WO2018016468A1 - 共重合ポリエステルおよびそれを含む複合繊維 - Google Patents

共重合ポリエステルおよびそれを含む複合繊維 Download PDF

Info

Publication number
WO2018016468A1
WO2018016468A1 PCT/JP2017/025892 JP2017025892W WO2018016468A1 WO 2018016468 A1 WO2018016468 A1 WO 2018016468A1 JP 2017025892 W JP2017025892 W JP 2017025892W WO 2018016468 A1 WO2018016468 A1 WO 2018016468A1
Authority
WO
WIPO (PCT)
Prior art keywords
ester
copolyester
mol
acid
addition amount
Prior art date
Application number
PCT/JP2017/025892
Other languages
English (en)
French (fr)
Inventor
牧野正孝
渡一平
田中陽一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201780043517.0A priority Critical patent/CN109476832A/zh
Priority to KR1020187036710A priority patent/KR20190031205A/ko
Priority to JP2017549345A priority patent/JP7009995B2/ja
Publication of WO2018016468A1 publication Critical patent/WO2018016468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to an alkali-soluble copolymer polyester whose terminal is modified with a specific compound, and a composite fiber containing the copolymer polyester.
  • Polyester is used for many purposes because of its useful functionality. For example, it is used for clothing, materials, and medical use. Among them, polyethylene terephthalate is excellent in terms of versatility and practicality and is often used.
  • the copolyester is eluted with alkali or hot water from a composite fiber containing polyethylene terephthalate and an alkali-soluble copolyester to obtain ultrafine fibers and irregular cross-section fibers.
  • a copolyester preferable for this application one obtained by copolymerizing a metal sulfonate group-containing isophthalic acid or a polyalkylene oxide compound has been proposed (Patent Document 1). Further, an alkali-soluble copolymer polyester using a titanium compound, a phosphorus compound, or a lithium compound has also been proposed (Patent Document 2).
  • the copolymer polyester of Patent Document 1 has low solubility in alkali, and further improvement is required. Moreover, the desired alkali solubility was not obtained even with the copolymerized polyester of Patent Document 2.
  • the present invention it is possible to obtain a copolyester which is excellent in alkali solubility and easily dissolved in hot water if necessary, and even if it is eluted from the composite fiber, the strength and elongation of the composite fiber and the fiber after elution are obtained. It is an object of the present invention to obtain a copolyester having a small change in properties such as.
  • the present invention has the following configuration. (1) a copolyester obtained from a dicarboxylic acid or an ester-forming derivative thereof, and a diol or an ester-forming derivative thereof, an isophthalic acid containing a metal sulfonate group or an ester-forming derivative component thereof, and the following formula ( 1)
  • the one-end-capped polyalkylene oxide compound represented by 1) is copolymerized, and the total amount of isophthalic acid containing a metal sulfonate group and its ester-forming derivative component is based on the structure derived from the dicarboxylic acid of the copolymerized polyester.
  • X is at least 1 selected from an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • R is at least one selected from alkylene groups having 1 to 12 carbon atoms, and n is an integer of 45 to 113.
  • the copolyester containing a terephthalic acid-derived structure in an amount of 50 mol% or more with respect to a structure derived from a dicarboxylic acid structure and an ethylene glycol-derived structure in an amount of 50% mol or more with respect to a structure derived from a diol.
  • Nonionic dicarboxylic acid and its ester-forming derivative component other than terephthalic acid and its ester-forming derivative are adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid Any of the above copolyesters selected from acids, cyclohexanedicarboxylic acids, and ester-forming derivatives thereof.
  • Nonionic diols other than ethylene glycol and its ester-forming derivatives and its ester-forming derivative components are diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol, and bisphenol A, bisphenol S and Any one of the above copolyesters selected from ethylene oxide adducts of these bisphenol compounds and ester-forming derivative components thereof.
  • a polymer having excellent alkali solubility and solubility in hot water, increased fiber strength, and a high crystallization rate can be obtained.
  • copolyester The copolymer polyester of the present invention is an ionic copolymer component in a repeating structure that can be obtained from “dicarboxylic acid or ester-forming derivative thereof” and “diol or ester-forming derivative thereof”.
  • copolyester obtained by copolymerization of an isophthalic acid having a metal sulfonate group or an ester-forming derivative component thereof and a one-end-capped polyalkylene oxide compound represented by the above formula (1), and has a “metal sulfonate group”
  • the copolymerization amount of the structure of “isophthalic acid or its ester-forming derivative component” is 0.1 to 40 mol% with respect to the structure derived from all dicarboxylic acids constituting the copolymer polyester.
  • polyester obtained from dicarboxylic acid or its ester-forming derivative and diol or its ester-forming derivative include those having the following structures.
  • the copolymerized polyester of the present invention has a “total sum of structures derived from terephthalic acid and its ester-forming derivatives” to “total sum of structures of dicarboxylic acid and its ester-forming derivatives” in terms of improving heat resistance.
  • ethylene glycol and ester-forming derivative it is preferable to contain more than mol%. Further, it is preferable that 50% by mole or more of “ethylene glycol and ester-forming derivative” is contained with respect to “diol or ester-forming derivative thereof”. In addition, it is not necessary to use both dicarboxylic acid and its ester-forming derivative as raw materials, and it is not necessary to use only one of them. Moreover, it is not necessary to use both diol and its ester-forming derivative as raw materials, and it is not necessary to use only one of them.
  • Isophthalic acid containing a metal sulfonate group is an ionic copolymer component and imparts amorphous properties to the copolymer.
  • isophthalic acid containing a metal sulfonate group include the following. Examples include 4-sulfoisophthalic acid sodium salt, 4-sulfoisophthalic acid potassium salt, 5-sulfoisophthalic acid sodium salt, 5-sulfoisophthalic acid potassium salt, and 5-sulfoisophthalic acid barium salt. Among them, 5-sulfoisophthalic acid sodium salt and 5-sulfoisophthalic acid potassium salt are preferable, and 5-sulfoisophthalic acid sodium salt is particularly preferable.
  • the isophthalic acid containing these metal sulfonate groups may use one type of chemical structure, or may be a combination of two or more types.
  • the ester-forming derivatives of isophthalic acid containing a metal sulfonate group include alkyl esters such as methyl esters and ethyl esters, acid halides such as acid chlorides and acid bromides thereof, and isophthalic anhydrides. Etc. can be exemplified.
  • alkyl esters such as methyl ester and ethyl ester are preferable, and methyl ester is particularly preferable from the viewpoint of productivity that the pack replacement frequency during spinning can be reduced. Note that it is not necessary to use both isophthalic acid containing a metal sulfonate group and an ester-forming derivative thereof simultaneously as raw materials, and it is not necessary to use only one of them.
  • the total copolymerization amount of the isophthalic acid containing a metal sulfonate group or its ester-forming derivative component is 0.1 mol% or more based on the structure derived from the dicarboxylic acid of the copolymerized polyester. Furthermore, 3.0 mol% or more is preferable, 5.0 mol% or more is more preferable, 10.0 mol% or more is further more preferable, and 15.0 mol% or more is especially preferable. When the copolymerization amount is in this range, the copolymer polyester obtained has sufficient alkali solubility and hot water solubility. Moreover, the upper limit of the amount of copolymerization is 40.0 mol% or less.
  • 30.0 mol% or less is preferable, 25.0 mol% or less is more preferable, and 20.0 mol% or less is particularly preferable.
  • the copolymerization amount is in this range, a copolymerized polyester fiber having excellent alkali solubility and hot water solubility and excellent strength can be obtained.
  • Nonionic copolymer component examples include the following. Dicarboxylic acids such as adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, cyclohexanedicarboxylic acid: ester-forming derivatives thereof.
  • Dicarboxylic acids such as adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, cyclohexanedicarboxylic acid: ester-forming derivatives thereof.
  • the following can be copolymerized as another diol component.
  • Dioxy compounds such as diethylene glycol, hexamethylene glycol, neopentyl glycol and cyclohexanedimethanol; ester-forming derivatives of the above-mentioned diols.
  • the copolymerized polyester of the present invention comprises the total amount of copolymerization of “dicarboxylic acid and its ester-forming derivative component of nonionic copolymer component” other than “terephthalic acid and its ester-forming derivative”, The content is preferably 5 to 49.9 mol% or less.
  • the total copolymerization amount of the dicarboxylic acid or its ester-forming derivative component, which is a nonionic copolymer component, is preferably 5.0 mol% or more with respect to all dicarboxylic acid components constituting the copolymer polyester, and 10.0. More preferably, mol% or more is more preferable, 12.5 mol% or more is still more preferable, and 15.0 mol% or more is especially preferable. When the copolymerization amount is within these ranges, the copolymer polyester obtained has sufficient alkali solubility and hot water solubility.
  • the upper limit of the copolymerization amount is preferably 49.9 mol% or less, more preferably 40.0 mol% or less, further preferably 35.0 mol% or less, and particularly preferably 30.0 mol% or less.
  • dicarboxylic acid and its ester-forming derivative component which are nonionic copolymer components, as raw materials at the same time, and it is not necessary to use only one of them.
  • diol component other than ethylene glycol and a nonionic copolymer component examples include the following from the viewpoint that the reaction time can be shortened and the copolymer polyester of the present invention can be obtained efficiently.
  • Diethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, bisphenol A and bisphenol S and their ethylene glycol (EO) adducts are preferred. More preferred are EO adducts of cyclohexanedimethanol, bisphenol A and bisphenol S.
  • the above-mentioned diol compound is also preferably used from the viewpoint of easily developing hot water solubility.
  • the amount of copolymerization of the diol or its ester-forming derivative component other than ethylene glycol, which is a nonionic copolymer component, is preferably 5.0 mol% or more with respect to all diol components constituting the copolymer polyester. 10.0 mol% or more is more preferable, 12.5 mol% or more is still more preferable, and 15.0 mol% or more is especially preferable. When the copolymerization amount is within these ranges, the copolymer polyester obtained has sufficient alkali solubility and hot water solubility.
  • the upper limit of the copolymerization amount is preferably 49.9 mol% or less, more preferably 40.0 mol% or less, further preferably 35.0 mol% or less, and particularly preferably 30.0 mol% or less.
  • a one-end-capped polyalkylene oxide compound represented by the following formula (1) is copolymerized. This copolymerization reduces the melt viscosity.
  • a copolymer containing isophthalic acid containing a metal sulfonate group or an ester-forming derivative component thereof tends to increase in melt viscosity.
  • X is at least selected from an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • alkyl group having 1 to 30 carbon atoms a cycloalkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • X is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • a methyl group, an ethyl group, a butyl group, and a decyl group are more preferable, a methyl group and a decyl group are more preferable, and a methyl group is particularly preferable.
  • X in the above formula (1) is an alkyl group, it tends to have high strength due to an increase in the degree of polymerization.
  • R is at least one selected from alkylene groups having 1 to 12 carbon atoms, and preferably at least one selected from alkylene groups having 1 to 4 carbon atoms.
  • Specific examples include methylene group, ethylene group, propylene group, trimethylene group and tetramethylene group, ethylene group, propylene group and tetramethylene group are more preferred, ethylene group, propylene group and trimethylene group are more preferred, An ethylene group is particularly preferred.
  • the repeating structural unit — (O—R) — may be used alone or in combination of two or more. When two or more types are combined, any of random copolymerization, block copolymerization, and alternating copolymerization of repeating structural units may be used.
  • the number of repeating units n is an integer of 45 to 113.
  • the number of repeating units n is preferably an integer of 45 to 91.
  • the number of repeating units n can be calculated by the following procedure. About 0.05 g of a copolyester obtained by copolymerizing one end-capped polyalkylene oxide compound is collected, 1 mL of 28% ammonia water is added, and the sample is dissolved by heating at 120 ° C. for 5 hours under pressure. After returning to room temperature, 1 mL of purified water and 1.5 mL of 6M hydrochloric acid are added, and the volume is adjusted to 5 mL with purified water. After centrifugation, the mixture is filtered through a 0.45 ⁇ m filter, and the number average molecular weight of the one-end-capped polyalkylene oxide compound contained in the filtrate is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the copolymerization amount of the one-end-capped polyalkylene oxide compound in the present invention is less than 30% by mass, preferably 25% by mass or less, more preferably 20% by mass or less, with respect to the copolymer polyester obtained. A mass% or less is particularly preferred.
  • the amount of copolymerization here is the mass including the hydrogen of the hydroxyl group of the copolymerization component.
  • the resulting copolyester has a high degree of polymerization and high strength fibers can be obtained.
  • the lower limit of the amount of copolymerization is 0.1 mass% or more, 1.0 mass% or more is preferable, 5.0 mass% or more is more preferable, and 10.0 mass% or more is further more preferable.
  • the strength of the fiber is excellent due to the high degree of polymerization of the copolyester, and the alkali solubility is excellent.
  • the copolymerization amount of the one-end-capped polyalkylene oxide compound in the copolymerized polyester is the ratio of the number of structural units of the main chain structure portion of the copolymerized polyester calculated by a nuclear magnetic resonance apparatus (NMR), the one-end-capped polyalkylene oxide compound. From the ratio calculated from the number n of repeating units of the structural portion and the molecular weight of the repeating unit of each structural unit, the following formula (2) is used.
  • n a the ratio of the number of repeating units derived from dicarboxylic acid and diol
  • M a the molecular weight of the repeating unit derived from dicarboxylic acid and diol
  • n b the ratio of the number of alkylene oxide units derived from one-end-capped polyalkylene oxide compound
  • M b Molecular weight of the alkylene oxide unit derived from the one-end blocked polyalkylene oxide compound.
  • ratio of the number of units means a ratio to the sum of the number of repeating units derived from the dicarboxylic acid and diol and the number of the alkylene oxide units.
