CN104332514B - 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法 - Google Patents

一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法 Download PDF

Info

Publication number
CN104332514B
CN104332514B CN201410344202.8A CN201410344202A CN104332514B CN 104332514 B CN104332514 B CN 104332514B CN 201410344202 A CN201410344202 A CN 201410344202A CN 104332514 B CN104332514 B CN 104332514B
Authority
CN
China
Prior art keywords
quantum dots
nanocrystals quantum
crystal silicon
silicon solar
nanocrystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410344202.8A
Other languages
English (en)
Other versions
CN104332514A (zh
Inventor
许荣辉
许粲
张伟振
肖民乐
李新利
李伟乐
马战红
廖良波
赵金鑫
张亚芳
刘志斌
李洛利
张建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201410344202.8A priority Critical patent/CN104332514B/zh
Publication of CN104332514A publication Critical patent/CN104332514A/zh
Application granted granted Critical
Publication of CN104332514B publication Critical patent/CN104332514B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法,所述纳米晶量子点薄膜包括纳米晶量子点分散层,所述纳米晶量子点分散层包含CdS纳米晶量子点。本发明的纳米晶量子点薄膜,包含CdS纳米晶量子点,CdS纳米晶量子点具有被高能的蓝光和紫外线灯高能光子轰击时,释放两个以上电子的特性;并且研究表明,一个CdS纳米晶量子点吸收一个光子后可以发射2~7个电子;同时,CdS纳米晶量子点将紫外光吸收后,以荧光形式发射出蓝绿光,以利于晶体硅太阳能电池吸收发电,且发射出得蓝绿光光子数多于紫外光光子数;将该薄膜覆于晶体硅太阳能电池的工作面上,可大幅度提高太阳能电池的光电转换效率。

Description

一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种纳米晶量子点薄膜,同时还涉及一种使用该纳米晶量子点薄膜改性的晶体硅太阳能电池及其制备方法。
背景技术
太阳电池是一种对光有响应并能将光能转换成电力的器件。被用于制造太阳能电池的材料有许多种,如:单晶硅、多晶硅、非晶硅、砷化镓、硒铟铜等。它们的发电原理基本相同,都以P-N结为“心脏”,泵出自由电子与空穴,对外发电。当光线照射太阳电池表面时,一部分光子被硅材料吸收,光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子及空穴,P-N结分离电子,在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。
