ-tert-ブチルホスフィン(2Mヘキサン溶液0.55ml,1.10mmol)を加え、100℃で一晩加熱還流させた。反応終了後、ジクロロメタンで抽出した。エバポレーターで濃縮後、中圧カラムクロマトグラフィー(ヘキサン/ジクロロメタン=50/50)で精製した。メタノール/ジクロロメタンで再結晶した。収量:1.36g、収率:67.0%
1H NMR (500MHz, CDCl3) : δ(ppm) 8.39(d, J=8.5Hz, 1H), 7.86-7.84(m, 1H), 7.63-7.61(m, 1H), 7.54(d, J=7.5Hz, 2H), 7.41-7.36(m, 4H), 7.33-7.30(m, 1H), 7.12-7.10(m, 2H), 6.73-6.66(m, 4H), 6.62-6.58(m, 2H), 5.97(dd, J=1.0Hz, J=1.0Hz, 2H), 5.30(s, 2H)+
MS:m/z=481([M-1]+), 483([M+1]+)
[スキーム4] 2-(ベンゾ[d]オキサゾール-2-イル)-5-(10H-フェノキサジン-10-イル)フェノールの合成
 10-(4-(ベンゾ[d]オキサゾール-2-イル)-3-(ベンジルオキシ)フェニル)-10H-フェノキサジン(3.02g,6.25mmol)、10%Pd/C(1.42g,13.5mmol)をテトラヒドロフラン(220ml)に溶解させて撹拌した。さらにギ酸アンモニウム水溶液(7.63g,121.0mmol,9ml)を入れて40℃で2.5時間撹拌した。ヘキサン/ジクロロメタンで再結晶した。収量:0.6384g,収率:87.5%
1H NMR (500MHz, CDCl3) : δ(ppm) 11.67(s, 1H), 8.25(d, J=8.5Hz, 1H), 7.79-7.77(m, 1H), 7.67-7.65(m, 1H), 7.44-7.42(m, 2H), 7.16(d, J=1.5Hz, 1H), 7.02(dd, J=1.5Hz, J=2.0Hz, 1H), 6.71-6.63(m, 6H), 6.11(d, J=6.5Hz, 2H)
MS:m/z=391([M-1]+), 394([M+2]+)
[スキーム5] 化合物1の合成
 2-(ベンゾ[d]オキサゾール-2-イル)-5-(10H-フェノキサジン-10-イル)フェノール(0.89g,2.27mmol)のエタノール(80ml)懸濁溶液に酢酸亜鉛2水和物(0.25g,1.16mmol)を加え、70℃で3日間加熱撹拌した。反応終了後、沈殿物をろ過し、水、メタノールで洗浄した。
収量:0.9113g,収率:93.0%
MALDI-TOF-MS:m/z=846([M-2]+), 848([M]+)
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000047
[スキーム1] 2-(ベンゾ[d]チアゾール-2-イル)-5-ブロモフェノールの合成
 4-ブロモサリチル酸(3.47g、16.0mmol)、2-アミノチオフェノール(2.00g、16.0mmol)をポリリン酸(PPA:100ml)に加え、140℃で24時間加熱攪拌した。反応終了後、冷却し飽和炭酸水素ナトリウム水溶液で中和した。沈殿物をろ過し、酢酸エチルで抽出した。シリカゲルのカラムクロマトグラフィー(クロロホルム/ヘキサン=1:2)により精製した。収量:0.57g、収率:46.8%
MS: m/z=306([M]+), 308([M+2]+)
[スキーム2] 2-(2-(ベンジルオキシ)-4-ブロモフェニル)ベンゾ[d]チアゾールの合成
 2-(ベンゾ[d]チアゾール-2-イル)-5-ブロモフェノール(1.09g、3.55mmol)と炭酸セシウム(1.22g、3.73mmol)のアセトニトリル(17ml)溶液にベンジルブロマイド(0.62g、3.63mmol)を加え、80℃で3時間反応させた。反応終了後、ろ液をジクロロメタンで抽出し、有機層を0.2NのNaOH水溶液、食塩水で洗浄した。エバポレーターで濃縮し、シリカゲルのカラムクロマトグラフィー(ヘキサン/ジクロロメタン=70/30)で精製した。収量:1.14g、収率:80.8%
MS: m/z= 395([M-1]+)
[スキーム3] 10-(4-(ベンゾ[d]チアゾール‐2-イル)-3-(ベンジルオキシ)フェノール)-10H-フェノキサジン の合成
 2-(2-(ベンジルオキシ)-4-ブロモフェニル)ベンゾ[d]チアゾール(1.19g、3.00mmol)、フェノキサジン(0.69g,3.75mmol)、酢酸パラジウム(0.07g,0.30mmol)、炭酸カリウム(1.24g,9.00mmol)のトルエン(15ml)溶液を脱気した。これにトリ-tert-ブチルホスフィン(2Mヘキサン溶液0.55ml,1.10mmol)を加え、100℃で一晩加熱還流させた。反応終了後、ジクロロメタンで抽出した。エバポレーターで濃縮後、中圧カラムクロマトグラフィー(ヘキサン/ジクロロメタン=50/50)で精製した。メタノール/ジクロロメタンで再結晶した。収量:1.17g、収率:78.2%
MS: m/z=498 ([M]+)
[スキーム4] 2-(ベンゾ[d]チアゾール-2-イル)-5-(10H-フェノキサジン-10-イル)フェノール
 10-(4-(ベンゾ[d]チアゾール‐2-イル)-3-(ベンジルオキシ)フェノール)-10H-フェノキサジン(0.77g,1.54mmol)、10%Pd/C(0.35g,0.33mmol)をテトラヒドロフラン(55ml)に溶解させて撹拌した。さらにギ酸アンモニウム水溶液(0.19g,3.00mmol,2ml)を入れて40℃で3時間撹拌した。ヘキサン/ジクロロメタンで再結晶した。収量:0.50g,収率:80.5%
MS: m/z=408([M]+)
[スキーム5] 化合物2の合成
 2-(ベンゾ[d]チアゾール-2-イル)-5-(10H-フェノキサジン-10-イル)フェノール(0.41g,1.00mmol)のエタノール(40ml)懸濁溶液に酢酸亜鉛2水和物(0.11g,0.51mmol)を加え、70℃で一晩加熱撹拌した。反応終了後、沈殿物をろ過し、水、メタノールで洗浄した。収量:0.34g,収率:77.4%
MALDI-TOF-MS:m/z=878([M-2]+), 880([M]+)
(合成例3) 化合物3の合成
Figure JPOXMLDOC01-appb-C000048
[スキーム1] 5-ブロモ-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノールの合成
 反応容器に、4-ブロモ-2-ヒドロキシベンズアルデヒド(5.25g,26.3mmol)、N-フェニル-1,2-フェニレンジアミン(4.81g,26.1mmol)を秤量し2-メトキシエタノール150mLを加え125°Cで38時間攪拌した。反応溶液を室温まで冷却させたのち溶媒を減圧下蒸留した。得られた個体をメタノールで洗浄したのち乾燥させ、白色粉末1を4.68g得た。収率:49.1%
1HNMR (500 MHz, CDCl3): δ(ppm) 13.83 (b, 1H, OH), 7.81 (d, 1H, J = 8.1 Hz, ArH), 7.64-7.61 (m ,3H, ArH), 7.42-7.40 (m, 2H, ArH), 7.36 (dt, 1H, Jortho= 7.6 Hz, Jmeta = 1.1 Hz, ArH), 7.29 (m, 2H, ArH), 7.09 (d, 1H, J = 8.1 Hz, ArH), 6.67 (s, 1H, ArH) ppm.
