WO2018000704A1 - 一种金属氧化物/二氧化硅包覆的量子点及其制备方法 - Google Patents

一种金属氧化物/二氧化硅包覆的量子点及其制备方法 Download PDF

Info

Publication number
WO2018000704A1
WO2018000704A1 PCT/CN2016/107168 CN2016107168W WO2018000704A1 WO 2018000704 A1 WO2018000704 A1 WO 2018000704A1 CN 2016107168 W CN2016107168 W CN 2016107168W WO 2018000704 A1 WO2018000704 A1 WO 2018000704A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
silica
metal oxide
coated
reaction
Prior art date
Application number
PCT/CN2016/107168
Other languages
English (en)
French (fr)
Inventor
李良
李志春
Original Assignee
李良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李良 filed Critical 李良
Publication of WO2018000704A1 publication Critical patent/WO2018000704A1/zh
Priority to US15/996,510 priority Critical patent/US10696900B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/815Group III-V based compounds, e.g. AlaGabIncNxPyAsz
    • Y10S977/818III-P based compounds, e.g. AlxGayIn2P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/825Heterojunction formed between semiconductor materials that differ in that they belong to different periodic table groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • the invention belongs to the technical field of semiconductor nano material (quantum dot) preparation, and in particular relates to a metal oxide/silica coated quantum dot and a preparation method thereof.
  • quantum dots Since the discovery of quantum dots in the 1980s, they have attracted a great deal of interest in research and industry due to their excellent optoelectronic properties. Compared with traditional fluorescent materials, the fluorescence of quantum dots has the advantages of narrow half-peak width, small particle-free scattering loss and adjustable spectrum with size, and is widely considered to have great application prospects in the fields of display, illumination and bioluminescent labeling. All countries have invested a lot of manpower and material resources in the research of quantum dot materials, so that the photoelectric performance of quantum dots has been continuously improved, and prototype devices for related applications have appeared one after another. Among them, quantum dots are used as fluorescent materials to display applications that are considered to be the first to achieve breakthroughs in quantum dots.
  • the object of the present invention is to provide a metal oxidation in order to overcome the drawbacks of the prior art described above.
  • metal oxide/silica coated quantum dot comprising aluminum oxide/silica, zirconium dioxide/silica or titania/silica
  • the metal oxide/silica is present in the metal oxide/silica coated quantum dots in an amount of from 1 to 98% by weight.
  • the quantum dots are non-core-shell quantum dots or core-shell quantum dots.
  • the non-core-shell structure quantum dots include binary structure quantum dots, ternary structure quantum dots, quaternary structure quantum dots, binary structure quantum dots containing doping elements, ternary structure quantum dots containing doping elements or a quaternary structure quantum dot of a doping element;
  • the binary structure quantum dot is AX 1 ,
  • A is barium, cadmium, zinc, mercury, lead, tin, gallium, indium, calcium, barium, strontium, magnesium, barium or copper, and
  • X 1 is sulfur, selenium and nitrogen. , phosphorus, arsenic, antimony or antimony;
  • the ternary structure quantum dot is A 1 A 2 X 2 , wherein A 1 and A 2 are respectively methylamino, hydrazine, hydrazine, cadmium, zinc, mercury, lead, tin, gallium, indium, calcium, magnesium, strontium. Or one of copper, and A 1 is different from A 2 , and X 2 is sulfur, selenium, nitrogen, phosphorus, arsenic, antimony, chlorine, bromine, iodine or antimony;
  • the quaternary structure quantum dot is A 1 A 2 A 3 X 3 , wherein A 1 , A 2 , and A 3 are cadmium, zinc, mercury, lead, tin, gallium, indium, calcium, strontium, magnesium, strontium, respectively.
  • a 1 , A 2 , and A 3 are different, and X 3 is sulfur, selenium, phosphorus, arsenic, antimony or antimony;
  • the doping elements include magnesium, calcium, barium, strontium, aluminum, boron, zirconium, chromium, titanium, silver, gallium, germanium, indium, antimony, cobalt, copper, manganese, nickel, iron, cerium or silicon.
  • the core-shell structure quantum dots include a common core-shell quantum dot and a core-shell quantum dot containing a doping element;
  • the common core-shell structure quantum dot includes a nuclear quantum dot and a shell material, and the nuclear quantum dot is a non-core-shell quantum dot, including a binary structure quantum dot, a ternary quantum dot or a quaternary quantum dot
  • the shell material is mainly composed of II-VI, II-V, III-VI, III-V, IV-VI, II-IV-V, II-IV-VI semiconductor materials, including cadmium selenide and zinc selenide.