量子点(Quantum Dots,QDs)又可称为半导体纳米晶体(Semiconductor Nanocrystals),其尺寸小于其相应体相半导体的波尔直径,通常在2~20nm。量子点随着晶体尺寸的减小,半导体能级越来越分离,有效带隙增加,可获得独特的光学和电学性质。纳米晶量子点具有如下特点:量子尺寸效应、宏观量子隧道效应和介电限域效应,并由这些效应产生了能隙调制、高消光系数、大的本征偶极距等很多特性。这些特性使纳米晶量子点被认为是下一代光伏器件关键材料而引起极大关注。
目前量子点被用于提高硅太阳能电池的研究很多,国内外都有。研究大致可分为以下几种:
1、加州理工学院模式,如图1所示,硅线与抗反射层以圆柱体的形式立于背部反射器上,周围布满了包裹着光散射离子的透明聚合物。现有技术中,专利CN101924165A公开了一种量子点太阳能电池,也是这种模式,具有立体混合或相互贯通的形成太阳能电池的各种层,包括量子点层、电子导体层、空穴导体层,反射和/或保护层设置在空穴导体层之上,可提高太阳能电池的效率。但是,这种模式的缺点是完全重新设计,所需材料都是独特的,正常工业体系无法提供,而且此法也不能有效利用原来的晶体硅太阳能电池生产体系。
2、物理法构建异质结。此法又分2种,一种是在原晶体硅太阳能电池基础上采用化学气相沉积(CVD)或物理气相沉积(PVD)法制备出量子点薄膜层;如专利CN101834215A公开了一种硅量子点太阳能电池,自上而下依次含有铝背电场、p型晶体硅衬底、N型晶体硅发射极,含有n型硅量子点的二氧化硅层,银正电极。另一种则是完全重新设计制造,如专利CN101933153A公开了一种II型量子点太阳能电池,包括半导体材料的多个栅栏层以及第二半导体材料的量子点的多个交替层,第二半导体材料嵌入在第三半导体材料之间并且与第三半导体材料直接接触,所述多个交替层被设置在p型和n型半导体材料之间的堆叠中,第二半导体材料的每个量子点和第三半导体材料形成具有II型带对准的异质结。所用材料特殊,制法基本上也是CVD或PVD,制造难度大,污染环境,成本高。
以上几种量子点太阳能电池的缺点都是明显的,大多脱离了目前硅太阳能电池生产体系,成为一个需要重新配套的新产业,而且所需配套零部件本事又产生了新问题,比如具有特殊结构及性能的硅线生产、异质结的物理法构建、硅量子点的生成及后续电子的收集(SiO2导电性极差,对光生电子的收集是一个难题);如专利CN101924165A中太阳能电池没有核心部分P-N结,即使在光照下产生了光生电子,怎样泵出电子并对外持续做电功还不得而知,实用性不大。
发明内容
本发明的目的是提供一种纳米晶量子点薄膜,用于提高晶体硅太阳能电池的光电转换效率。
本发明的第二个目的是提供一种使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池。
本发明的第三个目的是提供一种使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池的制备方法。
为了实现以上目的,本发明所采用的技术方案是:一种纳米晶量子点薄膜,该薄膜包括纳米晶量子点分散层,所述纳米晶量子点分散层包含CdS纳米晶量子点。
所述纳米晶量子点分散层中,CdS纳米晶量子点的质量百分含量为1%~15%。
所述CdS纳米晶量子点为纯CdS纳米晶,或以CdS纳米晶为核心的核壳结构纳米晶。
所述CdS纳米晶量子点的荧光发射峰λmax为405~470nm,半高峰宽为80~100nm。
所述以CdS纳米晶为核心的核壳结构纳米晶为CdS/CdCO3核壳结构纳米晶或CdS/CdSO3核壳结构纳米晶。核壳结构中,壳层材料为碳酸镉(CdCO3)或亚硫酸镉(CdSO3)。