  • the number average molecular weight of the one-end-capped polyalkylene oxide compound of the present invention is preferably 2000 or more, and more preferably 4000 or more.
  • the number average molecular weight referred to here is the molecular weight including hydrogen of the hydroxyl group of the copolymer component.
  • the upper limit of a number average molecular weight is 5000 or less.
  • the number average molecular weight is obtained by collecting about 0.05 g of the obtained copolymer polyester, adding 1 mL of 28% ammonia water, and heating and dissolving at 120 ° C. for 5 hours under pressure. After returning to room temperature, 1 mL of purified water and 1.5 mL of 6M hydrochloric acid are added, and the volume is adjusted to 5 mL with purified water. After centrifugation, it is filtered through a 0.45 ⁇ m filter, and gel permeation chromatography (GPC) measurement of the one-end-capped polyalkylene oxide compound contained in the filtrate is performed, and the value obtained as a value in terms of standard polyethylene glycol is obtained.
  • GPC gel permeation chromatography
  • the copolyester of the present invention has an intrinsic viscosity of preferably 0.50 dL / g or more, more preferably 0.52 dL / g or more, when measured at 25 ° C. using o-chlorophenol as a solvent, 0.54 dL / g.
  • the above is more preferable, and 0.55 dL / g or more is particularly preferable.
  • the upper limit is preferably 0.70 dL / g or less, more preferably 0.65 dL / g or less, and further preferably 0.62 dL / g or less. By being in this range, a high-strength fiber having a high degree of polymerization can be obtained in the copolyester.
  • the copolymerized polyester of the present invention preferably has a heat of crystal melting by differential scanning calorimetry (DSC) of 50 J / g or less, more preferably 45 J / g or less, still more preferably 40 J / g or less, and 35 J / g or less. Is particularly preferable, and 20 J / g or less is particularly preferable. Further, the lower limit is preferably 0 J / g or more, and more preferably 1 J / g or more. When it exists in this range, the copolyester obtained is excellent in alkali solubility and hot water solubility. Note that the heat of crystal fusion of the copolyester is a crystal obtained when a sample obtained by vacuum drying at 150 ° C. for 24 hours and 0.1 KPa or less is measured from 20 ° C. to 280 ° C. at a heating rate of 16 ° C./min. The amount of heat of fusion.
  • DSC differential scanning calorimetry
  • the copolymerized polyester of the present invention is 90 ° C. when a copolyester (1 part by mass, the form is a cylinder having a diameter of 3 mm and a height of 4 mm) is dispersed in a 5 g / L sodium hydroxide aqueous solution (100 parts by mass). It is preferable that the mass reduction
  • the temperature rise is a temperature rise from 20 ° C. to 90 ° C. at 4 ° C./min.
  • the mass reduction is more preferably 15% by mass or more, further preferably 30% by mass or more, particularly preferably 50% by mass or more, and most preferably 60% by mass or more.
  • the copolymerized polyester of the present invention has a mass reduction when reaching 90 ° C. when it is a dispersion of water (100 parts by mass) of copolymerized polyester (1 part by mass, shape is a cylinder having a diameter of 3 mm and a height of 4 mm). It is preferable that it is 30 mass% or more.
  • the temperature rise is a temperature rise from 20 ° C. to 90 ° C. at 4 ° C./min.
  • This mass reduction is more preferably 50% by mass or more, further preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the copolymer polyester of the present invention can be synthesized by any method.
  • Polyethylene terephthalate can be synthesized by the following steps. Usually, a terephthalic acid glycol ester or a low polymer thereof is produced by an esterification reaction between terephthalic acid and ethylene glycol, or a transesterification reaction between a lower alkyl ester of terephthalic acid represented by dimethyl terephthalate and ethylene glycol. First stage reaction. The first stage reaction product is heated under reduced pressure in the presence of a polymerization catalyst, and the second stage reaction is carried out until the desired degree of polymerization is reached.
  • the copolymerization component is added at any time, for example, before the esterification reaction, at the time of the transesterification reaction, at the time when the polycondensation reaction is started, and after the polycondensation reaction is substantially completed. Good.
  • Esterification proceeds even without catalyst.
  • a compound such as lithium, manganese, calcium, magnesium, or zinc is usually used as a catalyst, and after the transesterification reaction is substantially completed, the catalyst used in the reaction is deactivated.
  • a phosphorus compound is added.
  • compounds such as antimony compounds, titanium compounds, germanium compounds, and the like can be used.
  • the copolyester of the present invention contains particles for the purpose of reducing friction with various guides, rollers and other contact materials in the molding process, improving process passability, and adjusting the color tone of the product. It does not matter.
  • the kind of the contained particles is arbitrary. Specific examples include inorganic particles such as silicon dioxide, titanium dioxide, calcium carbonate, barium sulfate, aluminum oxide, and zirconium oxide, and organic polymer particles such as crosslinked polystyrene. Among these particles, titanium dioxide particles are preferable because of their good dispersibility in the polymer and relatively low cost.
  • Titanium dioxide particles are produced by various wet and dry methods, and after pretreatment such as pulverization and classification, if necessary, are added in any of the steps for synthesizing the copolyester.
  • the addition of the particles to the copolyester reaction system is preferably when the intrinsic viscosity of the reaction product during synthesis is 0.30 dL / g or less. It is preferable to add after substantially completing the esterification reaction or transesterification reaction, since the dispersibility in the polymer becomes good.
  • the amount of particles added to the polymer and the particle size in the present invention vary depending on the application to be applied and are not particularly limited, but are 0.01 to 10% by mass with respect to the copolyester, 0.05 to 5 ⁇ m as the average particle size, It is preferable that coarse particles having a diameter of 4 ⁇ m or more are in the range of 1000 particles / 0.4 mg or less because processability and color tone are particularly good.
  • the copolyester of the present invention may be added with a color adjusting agent such as a blue adjusting agent, a red adjusting agent, and a purple adjusting agent.
  • a color adjusting agent such as a blue adjusting agent, a red adjusting agent, and a purple adjusting agent.
  • a dye used for a resin or the like is used.
  • Specific examples of the COLOR INDEX GENERIC NAME include the following.
  • Blue-based color adjusting agents such as SOLVENT BLUE 104, SOLVENT BLUE 122, SOLVENT BLUE 45, etc .; Red color adjusters such as SOLVENT RED 111, SOLVENT RED 179, SOLVENT RED 195, SOLVENT RED 135, PIGMENT RED 263, and VAT RED 41; Purple color adjusting agents such as DESPERSE VIOLET 26, SOLVENT VIOLET 13, SOLVENT VIOLET 37, and SOLVENT VIOLET 49.
  • SOLVENT BLUE 104 SOLVENT BLUE 45, SOLVENT RED 179, SOLVENT RED 195, SOLVENT RED 135, which do not contain halogen that tends to cause corrosion of the apparatus, have relatively good heat resistance at high temperatures and excellent color developability
  • SOLVENT VIOLET 49 is preferably used.
  • one or more kinds of these color tone adjusting agents can be used depending on the purpose.
  • the color tone of the copolymerized polyester obtained is particularly preferable when the ratio of the blue-based modifier is 50% by mass or more with respect to the total amount of the color-tone modifier to be added.
  • the content of the color tone adjusting agent with respect to the copolyester is preferably 30 ppm or less in total. If it exceeds 30 ppm, the transparency of the copolyester may be lowered or the color may become dull.
  • the content can be calculated from the structural specification of the color tone adjusting agent and the proportion of the constituent parts of the color tone adjusting agent by a nuclear magnetic resonance apparatus (NMR).
  • NMR nuclear magnetic resonance apparatus
  • the copolymer polyester of the present invention may be variously modified by adding other additives as long as the effects of the present invention are not impaired.
  • additives include pigments such as carbon black, surfactants such as alkylbenzene sulfonic acid, conventionally known antioxidants, anti-coloring agents, light-proofing agents, antistatic agents, compatibilizing agents, plasticizers, Examples include fluorescent brighteners, mold release agents, antibacterial agents, nucleating agents, regulators, matting agents, antifoaming agents, preservatives, gelling agents, latexes, fillers, inks, coloring agents, and fragrances. These other additives may be used alone or in admixture of two or more.
  • the copolyester of the present invention can be used as a constituent of composite fiber.
  • the composite fiber here refers to a fiber in which two or more kinds of polymers are present separately in one fiber.
  • unprecedented spinning stability, alkali solubility and hot water solubility are obtained. Further, even after the elution treatment, it is possible to obtain a composite fiber with little change in properties such as strength and elongation.
  • the copolymerized polyester of the present invention is disposed on the sea component and exposed on the fiber surface, since the yarn-forming stability and the alkali solubility are improved.
  • the fiber form examples include core-sheath type composite fiber, core-sheath type composite hollow fiber, sea-island type composite fiber, and the like, and the copolymerized polyester of the present invention can be used as a constituent in any proportion.
  • the composite ratio can be arbitrarily selected from the desired hollow ratio of the resulting composite fiber after alkali weight reduction processing.
  • the lower limit of the composite ratio of the core portion is set for the purpose of imparting a sufficient hollow ratio
  • the upper limit of the composite fiber ratio is set from the viewpoint of preventing a decrease in spinnability and fiber properties.
  • the content ratio of the copolyester used in the sea-island composite fiber is preferably 5 to 90% by mass. More preferably, it is 7 to 60% by mass, and particularly preferably 10 to 40% by mass.
  • the copolymerized polyester is preferably arranged as a sea component.
  • the content of the copolyester can be arbitrarily selected depending on the fineness of the fiber after the alkali weight loss.
  • the lower limit of the content is set for the purpose of imparting alkali weight loss and spinning stability, and the upper limit of the content ratio is set from the viewpoint of preventing a decrease in spinnability and a decrease in fiber properties.
  • a method for producing a composite fiber using a copolyester and polyester it can be produced by any method.
  • the following is a representative method for producing sea-island type composite fibers.
  • the polyester that becomes the island part and the copolymer polyester that becomes the sea part of the present invention are separately melted, led to a spinning pack, a sea-island composite flow is formed in the mouthpiece device, and spun from the discharge hole. .
  • the filament yarn After taking out the spun filament yarn at a predetermined speed, the filament yarn is once wound up in a package, and the obtained undrawn yarn is drawn by a normal drawing machine. Moreover, after taking up the spun yarn, it may be continuously stretched without being wound and then wound.
  • a method may be adopted in which fibers are taken at a high speed and fibers having desired characteristics are obtained at once without substantially stretching. This speed is preferably 4000 m / min or more.
  • Examples of the direct spinning drawing method include a method of drawing a spun yarn at 1000 to 5000 m / min, and subsequently drawing and heat setting at 3000 to 6000 m / min.
  • the filamentous form of the fiber may be either a filament or a staple, and is appropriately selected depending on the application.
  • the fabric form can be appropriately selected according to the purpose, such as woven fabric, knitted fabric, and non-woven fabric.
  • Examples of the method for reducing the amount of the copolyester component in the polyester composite fiber of the present invention include an alkali weight loss method and a hot water weight loss method.
  • the alkali a compound such as sodium hydroxide, potassium hydroxide, or lithium hydroxide can be used as the aqueous solution.
  • the concentration is preferably in the range of 0.5 to 10% by mass.
  • the extraction procedure of the polyalkylene oxide compound in copolymerized polyester is shown.
  • 0.05 g of the obtained copolyester was collected, dissolved by heating in 1 mL of 28% ammonia water at 120 ° C. for 5 hours, allowed to cool, then added with 1 mL of purified water and 1.5 mL of 6M hydrochloric acid, and 5 mL with purified water. After constant volume and centrifugation, the mixture was filtered through a 0.45 ⁇ m filter, and the filtrate was used for GPC measurement.
  • the reduction in alkali mass of the copolyester was evaluated as follows.
  • the copolymer polyester was heat-treated in a hot air dryer at 100 ° C. for 3 hours to be precrystallized. It heat-processed for 24 hours at 0.1 KPa or less at 150 degreeC using the vacuum dryer.
  • the bath ratio represented by the mass of the sodium hydroxide aqueous solution with respect to the mass of the copolyester was set to 1: 100, and the temperature was raised from room temperature to 90 ° C. at 4 ° C./min. The mass loss when reaching 90 ° C. was measured.
  • the decrease in hot water mass of the copolyester was evaluated as follows.
  • the copolymer polyester was heat-treated in a hot air dryer at 100 ° C. for 3 hours to be precrystallized. It heat-processed for 24 hours at 0.1 KPa or less at 150 degreeC using the vacuum dryer.
  • the bath ratio expressed by the mass of water with respect to the mass of the copolyester was set to 1: 100, the temperature was increased from room temperature to 90 ° C. at 4 ° C./min, and the mass reduction when reaching 90 ° C. was measured. The larger the value, the better the hot water solubility.
  • Fineness (dtex) mass of fiber 100 m (g) ⁇ 100.
  • PET polyethylene terephthalate
  • the internal pressure of the can was maintained at 1.0 MPa while releasing moisture out of the system, and the temperature was increased until the internal temperature of the can reached 240 ° C.
  • the set temperature of the heater was changed to 255 ° C., and the internal pressure of the can was adjusted to be a normal pressure over 1 hour. Subsequently, it was held for 40 minutes while flowing nitrogen into the can.
  • the reaction system is purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, extruded into a strand form from the die, cooled in a water tank, and cut to obtain polyamide 6 (Ny6) pellets. It was.
  • the relative viscosity ⁇ r of Ny6 obtained (98% sulfuric acid solution with a concentration of 0.01 g / mL, 25 ° C., measured with an Ostwald viscometer) was 2.40.
  • Example 1 Dimethylterephthalic acid (DMT) 5.5 kg, Sodium dimethyl 5-sulfoisophthalate (SSIA) 3.6 kg (30 mol% based on total acid components), Ethylene glycol (EG) 4.7 kg, Manganese acetate tetrahydrate (MN) 22.5 g, lithium acetate dihydrate (LAH) 103.5 g, and antimony trioxide (AO) 1.4 g were added, and transesterification (EI) reaction was performed while distilling methanol at 140 to 230 ° C. After 250 minutes, 0.9 g of phosphoric acid (PA) was added.
  • DMT dimethylterephthalic acid
  • SSIA Sodium dimethyl 5-sulfoisophthalate
  • EG Ethylene glycol
  • MN Manganese acetate tetrahydrate
  • LAH lithium acetate dihydrate
  • AO antimony trioxide
  • the pressure is gradually reduced to 0.1 kPa or less, and the temperature is raised to 290 ° C. at the same time.