  • the core-shell quantum dots containing doping elements are located in the nuclear quantum dot or shell material or in the nuclear quantum dot and shell material, and the doping elements include magnesium, calcium, barium, strontium, aluminum, Boron, Zirconium, chromium, titanium, silver, gallium, germanium, indium, antimony, cobalt, copper, manganese, nickel, iron, antimony or silicon.
  • the metal oxide/silica-coated quantum dots are prepared by any one of the following two methods:
  • the silylating agent is preferably methyl orthosilicate or tetraethyl orthosilicate.
  • the metal oxide corresponding metal precursor is an aluminum precursor, a zirconium precursor or a titanium precursor
  • the aluminum precursor is preferably aluminum isopropoxide, aluminum sec-butoxide, aluminum acetylacetonate or three uncles.
  • Lithium butoxide aluminum hydride; the zirconium precursor is preferably zirconium propoxide, zirconium n-butoxide or zirconium acetylacetonate; and the titanium precursor is preferably tetraisopropyl titanate.
  • a bis(sec-butanol) triethyl orthosilicate aluminum salt is used as a silylating agent and an aluminum precursor.
  • the sol-gel reaction is carried out under the conditions of a controlled temperature of 15-90 ° C, a relative humidity of 30% to 95%, and a calcination temperature of the reaction product of 50 to 150 ° C.
  • the pyrolysis reaction is carried out under the conditions of a controlled temperature of 160-220 ° C for a period of 6 h to 24 h and a calcination of the reaction product at a temperature of 50-150 ° C.
  • the present invention has the following advantages:
  • the preparation process of the invention is simple, no need to use catalyst and ligand exchange of quantum dots, thereby avoiding damage to quantum dots in the preparation process.
  • the aluminum oxide/silica dioxide dioxide produced by the present invention is compared with the uncoated quantum dots.
  • Zirconium/silica, titania/silica-coated quantum dots can effectively block water due to the presence of a double protective layer of aluminum oxide/silica, zirconia/silica, and titania/silicon dioxide.
  • the light and oxygen oxidize the quantum dots, and the light stability is significantly improved.
  • Figure 1 is a TEM photograph of a CdSe/CdS quantum dot coated with alumina/silica;
  • Figure 3 is a photo of a zirconium dioxide/silica coated CdSe/CdS quantum dot powder
  • Figure 4 is a photograph of a CsPbBr 3 quantum dot powder coated with alumina/silica;
  • Figure 5 is a photograph of a powder of CsPbBr 3 quantum dots coated with aluminum oxide/silica under blue light irradiation
  • Figure 6 is a graph of light attenuation of CdSe/CdS/ZnS coated with alumina/silica.
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 40 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 15-100 ° C, the relative humidity is 30%-95%; the sol-gel reaction is carried out after standing;
  • reaction product is calcined at a temperature of 50 to 150 °C.
  • controlling temperature is 160-220 ° C, time is 6h-24h; performing pyrolysis reaction;
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 40 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 15-100 ° C, the relative humidity is 30%-95%; the sol-gel reaction is carried out after standing;
  • reaction product is calcined at a temperature of 50 to 150 °C.
  • controlling temperature is 160-220 ° C, time is 6h-24h; performing pyrolysis reaction;
  • the aluminum oxide/silica-coated aqueous phase CdTe/CdS quantum dots prepared by the six methods of the present examples a, b, c, d, e, and f are in a uniform powder state, and the color is orange-red (although Figure 2 shows no orange-red due to grayscale photos.
  • control temperature is 40 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • the photo of the zirconia/silica-coated CdSe/CdS quantum dot powder prepared by the two methods of the present embodiment a and b is as shown in FIG. 3, and is in a uniform powder state, and the color is orange-red (although FIG. 3 I can't see the orange color because of the grayscale photo).
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 40 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • the Al2O3/Silica-coated CsPbBr 3 quantum dot powder prepared by the two methods of the present examples a and b is irradiated with blue light, as shown in FIG. 5, under the blue light irradiation, the aluminum oxide/silicon dioxide
  • the coated CsPbBr 3 quantum dot powder was green (although Figure 5 does not show green due to grayscale photographs).
  • CdSe cadmium selenide
  • CdS cadmium sulfide
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 40 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;
  • control temperature is 25 ° C, the relative humidity is 60%; the sol-gel reaction is carried out after standing;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种金属氧化物/二氧化硅包覆的量子点及其制备方法。所述的金属氧化物/二氧化硅包括三氧化二铝/二氧化硅、二氧化锆/二氧化硅或二氧化钛/二氧化硅,所述的金属氧化物/二氧化硅在金属氧化物/二氧化硅包覆的量子点中含量为1-98wt%;所述的金属氧化物/二氧化硅包覆的量子点由溶胶-凝胶反应法或热解反应法制备得到。与现有技术相比,本发明制备过程简单,无需使用催化剂以及对量子点进行配体交换,避免了制备过程中对量子点的损伤。与未包覆的量子点相比,本发明制备的金属氧化物/二氧化硅包覆的量子点,由于存在金属氧化物/二氧化硅的双重保护层,能够有效阻挡水气、氧气对量子点的侵蚀,其光稳定性显著提高。