所述CdS纳米晶量子点是由以下方法制备的:
1)按照Cd与S的摩尔比为0.77~1.4:1的比例,将醋酸镉与硫源加入水中,形成反应体系,调节反应体系的pH为9~13;
2)将反应体系升温至110~150℃进行反应,反应1~8h后,即得。
其中,所述硫源为L-半胱氨酸、硫脲或3-巯基丙酸。
优选的,步骤1)中,Cd与S的摩尔比为0.91~1.4:1。
步骤1)中,所述反应体系中,水溶性醋酸镉的浓度为5~54.5mmol/L,硫源的浓度为4.5~56.5mmol/L。
CdS纳米晶量子点的制备方法具体可参见专利CN100503774C、CN101186816B、CN102241975B。
进一步的,步骤1)中,所述反应体系中还加入了表面活性剂。
所述表面活性剂为十六烷基三甲基溴化铵或十二烷基硫酸钠。
所述表面活性剂的加入量为:表面活性剂与硫源的摩尔比为0.3~2:1。
所述纳米晶量子点薄膜的厚度为1~200μm。
所述纳米晶量子点分散层主要由纳米晶量子点和基质高分子组成。
所述纳米晶量子点分散层中,CdS纳米晶量子点均匀分散在基质高分子中。
所述纳米晶量子点薄膜还包括基质高分子层,所述基质高分子层主要由基质高分子组成。
所述基质高分子为聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇。
所述基质高分子层的厚度为0.5~50μm。
一种使用上述的纳米晶量子点薄膜改性的晶体硅太阳能电池,所述晶体硅太阳能电池的工作面覆有所述的纳米晶量子点薄膜。
所述纳米晶量子点薄膜的底面与晶体硅太阳能电池的工作面紧密贴合。
所述晶体硅太阳能电池为单晶硅或多晶硅太阳能电池。
所述晶体硅太阳能电池的工作面为工作时接受阳光照射的那一面(一般为N型端面,即栅电极面)。
所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。纳米晶量子点薄膜的边缘距晶体硅太阳能电池的工作面的边缘的距离大于3mm。
所述纳米晶量子点薄膜中,基质高分子层的底面与晶体硅太阳能电池的工作面紧密贴合。
使用纳米晶量子点薄膜改性的晶体硅太阳能电池的制备方法,可分为两种,一种为将CdS纳米晶量子点与基质高分子制成铸膜液,在晶体硅太阳能电池的工作面上涂覆成膜;另一种是将CdS纳米晶量子点与基质高分子制成铸膜液,采用在其他载体上铸膜或无载体成膜的工艺制成纳米晶量子点薄膜后,将该薄膜覆在晶体硅太阳能的工作面上。
一种上述的晶体硅太阳能电池的制备方法,包括下列步骤:
a)配制基质高分子饱和水溶液,备用;取分散有CdS纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b)在晶体硅太阳能电池的工作面涂覆基质高分子饱和水溶液,干燥形成基质高分子层;
c)在基质高分子层表面涂覆纳米晶量子点分散液,干燥形成纳米晶量子点分散层,即得纳米晶量子点薄膜改性的晶体硅太阳能电池。
所述干燥为晾干。
步骤c)中,所述纳米晶量子点分散层中,纳米晶量子点的质量百分含量为1%~15%。
晶体硅太阳能电池的光电转换效率受限于吸收一个光子仅能产生一对电子-空穴对;晶体硅太阳能电池对太阳光具有选择性吸收,一般来说,晶体硅太阳能电池对蓝绿光最敏感,基本上可以做到吸收一个光子产生一对电子-空穴对;而对于短波长的紫外光,晶体硅太阳能电池吸收转化不完全,很多能量以非辐射形式被弛豫掉了,没能有效转化为电能。
本发明的纳米晶量子点薄膜,包含CdS纳米晶量子点,CdS纳米晶量子点具有被高能的蓝光和紫外线灯高能光子轰击时,释放两个以上电子的特性;并且研究表明,一个CdS纳米晶量子点吸收一个光子后可以发射2~7个电子;同时,CdS纳米晶量子点将紫外光吸收后,以荧光形式发射出蓝绿光,以利于晶体硅太阳能电池吸收发电,且发射出得蓝绿光光子数多于紫外光光子数;将该薄膜覆于晶体硅太阳能电池的工作面上,可大幅度地提高太阳能电池的光电转换效率。