[スキーム2] 2-(2-(ベンジルオキシ)-4-ブロモフェニル)-1-フェニル-1H-ベンゾ[d]イミダゾールの合成
 反応容器に、5-ブロモ-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノール(4.68g,12.9mmol)、炭酸カリウム(4.42g,32.0mmol)、臭化ベンジル(1.75mL,14.8mmol)を秤量しアセトン100mLを加え窒素雰囲気下60°Cで8時間攪拌した。反応溶液を室温まで冷却させたのち濾過し、溶媒を減圧下蒸留した。残渣に塩化メチレンを加え水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。濾過し、溶媒を減圧下蒸留することによって得られた固体を少量の塩化メチレンに溶解させ、n-ヘキサンを加えることで再沈殿を行った。析出した固体を濾過し、黄白色の粉末を5.38g得た。収率92.3%
1H NMR (500 MHz, CDCl3): δ(ppm) 7.89 (d, 1H, J = 8.0 Hz, ArH), 7.57 (d, 1H, J = 8.1 Hz, ArH), 7.35-(m, 10H, ArH), 7.07-7.05 (m, 2H, ArH), 6.98-6.96 (m, 2H, ArH), 6.91 (d, 1H, J meta= 1.7 Hz, ArH), 4.65 (s, 2H, -CH 2-) ppm.
[スキーム3] 5-(10H-フェノキサジン-10-イル)-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノール
 反応容器に、2-(2-(ベンジルオキシ)-4-ブロモフェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール(0.91g,2.00mmol)、10H-フェノキサジン(0.39g,2.82mmol)、炭酸カリウム(0.83g,6.01mmol)、酢酸パラジウム(II)(0.045g,0.200mmol)、トリ-tert-ブチルホスフィン(0.12g,0.593mmol)、トルエン15mLを加えた。溶液を脱気後、遮光、窒素雰囲気下110℃で19時間攪拌した。反応溶液を室温まで冷却させたのち濾過し、溶媒を減圧下蒸留した。残渣に塩化メチレンを加え水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下蒸留することによって粗生成物を得た。粗製物からカラムクロマトグラフ(担体:SiO2、溶離液:塩化メチレン)によって10H-フェノキサジンを除去したのち酢酸エチルで生成物を溶出させ減圧下蒸留することで褐色オイル状の化合物を得た。
 反応容器に得られたオイル状生成物と10%パラジウム炭素0.56g、7Mギ酸アンモニウム水溶液3mL、テトラヒドロフラン70mLを加え窒素雰囲気下40℃で4時間攪拌し室温まで冷却した。溶媒を減圧下蒸留した。残渣に塩化メチレンを加え水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下蒸留することによって得られた粗製物を少量の塩化メチレンに溶解させ、n-ヘキサンを加えることで再沈殿を行った。析出した固体を濾過し黄白色粉末の化合物を0.66g得た。収率70.9%
1H NMR (500 MHz, CDCl3): δ(ppm) 14.05 (b, 1H, OH), 7.85 (d, 1H, J = 8.0 Hz, ArH), 7.66-7.63 (m, 3H, ArH), 7.49-7.47 (m, 2H, ArH), 7.38 (dt, 1H, Jortho= 7.7 Hz, Jmeta = 1.1 Hz, ArH), 7.31 (dt, 1H, Jortho= 7.7 Hz, Jmeta = 1.0 Hz, ArH), 7.12-7.11 (m, 2H, ArH), 7.05 (m, 1H, ArH), 6.68-6.58 (m, 6H, ArH), 6.50 (dd, 1H, Jortho= 8.6 Hz, Jmeta = 2.2 Hz, ArH), 6.05 (dd, Jortho= 7.7 Hz, Jmeta = 1.5 Hz, ArH) ppm.
[スキーム4] 化合物3の合成
 反応容器に5-(10H-フェノキサジン-10-イル)-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノール(0.612g,1.31mmol)、酢酸亜鉛二水和物(0.128g,0.587mmol)、エタノール70mLを加え窒素雰囲気下70℃で15時間攪拌した。反応溶液を室温まで冷却させたのち反応溶液に超純水200mLを加え攪拌した後、濾過し1日乾燥させ、昇華精製を行うことで黄色粉末の化合物を0.231g(収率35.3%)得た。昇華精製には昇華精製装置(p-100MKIII有機デバイス原材料精製装置、ALS Technology製)を用いた。
 得られた粉末についてマトリクス支援レーザー脱離イオン化飛行時間型質量分析装置(AXIMA-CFR Plus、島津製作所)と元素分析装置(ヤナコCHNコーダーMT-5型、柳本製作所製)を使用して構造を同定した。
Anal Calc for C62H40N6O4Zn: C, 74.60; H, 3.95; N, 8.39. Found: C, 74.59; H,4.04; N, 8.42, MS (m/z) 997.61 [M+H]+.