Description

一种金属氧化物/二氧化硅包覆的量子点及其制备方法 技术领域
本发明属于半导体纳米材料(量子点)制备技术领域,尤其是涉及一种金属氧化物/二氧化硅包覆的量子点及其制备方法。
背景技术
量子点从上世纪80年代发现以来,由于其优异的光电性能引起了科研界和工业界广泛的兴趣。与传统荧光材料相比,量子点的荧光具有半峰宽窄、颗粒小无散射损失和光谱随尺寸可调等优点,被广泛认为将在显示、照明和生物荧光标记等领域有重大应用前景。各国都投入了大量的人力和物力进行量子点材料的研究,使量子点的光电性能得到不断的提升,相关应用的原型器件也陆续出现。其中量子点作为荧光材料应用于显示被认为可能是量子点最先实现突破的应用领域。2014年以来,三星电子、LG、TCL推出多款量子点电视机,显示出明显的增速。在量子点作为显示技术、LED等应用方面,多家机构均表达出较乐观的态度。但是量子点作为一种优越的荧光材料真正走向应用,成为一种新型材料造福于人类,仍然存在许多基础科学问题未能得到解决,其中“量子点的稳定性问题”一直困扰着很多科学家,成为制约量子点领域发展的瓶颈之一。量子点在其它应用领域,如太阳能电池、生物标记以及环境污染冶理等方面,其稳定性也是很大的挑战。
现阶段,提高量子点稳定性主要有以下3种方法:(1)制备核壳结构的量子点以提高其稳定性,但仅仅通过增加壳层的厚度的方法,提高量子点稳定性的效果有限。(2)利用二氧化硅或者高分子包覆等方法来增强量子点的稳定性,但这些方法普遍存在不足,在包覆过程中,损害量子点的表面,往往造成量子点荧光效率降低。(3)制备钝化元素掺杂的量子点,可以在一定范围内提高量子点的稳定性。因此,提高量子点的稳定性是一个亟待解决的问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种金属氧化 物/二氧化硅包覆的量子点及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种金属氧化物/二氧化硅包覆的量子点,所述的金属氧化物/二氧化硅包括三氧化二铝/二氧化硅、二氧化锆/二氧化硅或二氧化钛/二氧化硅,所述的金属氧化物/二氧化硅在金属氧化物/二氧化硅包覆的量子点中含量为1-98wt%。
所述的量子点为非核壳结构量子点,或核壳结构量子点。
所述的非核壳结构量子点包括二元结构量子点、三元结构量子点、四元结构量子点、含有掺杂元素的二元结构量子点、含有掺杂元素的三元结构量子点或含有掺杂元素的四元结构量子点;
所述的二元结构量子点为AX1,A为铋、镉、锌、汞、铅、锡、镓、铟、钙、锶、铯、镁、钡或铜,X1为硫、硒、氮、磷、砷、碲或锑;
所述的三元结构量子点为A1A2X2,其中A1与A2分别为甲氨基、铋、铯、镉、锌、汞、铅、锡、镓、铟、钙、镁、锶、钡或铜中的一种,且A1与A2不同,X2为硫、硒、氮、磷、砷、碲、氯、溴、碘或锑;
所述的四元结构量子点为A1A2A3X3,其中A1、A2、A3分别为镉、锌、汞、铅、锡、镓、铟、钙、铯、镁、锶、钡或铜中的一种,且A1、A2、A3各不同,X3为硫、硒、磷、砷、碲或锑;
所述的掺杂元素包括镁、钙、钡、锶、铝、硼、锆、铬、钛、银、镓、铪、铟、铋、钴、铜、锰、镍、铁、钽或硅等。
所述的核壳结构量子点包括普通核壳结构量子点以及含有掺杂元素的核壳结构量子点;
所述的普通核壳结构量子点,包括核量子点与壳层材料,所述的核量子点为非核壳结构量子点,包括二元结构量子点、三元结构量子点或四元结构量子点,壳层材料以Ⅱ-Ⅵ、Ⅱ-Ⅴ、Ⅲ-Ⅵ、Ⅲ-Ⅴ、Ⅳ-Ⅵ、Ⅱ-Ⅳ-Ⅴ、Ⅱ-Ⅳ-Ⅵ族半导体材料为主体,包括硒化镉、硒化锌、硒化汞、硫化镉、硫化锌、硫化汞、碲化镉、碲化锌、碲化镉、氮化镓、氮化铟、磷化镓、锑化镓、铟镓磷、锌镉硒或镉锌硫;
所述含有掺杂元素的核壳结构量子点,掺杂元素位于核量子点或壳层材料或同时位于核量子点与壳层材料中,掺杂元素包括镁、钙、钡、锶、铝、硼、 锆、铬、钛、银、镓、铪、铟、铋、钴、铜、锰、镍、铁、钽或硅等。
如上述金属氧化物/二氧化硅包覆的量子点的制备方法,所述的金属氧化物/二氧化硅包覆的量子点由以下两种方法中任一种方法制备得到:
溶胶-凝胶反应法:
(1)将量子点溶液、硅烷化试剂、金属氧化物对应金属的前驱体加入反应容器,混合均匀;
(2)静置进行溶胶-凝胶反应;
(3)对反应产物进行煅烧,得到金属氧化物/二氧化硅包覆的量子点;
热解反应法:
(1)将量子点溶液、硅烷化试剂、金属氧化物对应金属的前驱体加入高压反应釜中,通入氮气去除氧气;
(2)进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,对反应产物进行煅烧,得到金属氧化物/二氧化硅包覆的量子点。
优选地,所述的硅烷化试剂优选正硅酸甲酯或正硅酸乙酯。
优选地,所述的金属氧化物对应金属的前驱体为铝前驱体、锆前驱体或钛前驱体,所述的铝前驱体优选异丙醇铝、仲丁醇铝、乙酰丙酮铝或三叔丁氧基氢化铝锂;所述的锆前驱体优选丙醇锆、正丁醇锆或乙酰丙酮锆;所述的钛前驱体优选钛酸四异丙酯。
优选地,对于溶胶-凝胶反应法与热解反应法均适用的,采用双(仲丁醇)三乙基正硅酸铝盐同时作为硅烷化试剂与铝前驱体使用。
对于溶胶-凝胶反应法,进行溶胶-凝胶反应的条件是:控制温度为15-90℃,相对湿度为30%-95%;对反应产物进行煅烧的温度为50-150℃。
对于热解反应法,进行热解反应的条件是:控制温度为160-220℃,时间为6h-24h;对反应产物进行煅烧的温度为50-150℃。
与现有技术相比,本发明具有以下优点:
1、本发明制备过程简单,无需使用催化剂以及对量子点进行配体交换,避免了制备过程中对量子点的损伤。