本发明的纳米晶量子点改性晶体硅太阳能电池,晶体硅太阳能电池的工作面覆有纳米晶量子点薄膜,纳米晶量子点具有较宽的吸收光谱和吸收系数,并且具有较高的光热稳定性;将纳米晶量子点薄膜覆在晶体硅太阳能电池的工作面上,提高了太阳能电池对太阳光的吸收效率,从而提高了太阳能电池的光电转换效率;与未改性的太阳能电池相比,本发明的纳米晶量子点改性晶体硅太阳能电池的光电转换效率提高了0.56%~1.25%,具有良好的经济效益,适合推广应用。
本发明的纳米晶量子点改性晶体硅太阳能电池的制备方法,是在晶体硅太阳能电池的工作面上依次涂覆基质高分子层和纳米晶量子点分散层形成纳米晶量子点薄膜,实现对晶体硅太阳能电池的改性,极大的提高了太阳能电池的光电转换效率;该方法工艺简单,不需要重新设计,也不需要改变太阳能电池的原有结构,只需在太阳能电池的工作面涂膜改性,适用范围广,制备难度低,成本低,适合大规模工业化生产。
本发明的纳米晶量子点改性晶体硅太阳能电池中,纳米晶量子点薄膜的基质采用有机高分子材料,一方面作为纳米晶量子点的载体,使其牢牢固定在太阳能电池的工作面上,不易脱落;另一方面使纳米晶量子点在薄膜中分散均匀,充分发挥其优异的光电性能。本发明中,作为基体的晶体硅太阳能电池为普通市售商品,晶体硅太阳能电池中的P-N结为太阳能电池的“心脏”,可将光生伏打效应的光生电子、空穴源源不断分离并泵送出去做电功。纳米晶量子点薄膜的成型可以采用涂覆或者喷涂法,将基质高分子饱和水溶液与纳米晶量子点分散液涂覆在商品晶体硅太阳能电池的工作面上(珊状电极一面),注意不要涂到电池工作面的边缘。
附图说明
图1为加州理工学院模式的太阳能电池的结构示意图;
图2为实施例1中未改性的晶体硅太阳能电池;
图3为实施例1所得纳米晶量子点改性晶体硅太阳能电池;
图4为图3的侧视剖视图;
图5为实施例2的纳米晶量子点改性晶体硅太阳能电池的制备方法的示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例1
本实施例的纳米晶量子点薄膜,包括基质高分子层和纳米晶量子点分散层;所述基质高分子层主要由基质高分子组成;所述纳米晶量子点分散层主要由CdS纳米晶量子点和基质高分子组成。所述纳米晶量子点分散层中,CdS纳米晶量子点均匀分散在基质高分子中,CdS纳米晶量子点的质量百分含量为10%。
所述纳米晶量子点薄膜的厚度为120μm;其中,基质高分子层的厚度为30μm。所述CdS纳米晶量子点为纯CdS纳米晶;所述基质高分子为聚乙烯醇(PVA)。
所述纯CdS纳米晶是由以下方法制备的,具体参见专利CN100503774C(硫化镉裸量子点及其制备方法):
Cd/S比例按1.2量取0.05mol/L的醋酸镉60ml与0.05mol/L的L-半胱氨酸50ml混合于高压反应釜内胆中(醋酸镉在反应体系中的浓度为27mmol/L,L-半胱氨酸的反应浓度为22.5mmol/L),用浓度为1mol/L氢氧化钾溶液调节溶液的酸碱度,使之pH为11;将高压反应釜密闭,通电加热加压到130℃,并进行磁力搅拌;高温阶段保温7小时;经过自然冷却降温并确保高压反应釜内压力降到常压后打开釜盖,将反应釜内物料移至一磨口瓶中,避光保存。得到的硫化镉量子点的尺寸为6.6nm左右,λmax在417nm,半高峰宽为80nm。
本实施例的使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池,所述晶体硅太阳能电池的工作面覆有纳米晶量子点薄膜。所述纳米晶量子点薄膜中,基质高分子层的底面与晶体硅太阳能电池的工作面紧密贴合。所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。纳米晶量子点薄膜的边缘距晶体硅太阳能电池的工作面的边缘的距离为3.5mm。