  • the reaction system is purged with nitrogen to return to normal pressure to stop the polycondensation reaction, and extruded from the die into a strand. Water tank cooling and cutting were performed.
  • the polymer properties of the obtained copolyester are shown in Tables 1 to 3.
  • the obtained copolyester was used as a sea component
  • the polyester obtained in Reference Example 1 was used as an island component
  • each was dried until the water content was 300 ppm or less, and then the island component was 80% by mass and the sea component was 20% by mass.
  • a drawing false twisting machine (twister part: friction disk type, heater part: contact type)
  • the obtained undrawn yarn was drawn under the conditions of a heater temperature of 140 ° C.
  • Example 2 The DMT addition amount used in Example 1 was 6.0 kg, the SSIA addition amount was 3.1 kg (25 mol%), the EG addition amount was 4.8 kg, the MN addition amount was 18.0 g, and the LAH addition amount was 90.0 g.
  • EI reaction time was changed to 240 minutes and the polycondensation reaction time was changed to 80 minutes, a copolyester and a composite fiber were obtained.
  • Example 3 The DMT addition amount used in Example 1 was 6.6 kg, the SSIA addition amount was 2.5 kg (20 mol%), the EG addition amount was 4.9 kg, the MN addition amount was 13.5 g, and the LAH addition amount was 76.5 g.
  • EI reaction time was changed to 225 minutes and the polycondensation reaction time was changed to 85 minutes, a copolyester and a composite fiber were obtained.
  • Example 4 The DMT addition amount used in Example 1 was 7.2 kg, the SSIA addition amount was 1.9 kg (15 mol%), the EG addition amount was 5.0 kg, the MN addition amount was 9.0 g, and the LAH addition amount was 63.0 g.
  • EI reaction time was changed to 210 minutes and the polycondensation reaction time was changed to 90 minutes, a copolyester and a composite fiber were obtained.
  • Example 5 The DMT addition amount used in Example 1 was 7.8 kg, the SSIA addition amount was 1.3 kg (10 mol%), the EG addition amount was 5.2 kg, the MN addition amount was 4.5 g, and the LAH addition amount was 49.5 g.
  • EI reaction time was changed to 200 minutes and the polycondensation reaction time was changed to 95 minutes, a copolyester and a composite fiber were obtained.
  • Example 6 The DMT addition amount used in Example 1 was 8.4 kg, the SSIA addition amount was 0.7 kg (5 mol%), the EG addition amount was 5.3 kg, the MN addition amount was 2.7 g, and the LAH addition amount was 36.0 g.
  • EI reaction time was changed to 190 minutes and the polycondensation reaction time was changed to 100 minutes, a copolyester and a composite fiber were obtained.
  • Example 7 The DMT addition amount used in Example 1 was 8.7 kg, the SSIA addition amount was 0.4 kg (3 mol%), the EG addition amount was 5.4 kg, the MN addition amount was 2.7 g, and the LAH addition amount was 30.6 g.
  • EI reaction time was changed to 180 minutes and the polycondensation reaction time was changed to 110 minutes, a copolyester and a composite fiber were obtained.
  • Example 8 The DMT addition amount used in Example 1 was 6.0 kg, the SSIA addition amount was 1.6 kg (15 mol%), the EG addition amount was 4.2 kg, the MN addition amount was 7.5 g, and the LAH addition amount was 52.5 g.
  • the AO addition amount was 1.1 g, the PA addition amount was 0.75 g, the EI reaction time was 210 minutes, the UNIOX M-4000 addition amount was 2.5 kg (25 mass%), and the polycondensation reaction time was 250 minutes. Except having changed, it implemented similarly to Example 1 and obtained copolyester and composite fiber.
  • Example 9 The DMT addition amount used in Example 1 was 6.4 kg, the SSIA addition amount was 1.7 kg (15 mol%), the EG addition amount was 4.5 kg, the MN addition amount was 8.0 g, and the LAH addition amount was 56.0 g.
  • the AO addition amount was 1.2 g, the PA addition amount was 0.80 g, the EI reaction time was 210 minutes, the UNIOX M-4000 addition amount was 2.0 kg (20 mass%), and the polycondensation reaction time was 200 minutes. Except having changed, it implemented similarly to Example 1 and obtained copolyester and composite fiber.
  • Example 10 The DMT addition amount used in Example 1 was 6.8 kg, the SSIA addition amount was 1.8 kg (15 mol%), the EG addition amount was 4.8 kg, the MN addition amount was 8.5 g, and the LAH addition amount was 59.5 g.
  • the AO addition amount is 1.3 g, the PA addition amount is 0.85 g, the EI reaction time is 210 minutes, the UNIOX M-4000 addition amount is 1.5 kg (15% by mass), and the polycondensation reaction time is 150 minutes. Except having changed, it implemented similarly to Example 1 and obtained copolyester and composite fiber.
  • Example 11 The DMT addition amount used in Example 1 was 7.6 kg, the SSIA addition amount was 2.0 kg (15 mol%), the EG addition amount was 5.3 kg, the MN addition amount was 9.5 g, and the LAH addition amount was 66.5 g.
  • Example 1 except that the PA addition amount was changed to 0.95 g, the EI reaction time was changed to 210 minutes, the UNIOX M-4000 addition amount was changed to 0.5 kg (5 mass%), and the polycondensation reaction time was changed to 80 minutes. In the same manner as above, a copolyester and a composite fiber were obtained.
  • Example 12 The DMT addition amount used in Example 1 was 7.9 kg, the SSIA addition amount was 2.1 kg (15 mol%), the EG addition amount was 5.5 kg, the MN addition amount was 9.9 g, and the LAH addition amount was 69.3 g.
  • the AO addition amount is 1.5 g, the PA addition amount is 0.99 g, the EI reaction time is 210 minutes, the UNIOX M-4000 addition amount is 0.1 kg (1% by mass), and the polycondensation reaction time is 75 minutes. Except having changed, it implemented similarly to Example 1 and obtained copolyester and composite fiber.
  • Example 13 The polyalkylene oxide compound used in Example 4 was carried out in the same manner as in Example 4 except that the one-end methoxy group-blocked PEG (Aldrich) having a number average molecular weight of 5000 and the polycondensation reaction time were changed to 85 minutes. Polymerized polyester and composite fiber were obtained.
  • Example 14 Example 1 except that the polyalkylene oxide compound used in Example 4 has a number-average molecular weight of 2000, one-end methoxy group-blocked PEG (“UNIOX M-1000” manufactured by NOF), and the polycondensation reaction time was changed to 110 minutes. In the same manner as in No. 4, copolymer polyester and composite fiber were obtained.
  • Example 15 The polyalkylene oxide compound used in Example 4 was subjected to the same procedure except that the one-end decanoxy group-capped PEG having a number average molecular weight of 4500 (“Neugen XL-1000” manufactured by Daiichi Kogyo Seiyaku) was changed to 90 minutes. It carried out like Example 4 and obtained copolyester and a composite fiber.
  • the one-end decanoxy group-capped PEG having a number average molecular weight of 4500 (“Neugen XL-1000” manufactured by Daiichi Kogyo Seiyaku) was changed to 90 minutes. It carried out like Example 4 and obtained copolyester and a composite fiber.
  • Example 1 The DMT addition amount used in Example 2 was 6.7 kg, the SSIA addition amount was 3.4 kg (25 mol%), the EG addition amount was 5.3 kg, the MN addition amount was 20.0 g, and the LAH addition amount was 100.0 g.
  • the same procedure as in Example 2 was performed except that the amount of AO added was 1.5 g, the amount of PA added was 1.0 g, and the polycondensation reaction time was changed to 70 minutes without adding the polyalkylene oxide compound. However, the obtained strand was brittle and could not be cut. Since cutting was not possible, polymer characteristics evaluation other than alkali weight loss evaluation was performed.
  • Example 2 The DMT addition amount used in Example 1 was 3.6 kg, the SSIA addition amount was 5.5 kg (50 mol%), the EG addition amount was 5.3 kg, the MN addition amount was 40.5 g, and the LAH addition amount was 157.5 g.
  • the same procedure as in Example 3 was conducted except that the EI reaction time was changed to 300 minutes and the polycondensation reaction time was changed to 70 minutes. However, the obtained strand was brittle and could not be cut. Since cutting was not possible, polymer characteristics evaluation other than alkali weight loss evaluation was performed.
  • Example 3 Example 1 except that the polyalkylene oxide compound used in Example 4 has a number average molecular weight of 1000, one-end methoxy group-blocked PEG (“UNIOX M-2000” manufactured by NOF Corporation), and the polycondensation reaction time was changed to 130 minutes. In the same manner as in No. 4, copolymer polyester and composite fiber were obtained.
  • Example 4 The polyalkylene oxide compound used in Example 4 was changed to polyethylene glycol having a number average molecular weight of 1000, and the polycondensation reaction time was changed to 80 minutes. It was.
  • Example 16 Table 5 shows the results of evaluating the fusibility of the copolyester obtained in Example 4.
  • Example 17 Table 5 shows the results of evaluating the fusibility of the copolyester obtained in Example 13.
  • Example 18 Table 5 shows the results of evaluating the fusibility of the copolyester obtained in Example 14.
  • Example 19 The DMT addition amount used in Example 1 was 8.0 kg, the SSIA addition amount was 1.1 kg (8 mol%), the EG addition amount was 5.2 kg, the MN addition amount was 2.7 g, and the LAH addition amount was 44.1 g.
  • the copolymer polyester was obtained in the same manner as in Example 1 except that the EI reaction time was changed to 195 minutes and the polycondensation reaction time was changed to 95 minutes.
  • the polymer characteristics of the obtained copolyester are shown in Table 6, Table 7, and Table 8.
  • the obtained copolymer polyester was used as a core component, and the polyamide 6 obtained in Reference Example 2 was used as a sheath component, and each was dried until the moisture content was 300 ppm or less, and then the core component was 50% by mass and the sheath component was 50%.
  • the mixture was fed to an extruder type composite spinning machine at a blending ratio of mass% and melted separately, and flowed into a spinning pack incorporating a C type composite die at a spinning temperature of 285 ° C. to obtain an undrawn yarn of 260 dtex-36f. .
  • the obtained undrawn yarn was drawn under conditions of a heater temperature of 140 ° C. and a magnification of 3.1 times, and 84 dtex ⁇ A 36f C-type composite fiber was obtained.
  • the obtained drawn yarn was treated for 30 minutes under the conditions of NaOH 1% by mass, 90 ° C., and bath ratio 1: 100 to remove the core component and obtain only the sheath component.
  • the obtained yarn characteristics are shown in Table 9.
  • Example 20 The DMT addition amount used in Example 19 was 5.9 kg, the SSIA addition amount was 1.9 kg (15 mol%), dimethylisophthalic acid (DMI) was 1.9 kg, the EG addition amount was 5.0 kg, and the MN addition amount was 9 0.06 g, LAH addition amount was 63.0 g, EI reaction time was changed to 210 minutes, and polycondensation reaction time was changed to 90 minutes. .
  • DMI dimethylisophthalic acid
  • Example 21 Except having changed the polycondensation reaction time into 100 minutes in Example 20, it implemented like Example 20 and obtained copolyester and composite fiber.
  • Example 22 The DMT addition amount used in Example 20 was 5.5 kg, the SSIA addition amount was 1.9 kg (15 mol%), the DMI addition amount was 2.6 kg, the EG addition amount was 5.0 kg, and the polycondensation reaction time was 110 kg. Except having changed to minute, it implemented similarly to Example 20, and obtained copolyester and composite fiber.
  • Example 23 The DMT addition amount used in Example 20 was 5.9 kg, the SSIA addition amount was 1.9 kg, dimethyl cyclohexanedicarboxylate (CHDC) was 1.9 kg, the EG addition amount was 5.0 kg, and the polycondensation reaction time was 115 minutes. Except having changed, it implemented similarly to Example 20 and obtained copolyester and composite fiber.
  • CHDC dimethyl cyclohexanedicarboxylate
  • Example 24 The DMT addition amount used in Example 20 was 5.7 kg, the SSIA addition amount was 1.9 kg, dimethyl naphthalenedicarboxylate (NDCM) was 1.5 kg, the EG addition amount was 4.9 kg, and the polycondensation reaction time was 125 minutes. Except having changed, it implemented similarly to Example 20 and obtained copolyester and composite fiber.
  • NDCM dimethyl naphthalenedicarboxylate
  • Example 25 The DMT addition amount used in Example 20 was 5.7 kg, the SSIA addition amount was 1.5 kg, the EO4 molar addition type bisphenol A (BPAEO) was 2.1 kg, the EG addition amount was 4.0 kg, and the polycondensation reaction time was 150 kg. Except having changed to minute, it implemented similarly to Example 20, and obtained copolyester and composite fiber.
  • BPAEO EO4 molar addition type bisphenol A
  • Example 26 The DMT addition amount used in Example 20 was 6.0 kg, the SSIA addition amount was 1.6 kg, EO2 molar addition type bisphenol S (BPSEO) 1.8 kg, the EG addition amount was 4.2 kg, and the polycondensation reaction time was 180 kg. Except having changed to minute, it implemented similarly to Example 20, and obtained copolyester and composite fiber.
  • BPSEO EO2 molar addition type bisphenol S
  • Example 27 The DMT addition amount used in Example 20 was 6.3 kg, the SSIA addition amount was 1.1 kg, the DMI addition amount was 2.7 kg, the EG addition amount was 5.2 kg, the MN addition amount was 2.7 g, and the LAH addition amount was The same procedure as in Example 20 was carried out except that the content was changed to 44.1 g, the EI reaction time was changed to 195 minutes, and the polycondensation reaction time was changed to 120 minutes to obtain a copolyester and a composite fiber.
  • Example 28 The same procedure as in Example 27 was carried out except that the DMT addition amount used in Example 27 was 5.8 kg, the DMI addition amount was 3.3 kg, and the polycondensation reaction time was changed to 125 minutes. Got.
  • Example 29 The same procedure as in Example 27 was performed except that the DMT addition amount used in Example 27 was 5.4 kg, the DMI addition amount was 4.0 kg, and the polycondensation reaction time was changed to 130 minutes. Got.
  • Example 30 The same procedure as in Example 27 was carried out except that the DMT addition amount used in Example 27 was 5.0 kg, the DMI addition amount was 4.7 kg, and the polycondensation reaction time was changed to 135 minutes. Got.
  • Example 31 The DMT addition amount used in Example 20 was 6.2 kg, the SSIA addition amount was 2.5 kg, the DMI addition amount was 0.6 kg, the EG addition amount was 4.9 kg, the MN addition amount was 13.5 g, and the LAH addition amount was The same procedure as in Example 20 was conducted except that the EI reaction time was changed to 76.5 g, the EI reaction time was changed to 225 minutes, and the polycondensation reaction time was changed to 80 minutes, to obtain a copolyester and a composite fiber.
  • Example 32 The same procedure as in Example 31 was carried out except that the DMT addition amount used in Example 31 was 5.8 kg, the DMI addition amount was 1.3 kg, and the polycondensation reaction time was changed to 90 minutes. Got.
  • Example 33 The same procedure as in Example 31 was carried out except that the DMT addition amount used in Example 31 was 5.3 kg, the DMI addition amount was 1.9 kg, and the polycondensation reaction time was changed to 100 minutes. Got.
  • the copolymer polyester having the characteristics of the present invention is readily soluble in alkali when the total copolymerization amount of isophthalic acid containing a metal sulfonate group or its ester-forming derivative component is a certain amount or more. It turns out that it is excellent in. It can be seen that the hot water solubility is excellent when the total copolymerization amount of the nonionic copolymer component is a certain amount or more. It can be seen that when the copolymerization amount of polyethylene glycol having a specific polymerization degree range in which one end is blocked with a methyl group is a certain amount or more, it is excellent in alkali solubility and hot water solubility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Multicomponent Fibers (AREA)