2、与未包覆的量子点相比,本发明制备的三氧化二铝/二氧化硅、二氧化 锆/二氧化硅、二氧化钛/二氧化硅包覆的量子点,由于存在三氧化二铝/二氧化硅、二氧化锆/二氧化硅、二氧化钛/二氧化硅的双重保护层,能够有效阻挡水气、氧气对量子点的侵蚀,其光稳定性显著提高。
附图说明
图1为三氧化二铝/二氧化硅包覆的CdSe/CdS量子点TEM照片;
图2为三氧化二铝/二氧化硅包覆的水相CdTe/CdS量子点粉末照片;
图3为二氧化锆/二氧化硅包覆的CdSe/CdS量子点粉末照片;
图4为三氧化二铝/二氧化硅包覆的CsPbBr3量子点粉末照片;
图5为蓝光照射下三氧化二铝/二氧化硅包覆的CsPbBr3量子点粉末照片;
图6为三氧化二铝/二氧化硅包覆的CdSe/CdS/ZnS光衰减图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
三氧化二铝/二氧化硅包覆硒化镉(CdSe)/硫化镉(CdS)核壳结构量子点的制备
a.(1)将30mg CdSe/CdS量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mg CdSe/CdS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入反应容器,混合均匀;
(2)控制温度为40℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
c.(1)将30mg CdSe/CdS量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃ 的条件下,对反应产物进行煅烧。
d.(1)将30mg CdSe/CdS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
e.(1)将30mg CdSe/CdS量子点溶液、110微升正硅酸乙酯、150双(仲丁醇)三乙基正硅酸铝盐加入反应容器,混合均匀;
(2)控制温度为15-100℃,相对湿度为30%-95%;静置进行溶胶-凝胶反应;
(3)在温度为50-150℃的条件下,对反应产物进行煅烧。
f.(1)将量30mg CdSe/CdS量子点溶液、110微升正硅酸乙酯、150双(仲丁醇)三乙基正硅酸铝盐加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为160-220℃,时间为6h-24h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为50-150℃的条件下,对反应产物进行煅烧。
本实施例a、b、c、d、e、f六种方法制得的三氧化二铝/二氧化硅包覆的CdSe/CdS量子点TEM照片如图1所示,从图1可以看出,CdSe/CdS在三氧化二铝/二氧化硅包覆的CdSe/CdS中的是颗粒形貌分布均匀。
实施例2
三氧化二铝/二氧化硅包覆水相碲化镉(CdTe)/硫化镉(CdS)核壳结构量子点的制备
a.(1)将30mg水相碲化镉(CdTe)/硫化镉(CdS)量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mg水相CdTe/CdS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入反应容器,混合均匀;
(2)控制温度为40℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
c.(1)将30mg水相CdTe/CdS量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
d.(1)将30mg水相CdTe/CdS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
e.(1)将30mg水相CdTe/CdS量子点溶液、110微升正硅酸乙酯、150双(仲丁醇)三乙基正硅酸铝盐加入反应容器,混合均匀;
(2)控制温度为15-100℃,相对湿度为30%-95%;静置进行溶胶-凝胶反应;
(3)在温度为50-150℃的条件下,对反应产物进行煅烧。
f.(1)将量30mg CdTe/CdS水相量子点溶液、110微升正硅酸乙酯、150双(仲丁醇)三乙基正硅酸铝盐加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为160-220℃,时间为6h-24h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为50-150℃的条件下,对反应产物进行煅烧。
本实施例a、b、c、d、e、f六种方法制得的三氧化二铝/二氧化硅包覆的水相CdTe/CdS量子点为均匀的粉末状态,颜色呈橘红色(虽然附图2由于灰度照片的原因看不出橘红色)。
实施例3
二氧化锆/二氧化硅包覆硒化镉(CdSe)/硫化镉(CdS)核壳结构量子点的制备
a.(1)将30mg CdSe/CdS量子点溶液、220微升正硅酸乙酯、0.4mmol丙醇锆加入反应容器,混合均匀;
(2)控制温度为40℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mg量子点溶液、220微升正硅酸乙酯、0.4mmol丙醇锆加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
