WO2018020701A9 - ナノバブル生成ノズル及びナノバブル生成装置 - Google Patents
ナノバブル生成ノズル及びナノバブル生成装置 Download PDFInfo
- Publication number
- WO2018020701A9 WO2018020701A9 PCT/JP2016/084129 JP2016084129W WO2018020701A9 WO 2018020701 A9 WO2018020701 A9 WO 2018020701A9 JP 2016084129 W JP2016084129 W JP 2016084129W WO 2018020701 A9 WO2018020701 A9 WO 2018020701A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanobubble
- mixed fluid
- flow
- nozzle
- gas
- Prior art date
Links
- 239000002101 nanobubble Substances 0.000 claims abstract description 291
- 239000012530 fluid Substances 0.000 claims abstract description 120
- 239000007788 liquid Substances 0.000 claims description 150
- 238000011144 upstream manufacturing Methods 0.000 claims description 37
- 238000003860 storage Methods 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 238000012937 correction Methods 0.000 claims description 20
- 238000009792 diffusion process Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 94
- 230000002093 peripheral effect Effects 0.000 description 22
- 238000003756 stirring Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000013011 mating Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2323—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2326—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2373—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2373—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
- B01F23/2375—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/21—Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/28—Jet mixers, i.e. mixers using high-speed fluid streams characterised by the specific design of the jet injector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
- B01F25/4323—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/432—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
- B01F25/4323—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
- B01F25/43231—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors the channels or tubes crossing each other several times
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4521—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/46—Homogenising or emulsifying nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/50—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
- B01F25/51—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is circulated through a set of tubes, e.g. with gradual introduction of a component into the circulating flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/50—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
- B01F25/53—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/50—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
- B01F25/54—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle provided with a pump inside the receptacle to recirculate the material within the receptacle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/915—Reverse flow, i.e. flow changing substantially 180° in direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/916—Turbulent flow, i.e. every point of the flow moves in a random direction and intermixes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
Definitions
- the present invention relates to a nanobubble generation nozzle and a nanobubble generation device. More specifically, the present invention relates to a nanobubble generation nozzle and a nanobubble generation device for obtaining a liquid containing nanobubbles which are fine bubbles.
- Nanobubbles Liquids containing fine (also referred to as "micro") air bubbles called nanobubbles are expected to be used in various industrial fields. In recent years, means for generating various nanobubbles have been studied. Nanobubbles generally mean bubbles of less than 1 ⁇ m in diameter. Nozzle structures are being investigated as a representative means for generating nanobubbles. Heretofore, various nozzles for generating nanobubbles have been proposed.
- Patent Document 1 proposes a nozzle for obtaining a liquid containing fine bubbles from a pressurized liquid obtained by pressure-dissolving a gas.
- the nozzle includes an upstream tapered portion, an upstream throat portion, an enlarged portion, a downstream tapered portion, and a downstream throat portion.
- the upstream tapered portion gradually reduces the area of the flow channel from the upstream to the downstream of the nozzle flow channel to which the pressurized liquid is supplied.
- the upstream throat is connected to the downstream end of the upstream taper.
- the throat part on the upstream side ejects the fluid flowing from the taper part on the upstream side from the jet outlet on the upstream side.
- the enlarged portion is connected to the upstream jet.
- the enlarged portion enlarges the flow passage area.
- the downstream tapered portion is connected to the downstream end of the enlarged portion.
- the downstream tapered portion gradually reduces the area of the flow path from the upstream toward the downstream.
- the downstream throat is connected to the downstream end of the downstream taper.
- the downstream throat section ejects the fluid flowing from the downstream taper section from the downstream jet port.
- this nozzle has a configuration in which a plurality of nozzles are connected in series.
- the structure that gradually reduces the area of the flow path pressurizes the liquid containing the gas to dissolve the gas in the liquid.
- the structure in which the area of the flow path is expanded releases the gas dissolved in the liquid by ejecting the liquid containing the gas. Fine bubbles, ie, nano bubbles, are generated by such an action.
- a loop flow type bubble generation nozzle is proposed.
- This nozzle has a gas-liquid loop flow stirring and mixing chamber, a liquid supply hole, a gas inflow hole, a gas supply chamber, a first ejection hole, and a second ejection hole, and at least one notch is tapered. It is formed at the end of the gas-liquid loop flow type stirring mixing chamber side of the part.
- the gas-liquid loop flow stirring and mixing chamber is a portion where liquid and gas are stirred and mixed by a loop flow to form a mixed fluid.
- the liquid supply hole is provided at one end of the gas-liquid loop flow stirring and mixing chamber.
- the liquid supply hole supplies the pressurized liquid to the gas-liquid loop flow stirring and mixing chamber.
- the gas inflow hole is a site into which the gas flows.
- the gas supply chamber is provided on the other end side of the gas-liquid loop flow stirring and mixing chamber.
- the gas supply chamber circulates the gas flowing in from the gas inflow hole around the central axis of the liquid supply hole, and from the whole or a part of the circumferential direction to the above one end of the gas-liquid loop flow stirring mixing chamber The gas is supplied to the gas-liquid loop flow stirring and mixing chamber.
- the first ejection hole is provided at the other end of the gas-liquid loop flow stirring and mixing chamber.
- the first ejection port is aligned with the central axis of the liquid supply port, and is larger than the diameter of the liquid supply port.
- the first ejection port ejects the mixed fluid from the gas-liquid loop flow stirring / mixing chamber.
- the second jet holes are provided so as to continuously expand in diameter in the direction of the gas-liquid loop flow stirring and mixing chamber from the first jet holes. This loop flow type bubble generation nozzle is intended to make it possible to improve the bubble generation efficiency more than before, without reducing the bubble generation efficiency even when using a liquid containing an impurity.
- the micro bubble generation nozzle proposed in Patent Document 1 needs to be configured by connecting a plurality of nozzle portions in series. Therefore, the fine bubble generation nozzle has a long overall length, and it is extremely difficult to form the short length.
- the purpose of the loop flow type bubble generation nozzle proposed in Patent Document 2 is to prevent the bubble generation efficiency from being lowered even when a liquid containing an impurity is used.
- the purpose of the loop flow type bubble generation nozzle is to suppress a decrease in the amount of gas supplied from the gas supply chamber due to precipitation or adhesion of sludge or scale made of impurities. Therefore, it is unclear whether the generation efficiency of nanobubbles can be improved when nanobubbles are generated using a liquid that does not contain impurities.
- the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a nanobubble generating nozzle and a nanobubble generating device capable of generating nanobubbles in a compact structure with a short overall length. .
- a nanobubble generation nozzle comprising a nanobubble generation structure for generating nanobubbles of the gas between the introduction part and the ejection part, wherein the nanobubble generation structure is an axis of the nanobubble generation nozzle.
- a plurality of flow paths having different cross-sectional areas in the direction are arranged.
- the present invention includes a plurality of flow paths having different cross-sectional areas in the axial direction of the nanobubble generation nozzle. Therefore, the pressure and release of the air bubbles are repeated according to the principle of the pressure dissolution method. Specifically, each time the liquid containing air bubbles passes through each flow path, the air bubbles are pressurized and dissolved in the liquid. In addition, the liquid contained in the liquid is refined by releasing the liquid that has flowed out of the flow path after passing through the flow path. Repeating this action produces nanobubbles.
- the flow paths for pressurizing and dissolving the bubbles in the liquid are provided at a plurality of positions in the axial direction of the nanobubble generation nozzle inside one nozzle, the plurality of nozzles should be connected in series. Is unnecessary. Therefore, the nozzle can be configured compactly.
- the flow paths adjacent in the axial direction of the nanobubble generation nozzle are provided at different positions in the radial direction of the nanobubble generation nozzle.
- each flow path is arrange
- the flow paths connected inside the nanobubble generation nozzle pressurize the bubbles contained in the liquid for each flow path and dissolve them in the liquid. Also, after being dissolved, the gas allows the liquid containing the liquid to flow out of the channel and release.
- these actions can be independently provided, and nanobubbles can be generated for each flow path.
- the plurality of flow paths are arranged in the axial direction of the nanobubble generation nozzle as three flow paths having different cross-sectional areas, and the upstream first flow path is the nanobubble generation nozzle
- the second flow path located at the radial center and located at the middle position is located outside the radial center of the nano bubble generation nozzle, and the third flow path on the downstream side is located radially of the nano bubble generation nozzle It is centrally located.
- nano bubbles can be generated for each of the first to third flow channels.
- At least one place between the plurality of flow paths has a turbulent flow formation portion that makes the flow of the mixed fluid be a turbulent flow.
- the turbulent flow forming portion is provided, and the turbulent flow forming portion makes the flow of the liquid containing bubbles into a turbulent flow, so that the shearing force acts on the liquid containing the bubbles. Therefore, the bubbles contained in the liquid flowing through the turbulent flow forming portion are miniaturized to generate nanobubbles.
- the turbulent flow formation portion may be configured such that, on the downstream side of the outlet of the first flow path, the mixed fluid that has flowed out of the first flow path in the radial direction of the nanobubble generation nozzle It has a diffusion part to diffuse radially outward, and the mixed fluid diffused by the pre-diffusion part is returned to the first flow path side in the axial direction of the nano bubble generation nozzle at the entrance of the second flow path It is placed in position.
- the turbulent flow forming portion is configured as described above, the liquid flowing out of the first flow path is diffused outward in the radial direction by the diffusion portion. Thereafter, the liquid is once returned to the first channel side, that is, the upstream side, and then allowed to flow into the second channel. Therefore, turbulent flow can be formed in the process of returning the liquid upstream. Therefore, air bubbles can be made minute by applying a shear force to the liquid containing air bubbles between the first flow path and the second flow path.
- the circuit in which the liquid flows can be a closed loop circuit.
- the above-described nanobubble generation nozzle included in the closed loop circuit can repeatedly generate nanobubbles and store the liquid containing nanobubbles in the liquid storage tank in order to generate the liquid containing the nanobubbles.
- a bypass flow path is provided to communicate.
- the bypass flow channel is provided as described above, by flowing the mixed fluid in the bypass flow channel, the pressure between the pump and the nano bubble generation nozzle is prevented from being unnecessarily increased. .
- the flow rate of the mixed fluid flowing in the closed loop circuit can be increased, and the closed loop circuit can be sufficiently entrained in gas.
- the bypass flow channel can be closed to increase the pressure of pump delivery to send the mixed fluid to the nano bubble generation nozzle. As a result, nanobubbles can be generated from the bubbles contained in the mixed fluid.