(合成例4) 化合物13の合成
Figure JPOXMLDOC01-appb-C000049
 4-ブロモ-2-ヒドロキシベンズアルデヒドの代わりに、5-ブロモ-2-ヒドロキシベンズアルデヒドを用いる以外は、合成例1と同様にして化合物13を合成した。
 MALDI-TOF-MSにより目的物の生成を確認した。m/z= 848([M]+)
(合成例5) 化合物25の合成
Figure JPOXMLDOC01-appb-C000050
 合成例1と同様にして配位子1を合成した。この配位子1と水酸化リチウムとをエタノールに溶解、攪拌して化合物25を得た。
 MALDI-TOF-MSにより目的物の生成を確認した。m/z=398([M]+)
(合成例6) 化合物51の合成
Figure JPOXMLDOC01-appb-C000051
[スキーム1] 5-(9,9-ジメチルアクリジン-10(9H)-イル)-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノールの合成
 反応容器に、2-(2-(ベンジルオキシ)-4-ブロモフェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール(2.50g,5.50mmol)、9,9-ジメチル-9,10-ジヒドロアクリジン(1.26g,6.03mmol)、炭酸カリウム(2.28g,16.5mmol)、酢酸パラジウム(II)(0.112g,0.500mmol)、トリ-tert-ブチルホスフィン(0.33g,1.63mmol)、トルエン30mLを加えた。溶媒を脱気後、遮光、窒素雰囲気下110℃で40時間攪拌したあと室温まで冷却した。溶媒を濾過したのち減圧下蒸留した。残渣に塩化メチレンを加え水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下蒸留することによって粗生成物を得た。粗製物をカラムクロマトグラフ(担体:SiO2、溶離液:塩化メチレン)によって9,9-ジメチル-9,10-ジヒドロアクリジンを除去したのち酢酸エチルで生成物を溶出させ溶媒を減圧下蒸留することで褐色オイル状の化合物を得た。
 反応容器に得られたオイル状混合物と10%パラジウム炭素1.0g、7Mギ酸アンモニウム水溶液7.8mL、テトラヒドロフラン100mLを加え窒素雰囲気下40℃で9時間攪拌し室温まで冷却した。溶媒を減圧下蒸留した。残渣に塩化メチレンを加え水で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下蒸留することによって得られた粗製物を少量の塩化メチレンに溶解させ、n-ヘキサンを加えることで再沈殿を行った。析出した固体を濾過し黄白色粉末の5-(9,9-ジメチルアクリジン-10(9H)-イル)-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノールを2.08g得た。収率74.2%
1H NMR (500 MHz, CDCl3): δ(ppm) 14.01 (b, 1H, OH), 7.65 (d, 1H, J = 8.1 Hz, ArH), 7.68-7.61 (m, 3H, ArH), 7.51-7.49 (m, 2H, ArH), 7.42 (dd, 2H, Jortho= 7.7 Hz, Jmeta = 1.6 Hz, ArH), 7.39 (dt, 1H, Jortho= 7.7 Hz, Jmeta = 1.1 Hz, ArH), 7.31 (dt, 1H, Jortho= 7.7 Hz, Jmeta = 1.1 Hz, ArH), 7.13 (d, 1H,Jmeta = 2.1 Hz, ArH), 7.11 (d, 1H, J = 8.1 Hz, ArH), 7.07 (d, 1H, J = 8.5 Hz, ArH), 6.97 (dt, 2H, Jortho= 7.7 Hz, Jmeta = 1.6 Hz ArH), 6.92 (dt, 2H, Jortho= 7.4 Hz, Jmeta = 1.3 Hz ArH), 6.50 (dd, 1H, Jortho= 8.5 Hz, Jmeta = 2.1 Hz, ArH), 6.42 (dd, 2H, Jortho= 8.2 Hz, Jmeta = 1.2 Hz,ArH), 1.64 (s, 6H, CH)ppm.
[スキーム2] 化合物51の合成
 反応容器に5-(9,9-ジメチルアクリジン-10(9H)-イル)-2-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェノール(0.690g,1.40mmol)、酢酸亜鉛二水和物(0.140g,0.640mmol)、エタノール70mLを加え窒素雰囲気下70℃で22時間攪拌したあと室温まで冷却した。反応溶液に超純水200mLを加え攪拌した後、濾過し1日乾燥させて昇華精製を行い黄色粉末の化合物51を0.366g得た。収率54.8%
 得られた粉末についてマトリクス支援レーザー脱離イオン化飛行時間型質量分析装置と元素分析装置を使用して構造を同定した。
Anal Calc for C68H52N6O2Zn: C, 77.74; H, 4.99; N 8.00. Found: C, 77.82; H, 4.86; N, 8.01, MS (m/z) 1033.91 [M-CH3]+.