本实施例a、b两种方法制得的二氧化锆/二氧化硅包覆的CdSe/CdS量子点粉末照片如图3所示,为均匀的粉末状态,颜色呈橘红色(虽然附图3由于灰度照片的原因看不出橘红色)。
实施例4
三氧化二铝/二氧化硅包覆硒化镉(CdSe)/硫化镉(CdS)/硫化锌(ZnS)核壳结构量子点的制备
a.(1)将30mg CdSe/CdS/ZnS量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mg CdSe/CdS/ZnS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入反应容器,混合均匀;
(2)控制温度为40℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
c.(1)将30mgCdSe/CdS/ZnS量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
d.(1)将30mgCdSe/CdS/ZnS量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
实施例5
三氧化二铝/二氧化硅包覆硒钙钛矿量子点(CsPbBr3)的制备
a.(1)将30mg CsPbBr3量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为50℃的条件下,对反应产物进行煅烧。
b.(1)将30mg CsPbBr3量子点溶液、220微升正硅酸乙酯、150微升仲丁醇铝溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为50℃的条件下,对反应产物进行煅烧。
本实施例a、b两种方法制得的三氧化二铝/二氧化硅包覆的CsPbBr3量子点粉末照片如图4所示,为均匀的粉末状态,颜色呈黄色(虽然附图4由于灰度照片的原因看不出黄色)。
对本实施例a、b两种方法制得的三氧化二铝/二氧化硅包覆的CsPbBr3量子点粉末采用蓝光照射,如图5所示,在蓝光照射下三氧化二铝/二氧化硅包覆的CsPbBr3量子点粉末呈绿色(虽然附图5由于灰度照片的原因看不出绿色)。
实施例6
三氧化二铝/二氧化硅包覆硒化镉(CdSe)/硫化镉(CdS):铝(Al)核壳结构量子点的制备
a.(1)将30mg CdSe/CdS:Al量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mg CdSe/CdS:Al量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入反应容器,混合均匀;
(2)控制温度为40℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
c.(1)将30mg CdSe/CdS:Al量子点溶液、150微升双(仲丁醇)三乙基正硅酸铝盐溶液加入高压反应釜中,通入氮气去除氧气。
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
d.(1)将30mg CdSe/CdS:Al量子点溶液、220微升正硅酸乙酯、0.4mmol异丙醇铝加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
实施例7
二氧化锆/二氧化硅包覆硒化镉(CdSe)/硫化镉(CdS)核壳结构量子点的制备
a.(1)将30mg CdSe/CdS量子点溶液、100微升正硅酸甲酯、150微升钛酸四异丙酯溶液加入反应容器,混合均匀;
(2)控制温度为25℃,相对湿度为60%;静置进行溶胶-凝胶反应;
(3)在温度为100℃的条件下,对反应产物进行煅烧。
b.(1)将30mgCdSe/CdS量子点溶液、100微升正硅酸甲酯、150微升钛酸四异丙酯溶液加入高压反应釜中,通入氮气去除氧气;
(2)控制温度为200℃,时间为12h;进行热解反应;
(3)反应结束后,进行离心,除去未反应的量子点溶液,并在温度为100℃的条件下,对反应产物进行煅烧。
实施例8
对实施例4制得的三氧化二铝/二氧化硅包覆CdSe/CdS/ZnS量子点进行光稳定性测试
在相同含量的CdSe/CdS/ZnS量子点溶液、三氧化二铝/二氧化硅包覆的CdSe/CdS/ZnS量子点中,分别加入等量的硅胶,室温下抽真空1小时。然后滴胶于LED蓝光芯片上,紫外灯固化。在一定的电流以及电压进行老化测试(功率密度5w/cm2),一定的时间间隔内测试其荧光强度,以此荧光峰强度与初始荧光峰强度之比做出强度-时间衰减曲线。图6所示为三氧化二铝/二氧化硅包覆的CdSe/CdS/ZnS的光衰减图。由图可知,与未包覆的CdSe/CdS/ZnS量子点相比, 三氧化二铝/二氧化硅包覆的CdSe/CdS/ZnS光稳定性显著提高。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中以及其它发光材料领域(荧光粉),而不必经过创造性的劳动。因此,本发明不限于上述实施例以及上述发光材料,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种金属氧化物/二氧化硅包覆的量子点,其特征在于,所述的金属氧化物/二氧化硅包括三氧化二铝/二氧化硅、二氧化锆/二氧化硅或二氧化钛/二氧化硅,所述的金属氧化物/二氧化硅在金属氧化物/二氧化硅包覆的量子点中含量为1-98wt%。
  2. 根据权利要求1所述的一种金属氧化物/二氧化硅包覆的量子点,其特征在于,所述的量子点为非核壳结构量子点,或核壳结构量子点。