- the present invention as in the prior art, it is not necessary to connect a plurality of nozzles in series, and a nanobubble generation nozzle can be configured with only one nozzle. Therefore, the nano bubble generation nozzle can be made compact. Moreover, since the nano bubble generation device is configured using this nano bubble generation nozzle, the structure of the device can be simplified.
- FIG. 1 It is a longitudinal section showing one embodiment of a nano bubble generation nozzle concerning the present invention. It is explanatory drawing for demonstrating an effect
- the nanobubble generation nozzle 1 is, as shown in FIG. 1, an introduction part 11 for introducing a mixed fluid of liquid and gas into the inside and an ejection part for delivering a mixed fluid containing fine bubbles (nanobubbles) It has 35 and. Moreover, between the introduction part 11 and the ejection part 35, the nano bubble generation structure part 5 for generating a nano bubble is provided.
- the nanobubble generation structure unit 5 includes a plurality of flow paths 15, 28, 36 having different cross-sectional areas in which a mixed fluid of liquid and gas is passed in the axial direction of the nanobubble generation nozzle 1. In other words, the plurality of flow paths 15, 28, 36 are arranged in a plurality of stages in the axial direction of the nanobubble generation nozzle 1, and the cross-sectional areas of the flow paths 15, 28, 36 differ from stage to stage .
- a gas is one of the states of matter, does not have a fixed shape and volume, and means a state in which the flow is free and the volume is easily changed by increasing or decreasing the pressure.
- the gas is a substance before it is changed to a bubble described later.
- a bubble means a spherical thing contained in a liquid, and is a substance whose volume is smaller than said gas.
- the nano bubble means a fine (fine) one having a very small diameter of the sphere among the bubbles.
- Nanobubbles specifically mean air bubbles whose diameter is smaller than 1 ⁇ m.
- the nanobubbles are kept in the liquid for a long time (about several months).
- the nanobubbles are different from microbubbles in which the diameter of the bubble is 1 ⁇ m or more and 1 mm or less and which disappears from the liquid as time passes.
- the nanobubble generating apparatus 100 includes a gas introducing unit 120, a pump 130, a nanobubble generating nozzle 1, a liquid storage tank 150, and a return path 160.
- the gas introducing unit 120 is a component for introducing a gas into the flow unit 170 for flowing a liquid.
- the pump 130 delivers a mixed fluid of gas and liquid that has flowed from the inside of the flow section 170.
- generation nozzle 1 introduces the mixed fluid sent out by the pump 130, and has obtained the mixed fluid containing nano bubbles.
- the liquid storage tank 150 stores a mixed fluid containing nanobubbles. Then, the return path 160 returns the mixed fluid stored in the liquid storage tank 150 to the circulation unit 170.
- generation apparatus 100 is shown in FIG. 1 mentioned above.
- generation nozzle 1 which concerns on this invention, it becomes unnecessary to connect several nozzles in series like before, and it becomes possible to comprise a nano bubble production
- FIG. 1 shows an example of the configuration of the nanobubble generation nozzle 1.
- generation nozzle 1 of the example shown in FIG. 1 is mainly comprised by three components. Concretely, the nano bubble production
- the introducing part structure 10 is provided with an introducing port for introducing a mixed fluid of liquid and gas inside.
- the ejection part structure 30 is provided with the ejection port which ejects the mixed fluid in which the nano bubble was contained.
- the middle part construction 20 is sandwiched by these two constructions 10, 30.
- the nanobubble generation nozzle 1 arranges a plurality of flow paths 15, 28 and 36 having mutually different cross sectional areas in the axial direction of the nanobubble generation nozzle 1 by combining these three components. Further, in each of the flow paths 15, 28 and 36, the flow paths 15, 28 and 36 axially adjacent to each other are respectively formed at different radial positions in the nanobubble generation nozzle 1.
- the flow paths 15, 28 and 36 are divided into three different positions in the axial direction of the nanobubble generation nozzle 1.
- the first flow path 15 on the upstream side is formed at the radial center of the nanobubble generation nozzle 1
- the second flow path 28 at the intermediate position is formed outside the radial center of the nanobubble generation nozzle 1.
- the third flow path 36 on the downstream side is formed at the radial center of the nanobubble generation nozzle 1.
- the cross-sectional areas of the cross sections of these flow paths 15, 28, 36 are different from each other.
- the nanobubble generation nozzle 1 is provided with a turbulent flow formation portion 70 that makes the flow of the mixed fluid of liquid and gas a turbulent flow at at least one place between the flow paths 15, 28, 36.
- the introduction part structure 10 is a component forming the upstream side of the nanobubble generation nozzle 1.
- the introducing part structure 10 includes an introducing port for introducing a mixed fluid of liquid and gas into the inside thereof.
- the introducing portion structure 10 is configured of a main body portion 12 and an introducing portion 11 which protrudes from an end face of the main body portion 12.
- the main body portion 12 has an outer shape in which two cylindrical portions having different diameters are axially stacked.
- the small diameter portion 13 is upstream and the large diameter portion 14 is downstream.
- a first flow path 15 and a portion (a tapered portion 16) having a tapered inner surface which forms a part of the turbulent flow forming portion 70 are formed inside the main body portion 12.
- a straight portion 17 is formed on the downstream side of the large diameter portion 14.
- the straight portion 17 is a portion for fitting the middle portion structure 20 inside the large diameter portion 14.
- the introduction portion 11 is formed to be smaller in diameter than the small diameter portion 13 and protrudes outward from the end face of the small diameter portion 13.
- the introduction portion 11 is a portion for introducing the mixed fluid of liquid and gas sent out by the pump 130 into the interior of the nanobubble generation nozzle 1.
- the introduction portion 11 has a tubular shape, and protrudes in the axial direction of the nanobubble generation nozzle 1 from the end face of the portion 13 with a small diameter.
- An introduction passage 11 a is formed inside the introduction portion 11 and guides the mixed fluid to the inside.
- a pipe or hose 140 connected to the pump 130 is connected to the introduction portion 11.
- a first flow passage 15 is formed inside the small diameter portion 13.
- the first flow passage 15 extends axially at the radial center of the small diameter portion 13.
- the first flow passage 15 is formed to have a smaller inner diameter than the introduction passage 11 a.
- the inner diameter of the flow path 15 may be 5 mm or more and 10 mm or less.
- the internal diameter of the 1st flow path 15 is formed in 5 mm.
- the first flow path 15 has a function of changing a gas into small bubbles (nano bubbles) by causing a mixed fluid of a liquid and a gas to pass therethrough, and causing the liquid to include the nano bubbles. That is, when the mixed fluid passes through the first flow path 15, the first flow path 15 pressurizes the gas contained in the mixed fluid and dissolves it in the liquid, and passes the first flow path to the first flow path Release the mixed fluid when flowing out of the The first flow path 15 converts the gas contained in the mixed fluid into nano bubbles of minute bubbles by this action.
- the large diameter portion 14 is formed with a recessed portion that is recessed toward the introduction portion 11 from the end surface on the intermediate portion structure 20 side (downstream side) of the introduction portion structure 10.
- the inner surface of the recess is constituted by the straight portion 17 and the tapered portion 16.
- the straight portion 17 extends straight in parallel with the axial direction.
- the tapered portion 16 is tapered from the middle structure 20 side (downstream side) to the first flow path 15 side (upstream side).
- the straight portion 17 is formed in a region that occupies the middle portion structure 20 side (downstream side) in the recess.
- the straight portion 17 is a portion to be fitted to the intermediate portion structure 20 when combining the three structures.
- the tapered portion 16 is formed at the back of the recess, that is, on the first flow path 15 side (upstream side). As described above, the tapered portion 16 is formed to be tapered from the side of the intermediate structure 20 (downstream side) to the side of the first flow path 15 (upstream side). In other words, the tapered portion 16 has a shape that spreads radially outward as it goes from the first flow path 15 side (upstream side) to the downstream side.
- the tapered portion 16 is connected to the first flow path 15 at the deepest position of the tapered portion 16, that is, the portion closest to the first flow path 15. Therefore, the mixed fluid that has flowed out of the first flow path 15 is configured to be able to flow toward the center or radially outward.
- the intermediate portion structure 20 is a component having an overall disk shape or a substantially disk shape.
- the intermediate portion structure 20 is sandwiched between the introduction portion structure 10 and the ejection portion structure 30 described later.
- Conical protrusions 21 and 29 are respectively formed on both sides in the thickness direction at the central portion in the radial direction of the intermediate portion structure 20.
- the conical first projecting portion 21 formed on the side of the introducing portion structure 10 (upstream side) forms a part of the turbulent flow forming portion 70.
- the conical second projecting portion 29 formed on the ejection portion forming body 30 side (downstream side) has a function of a guiding passage for guiding the mixed fluid to the third flow passage 36.
- a ring-shaped protruding portion 22 is formed at the radially outer portion so as to protrude toward the introducing portion structure 10 side (upstream side).
- the ring-shaped protrusion 22 is formed over the entire circumference of the intermediate portion structure 20 and has a ring shape.
- the second flow passage 28 is formed in the ring-shaped protrusion 22.
- the first protrusion 21 constitutes a part of the turbulent flow forming portion 70.
- the first protrusion 21 is formed in a conical shape, and the position of the tip corresponds to the center of the first flow path 15.
- the first projecting portion 21 radially flows the mixed fluid flowing out of the first flow passage 15 from the radial center toward the outside. That is, it has a function of flowing the mixed fluid that has flowed out of the first flow path 15 in the direction in which the second flow path 28 is disposed.
- the second flow passage 28 is formed at the position of the ring-like protrusion 22 as described above.
- a plurality of second flow paths 28 are formed at equal intervals in the circumferential direction at the position of the ring-like protrusion 22.
- the inner diameter of the second flow passage 28 is smaller than the inner diameter of the first flow passage 15. Further, the total of the cross-sectional areas of the cross sections of the plurality of second flow channels 28 is formed to be smaller than the cross-sectional area of the cross section of the first flow channel 15.
- the inner diameter of the second flow passage 28 is set in accordance with the number of the second flow passages 28. That is, when the number of the second flow paths 28 is large, the inner diameter of the second flow path 28 is small, and when the number is small, the inner diameter of the second flow path 28 is large.
- the second flow path 28 may be formed at four places from four places in the circumferential direction, and in this case, the inner diameter may be formed at 1 mm or more and 2 mm or less.
- generation nozzle 1 of the example shown in FIG. 1 has provided the 2nd flow path 28 whose internal diameter is 1 mm in 16 places of the circumferential direction.
