WO2018021002A1 - ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 - Google Patents
ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 Download PDFInfo
- Publication number
- WO2018021002A1 WO2018021002A1 PCT/JP2017/025165 JP2017025165W WO2018021002A1 WO 2018021002 A1 WO2018021002 A1 WO 2018021002A1 JP 2017025165 W JP2017025165 W JP 2017025165W WO 2018021002 A1 WO2018021002 A1 WO 2018021002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polybutylene terephthalate
- terephthalate resin
- resin composition
- mass
- producing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
Definitions
- Embodiments of the present invention relate to a method for producing a polybutylene terephthalate resin composition and a method for producing a molded article using the same.
- Thermoplastic polyester resins have a high heat distortion temperature and are excellent in electrical properties, mechanical properties, weather resistance, water resistance, chemical resistance, etc., and thus are used in various applications such as electric / electronic parts and automobile parts.
- thermoplastic polyester resins crystalline resins such as polybutylene terephthalate resin (hereinafter may be simply referred to as “PBT resin”) may be cooled and solidified in a mold in injection molding, for example. In the process, molecular shrinkage occurs as the resin crystallizes, and molding shrinkage occurs.
- the fibrous filler is oriented along the flow of the resin in the molded product.
- the direction (orientation direction of the fibrous filler) that is, the direction in which the fibrous filler is compressed in the longitudinal direction
- molding shrinkage in the direction perpendicular to the resin flow that is, the direction in which the fibrous filler is bundled is more likely to occur.
- anisotropy occurs, and as a result, the molded product is likely to be deformed such as warping or twisting.
- a countermeasure in which the shape of the filler is not a fiber shape but a shape with a small aspect ratio such as a plate shape or a granular shape.
- a countermeasure of alloying with an amorphous resin is also known.
- JP-A-2003-238882 discloses (A) thermoplastic polyester resin, (B) polycarbonate resin, (C) aromatic vinyl copolymer, (D) phosphorus compound, (E) inorganic reinforcing filling.
- a thermoplastic polyester resin composition comprising a predetermined amount of each material is further disclosed in International Publication No. 2015/008831.
- (A) Low-viscosity polybutylene terephthalate resin, (B) Polyethylene terephthalate resin and copolymer polyester resin, (C) Glass fiber, (D) polycarbonate-based resin, and (E) inorganic ester-reinforced thermoplastic polyester resin composition having a specific temperature-falling crystallization temperature are described.
- the polybutylene terephthalate resin composition used for a molded product that requires particularly high strength increases the amount of the fibrous filler added.
- the amount of filler added to the entire polybutylene terephthalate resin composition is too large, resulting in a decrease in fluidity and deterioration of the appearance of the molded product. Is a problem.
- An object of an embodiment of the present invention is to provide a polybutylene terephthalate resin composition capable of forming a molded article with reduced warpage and excellent strength, rigidity, appearance, thermal stability and heat-and-moisture resistance.
- One embodiment of the present invention comprises a polybutylene terephthalate resin having an intrinsic viscosity of 0.80 to 0.90 dL / g, a fibrous filler of 40 to 60% by mass of the total mass of the polybutylene terephthalate resin composition,
- An extruder comprising a polycarbonate resin having a ratio of 15 to 28% by mass of a total of 100% by mass of a butylene terephthalate resin and a polycarbonate resin, and a phosphorus compound as a transesterification inhibitor under production conditions satisfying the following formula (I)
- the present invention relates to a method for producing a polybutylene terephthalate resin composition, which comprises melt-kneading using a polymer.
- Q represents the discharge amount of the molten mixture discharged from the die of the extruder (discharge rate of the resin) (kg / hr)
- N S is screw rotational speed of the extruder (rpm).
- a polybutylene terephthalate resin composition capable of forming a molded article with reduced warpage and excellent in strength, rigidity, appearance, thermal stability and heat-and-moisture resistance, and the resin composition.
- a molded product obtained by injection molding can be provided.
- the method for producing a polybutylene terephthalate resin composition according to an embodiment of the present invention includes a polybutylene terephthalate resin having an intrinsic viscosity of 0.80 to 0.90 dL / g, and 40 to 60 of the total mass of the polybutylene terephthalate resin composition.
- a fibrous filler of mass%, a polycarbonate resin having a ratio of 15 to 28 mass% of the total of 100 mass% of polybutylene terephthalate resin and polycarbonate resin, and a phosphorus compound as a transesterification inhibitor are represented by the following formula ( Melt-kneading using an extruder under production conditions satisfying I). 1.4 ⁇ Q / N S ⁇ 1.8 (I)
- Q represents the discharge amount of the molten mixture discharged from the die of the extruder (discharge rate of the resin) (kg / hr)
- N S is screw rotational speed of the extruder (rpm).
- the polybutylene terephthalate resin composition (hereinafter, sometimes simply referred to as “resin composition”) is a specific product of a polybutylene terephthalate resin having an intrinsic viscosity of 0.80 to 0.90 dL / g.
- a quantity of fibrous filler, a specific quantity of polycarbonate resin, and a phosphorus compound, the discharge amount of the melt-kneaded product discharged from the die of the extruder is Q (kg / hr), and the screw rotation speed of the extruder
- NS is N S (rpm)
- it is manufactured by melt-kneading under the condition that Q / N S satisfies 1.4 to 1.8.
- Polybutylene terephthalate resin includes at least a dicarboxylic acid component containing terephthalic acid or an ester-forming derivative thereof (C 1-6 alkyl ester, acid halide, etc.) It is a polybutylene terephthalate resin obtained by polycondensation with a glycol component containing at least an alkylene glycol (1,4-butanediol) having 4 carbon atoms or an ester-forming derivative thereof (acetylated product, etc.).
- the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more (particularly 75 mol% or more and 95 mol% or less) of a butylene terephthalate unit.
- the amount of the terminal carboxyl group of the polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired.
- the terminal carboxyl group amount of the (A) polybutylene terephthalate resin used in the present embodiment is preferably 5 meq / kg or more and 30 meq / kg or less, and more preferably 10 meq / kg or more and 25 meq / kg or less.
- the intrinsic viscosity (IV) of the polybutylene terephthalate resin is 0.80 dL / g or more and 0.90 dL / g or less. Preferably it is 0.81 dL / g or more and 0.88 dL / g or less, More preferably, it is 0.82 dL / g or more and 0.86 dL / g or less, Especially preferably, it is 0.83 dL / g or more and 0.85 dL / g or less It is.
- the intrinsic viscosity can also be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
- a polybutylene terephthalate resin having an intrinsic viscosity of 0.85 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. Can do.
- the intrinsic viscosity (IV) of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
- dicarboxylic acid components (comonomer components) other than terephthalic acid and its ester-forming derivatives
- dicarboxylic acid components for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′- C 8-14 aromatic dicarboxylic acids such as dicarboxydiphenyl ether; C 4-16 alkane dicarboxylic acids such as succinic acid, adipic acid, azelaic acid and sebacic acid; C 5-10 cycloalkane dicarboxylic acids such as cyclohexane dicarboxylic acid Acid; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.).
- dicarboxylic acid components can be used alone or in combination of two or more.
- C 8-12 aromatic dicarboxylic acids such as isophthalic acid
- C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
- glycol components (comonomer components) other than 1,4-butanediol for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neo C 2-10 alkylene glycol such as pentyl glycol and 1,3-octanediol; polyoxyalkylene glycol such as diethylene glycol, triethylene glycol and dipropylene glycol; alicyclic diol such as cyclohexanedimethanol and hydrogenated bisphenol A; Aromatic diols such as bisphenol A and 4,4′-dihydroxybiphenyl; 2 mol adducts of ethylene oxide of bisphenol A, 3 mol of propylene oxide of bisphenol A An adduct, alkylene oxide adducts of C 2-4 of bisphenol A; or ester-forming derivatives of these glycols (acet
- C 2-6 alkylene glycol such as ethylene glycol and trimethylene glycol
- polyoxyalkylene glycol such as diethylene glycol
- alicyclic diol such as cyclohexanedimethanol
- the comonomer component that can be used in addition to the dicarboxylic acid component and the glycol component include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl, and the like.
- Aromatic hydroxycarboxylic acids Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone ( ⁇ -caprolactone, etc.); esters of these comonomer components And forming derivatives (C 1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.).
- any of the polybutylene terephthalate copolymers obtained by copolymerizing the comonomer components described above can be suitably used as the (A) polybutylene terephthalate resin. Moreover, you may use combining a homopolybutylene terephthalate polymer and a polybutylene terephthalate copolymer as (A) polybutylene terephthalate resin.
- the polybutylene terephthalate resin composition has high strength and high rigidity by including (B) the fibrous filler.
- fibrous filler examples include glass fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, metal fiber (for example, stainless steel, aluminum, titanium). , Copper, brass, etc.).
- Typical fibrous fillers include glass fibers and carbon fibers, and glass fibers are preferably used from the standpoint of availability and cost. Although the kind of glass used as a raw material of glass fiber is not specifically limited, E glass and the corrosion-resistant glass containing a zirconium element in a composition are used preferably on quality.
