WO2018021318A1 - ロータおよび回転電気機械 - Google Patents

ロータおよび回転電気機械 Download PDF

Info

Publication number
WO2018021318A1
WO2018021318A1 PCT/JP2017/026880 JP2017026880W WO2018021318A1 WO 2018021318 A1 WO2018021318 A1 WO 2018021318A1 JP 2017026880 W JP2017026880 W JP 2017026880W WO 2018021318 A1 WO2018021318 A1 WO 2018021318A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
hole
rotor
gate
rotor core
Prior art date
Application number
PCT/JP2017/026880
Other languages
English (en)
French (fr)
Inventor
祥孝 奥山
善紀 安田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17834320.8A priority Critical patent/EP3477830B1/en
Priority to US16/320,231 priority patent/US20190238033A1/en
Priority to CN201780045725.4A priority patent/CN109565228A/zh
Publication of WO2018021318A1 publication Critical patent/WO2018021318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • This disclosure relates to rotors and rotating electrical machines.
  • Patent Document 1 discloses a rotor in which a slit of a rotor core is filled with a resin magnet. Also, in Patent Document 1, a resin core is injected from an upper mold inlet after a rotor core is mounted on a lower mold and an intermediate mold and an upper mold are arranged on the upper surface of the lower mold. Thus, the resin magnet injected from the upper mold inlet fills each slit of the rotor core accommodated in the lower mold via the intermediate sprue runner and gate. In this way, the rotor is manufactured.
  • the rotor core is removed from the mold, and then the surplus portion formed on one end side in the axial direction of the rotor core (the surplus portion of the bond magnet) A removal step for removing the film is performed.
  • the surplus portion is a portion formed by solidifying the resin (thermoplastic resin containing magnet powder) filled in the sprue runner, and is integrated with the bond magnet filled in the magnet hole of the rotor core.
  • a force (hereinafter referred to as a tensile force) acting in a direction to separate the surplus part from the bond magnet acts on the connection part between the surplus part and the bond magnet, and the connection part is broken by the tensile force and surplus. The part is pulled away from the bonded magnet.
  • connection area the connecting portion between the surplus portion and the bond magnet along the axial end surface of the bond magnet in the removal step. Therefore, when the connecting portion between the surplus portion and the bond magnet is broken by a tensile force, a manufacturing defect that a part of the surplus portion remains as a broken piece on one end side in the axial direction of the bond magnet is likely to occur. . When such a manufacturing defect occurs, there is a risk that a rotating electric machine or a device (for example, a compressor) on which the rotating electric machine is mounted will be defective.
  • the present disclosure is intended to provide a rotor that can reduce the possibility of manufacturing defects.
  • a first aspect of the present disclosure includes a rotor core (20) in which a magnet hole (21) penetrating in the axial direction is formed, and the magnet hole (21) provided on one end side in the axial direction of the rotor core (20).
  • 32) is a rotor formed so as to be smaller than the magnet hole (21) in a plan view and positioned inside the magnet hole (21).
  • the assembly (hereinafter referred to as the rotor core assembly (30)) constituted by the rotor core (20) and the first end plate (31) in the rotor manufacturing process (specifically, the removing process). )
  • the rotor core assembly (30) constituted by the rotor core (20) and the first end plate (31) in the rotor manufacturing process (specifically, the removing process).
  • the surplus portion (70) corresponds to the surplus portion of the bond magnet (40), and the bond filled in the magnet hole (21) of the rotor core (20) and the gate hole (32) of the first end plate (31). Integrated with magnet (40).
  • the force (hereinafter referred to as tensile force) acting in the direction of separating the surplus part (70) from the bond magnet (40) is the difference between the surplus part (70) and the bond magnet (40). Acting on the connecting portion, the tensile force causes the connecting portion between the surplus portion (70) and the bond magnet (40) to break, and the surplus portion (70) is pulled away from the bond magnet (40).
  • a gate hole (32) so that it may become smaller than a magnet hole (21) in planar view, and arrange
  • the cross-sectional area (connection area) of the connection portion between the surplus portion (70) and the bonded magnet (40) can be reduced, the surplus portion (70) and the surplus portion (70) in the rotor manufacturing process (specifically, the removal step)
  • the tensile stress acting on the connecting portion with the bonded magnet (40) (specifically, the connecting surface along one axial end surface of the first end plate (31)) can be increased.
  • the surplus part extends along one axial end surface of the first end plate (31). It is possible to induce breakage of the connecting portion between (70) and the bonded magnet (40).
  • a second aspect of the present disclosure is the rotor according to the first aspect, wherein the gate hole (32) is configured by a plurality of partial gate holes (33).
  • the molten resin for the magnet hole (21) in the rotor manufacturing process (resin in a molten state to be a bonded magnet)
  • the injection amount per unit time can be increased. Thereby, molten resin can be quickly spread
  • the plurality of partial gate holes (33) include a central hole (33a) positioned in a circumferential central portion of the magnet hole (21),
  • the rotor includes an end hole (33b) positioned at a circumferential end of the magnet hole (21).
  • the molten resin can be uniformly distributed in the magnet hole (21). .
  • the magnet hole (21) is partitioned into a plurality of partial magnet holes (23) by one or a plurality of bridges (22), and the gate
  • the hole (32) includes a plurality of partial gate holes (33) communicating with the plurality of partial magnet holes (23), respectively, and the partial gate hole (33) is the partial magnet hole (23) in a plan view.
  • the rotor is characterized by being formed so as to be smaller than the partial magnet hole (23).
  • each of the plurality of partial magnet holes (23) is configured by forming the gate hole (32) by the plurality of partial gate holes (33) communicating with the plurality of partial magnet holes (23), respectively. It can be filled with a molten resin (a molten resin that becomes a bonded magnet).
  • the partial gate hole (33) is formed so as to be smaller than the partial magnet hole (23) in a plan view, and the partial gate hole (33) is disposed inside the partial magnet hole (23), so that the rotor ( In the manufacturing process of 10), when a tensile force acts on the connecting portion between the surplus portion (70) and the bonded magnet (40), one end face in the axial direction of the first end plate (31) in each partial gate hole (33) It is possible to induce breakage of the connecting portion between the surplus portion (70) and the bond magnet (40) so as to extend along the line.
  • a rotary electric machine including any one of the rotors according to the first to fourth aspects, and a stator (11) through which the rotor is inserted. .
  • the fifth aspect it is possible to reduce the possibility that a manufacturing defect occurs in which a part of the surplus portion (70) remains as one broken piece (75) on one end side in the axial direction of the bonded magnet (40).
  • the molten resin can be quickly spread into the magnet hole (21), the resin (that is, the bond) filled in the magnet hole (21) of the rotor core (20) and solidified.
  • the degree of orientation of the magnet (40) can be increased.
  • the molten resin can be uniformly distributed in the magnet hole (21), the resin filled in the magnet hole (21) of the rotor core (20) and solidified (that is, The degree of orientation of the bonded magnet (40) can be increased.
  • connection portion between the surplus portion (70) and the bond magnet (40) along the axial end surface of the first end plate (31) in each partial gate hole (33). May cause a rotor (10) manufacturing defect in which a part of the surplus part (70) remains as a broken piece (75) on one end in the axial direction of the bonded magnet (40). Can be reduced.
  • the fifth aspect of the present disclosure it is possible to reduce the possibility that a manufacturing defect occurs in which a part of the surplus portion (70) remains as a broken piece (75) on one end side in the axial direction of the bonded magnet (40). Therefore, it is possible to suppress the occurrence of defective assembly of the rotary electric machine due to defective manufacture of the rotor.
  • FIG. 1 is a plan view illustrating a configuration example of a rotating electric machine according to an embodiment.
  • FIG. 2 is a longitudinal sectional view illustrating a configuration example of the rotor according to the embodiment.
  • FIG. 3 is a longitudinal sectional view showing a lower mold and an upper mold in which the rotor core is fitted.
  • FIG. 4 is a plan view for explaining the positions of the gate hole and the runner.
  • FIG. 5 is a longitudinal sectional view showing an example of an intermediate product in the rotor manufacturing process.
  • FIG. 6 is a longitudinal sectional view showing a comparative example of the rotor.
  • FIG. 7 is a plan view showing a first variation of the rotor.
  • FIG. 8 is a plan view showing Variation 2 of the rotor.
  • FIG. 1 shows a configuration example of a rotating electric machine (1) according to an embodiment.
  • the rotating electrical machine (1) includes a rotor (10), a stator (11), and a drive shaft (12).
  • the rotary electric machine (1) constitutes an embedded magnet motor (IPM motor).
  • FIG. 1 is a schematic plan view of the rotating electric machine (1).
  • FIG. 1 shows a cross section of the stator (11).
  • FIG. 2 is a schematic longitudinal sectional view of the rotor (10).
  • axial direction refers to the direction of the axis of the rotor core (20) (rotation center (O) of the rotor (10)), and “radial direction” refers to the axial direction of the rotor core (20).
  • the “circumferential direction” is a direction around the axis of the rotor core (20).
  • the “outer peripheral side” is a side farther from the axis of the rotor core (20), and the “inner peripheral side” is a side closer to the axis of the rotor core (20).
  • the “longitudinal section” refers to a section along the axial direction, and the “transverse section” refers to a section orthogonal to the axial direction.
  • the rotor (10) is inserted through the stator (11).
  • the stator (11) includes a stator core (15) and a coil (16).