  3. 根据权利要求2所述的一种金属氧化物/二氧化硅包覆的量子点,其特征在于,所述的非核壳结构量子点包括二元结构量子点、三元结构量子点、四元结构量子点、含有掺杂元素的二元结构量子点、含有掺杂元素的三元结构量子点或含有掺杂元素的四元结构量子点;
    所述的二元结构量子点为AX1,A为铋、镉、锌、汞、铅、锡、镓、铟、钙、锶、铯、镁、钡或铜,X1为硫、硒、氮、磷、砷、碲或锑;
    所述的三元结构量子点为A1A2X2,其中A1与A2分别为甲氨基、铋、铯、镉、锌、汞、铅、锡、镓、铟、钙、镁、锶、钡或铜中的一种,且A1与A2不同,X2为硫、硒、氮、磷、砷、碲、氯、溴、碘或锑;
    所述的四元结构量子点为A1A2A3X3,其中A1、A2、A3分别为镉、锌、汞、铅、锡、镓、铟、钙、铯、镁、锶、钡或铜中的一种,且A1、A2、A3各不同,X3为硫、硒、磷、砷、碲或锑;
    所述的掺杂元素包括镁、钙、钡、锶、铝、硼、锆、铬、钛、银、镓、铪、铟、铋、钴、铜、锰、镍、铁、钽或硅。
  4. 根据权利要求3所述的一种金属氧化物/二氧化硅包覆的量子点,其特征在于,所述的核壳结构量子点包括普通核壳结构量子点以及含有掺杂元素的核壳结构量子点;
    所述的普通核壳结构量子点,包括核量子点与壳层材料,所述的核量子点为非核壳结构量子点,包括二元结构量子点、三元结构量子点或四元结构量子点,壳层材料以Ⅱ-Ⅵ、Ⅱ-Ⅴ、Ⅲ-Ⅵ、Ⅲ-Ⅴ、Ⅳ-Ⅵ、Ⅱ-Ⅳ-Ⅴ、Ⅱ-Ⅳ-Ⅵ族半导体材料为主体,包括硒化镉、硒化锌、硒化汞、硫化镉、硫化锌、硫化汞、碲化镉、碲化锌、碲化镉、氮化镓、氮化铟、磷化镓、锑化镓、铟镓磷、锌镉 硒或镉锌硫;
    所述含有掺杂元素的核壳结构量子点,掺杂元素位于核量子点或壳层材料或同时位于核量子点与壳层材料中,掺杂元素包括镁、钙、钡、锶、铝、硼、锆、铬、钛、银、镓、铪、铟、铋、钴、铜、锰、镍、铁、钽或硅。
  5. 一种如权利要求1-4中任一项所述的金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,所述的金属氧化物/二氧化硅包覆的量子点由以下两种方法中任一种方法制备得到:
    溶胶-凝胶反应法:
    (1)将量子点溶液、硅烷化试剂、金属氧化物对应金属的前驱体加入反应容器,混合均匀;
    (2)静置进行溶胶-凝胶反应;
    (3)对反应产物进行煅烧,得到金属氧化物/二氧化硅包覆的量子点;
    热解反应法:
    (1)将量子点溶液、硅烷化试剂、金属氧化物对应金属的前驱体加入高压反应釜中,通入氮气去除氧气;
    (2)进行热解反应;
    (3)反应结束后,进行离心,除去未反应的量子点溶液,对反应产物进行煅烧,得到金属氧化物/二氧化硅包覆的量子点。
  6. 根据权利要求5所述的一种金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,所述的硅烷化试剂选自正硅酸甲酯或正硅酸乙酯。
  7. 根据权利要求5所述的一种金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,所述的金属氧化物对应金属的前驱体为铝前驱体、锆前驱体或钛前驱体,
    所述的铝前驱体选自异丙醇铝、仲丁醇铝、乙酰丙酮铝或三叔丁氧基氢化铝锂;
    所述的锆前驱体选自丙醇锆、正丁醇锆或乙酰丙酮锆;
    所述的钛前驱体优选钛酸四异丙酯。
  8. 根据权利要求7所述的一种金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,采用双(仲丁醇)三乙基正硅酸铝盐同时作为硅烷化试剂与 铝前驱体使用。
  9. 根据权利要求5所述的一种金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,对于溶胶-凝胶反应法,进行溶胶-凝胶反应的条件是:控制温度为15-90℃,相对湿度为30%-95%,对反应产物进行煅烧的温度为50-150℃。
  10. 根据权利要求5所述的一种金属氧化物/二氧化硅包覆的量子点的制备方法,其特征在于,对于热解反应法,进行热解反应的条件是:控制温度为160-220℃,时间为6h-24h,对反应产物进行煅烧的温度为50-150℃。
PCT/CN2016/107168 2016-06-27 2016-11-25 一种金属氧化物/二氧化硅包覆的量子点及其制备方法 WO2018000704A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/996,510 US10696900B2 (en) 2016-06-27 2018-06-03 Metal oxide/silicon dioxide-coated quantum dot and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610478181.8A CN107541203B (zh) 2016-06-27 2016-06-27 金属氧化物/二氧化硅包覆或包裹的量子点及其制备方法
CN201610478181.8 2016-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/996,510 Continuation US10696900B2 (en) 2016-06-27 2018-06-03 Metal oxide/silicon dioxide-coated quantum dot and method for preparing same