- the average fiber diameter of the fibrous filler is not particularly limited, and can be, for example, 1 to 30 ⁇ m, preferably 5 to 20 ⁇ m, more preferably 10 to 15 ⁇ m.
- the average fiber length of the fibrous inorganic filler is not particularly limited, and can be, for example, 0.1 to 5 mm.
- the average fiber diameter and average fiber length of the fibrous filler are values calculated by weighted average of the fibrous filler before blending into the resin composition by analyzing an image taken with a CCD camera. . For example, it can be calculated using a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Corporation.
- both those having a circular cross section and those having a non-circular cross section can be used.
- the non-circular cross section include an oval cross section, an elliptical shape, and a bowl shape.
- the irregularity ratio (minor axis: major axis) of the noncircular cross section is not particularly limited, and examples thereof include those having a ratio of 1: 1.3 to 1: 6.
- a fibrous filler having a non-circular cross section it is easy to obtain an effect such as warpage reduction, but from the viewpoint of cost, it is preferable to have a cross section close to a circle with an irregularity ratio of 1: 1 to 1: 1.3.
- Even when a fibrous filler having a non-circular cross section is used it is preferably 10% by mass or less (for example, 5% by mass or less) of the entire resin composition.
- the fibrous inorganic filler may be surface-treated with a sizing agent, a surface treatment agent (for example, a functional compound such as an epoxy compound, an acrylic compound, an isocyanate compound, a silane compound, a titanate compound) or the like.
- a sizing agent for example, a functional compound such as an epoxy compound, an acrylic compound, an isocyanate compound, a silane compound, a titanate compound
- the fibrous inorganic filler may be previously surface treated with a sizing agent, a surface treating agent, or the like, or may be surface treated by adding a sizing agent, a surface treating agent or the like at the time of material preparation.
- the fibrous filler may be used alone or in combination of two or more.
- the content of the fibrous filler is preferably 40% by mass to 60% by mass and more preferably 45% by mass to 55% by mass with respect to the total mass of the polybutylene terephthalate resin composition. .
- the content of the inorganic filler is 40% by weight or more, an effect of improving the mechanical strength such as tensile strength is more easily obtained, and when it is 60% by weight or less, a good appearance and low warpage are obtained. It is easy to obtain.
- the polybutylene terephthalate resin composition may be used in combination with a fibrous filler and a non-fibrous filler as long as the effects of the present invention are not impaired.
- the fibrous filler in combination with the non-fibrous filler, it is easier to reduce the warpage of the molded product.
- the amount of the non-fibrous filler added is not particularly limited, but is preferably 20% by mass or less, and preferably 10% by mass or less, based on the total polybutylene terephthalate resin composition, in order not to reduce the strength. More preferably, the content is 5% by mass or less (for example, 0% by mass).
- the combination of the fibrous filler and the non-fibrous filler is not particularly limited, but the fibrous filler such as glass fiber and carbon fiber and the non-fibrous filler such as glass flake, mica and talc. And the combination.
- the polybutylene terephthalate resin composition has a total of 100 of (A) polybutylene terephthalate resin and (C) polycarbonate resin (hereinafter sometimes simply referred to as “PC resin”). 15 to 28% by mass of polycarbonate resin is contained with respect to mass%.
- PC resin polycarbonate resin
- the content of the (C) polycarbonate resin is preferably 18% by mass or more, more preferably 19% by mass or more, and more preferably 20% by mass of the total of 100% by mass of the (A) polybutylene terephthalate resin and the polycarbonate resin. More preferably, it is preferably 27% by mass or less, more preferably 26% by mass or less, and further preferably 25% by mass or less.
- the content of the polycarbonate resin is 15% by mass or more of the total mass of the polybutylene terephthalate resin and the polycarbonate resin, there is an effect of reducing warpage and molding shrinkage by adding the polycarbonate resin which is an amorphous resin. It is easy to obtain, and when it is 28% by mass or less, good appearance and thermal stability are easily maintained.
- the polycarbonate resin includes a polymer obtained by a reaction between a dihydroxy compound and a carbonate such as phosgene or diphenyl carbonate.
- dihydroxy compound examples include an alicyclic compound (for example, an alicyclic diol) and a bisphenol compound, and a bisphenol compound is preferable.
- bisphenol compounds include bis (4-hydroxyphenyl) methane, bis (4-hydroxy-3-methylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxy- 3-methylphenyl) ethane, 1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxy-3-methyl) Phenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-ethylphenyl) propane, 2,2-bis (4-hydroxy-) 3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4- Droxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) hexane, 2, 2-
- Preferred polycarbonate resins include bisphenol A type polycarbonate.
- the polycarbonate resin may be a homopolycarbonate or a copolycarbonate. Moreover, a polycarbonate resin may be used individually by 1 type, and may be used in combination of 2 or more type.
- the polycarbonate resin preferably has a viscosity average molecular weight of 20,000 to 25,000, more preferably 21,000 to 24,000, and still more preferably 22,000 to 23,000.
- C If the viscosity average molecular weight of polycarbonate resin is in the said range, since the polybutylene terephthalate resin composition excellent in intensity
- the polybutylene terephthalate resin composition suppresses transesterification of (A) polybutylene terephthalate resin and (C) polycarbonate resin. Contains phosphorus compounds as exchange inhibitors.
- Phosphorus compounds as transesterification inhibitors specifically include alkali or alkaline earth metal phosphates (or hydrates thereof) such as monocalcium phosphate, monobasic sodium phosphate monohydrate, etc.
- alkali or alkaline earth metal phosphates or hydrates thereof
- monocalcium phosphate monocalcium phosphate
- monobasic sodium phosphate monohydrate etc.
- mono to tris branched C3-6 alkyl-
- mono to tris such as tris (2,4-di-t-butylphenyl) phosphite, bis (2-t-butylphenyl) phenylphosphite, etc.
- Phenyl) phosphite compounds bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, Of branched polyhydric alcohols such as tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenediphosphite -6 alkyl - aryl) phosphite compound, or tris (2,4-di -t- butyl-phenyl) triphenyl phosphate compounds such as phosphates. Of these phosphorus compounds, metal phosphates such as monocalcium phosphate are preferred from the viewpoint of thermal stability.
- the content of the phosphorus compound as the transesterification inhibitor is preferably 0.001% by mass or more and 5% by mass or less based on the entire resin composition. More preferably, they are 0.01 mass% or more and 2 mass% or less, and are 0.02 mass% or more and 1 mass% or less.
- the polybutylene terephthalate resin composition comprises the above-mentioned (A) polybutylene terephthalate resin, (B) fibrous filler, (C) polycarbonate resin, and ( D) Components other than the phosphorus compound as the transesterification inhibitor may optionally be included.
- Other components include antioxidants, stabilizers, molecular weight modifiers, ultraviolet absorbers, antistatic agents, colorants, lubricants, mold release agents, crystallization accelerators, crystal nucleating agents, infrared absorbers. Examples include, but are not limited to, flame retardants, flame retardant aids, impact resistance improvers, and the like.
- the total content of the components (A) to (D) is preferably 70% by mass or more, and 80% by mass or more based on the total composition. It is more preferable that it is 90 mass% or more. An upper limit is not specifically limited, 100 mass% may be sufficient.
- the method for producing the resin composition of the present embodiment comprises (A) a polybutylene terephthalate resin having an intrinsic viscosity of 0.80 to 0.90 dL / g and (B) 40 to 60 of the total mass of the polybutylene terephthalate resin composition. (C) a polycarbonate compound in which the ratio of the polybutylene terephthalate resin and the polycarbonate resin to a total of 100% by mass is 15 to 28% by mass, and (D) a phosphorus compound as a transesterification inhibitor.
- the amount of each component used for melt-kneading is also as described for the content in the resin composition. More preferable Q / N S is 1.5 to 1.75, and more preferably 1.55 to 1.65. Although it does not specifically limit as a manufacturing method of this embodiment, For example, the method of mixing each component, kneading using a twin-screw extruder, and extruding to a pellet is mentioned.
- the resin temperature (cylinder temperature) at the time of extrusion is preferably 240 to 320 ° C, more preferably 250 to 300 ° C. If the resin temperature at the time of extrusion is in the above range, a resin composition excellent in strength and heat-and-moisture resistance can be easily obtained.
- the outer diameter D of the screw elements, d1 vary from (outside diameter of the screw element of the prototype) to d2 (the outer diameter of the screw element of the production machine), the discharge rate Q m and mass-production in prototype between the discharge amount Q M satisfied the following equation (II), the following relationship between the screw rotation speed Ns M in screw rotation speed Ns m and mass-production in prototype (III) is To establish.
- ⁇ and ⁇ in the relational expressions (II) and (III) are determined so that the specific energies applied to the molten resin are equal.
- a method for determining ⁇ and ⁇ either a theoretical determination method or an experimental determination method may be used.