Abstract

本発明は 高いアルカリ易溶性または熱水溶解性を有する共重合ポリエステルおよびその共重合ポリエステルを含む複合繊維を提供する。 金属スルホネート基含有イソフタル酸成分および繰返し単位数nが45以上の片末端封鎖ポリアルキレンオキサイド化合物共重合した共重合ポリエステルおよび該共重合ポリエステルを含む複合繊維である。

Description

共重合ポリエステルおよびそれを含む複合繊維
 本発明は、特定の化合物で末端を変性したアルカリ易溶性な共重合ポリエステル、およびその共重合ポリエステルを含む複合繊維に関する。
 ポリエステルはその機能性の有用さから多くの目的に用いられている。例えば、衣料用、資材用、医療用に用いられている。その中でも、汎用性、実用性の点でポリエチレンテレフタレートが優れ、多く使用されている。ポリエチレンテレフタレートとともにアルカリ易溶性の共重合ポリエステルとを含む複合繊維からアルカリや熱水で共重合ポリエステルを溶出して、極細繊維や異形断面繊維を得る。この用途に好ましい共重合ポリエステルとしては、金属スルホネート基含有イソフタル酸やポリアルキレンオキサイド化合物を共重合したものが提案されている(特許文献1)。また、チタン化合物、リン化合物、またリチウム化合物を用いたアルカリ易溶性共重合ポリエステルも提案されている(特許文献2)。
特開2000-95850号公報 特開2010-70739号公報
 特許文献1の共重合ポリエステルはアルカリへの溶解性が低く、更なる改善が求められている。また、特許文献2の共重合ポリエステルでも所望のアルカリ溶解性が得られていなかった。
 本発明では、アルカリ溶解性に優れ、さらに必要であれば熱水に溶解しやすい共重合ポリエステルを得ること、さらに複合繊維から溶出させても、複合繊維と溶出後の繊維とで強度や伸度等の特性変化の少ない共重合ポリエステル得ることを課題とする。
 課題を解決するために、本発明は以下の構成を有する。
(1)ジカルボン酸またはそのエステル形成性誘導体、ならびにジオールまたはそのエステル形成性誘導体から得られる共重合ポリエステルであって、金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分、および下記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物が共重合され、金属スルホネート基を含有するイソフタル酸およびそのエステル形成性誘導体成分の量の合計が、共重合ポリエステルのジカルボン酸由来の構造に対して0.1~40モル%である共重合ポリエステル。
Figure JPOXMLDOC01-appb-C000002
式(1)において、Xは炭素数1~30のアルキル基、炭素数6~20のシクロアルキル基、炭素数6~10のアリール基および炭素原子数7~20のアラルキル基から選ばれる少なくとも1種であり、Rは炭素数1~12のアルキレン基から選択される少なくとも1種であり、nは45~113の整数である。
 そして好ましい態様としては以下の構成である。
(2)テレフタル酸由来の構造をジカルボン酸構造由来の構造に対して、50モル%以上、エチレングリコール由来の構造をジオール由来の構造に対して50%モル以上含む前記共重合ポリエステル。
(3)共重合ポリエステルを構成する前記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物の共重合量が0.1質量%以上30質量%未満である前記いずれかの共重合ポリエステル。
(4)金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分の量が、共重合ポリエステルのジカルボン酸由来の構造に対して5~20モル%以下である前記いずれかの共重合ポリエステル。
(5)テレフタル酸およびそのエステル形成性誘導体以外の非イオン性のジカルボン酸およびそのエステル形成誘導体成分が、全ジカルボン酸成分に対して5~49.9モル%である前記いずれかの共重合ポリエステル。
(6)エチレングリコールおよびそのエステル形成性誘導体以外の非イオン性のジオールおよびそのエステル形成性誘導体成分が、全ジカルボン酸成分に対して5~49.9モル%以下である前記いずれかの共重合ポリエステル。
(7)示差走査熱量測定により求められる結晶融解熱量が20J/g以下である前記いずれかの共重合ポリエステル。
(8)明細書に記載された方法によって測定される、共重合ポリエステルの濃度5g/Lの水酸化ナトリウム水溶液への質量減少が10質量%以上である前記いずれかの共重合ポリエステル。
(9)固有粘度が0.50dL/g以上である前記いずれかの共重合ポリエステル。
(10)テレフタル酸およびそのエステル形成性誘導体以外の非イオン性のジカルボン酸およびそのエステル形成誘導体成分が、アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸およびシクロヘキサンジカルボン酸、ならびにそのエステル形成性誘導体から選ばれるものである前記いずれかの共重合ポリエステル。
(11)エチレングリコールおよびそのエステル形成性誘導体以外の非イオン性のジオールおよびそのエステル形成性誘導体成分が、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノール、ならびに、ビスフェノールA、ビスフェノールSおよびこれらビスフェノール化合物のエチレンオキサイド付加物、ならびにこれらのエステル形成性誘導体成分から選ばれる前記いずれかの共重合ポリエステル。
 そして本発明では以下の複合繊維を開示する。
(12)前記いずれかの共重合ポリエステルを含む複合繊維。
 本発明によれば、アルカリ溶解性および熱水への溶解性に優れ、繊維の強度が上がり、結晶化速度が高いポリマーが得られる。
(1)共重合ポリエステル
 本発明の共重合ポリエステルは、「ジカルボン酸またはそのエステル形成性誘導体」および「ジオールまたはそのエステル形成性誘導体」からえられうる繰り返し構造に、「イオン性共重合成分である金属スルホネート基を有するイソフタル酸またはそのエステル形成性誘導体成分」、ならびに上記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物を共重合した共重合ポリエステルである、そして「金属スルホネート基を有するイソフタル酸またはそのエステル形成性誘導体成分」の構造の共重合量が、共重合ポリエステルを構成する全ジカルボン酸由来の構造に対して0.1~40モル%である。
 ジカルボン酸またはそのエステル形成性誘導体およびジオールまたはそのエステル形成性誘導体から得られるポリエステルとしては以下の構造を含むものが例示される。ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロへキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、ポリエチレン-1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレート。
 中でも、最も汎用的に用いられているポリエチレンテレフタレートまたは主としてエチレンテレフタレート単位を含むポリエステル共重合体が好ましい。なお、ジカルボン酸とそのエステル形成性誘導体の両化合物を用いる必要はないし、どちらかのみを使用する必要もない。またジオールとそのエステル形成性誘導体の両方を原料として同時に用いる必要はないし、どちらかのみを使用する必要もない。
本発明の共重合ポリエステルは、耐熱性が向上するという点から、「テレフタル酸およびそのエステル形成性誘導体由来の構造の合計」を「ジカルボン酸およびそのエステル形成誘導体の構造の合計」に対して50モル%以上含むことが好ましい。また「エチレングリコールおよびエステル形成性誘導体」を「ジオールまたはそのエステル形成性誘導体」に対して50モル%以上含むことが好ましい。なお、ジカルボン酸およびそのエステル形成性誘導体の両方を原料として用いる必要はないし、どちらかのみを使用する必要はない。またジオールおよびそのエステル形成性誘導体の両方を原料として用いる必要はないし、どちらかのみを使用する必要はない。
 金属スルホネート基を含有するイソフタル酸はイオン性共重合成分であり、共重合体に非晶性を付与する。金属スルホネート基を含有するイソフタル酸としては以下のものがあげられる。
4-スルホイソフタル酸ナトリウム塩、4-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸ナトリウム塩、5-スルホイソフタル酸カリウム塩、5-スルホイソフタル酸バリウム塩などが挙げられる。中でも、5-スルホイソフタル酸ナトリウム塩、5-スルホイソフタル酸カリウム塩が好ましく、5-スルホイソフタル酸ナトリウム塩が特に好ましい。なお、これら金属スルホネート基を含有するイソフタル酸は、1種類の化学構造のものを使用しても良く、2種類以上を組み合わせたものでも良い。
 また、金属スルホネート基を含有するイソフタル酸のエステル形成性誘導体としては、それらのメチルエステル、エチルエステルなどのアルキルエステル、それらの酸塩化物や酸臭化物などの酸ハロゲン化物、さらにはイソフタル酸無水物などが例示できる。例えば、紡糸時のパック交換頻度を低減できるという生産性の観点から、メチルエステルやエチルエステルなどのアルキルエステルが好ましく、メチルエステルが特に好ましい。なお、金属スルホネート基を含有するイソフタル酸およびそのエステル形成性誘導体の両方を原料として同時に用いる必要はないし、どちらかのみを用いる必要もない。
 金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分の共重合量の合計は、共重合ポリエステルのジカルボン酸由来の構造に対して0.1モル%以上である。さらに3.0モル%以上が好ましく、5.0モル%以上がより好ましく、10.0モル%以上がさらに好ましく、15.0モル%以上が特に好ましい。共重合量がこの範囲にあることにより、得られる共重合ポリエステルは十分なアルカリ易溶性および熱水易溶性が得られる。また、共重合量の上限は40.0モル%以下である。30.0モル%以下が好ましく、25.0モル%以下がより好ましく、20.0モル%以下が特に好ましい。共重合量がこの範囲にあることにより、アルカリ易溶性および熱水易溶性に優れ、強度に優れる共重合ポリエステル繊維が得られる。
 本発明の共重合ポリエステルには、その他の酸成分を共重合させることができる。非イオン性共重合成分としては以下のものがあげられる。
アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、シクロヘキサンジカルボン酸等のジカルボン酸:それらのエステル形成性誘導体。
 また、その他のジオール成分として以下のものを共重合させることができる。
ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオキシ化合物;上述のジオールのエステル形成性誘導体等。
ビスフェノールA、ビスフェノールSおよびそのエチレンオキサイド付加物。 
そして本発明の共重合ポリエステルは、「テレフタル酸およびそのエステル形成性誘導体」以外の「非イオン性共重合成分のジカルボン酸およびそのエステル形成誘導体成分」の共重合量の合計、全ジカルボン酸成分に対して5~49.9モル%以下であることが好ましい。
 非イオン性共重合成分である、ジカルボン酸またはそのエステル形成誘導体成分の共重合量の合計は、共重合ポリエステルを構成する全ジカルボン酸成分に対して5.0モル%以上が好ましく、10.0モル%以上がより好ましく、12.5モル%以上が更に好ましく、15.0モル%以上が特に好ましい。共重合量がこれら範囲にあることにより、得られる共重合ポリエステルは十分なアルカリ易溶性及び熱水易溶性が得られる。また、共重合量の上限は49.9モル%以下が好ましく、40.0モル%以下がより好ましく、35.0モル%以下がさらに好ましく、30.0モル%以下が特に好ましい。なおここで非イオン性共重合成分である、ジカルボン酸およびそのエステル形成誘導体成分の両方を原料として同時に用いる必要はないし、どちらかのみを用いる必要もない。
 エチレングリコールおよび以外のものであって非イオン性共重合成分である、ジオール成分としては、反応時間を短縮でき、効率良く本発明の共重合ポリエステルが得られるという観点から以下のものがあげられる。
ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、ビスフェノールAおよびビスフェノールSおよびそれらのエチレングリコール(EO)付加物が好ましい。シクロヘキサンジメタノール、ビスフェノールAやビスフェノールSのEO付加物がさらに好ましい。熱水易溶性が発現しやすいという観点からも、上述のジオール化合物が好ましく使用される。
 エチレングリコール以外のものであって非イオン性共重合成分である、ジオールまたはそのエステル形成誘導体成分の共重合量は、共重合ポリエステルを構成する全ジオール成分に対して5.0モル%以上が好ましく、10.0モル%以上がより好ましく、12.5モル%以上が更に好ましく、15.0モル%以上が特に好ましい。共重合量がこれら範囲にあることにより、得られる共重合ポリエステルは十分なアルカリ易溶性及び熱水易溶性が得られる。また、共重合量の上限は49.9モル%以下が好ましく、40.0モル%以下がより好ましく、35.0モル%以下がさらに好ましく、30.0モル%以下が特に好ましい。