- the second flow passage 28 is formed in the ring-shaped projecting portion 22, as shown in FIG. 1, the inlet is located closer to the introduction portion constituting body 10 side (upstream side) than the end surface 23. Therefore, the mixed fluid flows out of the first flow path 15 and flows radially as it extends by the first protrusion 21. Then, the mixed fluid collides with the inner wall of the ring-like protrusion 22 and once reverses toward the upstream side. The mixed fluid then becomes turbulent. Then, the mixed fluid flowing in a turbulent flow flows into the inside from the inlet of the second flow passage 28 located on the introduction structure 10 side (upstream side) of the end face 23.
- the second flow path 28 has a function of converting the gas contained in the mixed fluid flowing therein and the bubbles having a large diameter into smaller bubbles. That is, the large diameter air bubbles formed in the first flow path 15 and the gas not changed into the air bubbles are further pressurized and dissolved in the liquid when passing through the second flow path 28. In addition, the liquid in which the gas is dissolved is changed to a small-diameter air bubble by flowing out of the second flow path 28 and being released after passing through the second flow path 28.
- the second protrusion 29 is formed in a conical shape that is tapered toward the ejection portion structure 30.
- the second projecting portion 29 has a function of a flow passage for guiding the mixed fluid flowing out of the second flow passage 28 to the third flow passage 36.
- a flange portion 27 which protrudes outward is formed at the center of the axial direction on the outer peripheral portion of the intermediate portion structure 20. Further, in the outer peripheral portion, seal grooves 24 are formed over the entire periphery at portions on both sides sandwiching the flange portion 27 therebetween. An O-ring 50 is fitted in the seal groove 24.
- the ejection part construction 30 is a construction for ejecting the mixed fluid containing nanobubbles from the nanobubble generation nozzle 1 to the outside.
- the ejection part structure 30 is provided with the ejection port which ejects the mixed fluid in which the nano bubble was contained.
- the ejection portion structure 30 includes a main body portion 31 and a flange portion 32.
- the ejection part structure 30 includes a third flow path 36.
- the main body portion 31 is a portion whose outer shape is cylindrical or substantially cylindrical.
- the main body portion 31 has a recess which is recessed from one end side to the other end side in the axial direction.
- the recess has a portion (straight portion 33) for fitting the ejection portion structure 30 to the intermediate portion structure 20, and a portion (taper portion 34) for forming a flow passage through which the mixed fluid containing nanobubbles flows. have.
- the recess is constituted by the straight portion 33 and the tapered portion 34.
- the straight portion 33 extends straight from one end to the other end.
- the tapered portion 34 tapers from the deepest position of the straight portion 33 toward the other end.
- the straight portion 33 is a portion for fitting the ejection portion structure 30 to the intermediate portion structure 20, and the tapered portion 34 is a portion for forming a liquid flow path.
- the 3rd flow path 36 formed in the center part of radial direction is provided in the site
- the third flow passage 36 communicates the deepest position of the tapered portion 34 forming the recess with the end surface 37 of the ejection portion forming body 30 itself.
- the third flow passage 36 is formed to have an inner diameter of 3 mm or more and 4 mm or less.
- the lower limit value of the inner diameter of the third flow path 36 is important, and if it is smaller than 3 mm, the pressure of the liquid may be unnecessarily increased, which may inhibit the formation of nanobubbles. Therefore, the inner diameter of the third flow passage 36 is desirably 3 mm or more.
- the ratio of the cross-sectional area of a 1st flow path, a 2nd flow path, and a 3rd flow path is explained.
- the flange portion 32 protrudes outward in the radial direction from the main body portion 31 on one end side of the main body portion 12.
- the flange portion 32 is a portion used when combining the introducing portion forming body 10, the intermediate portion forming body 20, and the ejection portion forming body 30, which are three forming bodies. Specifically, the three constructions are combined using a bolt 60.
- the flange portion 32 is formed with a plurality of holes, and the bolts 60 are passed through these holes to combine the three structures.
- generation nozzle 1 of the example shown in FIG. 1 is equipped with the holder 40 other than the introducer part structure 10, the intermediate part structure 20, and the ejection part structure 30 mentioned above.
- This holder 40 is a member used when combining three structures.
- the holder 40 has an annular shape, and holes are formed at a plurality of locations in the circumferential direction.
- the number of holes is the same as the number of holes formed in the flange portion 32 of the ejection portion structure 30.
- a bolt 60 is passed through this hole.
- the nanobubble generation nozzle 1 is configured of the introduction portion structure 10, the intermediate portion structure 20, the ejection portion structure 30, and the holder 40.
- the nano bubble generation nozzle 1 is assembled as follows.
- the straight portion 17 of the introduction portion structure 10 is fitted to the portion 25 of the outer peripheral surface on the upstream side of the flange portion 27 formed on the outer peripheral surface of the intermediate portion structure 20. Further, the straight portion 33 of the ejection portion structure 30 is fitted to the portion 26 of the outer peripheral surface on the downstream side of the flange portion formed on the outer peripheral surface of the intermediate portion structure 20.
- a seal groove 24 is formed on the outer peripheral surface of the intermediate portion structure 20, and an O-ring 50 is fitted in the seal groove 24. Therefore, when the straight portion 17 of the introduction portion structure 10 and the straight portion 33 of the ejection portion structure 30 are respectively fitted into the portions 25 and 26 of the outer peripheral surface of the middle portion structure 20, the middle portion structure 20 and the introduction portion The mating surface with the structure 10 and the mating surface between the intermediate portion structure 20 and the ejection portion structure 30 are sealed by an O-ring 50. As a result, when the liquid flows into the inside of the nano bubble generation nozzle 1, the liquid inside is prevented from leaking out from the respective mating surfaces.
- the holder 40 is then fitted into the small diameter portion 13 of the introducer assembly 10.
- the downstream surface of the inserted holder 40 is abutted against the end face of the cylindrical portion 13 having a small diameter.
- the bolt 60 is passed through the hole formed in the holder 40 and the hole formed in the flange portion 32 of the ejection portion structure 30.
- An internal thread is formed in the hole formed in the flange portion 32, and the tip of the bolt 60 is tightened into the internal thread.
- generation nozzle 1 is assembled through the procedure demonstrated above.
- the introducing unit 11 introduces a mixed fluid of liquid and gas into the inside of the nanobubble generation nozzle 1. Specifically, the introduction unit 11 guides the mixed fluid to the first flow passage 15 through the introduction passage 11 a of the introduction unit 11 and the mixed fluid supplied by the hose and the piping connected thereto.
- the first flow path 15 pressurizes and dissolves the gas contained in the mixed fluid that has flowed into the interior thereof into a liquid, and releases the mixed fluid that has flowed out of the first flow path 15. Therefore, in the first flow path 15, the gas flowing into the inside thereof changes into small bubbles. Then, the first flow path 15 causes the mixed fluid containing small bubbles to flow out to the turbulent flow forming unit 70.
- the turbulent flow forming portion 70 radially diffuses the mixed fluid that has flowed in from the radial center toward the outside at the first projecting portion 21.
- the conical first protrusion 21 flows the mixed fluid that has flowed in from the tip side along the circumferential surface, and changes the flow direction from the center side in the radial direction to the outside.
- the first protrusion 21 causes the mixed fluid, which has flowed along the circumferential surface, to flow further outward.
- the inlet of the second flow passage 28 formed in the ring-like protrusion 22 is formed closer to the introduction structure 10 than the end face 23 of the intermediate structure 20 (upstream). Therefore, the mixed fluid flowing through the end face 23 of the intermediate structure 20 is prevented from flowing directly into the second flow passage 28.
- the inner wall surface of the ring-shaped protrusion 22 causes the mixed fluid that has flowed along the peripheral surface of the first protrusion 21 and the peripheral surface of the end surface 23 to collide, thereby setting the direction of the liquid flow to the first channel 15. Change to the side. And the space part enclosed by the taper part 16 of the introductory part structure 10 and the intermediate part structure 20 disturbs the flow of mixed fluid, and generates a turbulent flow.
- the turbulent flow forming unit 70 causes the flow of the mixed fluid containing the air bubbles to be a turbulent flow, and thus exerts a shearing force on the gas contained in the mixed fluid and the large diameter air bubbles. Therefore, also in the turbulent flow forming portion 70, a bubble having a small diameter is generated.
- the second flow path 28 formed in the ring-like protrusion 22 allows the mixed fluid in a turbulent flow in the space portion surrounded by the tapered portion 16 of the introduction portion structure 10 and the intermediate portion structure 20.
- the mixed fluid that has flowed into the second flow path 28 passes through the second flow path 28 and flows out to the ejection portion constituting body 30 side (downstream side).
- the second flow path 28 pressurizes the gas and the large-diameter bubble and dissolves the gas and the large-diameter bubble while the mixed fluid including the gas and the large-diameter bubble flows therethrough.
- the second flow passage 28 is formed such that the inner diameter of each one is smaller than the inner diameter of the first flow passage 15, and the total cross-sectional area of the cross sections of the second flow passage 28 is the first flow passage 15. It is formed smaller than the cross-sectional area of the cross section of. The liquid in which the gas is dissolved is discharged and released after passing through the second flow passage 28 having such a small cross-sectional area, so that a bubble having a diameter smaller than that of the first flow passage is generated.
- a space portion formed by the tapered portion 34 of the ejection portion structure 30 and the intermediate portion structure 20 functions as a flow path for guiding the mixed fluid flowing out of the second flow path 28 to the third flow path 36. That is, the mixed fluid that has flowed out of the second flow path 28 flows along the flow path formed by the peripheral surface of the second protrusion of the intermediate portion structure 20 and the inner surface of the tapered portion 34 of the ejection portion structure 30. , To the inlet of the third flow passage 36 located at the radial center.
- the third flow path 36 functions as a jet portion 35 which jets the mixed fluid containing gas and air bubbles having a large diameter and is discharged to the outside of the nano bubble generation nozzle 1. Similar to the first and second channels 15 and 28, the third channel 36 pressurizes gas or gas bubbles having a large diameter and dissolves the liquid in the liquid, and after passing through the third channel, the third channel 36 is jetted from the nanobubble generation nozzle 1 And release. Therefore, the third flow path 36 generates nano bubbles which are air bubbles of a minute diameter. Moreover, the cross-sectional area of the cross section of the third flow passage 36 is smaller than the sum of the cross-sectional areas of the cross sections of the second flow passage 28.
- the third flow path 36 appropriately pressurizes the mixed fluid passing therethrough, and raises the pressure of the mixed fluid passing therethrough.
- the gas contained in the mixed fluid and the gas bubbles having a large diameter are appropriately pressurized and dissolved in the liquid.