- the parameter ⁇ is set so that the specific energy of the objective function, the total shearing amount, the residence time, and the like match between the small machine and the large machine.
- ⁇ are derived.
- the parameters ⁇ and ⁇ can be derived so that the specific energy as the objective function matches between the small machine and the large machine.
- the objective function is a specific energy, or a parameter indicating physical properties is employed, and the parameter ⁇ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ⁇ .
- One embodiment of the present invention relates to a method for producing a molded article (molding method), including injection molding of the polybutylene terephthalate resin composition produced by the method for producing a polybutylene terephthalate resin composition of the above embodiment.
- the method for producing a molded product according to this embodiment includes (A) a polybutylene terephthalate resin having an intrinsic viscosity of 0.80 to 0.90 dL / g and (B) 40 to 60 mass of the total mass of the polybutylene terephthalate resin composition.
- % Fibrous filler (C) a polycarbonate resin with a ratio of 15 to 28% by mass of the total of 100% by mass of polybutylene terephthalate resin and polycarbonate resin, and (D) a phosphorus compound as a transesterification inhibitor, If necessary the (E) other components, when the discharge amount of molten mixture discharged from the extruder die Q (kg / hr), screw rotational speed of the extruder N S (rpm), in the conditions Q / N S is 1.4-1.8, obtaining a polybutylene terephthalate resin composition was melted and kneaded using an extruder, the polybutylene terephthalate And a step of injection-molding the resin composition may be a method for producing a molded article (molding method).
- the details of the step of obtaining the polybutylene terephthalate resin composition are as described in the method for producing the polybutylene terephthalate resin composition.
- a molded product excellent in low warpage, appearance, strength, rigidity, thermal stability, and wet heat resistance can be manufactured.
- the production method of the present embodiment is not particularly limited. For example, a mixture containing each component is put into a twin-screw extruder, melt-kneaded and pelletized, and the pellet is equipped with a predetermined mold. The injection molding machine is put in and manufactured by injection molding.
- the molded product according to the present embodiment is excellent in low warpage, appearance, strength, rigidity, thermal stability, and moisture and heat resistance, it is a rod-shaped, plate-shaped, box-shaped molded product, particularly automobiles, electrical / electronic devices, machines Case applications such as cases and covers that house various parts in the field, mechanical parts applications such as levers and shafts, structural applications such as switches and connectors, especially high strength and rigidity, heat resistance and heat and humidity resistance are required in addition to dimensional accuracy It can be suitably applied as a method of manufacturing a molded product used for pneumatic / hydraulic component applications such as electromagnetic valves.
- a composite part can be obtained using the molded product according to the present embodiment.
- the composite part can be formed by integrating the resin composition and other members (for example, metal parts) at the time of molding by a molding method such as insert molding.
- the molded product may be molded in advance, and then the molded product or the molded product and other members may be bonded by a method such as thermocompression bonding or adhesive bonding to form a composite part.
- an adhesive agent used for adhesive bonding For example, an epoxy-type, a cyanoacrylate type, a silicone type, and a polyimide-type adhesive agent can be used.
- Embodiments of the present invention include the following, but the present invention is not limited to the following embodiments.
- the manufacturing method of the polybutylene terephthalate resin composition including melt-kneading using an extruder on the manufacturing conditions which satisfy
- ⁇ 4> The method for producing a polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein an average fiber diameter of the fibrous filler is 5 to 30 ⁇ m.
- ⁇ 5> The method for producing a polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the polycarbonate resin has a viscosity average molecular weight of 20,000 to 25,000.
- ⁇ 6> The method for producing a polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the phosphorus compound as the transesterification inhibitor is a metal phosphate.
- ⁇ 7> The method for producing a polybutylene terephthalate resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the resin temperature during extrusion is 240 to 320 ° C.
- ⁇ 9> The method for producing a molded product according to ⁇ 8>, wherein the molded product is used for a pneumatic / hydraulic component.
- PBT resin Polybutylene terephthalate resin
- PBT resin 1 Wintech Polymer Co., Ltd.
- IV 0.835 dl / g
- CEG 17 meq / kg
- PBT resin 2 Wintech Polymer Co., Ltd.
- IV 0.875 dl / g
- CEG 14 meq / kg
- PBT resin 3 Wintech Polymer Co., Ltd.
- IV 0.792 dl / g
- CEG 19 meq / kg PBT resin
- Fibrous filler / glass fiber (GF) NEC ECS03T-187 manufactured by Glass Co., Ltd.
- the difference between the melting point Tm1 detected in the first cycle and the melting point Tm3 detected in the third cycle is ⁇ Tm
- the crystallization temperature Tc1 detected in the first cycle and the crystallization temperature detected in the cycle The difference in Tc3 (Tc1-Tc3) was calculated as ⁇ Tc.
- the case where both ⁇ Tm and ⁇ Tc were 5 ° C. or less was judged as A, and the case where at least one of ⁇ Tm and ⁇ Tc exceeded 5 ° C. was judged as B.