Publications (1)

Publication Number Publication Date
WO2018000704A1 true WO2018000704A1 (zh) 2018-01-04

Family

ID=60785864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107168 WO2018000704A1 (zh) 2016-06-27 2016-11-25 一种金属氧化物/二氧化硅包覆的量子点及其制备方法

Country Status (3)

Country Link
US (1) US10696900B2 (zh)
CN (1) CN107541203B (zh)
WO (1) WO2018000704A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012195A1 (en) * 2018-07-13 2020-01-16 Oxford University Innovation Limited Stabilised a/m/x materials
US11245056B2 (en) 2019-10-29 2022-02-08 Lextar Electronics Corporation Wavelength converting material and light emitting device
CN114455882A (zh) * 2022-01-05 2022-05-10 江苏奥莱特新材料股份有限公司 一种多功能混凝土用纳米复合材料的制备方法及其应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355583B2 (en) * 2016-07-28 2022-06-07 Samsung Electronics Co., Ltd. Quantum dots and devices including the same
CN108681140B (zh) * 2018-05-18 2021-10-15 京东方科技集团股份有限公司 彩膜基板及其制造方法
CN109321252B (zh) * 2018-06-19 2021-08-31 李良 一种稳定的量子点及其制备方法
CN110616068A (zh) * 2018-06-20 2019-12-27 Tcl集团股份有限公司 粒子及其制备方法
CN108624317B (zh) 2018-07-12 2023-02-17 京东方科技集团股份有限公司 一种核壳型量子点及其制备方法和用途
WO2020147125A1 (zh) * 2019-01-18 2020-07-23 京东方科技集团股份有限公司 量子点结构及其制作方法、光学薄膜及其制作方法和显示装置
CN109762553B (zh) * 2019-01-23 2022-03-29 广东普加福光电科技有限公司 一种聚硅氧烷包覆的量子点及其制备方法
CN110055062A (zh) * 2019-03-25 2019-07-26 深圳扑浪创新科技有限公司 一种二氧化硅/氧化铝包覆量子点及其制备方法及量子点薄膜的制备方法
CN109796975A (zh) * 2019-03-25 2019-05-24 深圳扑浪创新科技有限公司 一种二氧化硅和氧化铝两层包覆量子点及其制备方法及量子点薄膜的制备方法
CN109825282B (zh) * 2019-03-29 2022-03-29 深圳扑浪创新科技有限公司 一种量子点复合物及其制备方法和用途
CN110079313A (zh) * 2019-04-10 2019-08-02 济南大学 一种大尺寸、球形CsPbBr3/SiO2发光体的制备方法
TWI808178B (zh) * 2019-05-21 2023-07-11 隆達電子股份有限公司 波長轉換物質及發光裝置
CN111748348B (zh) * 2020-06-24 2023-01-17 苏州星烁纳米科技有限公司 量子点复合物及其制备方法、发光器件
CN112920792A (zh) * 2021-01-27 2021-06-08 山东量光新材料科技有限公司 一种提高钙钛矿量子点荧光粉水氧稳定性的方法
CN114836194B (zh) * 2022-03-02 2023-10-03 湖北文理学院 一种二氧化硅包覆的双钙钛矿荧光粉及其制备方法与应用
CN116515489B (zh) * 2023-04-18 2024-04-26 浙江工业大学 一种用于对醇中痕量水颜色识别可视化快速检测的双色比率荧光探针及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421513A (zh) * 2013-08-16 2013-12-04 京东方科技集团股份有限公司 一种白光量子点复合颗粒及其制备方法
CN105086993A (zh) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 一种荧光量子点微纳米级封装的复合材料结构
CN105664714A (zh) * 2016-03-30 2016-06-15 上海交通大学 一种量子点光催化柔性薄膜及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518127B1 (en) * 2009-12-25 2018-07-18 Konica Minolta Medical & Graphic, Inc. Biosubstance labelling agent
CN102531580B (zh) * 2011-12-14 2014-01-29 同济大学 一种利用铝硅复合氧化物包覆纳米钛酸锶钡介质储能材料及其制备方法
EP3194528B1 (en) * 2014-09-17 2020-11-11 Lumileds Holding B.V. Phosphor with hybrid coating and method of production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421513A (zh) * 2013-08-16 2013-12-04 京东方科技集团股份有限公司 一种白光量子点复合颗粒及其制备方法
CN105086993A (zh) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 一种荧光量子点微纳米级封装的复合材料结构
CN105664714A (zh) * 2016-03-30 2016-06-15 上海交通大学 一种量子点光催化柔性薄膜及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012195A1 (en) * 2018-07-13 2020-01-16 Oxford University Innovation Limited Stabilised a/m/x materials
CN112673076A (zh) * 2018-07-13 2021-04-16 牛津大学科技创新有限公司 稳定的a/m/x材料
JP2021524531A (ja) * 2018-07-13 2021-09-13 オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited 安定化a/m/x材料
US11245056B2 (en) 2019-10-29 2022-02-08 Lextar Electronics Corporation Wavelength converting material and light emitting device
CN114455882A (zh) * 2022-01-05 2022-05-10 江苏奥莱特新材料股份有限公司 一种多功能混凝土用纳米复合材料的制备方法及其应用
CN114455882B (zh) * 2022-01-05 2022-12-16 江苏奥莱特新材料股份有限公司 一种多功能混凝土用纳米复合材料的制备方法及其应用