- the third flow path 36 raises the pressure of the mixed fluid, the mixed fluid is jetted from the nanobubble generation nozzle 1 at a predetermined flow rate by giving a suitable flow rate to the mixed fluid.
- the first flow path and the second flow path are formed at different positions in the radial direction of the nanobubble generation nozzle.
- the second flow path and the third flow path are also arranged at different positions in the radial direction.
- the flow paths are connected to each other in the internal space of the nanobubble generation nozzle. Therefore, each flow path is pressurized and dissolved in the liquid for each flow path with respect to the gas contained in the liquid and the bubbles having a large diameter.
- nano bubbles are reliably formed in each flow path.
- the axial dimension is shortened as compared to the case where the respective channels are formed at the same position in the radial direction. Can.
- the nano bubble generation nozzle 1 can be formed compactly.
- the inner diameters of the first flow passage located on the upstream side and the third flow passage located on the downstream side are greater than the inner diameter of the second flow passage located in the middle portion It is formed large.
- the 1st channel and the 3rd channel are constituted by one hole, and the 2nd flow is constituted by a plurality of holes.
- the nanobubble generation nozzle 1 reliably generates nanobubbles by pressurizing the mixed fluid of liquid and gas and then ejecting and releasing the mixed fluid.
- the nanobubble generating apparatus 100 includes a closed loop circuit that circulates a mixed fluid containing gas nanobubbles.
- the closed loop circuit includes a gas inlet 120, a pump 130, a nanobubble generation nozzle 1, a liquid reservoir 150, and a return path 160.
- the gas introducing unit 120 is a component for introducing a gas into the flowing unit 170 in which the liquid flows.
- the pump 130 delivers a mixed fluid of gas and liquid to the next nanobubble generation nozzle 1.
- the nanobubble generation nozzle 1 introduces the mixed fluid sent out by the pump 130 and generates a mixed fluid containing gas nanobubbles.
- the liquid storage tank 150 is a component for storing a mixed fluid containing nanobubbles.
- the return path 160 returns the mixed fluid stored in the liquid storage tank 150 to the flow part 170 described above.
- the above-described nanobubble generation nozzle 1 uses the nanobubble generation nozzle 1 according to the present invention described above.
- the configuration of the nano bubble generation nozzle 1 has already been described, and thus the description thereof is omitted here.
- the nanobubble generating apparatus 100 is provided with a bypass channel 180 branched from the hose or the pipe 140 and connected to the liquid storage tank 150.
- a section between the return path 160 and the pump 130 is referred to as a “flow portion 170”.
- the gas introducing unit 120 is a component for introducing a gas into the flow passage unit 170 of the closed loop circuit.
- the gas introducing unit 120 is provided at the position of the flowing unit 170 between the return path 160 and the pump 130.
- an ejector is used as the gas introduction unit 120.
- the ejector is a component having a main line through which liquid flows and an air inlet for drawing in gas.
- the main line of the ejector is provided with a nozzle and a diffuser.
- the ejector mixes the gas with the liquid in the main line at the outlet of the nozzle.
- an ejector has a structure which sends mixed liquid and gas downstream by a diffuser.
- the ejector / nozzle is a component that decreases the kinetic energy of the fluid and increases the kinetic energy
- the diffuser is a component that converts the kinetic energy of the fluid into pressure energy
- a hose or piping 125 is connected to the intake port.
- the hose or piping 125 is connected to send the gas to the ejector.
- an open / close valve 126 is provided at the end of the hose or pipe 125.
- the on-off valve 126 connects or disconnects the gas source and the hose or pipe 125.
- a gas supply source is not particularly shown in the drawings, a desired cylinder, for example, an oxygen cylinder is used.
- the gas when an ejector is used as the gas introduction unit 120, the gas can be efficiently used as the mixed fluid without changing the pressure of the mixed fluid flowing through the circulation unit 170 before and after the ejector in the circulation unit 170. Can be mixed together.
- the pump 130 circulates the mixed fluid in the closed loop circuit in the closed loop circuit.
- a centrifugal pump 130 is used as a pump.
- the spiral pump is driven by a motor 131 as a power source.
- a spiral pump is used as the pump, but the type of the pump 130 used is not particularly limited.
- generation apparatus 100 of this embodiment is one of the feature points that the kind of pump 130 to be used is not limited. However, it is preferable to use an appropriate pump 130 according to the type of liquid and the type of gas.
- Nano bubble generation nozzle For example, a nozzle having the form shown in FIG. 1 is used as the nanobubble generation nozzle 1. That is, the nozzle is provided with the above-described nanobubble generating structure 5 inside.
- the nanobubble generation structure 5 includes a plurality of flow paths 15, 28, 36 having different cross-sectional areas through which the mixed fluid is passed.
- the nanobubble generation structure unit 5 includes a plurality of flow channels 15, 28 and 36 having different cross-sectional areas in the axial direction of the nanobubble generation nozzle 1.
- generation nozzle 1 since it already demonstrated with reference to FIG.1 and FIG.2, the description is abbreviate
- the liquid storage tank 150 is a component for storing a mixed fluid containing nanobubbles generated by the nanobubble generation nozzle 1.
- the liquid storage tank 150 has a size according to the required amount of the mixed fluid containing nanobubbles.
- the pump 130 and the liquid storage tank 150 described above are connected by a pipe or hose 140. This constitutes part of the closed loop circuit.
- FIG. 4 shows an example of the attachment mode of the nanobubble generation nozzle 1.
- the nanobubble generation nozzle 1 is disposed inside the liquid storage tank 150 and fixed to the peripheral wall surface of the liquid storage tank 150.
- generation nozzle 1 is attached to the surrounding wall surface of the liquid storage tank 150 as follows.
- the introduction portion 11 is passed through a hole formed in the peripheral wall surface of the liquid storage tank 150.
- the third flow path (not shown) formed in the ejection portion structure 30 is directed to the inside of the liquid storage tank 150.
- the end surface of the holder 40 and the end surface of the portion 13 with a small diameter abut against the inner surface of the peripheral wall surface of the liquid storage tank 150.
- annular holder 45 is disposed on the outer side of the peripheral wall surface of the liquid storage tank 150.
- the introduction portion 11 of the nanobubble generation nozzle 1 is inserted into the space formed at the center of the holder 45. Then, one end of the holder 45 in the thickness direction abuts against the outer surface of the peripheral wall surface of the liquid storage tank 150.
- the holder 45 is formed with a plurality of holes penetrating in the thickness direction, and is configured to pass a bolt.
- a bolt 60 is passed through the hole of the holder 45 disposed outside the peripheral wall surface, the hole of the holder 40 disposed inside the peripheral wall surface, and the hole of the flange portion 32. Then, the nut 61 is tightened at the tip of the bolt 60, and the nanobubble generation nozzle 1 is fixed to the peripheral wall surface of the liquid storage tank 150 by holding the peripheral wall surface between the holder 40 and the nanobubble generation nozzle 1.
- the return path 160 is constituted by piping.
- the return path 160 constitutes part of a closed loop circuit. Specifically, the return path 160 connects the liquid storage tank 150 and the circulation unit 170.
- the return path 160 returns the mixed fluid containing nanobubbles stored in the liquid storage tank 150 back to the flow portion 170 again.
- the return path 160 re-introduces the gas by the ejector provided in the circulation unit 170.
- the proportion of nanobubbles contained in the liquid is increased by circulating the liquid containing the nanobubbles.
- the bypass flow passage 180 communicates the liquid or water reservoir 150 with a portion in the longitudinal direction of the pipe or hose 140.
- a valve 145 for branching the flow of the mixed fluid flowing in the inside of the pipe or hose 140 is provided at a midway portion of the pipe or hose 140 in the longitudinal direction.
- the valve 145 branches the pipe or hose 140 into the main flow path 141 and the bypass flow path 180.
- the valve 145 adjusts the flow rate so that the flow rate of the liquid branched into the bypass flow path 180 is smaller than the flow rate of the mixed liquid flowing through the main flow path 141.
- the bypass channel 180 branched by the valve 145 directs the nanobubbles flowing in the closed loop circuit from the piping or hose 140 directly to the liquid storage tank 150.
- the nanobubble generating device 100 circulates the liquid containing nanobubbles in a closed loop circuit, many nanobubbles can be contained in the liquid. Moreover, since the nano bubble production
- Examples of the liquid to be used in the nanobubble generation nozzle and the nanobubble generation apparatus described above include water, a liquid in which a liquid other than water is contained in water, and a liquid other than water.
- Examples of the liquid to be contained in water include non-volatile liquids such as ethyl alcohol.
- an ethyl alcohol etc. can be mentioned, for example.
- the gas air, nitrogen, ozone, oxygen, carbon dioxide and the like can be mentioned.
- nanobubbles were generated by the nanobubble generation apparatus using the nanobubble generation nozzle of the present embodiment, and the number of the generated nanobubbles was measured for each diameter of the nanobubbles.
- the nanobubbles are generated by the nanobubble generating apparatus 100 (the apparatus of the first embodiment) not using the bypass flow channel 180, and the nanobubbles are generated by the nanobubble generating apparatus 100 (the apparatus of the second embodiment) using the bypass flow channel 180.
- nano bubbles are generated using oxygen as a gas and water as a liquid.
- nano bubbles are generated using ozone as a gas and water as a liquid.
- generation nozzle 1 used for the test used what was shown in FIG.
- generation apparatus 100 used the apparatus of the structure shown in FIG. First, the nanobubbles were generated by operating the nanobubble generator for a certain period of time, circulating a mixed fluid of water and oxygen, and secondly, circulating a mixed fluid of water and ozone.
- nanobubbles were confirmed by measuring the number and size of bubbles contained per 1 ml by nanoparticle tracking analysis using an LM10 type measuring instrument manufactured by Malvern.
- FIG. 5 shows the measurement results in the case where oxygen is used as the gas using the nano-bubble generating apparatus 100 not using the bypass channel 180.
- FIG. 6 shows the measurement results in the case where ozone is used as a gas using the nano-bubble generating device 100 using the bypass channel 180.
- the horizontal axis represents the diameter of the air bubble, and the vertical axis represents the number of nanobubbles contained per 1 ml.
- nanobubbles with a diameter of about 120 nm were most often generated. The number could confirm that about 300 million nanobubbles were produced
- nanobubbles with a diameter of about 100 nm were most generated. It was possible to confirm that about 400 million nanobubbles were generated per ml.
- the first flow path 15 is formed at the central portion in the radial direction of the nozzle.
- the first flow path 15 is formed at the radially outer portion of the nanobubble generation nozzle 1A.
- the outline of the nanobubble generation nozzle 1A of the modification 1 will be described with reference to FIG.