- the results are shown in Table 1.
- (A) polybutylene terephthalate resin, (B) fibrous filler, (C) polycarbonate resin, (D) phosphorus compound, and Q / N S is 1.4 to 1
- the tensile strength of the polybutylene terephthalate resin composition is preferably 160 MPa or more.
- the polybutylene terephthalate resin composition preferably has a tensile strength retention of 85% or more before and after 24 hours treatment at 121 ° C. and 100 RH%.
- the polybutylene terephthalate resin composition obtained by the production method of the embodiment of the present invention it is possible to mold a molded article with reduced warpage and excellent in appearance, strength, rigidity, and heat-and-moisture resistance.
- Various applications including cases for housing various parts in the automotive, electrical and electronic equipment and machinery fields, mechanical parts such as levers and shafts, structural applications such as switches and connectors, especially high in addition to dimensional accuracy It can be suitably used for pneumatic / hydraulic component applications such as solenoid valves that require strength, rigidity, heat resistance, and heat and humidity resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、エステル交換抑制剤としてのリン化合物とを、下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む、ポリブチレンテレフタレート樹脂組成物の製造方法。式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。 1.4≦Q/NS≦1.8・・・(I)
Description
本発明の実施形態は、ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法に関する。
熱可塑性ポリエステル樹脂は、熱変形温度が高く、電気特性、機械特性、耐候性、耐水性、耐薬品性等に優れることから、電気・電子部品、自動車部品などの種々の用途に利用されている。熱可塑性ポリエステル樹脂の中でも、ポリブチレンテレフタレート樹脂(以下、単に「PBT樹脂」と記載することもある)などの結晶性樹脂は、成形の際に、例えば射出成形における金型内での冷却固化の過程で、樹脂の結晶化に伴う分子配向が起こることにより、成形収縮が発生する。特に、PBT樹脂の強度を高める目的で繊維状充填材を添加したPBT樹脂組成物を射出成形する場合、成形品内において、繊維状充填材が樹脂の流れに沿って配向するため、樹脂の流動方向(繊維状充填材の配向方向)、すなわち繊維状充填材を長手方向に押し縮める方向に比べ、樹脂流動の直角方向、すなわち繊維状充填材を束ねる方向への成形収縮が起こりやすくなることから、成形品の不均一な収縮、いわゆる異方性が生じ、その結果、成形品に反りやねじれといった変形が発生しやすい。
上記のような収縮率の異方性による変形を抑えるには、充填材の形状を繊維状ではなく板状や粒状といったアスペクト比の小さい形状にするという対策が知られている。また、結晶化に伴う分子配向に由来する成形収縮の絶対量を低減して異方性の影響を最小化するために、非晶性の樹脂とアロイ化するという対策も知られている。
例えば、特開平4-85360号公報には、ポリカーボネート樹脂95~5重量%、熱可塑性ポリエステル5~95重量%および耐衝撃性改良剤40重量%以下からなる樹脂組成物100重量部に、マイカ0.5~100重量部を配合してなる強化樹脂組成物が記載されている。
また、特開2003-238782号公報には、(A)熱可塑性ポリエステル樹脂、(B)ポリカーボネート樹脂、(C)芳香族ビニル系共重合体、(D)リン系化合物、(E)無機強化充填材をそれぞれ所定量配合してなる熱可塑性ポリエステル樹脂組成物が、さらに国際公開第2015/008831号には、(A)低粘度ポリブチレンテレフタレート樹脂、(B)ポリエチレンテレフタレート樹脂および共重合ポリエステル樹脂、(C)ガラス繊維、(D)ポリカーボネート系樹脂、(E)エステル交換防止剤をそれぞれ所定量配合してなり、特定の降温結晶化温度を有する無機強化熱可塑性ポリエステル樹脂組成物が記載され、これらの熱可塑性樹脂組成物を用いることにより、高剛性、高強度でシボ外観に優れる成形品が得られることが開示されている。
しかしながら、アスペクト比の小さい充填材では繊維状充填材に比べ補強効果が低いため、特に高い強度が求められる成形品に用いるポリブチレンテレフタレート樹脂組成物においては、繊維状充填材の添加量を多くする必要があり、その上でさらにアスペクト比の小さい充填材も添加する場合、ポリブチレンテレフタレート樹脂組成物全体に占める充填材の添加量が多くなり過ぎることから、流動性の低下や成形品外観の悪化が問題となる。
一方、非晶性樹脂とのアロイ化により反りを抑制する場合、ポリカーボネート樹脂やポリエチレンテレフタレート樹脂など、ポリブチレンテレフタレート樹脂とエステル交換しうる樹脂を添加すると、ポリブチレンテレフタレート樹脂組成物の強度や耐湿熱性等が低下する場合がある。そこで、成形品の反りを低減しつつ、強度、剛性、外観、耐湿熱性のいずれも優れるポリブチレンテレフタレート樹脂組成物の開発がさらに求められていた。
一方、非晶性樹脂とのアロイ化により反りを抑制する場合、ポリカーボネート樹脂やポリエチレンテレフタレート樹脂など、ポリブチレンテレフタレート樹脂とエステル交換しうる樹脂を添加すると、ポリブチレンテレフタレート樹脂組成物の強度や耐湿熱性等が低下する場合がある。そこで、成形品の反りを低減しつつ、強度、剛性、外観、耐湿熱性のいずれも優れるポリブチレンテレフタレート樹脂組成物の開発がさらに求められていた。
本発明の実施形態は、反りが低減され、強度、剛性、外観、熱安定性及び耐湿熱性に優れる成形品を成形することが可能なポリブチレンテレフタレート樹脂組成物を提供することを課題とする。
本発明の一実施形態は、固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、エステル交換抑制剤としてのリン化合物とを、下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む、ポリブチレンテレフタレート樹脂組成物の製造方法に関する。
1.4≦Q/NS≦1.8 ・・・(I)
式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(樹脂の吐出量)(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。
本発明の別の実施形態は、上記ポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法に関する。
1.4≦Q/NS≦1.8 ・・・(I)
式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(樹脂の吐出量)(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。
本発明の別の実施形態は、上記ポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法に関する。
本発明の実施形態によれば、反りが低減され、強度、剛性、外観、熱安定性及び耐湿熱性に優れる成形品を成形することが可能なポリブチレンテレフタレート樹脂組成物、及び当該樹脂組成物を射出成形してなる成形品を提供することができる。
以下に、本発明の実施形態を説明するが、本発明が下記の実施形態に限定されることはない。
<ポリブチレンテレフタレート樹脂組成物及び製造方法>
本発明の実施形態に係るポリブチレンテレフタレート樹脂組成物の製造方法は、固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、エステル交換抑制剤としてのリン化合物とを、下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む。
1.4≦Q/NS≦1.8 ・・・(I)
式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(樹脂の吐出量)(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。
ポリブチレンテレフタレート樹脂、繊維状充填材、ポリカーボネート樹脂、及びリン化合物とともに、必要に応じ、その他の成分を溶融混練してもよい。
本実施形態において、ポリブチレンテレフタレート樹脂組成物(以下、単に「樹脂組成物」と記載することもある。)は、固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、特定量の繊維状充填材と、特定量のポリカーボネート樹脂と、リン化合物とを含有し、押出機のダイから吐出される溶融混練物の吐出量をQ(kg/hr)、押出機のスクリュ回転数をNS(rpm)としたときに、Q/NSが1.4~1.8を満たす条件で溶融混練して製造される。このような樹脂組成物を用いることにより、反りの発生が少なく、強度、剛性、外観、熱安定性及び耐湿熱性に優れる成形品を成形することができる。
<ポリブチレンテレフタレート樹脂組成物及び製造方法>
本発明の実施形態に係るポリブチレンテレフタレート樹脂組成物の製造方法は、固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、エステル交換抑制剤としてのリン化合物とを、下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む。
1.4≦Q/NS≦1.8 ・・・(I)
式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(樹脂の吐出量)(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。
ポリブチレンテレフタレート樹脂、繊維状充填材、ポリカーボネート樹脂、及びリン化合物とともに、必要に応じ、その他の成分を溶融混練してもよい。
本実施形態において、ポリブチレンテレフタレート樹脂組成物(以下、単に「樹脂組成物」と記載することもある。)は、固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、特定量の繊維状充填材と、特定量のポリカーボネート樹脂と、リン化合物とを含有し、押出機のダイから吐出される溶融混練物の吐出量をQ(kg/hr)、押出機のスクリュ回転数をNS(rpm)としたときに、Q/NSが1.4~1.8を満たす条件で溶融混練して製造される。このような樹脂組成物を用いることにより、反りの発生が少なく、強度、剛性、外観、熱安定性及び耐湿熱性に優れる成形品を成形することができる。
以下に、本実施形態の樹脂組成物の製造方法において用いることができる各成分について説明する。
(A)ポリブチレンテレフタレート樹脂
(A)ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。(A)ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
(A)ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート系樹脂である。(A)ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上(特に75モル%以上95モル%以下)含有する共重合体であってもよい。