 そして本発明の共重合ポリエステルでは、下記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物が共重合されている。この共重合により溶融粘度が低減する。金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分を含む共重合体は溶融粘度があがりやすい。下記式(1)で表される化合物を共重合することにより溶融粘度の上昇を抑止でき、その結果重合度をあげることができ、そして得られる繊維が高強度となる。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)において、Xは炭素数1~30のアルキル基、炭素数6~20のシクロアルキル基、炭素数6~10のアリール基および炭素原子数7~20のアラルキル基から選ばれる少なくとも1種である。
 Xとして炭素数1~30のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられる。メチル基、エチル基、ブチル基、デシル基がより好ましく、メチル基、デシル基がさらに好ましく、メチル基が特に好ましい。上記式(1)におけるXがアルキル基であることにより、重合度上昇による高強度となりやすい。
 また、上記式(1)において、Rは炭素数1~12のアルキレン基から選択される少なくとも1種であり、1~4のアルキレン基から選択される少なくとも1種であることが好ましい。具体例としては、例えばメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基が例示でき、エチレン基、プロピレン基、テトラメチレン基がより好ましく、エチレン基、プロピレン基、トリメチレン基がさらに好ましく、エチレン基が特に好ましい。
 上記式(1)における繰返し構造単位-(O-R)-は、1種類のみを使用しても良いし、2種類以上を組み合わせて使用してもいい。2種類以上を組み合わせる場合は、繰り返し構造単位のランダム共重合、ブロック共重合、交互共重合いずれでも良い。
 さらに、上記式(1)において、繰返し単位数nは45~113の整数である。なかでも、繰返し単位数nは45~91の整数であることが好ましい。繰返し単位数nがこのような範囲にあることにより、アルカリ易溶性に優れ、共重合ポリエステルの高重合度による繊維の高強度化、および結晶化速度が向上し乾燥時の融着回避が可能となる。
 繰返し単位数nは以下の手順にて算出することができる。片末端封鎖ポリアルキレンオキサイド化合物を共重合してある共重合ポリエステル、約0.05gを採取し、28%アンモニア水1mLを加え、加圧下で120℃で5時間加熱し試料を溶解する。室温に戻ったのち、精製水1mL、6M塩酸1.5mLを加え、精製水で5mL定容する。遠心分離後、0.45μmフィルターにて濾過し、濾液に含まれる片末端封鎖ポリアルキレンオキサイド化合物の数平均分子量をゲルパーミェーションクロマトグラフィ(GPC)にて測定する。さらに、例えば日本電子社製FT-NMR JNM-AL400を用いて、H-NMR測定により、片末端封鎖ポリアルキレンオキサイド化合物を共重合してある共重合ポリエステル中の片末端封鎖ポリアルキレンオキサイド化合物の繰り返し構造単位を同定する。そして繰り返し構造単位の分子量を算出する。GPCにより算出した片末端封鎖ポリアルキレンオキサイド化合物の数平均分子量を、H-NMR測定により算出した片末端封鎖ポリアルキレンオキサイド化合物の構造単位の分子量で除することにより、片末端封鎖ポリアルキレンオキサイド化合物の繰り返し単位数nを算出する。
 本発明における片末端封鎖ポリアルキレンオキサイド化合物の共重合量は、得られる共重合ポリエステルに対して30質量%未満であり、25質量%以下であることが好ましく、20質量%以下がより好ましく、15質量%以下が特に好ましい。ここでいう共重合量は共重合成分の水酸基の水素も含んでの質量である。
 この範囲にあることにより、得られる共重合ポリエステルは高重合度となり、高強度繊維が得られる。また、共重合量の下限値は、0.1質量%以上であり、1.0質量%以上が好ましく、5.0質量%以上がより好ましく、10.0質量%以上がさらに好ましい。この範囲にあることにより、共重合ポリエステルの高重合度により繊維の強度が優れ、アルカリ易溶性に優れる。
 共重合ポリエステル中における片末端封鎖ポリアルキレンオキサイド化合物の共重合量は、核磁気共鳴装置(NMR)により算出した共重合ポリエステルの主鎖構造部分の構成単位数の割合、片末端封鎖ポリアルキレンオキサイド化合物構造部分の繰返し単位数nから算出した割合と、各構造単位の繰返し単位の分子量から、以下の式(2)により算出する。
Figure JPOXMLDOC01-appb-M000004
ここで
:ジカルボン酸およびジオール由来の繰り返し単位の数の割合
:ジカルボン酸およびジオール由来の繰り返し単位の分子量
:片末端封鎖ポリアルキレンオキサイド化合物由来のアルキレンオキサイド単位の数の割合
:片末端封鎖ポリアルキレンオキサイド化合物由来のアルキレンオキサイド単位の分子量。
上でいう「単位の数の割合」とは、前記ジカルボン酸およびジオール由来の繰り返し単位の数ならびに前記アルキレンオキサイド単位の数の和に対する割合を意味する。
 本発明の片末端封鎖ポリアルキレンオキサイド化合物の数平均分子量は、2000以上であることが好ましく、4000以上であることがより好ましい。ここでいう数平均分子量は共重合成分の水酸基の水素も含んでの分子量である。また、数平均分子量の上限値は、5000以下であることが好ましい。数平均分子量がこの範囲にあることにより、得られる共重合ポリエステルはアルカリ易溶性に優れ、重合度を高くすることにより繊維の強度に優れる点、また結晶化速度の向上によって乾燥時の融着が回避可能となる。数平均分子量は、得られた共重合ポリエステルを約0.05g採取し、28%アンモニア水1mLを加え、加圧下で120℃で5時間加熱し溶解する。室温に戻ったのち、精製水1mL、6M塩酸1.5mLを加え、精製水で5mL定容する。遠心分離後、0.45μmフィルターにて濾過し、濾液に含まれる片末端封鎖ポリアルキレンオキサイド化合物のゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリエチレングリコール換算の値として求めたものを指す。
 本発明の共重合ポリエステルは、o-クロロフェノールを溶媒として25℃で測定行ったときの固有粘度が0.50dL/g以上が好ましく、0.52dL/g以上がより好ましく、0.54dL/g以上がさらに好ましく、0.55dL/g以上が特に好ましい。また、上限値は0.70dL/g以下が好ましく、0.65dL/g以下がより好ましく、0.62dL/g以下がさらに好ましい。この範囲にあることにより、共重合ポリエステルにおいて、高重合度による高強度繊維が得られる。
 本発明の共重合ポリエステルは、示差走査熱量測定(DSC)による結晶融解熱量が50J/g以下であることが好ましく、45J/g以下がより好ましく、40J/g以下がさらに好ましく、35J/g以下が特に好ましく、20J/g以下が特に好ましい。また、下限値は、0J/g以上が好ましく、1J/g以上がより好ましい。この範囲にあるとき、得られる共重合ポリエステルはアルカリ易溶性および熱水易溶性が優れる。なお、共重合ポリエステルの結晶融解熱量は、150℃で24時間、0.1KPa以下の真空乾燥を行ったサンプルを20℃から280℃まで昇温速度16℃/分にて測定行ったときの結晶融解熱量である。
 本発明の共重合ポリエステルは、共重合ポリエステル(1質量部。形態は直径3mm、高さ4mmの円柱)の濃度5g/L水酸化ナトリウム水溶液(100質量部)の分散液としたときの90℃到達時での質量減少が10質量%以上であることが好ましい。ここで温度上昇は20℃から90℃へ4℃/分で昇温したものである。この質量減少は、15質量%以上がより好ましく、30質量%以上がさらに好ましく、50質量%以上が特に好ましく、60質量%以上が最も好ましい。
 本発明の共重合ポリエステルは、共重合ポリエステル(1質量部。形態は直径3mm、高さ4mmの円柱)の水(100質量部)の分散液としたときの90℃到達時での質量減少が30質量%以上であることが好ましい。ここで温度上昇は20℃から90℃へ4℃/分で昇温したものである。この質量減少は50質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましく、90質量%以上が最も好ましい。
 (2)共重合ポリエステルの製造方法
 本発明の共重合ポリエステルは、任意の方法によって合成できる。ポリエチレンテレフタレートでは以下の工程で合成できる。通常テレフタル酸とエチレングリコールとのエステル化反応、または、テレフタル酸ジメチルに代表されるテレフタル酸の低級アルキルエステルとエチレングリコールとのエステル交換反応によって、テレフタル酸のグリコールエステルまたはその低重合体を生成させる第一段階の反応。そして第一段階の反応生成物を重合触媒の存在下で減圧加熱し、所望の重合度となるまでに重縮合反応行う第二段階の反応。
 上記工程のいずれかに、または工程と工程との間に共重合成分を添加する。共重合成分の添加時期は、例えば、エステル化反応前または、エステル交換反応時、エステル交換反応の終了した時点から重縮合反応が開始される、ならびに重縮合反応が実質的に終了した後などいつでもよい。
 エステル化は無触媒においても反応が進む。エステル交換反応においては、通常、リチウム、マンガン、カルシウム、マグネシウム、亜鉛等の化合物を触媒に用いて進行させ、またエステル交換反応が実質的に完結した後に、該反応に用いた触媒を不活性化する目的で、リン化合物添加が行われる。重縮合反応触媒としては、アンチモン系化合物、チタン系化合物、ゲルマニウム系化合物などの化合物等を用いることができる。
 本発明の共重合ポリエステルには、成形加工工程での各種ガイド、ローラー等の接触物との摩擦を低減し、工程通過性を向上させる目的や、製品の色調を調整する目的で粒子が含まれていても構わない。この含まれる粒子の種類は任意である。具体例を示すと二酸化ケイ素、二酸化チタン、炭酸カルシウム、硫酸バリウム、酸化アルミニウム、酸化ジルコニウム等の無機粒子や、架橋ポリスチレン等の有機高分子粒子を用いることができる。これらの粒子の中でも、二酸化チタン粒子は、ポリマー中での分散性が良好で、比較的低コストであることから好ましい。二酸化チタン粒子は、湿式、乾式の種々の方法で製造され、必要に応じて、粉砕、分級等の前処理を施された上で、共重合ポリエステルへの合成工程のいずれかにおいて添加される。共重合ポリエステル反応系への粒子の添加は、合成時の反応物の固有粘度が0.30dL/g以下のときがよい。実質的にエステル化反応またはエステル交換反応を完結させた後に添加するとポリマー中の分散性が良好となるため好ましい。本発明における粒子のポリマーに対する添加量や粒子径は、適用する用途によって変化し、特に限定されないが、共重合ポリエステルに対し0.01~10質量%、平均粒子径として0.05~5μm、粒子径が4μm以上の粗大粒子が1000個/0.4mg以下の範囲であると、工程通過性や色調が特に良好となり好ましい。
 また、本発明の共重合ポリエステルは、青系調整剤、赤系調整剤、紫系調整剤などの色調調整剤を添加してもよい。色調調整剤としては樹脂等に用いられる染料が使用される。COLOR INDEX GENERIC NAMEで具体的にあげると以下のものが例示される。
SOLVENT BLUE 104、SOLVENT BLUE 122、SOLVENT BLUE 45等の青系の色調調整剤;
SOLVENT RED 111、SOLVENT RED 179、SOLVENT RED 195、SOLVENT RED 135、PIGMENT RED 263、VAT RED 41等の赤系の色調調整剤;
DESPERSE VIOLET 26、SOLVENT VIOLET 13、SOLVENT VIOLET 37、SOLVENT VIOLET 49等の紫系の色調調整剤。
なかでも装置腐食の原因となりやすいハロゲンを含有せず、高温での耐熱性が比較的良好で発色性に優れた、SOLVENT BLUE 104、SOLVENT BLUE 45、SOLVENT RED 179、SOLVENT RED 195、SOLVENT RED 135、SOLVENT VIOLET 49が好ましく用いられる。
 また、これらの色調調整剤を目的に応じて、1種類または複数種類用いることができる。特に青系調整剤と赤系調整剤をそれぞれ1種類以上用いると色調を細かく制御できるため好ましい。さらにこの場合には、添加する色調調整剤の総量に対して青系調整剤の比率が50質量%以上であると得られる共重合ポリエステルの色調が特に良好となり好ましい。最終的に共重合ポリエステルに対する色調調整剤の含有量は総量で30ppm以下であることが好ましい。30ppmを超えると共重合ポリエステルの透明性低下や、くすんだ発色となることがある。含有量は核磁気共鳴装置(NMR)により色調調整剤の構造特定および色調調整剤の構成部分の割合から算出できる。
 本発明の共重合ポリエステルは、本発明の効果を損なわない限り、他の添加剤を加えて種々の改質を行っても良い。他の添加剤の具体例としては、カーボンブラック等の顔料、アルキルベンゼンスルホン酸等の界面活性剤、従来公知の酸化防止剤、着色防止剤、耐光剤、帯電防止剤、相溶化剤、可塑剤、蛍光増白剤、離型剤、抗菌剤、核形成剤、調整剤、艶消し剤、消泡剤、防腐剤、ゲル化剤、ラテックス、フィラー、インク、着色料、香料などが挙げられる。これらの他の添加物は単独で使用しても良く、2種以上を混合して使用しても良い。
 (3)共重合ポリエステルの複合紡糸方法、および複合繊維
 本発明の共重合ポリエステルを複合繊維の構成成分として用いることができる。ここでいう複合繊維とは1本の繊維の中に2種以上のポリマーが分離して存在しているものをいう。本発明の共重合ポリエステルを使用することにより、今までに無い製糸安定性、アルカリ易溶性および熱水易溶性が得られる。また溶出処理の後でも、強度や伸度等の特性変化の少ない複合繊維を得ることができる。海島型での複合繊維化を行う場合、本発明の共重合ポリエステルが海成分に配され、繊維表面に露出した構造であると製糸安定性およびアルカリ易溶性が良好になるため好ましい。