- the components corresponding to the nanobubble generation nozzle 1 shown in FIGS. 1 and 2 will be described with the same reference numerals.
- the nanobubble generation nozzle 1A of the modified example 1 is similar to the nanobubble generation nozzle 1 of the present embodiment described with reference to FIGS. 1 and 2 and includes the introduction portion structure 10, the intermediate portion structure 20, and the ejection portion structure 30. It is composed of a combination of The same applies to the point that the turbulent flow forming portion 70 is provided in the space portion formed by the introduction portion structure 10 and the intermediate portion structure 20.
- a liquid diffusion part 18 for diffusing the introduced mixed fluid from the central part in the radial direction to the outside is provided.
- the first flow path 15 is formed on the outer side in the radial direction than the liquid diffusion portion 18.
- the second flow passage 28 formed in the intermediate portion structure 20 is formed inside the first flow passage 15 in the radial direction.
- the turbulent flow forming unit 70 is configured by providing a protrusion 80 that protrudes toward the introduction structure 10 on the upstream end surface of the intermediate structure 20.
- the protrusion 80 is formed at a position between the first flow passage 15 and the second flow passage 28 in the radial direction.
- the turbulent flow forming unit 70 causes the liquid flowing out of the first flow passage 15 to once collide with the end face of the intermediate portion structure 20.
- the liquid that has collided with the end face is once returned upstream by the projection 80 on the way from the radially outer side to the inner side.
- the liquid becomes turbulent by going through this process.
- the configuration and action of the nanobubble generation nozzle 1A shown in FIG. 7 on the downstream side of the second flow passage 28 are the same as those of the nanobubble generation nozzle 1 shown in FIGS. I omit it.
- FIG. 8 shows an outline of a nanobubble generation nozzle 1B of the second modification.
- generation nozzle 1B of the modification 2 is a form by which the turbulent flow formation part 70 was provided between the 2nd flow path 28 and the 3rd flow path 36. As shown in FIG.
- the nanobubble generation nozzle 1 is provided with a protrusion 19 whose tip projects toward the first flow path 15.
- the protrusion 19 diffuses the mixed fluid flowing out of the first flow passage 15 from the radial center to the outside.
- the second flow passage 28 is formed at a position radially outward of the root of the protrusion 19. Therefore, the mixed fluid diffused by the protrusion 19 directly flows into the second flow passage 28.
- the third flow path 36 is formed at the most downstream side of the nanobubble generation nozzle 1 at the center in the radial direction.
- the turbulent flow forming unit 70 is provided between the third flow passage 36 and the second flow passage 28 formed on the upstream side of the third flow passage 36.
- the turbulent flow forming unit 70 is configured by providing a protrusion for temporarily directing the flow direction of the mixed fluid flowing out of the second flow passage 28 upstream. Specifically, in the radial direction, a projection 38 is provided between the second flow passage 28 and the third flow passage 36 so as to project from the downstream side toward the upstream side. The projecting portion 38 temporarily directs the flow direction of the mixed fluid to the upstream side until the mixed fluid flowing out of the second flow passage 28 flows into the third flow passage 36.
- the turbulent flow forming unit 70 forms turbulent flow by changing the flow direction of the mixed fluid.
- the nano bubble generation nozzle can be made compact, and nano bubbles can be generated with high efficiency.
- nanobubbles can be generated with high efficiency in the nanobubble generation device using the nanobubble generation nozzle. Therefore, the nano bubble generation nozzle and the nano bubble generation device can be used in various industrial fields.
- the nano bubble generation nozzle and the nano bubble generation device are in the fields of food and drink, medicine, medicine, cosmetics, plant cultivation, solar cells, secondary batteries, semiconductor devices, It can be used in the industrial field such as the field of electronic equipment, the field of cleaning equipment, and the field of functional materials.
- the field of the cleaning apparatus can be used for cleaning of fibers, cleaning of metal molds, cleaning of machine parts, cleaning of silicon wafers, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Nozzles (AREA)
- Percussion Or Vibration Massage (AREA)
- Hydroponics (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Accessories For Mixers (AREA)
Abstract
Description
本発明に係るナノバブル生成ノズルにおいて、前記ナノバブル生成ノズルの軸方向に隣り合う前記流路は、前記ナノバブル生成ノズルの半径方向の異なった位置に設けられている。
この発明によれば、各流路が上記のように半径方向の異なる位置に配置されているので、各流路同士が、ナノバブル生成ノズルの内部で接続させることができる。ナノバブル生成ノズルの内部で接続された流路は、流路ごとに液体に含まれる気泡を加圧して液体に溶解させる。また、溶解させた後に、気体が容器された液体を流路から流出させて解放する。本発明では、これらの作用を独立して与えることができ、流路ごとにナノバブルを生成させることができる。
本発明に係るナノバブル生成ノズルにおいて、複数の前記流路は、断面積が異なる3つの流路として前記ナノバブル生成ノズルの軸方向に配置され、上流側の第1流路は、前記ナノバブル生成ノズルの半径方向の中心に配置され、中間位置の第2流路は、前記ナノバブル生成ノズルの半径方向の中心よりも外側に配置され、下流側の第3流路は、前記ナノバブル生成ノズルの半径方向の中心に配置されている。
本発明に係るナノバブル生成ノズル1は、図1に示すように、液体と気体との混合流体を内部に導入させる導入部11と、微細な気泡(ナノバブル)が含まれた混合流体を送り出す噴出部35と、を備えている。また、導入部11と噴出部35との間には、ナノバブルを生成するためのナノバブル生成構造部5が設けられている。ナノバブル生成構造部5は、ナノバブル生成ノズル1の軸方向に液体及び気体の混合流体が通される断面積の異なる複数の流路15,28,36を備えている。言い換えると、複数の流路15,28,36は、ナノバブル生成ノズル1の軸方向に複数段階に分けて配置されており、流路15,28,36の断面積は、段階ごとに異なっている。
図1はナノバブル生成ノズル1の構成の一例を示している。図1に示した例のナノバブル生成ノズル1は、主として、3つの構成要素で構成されている。具体的に、ナノバブル生成ノズル1は、導入部構成体10、中間部構成体20及び噴出部構成体30により構成されている。導入部構成体10は、内部に液体と気体との混合流体を導入する導入口を備えている。噴出部構成体30は、ナノバブルが含まれた混合流体を噴出する噴出口を備えている。中間部構成体20は、これら二つの構成体10,30によって挟み込まれている。
〈導入部構成体〉
導入部構成体10は、ナノバブル生成ノズル1の上流側をなす構成要素である。導入部構成体10は、その内部に液体と気体との混合流体を導入する導入口を備えている。導入部構成体10は、本体部12と、本体部12の端面から突出する導入部11とにより構成されている。本体部12は、直径が異なる2つの円柱状の部位を軸方向に積み重ねた外形をなしている。直径の小さな部位13が上流側をなし、直径の大きな部位14が下流側をなす。本体部12の内部には、第1流路15と、乱流形成部70の一部をなすテーパ状の内面を有する部位(テーパ部分16)とが形成されている。また、直径の大きな部位14の下流側の部分には、ストレート部分17が形成されている。このストレート部分17は、中間部構成体20を直径の大きな部位14の内側にはめ込むための部位である。導入部11は、直径が小さな部位13よりもさらに直径が小さく形成されており、直径の小さな部位13の端面から外側に向かって突出している。
導入部11は、ポンプ130によって送り出された液体と気体との混合流体をナノバブル生成ノズル1の内部に導入するための部位である。導入部11は、筒状をなしており、直径の小さな部位13の端面から、ナノバブル生成ノズル1の軸方向に突出している。導入部11の内部には、導入通路11aが形成されており、混合流体を内部に導いている。この導入部11には、ポンプ130につながれた配管又はホース140が接続される。
直径の小さな部位13の内部には、第1流路15が形成されている。第1流路15は、直径の小さな部位13の半径方向の中心で軸方向に延びている。この第1流路15は、導入通路11aよりも内径が小さく形成されている。流路15の内径は、5mm以上、10mm以下に形成するとよい。図1に示した例のナノバブル生成ノズル1では、第1流路15の内径が5mmに形成されている。