(合成例7) 化合物55の合成
Figure JPOXMLDOC01-appb-C000052
 合成例1と同様にして配位子1を得た。この配位子1(0.39g、1.00mmol)とアセチルアセトナトマグネシウム(0.11g、0.5mmol)をテトラヒドロフラン(6ml)に溶解し加熱攪拌して化合物55を得た。MALDI-TOF-MSより目的物の生成を確認した。収量:0.32g、収率:80.5%
m/z=807([M]+)
(合成例8) 化合物67の合成
Figure JPOXMLDOC01-appb-C000053
 脱気置換したアルミニウムトリイソプロポキシド(0.10g、0.5mmol)、4-(ジフェニルアミノ)フェノール(0.39g、1.5mmol)のエタノール溶液を85℃で1時間撹拌した。これに2-(ベンゾ[d]オキサゾール-2-イル)-5-(10H-フェノキサジン-10-イル)フェノール(0.39g、1.00mmol)を加え3時間加熱攪拌した。反応終了後、ろ過し、エタノールにて洗浄した。
 MALDI-TOF-MSにより目的物の生成を確認した。m/z=1077([M+7]+)、809([M-261(TPA)]+
(ΔESTの測定法)
 実施例で用いた各材料の一重項エネルギー(ES1)と三重項エネルギー(ET1)の差(ΔEST)は、一重項エネルギー(ES1)と三重項エネルギーを以下の方法で算出し、ΔEST=ES1-ET1により求めた。
(1)一重項エネルギーES1
 測定対象化合物とmCBPとを、測定対象化合物が濃度6重量%となるように共蒸着することでSi基板上に厚さ100nmの試料を作製した。常温(300K)でこの試料の蛍光スペクトルを測定した。励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を燐光強度、横軸を波長の蛍光スペクトルを得た。蛍光スペクトルは、縦軸を発光、横軸を波長とした。この発光スペクトルの短波側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
  換算式:ES1[eV]=1239.85/λedge
 発光スペクトルの測定には、励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を検出器には、ストリークカメラ(浜松ホトニクス社製、C4334)を用いた。
(2) 三重項エネルギーET1
 一重項エネルギーES1と同じ試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を燐光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
[有機金属錯体の光学特性の評価]
(実施例1) 化合物1の光学特性の評価
 Ar雰囲気のグローブボックス中で化合物1のトルエン溶液(濃度1.0X10-5mol/L)を調製した。
 この化合物1の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図2に、即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図3に、過渡減衰曲線を図4に示す。
 図3から、化合物1のΔESTは約0eVであることがわかった。
 また、図4から、窒素バブリングした化合物1の溶液で遅延蛍光が確認され、そのフォトルミネッセンス量子効率は62.4%であった。一方、窒素バブリングなしの化合物1の溶液では、このような遅延蛍光がほとんど確認されず、フォトルミネッセンス量子効率は28.8%であった。窒素バブリングなしの化合物1の溶液でフォトルミネッセンス量子効率が低いのは、化合物1は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例2) 化合物2の光学特性の評価
 化合物1のかわりに化合物2を用いた以外は、実施例1と同様にして化合物2の溶液を調製した。
 この化合物2の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図5に、過渡減衰曲線を図6に示す。
 図6から、窒素バブリングした化合物2の溶液で遅延蛍光が確認され、窒素バブリングなしの化合物2の溶液では、このような遅延蛍光がほとんど確認されなかった。窒素バブリングなしの化合物2の溶液でフォトルミネッセンス量子効率が低いのは、化合物2は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例3) 化合物3の光学特性の評価
 化合物1のかわりに化合物3を用いた以外は、実施例1と同様にして化合物3の溶液を調製した。
 この化合物3の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図7に、過渡減衰曲線を図8に示す。
 図8から、窒素バブリングした化合物3の溶液で遅延蛍光が確認され、窒素バブリングなしの化合物3の溶液では、このような遅延蛍光がほとんど確認されなかった。窒素バブリングなしの化合物3の溶液でフォトルミネッセンス量子効率が低いのは、化合物3は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例4) 化合物13の光学特性の評価
 化合物1のかわりに化合物13を用いた以外は、実施例1と同様にして化合物13の溶液を調製した。
 この化合物13の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図9に、即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図10に、過渡減衰曲線を図11に示す。
 図10から、化合物13のΔESTは0.18eVであることがわかった。また、配位子のΔESTは0.16eVであった。
 また、図11から、窒素バブリングした化合物13の溶液で遅延蛍光が確認され、そのフォトルミネッセンス量子効率は36.2%であった。一方、窒素バブリングなしの化合物13の溶液では、このような遅延蛍光がほとんど確認されず、フォトルミネッセンス量子効率は12.5%であった。窒素バブリングなしの化合物13の溶液でフォトルミネッセンス量子効率が低いのは、化合物13は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例5) 化合物25の光学特性の評価
 化合物1のかわりに化合物25を用いた以外は、実施例1と同様にして化合物25の溶液を調製した。
 この化合物25の溶液について、吸光スペクトルおよび400nm励起光による発光スペクトルを測定した結果を図12に、即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図13に、過渡減衰曲線を図14に示す。
 図13から、化合物25のΔESTは0.05eVであることがわかった。また、配位子のΔESTは0.14eVであった。
 また、図14から、窒素バブリングした化合物25の溶液で遅延蛍光が確認され、そのフォトルミネッセンス量子効率は58.5%であった。一方、窒素バブリングなしの化合物25の溶液では、このような遅延蛍光がほとんど確認されず、フォトルミネッセンス量子効率は17.7%であった。窒素バブリングなしの化合物25の溶液でフォトルミネッセンス量子効率が低いのは、化合物25は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例6) 化合物51の光学特性の評価
 化合物1のかわりに化合物51を用いた以外は、実施例1と同様にして化合物51の溶液を調製した。
 この化合物51の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図15に、過渡減衰曲線を図16に示す。
 図16から、窒素バブリングした化合物51の溶液で遅延蛍光が確認され、窒素バブリングなしの化合物51の溶液では、このような遅延蛍光がほとんど確認されなかった。窒素バブリングなしの化合物51の溶液でフォトルミネッセンス量子効率が低いのは、化合物51は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例7) 化合物55の光学特性の評価
 化合物1のかわりに化合物55を用いた以外は、実施例1と同様にして化合物55の溶液を調製した。
 この化合物55の溶液について、吸光スペクトルおよび420nm励起光による発光スペクトルを測定した結果を図17に、過渡減衰曲線を図18に示す。