  • the stator core (15) includes a back yoke portion (17) formed in a cylindrical shape, and a plurality (9 in this example) of teeth portions (18) extending in a radial direction from the inner peripheral surface of the back yoke portion (17). have.
  • the coil (16) is wound around the tooth portion (18).
  • hatching of the stator core (15) is omitted for simplification of illustration.
  • [Rotor] 1 and 2 show a configuration example of the rotor (10) according to the embodiment.
  • the rotor (10) includes a rotor core (20), a first end plate (31), a second end plate (36), and a plurality (six in this example) of bond magnets (40).
  • the rotor core (20) is formed in a cylindrical shape.
  • the rotor core (20) may be configured by punching an electromagnetic steel plate by press working to produce a plurality of laminated plates (disks) and laminating the plurality of laminated plates in the axial direction.
  • the rotor core (20) has a plurality (six in this example) of magnet holes (21).
  • the plurality of magnet holes (21) are arranged at a predetermined pitch (60 ° pitch in this example) around the rotation center (O) of the rotor (10).
  • the magnet hole (21) penetrates the rotor core (20) in the axial direction.
  • the magnet hole (21) is formed so as to extend in the circumferential direction of the rotor core (20) in a plan view and cross the radial direction of the rotor core (20).
  • the magnet hole (21) is formed in a U-shape that is convex toward the inner peripheral side in plan view.
  • a shaft hole (25) is formed at the center of the rotor core (20).
  • the drive shaft (12) is inserted and fixed in the shaft hole (25).
  • the first end plate (31) is formed in a disc shape.
  • the first end plate (31) is made of a non-magnetic material and is formed in a disk shape having the same diameter as the rotor core (20).
  • the first end plate (31) is provided on one end side in the axial direction of the rotor core (20), and closes one end side in the axial direction of the plurality of magnet holes (21) of the rotor core (20).
  • a plurality (six in this example) of gate holes (32) are formed in the first end plate (31).
  • the plurality of gate holes (32) penetrate the first end plate (31) in the axial direction and communicate with the plurality of magnet holes (21) of the rotor core (20), respectively.
  • the six gate holes (32) of the first end plate (31) correspond to the six magnet holes (21) of the rotor core (20), respectively. That is, in this example, one gate hole (32) is provided for one magnet hole (21).
  • the gate hole (32) is formed so as to be smaller than the magnet hole (21) corresponding to the gate hole (32) in plan view, and the magnet hole (21 corresponding to the gate hole (32) is formed. ) Is located inside. That is, the gate hole (32) is formed at a position overlapping the magnet hole (21) when viewed from the axial direction of the rotor core (20).
  • the gate hole (32) is formed in a circular shape (for example, a circular shape having a diameter of 1 mm to 5 mm) in plan view.
  • the gate hole (32) is arrange
  • a through hole (35) is formed in the first end plate (31).
  • the through hole (35) penetrates the central portion of the first end plate (31) in the axial direction and communicates with the shaft hole (25) of the rotor core (20).
  • the second end plate (36) is formed in a disc shape.
  • the second end plate (36) is made of a non-magnetic material and is formed in a disk shape having the same diameter as the rotor core (20).
  • the second end plate (36) is provided on the other axial end side of the rotor core (20), and closes the other axial end side of the plurality of magnet holes (21) to the rotor core (20).
  • a through hole (35) is formed in the second end plate (36).
  • the through hole (35) passes through the central portion of the second end plate (36) in the axial direction and communicates with the shaft hole (25) of the rotor core (20).
  • no gate hole (32) is formed in the second end plate (36).
  • the plurality of bonded magnets (40) are filled in the plurality of magnet holes (21), respectively.
  • the bonded magnet (40) injects molten resin (molten thermoplastic resin) containing magnet powder such as neodymium iron boron-based magnet powder or ferrite magnet powder into the magnet hole (21). Then, it is embedded in the rotor core (20) by being filled with a molten resin and solidified.
  • the plurality of bonded magnets (40) each have an outer peripheral surface and an inner peripheral surface that constitute a magnetic pole surface (S pole surface / N pole surface), and different magnetic poles (S poles) in the circumferential direction of the rotor (10). / N poles) are alternately magnetized.
  • the bonded magnet (40) is filled not only in the magnet hole (21) of the rotor core (20) but also in the gate hole (32) of the first end plate (31) communicating with the magnet hole (21). Yes. That is, the bond magnet (40) is filled in the magnet hole (21) and the gate hole (32).
  • a gate mark (41) is formed at one end of the bonded magnet (40) in the axial direction (in FIG. 2, the upper portion, specifically, the portion filled in the gate hole (32)).
  • the gate mark (41) is an uneven surface portion having minute unevenness.
  • the lower mold (50) is configured so that the rotor core assembly (30) can be fitted therein.
  • a recess (51) is provided at the center of the upper surface (one axial end surface) of the lower mold (50).
  • the recess (51) is formed in a circular shape in a plan view, and is configured so that the rotor core assembly (30) can be fitted therein.
  • the rotor core assembly (30) has one axial end (first end plate (31) side) on the upper side and the other axial end side (second end plate (36) side) on the lower side.
  • the upper mold (60) is configured to be clamped with the lower mold (50). By clamping the lower mold (50) and the upper mold (60) fitted with the rotor core assembly (30), the upper surface of the lower mold (50) and one end surface in the axial direction of the rotor core assembly (30) (see FIG. 3, the upper surface of the first end plate (31) is covered with the upper mold (60).
  • the upper mold (60) has a plurality of gate holes (61) formed in the inlet (61), the sprue (62), and the first end plate (31) of the rotor core assembly (30). A plurality of (six in this example) runners (63) respectively corresponding to 32) are provided.
  • the injection port (61) is provided at the center of the upper surface (one end surface in the axial direction) of the upper mold (60), and is formed in a circular shape in plan view.
  • the sprue (62) passes through the center of the upper mold (60) in the vertical direction (axial direction) and communicates with the injection port (61).
  • the sprue (62) has a circular cross section (cross section orthogonal to the axial direction) formed in a circular shape, and a lower end portion formed larger in diameter than a main body portion (portion above the lower end portion). .
  • the plurality of runners (63) are grooves provided on the lower surface (the other end surface in the axial direction) of the upper mold (60), and extend radially from the lower end portion of the sprue (62) outward in the radial direction. Further, as shown in FIG. 4, the runner (63) has a gate hole (32) corresponding to the runner (63) in plan view when the lower mold (50) and the upper mold (60) are clamped. Is formed inside the runner (63) (that is, at a position overlapping the runner (63) when viewed from the axial direction of the rotor core (20)).
  • the rotor core (20) is fitted into the recess (51) of the lower mold (50), and the lower mold (50) and the upper mold (60) into which the rotor core assembly (30) is fitted are assembled. Clamp the mold. Further, the molten resin flows into the shaft hole of the rotor core assembly (30) (the shaft hole (25) of the rotor core (20) and the through hole (35) of the first and second end plates (31, 36)). In order to prevent this, the shaft hole of the rotor core assembly (30) is closed by a closing member (not shown).
  • a molten resin (a molten thermoplastic resin) containing magnet powder is injected into the injection port (61).
  • the molten resin injected into the inlet (61) flows downward in the sprue (62) and is divided into a plurality of runners (63) at the lower end of the sprue (62).
  • the molten resin that has flowed into the runner (63) flows radially outwardly from the runner (63) to the magnet hole (21) of the rotor core (20) from the gate hole (32) of the first end plate (31). It is injected.
  • the molten resin is filled into the plurality of magnet holes (21) of the rotor core (20).
  • the plurality of gate holes (32) of the first end plate (31), the sprue (62) of the upper mold (60), and the plurality of runners (63) are also filled with molten resin.
  • the lower mold (50) and the upper mold (60) are opened to remove the rotor core assembly (30) from the lower mold (50). Further, the closing member (not shown) is removed from the shaft hole of the rotor core assembly (30).
  • the surplus part (70) is formed in the axial direction one end side (1st end plate (31) side) of a rotor core assembly (30).
  • the surplus portion (70) is a portion formed by solidifying the resin (thermoplastic resin containing magnet powder) filled in the sprue (62) of the upper mold (60) and the plurality of runners (63).
  • the surplus portion (70) corresponds to the surplus portion of the plurality of bonded magnets (40), and the plurality of magnet holes (21) of the rotor core (20) and the plurality of gate holes (32 of the first end plate (31)). ) And a plurality of bonded magnets (40) filled in.
  • the surplus portion (70) is radial from the center of the axial end surface (first end plate (31)) of the rotor core assembly (30) toward the plurality of gate holes (32) in plan view. It extends.
  • a gate mark (41) is formed in a portion corresponding to the connection portion with the bond magnet (40) and filled in the gate hole (32). That is, the gate mark (41) corresponds to a fractured surface portion (a surface portion having minute irregularities formed by fracture) formed by fracture of a connection portion between the surplus portion (70) and the bond magnet (40).
  • the same processes as the manufacturing process of the rotor (10) according to this embodiment are performed. That is, in the manufacturing process of the rotor (90), the sprue (62) and the plurality of runners (63) are brought into contact with the upper side (one end side in the axial direction) of the rotor core (20), and the rotor core (20 The molten resin is directly injected into the plurality of magnet holes (21).
  • a plurality of gates extending in the vertical direction from the plurality of runners (63) toward the plurality of magnet holes (21) of the rotor core (20) are provided (for example, Patent Document 1).
  • the axial direction of the bond magnet (40) tends to be relatively larger than the cross-sectional area (connection area) of the connection portion between the surplus portion (70) and the bond magnet (40). It is difficult to break the connecting portion between the surplus portion (70) and the bond magnet (40) along the one end face. Therefore, as shown in FIG.