(直径の大きな部位)
直径の大きな部位14には、導入部構成体10の中間部構成体20側(下流側)の端面から導入部11に向かって窪んだ凹部が形成されている。凹部の内面は、ストレート部分17とテーパ部分16とにより構成されている。ストレート部分17は、軸方向と平行をなしてストレートに延びている。テーパ部分16は中間部構成体20側(下流側)から第1流路15側(上流側)に向かって先細りのテーパ状をなしている。
ストレート部分17は、凹部における中間部構成体20側(下流側)を占める領域に形成されている。このストレート部分17は、3つの構成体を組み合わせる際に、中間部構成体20にはめ合わせるための部位である。
〈中間部構成体〉
中間部構成体20は、全体の形状が円盤形状又は略円盤状をなす構成要素である。中間部構成体20は、上記の導入部構成体10と後述する噴出部構成体30とにより挟み込まれている。中間部構成体20の半径方向の中央部には、厚さ方向の両面に円錐状の突出部21,29がそれぞれ形成されている。導入部構成体10側(上流側)に形成された円錐状の第1突出部21は、乱流形成部70の一部をしている。これに対し、噴出部構成体30側(下流側)に形成された円錐状の第2突出部29は、混合流体を第3流路36に案内する案内通路の機能を有している。
第1突出部21は、乱流形成部70の一部を構成している。この第1突出部21は、円錐状に形成されており、先端の位置が第1流路15の中心に対応している。第1突出部21は、第1流路15から流出した混合流体を半径方向の中心から外側に向けて放射状に流している。すなわち、第1流路15から流出した混合流体を第2流路28が配置された方向に向かって流す機能を有している。
第2流路28は、上述したようにリング状突出部22の位置に形成されている。第2流路28は、このリング状突出部22の位置にて周方向に等間隔をなして複数形成されている。
第2突出部29は、噴出部構成体30に向かって先細りとなる円錐状に形成されている。この第2突出部29は、第2流路28から流出した混合流体を第3流路36に案内する流通路の機能を有している。
中間部構成体20の外周部には、軸方向の中央に、外側に向かって張り出すフランジ部分27が形成されている。そして、外周部には、フランジ部分27を間に挟んだ両側の部分にシール溝24が全周に渡って形成されている。このシール溝24には、Oリング50がはめ込まれる。
噴出部構成体30は、ナノバブルが含まれた混合流体をナノバブル生成ノズル1から外部に噴出させるための構成体である。噴出部構成体30は、ナノバブルが含まれた混合流体を噴出する噴出口を備えている。この噴出部構成体30は、本体部31とフランジ部32とを備えている。また、噴出部構成体30は、第3流路36を備えている。
(本体部)
本体部31は、外形が円柱状又は略円柱状をなした部位である。この本体部31は軸方向の一端側から他端側に向かって窪んだ凹部を有している。凹部は、噴出部構成体30を中間部構成体20にはめ合わせるための部位(ストレート部分33)と、ナノバブルを含んだ混合流体が流れる流通路を形成するための部位(テーパ部分34)と、を有している。
具体的に、凹部は、ストレート部分33とテーパ部分34とにより構成されている。ストレート部分33は、一端側の端部から他端側に向かってストレートに延びている。テーパ部分34は、ストレート部分33の最も奥側の位置から、他端側に向かって先細り状をなす。ストレート部分33は、噴出部構成体30を中間部構成体20にはめ合わせるための部位であり、テーパ部分34は、液体流れる流路を形成するための部位である。
フランジ部32は、本体部12の一端側にて、本体部31から径方向の外側に向かって張り出している。このフランジ部32は、3つの構成体である導入部構成体10、中間部構成体20及び噴出部構成体30を組み合わせる際に用いられる部位である。具体的に、3つの構成体は、ボルト60を用いて組み合わされる。フランジ部32には、複数の穴が形成されており、ボルト60がこれらの穴に通されることによって、3つの構成体が組み合わされる。
図1に示した例のナノバブル生成ノズル1は、上述した導入部構成体10、中間部構成体20及び噴出部構成体30の他に、ホルダ40を備えている。このホルダ40は、3つの構成体を組み合わせるときに用いられる部材である。
以上に説明したように、ナノバブル生成ノズル1は、導入部構成体10、中間部構成体20、噴出部構成体30及びホルダ40により構成される。ナノバブル生成ノズル1は、次のようにして組み立てられる。
次に、図2を参照して、ナノバブル生成ノズル1の作用について説明する。
ナノバブル生成装置100は、図3に示すように、気体のナノバブルを含む混合流体を循環させる閉ループ回路を備えている。閉ループ回路は、気体導入部120、ポンプ130、ナノバブル生成ノズル1、液貯め槽150、及び戻し路160を備えている。気体導入部120は、液体が流れる流通部170に気体を導入するための構成要素である。ポンプ130は、気体と液体との混合流体を送り出し、次のナノバブル生成ノズル1に向かわせている。ナノバブル生成ノズル1は、ポンプ130によって送り出された混合流体を導入し、気体のナノバブルが含まれた混合流体を生成する。液貯め槽150は、ナノバブルを含む混合流体を貯めるための構成部である。戻し路160は、液貯め槽150に貯められた混合流体を上述した流通部170に戻している。
気体導入部120は、閉ループ回路の流通部170に気体を導入させるための構成要素である。図3に示したナノバブル生成装置100の例では、気体導入部120は、戻し路160とポンプ130との間の流通部170の位置に設けられている。
吸気口には、ホース又は配管125が接続されている。このホース又は配管125は、気体をエジェクターに送り込むために接続されている。また、ホース又は配管125の先端には、開閉バルブ126が設けられている。この開閉バルブ126は、気体の供給源とホース又は配管125とをつないだり、切断したりしている。なお、気体の供給源は、特に図面には示していないが、所望のボンベ、例えば、酸素ボンベが用いられる。
ポンプ130は、閉ループ回路内の混合流体を、この閉ループ回路内で循環させている。図3に示した例のナノバブル生成装置100では、ポンプとして渦巻きポンプ130が使用されている。この渦巻きポンプは、動力源としてのモータ131により駆動される。なお、図3に示した例では、ポンプとして渦巻きポンプを使用しているが、使用するポンプ130の種類は特に限定されない。この実施形態のナノバブル生成装置100は、使用するポンプ130の種類が限定されない点が特徴点の1つである。ただし、ポンプ130は、液体の種類及び気体の種類に応じて適切なものを用いることが好ましい。
ナノバブル生成ノズル1は、例えば、図1に示した形態のノズルが用いられる。すなわち、ノズルは、その内部に上述したナノバブル生成構造部5を備えている。このナノバブル生成構造部5は、混合流体が通される相互に断面積が異なる複数の流路15,28,36を備えている。具体的に、ナノバブル生成構造部5は、ナノバブル生成ノズル1の軸方向に断面積が異なる複数の流路15,28,36を備えている。なお、ナノバブル生成ノズル1の詳細については、図1及び図2を参照して既に説明したので、ここではその説明を省略する。
液貯め槽150は、ナノバブル生成ノズル1によって生成されたナノバブルを含む混合流体を貯めるための構成部である。この液貯め槽150は、ナノバブルを含む混合流体の必要量に応じた大きさのものが用いられる。上述したポンプ130と液貯め槽150とは、配管又はホース140で接続される。これにより、閉ループ回路の一部が構成される。
図4は、ナノバブル生成ノズル1の取り付け態様の一例を示している。この図4に示す取り付け態様では、ナノバブル生成ノズル1は、液貯め槽150の内部に配置され、液貯め槽150の周壁面に固定されている。
戻し路160は、配管により構成されている。戻し路160は、閉ループ回路の一部を構成している。具体的に、戻し路160は、液貯め槽150と流通部170とを接続している。この戻し路160は、液貯め槽150に貯められたナノバブルを含む混合流体を流通部170に再び戻している。また、戻し路160は流通部170に設けられたエジェクターにより気体を再度導入させている。
(バイパス流路)
バイパス流路180は、配管又はホース140の長手方向の途中の部分と液貯め槽150とを連絡している。具体的に、配管又はホース140の長手方向の途中の部分には、配管又はホース140の内部を流れる混合流体の流れを分岐するためのバルブ145が設けられている。このバルブ145が、本流路141とバイパス流路180とに配管又はホース140を分岐させている。
本実施形態のナノバブル生成ノズルを用いたナノバブル生成装置でナノバブルを生成し、生成されたナノバブルの数をナノバブルの直径毎に測定した。
図5は、バイパス流路180を用いないナノバブル生成装置100を使用し、気体として酸素を用いた場合の測定結果を示している。図6は、バイパス流路180を用いたナノバブル生成装置100を使用し、気体としてオゾンを用いた場合の測定結果を示している。図5及び図6において、横軸は、気泡の直径を表し、縦軸は、1ミリリットルあたりに含まれるナノバブルの個数を表している。
〈変形例1〉
図1及び図2を参照して説明した本実施形態のナノバブル生成ノズル1Aは、第1流路15が、ノズルの半径方向の中心部分に形成されている。これに対し、図7に示した変形例1のナノバブル生成ノズル1Aは、第1流路15が、ナノバブル生成ノズル1Aの半径方向の外側の部位に形成されている。図7を参照して、変形例1のナノバブル生成ノズル1Aの概要を説明する。なお、図7に示した変形例1のナノバブル生成ノズル1Aにおいて、図1及び図2に示したナノバブル生成ノズル1に対応する構成部については、同一の符号を付して説明する。
図8は、変形例2のナノバブル生成ノズル1Bの概要を示している。変形例2のナノバブル生成ノズル1Bは、乱流形成部70が第2流路28と第3流路36との間に設けられた形態である。
以上に説明したナノバブル生成ノズルによれば、ナノバブル生成ノズルをコンパクトにすることができ、高い効率でナノバブルを生成することができる。また、このナノバブル生成ノズルを用いたナノバブル生成装置に関しても、高い効率でナノバブルを生成することができる。そのため、ナノバブル生成ノズル及びナノバブル生成装置を様々な産業分野で利用することができる。
[規則91に基づく訂正 04.06.2018]
1 ナノバブル生成ノズル
5 ナノバブル生成構造部
10 導入部構成体
11 導入部
11a 導入通路
12 本体部
13 直径の小さな部位
14 直径の大きな部位
15 第1流路
16 テーパ部分
17 ストレート部分
18,19 突出部
20 中間部構成体
21 第1突出部
22 リング状突出部
23 端面
24 シール溝
25 上流側の外周面の部位
26 下流側の外周面の部位
27 フランジ部分
28 第2流路
29 第2突出部
30 噴出部構成体
31 本体部
32 フランジ部
33 ストレート部分
34 テーパ部分
35 噴出部
36 第3流路
37 端面
38 突出部
40,45 ホルダ
50 Oリング
60 ボルト
61 ナット
70 乱流形成部
80 突出部
100 ナノバブル生成装置
120 気体導入部
125 ホース又は配管
126 開閉バルブ
130 ポンプ
131 駆動源(モータ)
140 ホース又は配管
141 本流路
145 バルブ
150 液貯め槽
160 戻し路
170 流通部
180 バイパス流路
Claims (7)
- 液体と気体との混合流体を内部に導入させる導入部と、
前記気体のナノバブルが含まれた混合流体を送り出す噴出部と、
前記導入部と前記噴出部との間に、前記気体のナノバブルを生成するためのナノバブル生成構造部とを備えたナノバブル生成ノズルであって、
前記ナノバブル生成構造部は、当該ナノバブル生成ノズルの軸方向に断面積の異なる複数の流路が配置されてなることを特徴とするナノバブル生成ノズル。 - [規則91に基づく訂正 04.06.2018]
前記ナノバブル生成ノズルの軸方向に隣り合う前記流路は、当該ナノバブル生成ノズルの半径方向の異なった位置に設けられている、請求項1に記載のナノバブル生成ノズル。 - [規則91に基づく訂正 04.06.2018]
複数の前記流路は、断面積が異なる3つの流路として前記ナノバブル生成ノズルの軸方向に配置され、
上流側の第1流路は、前記ナノバブル生成ノズルの半径方向の中心に配置され、中間位置の第2流路は、前記ナノバブル生成ノズルの半径方向の中心よりも外側に配置され、下流側の第3流路は、前記ナノバブル生成ノズルの半径方向の中心に配置されている、請求項1又は2に記載のナノバブル生成ノズル。 - 複数の前記流路同士の間の少なくとも1箇所には、前記混合流体の流れを乱流にする乱流形成部を有している、請求項1~3のいずれか1項に記載のナノバブル生成ノズル。
- [規則91に基づく訂正 04.06.2018]
前記乱流形成部は、前記第1流路の出口よりも下流側に、当該第1流路から流出された前記混合流体を当該ナノバブル生成ノズルの半径方向の外側に向けて放射状に拡散させる拡散部を有し、
前記第2流路の入り口は、前記拡散部により拡散された前記混合流体が当該ナノバブル生成ノズルの軸方向において前記第1流路側に戻される位置に配置されている、請求項3に記載のナノバブル生成ノズル。 - [規則91に基づく訂正 04.06.2018]
液体を流すための流通部に気体を導入する気体導入部と、
前記流通部の内部を流れた前記気体と前記液体との混合流体を送り出すポンプと、
前記ポンプによって送り出された前記混合流体を導入し、前記気体のナノバブルを含む混合流体を得るためのナノバブル生成ノズルと、
前記ナノバブルを含む混合流体を貯める液貯め槽と、
前記液貯め槽に貯められた前記ナノバブルを含む混合流体を前記流通部に戻す戻し路と、を備え、
前記ナノバブル生成ノズルは、
前記混合流体を内部に導入させる導入部と、
前記気体のナノバブルが含まれた混合流体を送り出す噴出部と、
前記導入部と前記噴出部との間に、前記気体のナノバブルを生成するためのナノバブル生成構造部とを備え、
前記ナノバブル生成構造部は、当該ナノバブル生成ノズルの軸方向に断面積が異なる複数の流路を備えている、
ことを特徴とするナノバブル生成装置。 - [規則91に基づく訂正 04.06.2018]
前記ポンプと前記液貯め槽との間には、前記ポンプと前記液貯め槽とをつなぐ流路を分岐するためのバルブと当該バルブと前記液貯め槽とを直に連絡するバイパス流路が設けられている、請求項6に記載のナノバブル生成装置。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2016417031A AU2016417031B2 (en) | 2016-07-28 | 2016-11-17 | Nanobubble-generating nozzle and nanobubble-generating device |
NZ749667A NZ749667B2 (en) | 2016-11-17 | Nanobubble generating nozzle and nanobubble generator | |