(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、本発明の目的を阻害しない限り特に限定されない。本実施形態において用いる(A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、5meq/kg以上30meq/kg以下が好ましく、10meq/kg以上25meq/kg以下がより好ましい。かかる範囲の末端カルボキルシル基量のポリブチレンテレフタレート樹脂を用いることで、得られるポリブチレンテレフタレート樹脂組成物が湿熱環境下での加水分解による強度低下を受けにくくなる。
(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は0.80dL/g以上0.90dL/g以下である。好ましくは0.81dL/g以上0.88dL/g以下であり、さらに好ましくは0.82dL/g以上0.86dL/g以下であり、特に好ましくは0.83dL/g以上0.85dL/g以下である。かかる範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物を、特に外観と熱安定性に優れたものとしやすい。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.85dL/gのポリブチレンテレフタレート樹脂を調製することができる。(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
(A)ポリブチレンテレフタレート樹脂において、テレフタル酸及びそのエステル形成性誘導体以外のジカルボン酸成分(コモノマー成分)としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)が挙げられる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。
(A)ポリブチレンテレフタレート樹脂において、1,4-ブタンジオール以外のグリコール成分(コモノマー成分)としては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)が挙げられる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。
ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
以上説明したコモノマー成分を共重合したポリブチレンテレフタレート共重合体は、いずれも(A)ポリブチレンテレフタレート樹脂として好適に使用できる。また、(A)ポリブチレンテレフタレート樹脂として、ホモポリブチレンテレフタレート重合体とポリブチレンテレフタレート共重合体とを組み合わせて使用してもよい。
(B)繊維状充填材
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(B)繊維状充填材を含むことにより高い強度と高い剛性を有する。
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(B)繊維状充填材を含むことにより高い強度と高い剛性を有する。
繊維状充填材としては、ガラス繊維、炭素繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、金属繊維(例えば、ステンレス、アルミニウム、チタン、銅、真鍮等)等が挙げられる。代表的な繊維状充填材としては、ガラス繊維およびカーボン繊維が挙げられ、入手の容易性やコスト面からガラス繊維が好ましく用いられる。ガラス繊維の原料となるガラスの種類は特に限定されないが、品質上、Eガラスや、組成中にジルコニウム元素を含む耐腐食ガラスが好ましく用いられる。
繊維状充填材の平均繊維径は特に限定されず、例えば1~30μm、好ましくは5~20μm、より好ましくは10~15μmとすることができる。繊維状無機充填材の平均繊維長は特に制限されず、例えば0.1~5 mmとすることができる。なお、繊維状充填剤の平均繊維径及び平均繊維長とは、樹脂組成物に配合される前の繊維状充填材について、CCDカメラで撮影した画像を解析し、加重平均により算出した値である。例えば、株式会社セイシン企業製、動的画像解析法/粒子(状態)分析計PITA-3等を用いて算出することができる。
繊維状充填材としては、円形断面を有するもの、および、非円形断面を有するもののいずれも用いることができる。非円形断面としては、断面が、長円形、楕円形、繭形等が挙げられる。非円形断面の異形比(短径:長径)は、特に限定されないが、例えば1:1.3~1:6のものが挙げられる。非円形断面の繊維状充填材を用いる場合、反り低減等の効果が得られ易いが、コスト面からは異形比が1:1~1:1.3未満の円形に近い断面を有するものが好ましく、非円形断面の繊維状充填材を用いる場合も樹脂組成物全体の10質量%以下(例えば5質量%以下)とすることが好ましい。
繊維状無機充填材は、必要により収束剤、表面処理剤(例えば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物)等により表面処理してもよい。繊維状無機充填材は、収束剤、表面処理剤等により予め表面処理してもよく、材料調製の際に収束剤、表面処理剤等を添加して表面処理してもよい。
繊維状充填材は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(B)繊維状充填材の含有量は、ポリブチレンテレフタレート樹脂組成物の全質量の40質量%以上60質量%以下であることが好ましく、45質量%以上55質量%以下であることがより好ましい。(B)無機充填材の含有量が40重量%以上であると、引張り強度等の機械的強度向上の効果がより得られ易く、また、60重量%以下であると、良好な外観や低反り性が得られ易い。
また、本実施形態において、ポリブチレンテレフタレート樹脂組成物は、本発明の効果を阻害しない範囲であれば、繊維状充填材と非繊維状充填材とを組み合わせて用いてもよい。繊維状充填材に非繊維状充填材を組み合わせて用いることにより、成形品の反りをより低減させ易い。非繊維状充填材の添加量は特に限定されるものではないが、強度を低下させないためには、ポリブチレンテレフタレート樹脂組成物全体の20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下(例えば0質量%)であることがさらに好ましい。繊維状充填材と非繊維状充填材の組み合わせとしては、特に限定されるものではないが、ガラス繊維、炭素繊維等の繊維状充填材と、ガラスフレーク、マイカ、タルク等の非繊維状充填材との組み合わせが挙げられる。
(C)ポリカーボネート樹脂
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂(以下、単に「PC樹脂」と記載することもある。)の合計100質量%に対し15~28質量%のポリカーボネート樹脂を含有する。
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂(以下、単に「PC樹脂」と記載することもある。)の合計100質量%に対し15~28質量%のポリカーボネート樹脂を含有する。
(C)ポリカーボネート樹脂の含有量は、(A)ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%の18質量%以上であることが好ましく、19質量%以上であることがより好ましく、20質量%以上であることがさらに好ましく、また、27質量%以下であることが好ましく、26質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。(C)ポリカーボネート樹脂の含有量がポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計質量の15質量%以上であると、非晶性樹脂であるポリカーボネート樹脂を添加することによる反りや成形収縮率の低減効果が得られ易く、28質量%以下であると、良好な外観や熱安定性を維持し易い。
(C)ポリカーボネート樹脂としては、ジヒドロキシ化合物と、ホスゲン又はジフェニルカーボネート等の炭酸エステルと、の反応により得られる重合体が挙げられる。
ジヒドロキシ化合物としては、例えば、脂環族化合物(例えば、脂環式ジオール)及びビスフェノール化合物が挙げられるが、ビスフェノール化合物であることが好ましい。
ビスフェノール化合物としては、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-エチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ジベンジルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルプロパン、2,2,2’,2’-テトラヒドロ3,3,3’,3’-テトラメチル-1,1’-スピロビ-[1H-インデン]-6,6’-ジオールなどのビス(ヒドロキシアリール)C1-10アルカン、好ましくはビス(ヒドロキシアリール)C1-6アルカン;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシアリール)C4-10シクロアルカン;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシアリールエーテル、;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシアリールスルホン;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシアリールスルフィド;4,4’-ジヒドロキシジフェニルスルフォキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフォキシド等のジヒドロキシアリールスルフォキシド;4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルケトン等のジヒドロキシアリールケトンなどが挙げられる。
好ましいポリカーボネート樹脂としては、ビスフェノールA型ポリカーボネートが挙げられる。
ポリカーボネート樹脂は、ホモポリカーボネートであってもよいし、コポリカーボネートであってもよい。また、ポリカーボネート樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本実施形態において、ポリカーボネート樹脂は、粘度平均分子量が20,000~25,000であることが好ましく、より好ましくは21,000~24,000、さらに好ましくは22,000~23,000である。(C)ポリカーボネート樹脂の粘度平均分子量が上記範囲内であれば、強度や外観に優れるポリブチレンテレフタレート樹脂組成物が得られ易いため好ましい。粘度平均分子量(Mv)は、例えば、溶媒としてジクロロメタンを使用し、温度20℃における極限粘度([η])(単位dl/g)を求め、下記式から算出することができる。
式:[η]=1.23×10-4Mv0.83
式:[η]=1.23×10-4Mv0.83
(D)エステル交換抑制剤としてのリン系化合物
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂のエステル交換を抑制するため、(D)エステル交換抑制剤としてのリン系化合物を含有する。
本実施形態において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂のエステル交換を抑制するため、(D)エステル交換抑制剤としてのリン系化合物を含有する。
(D)エステル交換抑制剤としてのリン系化合物は、具体的に、第一リン酸カルシウム、第一リン酸ナトリウム一水和物などのアルカリ又はアルカリ土類金属リン酸塩(又はその水和物)などのリン酸金属塩の他、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2-t-ブチルフェニル)フェニルホスファイトなどのモノ乃至トリス(分岐鎖状C3-6アルキル-フェニル)ホスファイト系化合物や、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイトなどの脂肪族多価アルコールの(分岐鎖状C3-6アルキル-アリール)ホスファイト系化合物、またはトリス(2,4-ジ-t-ブチルフェニル)ホスフェートなどのトリフェニルホスフェート系化合物が挙げられる。これらのリン系化合物のうち、熱安定性の点から、第一リン酸カルシウムのようなリン酸金属塩が好ましい。
(D)エステル交換抑制剤としてのリン系化合物の含有量は、樹脂組成物全体に対し0.001質量%以上5質量%以下であることが好ましい。より好ましくは0.01質量%以上2質量%以下であり、0.02質量%以上1質量%以下である。
(E)その他の成分
本実施形態に係るポリブチレンテレフタレート樹脂組成物は、目的に応じて、上述の(A)ポリブチレンテレフタレート樹脂、(B)繊維状充填材、(C)ポリカーボネート樹脂、及び(D)エステル交換抑制剤としてのリン系化合物以外の成分を任意に含んでもよい。(E)その他の成分としては、酸化防止剤、安定剤、分子量調整剤、紫外線吸収剤、帯電防止剤、着色剤、潤滑剤、離型剤、結晶化促進剤、結晶核剤、赤外線吸収剤、難燃剤、難燃助剤、耐衝撃性改良剤等が挙げられるがこれらに限定されない。