本实施例的纳米晶量子点薄膜改性的晶体硅太阳能电池的制备方法,包括下列步骤:
a)配制聚乙烯醇饱和水溶液,备用;取分散有纯CdS纳米晶的混悬液,加入聚乙烯醇饱和水溶液,摇匀,静止避光静置一天,得分散有CdS纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b)取晶体硅太阳能电池(市售商品)一片,如图2所示,栅网面朝上,在晶体硅太阳能电池的工作面(栅网面)涂覆聚乙烯醇饱和水溶液,晾干形成厚度为30μm的基质高分子层;
c)在基质高分子层表面涂覆纳米晶量子点分散液,晾干形成厚度为90μm、纳米晶量子点质量百分含量为10%的纳米晶量子点分散层,纳米晶量子点分散层与基质高分子层共同形成厚度为120μm的纳米晶量子点薄膜,即得纳米晶量子点薄膜改性的晶体硅太阳能电池。
本实施例所得纳米晶量子点改性晶体硅太阳能电池,如图3、4所示,包括太阳能电池片1,所述太阳能电池片1从下到上依次包括P型半导体层5、n型半导体层6,所述n型半导体层6的表面设有栅状电极2,所述栅状电极2上设有两条相互平行的主栅电极4;所述太阳能电池片1上设有栅状电极2的一面(n型端面)为工作面,所述工作面上覆有纳米晶量子点薄膜3。
实施例2
本实施例的纳米晶量子点薄膜,包括基质高分子层和纳米晶量子点分散层;所述基质高分子层主要由基质高分子组成;所述纳米晶量子点分散层主要由CdS纳米晶量子点和基质高分子组成。所述纳米晶量子点分散层中,CdS纳米晶量子点均匀分散在基质高分子中,CdS纳米晶量子点的质量百分含量为15%。
所述纳米晶量子点薄膜的厚度为5μm;其中,基质高分子层的厚度为1μm。所述CdS纳米晶量子点为纯CdS纳米晶;所述基质高分子为聚乙烯吡咯烷酮(PVP)。
所述纯CdS纳米晶是由以下方法制备的:
1)按照Cd与S的摩尔比为1.1:1的比例,取浓度为0.1mol/L的醋酸镉110ml、浓度为0.1mol/L的L-半胱氨酸溶液100ml混合于锥形瓶中,再加入浓度为0.1mol/L的十二烷基硫酸钠溶液100ml,形成白色乳状液的反应体系,此时测得pH约为6,使用磁力搅拌器搅拌均匀,并缓慢加入浓度为2mol/L氢氧化钾溶液调节反应体系的pH为12;
2)将反应体系转入高压反应釜内胆中,将将高压反应釜密闭并分次对称上紧高压反应釜的密闭螺帽,通电加压加热到110℃进行反应,保温反应1h后,继续加压加热至140℃进行反应,保温反应4h后,关闭电源,在等待反应釜内自然冷却至室温并确保高压釜内压力降到常压后打开釜盖,将反应釜内物料(有黄色沉淀生成)转移至一个棕色磨口瓶中,避光保存。
本实施例的使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池,所述晶体硅太阳能电池的工作面覆有纳米晶量子点薄膜。所述纳米晶量子点薄膜中,基质高分子层的底面与晶体硅太阳能电池的工作面紧密贴合。所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。纳米晶量子点薄膜的边缘距晶体硅太阳能电池的工作面的边缘的距离为4mm。
本实施例的纳米晶量子点改性晶体硅太阳能电池的制备方法,包括下列步骤:
a)配制聚乙烯吡咯烷酮饱和水溶液,备用;取分散有纯CdS纳米晶的混悬液,加入聚乙烯吡咯烷酮饱和水溶液,摇匀,静止避光静置一天,得分散有CdS纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b)取晶体硅太阳能电池(市售商品)一片,栅网面朝上,在晶体硅太阳能电池的工作面(栅网面)涂覆聚乙烯吡咯烷酮饱和水溶液,晾干形成厚度为1μm的基质高分子层;