  • the shaft of the assembly (rotor core assembly (30)) constituted by the rotor core (20) and the first end plate (31) in the manufacturing process (specifically, the removing process) of the rotor (10).
  • the surplus part (70) formed in the direction one end side (1st end plate (31) side) is removed.
  • the surplus portion (70) corresponds to the surplus portion of the bond magnet (40), and the bond filled in the magnet hole (21) of the rotor core (20) and the gate hole (32) of the first end plate (31). Integrated with magnet (40).
  • the force that is, the tensile force acting in the direction of separating the surplus part (70) from the bond magnet (40) is caused between the surplus part (70) and the bond magnet (40).
  • the tensile force causes the connecting portion between the surplus portion (70) and the bond magnet (40) to break, and the surplus portion (70) is pulled away from the bond magnet (40).
  • the gate hole (32) is formed so as to be smaller than the magnet hole (21) in a plan view, and the gate hole (32) is disposed inside the magnet hole (21), thereby surplus. Since the cross-sectional area (connection area) of the connection part between the part (70) and the bond magnet (40) can be reduced, the excess part (70) and the bond magnet (40) can be reduced in the manufacturing process of the rotor (10). The tensile stress acting on the connecting portion (specifically, the connecting surface along one axial end surface of the first end plate (31)) can be increased.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-47212
  • the gate extends vertically from the sprue runner to the slit (magnet hole) of the rotor core
  • the molten resin containing the magnetic powder melted
  • the temperature of the molten resin tends to decrease and the viscosity of the molten resin tends to increase. Therefore, it is difficult for the molten resin to reach the inside of the magnet hole of the rotor core, and it is difficult to increase the degree of orientation of the resin (bond magnet) that is filled and solidified in the magnet hole of the rotor core.
  • one gate hole (32) may be composed of a plurality (three in this example) of partial gate holes (33). That is, a plurality of partial gate holes (33) may be provided for one magnet hole (21).
  • the partial gate hole (33) penetrates the first end plate (31) in the axial direction and communicates with the magnet hole (21) of the rotor core (20).
  • the partial gate hole (33) is formed so as to be smaller than the magnet hole (21) corresponding to the partial gate hole (33) in plan view, and the magnet corresponding to the partial gate hole (33). Located inside the hole (21). That is, the partial gate hole (33) is formed at a position overlapping the magnet hole (21) when viewed from the axial direction of the rotor core (20).
  • the partial gate hole (33) is formed in a circular shape (for example, a circular shape having a diameter of 1 mm or more and 5 mm or less) in plan view.
  • the plurality of partial gate holes (33) are located at the center hole (33a) located at the circumferential center of the magnet hole (21) and at the circumferential end of the magnet hole (21). And an end hole (33b). That is, in FIG. 7, three partial gate holes (33) are provided for one magnet hole (21), and one central hole (33a) and two end hole (33b) are three parts. A hole (three partial gate holes (33) provided for one magnet hole (21)) is formed.
  • type (60) used in the manufacturing process of the rotor (10) shown in FIG. 7 may be comprised as follows.
  • the upper mold (60) has one of a plurality of (18 in the example of FIG. 7) partial gate holes (33) formed in the first end plate (31) of the rotor core assembly (30).
  • a plurality of runners (63) corresponding to one or a plurality of partial gate holes (33) (for example, 18 runners (63) corresponding to 18 partial gate holes (33)) may be provided.
  • the runner (63) has one or more partial gate holes (33) corresponding to the runner (63) in plan view. You may form so that it may be located inside a runner (63).
  • the molten resin injected into the injection port (61) of the upper mold (60) is sprue (62), runner (63), Are sequentially injected from the partial gate hole (33) of the first end plate (31) to the magnet hole (21) of the rotor core (20).
  • the gate hole (32) is constituted by a plurality of partial gate holes (33), so that the magnet hole (21) is melted in the manufacturing process of the rotor (10). It is possible to increase the injection amount per unit time of the resin (the molten resin to be a bonded magnet). As a result, the molten resin can be quickly spread into the magnet hole (21), and the degree of orientation of the resin (that is, the bonded magnet (40)) filled and solidified in the magnet hole (21) of the rotor core (20). Can be increased.
  • the gate hole (32) is constituted by the central hole (33a) and the end hole (33b), so that the partial gate hole (33) becomes the circumferential central part (or circumferential edge) of the magnet hole (21).
  • the molten resin can be distributed more uniformly in the magnet hole (21) than when it is unevenly distributed in the part). Thereby, the orientation degree of resin (namely, bonded magnet (40)) with which the magnet hole (21) of the rotor core (20) was filled and solidified can be raised.
  • a plurality (three in this example) of partial magnet holes (23) are formed by one or a plurality of (two in this example) bridges (22). ).
  • the gate hole (32) may be constituted by a plurality (three in this example) of partial gate holes (33) communicating with the plurality of partial magnet holes (23).
  • one partial gate hole (33) is provided for one partial magnet hole (23).
  • the partial gate hole (33) penetrates the first end plate (31) in the axial direction and communicates with the partial magnet hole (23) of the rotor core (20).
  • the partial gate hole (33) is formed so as to be smaller than the partial magnet hole (23) corresponding to the partial gate hole (33) in plan view, and corresponds to the partial gate hole (33). It is located inside the partial magnet hole (23). That is, the partial gate hole (33) is formed at a position overlapping the partial magnet hole (23) when viewed from the axial direction of the rotor core (20).
  • the partial gate hole (33) is formed in a circular shape (for example, a circular shape having a diameter of 1 mm or more and 5 mm or less) in plan view.
  • the gate hole (32) is arrange
  • type (60) used in the manufacturing process of the rotor (10) shown in FIG. 8 may be comprised as follows.
  • the upper die (60) has one of a plurality of (36 in the example of FIG. 7) partial gate holes (33) formed in the first end plate (31) of the rotor core assembly (30).
  • a plurality of runners (63) corresponding to one or a plurality of partial gate holes (33) may be provided, and the runner (63) is formed by clamping the lower mold (50) and the upper mold (60).
  • the one or more partial gate holes (33) corresponding to the runner (63) in plan view are positioned inside the runner (63) (that is, the runner as viewed from the axial direction of the rotor core (20)). (In a position overlapping (63)).
  • the molten resin injected into the injection port (61) of the upper mold (60) is sprue (62), runner (63), Are sequentially injected from the partial gate hole (33) of the first end plate (31) to the magnet hole (21) of the rotor core (20).
  • the gate hole (32) is constituted by the plurality of partial gate holes (33) respectively communicating with the plurality of partial magnet holes (23).
  • Each of the magnet holes (23) can be filled with a molten resin (a molten resin that becomes a bonded magnet).
  • the partial gate hole (33) is formed so as to be smaller than the partial magnet hole (23) in a plan view, and the partial gate hole (33) is disposed inside the partial magnet hole (23), so that the rotor ( In the manufacturing process of 10), when a tensile force acts on the connecting portion between the surplus portion (70) and the bonded magnet (40), one end face in the axial direction of the first end plate (31) in each partial gate hole (33) It is possible to induce breakage of the connecting portion between the surplus portion (70) and the bond magnet (40) so as to extend along the line. As a result, it is possible to reduce the possibility of production failure of the rotor (10) in which a part of the surplus part (70) remains as a broken piece (75) on one end side in the axial direction of the bonded magnet (40). .
  • first and second end plates (31, 36) are made of a non-magnetic material
  • first and second end plates (31, 36) are magnetic. You may be comprised with the body material.
  • the gate hole (32) is not formed in the second end plate (36) is taken as an example.
  • the gate hole (32) is formed in the second end plate (36). May be. That is, the configuration of the second end plate (36) may be the same as the configuration of the first end plate (31).
  • the shape of the magnet hole (21) may be a U-shape that protrudes toward the inner periphery as shown in FIG. 1, or an arc shape that protrudes toward the inner periphery as shown in FIG. There may be other shapes.
  • the number of bond magnets (40) constituting one magnetic pole of the rotor (10) may be one as shown in FIG. 1, or may be three as shown in FIG. However, other numbers may be used.
  • a plurality of (six in the example of FIG. 1) runners (63) corresponding to the plurality of gate holes (32) are provided in the upper mold (60), and a plurality of runners (63) are provided.
  • a plurality of runners (63) corresponding to one or a plurality of partial gate holes (33) As an example, the upper mold (60) has a plurality of runners (63) omitted, and the upper mold (60) has a sprue (62) formed as follows. May be.
  • the sprue (62) has a plurality of pieces formed on the first end plate (31) of the rotor core assembly (30) in a plan view when the lower die (50) and the upper die (60) are clamped. All of the gate holes (six gate holes (32) in the example of FIG. 1, 18 partial gate holes (33) in the example of FIG. 7, 36 partial gate holes (33) in the example of FIG. 8)) It may be formed so as to be located inside the lower end of (62). In such a configuration, in the manufacturing process (specifically, the injection process) of the rotor (10), the molten resin injected into the injection port (61) of the upper mold (60) flows through the sprue (62) to the first end. It is injected from the gate hole (32) or the partial gate hole (33) of the plate (31) into the magnet hole (21) of the rotor core (20).
  • the above-described rotor can be applied to rotating electric machines such as electric motors and generators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