 繊維の形態として、芯鞘型複合繊維、芯鞘型複合中空繊維、海島型複合繊維等があげられ、本発明の共重合ポリエステルを任意の割合で構成成分として用いることができる。例えば、芯鞘型複合繊維および芯鞘型複合中空繊維の場合、芯部の共重合ポリエステルの複合比率(質量%)は芯/鞘=5/95~90/10とすることが好ましい。さらに好ましくは7/93~70/30、特に好ましくは10/90~50/50である。複合比率はアルカリ減量加工後、得られる複合繊維の所望の中空率から任意に選択できる。芯部の複合比率の下限は十分な中空率を付与する目的から設定され、複合繊維比率の上限は紡糸性の低下や繊維物性の低下を防止する観点から設定される。
 また、海島型複合繊維において用いる共重合ポリエステルの含有比率は5~90質量%が好ましい。さらに好ましくは7~60質量%、特に好ましくは10~40質量%である。共重合ポリエステルは海成分として配置されていることが好ましい。共重合ポリエステルの含有率は、アルカリ減量後の繊維の繊度で任意に選ぶことができる。含有率の下限はアルカリ減量性、製糸安定性を付与する目的から設定され、含有比率の上限は紡糸性の低下や繊維物性の低下を防止する観点から設定される。
 共重合ポリエステルとポリエステルとを用いる複合繊維の製法としては任意の方法で製造することができる。以下海島型複合繊維の代表的製造方法を示す。海島型複合繊維の場合、島部となるポリエステルおよび本発明の海部となる共重合ポリエステルをそれぞれ別々に溶融し、紡糸パックに導き口金装置内で海島複合流を形成し、吐出孔から紡出する。紡出したフィラメント糸を所定の速度で引取った後、一旦パッケージに巻上げ、得られた未延伸糸を通常の延伸機にて延伸を行う。また、紡出糸を引取った後、巻取ることなく連続して延伸を行い、それを巻上げても良い。また高速で引取り、実質的に延伸することなく一挙に所望の特性をもつ繊維を得る方法をとってもよい。この速度は4000m/分以上であることが好ましい。直接紡糸延伸法としては、例えば、紡出糸を1000~5000m/分で引取り、引続いて3000~6000m/分で延伸・熱固定する方法が挙げられる。該繊維の糸状形態は、フィラメント、ステープルのどちらでも良く、用途によって適宜選定される。布帛形態としては、織物、編物、不織布など目的に応じて適宜選択できる。
 本発明のポリエステル複合繊維中の共重合ポリエステル成分を減量する方法としては、アルカリ減量法または熱水減量法が挙げられる。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の化合物を水溶液として用いることができる。その濃度は0.5~10質量%の範囲が好ましい。
 以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。
 <ポリエステルの固有粘度(IV)>
 ポリエステルの固有粘度の抽出手順を示す。
得られたポリエステルを、o-クロロフェノール溶媒に溶解し、0.5g/dL、0.2g/dL、0.1g/dLの濃度の溶液を調整した。その後、得られた濃度Cの溶液の25℃における相対粘度(ηr)を、ウベローデ粘度計により測定し、(ηr-1)/CをCに対してプロットした。得られた結果を濃度0に外挿することにより、固有粘度を求めた。
 <共重合ポリエステルの組成分析>
 共重合ポリエステルにおける、金属スルホネート基を含有するイソフタル酸またはそのエステル形成誘導体成分、およびポリアルキレンオキサイド化合物の共重合量の分析は、核磁気共鳴装置(NMR)を用いて実施した。
装置:日本電子株式会社製 AL-400
重溶媒:重水素化ヘキサフルオロイソプロパノール
積算回数:128回
サンプル濃度:測定サンプル50mg/重溶媒1mL。
 <共重合ポリエステル中のポリアルキレンオキサイド化合物の抽出>
 共重合ポリエステル中のポリアルキレンオキサイド化合物の抽出を以下の手順を行い、ポリアルキレンオキサイド化合物の分子量をゲルパーミエーションクロマトグラフィー(GPC)で測定する。
 共重合ポリエステル中のポリアルキレンオキサイド化合物の抽出手順を示す。
得られた共重合ポリエステルを0.05g採取し、1mLの28%アンモニア水中にて120℃で5時間加熱溶解し、放冷後、精製水1mL、6M塩酸1.5mLを加え、精製水で5mL定容、遠心分離後、0.45μmフィルターにて濾過し、濾液をGPC測定に用いた。
 <片末端封鎖ポリアルキレンオキサイド化合物の分子量>
 共重合ポリエステル中のポリアルキレンオキサイドの分子量の分析は、上記の抽出した濾液をゲルパーミエーションクロマトグラフィー(GPC)で行った。
装置:Waters社製 Waters-2690
検出器:Waters社製 示差屈折率検出器RI(Waters-2410,感度128x)
カラム:東ソー株式会社製 TSKgelG3000PWXL(1本)
カラム温度:40℃
溶媒:0.1M塩化ナトリウム水溶液
流速:0.8mL/min
注入量:0.05mL
標準サンプル:標準ポリエチレングリコール。
 <共重合ポリエステルのアルカリ質量減少>
 共重合ポリエステルのアルカリ質量減少は以下のように評価した。共重合ポリエステルを100℃で3時間熱風乾燥機にて熱処理し、予備結晶化させた。真空乾燥機を用い150℃にて0.1KPa以下で24時間熱処理した。その、濃度5g/Lの水酸化ナトリウム水溶液を用い、共重合ポリエステルの質量に対する水酸化ナトリウム水溶液質量で表される浴比を1:100とし、室温から90℃へ4℃/分で昇温し、90℃到達時の質量減少を測定した。値が大きいほどアルカリ易溶性に優れる。
装置:株式会社テクサム技研 UR・MINI-COLOR
アルカリ溶液:0.5%水酸化ナトリウム水溶液
浴比:1:100
サンプル:100℃で3時間加熱後、150℃で0.1KPa以下での24時間真空乾燥
昇温速度:4℃/分、室温→90℃、90℃到達時点で取出し
アルカリ質量減少:アルカリ質量減少(%)=(A-B)/A×100
Aはアルカリ処理前の共重合ポリエステルの質量(g)
Bはアルカリ処理後の共重合ポリエステルの質量(g)。
 <共重合ポリエステルの熱水質量減少>
 共重合ポリエステルの熱水質量減少は以下のように評価した。共重合ポリエステルを100℃で3時間熱風乾燥機にて熱処理し、予備結晶化させた。真空乾燥機を用い150℃にて0.1KPa以下で24時間熱処理した。共重合ポリエステルの質量に対する水質量で表される浴比を1:100とし、室温から90℃へ4℃/分で昇温し、90℃到達時の質量減少を測定した。値が大きいほど熱水易溶性に優れる。
装置:株式会社テクサム技研 UR・MINI-COLOR
浴比:1:100
サンプル:100℃で3時間加熱後、150℃で0.1KPa以下での24時間真空乾燥
昇温速度:4℃/分、室温→90℃、90℃到達時点で取出し
熱水質量減少:熱水質量減少(%)=(C-D)/C×100
Cは熱水処理前の共重合ポリエステルの質量(g)
Dは熱水処理後の共重合ポリエステルの質量(g)。
 <共重合ポリエステルの熱特性>
 共重合ポリエステルの熱特性分析は、示差走査熱量計(DSC)を用いて、結晶融解熱量を測定した。
装置:TA Instruments社製 Q-2000
サンプル:100℃で3時間加熱後、150℃で0.1KPa以下での24時間真空乾燥
昇温速度:16℃/分、20℃→280℃。
 <繊度>
 温度20℃、湿度65%RHの環境下において、INTEC製電動検尺機を用いて、実施例によって得られた繊維100mをかせ取りした。得られたかせの質量を測定し、下記式を用いて繊度(dtex)を算出した。なお、測定は1試料につき5回行い、その平均値を繊度とした。
繊度(dtex)=繊維100mの質量(g)×100。
 <強度・伸度>
 強度および伸度は、実施例によって得られた繊維を試料とし、JIS L1013:2010(化学繊維フィラメント糸試験方法)8.5.1に準じて算出した。温度20℃、湿度65%RHの環境下において、オリエンテック社製テンシロンUTM-III-100型を用いて、初期試料長20cm、引張速度20cm/分の条件で引張試験を行った。最大荷重を示す点の応力(cN)を繊度(dtex)で除して強度(cN/dtex)を算出し、最大荷重を示す点の伸び(L1)と初期試料長(L0)を用いて下記式によって伸度(%)を算出した。なお、測定は1試料につき10回行い、その平均値を強度および伸度とした。
伸度(%)={(L1-L0)/L0}×100。
 <共重合ポリエステルの融着性評価>
 共重合ポリエステルの融着性評価を以下のように実施した。
温度:80℃
時間:30分
試料:100mLビーカーに試料30g
荷重:50mLビーカーで160g
評価:上記条件で熱処理後、ビーカーを揺すって融着の有無を評価した。
A 融着なし。
B 融着があるが、手でほぐせる。
C 融着があり、手でほぐせない。
 [参考例1]
 予めビス(ヒドロキシエチル)テレフタレート100kgが仕込まれ、温度250℃に保持されたエステル化反応槽に高純度テレフタル酸(三井化学社製)82.5kgとエチレングリコール(日本触媒社製)35.4kgのスラリーを4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行い、得られたエステル化反応生成物101.5kgを重縮合槽に移送した。
 このエステル化反応生成物に、リン酸トリメチル25.3gを添加し、10分後に酢酸コバルト4水和物20.3g、三酸化アンチモン25.3g添加した。さらに5分後に酸化チタン粒子のエチレングリコールスラリーを、ポリマーに対して酸化チタン粒子換算で0.3質量%添加した。さらに5分後に、反応系を減圧して反応を開始した。反応器内を250℃から290℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度および最終圧力の到達までの時間は60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却、カッティングしてポリエチレンテレフタレート(PET)のペレットを得た。得られたPETの固有粘度は0.65であった。
[参考例2]
 ε-カプロラクタム10kg、イオン交換水2.5kgを反応容器に仕込み密閉し、窒素置換した。反応容器外周にあるヒーターの設定温度を275℃とし、加熱を開始した。缶内圧力が1.0MPaに到達した後、水分を系外へ放出させながら缶内圧力1.0MPaに保持し、缶内温度が240℃になるまで昇温した。缶内温度が240℃に到達した後、ヒーターの設定温度を255℃に変更し、1時間かけて常圧となるよう缶内圧力を調節した。続けて、缶内に窒素を流しながら40分間保持した。所定の攪拌トルクとなった時点で反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却、カッティングしてポリアミド6(Ny6)のペレットを得た。得られたNy6の相対粘度ηr(濃度0.01g/mLの98%硫酸溶液、25℃、オストワルド式粘度計で測定)は2.40であった。
 [実施例1]
 ジメチルテレフタル酸(DMT)5.5kg、ジメチル5-スルホイソフタル酸ナトリウム(SSIA)3.6kg(全酸成分に対して30モル%)、エチレングリコール(EG)4.7kg、酢酸マンガン4水和物(MN)22.5g、酢酸リチウム2水和物(LAH)103.5g、三酸化アンチモン(AO)1.4gを加え、140~230℃でメタノールを留出しつつエステル交換(EI)反応を行い、250分後、リン酸(PA)0.9gを添加した。さらに、数平均分子量4000の片末端メトキシ基封鎖PEG(日油製“ユニオックスM-4000”)1.0kg(得られる共重合ポリエステルに対して10.0質量%)、[ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)プロピオネート)](BASF製“Irganox(登録商標。以下同じ。)1010”)25.0g、シリコーンオイル(モメンティブ・パフォーマンス・マテリアルズ製“TSF433”)10.0gを加え、減圧および昇温開始し、重縮合反応を開始した。徐々に0.1kPa以下まで減圧し、同時に290℃まで昇温し、重合開始75分後、反応系を窒素パージして常圧に戻して重縮合反応を停止させ、口金からストランド状に押出して水槽冷却、カッティング実施した。得られた共重合ポリエステルのポリマー特性を、表1~3に記す。
 得られた共重合ポリエステルを海成分とし、参考例1で得られたポリエステルを島成分とし、それぞれを水分率300ppm以下になるまで乾燥した後、島成分を80質量%、海成分を20質量%の配合比でエクストルーダー型複合紡糸機へ供給して、別々に溶融させ、紡糸温度285℃において、海島複合口金(島数18)を組み込んだ紡糸パックに流入させ、230dtex-9fの未延伸糸を得た。その後、延伸仮撚機(ツイスター部:フリクションディスク式、ヒーター部:接触式)を用いて、得られた未延伸糸をヒーター温度140℃、倍率3.1倍の条件で延伸し、71dtex-9fの海島型複合繊維を得た。得られた延伸糸をNaOH1質量%、90℃、浴比1:100の条件で30分間処理を行い海成分を除去し島成分のみを得た。この浸漬処理によって9フィラメントのものが162フィラメントの極細繊維に分割されていた。得られた糸特性を、表4に記す。
 [実施例2]
 実施例1で用いたDMT添加量を6.0kg、SSIA添加量を3.1kg(25モル%)、EG添加量を4.8kg、MN添加量を18.0g、LAH添加量を90.0gとし、EI反応時間を240分、重縮合反応時間を80分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例3]