 図18から、窒素バブリングした化合物55の溶液で遅延蛍光が確認され、窒素バブリングなしの化合物55の溶液では、このような遅延蛍光がほとんど確認されなかった。窒素バブリングなしの化合物55の溶液でフォトルミネッセンス量子効率が低いのは、化合物55は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への項間交差が阻害されたからと推測される。
(実施例8) 化合物67の光学特性の評価
 化合物1のかわりに化合物67を用いた以外は、実施例1と同様にして化合物25の溶液を調製した。
 この化合物25の溶液について、吸光スペクトルおよび400nm励起光による発光スペクトルを測定した結果を図19に、過渡減衰曲線を図20に示す。図20から、窒素バブリングした化合物67の溶液で遅延蛍光が確認され、そのフォトルミネッセンス量子効率は69.2%であった。一方、窒素バブリングなしの化合物67の溶液では、このような遅延蛍光がほとんど確認されず、フォトルミネッセンス量子効率は15.8%であった。窒素バブリングなしの化合物67の溶液でフォトルミネッセンス量子効率が低いのは、化合物67は遅延蛍光を示す蛍光物質であり、窒素バブリングなしの溶液では、酸素により、励起三重項状態の励起子の励起一重項状態への逆項間交差が阻害されたからと推測される。
(比較例1) 比較化合物Aの光学特性の評価
 化合物1のかわりに下記の構造を有する比較化合物Aを用いた以外は、実施例1と同様にして比較化合物Aの溶液を調製した。
 この比較化合物Aの溶液について、吸光スペクトルおよび400nm励起光による発光スペクトルを測定した結果を図21に、過渡減衰曲線を図22に示す。図22から、窒素バブリングした比較化合物Aの溶液で遅延蛍光が確認されたが、フォトルミネッセンス量子効率は、窒素バブリングした溶液で37.3%、バブリングなしの溶液で17.7%、であり、各実施例の化合物よりも低い値であった。
Figure JPOXMLDOC01-appb-C000054
(比較例2) 比較化合物Bの光学特性の評価
 化合物1のかわりに下記の構造を有する比較化合物Bを用いた以外は、実施例1と同様にして比較化合物Bの溶液を調製した。
 この比較化合物1の溶液について、吸光スペクトルおよび380nm励起光による発光スペクトルを測定した結果を図23に、過渡減衰曲線を図24に示す。図24から、窒素バブリングした比較化合物Bの溶液で遅延蛍光が確認されたが、フォトルミネッセンス量子効率は、窒素バブリングした溶液で38.9%、バブリングなしの溶液で7.5%、であり、各実施例の化合物よりも低い値であった。
Figure JPOXMLDOC01-appb-C000055
[薄膜の作製と評価]
(実施例9)
 石英基板上に真空蒸着法にて、真空度10-4Pa以下の条件にて化合物1とmCBPを異なる蒸着源から蒸着し、化合物1の濃度が6.0重量%である共蒸着薄膜を100nmの厚さで形成した。この薄膜の325nm励起光によるフォトルミネッセンスの過度減衰曲線を5K、50K、100K、150K、200K、250K、300Kで測定した結果を図25に示す。化合物1は熱活性型の遅延蛍光体であることが確認された。
(実施例10)
 化合物1のかわりに化合物2を用いて実施例9と同様に薄膜を作製して評価した。化合物2の過渡減衰曲線を図26に示し、即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図27に示す。化合物2のΔESTは0.14eVであり、化合物2も熱活性型の遅延蛍光体であることが確認された。
(実施例11)
 化合物1のかわりに化合物3を用いて実施例9と同様に薄膜を作製して評価した。化合物3の過渡減衰曲線を図28に示し、蛍光スペクトルおよびりん光スペクトルを測定した結果を図29に示す。化合物3のΔESTは0.12eVであり、化合物3も熱活性型の遅延蛍光体であることが確認された。
(実施例12)
 化合物1のかわりに化合物13を用いて実施例9と同様に薄膜を作製して評価した。化合物13の過渡減衰曲線を図30に示す。化合物13も熱活性型の遅延蛍光体であることが確認された。
(実施例13)
 化合物1のかわりに化合物25を用いて実施例9と同様に薄膜を作製して評価した。化合物25の過渡減衰曲線を図31に示す。化合物25も熱活性型の遅延蛍光体であることが確認された。
(実施例14)
 化合物1のかわりに化合物51を用いて実施例9と同様に薄膜を作製して評価した。化合物51の過渡減衰曲線を図32に示し、蛍光スペクトルおよびりん光スペクトルを測定した結果を図33に示す。合物51のΔESTは0.33eVであり、化合物51も熱活性型の遅延蛍光体であることが確認された。
(実施例15)
 化合物1のかわりに化合物55を用いて実施例9と同様に薄膜を作製して評価した。化合物55の過渡減衰曲線を図34に示し、即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図35に示す。化合物55のΔESTは0.14eVであり、化合物55も熱活性型の遅延蛍光体であることが確認された。
(実施例16)
 化合物1のかわりに化合物67を用いてmCBPをホスト材料としてスピンキャストにより薄膜を作製して評価した。化合物67の過渡減衰曲線を図36に示す。化合物67も熱活性型の遅延蛍光体であることが確認された。また、化合物67の即時蛍光スペクトルおよびりん光スペクトルを測定した結果を図37に示す。図37から、化合物67のΔESTは0.13eVであることがわかった。
(比較例3~6)
 化合物1の代わりに比較化合物C~Fを用いて実施例16と同様に薄膜を作製して評価した。比較化合物C~Fの過渡減衰曲線には遅延蛍光成分は認められなかった。ΔESTは、比較化合物Cが0.59eV、比較化合物Dが0.58eV、比較化合物Eが0.45eV、比較化合物Fが0.43eVでいずれも0.2eVよりも大きかった。
Figure JPOXMLDOC01-appb-C000056
[有機エレクトロルミネッセンス素子の作製と評価]
(実施例17) 化合物1を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを35nmの厚さに形成した。次に、化合物1とmCBPを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は6.0重量%とした。次に、TPBiを65nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図38に示し、電圧-電流密度特性を図39に示し、電流密度-外部量子効率特性を図40に示す。化合物1を発光材料として用いた有機エレクトロルミネッセンス素子は15.0%の高い外部量子効率を達成した。仮に発光量子効率が100%の蛍光材料を用いてバランスの取れた理想的な有機エレクトロルミネッセンス素子を試作したとすると、光取り出し効率が20~30%であれば、蛍光発光の外部量子効率は5~7.5%となる。この値が一般に、蛍光材料を用いた有機エレクトロルミネッセンス素子の外部量子効率の理論限界値とされている。化合物1を用いた本発明の有機エレクトロルミネッセンス素子は、理論限界値を超える高い外部量子効率を実現している点で極めて優れている。
(実施例18) 化合物2を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物1のかわりに化合物2を用いて、実施例17と同じ方法により有機エレクトロルミネッセンス素子を製造した。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図41に示し、電圧-電流密度特性を図42に示し、電流密度-外部量子効率特性を上記の図43に示す。化合物2を発光材料として用いた有機エレクトロルミネッセンス素子は11.6%の高い外部量子効率を達成した。
(実施例19) 化合物3を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを35nmの厚さに形成し、mCPを10nmの厚さに形成した。次に、化合物3とmCPを異なる蒸着源から共蒸着し、30nmの厚さの層を形成して発光層とした。この時、化合物3の濃度は10.0重量%とした。次に、PPTを10nmの厚さに形成し、TPBiを25nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図44に示し、電圧-電流密度特性を図45に示し、電流密度-外部量子効率特性を上記の図46に示す。化合物3を発光材料として用いた有機エレクトロルミネッセンス素子は10.1%の高い外部量子効率を達成した。