ロータコア(20)には、軸方向に貫通する磁石孔(21)が形成されている。第1端板(31)は、ロータコア(20)の軸方向一端側に設けられ、磁石孔(21)と連通するゲート孔(32)が形成されている。ボンド磁石(40)は、磁石孔(21)およびゲート孔(32)に充填されている。ゲート孔(32)は、平面視において磁石孔(21)よりも小さくなるように形成されて磁石孔(21)の内側に位置している。

Description

ロータおよび回転電気機械
 この開示は、ロータおよび回転電気機械に関する。
 従来、電動機や発電機などの回転電気機械が利用されている。このような回転電気機械の一例として、ロータコアに永久磁石が埋め込まれたロータを備えた回転電気機械(いわゆる埋込磁石モータ)が知られている。この種の回転電気機械に備えられるロータは、例えば特許文献1などに開示されている。特許文献1には、ロータコアのスリットに樹脂磁石が充填されたロータが開示されている。また、特許文献1では、ロータコアを下型に装着して下型の上面に中間型および上型を配置した後に、上型の注入口から樹脂磁石を注入している。これにより、上型の注入口から注入された樹脂磁石は、中間型のスプルランナおよびゲートを経由して下型に収容されたロータコアの各スリットに充填される。このようにして、ロータが製造される。
特開2003-47212号公報
 ところで、特許文献1のロータを製造する際に、スプルランナからロータコアのスリット(磁石孔)へ向けて上下方向に延伸するゲートを省略し、スプルランナとロータコアの上側(軸方向一端側)とを接触させてスプルランナからロータコアの磁石孔に溶融樹脂を直接的に射出することが考えられる。この場合、ロータコアの磁石孔およびスプルランナに充填された溶融樹脂が固化された後に、金型からロータコアが取り外され、その後、ロータコアの軸方向一端側に形成された余剰部(ボンド磁石の余剰部分)を除去する除去工程が行われることになる。なお、余剰部は、スプルランナに充填された樹脂(磁石粉末を含有する熱可塑性樹脂)が固化されて形成された部分であり、ロータコアの磁石孔に充填されたボンド磁石と一体となっている。そして、除去工程では、余剰部をボンド磁石から引き離す方向に働く力(以下、引張力と記載)が余剰部とボンド磁石との接続部に作用し、その引張力により接続部が破断して余剰部がボンド磁石から引き離される。
 しかしながら、スプルランナとロータコアの軸方向一端側とを接触させてスプルランナからロータコアの磁石孔に溶融樹脂を直接的に射出する場合、余剰部とボンド磁石との接続部の断面積(接続面積)が比較的に大きくなる傾向にあるので、除去工程においてボンド磁石の軸方向一端面に沿うように余剰部とボンド磁石との接続部を破断させることが困難である。そのため、引張力により余剰部とボンド磁石との接続部を破断させた場合に、余剰部の一部が破断片としてボンド磁石の軸方向一端側に残存するという製造不良が発生しやすくなっている。そして、このような製造不良が発生すると、回転電気機械や回転電気機械を搭載する装置(例えば圧縮機)の組立不良が発生するおそれがある。
 そこで、この開示は、製造不良が発生する可能性を低減することが可能なロータを提供することを目的とする。
 この開示の第1の態様は、軸方向に貫通する磁石孔(21)が形成されたロータコア(20)と、上記ロータコア(20)の軸方向一端側に設けられて上記磁石孔(21)と連通するゲート孔(32)が形成された第1端板(31)と、上記磁石孔(21)および上記ゲート孔(32)に充填されたボンド磁石(40)とを備え、上記ゲート孔(32)は、平面視において上記磁石孔(21)よりも小さくなるように形成されて該磁石孔(21)の内側に位置していることを特徴とするロータである。
 上記第1の態様では、ロータの製造工程(具体的には除去工程)においてロータコア(20)と第1端板(31)とにより構成された組立体(以下、ロータコア組立体(30)と記載)の軸方向一端側(第1端板(31)側)に形成された余剰部(70)が除去される。なお、余剰部(70)は、ボンド磁石(40)の余剰部分に相当し、ロータコア(20)の磁石孔(21)および第1端板(31)のゲート孔(32)に充填されたボンド磁石(40)と一体となっている。具体的には、ロータの製造工程において、余剰部(70)をボンド磁石(40)から引き離す方向に働く力(以下、引張力と記載)が余剰部(70)とボンド磁石(40)との接続部に作用し、この引張力によって余剰部(70)とボンド磁石(40)との接続部が破断して余剰部(70)がボンド磁石(40)から引き離される。
 そして、上記第1の態様では、平面視において磁石孔(21)よりも小さくなるようにゲート孔(32)を形成してゲート孔(32)を磁石孔(21)の内側に配置することにより、余剰部(70)とボンド磁石(40)との接続部の断面積(接続面積)を減少させることができるので、ロータの製造工程(具体的には除去工程)において余剰部(70)とボンド磁石(40)との接続部(具体的には第1端板(31)の軸方向一端面に沿う接続面)に作用する引張応力を増加させることができる。これにより、ロータの製造工程において余剰部(70)とボンド磁石(40)との接続部に引張力が作用する場合に、第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができる。
 この開示の第2の態様は、上記第1の態様において、上記ゲート孔(32)は、複数の部分ゲート孔(33)によって構成されていることを特徴とするロータである。
 上記第2の態様では、複数の部分ゲート孔(33)によってゲート孔(32)を構成することにより、ロータの製造工程において磁石孔(21)に対する溶融樹脂(ボンド磁石となる溶融状態の樹脂)の単位時間当たりの注入量を増加させることができる。これにより、溶融樹脂を磁石孔(21)内に素早く行き渡らせることができる。
 この開示の第3の態様は、上記第2の態様において、上記複数の部分ゲート孔(33)は、上記磁石孔(21)の周方向中央部に位置する中央部孔(33a)と、該磁石孔(21)の周方向端部に位置する端部孔(33b)とを含んでいることを特徴とするロータである。
 上記第3の態様では、中央部孔(33a)と端部孔(33b)とによってゲート孔(32)を構成することにより、溶融樹脂を磁石孔(21)内に均一に行き渡らせることができる。
 この開示の第4の態様は、上記第1の態様において、上記磁石孔(21)は、1つまたは複数のブリッジ(22)によって複数の部分磁石孔(23)に区画されており、上記ゲート孔(32)は、上記複数の部分磁石孔(23)とそれぞれ連通する複数の部分ゲート孔(33)によって構成され、上記部分ゲート孔(33)は、平面視において上記部分磁石孔(23)よりも小さくなるように形成されて該部分磁石孔(23)の内側に位置していることを特徴とするロータである。
 上記第4の態様では、複数の部分磁石孔(23)とそれぞれ連通する複数の部分ゲート孔(33)によってゲート孔(32)を構成することにより、複数の部分磁石孔(23)の各々に溶融樹脂(ボンド磁石となる溶融状態の樹脂)を充填することができる。また、平面視において部分磁石孔(23)よりも小さくなるように部分ゲート孔(33)を形成して部分ゲート孔(33)を部分磁石孔(23)の内側に配置することにより、ロータ(10)の製造工程において余剰部(70)とボンド磁石(40)との接続部に引張力が作用する場合に、各部分ゲート孔(33)において第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができる。
 この開示の第5の態様は、上記第1~第4の態様のいずれか1つのロータと、上記ロータが挿通されるステータ(11)とを備えていることを特徴とする回転電気機械である。
 上記第5の態様では、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するという製造不良が発生する可能性を低減することができる。
 この開示の第1の態様によれば、ロータの製造工程において余剰部(70)とボンド磁石(40)との接続部に引張力が作用する場合に、第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができるので、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するというロータ(10)の製造不良が発生する可能性を低減することができる。
 この開示の第2の態様によれば、溶融樹脂を磁石孔(21)内に素早く行き渡らせることができるので、ロータコア(20)の磁石孔(21)に充填されて固化された樹脂(すなわちボンド磁石(40))の配向度を高めることができる。
 この開示の第3の態様によれば、溶融樹脂を磁石孔(21)内に均一に行き渡らせることができるので、ロータコア(20)の磁石孔(21)に充填されて固化された樹脂(すなわちボンド磁石(40))の配向度を高めることができる。
 この開示の第4の態様によれば、各部分ゲート孔(33)において第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができるので、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するというロータ(10)の製造不良が発生する可能性を低減することができる。