 実施例1で用いたDMT添加量を6.6kg、SSIA添加量を2.5kg(20モル%)、EG添加量を4.9kg、MN添加量を13.5g、LAH添加量を76.5gとし、EI反応時間を225分、重縮合反応時間を85分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例4]
 実施例1で用いたDMT添加量を7.2kg、SSIA添加量を1.9kg(15モル%)、EG添加量を5.0kg、MN添加量を9.0g、LAH添加量を63.0gとし、EI反応時間を210分、重縮合反応時間を90分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例5]
 実施例1で用いたDMT添加量を7.8kg、SSIA添加量を1.3kg(10モル%)、EG添加量を5.2kg、MN添加量を4.5g、LAH添加量を49.5gとし、EI反応時間を200分、重縮合反応時間を95分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例6]
 実施例1で用いたDMT添加量を8.4kg、SSIA添加量を0.7kg(5モル%)、EG添加量を5.3kg、MN添加量を2.7g、LAH添加量を36.0gとし、EI反応時間を190分、重縮合反応時間を100分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例7]
 実施例1で用いたDMT添加量を8.7kg、SSIA添加量を0.4kg(3モル%)、EG添加量を5.4kg、MN添加量を2.7g、LAH添加量を30.6gとし、EI反応時間を180分、重縮合反応時間を110分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例8]
 実施例1で用いたDMT添加量を6.0kg、SSIA添加量を1.6kg(15モル%)、EG添加量を4.2kg、MN添加量を7.5g、LAH添加量を52.5g、AO添加量を1.1g、PA添加量を0.75gとし、EI反応時間を210分、ユニオックスM-4000添加量を2.5kg(25質量%)、重縮合反応時間を250分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例9]
 実施例1で用いたDMT添加量を6.4kg、SSIA添加量を1.7kg(15モル%)、EG添加量を4.5kg、MN添加量を8.0g、LAH添加量を56.0g、AO添加量を1.2g、PA添加量を0.80gとし、EI反応時間を210分、ユニオックスM-4000添加量を2.0kg(20質量%)、重縮合反応時間を200分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例10]
 実施例1で用いたDMT添加量を6.8kg、SSIA添加量を1.8kg(15モル%)、EG添加量を4.8kg、MN添加量を8.5g、LAH添加量を59.5g、AO添加量を1.3g、PA添加量を0.85gとし、EI反応時間を210分、ユニオックスM-4000添加量を1.5kg(15質量%)、重縮合反応時間を150分に変更したこと以外は実施例1同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例11]
 実施例1で用いたDMT添加量を7.6kg、SSIA添加量を2.0kg(15モル%)、EG添加量を5.3kg、MN添加量を9.5g、LAH添加量を66.5g、PA添加量を0.95gとし、EI反応時間を210分、ユニオックスM-4000添加量を0.5kg(5質量%)、重縮合反応時間を80分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例12]
 実施例1で用いたDMT添加量を7.9kg、SSIA添加量を2.1kg(15モル%)、EG添加量を5.5kg、MN添加量を9.9g、LAH添加量を69.3g、AO添加量を1.5g、PA添加量を0.99gとし、EI反応時間を210分、ユニオックスM-4000添加量を0.1kg(1質量%)、重縮合反応時間を75分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例13]
 実施例4で用いたポリアルキレンオキサイド化合物を数平均分子量5000の片末端メトキシ基封鎖PEG(Aldrich製)、重縮合反応時間を85分に変更したこと以外は実施例4と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例14]
 実施例4で用いたポリアルキレンオキサイド化合物を数平均分子量2000の片末端メトキシ基封鎖PEG(日油製“ユニオックスM-1000”)、重縮合反応時間を110分に変更したこと以外は実施例4と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例15]
 実施例4で用いたポリアルキレンオキサイド化合物を数平均分子量4500の片末端デカノキシ基封鎖PEG(第一工業製薬製“ノイゲンXL-1000”)、重縮合反応時間を90分に変更したこと以外は実施例4と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [比較例1]
 実施例2で用いたDMT添加量を6.7kg、SSIA添加量を3.4kg(25モル%)、EG添加量を5.3kg、MN添加量を20.0g、LAH添加量を100.0g、AO添加量を1.5g、PA添加量を1.0gとし、ポリアルキレンオキサイド化合物を添加せずに、重縮合反応時間を70分に変更したこと以外は実施例2と同様に実施した。ただし、得られたストランドは脆く、カッティング不可であった。カッティング不可であったためアルカリ減量評価以外のポリマー特性評価行った。
 [比較例2]
 実施例1で用いたDMT添加量を3.6kg、SSIA添加量を5.5kg(50モル%)、EG添加量を5.3kg、MN添加量を40.5g、LAH添加量を157.5gとし、EI反応時間を300分、重縮合反応時間を70分に変更したこと以外は実施例3と同様に実施した。ただし、得られたストランドは脆く、カッティング不可であった。カッティング不可であったためアルカリ減量評価以外のポリマー特性評価行った。
 [比較例3]
 実施例4で用いたポリアルキレンオキサイド化合物を数平均分子量1000の片末端メトキシ基封鎖PEG(日油製“ユニオックスM-2000”)、重縮合反応時間を130分に変更したこと以外は実施例4と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [比較例4]
 実施例4で用いたポリアルキレンオキサイド化合物を数平均分子量1000のポリエチレングリコールとし、重縮合反応時間を80分に変更したこと以外は実施例4と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 [実施例16]
 実施例4で得られた共重合ポリエステルの融着性評価結果を表5に示す。
 [実施例17]
 実施例13で得られた共重合ポリエステルの融着性評価結果を表5に示す。
 [実施例18]
 実施例14で得られた共重合ポリエステルの融着性評価結果を表5に示す。
 [比較例5]
 比較例3で得られた共重合ポリエステルの融着性評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000009
 [実施例19]
 実施例1で用いたDMT添加量を8.0kg、SSIA添加量を1.1kg(8モル%)、EG添加量を5.2kg、MN添加量を2.7g、LAH添加量を44.1gとし、EI反応時間を195分、重縮合反応時間を95分に変更したこと以外は実施例1と同様に実施し、共重合ポリエステルを得た。得られた共重合ポリエステルのポリマー特性を、表6、表7、表8に記す。
 得られた共重合ポリエステルを芯成分とし、参考例2で得られたポリアミド6を鞘成分とし、それぞれを水分率300ppm以下になるまで乾燥実施した後、芯成分を50質量%、鞘成分を50質量%の配合比でエクストルーダー型複合紡糸機へ供給して別々に溶融させ、紡糸温度285℃において、C型複合口金を組み込んだ紡糸パックに流入させ、260dtex-36fの未延伸糸を得た。その後、延伸仮撚機(加撚部:フリクションディスク式、ヒーター部:接触式)を用いて、得られた未延伸糸をヒーター温度140℃、倍率3.1倍の条件で延伸し、84dtex-36fのC型複合繊維を得た。得られた延伸糸をNaOH1質量%、90℃、浴比1:100の条件で30分間処理を行い、芯成分を除去し鞘成分のみを得た。得られた糸特性を表9に記す。
 [実施例20]
 実施例19で用いたDMT添加量を5.9kg、SSIA添加量を1.9kg(15モル%)、ジメチルイソフタル酸(DMI)1.9kg、EG添加量を5.0kg、MN添加量を9.0g、LAH添加量を63.0gとし、EI反応時間を210分、重縮合反応時間を90分に変更したこと以外は実施例19と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例21]
 実施例20で重縮合反応時間を100分に変更したこと以外は実施例20と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例22]
 実施例20で用いたDMT添加量を5.5kg、SSIA添加量を1.9kg(15モル%)、DMI添加量を2.6kg、EG添加量を5.0kgとし、重縮合反応時間を110分に変更したこと以外は実施例20と同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例23]
 実施例20で用いたDMT添加量を5.9kg、SSIA添加量を1.9kg、シクロヘキサンジカルボン酸ジメチル(CHDC)1.9kg、EG添加量を5.0kgとし、重縮合反応時間を115分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例24]
 実施例20で用いたDMT添加量を5.7kg、SSIA添加量を1.9kg、ナフタレンジカルボン酸ジメチル(NDCM)1.5kg、EG添加量を4.9kgとし、重縮合反応時間を125分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例25]
 実施例20で用いたDMT添加量を5.7kg、SSIA添加量を1.5kg、EO4モル付加型ビスフェノールA(BPAEO)2.1kg、EG添加量を4.0kgとし、重縮合反応時間を150分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例26]
 実施例20で用いたDMT添加量を6.0kg、SSIA添加量を1.6kg、EO2モル付加型ビスフェノールS(BPSEO)1.8kg、EG添加量を4.2kgとし、重縮合反応時間を180分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例27]
 実施例20で用いたDMT添加量を6.3kg、SSIA添加量を1.1kg、DMI添加量を2.7kg、EG添加量を5.2kg、MN添加量を2.7g、LAH添加量を44.1gとし、EI反応時間を195分、重縮合反応時間を120分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例28]
 実施例27で用いたDMT添加量を5.8kg、DMI添加量を3.3kgとし、重縮合反応時間を125分に変更したこと以外は実施例27同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例29]
 実施例27で用いたDMT添加量を5.4kg、DMI添加量を4.0kgとし、重縮合反応時間を130分に変更したこと以外は実施例27同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例30]
 実施例27で用いたDMT添加量を5.0kg、DMI添加量を4.7kgとし、重縮合反応時間を135分に変更したこと以外は実施例27同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例31]
 実施例20で用いたDMT添加量を6.2kg、SSIA添加量を2.5kg、DMI添加量を0.6kg、EG添加量を4.9kg、MN添加量を13.5g、LAH添加量を76.5gとし、EI反応時間を225分、重縮合反応時間を80分に変更したこと以外は実施例20同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例32]
 実施例31で用いたDMT添加量を5.8kg、DMI添加量を1.3kgとし、重縮合反応時間を90分に変更したこと以外は実施例31同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 [実施例33]
 実施例31で用いたDMT添加量を5.3kg、DMI添加量を1.9kgとし、重縮合反応時間を100分に変更したこと以外は実施例31同様に実施し、共重合ポリエステルおよび複合繊維を得た。
 これらの実施例、比較例から本発明の特徴を有する共重合ポリエステルは、金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分の共重合量の合計が一定量以上のときにアルカリ易溶性に優れていることがわかる。非イオン性共重合成分の共重合量の合計が一定量以上のときに熱水易溶性に優れていることがわかる。片末端をメチル基で封鎖した、特定の重合度範囲のポリエチレングリコールの共重合量が一定量以上のときにアルカリ易溶性および熱水易溶性に優れていることがわかる。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013