EP16910604.4A EP3482820A4 (en) | 2016-07-28 | 2016-11-17 | NOZZLE FOR GENERATING NANOBLASES AND DEVICE FOR PRODUCING NANOBLASES |
RU2018147216A RU2729259C1 (ru) | 2016-07-28 | 2016-11-17 | Сопло, генерирующее нанопузырьки, и генератор нанопузырьков |
BR112018077357-3A BR112018077357B1 (pt) | 2016-07-28 | 2016-11-17 | Bocal de geração de nanobolhas e gerador de nanobolhas |
IL264411A IL264411B2 (en) | 2016-07-28 | 2016-11-17 | A nozzle for creating nanobubbles and a nanobubble generator |
CN201680087578.2A CN109475828B (zh) | 2016-07-28 | 2016-11-17 | 纳米气泡生成喷嘴和纳米气泡生成装置 |
CA3029715A CA3029715C (en) | 2016-07-28 | 2016-11-17 | Nanobubble generating nozzle and nanobubble generator |
US16/239,311 US10874996B2 (en) | 2016-07-28 | 2019-01-03 | Nanobubble generating nozzle and nanobubble generator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016148510A JP6129390B1 (ja) | 2016-07-28 | 2016-07-28 | ナノバブル生成ノズル及びナノバブル生成装置 |
JP2016-148510 | 2016-07-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/239,311 Continuation-In-Part US10874996B2 (en) | 2016-07-28 | 2019-01-03 | Nanobubble generating nozzle and nanobubble generator |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2018020701A1 WO2018020701A1 (ja) | 2018-02-01 |
WO2018020701A9 true WO2018020701A9 (ja) | 2018-09-20 |
Family
ID=58714753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084129 WO2018020701A1 (ja) | 2016-07-28 | 2016-11-17 | ナノバブル生成ノズル及びナノバブル生成装置 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10874996B2 (ja) |
EP (1) | EP3482820A4 (ja) |
JP (1) | JP6129390B1 (ja) |
CN (1) | CN109475828B (ja) |
AU (1) | AU2016417031B2 (ja) |
BR (1) | BR112018077357B1 (ja) |
CA (1) | CA3029715C (ja) |
IL (1) | IL264411B2 (ja) |
RU (1) | RU2729259C1 (ja) |
WO (1) | WO2018020701A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210005924A (ko) * | 2018-05-30 | 2021-01-15 | 가부시키가이샤 아쿠아솔루션 | 액체 공급 설비 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11324105B2 (en) | 2016-06-09 | 2022-05-03 | Charlies Bohdy | Nanoplasmoid suspensions and systems and devices for the generation thereof |
MX2020010523A (es) | 2017-02-27 | 2021-02-09 | Third Pole Inc | Sistemas y metodos para generar oxido nitrico. |
US10780467B2 (en) | 2017-04-20 | 2020-09-22 | Texas Instruments Incorporated | Methods and apparatus for surface wetting control |
JP6568556B2 (ja) * | 2017-07-20 | 2019-08-28 | 本田技研工業株式会社 | ウォッシャ液供給システム |
CN109420435A (zh) * | 2017-08-25 | 2019-03-05 | 高地 | 生成含有纳米级气泡的液体的方法和系统 |
JP7086547B2 (ja) * | 2017-08-31 | 2022-06-20 | キヤノン株式会社 | ウルトラファインバブル含有液の製造装置および製造方法 |
CN111417455B (zh) * | 2017-11-29 | 2022-07-26 | 东芝生活电器株式会社 | 细微气泡产生器、洗衣机以及家用电器 |
US11980855B2 (en) * | 2018-05-30 | 2024-05-14 | Aquasolution Corporation | Ultrafine bubble generating apparatus |
US20210212266A1 (en) | 2018-05-30 | 2021-07-15 | Aquasolution Corporation | Soil amelioration method |
US12077481B2 (en) | 2018-05-30 | 2024-09-03 | Aquasolution Corporation | Fertilizer absorption improvement method |
EP3804520B1 (en) | 2018-05-30 | 2023-08-02 | AQUASOLUTION Corporation | Method of controlling powdery mildew |
EP3804503A4 (en) * | 2018-05-30 | 2021-08-11 | AQUASOLUTION Corporation | METHOD OF CONTROLLING SPIDER MITES |
SG11202106937XA (en) * | 2018-12-25 | 2021-07-29 | Miike Tekkou Kk | Ultrafine bubble manufacturing unit and ultrafine bubble water manufacturing device |
JP7249819B2 (ja) * | 2019-03-08 | 2023-03-31 | アルテミラ製缶株式会社 | マイクロバブル発生ノズル |
US11904366B2 (en) | 2019-03-08 | 2024-02-20 | En Solución, Inc. | Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product |
KR102299550B1 (ko) * | 2019-03-18 | 2021-09-09 | 주식회사 일성 | 나노버블발생기 |
JP7295669B2 (ja) * | 2019-03-22 | 2023-06-21 | 日東精工株式会社 | シャワーヘッド |
JP7074931B2 (ja) | 2019-05-08 | 2022-05-24 | 株式会社アクアソリューション | 品質が向上した果実の製造方法 |
AU2020285759B2 (en) | 2019-05-30 | 2023-05-18 | Aquasolution Corporation | Cultivation assisting device and cultivation assisting method |
JP7232713B2 (ja) * | 2019-05-30 | 2023-03-03 | リンナイ株式会社 | 微細気泡発生ノズル |
EP3747534A1 (en) | 2019-06-03 | 2020-12-09 | Watermax AG | Device and method for generating nanobubbles |
CN114466702A (zh) * | 2019-07-04 | 2022-05-10 | 罗国强 | 产生微气泡的装置 |
JP6978793B2 (ja) * | 2019-07-26 | 2021-12-08 | 株式会社シバタ | ファインバブル発生装置及び水処理装置 |
JP7285176B2 (ja) * | 2019-09-05 | 2023-06-01 | リンナイ株式会社 | 微細気泡発生ノズル |
KR102345637B1 (ko) * | 2020-01-07 | 2021-12-31 | 중앙대학교 산학협력단 | 기체 자가 흡입이 가능한 미세버블 생성장치 및 생성방법 |
EP4117806A4 (en) * | 2020-03-10 | 2023-12-13 | Bohdy, Charlles | NANOPLASMOID SUSPENSIONS AND SYSTEMS AND DEVICES FOR THEIR PRODUCTION |
CN114126749A (zh) * | 2020-03-27 | 2022-03-01 | 真共生株式会社 | 旋转混合器、气泡剪切过滤器、超细气泡产生装置以及超细气泡流体的制造方法 |
JP6808259B1 (ja) * | 2020-06-12 | 2021-01-06 | 合同会社アプテックス | 積層ベンチュリノズル及びその製作方法並びにマイクロバブル液生成装置 |
JP2022076533A (ja) * | 2020-11-10 | 2022-05-20 | 株式会社ヤマト | 細菌抑制装置及び給水装置 |
KR102424693B1 (ko) * | 2021-02-04 | 2022-07-27 | 윤태열 | 나노버블을 이용하는 세정액 재생장치 및 이를 이용하는 기판 처리 장치 |
KR102620720B1 (ko) * | 2021-07-21 | 2024-01-02 | 윤태열 | 디스플레이 기판 세정용 세정장치 |
US11975139B2 (en) | 2021-09-23 | 2024-05-07 | Third Pole, Inc. | Systems and methods for delivering nitric oxide |
WO2023201363A2 (en) * | 2022-04-14 | 2023-10-19 | Third Pole, Inc. | Delivery of medicinal gas in a liquid medium |
JP7472410B1 (ja) | 2022-10-24 | 2024-04-22 | 株式会社アクアソリューション | 液体噴出装置 |
WO2024090146A1 (ja) * | 2022-10-24 | 2024-05-02 | 株式会社アクアソリューション | 液体噴出装置 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1964942A (en) * | 1933-07-17 | 1934-07-03 | William A Hallgarth | Mixing device for fuel oil burners |
DE1258835B (de) * | 1964-08-28 | 1968-01-18 | James R Lage Dr | Mischeinrichtung |
CH607934A5 (en) * | 1976-01-27 | 1978-12-15 | Sulzer Ag | Appliance for introducing gases into liquids and/or liquid-solid mixtures |
IT1128825B (it) * | 1980-06-27 | 1986-06-04 | Fiat Ricerche | Dispositivo di miscelazione statico atto a miscelare omogeneamente due o piu componenti allo stato liquido o semiliquido |
SU1057088A1 (ru) * | 1981-03-16 | 1983-11-30 | Опытно-Конструкторское Бюро Нестандартного Оборудования | Устройство дл насыщени жидкости газом |
US4421696A (en) * | 1981-04-10 | 1983-12-20 | Graue William D | Gas diffuser |
US5302325A (en) * | 1990-09-25 | 1994-04-12 | Praxair Technology, Inc. | In-line dispersion of gas in liquid |
US5160458A (en) * | 1991-07-25 | 1992-11-03 | The Boc Group, Inc. | Gas injection apparatus and method |
JP2741342B2 (ja) * | 1994-05-26 | 1998-04-15 | 和泉電気株式会社 | 水耕栽培用酸素及び微細気泡供給装置 |
JP3688806B2 (ja) * | 1996-05-14 | 2005-08-31 | 彦六 杉浦 | スタティックミキサー |
DE10010287B4 (de) * | 2000-02-25 | 2004-02-12 | Infineon Technologies Ag | Verfahren zur Herstellung von flüssigen Gemischen für das chemisch-mechanische Polieren von Wafern |