 この開示の第5の態様によれば、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するという製造不良が発生する可能性を低減することができるので、ロータの製造不良に起因する回転電気機械の組立不良の発生を抑制することができる。
図1は、実施形態による回転電気機械の構成例を示す平面図である。 図2は、実施形態によるロータの構成例を示す縦断面図である。 図3は、ロータコアが嵌め込まれた下型と上型とを示す縦断面図である。 図4は、ゲート孔とランナの位置について説明するための平面図である。 図5は、ロータ製造工程における中間生成物の一例を示す縦断面図である。 図6は、ロータの比較例を示す縦断面図である。 図7は、ロータの変形例1を示す平面図である。 図8は、ロータの変形例2を示す平面図である。
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
 (回転電気機械)
 図1は、実施形態による回転電気機械(1)の構成例を示している。回転電気機械(1)は、ロータ(10)とステータ(11)と駆動軸(12)とを備えている。この例では、回転電気機械(1)は、埋込磁石モータ(IPMモータ)を構成している。なお、図1は、回転電気機械(1)の概略平面図であるが、説明の便宜上、図1では、ステータ(11)については横断面を図示している。図2は、ロータ(10)の概略縦断面図である。
 以下の説明において、「軸方向」は、ロータコア(20)の軸心(ロータ(10)の回転中心(O))の方向のことであり、「径方向」は、ロータコア(20)の軸方向と直交する方向のことであり、「周方向」は、ロータコア(20)の軸心回りの方向のことである。また、「外周側」は、ロータコア(20)の軸心からより遠い側のことであり、「内周側」は、ロータコア(20)の軸心により近い側のことである。なお、「縦断面」は、軸方向に沿った断面のことであり、「横断面」は、軸方向と直交する断面のことである。
  〔ステータ〕
 ステータ(11)には、ロータ(10)が挿通される。ステータ(11)は、ステータコア(15)とコイル(16)とを備えている。ステータコア(15)は、円筒状に形成されたバックヨーク部(17)と、バックヨーク部(17)の内周面から径方向に延びる複数(この例では9つ)のティース部(18)とを有している。コイル(16)は、ティース部(18)に巻回されている。なお、図1では、図示の簡略化のため、ステータコア(15)のハッチングを省略している。
  〔ロータ〕
 図1および図2は、実施形態によるロータ(10)の構成例を示している。ロータ(10)は、ロータコア(20)と、第1端板(31)と、第2端板(36)と、複数(この例では6つ)のボンド磁石(40)とを備えている。
   〈ロータコア〉
 ロータコア(20)は、円柱状に形成されている。例えば、ロータコア(20)は、電磁鋼板をプレス加工によって打ち抜いて複数の積層板(円盤)を作製し、複数の積層板を軸方向に積層することにより構成されていてもよい。
 ロータコア(20)には、複数(この例では6つ)の磁石孔(21)が形成されている。複数の磁石孔(21)は、ロータ(10)の回転中心(O)周りに所定のピッチ(この例では60度ピッチ)で配列されている。そして、磁石孔(21)は、ロータコア(20)を軸方向に貫通している。また、磁石孔(21)は、平面視においてロータコア(20)の周方向に延びてロータコア(20)の径方向を横切るように形成されている。この例では、磁石孔(21)は、平面視において内周側に凸となるU字状に形成されている。
 ロータコア(20)の中心部には、軸孔(25)が形成されている。軸孔(25)には、駆動軸(12)が挿通されて固定されている。
   〈第1端板〉
 第1端板(31)は、円板状に形成されている。この例では、第1端板(31)は、非磁性体材料で構成され、ロータコア(20)と同径の円板状に形成されている。そして、第1端板(31)は、ロータコア(20)の軸方向一端側に設けられ、ロータコア(20)の複数の磁石孔(21)の軸方向一端側を閉塞している。
 また、第1端板(31)には、複数(この例では6つ)のゲート孔(32)が形成されている。複数のゲート孔(32)は、第1端板(31)を軸方向に貫通し、ロータコア(20)の複数の磁石孔(21)とそれぞれ連通している。この例では、第1端板(31)の6つのゲート孔(32)がロータコア(20)の6つの磁石孔(21)にそれぞれ対応している。すなわち、この例では、1つの磁石孔(21)に対して1つのゲート孔(32)が設けられている。
 また、ゲート孔(32)は、平面視において、そのゲート孔(32)に対応する磁石孔(21)よりも小さくなるように形成されて、そのゲート孔(32)に対応する磁石孔(21)の内側に位置している。すなわち、ゲート孔(32)は、ロータコア(20)の軸方向から見て磁石孔(21)と重なる位置に形成されている。この例では、ゲート孔(32)は、平面視において円形状(例えば1mm以上で5mm以下の径を有する円形状)に形成されている。また、この例では、ゲート孔(32)は、磁石孔(21)の周方向中央部に配置されている。
 また、第1端板(31)には、貫通孔(35)が形成されている。貫通孔(35)は、第1端板(31)の中心部を軸方向に貫通し、ロータコア(20)の軸孔(25)と連通している。
   〈第2端板〉
 第2端板(36)は、円板状に形成されている。この例では、第2端板(36)は、非磁性体材料で構成され、ロータコア(20)と同径の円板状に形成されている。そして、第2端板(36)は、ロータコア(20)の軸方向他端側に設けられ、ロータコア(20)に複数の磁石孔(21)の軸方向他端側を閉塞している。
 第2端板(36)には、貫通孔(35)が形成されている。貫通孔(35)は、第2端板(36)の中心部を軸方向に貫通し、ロータコア(20)の軸孔(25)と連通している。なお、この例では、第2端板(36)には、ゲート孔(32)が形成されていない。
   〈ボンド磁石〉
 複数のボンド磁石(40)は、複数の磁石孔(21)にそれぞれ充填されている。この例では、ボンド磁石(40)は、ネオジム鉄ボロン系の磁石の粉末やフェライト磁石の粉末などの磁石粉末を含有する溶融樹脂(溶融状態の熱可塑性樹脂)を磁石孔(21)に射出し、溶融樹脂を充填させて固化させることにより、ロータコア(20)に埋設されている。また、複数のボンド磁石(40)は、それぞれの外周面および内周面が磁極面(S極面/N極面)を構成し、且つ、ロータ(10)の周方向に異なる磁極(S極/N極)が交互に並ぶように、着磁されている。
 なお、ボンド磁石(40)は、ロータコア(20)の磁石孔(21)だけでなく、その磁石孔(21)と連通する第1端板(31)のゲート孔(32)にも充填されている。すなわち、ボンド磁石(40)は、磁石孔(21)およびゲート孔(32)に充填されている。
 また、ボンド磁石(40)の軸方向一端部(図2では上部、具体的には、ゲート孔(32)に充填された部分)には、ゲート痕(41)が形成されている。ゲート痕(41)は、微小な凹凸を有する凹凸面部となっている。
  〔ロータ製造工程において用いられる金型〕
 次に、ロータ(10)の製造工程について説明する前に、図3および図4を参照してロータ(10)の製造工程において用いられる金型(下型(50)および上型(60))について説明する。なお、以下では、説明の便宜上、ロータコア(20)と第1端板(31)と第2端板(36)とにより構成される組立体を「ロータコア組立体(30)」と記載し、ロータコア組立体(30)の第1端板(31)側をロータコア組立体(30)の軸方向一端側とし、ロータコア組立体(30)の第2端板(36)側をロータコア組立体(30)の軸方向他端側とする。
   〈下型〉
 下型(50)は、ロータコア組立体(30)を嵌め込むことができるように構成されている。具体的には、下型(50)の上面(軸方向一端面)の中央部には、凹部(51)が設けられている。凹部(51)は、平面視において円形状に形成され、ロータコア組立体(30)を嵌め込むことができるように構成されている。ロータコア組立体(30)の軸方向一端側(第1端板(31)側)が上側となり軸方向他端側(第2端板(36)側)が下側となるようにロータコア組立体(30)を凹部(51)に嵌め込むことにより、ロータコア組立体(30)の軸方向他端面(図3では第2端板(36)の下面)が凹部(51)の底面に覆われる。
   〈上型〉
 上型(60)は、下型(50)と型締めすることができるように構成されている。ロータコア組立体(30)が嵌め込まれた下型(50)と上型(60)とを型締めすることにより、下型(50)の上面およびロータコア組立体(30)の軸方向一端面(図3では第1端板(31)の上面)が上型(60)に覆われる。また、この例では、上型(60)には、注入口(61)と、スプル(62)と、ロータコア組立体(30)の第1端板(31)に形成された複数のゲート孔(32)にそれぞれ対応する複数(この例では6つ)のランナ(63)とが設けられている。
 注入口(61)は、上型(60)の上面(軸方向一端面)の中央部に設けられ、平面視において円形状に形成されている。スプル(62)は、上型(60)の中央部を上下方向(軸方向)に貫通して注入口(61)と連通している。また、スプル(62)は、その横断面(軸方向と直交する断面)が円形状に形成され、その下端部が本体部(下端部よりも上側の部分)よりも大径に形成されている。複数のランナ(63)は、上型(60)の下面(軸方向他端面)に設けられた溝であり、スプル(62)の下端部から径方向外方へ向けて放射状に延びている。また、図4に示すように、ランナ(63)は、下型(50)と上型(60)とを型締めした場合に、平面視においてそのランナ(63)に対応するゲート孔(32)がそのランナ(63)の内側に位置するように(すなわちロータコア(20)の軸方向から見てランナ(63)と重なる位置に)形成されている。