(実施例20) 化合物13を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物1のかわりに化合物13を用いて、実施例17と同じ方法により有機エレクトロルミネッセンス素子を製造した。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図47に示し、電圧-電流密度特性を図48に示し、電流密度-外部量子効率特性を上記の図40に示す。化合物13を発光材料として用いた有機エレクトロルミネッセンス素子は10.4%の高い外部量子効率を達成した。
(実施例21) 化合物25を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物1のかわりに化合物25を用いて、実施例17と同じ方法により有機エレクトロルミネッセンス素子を製造した。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図49に示し、電圧-電流密度特性を図50に示し、電流密度-外部量子効率特性を上記の図40に示す。化合物25を発光材料として用いた有機エレクトロルミネッセンス素子は7.1%の高い外部量子効率を達成した。
(実施例22) 化合物51を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを35nmの厚さに形成し、mCBPを10nmの厚さに形成した。次に、化合物51とmCPを異なる蒸着源から共蒸着し、30nmの厚さの層を形成して発光層とした。この時、化合物51の濃度は10.0重量%とした。次に、TPBiを25nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。製造された有機エレクトロルミネッセンス素子による発光が確認された。
(実施例23) 化合物55を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物1のかわりに化合物55を用いて、実施例17と同じ方法により有機エレクトロルミネッセンス素子を製造した。ただし、発光層における化合物55の濃度は10.0重量%に変更し、発光層の厚さも30nmへ変更した。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図51に示し、電圧-電流密度特性を図52に示し、電流密度-外部量子効率特性を上記の図53に示す。化合物55を発光材料として用いた有機エレクトロルミネッセンス素子は10.7%の高い外部量子効率を達成した。
Figure JPOXMLDOC01-appb-C000057
 本発明の化合物は発光材料として有用である。このため本発明の化合物は、有機エレクトロルミネッセンス素子などの有機発光素子用の発光材料として効果的に用いられる。本発明の化合物の中には、遅延蛍光が放射するものも含まれているため、発光効率が高い有機発光素子を提供することも可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (15)

  1.  下記一般式(1)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Xは酸素原子、硫黄原子、または-N(R7)-を表す。Yは酸素原子、硫黄原子、または-N(-SO2-R8)-を表す。R1~R8は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表す。Z1およびZ2は、各々独立に水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、または下記一般式(A)~(E)のいずれかで表される基を表す。ただし、Z1およびZ2のいずれか1つは下記一般式(A)~(E)のいずれかで表される基である。Mは周期律表の水素を除く第1族、第2族、第11族、第12族または第13族元素を表す。LはMの上方に記載される配位子の一般式に包含されない配位子を表す。nは1~3の整数であり、mは0~2の整数である。]
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [一般式(A)~(E)において、R21~R28、R31~R38、R41~R49、R51~R70は、各々独立に水素原子または置換基を表す。R21とR22、R22とR23、R23とR24、R25とR26、R26とR27、R27とR28、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R59とR60、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68、R69とR70は互いに結合して環状構造を形成していてもよい。]
  2.  一般式(1)のZ2が、前記一般式(A)~(E)のいずれかで表される基であることを特徴とする請求項1に記載の有機金属錯体。
  3.  一般式(1)のZ1が、前記一般式(A)~(E)のいずれかで表される基であることを特徴とする請求項1に記載の有機金属錯体。
  4.  一般式(1)のZ1またはZ2が、前記一般式(A)または前記一般式(B)で表される基であることを特徴とする請求項1~3のいずれか1項に記載の有機金属錯体。
  5.  一般式(1)のMが、ZnまたはLiであることを特徴とする請求項1~4のいずれか1項に記載の有機金属錯体。
  6.  一般式(1)のYが酸素原子であることを特徴とする請求項1~5のいずれか1項に記載の有機金属錯体。
  7.  一般式(1)のmが1または2であることを特徴とする請求項1~6のいずれか1項に記載の有機金属錯体。
  8.  Zが置換もしくは無置換のアリールオキシ配位子であることを特徴とする請求項7に記載の有機金属錯体。
  9.  Zが置換もしくは無置換のジアリールアミノ基で置換されたアリールオキシ配位子であることを特徴とする請求項8に記載の有機金属錯体。
  10.  下記の式(I)および式(II)を満たすことを特徴とする有機金属錯体。
     式(I)     SC-TC≦0.2eV
     式(II)    SL-TL≦0.2eV
    [式(I)および式(II)において、SCは有機金属錯体の一重項励起状態でのエネルギーを表し、TCは有機金属錯体の三重項励起状態でのエネルギーを表し、SLは該有機金属錯体を構成する配位子の一重項励起状態でのエネルギーを表し、TLは該有機金属錯体を構成する配位子の三重項励起状態でのエネルギーを表す。]
  11.  請求項1~10のいずれか1項に記載の有機金属錯体からなる発光材料。
  12.  請求項1~10のいずれか1項に記載の有機金属錯体からなる遅延蛍光体。
  13.  請求項11に記載の発光材料を含むことを特徴とする有機発光素子。
  14.  遅延蛍光を放射することを特徴とする請求項13に記載の有機発光素子。
  15.  有機エレクトロルミネッセンス素子であることを特徴とする請求項13または14に記載の有機発光素子。
PCT/JP2014/066502 2013-08-09 2014-06-23 有機金属錯体、発光材料、遅延蛍光体および有機発光素子 WO2015019725A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14834011.0A EP3031805B1 (en) 2013-08-09 2014-06-23 Organic metal complex, luminescent material, delayed phosphor and organic light emitting element
US14/910,791 US9957260B2 (en) 2013-08-09 2014-06-23 Organic metal complex, light emitting material, delayed fluorescent material, and organic light emitting device
CN201480044013.7A CN105636949B (zh) 2013-08-09 2014-06-23 有机金属络合物、发光材料、迟滞荧光体及有机发光元件
JP2015530745A JP6542122B2 (ja) 2013-08-09 2014-06-23 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
KR1020167006180A KR102207643B1 (ko) 2013-08-09 2014-06-23 유기 금속 착물, 발광 재료, 지연 형광체 및 유기 발광 소자

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013166915 2013-08-09