本実施形態に係るポリブチレンテレフタレート樹脂組成物は、目的に応じて、上述の(A)ポリブチレンテレフタレート樹脂、(B)繊維状充填材、(C)ポリカーボネート樹脂、及び(D)エステル交換抑制剤としてのリン系化合物以外の成分を任意に含んでもよい。(E)その他の成分としては、酸化防止剤、安定剤、分子量調整剤、紫外線吸収剤、帯電防止剤、着色剤、潤滑剤、離型剤、結晶化促進剤、結晶核剤、赤外線吸収剤、難燃剤、難燃助剤、耐衝撃性改良剤等が挙げられるがこれらに限定されない。
なお、本実施形態に係るポリブチレンテレフタレート樹脂組成物において、上記(A)~(D)成分の含有量の合計が、全組成物中の70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。上限は特に限定されず100質量%であってもよい。上記(A)~(D)成分の含有量の合計を上記範囲内とすることにより、低反り性、外観、強度、剛性、熱安定性、耐湿熱性のより優れた樹脂組成物を得ることができる。
(製造方法)
本実施形態の樹脂組成物の製造方法は、(A)固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、(B)ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、(C)ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、(D)エステル交換抑制剤としてのリン系化合物と、必要に応じ(E)その他の成分とを、押出機のダイから吐出される溶融混練物の吐出量Q(kg/hr)、押出機のスクリュ回転数NS(rpm)としたときに、Q/NSが1.4~1.8となる(即ち、上記の式(I)を満たす)条件で、押出機を用いて溶融混錬する工程を含む。本実施形態の製造方法によれば、低反り性、外観、強度、剛性、熱安定性、耐湿熱性がいずれもバランス良く優れた成形品を得ることが可能な樹脂組成物を製造することができる。
(A)~(E)成分については、上記で説明した通りである。また、溶融混練に用いる各成分の量についても、上記の樹脂組成物における含有量として説明した通りである。
より好ましいQ/NSは1.5~1.75であり、より好ましくは1.55~1.65である。
本実施形態の製造方法としては、特に限定されるものではないが、例えば、各成分を混合して、2軸押出機を用いて混錬し押出してペレットとする方法が挙げられる。
本実施形態の樹脂組成物の製造方法は、(A)固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、(B)ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、(C)ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、(D)エステル交換抑制剤としてのリン系化合物と、必要に応じ(E)その他の成分とを、押出機のダイから吐出される溶融混練物の吐出量Q(kg/hr)、押出機のスクリュ回転数NS(rpm)としたときに、Q/NSが1.4~1.8となる(即ち、上記の式(I)を満たす)条件で、押出機を用いて溶融混錬する工程を含む。本実施形態の製造方法によれば、低反り性、外観、強度、剛性、熱安定性、耐湿熱性がいずれもバランス良く優れた成形品を得ることが可能な樹脂組成物を製造することができる。
(A)~(E)成分については、上記で説明した通りである。また、溶融混練に用いる各成分の量についても、上記の樹脂組成物における含有量として説明した通りである。
より好ましいQ/NSは1.5~1.75であり、より好ましくは1.55~1.65である。
本実施形態の製造方法としては、特に限定されるものではないが、例えば、各成分を混合して、2軸押出機を用いて混錬し押出してペレットとする方法が挙げられる。
本実施形態の製造方法において、押出時の樹脂温度(シリンダー温度)は240~320℃であることが好ましく、250~300℃であることがより好ましい。押出時の樹脂温度が上記の範囲であれば、強度と耐湿熱性に優れた樹脂組成物が得られ易い。
なお、押出機のサイズが変わる場合、例えば、より小型の押出機を使用する場合について以下に説明する。ここでは仮に、式(I)を導出する際の押出機を「量産機」、小型の押出機を「試作機」とする。大型の量産機で実験を行い、上記式(I)に当たる関係式を導出することも可能である。ここで、大型の量産機としては、例えば、スクリュエレメントの外径Dが40mm~100mm(例えば45mm~90mm、具体的には47mm、69mmなど)であるものが挙げられる。また、時間、費用、手間等を考慮して、以下に説明する方法を行うことで、小型の試作機で導出した関係式(IV)から大型の量産機で用いることができる関係式(I)を導出することもできる。
スクリュエレメントの外径Dが、d1(試作機のスクリュエレメントの外径)からd2(量産機のスクリュエレメントの外径)に変更になる場合、試作機での吐出量Qmと量産機での吐出量QMとの間には下記関係式(II)が成立し、試作機でのスクリュ回転数Nsmと量産機でのスクリュ回転数NsMとの間には下記関係式(III)が成立する。
溶融樹脂にかかる比エネルギーが同等になるように上記関係式(II)、(III)のδ及びεを決定する。δ及びεの決定方法としては、理論的に決定する方法、実験的に決定する方法のいずれでもよい。理論的に決定する方法としては、一般的には、断熱状態と仮定して、目的関数の比エネルギー、あるいは総せん断量、滞留時間等が、小型機と大型機で一致するように、パラメータδ及びεが導出される。小型機と大型機の伝熱量の差を仮定して、目的関数としての比エネルギーが、小型機と大型機で一致するように、パラメータδ及びεを導出することもできる。実験的に決定する方法としては、目的関数を、比エネルギーとするか、もしくは、物性を示すパラメータを採用し、目的関数が、小型機と大型機とで一致するように、統計的にパラメータδ及びεを算出するような方法が挙げられる。
<成形品及び製造方法>
前記実施形態に係るポリブチレンテレフタレート樹脂組成物を用いてなる成形品及びその製造方法について説明する。
前記実施形態に係るポリブチレンテレフタレート樹脂組成物を用いてなる成形品及びその製造方法について説明する。
(成形品の製造方法)
本発明の一実施形態は、前記実施形態のポリブチレンテレフタレート樹脂組成物の製造方法で製造されたポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法(成形方法)に関する。
本実施形態の成形品の製造方法は、(A)固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、(B)ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、(C)ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、(D)エステル交換抑制剤としてのリン系化合物と、必要に応じ(E)その他の成分とを、押出機のダイから吐出される溶融混練物の吐出量Q(kg/hr)、押出機のスクリュ回転数NS(rpm)としたときに、Q/NSが1.4~1.8となる条件で、押出機を用いて溶融混錬してポリブチレンテレフタレート樹脂組成物を得る工程と、当該ポリブチレンテレフタレート樹脂組成物を射出成形する工程とを含む、成形品の製造方法(成形方法)であってよい。ポリブチレンテレフタレート樹脂組成物を得る工程の詳細については、上記のポリブチレンテレフタレート樹脂組成物の製造方法において説明した通りである。
本実施形態の製造方法によれば、低反り性、外観、強度、剛性、熱安定性、耐湿熱性に優れた成形品を製造することができる。
本実施形態の製造方法としては、特に限定されるものではないが、例えば、各成分を含む混合物を二軸押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製する方法が挙げられる。
本発明の一実施形態は、前記実施形態のポリブチレンテレフタレート樹脂組成物の製造方法で製造されたポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法(成形方法)に関する。
本実施形態の成形品の製造方法は、(A)固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、(B)ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、(C)ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、(D)エステル交換抑制剤としてのリン系化合物と、必要に応じ(E)その他の成分とを、押出機のダイから吐出される溶融混練物の吐出量Q(kg/hr)、押出機のスクリュ回転数NS(rpm)としたときに、Q/NSが1.4~1.8となる条件で、押出機を用いて溶融混錬してポリブチレンテレフタレート樹脂組成物を得る工程と、当該ポリブチレンテレフタレート樹脂組成物を射出成形する工程とを含む、成形品の製造方法(成形方法)であってよい。ポリブチレンテレフタレート樹脂組成物を得る工程の詳細については、上記のポリブチレンテレフタレート樹脂組成物の製造方法において説明した通りである。
本実施形態の製造方法によれば、低反り性、外観、強度、剛性、熱安定性、耐湿熱性に優れた成形品を製造することができる。
本実施形態の製造方法としては、特に限定されるものではないが、例えば、各成分を含む混合物を二軸押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製する方法が挙げられる。
本実施形態に係る成形品は低反り性、外観、強度、剛性、熱安定性、耐湿熱性に優れているため、棒状、板状、箱状の成形品、特に自動車、電機・電子機器、機械分野における各種部品を収納するケースやカバーといった筐体用途、レバーやシャフトといった機構部品用途、スイッチやコネクタ等の構造体用途、特に寸法精度に加え高い強度や剛性、耐熱性および耐湿熱性が求められる電磁弁などの空圧・油圧部品用途などに用いる成形品の製造方法として好適に適用することができる。
また、本実施形態に係る成形品を用いて複合部品を得ることができる。複合部品は特に限定されないが、インサート成形等の成形方法により、樹脂組成物とその他の部材(例えば金属部品)を、成形時に一体化させて複合部品を形成することができる。あるいは、予め成形品を成形し、その後、成形品同士、若しくは、成形品とその他の部材とを、熱圧着、接着剤接合等の方法により接着させて複合部品を形成してもよい。接着剤接合に用いる接着剤としては、特に限定されず、例えば、エポキシ系、シアノアクリレート系、シリコーン系、ポリイミド系接着剤を用いることができる。
本発明の実施形態は、下記を含むが、本発明は下記の実施形態に限定されるものではない。
<1> 固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、
ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、
ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、
エステル交換抑制剤としてのリン化合物とを、
下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む、ポリブチレンテレフタレート樹脂組成物の製造方法。
1.4≦Q/NS≦1.8 ・・・(I)
(式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。)
<2> 繊維状充填材の断面の短径に対する長径の比が、1:1~1:1.3未満である、<1>に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<3> 非円形断面の繊維状充填材を含有しない、<1>または<2>に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<4> 繊維状充填材の平均繊維径が、5~30μmである、<1>~<3>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<5> ポリカーボネート樹脂の粘度平均分子量が、20,000~25,000である、<1>~<4>のいずれかに1項記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<6> エステル交換抑制剤としてのリン化合物が、リン酸金属塩である、<1>~<5>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<7> 押出時の樹脂温度が、240~320℃である、<1>~<6>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<8> <1>~<7>のいずれか1項に記載の製造方法により得られたポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法。