Also Published As

Publication number Publication date
CN107541203B (zh) 2020-04-10
US20180273839A1 (en) 2018-09-27
US10696900B2 (en) 2020-06-30
CN107541203A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2018000704A1 (zh) 一种金属氧化物/二氧化硅包覆的量子点及其制备方法
Huang et al. Water resistant CsPbX 3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices
US10377946B2 (en) Self-passivating quantum dot and preparation method thereof
Wang et al. Perovskite quantum dots and their application in light‐emitting diodes
Liu et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications
TWI506071B (zh) 以半導體奈米粒子為主之材料
CN105396570B (zh) 一种陶瓷膜负载的氧化锌光催化剂的制备方法
Shi et al. Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives
TWI591153B (zh) 含量子點波長轉換器
KR101497500B1 (ko) 파장변환층을 구비하는 태양전지 및 그의 제조 방법
CN102723208A (zh) 一维氧化锌-二氧化钛核壳结构复合纳米线阵列的制备方法
CN110252352A (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
Zhong et al. Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: strategies and properties
Qin et al. Preparation of ZnO‐Zn2TiO4 Sol Composite Films and Its Photocatalytic Activities
CN104332514B (zh) 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法
CN108686645A (zh) 一种TiO2/BiVO4异质结复合材料的制备方法和应用
Luo et al. Emergence of impurity-doped nanocrystal light-emitting diodes
Kim et al. Nanophosphors synthesized by the water-assisted solid-state reaction (WASSR) method: Luminescence properties and reaction mechanism of the WASSR method
CN106975484A (zh) 有序介孔二氧化钛‑纳米金复合材料的制备方法及其应用
Yang et al. Magic sol–gel silica films encapsulating hydrophobic and hydrophilic quantum dots for white-light-emission
Zhang et al. Ultrastable CsPbBr3@ CsPb2Br5@ TiO2 Composites for Photocatalytic and White Light-Emitting Diodes
CN110534656A (zh) 一种纳米材料及制备方法与量子点发光二极管
Adhikari et al. Impact of core–shell perovskite nanocrystals for LED applications: successes, challenges, and prospects
CN109554722B (zh) 光子晶体复合氧化铁纳米阵列光电极的复合材料制备方法
Park et al. Formation of bright-green-color-emitting perovskite CsPbBr3 in a bulk state using a simple recrystallization process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907099

Country of ref document: EP

Kind code of ref document: A1