c)在基质高分子层表面涂覆纳米晶量子点分散液,晾干形成厚度为4μm、纳米晶量子点质量百分含量为15%的纳米晶量子点分散层,纳米晶量子点分散层与基质高分子层共同形成厚度为5μm的纳米晶量子点薄膜,即得纳米晶量子点薄膜改性晶体硅太阳能电池。
本实施例的纳米晶量子点改性晶体硅太阳能电池的制备方法的示意图如图5所示,晶体硅太阳能电池片从上到下依次包括背电极8、p型半导体层6、n型半导体层5、减反层7;所述减反层7表面设有栅状电极2;所述晶体硅太阳能电池片设有栅状电极2的一面为工作面;制备时,依次在工作面上涂覆基质高分子层和纳米晶量子点分散层形成纳米晶量子点薄膜3,所述纳米晶量子点分散层中均匀分布有纳米晶量子点9。
实施例3
本实施例的纳米晶量子点薄膜,包括基质高分子层和纳米晶量子点分散层;所述基质高分子层主要由基质高分子组成;所述纳米晶量子点分散层主要由CdS纳米晶量子点和基质高分子组成。所述纳米晶量子点分散层中,CdS纳米晶量子点均匀分散在基质高分子中,CdS纳米晶量子点的质量百分含量为1%。
所述纳米晶量子点薄膜的厚度为200μm;其中,基质高分子层的厚度为50μm。所述CdS纳米晶量子点为CdS/CdSO3核壳结构纳米晶;所述基质高分子为聚乙二醇(PEG)。
所述CdS/CdSO3核壳结构纳米晶是由以下方法制备的,具体参见专利CN102241975B(一种具有核壳结构的量子点及制备方法):
以醋酸镉和L-半胱氨酸为原料,量取0.1mol/L的醋酸镉水溶液100ml和0.1mol/L的L-半胱氨酸水溶液110ml,之后放入锥形瓶中混合配制成反应溶液,其中Cd/S的摩尔比为0.91,其中醋酸镉在反应溶液中的浓度为47.6mmol/L,L-半胱氨酸在反应溶液中的浓度为52.4mmol/L,之后用氢氧化钾调节pH值值10,之后再将上述经过调节pH值的反应溶液转入高压反应釜内胆中,将高压反应釜密闭并分次对称上紧高压反应釜的密闭螺帽,通电加热到125℃,最高达130℃,反应压力为2个大气压,高温反应3小时;当高压反应釜内自然冷却至室温并确保高压釜内压力降到常压后打开釜盖,将反应釜内产物黄色沉淀转移至一个磨口瓶内,该黄色沉淀即为具有以硫化镉材料为核,以亚硫酸镉材料为壳的核壳结构的量子点。该量子点的核壳结构中,核的粒径为3~6nm,壳的厚度为0.1~0.5nm;该量子点的荧光激发峰λex.max位于358nm,发射峰λem.max位于470nm。
本实施例的使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池,所述晶体硅太阳能电池的工作面覆有纳米晶量子点薄膜。所述纳米晶量子点薄膜中,基质高分子层的底面与晶体硅太阳能电池的工作面紧密贴合。所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。纳米晶量子点薄膜的边缘距晶体硅太阳能电池的工作面的边缘的距离为4.5mm。
本实施例的纳米晶量子点薄膜改性晶体硅太阳能电池的制备方法,包括下列步骤:
a)配制聚乙二醇饱和水溶液,备用;取分散有CdS/CdSO3核壳结构纳米晶的混悬液,加入聚乙二醇饱和水溶液,摇匀,静止避光静置一天,得分散有CdS纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b)取晶体硅太阳能电池(市售商品)一片,栅网面朝上,在晶体硅太阳能电池的工作面(栅网面)涂覆聚乙二醇饱和水溶液,晾干形成厚度为50μm的基质高分子层;