DE10019759C2 (de) * | 2000-04-20 | 2003-04-30 | Tracto Technik | Statisches Mischsystem |
AUPR536301A0 (en) * | 2001-05-31 | 2001-06-28 | Chuen, Foong Weng | Method of mixing a liquid/liquid and/or gaseous media into a solution |
US20040251566A1 (en) * | 2003-06-13 | 2004-12-16 | Kozyuk Oleg V. | Device and method for generating microbubbles in a liquid using hydrodynamic cavitation |
JP4587436B2 (ja) * | 2003-07-07 | 2010-11-24 | 株式会社計算流体力学研究所 | 気液混合物生成装置、汚水浄化装置及び燃料噴射装置 |
JP4869922B2 (ja) * | 2004-05-31 | 2012-02-08 | 三洋設備産業株式会社 | 微細気泡発生器 |
ES2293159T3 (es) * | 2004-09-27 | 2008-03-16 | Nestec S.A. | Dispositivo mezclador, maquina de cafe provista con el dispositivo mezclador, y uso del dispositivo mezclador. |
JP4852934B2 (ja) * | 2005-08-26 | 2012-01-11 | パナソニック電工株式会社 | 微細気泡発生装置 |
JP4222572B2 (ja) | 2005-09-23 | 2009-02-12 | 貞利 渡部 | ナノ流体生成装置および洗浄処理装置 |
CN101516489B (zh) | 2006-08-21 | 2012-07-04 | 松村荣治 | 气液混合装置 |
JP2008149209A (ja) * | 2006-12-14 | 2008-07-03 | Marcom:Kk | 微細気泡発生器および微細気泡供給システム |
EP2185274A4 (en) * | 2007-09-07 | 2012-12-05 | Turbulent Energy Inc | DYNAMIC MIXTURE OF LIQUIDS |
US8871090B2 (en) * | 2007-09-25 | 2014-10-28 | Turbulent Energy, Llc | Foaming of liquids |
JP2009136864A (ja) * | 2007-11-16 | 2009-06-25 | Nippon Sozai Kk | マイクロバブル発生装置 |
US8042989B2 (en) * | 2009-05-12 | 2011-10-25 | Cavitation Technologies, Inc. | Multi-stage cavitation device |
US8911808B2 (en) * | 2008-06-23 | 2014-12-16 | Cavitation Technologies, Inc. | Method for cavitation-assisted refining, degumming and dewaxing of oil and fat |
US7762715B2 (en) * | 2008-10-27 | 2010-07-27 | Cavitation Technologies, Inc. | Cavitation generator |
JP2012040448A (ja) * | 2008-11-14 | 2012-03-01 | Yasutaka Sakamoto | マイクロバブル発生装置 |
US8945644B2 (en) * | 2009-06-15 | 2015-02-03 | Cavitation Technologies, Inc. | Process to remove impurities from triacylglycerol oil |
US9988651B2 (en) * | 2009-06-15 | 2018-06-05 | Cavitation Technologies, Inc. | Processes for increasing bioalcohol yield from biomass |
JP4563496B1 (ja) * | 2009-10-22 | 2010-10-13 | 株式会社H&S | 微細気泡発生装置 |
CN101746898B (zh) * | 2009-12-29 | 2011-06-08 | 浙江大学 | 一种纳米气泡发生装置 |
US20110172137A1 (en) * | 2010-01-13 | 2011-07-14 | Francesc Corominas | Method Of Producing A Fabric Softening Composition |
CN201643998U (zh) * | 2010-03-25 | 2010-11-24 | 浙江大学宁波理工学院 | 水力空化装置 |
JP5672472B2 (ja) * | 2010-03-30 | 2015-02-18 | 国立大学法人三重大学 | 微細気泡形成装置。 |
CN103299024B (zh) * | 2010-10-08 | 2016-08-24 | 国民油井华高有限公司 | 用于流体处理的方法和设备 |
JP4999996B2 (ja) * | 2010-12-01 | 2012-08-15 | 株式会社田中金属製作所 | バブル発生器 |
KR101100801B1 (ko) * | 2011-06-15 | 2012-01-02 | (주)한국캐비테이션 | 수리동력학적 캐비테이션장치 |
WO2013017935A1 (en) * | 2011-08-02 | 2013-02-07 | Fmpb Co., Ltd. | Device and method for saturating liquid with gas |
US9126176B2 (en) * | 2012-05-11 | 2015-09-08 | Caisson Technology Group LLC | Bubble implosion reactor cavitation device, subassembly, and methods for utilizing the same |
JP2014014796A (ja) * | 2012-07-11 | 2014-01-30 | Shinyu Giken Kk | 流体循環混合装置 |
JP6118544B2 (ja) | 2012-11-29 | 2017-04-19 | Idec株式会社 | 微細気泡生成ノズルおよび微細気泡生成装置 |
CN105026026A (zh) * | 2013-03-01 | 2015-11-04 | 利乐拉瓦尔集团及财务有限公司 | 液体处理混合器及方法 |
JP5770811B2 (ja) * | 2013-10-24 | 2015-08-26 | ミクロ技研株式会社 | 孔付リング及びそれを装着したナノバブル生成装置 |
JP6210846B2 (ja) * | 2013-11-11 | 2017-10-11 | スプレーイングシステムスジャパン合同会社 | マイクロバブルスプレー装置 |
KR20150079190A (ko) * | 2013-12-31 | 2015-07-08 | 두산중공업 주식회사 | 용존공기 부상 장치용 노즐 |
JP6167321B2 (ja) | 2014-04-11 | 2017-07-26 | 有限会社オーケー・エンジニアリング | ループ流式バブル発生ノズル |
JP6128397B2 (ja) * | 2014-08-27 | 2017-05-17 | 有限会社 開商 | ガス混合装置 |
-
2016
- 2016-07-28 JP JP2016148510A patent/JP6129390B1/ja active Active
- 2016-11-17 WO PCT/JP2016/084129 patent/WO2018020701A1/ja unknown
- 2016-11-17 IL IL264411A patent/IL264411B2/en unknown
- 2016-11-17 CA CA3029715A patent/CA3029715C/en active Active
- 2016-11-17 CN CN201680087578.2A patent/CN109475828B/zh active Active
- 2016-11-17 EP EP16910604.4A patent/EP3482820A4/en active Pending
- 2016-11-17 RU RU2018147216A patent/RU2729259C1/ru active
- 2016-11-17 AU AU2016417031A patent/AU2016417031B2/en active Active
- 2016-11-17 BR BR112018077357-3A patent/BR112018077357B1/pt active IP Right Grant
-
2019
- 2019-01-03 US US16/239,311 patent/US10874996B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210005924A (ko) * | 2018-05-30 | 2021-01-15 | 가부시키가이샤 아쿠아솔루션 | 액체 공급 설비 |
KR102559147B1 (ko) * | 2018-05-30 | 2023-07-24 | 가부시키가이샤 아쿠아솔루션 | 액체 공급 설비 |
Also Published As
Publication number | Publication date |
---|---|
BR112018077357B1 (pt) | 2022-11-08 |
CA3029715A1 (en) | 2018-02-01 |
US10874996B2 (en) | 2020-12-29 |
IL264411B2 (en) | 2023-03-01 |
JP6129390B1 (ja) | 2017-05-17 |
AU2016417031A1 (en) | 2019-01-24 |
CN109475828B (zh) | 2021-12-14 |
NZ749667A (en) | 2024-01-26 |
EP3482820A4 (en) | 2019-11-13 |
BR112018077357A2 (pt) | 2019-07-16 |
IL264411A (en) | 2019-02-28 |
IL264411B (en) | 2022-11-01 |
CA3029715C (en) | 2024-04-16 |
CN109475828A (zh) | 2019-03-15 |
WO2018020701A1 (ja) | 2018-02-01 |
AU2016417031B2 (en) | 2022-05-26 |
EP3482820A1 (en) | 2019-05-15 |
RU2729259C1 (ru) | 2020-08-05 |
US20190134574A1 (en) | 2019-05-09 |
JP2018015715A (ja) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129390B1 (ja) | ナノバブル生成ノズル及びナノバブル生成装置 | |
US10596528B2 (en) | Nanobubble-producing apparatus | |
KR101937133B1 (ko) | 마이크로·나노 버블의 발생 방법, 발생 노즐 및 발생 장치 | |
JP6310359B2 (ja) | 微細気泡発生装置とその発生方法 | |
JP2008086868A (ja) | マイクロバブル発生装置 | |
JP2010075838A (ja) | 気泡発生ノズル | |
WO2019049650A1 (ja) | 微細気泡液生成器 | |
JP2007021343A (ja) | マイクロバブル発生装置 | |
JP2008161831A (ja) | 気泡発生器 | |
JP2008161832A (ja) | 気泡発生器 | |
JP5825852B2 (ja) | 微細気泡生成ノズルおよび微細気泡生成装置 | |
JP4426612B2 (ja) | 微細気泡発生ノズル | |
JP6691716B2 (ja) | 微細気泡発生方法及び装置 | |
JP5431573B2 (ja) | ミキサー装置および気液供給装置 | |
CN112337327B (zh) | 一种纳米气泡发生装置 | |
JP2010115586A (ja) | 微細気泡発生装置 | |
JP6075674B1 (ja) | 流体混合装置 | |
CN211864584U (zh) | 一种微动力气液或液液混合纳米级流体发生器 | |
CN111151150A (zh) | 一种微动力气液或液液混合纳米级流体发生器 | |
JP2012217878A (ja) | 微細気泡発生装置および微細気泡発生方法 | |
JP2012045537A (ja) | 噴射ノズル | |
JP2001115999A (ja) | 気泡噴射ノズル | |
JPH06285345A (ja) | 気体溶解液製造装置 | |
NZ749667B2 (en) | Nanobubble generating nozzle and nanobubble generator | |
JP2024011349A (ja) | ナノバブル発生構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16910604 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3029715 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018077357 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016417031 Country of ref document: AU Date of ref document: 20161117 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016910604 Country of ref document: EP Effective date: 20190205 |
|
ENP | Entry into the national phase |
Ref document number: 112018077357 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181228 |