JP2013-166915 2013-08-09
JP2014-065283 2014-03-27
JP2014065283 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015019725A1 true WO2015019725A1 (ja) 2015-02-12

Family

ID=52461065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066502 WO2015019725A1 (ja) 2013-08-09 2014-06-23 有機金属錯体、発光材料、遅延蛍光体および有機発光素子

Country Status (7)

Country Link
US (1) US9957260B2 (ja)
EP (1) EP3031805B1 (ja)
JP (1) JP6542122B2 (ja)
KR (1) KR102207643B1 (ja)
CN (1) CN105636949B (ja)
TW (2) TWI641603B (ja)
WO (1) WO2015019725A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601570A (zh) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 一种含杂环配体的化合物及其制备方法、应用
JP2017079181A (ja) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 光変換材料、光変換フィルム、及び発光素子
CN106892880A (zh) * 2015-12-19 2017-06-27 西安瑞联新材料股份有限公司 一种2-(1-羟基-萘基)-苯并噻唑锌的合成方法
WO2018021406A1 (ja) * 2016-07-29 2018-02-01 大電株式会社 金属錯体およびそれを用いた電子輸送材料
JP2018181916A (ja) * 2017-04-04 2018-11-15 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220204838A1 (en) * 2019-04-04 2022-06-30 Fudan University Long-afterglow luminescent material
KR20210136224A (ko) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
KR20220152353A (ko) 2021-05-08 2022-11-15 최광휴 부착식 기반의 다목적 소형 청소기

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278186A (ja) 1991-03-01 1992-10-02 Ntc Kogyo Kk パラフィン類を蓄熱材とする蓄熱装置
JPH06336586A (ja) 1993-05-28 1994-12-06 Mitsubishi Kasei Corp 有機電界発光素子
JPH09279136A (ja) 1996-04-10 1997-10-28 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
US5779937A (en) 1995-05-16 1998-07-14 Sanyo Electric Co., Ltd. Organic electroluminescent device
WO1998051757A1 (fr) 1997-05-15 1998-11-19 Sanyo Electric Co., Ltd. Element electroluminescent organique
JP2000100569A (ja) 1998-09-22 2000-04-07 Toray Ind Inc 発光素子
JP2000355687A (ja) * 1999-04-15 2000-12-26 Fuji Photo Film Co Ltd 新規アゾール誘導体、発光素子材料およびそれを使用した発光素子
WO2004081019A1 (ja) * 2003-02-14 2004-09-23 Semiconductor Energy Laboratory Co., Ltd. 有機金属錯体、前記錯体を用いた電界発光材料および前記錯体を用いた電界発光素子
JP2005011610A (ja) 2003-06-18 2005-01-13 Nippon Steel Chem Co Ltd 有機電界発光素子
JP2005154396A (ja) * 2003-10-30 2005-06-16 Mitsubishi Chemicals Corp 有機金属錯体およびそれを用いた有機電界発光素子
CN101481613A (zh) * 2009-01-20 2009-07-15 太原理工大学 一种基于苯并噻唑基的有机电致发光材料
CN101654442A (zh) * 2009-09-11 2010-02-24 大连理工大学 2-(2’-羟苯基)苯并噻唑螯合锌衍生物及其制备方法和应用
JP2010059144A (ja) * 2008-06-25 2010-03-18 Gracel Display Inc 新規な有機電界発光化合物及びこれを使用する有機電界発光素子
KR20110061920A (ko) * 2009-12-02 2011-06-10 (주)씨에스엘쏠라 시클로메탈화 화합물 및 이를 구비한 유기발광소자

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349908C (zh) * 2003-02-14 2007-11-21 株式会社半导体能源研究所 有机金属配合物、及使用其的场致发光材料和场致发光元件
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
WO2006022916A2 (en) 2004-08-17 2006-03-02 Alan Penn Method and system for discriminating image representations of classes of objects
US7764819B2 (en) 2006-01-25 2010-07-27 Siemens Medical Solutions Usa, Inc. System and method for local pulmonary structure classification for computer-aided nodule detection
US8600149B2 (en) 2008-08-25 2013-12-03 Telesecurity Sciences, Inc. Method and system for electronic inspection of baggage and cargo
US8180139B2 (en) 2009-03-26 2012-05-15 Morpho Detection, Inc. Method and system for inspection of containers
JP4471032B1 (ja) 2009-03-27 2010-06-02 システム・プロダクト株式会社 X線画像合成装置、方法及びプログラム
DE102010027218A1 (de) * 2010-07-15 2012-01-19 Merck Patent Gmbh Organische Komplexe enthaltend Metalle
CN101891895B (zh) 2010-07-28 2011-11-30 南京航空航天大学 基于桥联双水杨醛结构的苯并噻唑类金属配位聚合物及其制法及应用
WO2012044296A1 (en) 2010-09-30 2012-04-05 Analogic Corporation Object classification using two-dimensional projection
JP2014508954A (ja) 2011-03-22 2014-04-10 アナロジック コーポレイション 合成オブジェクト分割方法およびシステム{compoundobjectseparation}
JP5800039B2 (ja) 2014-01-22 2015-10-28 三菱プレシジョン株式会社 生体データモデル作成方法及びその装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278186A (ja) 1991-03-01 1992-10-02 Ntc Kogyo Kk パラフィン類を蓄熱材とする蓄熱装置