  〔ロータ製造工程〕
 次に、図3および図5を参照して、この実施形態によるロータ(10)の製造工程について説明する。この例では、型締め工程と、射出工程と、固化工程と、型開き工程と、除去工程とが順に行われる。
   〈型締め工程〉
 まず、図3に示すように、ロータコア(20)を下型(50)の凹部(51)に嵌め込み、ロータコア組立体(30)が嵌め込まれた下型(50)と上型(60)とを型締めする。また、溶融樹脂がロータコア組立体(30)の軸孔(ロータコア(20)の軸孔(25)と第1および第2端板(31,36)の貫通孔(35))に流入することを阻止するために、ロータコア組立体(30)の軸孔が閉塞部材(図示を省略)により閉塞されている。
   〈射出工程〉
 次に、図3の矢印で示すように、磁石粉末を含有する溶融樹脂(溶融状態の熱可塑性樹脂)を注入口(61)に注入する。注入口(61)に注入された溶融樹脂は、スプル(62)を下方へ向けて流れてスプル(62)の下端部において複数のランナ(63)に分流する。ランナ(63)に流入した溶融樹脂は、ランナ(63)を径方向外方へ向けて流れて第1端板(31)のゲート孔(32)からロータコア(20)の磁石孔(21)へ射出される。これにより、ロータコア(20)の複数の磁石孔(21)に溶融樹脂が充填される。そして、第1端板(31)の複数のゲート孔(32)と上型(60)のスプル(62)および複数のランナ(63)にも溶融樹脂が充填される。
   〈固化工程〉
 次に、下型(50)および上型(60)を冷却して溶融樹脂の温度を低下させる。これにより、ロータコア(20)の複数の磁石孔(21)と第1端板(31)の複数のゲート孔(32)と上型(60)のスプル(62)および複数のランナ(63)に充填された溶融樹脂が固化する。これにより、複数のボンド磁石(40)が形成される。
   〈型開き工程〉
 次に、下型(50)と上型(60)とを型開きして下型(50)からロータコア組立体(30)を取り外す。また、ロータコア組立体(30)の軸孔から閉塞部材(図示を省略)を取り外す。なお、図5に示すように、ロータコア組立体(30)の軸方向一端側(第1端板(31)側)には、余剰部(70)が形成される。余剰部(70)は、上型(60)のスプル(62)および複数のランナ(63)に充填された樹脂(磁石粉末を含有する熱可塑性樹脂)が固化されて形成された部分である。すなわち、余剰部(70)は、複数のボンド磁石(40)の余剰部分に相当し、ロータコア(20)の複数の磁石孔(21)および第1端板(31)の複数のゲート孔(32)に充填された複数のボンド磁石(40)と一体となっている。この例では、余剰部(70)は、平面視においてロータコア組立体(30)の軸方向一端面(第1端板(31))の中心部から複数のゲート孔(32)へ向けて放射状に延びている。
   〈除去工程〉
 次に、ロータコア組立体(30)の軸方向一端側(第1端板(31)側)に形成された余剰部(70)を除去する。この例では、図5の白抜き矢印で示すように、軸状に形成された突き当て部材(図示を省略)をロータコア組立体(30)の軸孔に挿通して余剰部(70)に突き当てることにより、余剰部(70)をボンド磁石(40)から引き離す方向に働く力(以下、引張力と記載)が余剰部(70)とボンド磁石(40)との接続部に作用する。この引張力によって余剰部(70)とボンド磁石(40)との接続部が破断して余剰部(70)がボンド磁石(40)から引き離される。そして、図1および図2に示すように、ボンド磁石(40)の軸方向一端部のうち引張力に起因する破断により余剰部(70)から引き離された部分(すなわち、余剰部(70)とボンド磁石(40)との接続部に対応する部分でありゲート孔(32)に充填された部分)に、ゲート痕(41)が形成される。すなわち、ゲート痕(41)は、余剰部(70)とボンド磁石(40)との接続部の破断により形成される破断面部(破断により形成される微小な凹凸を有する面部)に相当する。
  〔ロータの比較例〕
 次に、図6を参照してロータ(10)の比較例(以下、ロータ(90)と記載)について説明する。ロータ(90)では、ロータコア(20)の軸方向一端側および他端側に第1端板(31)および第2端板(36)が設けられていない。その他の構成は、この実施形態によるロータ(10)の構成と同様となっている。
 ロータ(90)の製造工程では、この実施形態によるロータ(10)の製造工程と同様の工程(型締め工程,射出工程,固化工程,型開き工程,除去工程)が行われる。すなわち、ロータ(90)の製造工程では、スプル(62)および複数のランナ(63)とロータコア(20)の上側(軸方向一端側)とを接触させて複数のランナ(63)からロータコア(20)の複数の磁石孔(21)に溶融樹脂をそれぞれ直接的に射出している。そのため、ロータ(90)の製造工程では、複数のランナ(63)からロータコア(20)の複数の磁石孔(21)へ向けてそれぞれ上下方向に延伸する複数のゲートを設ける場合(例えば特許文献1の場合)よりも、余剰部(70)とボンド磁石(40)との接続部の断面積(接続面積)が比較的に大きくなる傾向にあるので、除去工程においてボンド磁石(40)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部を破断させることが困難である。そのため、図6に示すように、引張力により余剰部(70)とボンド磁石(40)との接続部を破断させた場合に、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するという製造不良が発生する可能性がある。
  〔実施形態による効果〕
 一方、この実施形態では、ロータ(10)の製造工程(詳しくは除去工程)においてロータコア(20)と第1端板(31)とにより構成された組立体(ロータコア組立体(30))の軸方向一端側(第1端板(31)側)に形成された余剰部(70)が除去される。なお、余剰部(70)は、ボンド磁石(40)の余剰部分に相当し、ロータコア(20)の磁石孔(21)および第1端板(31)のゲート孔(32)に充填されたボンド磁石(40)と一体となっている。具体的には、ロータ(10)の製造工程において、余剰部(70)をボンド磁石(40)から引き離す方向に働く力(すなわち引張力)が余剰部(70)とボンド磁石(40)との接続部に作用し、この引張力によって余剰部(70)とボンド磁石(40)との接続部が破断して余剰部(70)がボンド磁石(40)から引き離される。
 そして、この実施形態では、平面視において磁石孔(21)よりも小さくなるようにゲート孔(32)を形成してゲート孔(32)を磁石孔(21)の内側に配置することにより、余剰部(70)とボンド磁石(40)との接続部の断面積(接続面積)を減少させることができるので、ロータ(10)の製造工程において余剰部(70)とボンド磁石(40)との接続部(具体的には第1端板(31)の軸方向一端面に沿う接続面)に作用する引張応力を増加させることができる。これにより、ロータ(10)の製造工程において余剰部(70)とボンド磁石(40)との接続部に引張力が作用する場合に、第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができる。その結果、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するというロータ(10)の製造不良が発生する可能性を低減することができる。
 また、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するというロータ(10)の製造不良が発生する可能性を低減することができるので、ロータ(10)の製造不良に起因する回転電気機械(1)の組立不良の発生を抑制することができる。
 なお、特許文献1(特開2003-47212号公報)のように、スプルランナからロータコアのスリット(磁石孔)へ向けて上下方向にゲートが延伸している場合、磁石粉末を含有する溶融樹脂(溶融状態の熱可塑性樹脂)がゲートを通過するときに溶融樹脂の温度が低下して溶融樹脂の粘度が高くなる傾向にある。そのため、溶融樹脂がロータコアの磁石孔の内部に行き渡りにくく、ロータコアの磁石孔に充填されて固化された樹脂(ボンド磁石)の配向度を高めることが困難である。
 一方、この実施形態によるロータ(10)では、特許文献1におけるスプルランナからロータコアの磁石孔へ向けて上下方向に延伸するゲートが省略されているので、ゲートにおける溶融樹脂の温度低下に起因する溶融樹脂の粘度上昇を抑制することができる。そのため、特許文献1の場合よりも、溶融樹脂がロータコア(20)の磁石孔(21)の内部に行き渡りやすくなるので、ロータコア(20)の磁石孔(21)に充填されて固化された樹脂(すなわちボンド磁石(40))の配向度を高めることができる。
 (ロータの変形例1)
 図7に示すように、ロータ(10)において、1つのゲート孔(32)が複数(この例では3つ)の部分ゲート孔(33)によって構成されていてもよい。すなわち、1つの磁石孔(21)に対して複数の部分ゲート孔(33)が設けられていてもよい。