Claims (12)

  1. ジカルボン酸またはそのエステル形成性誘導体、ならびにジオールまたはそのエステル形成性誘導体から得られる共重合ポリエステルであって、金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分、および下記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物が共重合され、金属スルホネート基を含有するイソフタル酸およびそのエステル形成性誘導体成分の量の合計が、共重合ポリエステルのジカルボン酸由来の構造に対して0.1~40モル%である共重合ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、Xは炭素数1~30のアルキル基、炭素数6~20のシクロアルキル基、炭素数6~10のアリール基および炭素原子数7~20のアラルキル基から選ばれる少なくとも1種であり、Rは炭素数1~12のアルキレン基から選択される少なくとも1種であり、nは45~113の整数である。
  2. テレフタル酸由来の構造をジカルボン酸構造由来の構造に対して、50モル%以上、エチレングリコール由来の構造をジオール由来の構造に対して50%モル以上含む請求項1記載の共重合ポリエステル。
  3. 共重合ポリエステルを構成する前記式(1)で表される片末端封鎖ポリアルキレンオキサイド化合物の共重合量が0.1質量%以上30質量%未満である請求項1または2に記載の共重合ポリエステル。
  4. 金属スルホネート基を含有するイソフタル酸またはそのエステル形成性誘導体成分の量が、共重合ポリエステルのジカルボン酸由来の構造に対して5~20モル%以下である請求項1~3のいずれかに記載の共重合ポリエステル。
  5. テレフタル酸由来の構造をジカルボン酸構造由来の構造に対して、50モル%以上、エチレングリコール由来の構造をジオール由来の構造に対して50%モル以上含み、テレフタル酸およびそのエステル形成性誘導体以外の非イオン性のジカルボン酸およびそのエステル形成誘導体成分が、全ジカルボン酸成分に対して5~49.9モル%である請求項1~4のいずれかに記載の共重合ポリエステル。
  6. テレフタル酸由来の構造をジカルボン酸構造由来の構造に対して、50モル%以上、エチレングリコール由来の構造をジオール由来の構造に対して50%モル以上含み、エチレングリコールおよびそのエステル形成性誘導体以外の非イオン性のジオールおよびそのエステル形成性誘導体成分が、全ジカルボン酸成分に対して5~49.9モル%以下である請求項1~5のいずれかに記載の共重合ポリエステル。
  7. 示差走査熱量測定により求められる結晶融解熱量が20J/g以下である請求項1~6のいずれかに記載の共重合ポリエステル。
  8. 明細書に記載された方法によって測定される、共重合ポリエステルの濃度5g/Lの水酸化ナトリウム水溶液への質量減少が10質量%以上である請求項1~7のいずれかに記載の共重合ポリエステル。
  9. 固有粘度が0.50dL/g以上である請求項1~8のいずれかに記載の共重合ポリエステル。
  10. テレフタル酸およびそのエステル形成性誘導体以外の非イオン性のジカルボン酸およびそのエステル形成誘導体成分が、アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸およびシクロヘキサンジカルボン酸、ならびにそのエステル形成性誘導体から選ばれるものである請求項1~9のいずれかに記載の共重合ポリエステル。
  11. エチレングリコールおよびそのエステル形成性誘導体以外の非イオン性のジオールおよびそのエステル形成性誘導体成分が、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノール、ならびに、ビスフェノールA、ビスフェノールSおよびこれらビスフェノール化合物のエチレンオキサイド付加物、ならびにこれらのエステル形成性誘導体成分から選ばれる請求項1~10のいずれかに記載の共重合ポリエステル。
  12. 請求項1~11のいずれかに記載の共重合ポリエステルを含む複合繊維。
PCT/JP2017/025892 2016-07-19 2017-07-18 共重合ポリエステルおよびそれを含む複合繊維 WO2018016468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780043517.0A CN109476832A (zh) 2016-07-19 2017-07-18 共聚聚酯及包含该共聚聚酯的复合纤维
KR1020187036710A KR20190031205A (ko) 2016-07-19 2017-07-18 공중합 폴리에스테르 및 그것을 포함하는 복합 섬유
JP2017549345A JP7009995B2 (ja) 2016-07-19 2017-07-18 共重合ポリエステルおよびそれを含む複合繊維

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016141148 2016-07-19
JP2016-141148 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016468A1 true WO2018016468A1 (ja) 2018-01-25

Family

ID=60992448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025892 WO2018016468A1 (ja) 2016-07-19 2017-07-18 共重合ポリエステルおよびそれを含む複合繊維

Country Status (5)

Country Link
JP (1) JP7009995B2 (ja)
KR (1) KR20190031205A (ja)
CN (1) CN109476832A (ja)
TW (1) TW201829535A (ja)
WO (1) WO2018016468A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222963A (ja) * 2007-03-15 2008-09-25 Teijin Fibers Ltd 共重合ポリエステルならびに共重合ポリエステル繊維及び繊維製品
JP2013512287A (ja) * 2009-11-27 2013-04-11 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド 灰色化防止(vergrauungsinhibierender)効果および高い溶液安定性を有するソイルリリースポリマー
JP2013534541A (ja) * 2010-03-27 2013-09-05 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド 着色されたポリエステル
JP2016222802A (ja) * 2015-05-29 2016-12-28 東レ株式会社 末端変性共重合ポリエステル樹脂およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149914A (ja) * 1985-12-19 1987-07-03 Teijin Ltd 改質ポリエステル繊維
JPH06108313A (ja) * 1992-09-29 1994-04-19 Kuraray Co Ltd カチオン染料可染性分割型複合繊維
JP3263370B2 (ja) 1998-09-25 2002-03-04 カネボウ株式会社 アルカリ水易溶出性共重合ポリエステルとその製造方法
JP3778808B2 (ja) 2001-04-04 2006-05-24 帝人ファイバー株式会社 ポリエステル系熱接着性複合繊維およびその製造方法
CN1258565C (zh) * 2003-03-20 2006-06-07 济南正昊化纤新材料有限公司 一种易碱解聚酯及其制备方法
DE102005061058A1 (de) * 2005-12-21 2007-07-05 Clariant Produkte (Deutschland) Gmbh Anionische Soil Release Polymere
CN101200534A (zh) * 2006-12-13 2008-06-18 东丽纤维研究所(中国)有限公司 聚酯共聚物及其制备方法
JP5293108B2 (ja) 2008-08-21 2013-09-18 東レ株式会社 アルカリ易溶性共重合ポリエステルおよびそれからなる複合繊維
JP2018178053A (ja) * 2017-04-21 2018-11-15 東レ株式会社 アルカリ易溶性共重合ポリエステルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222963A (ja) * 2007-03-15 2008-09-25 Teijin Fibers Ltd 共重合ポリエステルならびに共重合ポリエステル繊維及び繊維製品
JP2013512287A (ja) * 2009-11-27 2013-04-11 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド 灰色化防止(vergrauungsinhibierender)効果および高い溶液安定性を有するソイルリリースポリマー
JP2013534541A (ja) * 2010-03-27 2013-09-05 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド 着色されたポリエステル
JP2016222802A (ja) * 2015-05-29 2016-12-28 東レ株式会社 末端変性共重合ポリエステル樹脂およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
11 April 2013 (2013-04-11) *

Also Published As

Publication number Publication date
CN109476832A (zh) 2019-03-15
JPWO2018016468A1 (ja) 2019-05-09
KR20190031205A (ko) 2019-03-25
JP7009995B2 (ja) 2022-02-10
TW201829535A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
KR101314878B1 (ko) 고권축성 2성분 섬유
JP2019531395A (ja) ポリエステル
JP3942541B2 (ja) ポリエステル繊維
JP2020164557A (ja) カチオン可染性ポリエステルおよびその製造方法
JP2004137418A (ja) 共重合ポリエステル組成物
JP4064149B2 (ja) エラストマー組成物及びそれよりなる繊維
JP7009995B2 (ja) 共重合ポリエステルおよびそれを含む複合繊維
KR20140073273A (ko) 수용성 복합중공섬유 및 복합중공사
JP4080221B2 (ja) ポリエステル組成物及びそれよりなる繊維
JP3736432B2 (ja) 吸湿性に優れたポリエステル繊維
JP2008001731A (ja) 制電性共重合ポリエステル組成物及びそれよりなる繊維製品
JPH055212A (ja) ポリエステル繊維の製法
JP7363232B2 (ja) 吸湿性に優れたポリエステル組成物の製造方法
JP2019081864A (ja) 共重合ポリエステル組成物およびそれを含む複合繊維
JP2009127174A (ja) ポリエステル複合長繊維
JPH09241925A (ja) 吸湿性ポリエステル繊維
JP4108873B2 (ja) ポリエステル繊維
JPH055213A (ja) ポリエステル繊維の製造法
JP2001172485A (ja) 改質ポリエステル組成物およびそれよりなる繊維
JP2002293895A (ja) ポリトリメチレンテレフタレート系ポリエステルおよびそれよりなる繊維
JPH04343711A (ja) ポリエステル繊維の製造方法
JP2002088574A (ja) 耐アルカリ加水分解性ポリエステル繊維
JPH055211A (ja) ポリエステル繊維の製造方法
KR20140073274A (ko) 수용성 복합중공사 제조방법
JP2007191600A (ja) ポリトリメチレンテレフタレート系マスターバッチ組成物およびポリエステル組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017549345

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036710

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830984

Country of ref document: EP

Kind code of ref document: A1