<9> 成形品が空圧・油圧部品に用いられるものである、<8>に記載の成形品の製造方法。
<1> 固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、
ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、
ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、
エステル交換抑制剤としてのリン化合物とを、
下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む、ポリブチレンテレフタレート樹脂組成物の製造方法。
1.4≦Q/NS≦1.8 ・・・(I)
(式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。)
<2> 繊維状充填材の断面の短径に対する長径の比が、1:1~1:1.3未満である、<1>に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<3> 非円形断面の繊維状充填材を含有しない、<1>または<2>に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<4> 繊維状充填材の平均繊維径が、5~30μmである、<1>~<3>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<5> ポリカーボネート樹脂の粘度平均分子量が、20,000~25,000である、<1>~<4>のいずれかに1項記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<6> エステル交換抑制剤としてのリン化合物が、リン酸金属塩である、<1>~<5>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<7> 押出時の樹脂温度が、240~320℃である、<1>~<6>のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
<8> <1>~<7>のいずれか1項に記載の製造方法により得られたポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法。
<9> 成形品が空圧・油圧部品に用いられるものである、<8>に記載の成形品の製造方法。
日本国特許出願第2016-149664号の開示はその全体が参照により本明細書に取り込まれる。
以下、実施例により本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
表1に示す成分を同表に示す割合(質量部)で混合した後、同表に示す吐出量Q(kg/hr)およびスクリュ回転数NS(rpm)で二軸押出機(日本製鋼所製TEX44αII、スクリュエレメントの外径:47mm)を用いて、シリンダー温度280℃で溶融混練して押出し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。使用した各成分の詳細を以下に示す。
(1)ポリブチレンテレフタレート樹脂(PBT樹脂)
・PBT樹脂1:ウィンテックポリマー(株)製 IV=0.835dl/g、CEG=17meq/kgのPBT樹脂
・PBT樹脂2:ウィンテックポリマー(株)製 IV=0.875dl/g、CEG=14meq/kgのPBT樹脂
・PBT樹脂3:ウィンテックポリマー(株)製 IV=0.792dl/g、CEG=19meq/kgのPBT樹脂
(2)繊維状充填材
・ガラス繊維(GF):日本電気硝子(株)製 ECS03T-187(平均繊維径13μm、平均繊維長3mm、円形断面(異形比:1.0))
(3)ポリカーボネート樹脂(PC樹脂)
・帝人(株)製 粘度平均分子量22400のPC樹脂
(4)エステル交換抑制剤としてのリン系化合物
・第一リン酸カルシウム
その他、各実施例・比較例・参考例の組成物には、表1及び表2に示した成分以外に、各組成物100質量部に対し、離型剤として多価アルコール脂肪酸エステル(日油(株)製ユニスターH476)を0.3質量部と、酸化防止剤としてヒンダードフェノール系酸化防止剤(BASF社製Irganox1010)を0.2質量部添加した。
・PBT樹脂1:ウィンテックポリマー(株)製 IV=0.835dl/g、CEG=17meq/kgのPBT樹脂
・PBT樹脂2:ウィンテックポリマー(株)製 IV=0.875dl/g、CEG=14meq/kgのPBT樹脂
・PBT樹脂3:ウィンテックポリマー(株)製 IV=0.792dl/g、CEG=19meq/kgのPBT樹脂
(2)繊維状充填材
・ガラス繊維(GF):日本電気硝子(株)製 ECS03T-187(平均繊維径13μm、平均繊維長3mm、円形断面(異形比:1.0))
(3)ポリカーボネート樹脂(PC樹脂)
・帝人(株)製 粘度平均分子量22400のPC樹脂
(4)エステル交換抑制剤としてのリン系化合物
・第一リン酸カルシウム
その他、各実施例・比較例・参考例の組成物には、表1及び表2に示した成分以外に、各組成物100質量部に対し、離型剤として多価アルコール脂肪酸エステル(日油(株)製ユニスターH476)を0.3質量部と、酸化防止剤としてヒンダードフェノール系酸化防止剤(BASF社製Irganox1010)を0.2質量部添加した。
<評価>
(1)低反り性
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出圧力70MPaで射出成形し、80mm×80mm×2mm(4mm×2mmサイドゲート)の平板状試験片を成形し、平面度を測定した。平面度は、平板状試験片を定盤上に静置し、図1に示す9点の高さをCNC画像測定機(ミツトヨ製)で測定し、高さが最大となる点と最小となる点の高さの差として算定した。平面度が5mm以下の場合をAA、5mmを超え10mm以下の場合をA、10mmを超える場合をBとして判定した。測定結果を表1に示す。
(2)外観
上記低反り性の評価に用いた平板状試験片の、流動末端部の表面を目視で観察し、ガラス繊維の浮きによる表面荒れを確認した。表面荒れが見られないものをAA、表面荒れが僅かであるものをA、表面荒れが著しいものをBとして判定した。結果を表1に示す。
(3)強度(引張強度)
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出成形し、図2に示すISO3167引張試験片Type1A(厚さ:4mm)を作製した。作製した試験片の引張強度をISO527-1,2に準拠して測定した。結果を表1に示す。
(4)剛性(曲げ弾性率)
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出成形し、ISO3167曲げ試験片(80mm×10mm×4mm)を作製した。作製した試験片の曲げ弾性率をISO178に準拠して測定した。結果を表1に示す。
(5)熱安定性(繰返し加熱時の融点と結晶化温度の安定性)
得られたペレットを、示差走査熱量測定装置(ティー・エイ・インスツルメント社製DSC Q-1000)を用い、280℃に加熱して溶融させてから、50℃まで降温し、その後、50℃から280℃まで10℃/minで昇温し、5分間放置後、50℃まで10℃/minにて降温する操作を3サイクル繰り返す。1サイクル目で検出される融点Tm1と3サイクル目で検出される融点Tm3の差(Tm1-Tm3)をΔTmとし、1サイクル目検出される結晶化温度Tc1とサイクル目で検出される結晶化温度Tc3の差(Tc1-Tc3)をΔTcとして算出した。ΔTmとΔTcがいずれも5℃以下のものをA、ΔTmとΔTcの少なくともいずれかが5℃を超えるものをBとして判定した。結果を表1に示す。
(6)耐湿熱性(湿熱処理前後の引張強度保持率)
強度試験に用いた引張試験片を、プレッシャークッカー試験機で121℃、100RH%の条件で24時間処理し、処理後の引張強度をISO527-1,2に準拠して測定し、処理前後での保持率を求めた。保持率が85%以上のものをAA、80%以上85%未満のものをA、80%未満のものをBとして判定した。結果を表1に示す。
(1)低反り性
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出圧力70MPaで射出成形し、80mm×80mm×2mm(4mm×2mmサイドゲート)の平板状試験片を成形し、平面度を測定した。平面度は、平板状試験片を定盤上に静置し、図1に示す9点の高さをCNC画像測定機(ミツトヨ製)で測定し、高さが最大となる点と最小となる点の高さの差として算定した。平面度が5mm以下の場合をAA、5mmを超え10mm以下の場合をA、10mmを超える場合をBとして判定した。測定結果を表1に示す。
(2)外観
上記低反り性の評価に用いた平板状試験片の、流動末端部の表面を目視で観察し、ガラス繊維の浮きによる表面荒れを確認した。表面荒れが見られないものをAA、表面荒れが僅かであるものをA、表面荒れが著しいものをBとして判定した。結果を表1に示す。
(3)強度(引張強度)
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出成形し、図2に示すISO3167引張試験片Type1A(厚さ:4mm)を作製した。作製した試験片の引張強度をISO527-1,2に準拠して測定した。結果を表1に示す。
(4)剛性(曲げ弾性率)
得られたペレットを、140℃で3時間乾燥させた後、樹脂温度260℃、金型温度80℃、射出成形し、ISO3167曲げ試験片(80mm×10mm×4mm)を作製した。作製した試験片の曲げ弾性率をISO178に準拠して測定した。結果を表1に示す。
(5)熱安定性(繰返し加熱時の融点と結晶化温度の安定性)
得られたペレットを、示差走査熱量測定装置(ティー・エイ・インスツルメント社製DSC Q-1000)を用い、280℃に加熱して溶融させてから、50℃まで降温し、その後、50℃から280℃まで10℃/minで昇温し、5分間放置後、50℃まで10℃/minにて降温する操作を3サイクル繰り返す。1サイクル目で検出される融点Tm1と3サイクル目で検出される融点Tm3の差(Tm1-Tm3)をΔTmとし、1サイクル目検出される結晶化温度Tc1とサイクル目で検出される結晶化温度Tc3の差(Tc1-Tc3)をΔTcとして算出した。ΔTmとΔTcがいずれも5℃以下のものをA、ΔTmとΔTcの少なくともいずれかが5℃を超えるものをBとして判定した。結果を表1に示す。
(6)耐湿熱性(湿熱処理前後の引張強度保持率)
強度試験に用いた引張試験片を、プレッシャークッカー試験機で121℃、100RH%の条件で24時間処理し、処理後の引張強度をISO527-1,2に準拠して測定し、処理前後での保持率を求めた。保持率が85%以上のものをAA、80%以上85%未満のものをA、80%未満のものをBとして判定した。結果を表1に示す。
表1に示すように、(A)ポリブチレンテレフタレート樹脂と、(B)繊維状充填材と、(C)ポリカーボネート樹脂と、(D)リン系化合物を、Q/NSが1.4~1.8となる条件で押出した場合に、低反り性、外観、強度、剛性、熱安定性、耐湿熱性がバランス良く向上された成形品が得られることが分かる。なお、特に高い強度が求められる用途において、本発明に係るポリブチレンテレフタレート樹脂組成物からなる成形品を用いる場合、ポリブチレンテレフタレート樹脂組成物の引張強度としては160MPa以上であることが好ましい。また、特に高い耐湿熱性が求められる用途においては、121℃、100RH%での24時間処理前後におけるポリブチレンテレフタレート樹脂組成物の引張強度保持率が85%以上であることが好ましい。
表2に示す成分を同表に示す割合(質量部)で混合した後、同表に示す吐出量Q(kg/hr)およびスクリュ回転数NS(rpm)で二軸押出機(日本製鋼所製TEX30、スクリュエレメントの外径:30mm)を用いて、シリンダー温度260℃で溶融混練して押出し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。得られたペレットを用いて、上記と同様に低反り性、外観、熱安定性を評価した。結果を表2に示す。
表2に示すように、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂の合計100質量%に占める(C)ポリカーボネート樹脂の比率が15~28質量%である場合に、優れた熱安定性が得られる。また、表1の結果から、(A)ポリブチレンテレフタレート樹脂と(C)ポリカーボネート樹脂の合計100質量%に占める(C)ポリカーボネート樹脂の比率が15~28質量%であり、さらに、Q/NSが1.4~1.8の範囲である場合に、低反り性、外観等においても優れた結果が得られることがわかる。
本発明の実施形態の製造方法により得られるポリブチレンテレフタレート樹脂組成物によれば、反りが低減され、かつ、外観、強度、剛性、及び耐湿熱性に優れた成形品を成形することができるため、自動車、電機・電子機器、機械分野における各種部品を収納する筐体用途、レバーやシャフトといった機構部品用途、スイッチやコネクタ等の構造体用途を始めとした種々の用途、特に、寸法精度に加え高い強度や剛性、耐熱性および耐湿熱性が求められる電磁弁などの空圧・油圧部品用途に好適に利用することができる。