 部分ゲート孔(33)は、第1端板(31)を軸方向に貫通し、ロータコア(20)の磁石孔(21)と連通している。また、部分ゲート孔(33)は、平面視において、その部分ゲート孔(33)に対応する磁石孔(21)よりも小さくなるように形成されて、その部分ゲート孔(33)に対応する磁石孔(21)の内側に位置している。すなわち、部分ゲート孔(33)は、ロータコア(20)の軸方向から見て磁石孔(21)と重なる位置に形成されている。この例では、部分ゲート孔(33)は、平面視において円形状(例えば1mm以上で5mm以下の径を有する円形状)に形成されている。
 また、図7では、複数の部分ゲート孔(33)は、磁石孔(21)の周方向中央部に位置する中央部孔(33a)と、磁石孔(21)の周方向端部に位置する端部孔(33b)とを含んでいる。すなわち、図7では、1つの磁石孔(21)に対して3つの部分ゲート孔(33)が設けられ、1つの中央部孔(33a)と2つの端部孔(33b)とが3つの部分孔(1つの磁石孔(21)に対して設けられた3つの部分ゲート孔(33))を構成している。
 なお、図7に示したロータ(10)の製造工程において用いられる上型(60)は、次のように構成されていてもよい。すなわち、上型(60)には、それぞれがロータコア組立体(30)の第1端板(31)に形成された複数(図7の例では18個)の部分ゲート孔(33)のうち1つまたは複数の部分ゲート孔(33)に対応する複数のランナ(63)(例えば、18個の部分ゲート孔(33)にそれぞれ対応する18個のランナ(63))が設けられていてもよく、ランナ(63)は、下型(50)と上型(60)とを型締めした場合に、平面視においてそのランナ(63)に対応する1つまたは複数の部分ゲート孔(33)がそのランナ(63)の内側に位置するように形成されていてもよい。
 そして、図7に示したロータ(10)の製造工程(詳しくは射出工程)では、上型(60)の注入口(61)に注入された溶融樹脂がスプル(62)とランナ(63)とを順に流れて第1端板(31)の部分ゲート孔(33)からロータコア(20)の磁石孔(21)へ射出される。
  〈ロータの変形例1による効果〉
 図7に示したロータ(10)の変形例1では、複数の部分ゲート孔(33)によってゲート孔(32)を構成することにより、ロータ(10)の製造工程において磁石孔(21)に対する溶融樹脂(ボンド磁石となる溶融状態の樹脂)の単位時間当たりの注入量を増加させることができる。これにより、溶融樹脂を磁石孔(21)内に素早く行き渡らせることができるので、ロータコア(20)の磁石孔(21)に充填されて固化された樹脂(すなわちボンド磁石(40))の配向度を高めることができる。
 また、中央部孔(33a)と端部孔(33b)とによってゲート孔(32)を構成することにより、部分ゲート孔(33)が磁石孔(21)の周方向中央部(または周方向端部)に偏在している場合よりも、溶融樹脂を磁石孔(21)内に均一に行き渡らせることができる。これにより、ロータコア(20)の磁石孔(21)に充填されて固化された樹脂(すなわちボンド磁石(40))の配向度を高めることができる。
 (ロータの変形例2)
 図8に示すように、ロータ(10)において、磁石孔(21)が1つまたは複数(この例では2つ)のブリッジ(22)によって複数(この例では3つ)の部分磁石孔(23)に区画されていてもよい。そして、ゲート孔(32)は、複数の部分磁石孔(23)とそれぞれ連通する複数(この例では3つ)の部分ゲート孔(33)によって構成されていてもよい。図8では、1つの部分磁石孔(23)に対して1つの部分ゲート孔(33)が設けられている。
 部分ゲート孔(33)は、第1端板(31)を軸方向に貫通し、ロータコア(20)の部分磁石孔(23)と連通している。また、部分ゲート孔(33)は、平面視において、その部分ゲート孔(33)に対応する部分磁石孔(23)よりも小さくなるように形成されて、その部分ゲート孔(33)に対応する部分磁石孔(23)の内側に位置している。すなわち、部分ゲート孔(33)は、ロータコア(20)の軸方向から見て部分磁石孔(23)と重なる位置に形成されている。図8では、部分ゲート孔(33)は、平面視において円形状(例えば1mm以上で5mm以下の径を有する円形状)に形成されている。図8では、この例では、ゲート孔(32)は、部分磁石孔(23)の周方向中央部に配置されている。
 なお、図8に示したロータ(10)の製造工程において用いられる上型(60)は、次のように構成されていてもよい。すなわち、上型(60)には、それぞれがロータコア組立体(30)の第1端板(31)に形成された複数(図7の例では36個)の部分ゲート孔(33)のうち1つまたは複数の部分ゲート孔(33)に対応する複数のランナ(63)が設けられていてもよく、ランナ(63)は、下型(50)と上型(60)とを型締めした場合に、平面視においてそのランナ(63)に対応する1つまたは複数の部分ゲート孔(33)がそのランナ(63)の内側に位置するように(すなわちロータコア(20)の軸方向から見てランナ(63)と重なる位置に)形成されていてもよい。
 そして、図8に示したロータ(10)の製造工程(詳しくは射出工程)では、上型(60)の注入口(61)に注入された溶融樹脂がスプル(62)とランナ(63)とを順に流れて第1端板(31)の部分ゲート孔(33)からロータコア(20)の磁石孔(21)へ射出される。
  〈ロータの変形例2による効果〉
 図8に示したロータ(10)の変形例2では、複数の部分磁石孔(23)とそれぞれ連通する複数の部分ゲート孔(33)によってゲート孔(32)を構成することにより、複数の部分磁石孔(23)の各々に溶融樹脂(ボンド磁石となる溶融状態の樹脂)を充填することができる。また、平面視において部分磁石孔(23)よりも小さくなるように部分ゲート孔(33)を形成して部分ゲート孔(33)を部分磁石孔(23)の内側に配置することにより、ロータ(10)の製造工程において余剰部(70)とボンド磁石(40)との接続部に引張力が作用する場合に、各部分ゲート孔(33)において第1端板(31)の軸方向一端面に沿うように余剰部(70)とボンド磁石(40)との接続部の破断を誘発させることができる。その結果、余剰部(70)の一部が破断片(75)としてボンド磁石(40)の軸方向一端側に残存するというロータ(10)の製造不良が発生する可能性を低減することができる。
 (その他の実施形態)
 以上の説明では、第1および第2端板(31,36)が非磁性体材料で構成されている場合を例に挙げたが、第1および第2端板(31,36)は、磁性体材料で構成されていてもよい。
 また、以上の説明では、第2端板(36)にゲート孔(32)が形成されていない場合を例に挙げたが、第2端板(36)にゲート孔(32)が形成されていてもよい。すなわち、第2端板(36)の構成は、第1端板(31)の構成と同様となっていてもよい。
 また、磁石孔(21)の形状は、図1に示すように内周側に凸となるU字状であってもよいし、図8に示すように内周側に凸となる円弧状であってもよいし、その他の形状であってもよい。
 また、ロータ(10)の1つの磁極を構成するボンド磁石(40)の数は、図1に示すように1つであってもよいし、図8に示すように3つであってもよいし、その他の数であってもよい。
 また、以上の説明では、複数のゲート孔(32)にそれぞれ対応する複数(図1の例では6つ)のランナ(63)が上型(60)に設けられている場合と、それぞれが複数(図7の例では18個、図8の例では36個)の部分ゲート孔(33)のうち1つまたは複数の部分ゲート孔(33)に対応する複数のランナ(63)が上型(60)に設けられている場合とを例に挙げたが、上型(60)から複数のランナ(63)が省略されて上型(60)においてスプル(62)が次のように形成されていてもよい。すなわち、スプル(62)は、下型(50)と上型(60)とを型締めした場合に、平面視においてロータコア組立体(30)の第1端板(31)に形成された複数のゲート孔(図1の例では6つのゲート孔(32)、図7の例では18個の部分ゲート孔(33)、図8の例では36個の部分ゲート孔(33))の全部がスプル(62)の下端部の内側に位置するように形成されていてもよい。このように構成した場合、ロータ(10)の製造工程(詳しくは射出工程)では、上型(60)の注入口(61)に注入された溶融樹脂がスプル(62)を流れて第1端板(31)のゲート孔(32)または部分ゲート孔(33)からロータコア(20)の磁石孔(21)へ射出されることになる。
 また、以上の実施形態および変形例を適宜組み合わせて実施してもよい。以上の実施形態および変形例は、本質的に好ましい例示であって、この開示、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、上述のロータは、電動機や発電機などの回転電気機械に適用可能である。
1   回転電気機械
10   ロータ
11   ステータ
12   駆動軸
15   ステータコア
16   コイル
17   バックヨーク部
18   ティース部
20   ロータコア
21   磁石孔
22   ブリッジ
23   部分磁石孔
25   軸孔
30   ロータ組立体
31   第1端板
32   ゲート孔
33   部分孔
33a  中央部孔
33b  端部孔
35   貫通孔
36   第2端板
40   ボンド磁石
41   ゲート痕
50   下型
51   凹部
60   上型
61   注入口
62   スプル
63   ランナ
70   余剰部
75   破断片