JPH06336586A (ja) 1993-05-28 1994-12-06 Mitsubishi Kasei Corp 有機電界発光素子
US5779937A (en) 1995-05-16 1998-07-14 Sanyo Electric Co., Ltd. Organic electroluminescent device
JPH09279136A (ja) 1996-04-10 1997-10-28 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
WO1998051757A1 (fr) 1997-05-15 1998-11-19 Sanyo Electric Co., Ltd. Element electroluminescent organique
JP2000100569A (ja) 1998-09-22 2000-04-07 Toray Ind Inc 発光素子
JP2000355687A (ja) * 1999-04-15 2000-12-26 Fuji Photo Film Co Ltd 新規アゾール誘導体、発光素子材料およびそれを使用した発光素子
WO2004081019A1 (ja) * 2003-02-14 2004-09-23 Semiconductor Energy Laboratory Co., Ltd. 有機金属錯体、前記錯体を用いた電界発光材料および前記錯体を用いた電界発光素子
JP2005011610A (ja) 2003-06-18 2005-01-13 Nippon Steel Chem Co Ltd 有機電界発光素子
JP2005154396A (ja) * 2003-10-30 2005-06-16 Mitsubishi Chemicals Corp 有機金属錯体およびそれを用いた有機電界発光素子
JP2010059144A (ja) * 2008-06-25 2010-03-18 Gracel Display Inc 新規な有機電界発光化合物及びこれを使用する有機電界発光素子
CN101481613A (zh) * 2009-01-20 2009-07-15 太原理工大学 一种基于苯并噻唑基的有机电致发光材料
CN101654442A (zh) * 2009-09-11 2010-02-24 大连理工大学 2-(2’-羟苯基)苯并噻唑螯合锌衍生物及其制备方法和应用
KR20110061920A (ko) * 2009-12-02 2011-06-10 (주)씨에스엘쏠라 시클로메탈화 화합물 및 이를 구비한 유기발광소자

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, DI ET AL.: "Construction of full-color- tunable and strongly emissive materials by functionalizing a boron-chelate four-ring- fused n-conjugated core", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 10, 2012, pages 4319 - 4328, XP055318367 *
SANTRA, MITHUN ET AL.: "Dramatic Substituent Effects on the Photoluminescence of Boron Complexes of 2-(Benzothiazol-2-yl)phenols", CHEMISTRY - A EUROPEAN JOURNAL, vol. 18, no. 32, 2012, pages 9886 - 9893, XP055318363 *
See also references of EP3031805A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
JP2017079181A (ja) * 2015-10-21 2017-04-27 コニカミノルタ株式会社 光変換材料、光変換フィルム、及び発光素子
CN106892880A (zh) * 2015-12-19 2017-06-27 西安瑞联新材料股份有限公司 一种2-(1-羟基-萘基)-苯并噻唑锌的合成方法
CN105601570A (zh) * 2016-03-02 2016-05-25 吉林奥来德光电材料股份有限公司 一种含杂环配体的化合物及其制备方法、应用
WO2018021406A1 (ja) * 2016-07-29 2018-02-01 大電株式会社 金属錯体およびそれを用いた電子輸送材料
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
JP2018181916A (ja) * 2017-04-04 2018-11-15 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子

Also Published As

Publication number Publication date
EP3031805A1 (en) 2016-06-15
JP6542122B2 (ja) 2019-07-10
JPWO2015019725A1 (ja) 2017-03-02
US9957260B2 (en) 2018-05-01
KR102207643B1 (ko) 2021-01-25
KR20160042065A (ko) 2016-04-18
US20160185765A1 (en) 2016-06-30
EP3031805B1 (en) 2021-08-25
TW201842162A (zh) 2018-12-01
TW201509934A (zh) 2015-03-16
TWI664268B (zh) 2019-07-01
TWI641603B (zh) 2018-11-21
EP3031805A4 (en) 2017-03-29
CN105636949B (zh) 2018-11-20
CN105636949A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6542122B2 (ja) 有機金属錯体、発光材料、遅延蛍光体および有機発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
WO2018155642A1 (ja) 化合物、発光材料および発光素子
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
JP6493220B2 (ja) 発光材料、有機発光素子および化合物
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
WO2015080182A1 (ja) 発光材料、有機発光素子および化合物
WO2014168101A1 (ja) 発光材料、有機発光素子および化合物
WO2014126200A1 (ja) 化合物、発光材料および有機発光素子
WO2013154064A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2015137244A1 (ja) 発光材料、有機発光素子および化合物
WO2015146541A1 (ja) 発光材料、有機発光素子および化合物
WO2014196585A1 (ja) 発光材料、有機発光素子および化合物
JPWO2014034535A1 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
JP2014043541A (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP2015129240A (ja) 発光材料、有機発光素子および化合物
JP2016084283A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530745

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014834011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167006180

Country of ref document: KR

Kind code of ref document: A