Claims (9)
- 固有粘度が0.80~0.90dL/gのポリブチレンテレフタレート樹脂と、
ポリブチレンテレフタレート樹脂組成物の全質量の40~60質量%の繊維状充填材と、
ポリブチレンテレフタレート樹脂とポリカーボネート樹脂の合計100質量%に占める比率が15~28質量%のポリカーボネート樹脂と、
エステル交換抑制剤としてのリン化合物とを、
下記の式(I)を満たす製造条件で、押出機を用いて溶融混練することを含む、ポリブチレンテレフタレート樹脂組成物の製造方法。
1.4≦Q/NS≦1.8 ・・・(I)
(式(I)において、Qは押出機のダイから吐出される溶融混練物の吐出量(kg/hr)、NSは押出機のスクリュ回転数(rpm)を表す。) - 繊維状充填材の断面の短径に対する長径の比が、1:1~1:1.3未満である、請求項1に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- 非円形断面の繊維状充填材を含有しない、請求項1または2に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- 繊維状充填材の平均繊維径が、5~30μmである、請求項1~3のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- ポリカーボネート樹脂の粘度平均分子量が、20,000~25,000である、請求項1~4のいずれかに1項記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- エステル交換抑制剤としてのリン化合物が、リン酸金属塩である、請求項1~5のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- 押出時の樹脂温度が、240~320℃である、請求項1~6のいずれか1項に記載のポリブチレンテレフタレート樹脂組成物の製造方法。
- 請求項1~7のいずれか1項に記載の製造方法により得られたポリブチレンテレフタレート樹脂組成物を射出成形することを含む、成形品の製造方法。
- 成形品が空圧・油圧部品に用いられるものである、請求項8に記載の成形品の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780046758.0A CN109562533B (zh) | 2016-07-29 | 2017-07-10 | 聚对苯二甲酸丁二醇酯树脂组合物的制造方法、以及使用了聚对苯二甲酸丁二醇酯树脂组合物的成型品的制造方法 |
JP2017552103A JP6255545B1 (ja) | 2016-07-29 | 2017-07-10 | ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-149664 | 2016-07-29 | ||
JP2016149664 | 2016-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018021002A1 true WO2018021002A1 (ja) | 2018-02-01 |
Family
ID=61016098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025165 WO2018021002A1 (ja) | 2016-07-29 | 2017-07-10 | ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109562533B (ja) |
WO (1) | WO2018021002A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021149524A1 (ja) * | 2020-01-20 | 2021-07-29 | 株式会社Adeka | 樹脂組成物の製造方法、および成形品の製造方法 |
US11110688B2 (en) * | 2018-07-05 | 2021-09-07 | Toray Plastics (America), Inc. | Anti-blush and chemical resistant polyester film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140587A (ja) * | 2010-01-08 | 2011-07-21 | Mitsubishi Engineering Plastics Corp | 成形用原料ペレットの製造方法 |
JP2014152297A (ja) * | 2013-02-13 | 2014-08-25 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート系樹脂組成物ペレットの製造方法 |
WO2015008831A1 (ja) * | 2013-07-19 | 2015-01-22 | 東洋紡株式会社 | 無機強化熱可塑性ポリエステル樹脂組成物 |
JP2016060860A (ja) * | 2014-09-19 | 2016-04-25 | 三菱エンジニアリングプラスチックス株式会社 | ポリブチレンテレフタレート系樹脂組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004143208A (ja) * | 2002-10-22 | 2004-05-20 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート樹脂組成物及び成形品 |
US20080009576A1 (en) * | 2006-06-30 | 2008-01-10 | Alexander Charles W | Process for manufacturing of thermoplastic composites with improved properties |
CN101787183B (zh) * | 2009-10-15 | 2012-11-07 | 上海锦湖日丽塑料有限公司 | 一种低翘曲高表面光泽玻纤增强聚酯复合材料及制备方法 |
CN105713355A (zh) * | 2015-12-25 | 2016-06-29 | 上海胜南复合材料有限公司 | 一种高性能防翘曲玻纤增强的pbt/pc合金材料 |
-
2017
- 2017-07-10 CN CN201780046758.0A patent/CN109562533B/zh active Active
- 2017-07-10 WO PCT/JP2017/025165 patent/WO2018021002A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140587A (ja) * | 2010-01-08 | 2011-07-21 | Mitsubishi Engineering Plastics Corp | 成形用原料ペレットの製造方法 |
JP2014152297A (ja) * | 2013-02-13 | 2014-08-25 | Mitsubishi Engineering Plastics Corp | ポリブチレンテレフタレート系樹脂組成物ペレットの製造方法 |
WO2015008831A1 (ja) * | 2013-07-19 | 2015-01-22 | 東洋紡株式会社 | 無機強化熱可塑性ポリエステル樹脂組成物 |
JP2016060860A (ja) * | 2014-09-19 | 2016-04-25 | 三菱エンジニアリングプラスチックス株式会社 | ポリブチレンテレフタレート系樹脂組成物 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11110688B2 (en) * | 2018-07-05 | 2021-09-07 | Toray Plastics (America), Inc. | Anti-blush and chemical resistant polyester film |
WO2021149524A1 (ja) * | 2020-01-20 | 2021-07-29 | 株式会社Adeka | 樹脂組成物の製造方法、および成形品の製造方法 |
JPWO2021149524A1 (ja) * | 2020-01-20 | 2021-07-29 | ||
JP7135222B2 (ja) | 2020-01-20 | 2022-09-12 | 株式会社Adeka | 樹脂組成物の製造方法、および成形品の製造方法 |
US11634559B2 (en) | 2020-01-20 | 2023-04-25 | Adeka Corporation | Method for producing resin composition and method for producing molded article |
Also Published As
Publication number | Publication date |
---|---|
CN109562533A (zh) | 2019-04-02 |
CN109562533B (zh) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113613865A (zh) | 三维造型用细丝、卷绕体和三维打印机用盒 | |
CN108350255B (zh) | 聚对苯二甲酸丁二醇酯树脂组合物 | |
JP2008214558A (ja) | 無機強化ポリエステル系樹脂組成物及びそれを用いた成形品の表面外観改良方法。 | |
CN110753729B (zh) | 聚对苯二甲酸丁二酯树脂组合物 | |
EP3369774A1 (en) | Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof | |
WO2018021002A1 (ja) | ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 | |
JP2021095484A (ja) | レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤 | |
JP6263428B2 (ja) | 熱可塑性ポリエステル樹脂ペレットブレンド物、ペレットブレンド物の製造方法及び成形品 | |
JP6255545B1 (ja) | ポリブチレンテレフタレート樹脂組成物の製造方法、及びそれを用いた成形品の製造方法 | |
TW202413529A (zh) | 熱塑樹脂組成物、其製備方法以及使用其製造之車用內裝部件 | |
JP6828803B2 (ja) | 無機強化熱可塑性ポリエステル樹脂組成物 | |
JP6270236B2 (ja) | 熱可塑性ポリエステル樹脂組成物及び成形品 | |
JP3281269B2 (ja) | ポリブチレンテレフタレート樹脂組成物及びその成形品 | |
WO2016104201A1 (ja) | ポリアルキレンテレフタレート樹脂組成物 | |
JP3761598B2 (ja) | ポリブチレンテレフタレート樹脂製成形品 | |
WO2023022138A1 (ja) | 二色成形品の強度低下抑制方法、二色成形用樹脂組成物、並びに二色成形品及びその製造方法 | |
JP7354190B2 (ja) | 二色成形用樹脂組成物及びその成形品 | |
JP7533792B2 (ja) | 液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物およびそれからなる成形品 | |
TWI764936B (zh) | 液晶性樹脂組成物及成形品 | |
EP4198081A1 (en) | Inorganic material-reinforced thermoplastic polyester resin composition and method for producing same | |
JP2005200495A (ja) | 接着用液晶性樹脂組成物およびそれからなる成形品 | |
JP2002363395A (ja) | 封止用樹脂組成物、成形品および電子封止部品 | |
CN105683289A (zh) | 尺寸稳定的聚碳酸酯-聚对苯二甲酸亚烷基酯-模塑料 | |
EP3741807A1 (en) | Polymer compositions with low warpage | |
JP2020132831A (ja) | 熱可塑性ポリエステル樹脂組成物およびそれからなる成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017552103 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17834010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17834010 Country of ref document: EP Kind code of ref document: A1 |