Claims (5)

  1.  軸方向に貫通する磁石孔(21)が形成されたロータコア(20)と、
     上記ロータコア(20)の軸方向一端側に設けられて上記磁石孔(21)と連通するゲート孔(32)が形成された第1端板(31)と、
     上記磁石孔(21)および上記ゲート孔(32)に充填されたボンド磁石(40)とを備え、
     上記ゲート孔(32)は、平面視において上記磁石孔(21)よりも小さくなるように形成されて該磁石孔(21)の内側に位置している
    ことを特徴とするロータ。
  2.  請求項1において、
     上記ゲート孔(32)は、複数の部分ゲート孔(33)によって構成されている
    ことを特徴とするロータ。
  3.  請求項2において、
     上記複数の部分ゲート孔(33)は、上記磁石孔(21)の周方向中央部に位置する中央部孔(33a)と、該磁石孔(21)の周方向端部に位置する端部孔(33b)とを含んでいる
    ことを特徴とするロータ。
  4.  請求項1において、
     上記磁石孔(21)は、1つまたは複数のブリッジ(22)によって複数の部分磁石孔(23)に区画されており、
     上記ゲート孔(32)は、上記複数の部分磁石孔(23)とそれぞれ連通する複数の部分ゲート孔(33)によって構成され、
     上記部分ゲート孔(33)は、平面視において上記部分磁石孔(23)よりも小さくなるように形成されて該部分磁石孔(23)の内側に位置している
    ことを特徴とするロータ。
  5.  請求項1~4のいずれか1項に記載のロータと、
     上記ロータが挿通されるステータ(11)とを備えている
    ことを特徴とする回転電気機械。
PCT/JP2017/026880 2016-07-25 2017-07-25 ロータおよび回転電気機械 WO2018021318A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17834320.8A EP3477830B1 (en) 2016-07-25 2017-07-25 Rotor and rotary electric machine
US16/320,231 US20190238033A1 (en) 2016-07-25 2017-07-25 Rotor and rotary electric machine
CN201780045725.4A CN109565228A (zh) 2016-07-25 2017-07-25 转子及旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016145589A JP6341236B2 (ja) 2016-07-25 2016-07-25 ロータおよび回転電気機械
JP2016-145589 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018021318A1 true WO2018021318A1 (ja) 2018-02-01

Family

ID=61016984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026880 WO2018021318A1 (ja) 2016-07-25 2017-07-25 ロータおよび回転電気機械

Country Status (5)

Country Link
US (1) US20190238033A1 (ja)
EP (1) EP3477830B1 (ja)
JP (1) JP6341236B2 (ja)
CN (1) CN109565228A (ja)
WO (1) WO2018021318A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099936B2 (ja) * 2018-11-15 2022-07-12 株式会社三井ハイテック 鉄心製品及び鉄心製品の製造方法
JP2020127293A (ja) 2019-02-05 2020-08-20 ファナック株式会社 ロータコアの製造装置及びロータコアの製造方法、並びにロータ構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130130A (ja) * 2010-12-14 2012-07-05 Mitsui High Tec Inc 積層鉄心の製造方法
JP2014057433A (ja) * 2012-09-12 2014-03-27 Daikin Ind Ltd 回転電気機械
JP2014057392A (ja) * 2012-09-11 2014-03-27 Daikin Ind Ltd 回転電気機械およびロータ製造方法
JP2015126677A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 回転電機のロータの製造方法およびロータ
JP2016127682A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 回転電気機械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044915A (ja) * 2000-07-27 2002-02-08 Yamaha Motor Co Ltd 磁石埋込型回転子及び充填方法
JP4414417B2 (ja) * 2006-08-22 2010-02-10 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法
JP2015082854A (ja) * 2013-10-21 2015-04-27 ダイキン工業株式会社 ロータおよびその製造方法
JP6660546B2 (ja) * 2014-10-30 2020-03-11 株式会社ジェイテクト 磁石埋込型ロータ並びにその製造方法及び製造装置
CN105576865B (zh) * 2014-10-30 2020-03-06 株式会社捷太格特 磁铁埋入型转子及其制造方法与其制造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130130A (ja) * 2010-12-14 2012-07-05 Mitsui High Tec Inc 積層鉄心の製造方法
JP2014057392A (ja) * 2012-09-11 2014-03-27 Daikin Ind Ltd 回転電気機械およびロータ製造方法
JP2014057433A (ja) * 2012-09-12 2014-03-27 Daikin Ind Ltd 回転電気機械
JP2015126677A (ja) * 2013-12-27 2015-07-06 ダイキン工業株式会社 回転電機のロータの製造方法およびロータ
JP2016127682A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 回転電気機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477830A4 *

Also Published As

Publication number Publication date
JP2018019465A (ja) 2018-02-01
JP6341236B2 (ja) 2018-06-13
EP3477830B1 (en) 2023-03-08
CN109565228A (zh) 2019-04-02
EP3477830A4 (en) 2020-04-01
EP3477830A1 (en) 2019-05-01
US20190238033A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
KR102075338B1 (ko) 회전 전기를 위한 로터 및 그 제조 방법
US9484790B2 (en) Rotor for electric rotating machine and method of manufacturing the same
CN102598490B (zh) 转子层叠铁心的制造方法
US9178394B2 (en) Rotor and manufacturing process of rotor
US20080024018A1 (en) Rotor for an electric rotary machine, and a method of manufacture
US10199891B2 (en) Rotor having end plates and molding flash
EP2889988B1 (en) Coil, rotating electrical machine, and method of manufacturing coil
JP5799605B2 (ja) ロータの製造方法
US10468950B2 (en) Method of manufacturing laminated core
WO2007026900A1 (ja) ロータの製造方法及びロータ
JP2008245405A (ja) ロータおよびその製造方法
JP3752946B2 (ja) 回転機のロータの製作方法
JP5535827B2 (ja) ハルバッハ配列磁石の製造方法
JP4968928B2 (ja) 永久磁石モータ及びその製造方法
JP2017022854A (ja) 回転電機ロータの製造方法
JP2016093006A (ja) 回転子の製造方法
WO2018021318A1 (ja) ロータおよび回転電気機械
JP2014057433A (ja) 回転電気機械
JP2015192573A (ja) ロータ製造方法、ロータおよびモータ
JP2018019524A (ja) ロータおよび回転電気機械
JP2006174637A (ja) 回転電機のステータ製造方法
KR20200108636A (ko) 본드 자석을 이용한 회전자 및 그를 포함하는 모터
JP2011217449A (ja) 回転電気機械及び回転電気機械のロータの製造方法
JP2020145894A (ja) 回転電機のロータ及びその製造方法
JP6705385B2 (ja) 回転電機のロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834320

Country of ref document: EP

Effective date: 20190225