c)在基质高分子层表面涂覆纳米晶量子点分散液,晾干形成厚度为150μm、纳米晶量子点质量百分含量为1%的纳米晶量子点分散层,纳米晶量子点分散层与基质高分子层共同形成厚度为200μm的纳米晶量子点薄膜,即得纳米晶量子点薄膜改性晶体硅太阳能电池。
实施例4
本实施例的纳米晶量子点薄膜,包括基质高分子层和纳米晶量子点分散层;所述基质高分子层主要由基质高分子组成;所述纳米晶量子点分散层主要由CdS纳米晶量子点和基质高分子组成。所述纳米晶量子点分散层中,CdS纳米晶量子点均匀分散在基质高分子中,CdS纳米晶量子点的质量百分含量为5%。
所述纳米晶量子点薄膜的厚度为30μm;其中,基质高分子层的厚度为10μm。所述CdS纳米晶量子点为CdS/CdCO3核壳结构纳米晶;所述基质高分子为聚乙烯吡咯烷酮(PVP)。
所述CdS/CdCO3核壳结构纳米晶是由以下方法制备的,具体参见专利CN101186816B(一种核壳结构的纳米晶及制备方法):
Cd/S比例按1.4量取0.05mol/L醋酸镉70ml与0.05mol/L的L-半胱氨酸50ml混合于高压反应釜内胆中(醋酸镉在反应体系中的浓度为27.2mmol/L,L-半胱氨酸的反应浓度为22.7mmol/L),用浓度为1mol/L氢氧化钾溶液调节pH为10;将高压反应釜密闭,通电加热加压到110℃,并进行磁力搅拌;高温阶段保温5小时;经过自然冷却降温并确保高压釜内压力降到常压后打开釜盖,将反应釜内物料转移至一磨口瓶中,避光保存。所制得的是以硫化镉为核心、碳酸镉为外围壳层的纳米晶。
本实施例的使用上述纳米晶量子点薄膜改性的晶体硅太阳能电池,所述晶体硅太阳能电池的工作面覆有纳米晶量子点薄膜。所述纳米晶量子点薄膜中,基质高分子层的底面与晶体硅太阳能电池的工作面紧密贴合。所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。纳米晶量子点薄膜的边缘距晶体硅太阳能电池的工作面的边缘的距离为5mm。
本实施例的纳米晶量子点薄膜改性的晶体硅太阳能电池的制备方法,包括下列步骤:
a)配制聚乙烯吡咯烷酮饱和水溶液,备用;取分散有CdS/CdCO3核壳结构纳米晶的混悬液,加入聚乙烯吡咯烷酮饱和水溶液,摇匀,静止避光静置一天,得分散有CdS纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b)取晶体硅太阳能电池(市售商品)一片,栅网面朝上,在晶体硅太阳能电池的工作面(栅网面)涂覆聚乙烯吡咯烷酮饱和水溶液,晾干形成厚度为10μm的基质高分子层;
c)在基质高分子层表面涂覆纳米晶量子点分散液,晾干形成厚度为20μm、纳米晶量子点质量百分含量为5%的纳米晶量子点分散层,纳米晶量子点分散层与基质高分子层共同形成厚度为30μm的纳米晶量子点薄膜,即得纳米晶量子点薄膜改性晶体硅太阳能电池。
实验例
本实验例对实施例1-4所得纳米晶量子点改性晶体硅太阳能电池改性前后的性能进行检测,结果如表1所示。
表1 实施例1-4所得纳米晶量子点改性晶体硅太阳能电池改性前后的性能检测结果
从表1可以看出,实施例1-4的使用纳米晶量子点薄膜改性的晶体硅太阳能电池的最大功率为4.45~4.67W,光电转换效率为18.32%~18.97%,相对于改性前的晶体硅太阳能电池,光电转换效率提高了0.56%~1.25%。试验结果表明,将本发明的纳米晶量子点薄膜覆在晶体硅太阳能电池的工作面上,可极大的提高晶体硅太阳能电池的光电转换效率。

Claims (5)

1.一种纳米晶量子点薄膜,其特征在于:该薄膜包括纳米晶量子点分散层,所述纳米晶量子点分散层包含CdS 纳米晶量子点;所述纳米晶量子点分散层中,CdS 纳米晶量子点均匀分散在基质高分子中;
所述纳米晶量子点分散层中,CdS 纳米晶量子点的质量百分含量为1%~ 15%;
所述纳米晶量子点薄膜的厚度为1 ~ 200μm;
所述纳米晶量子点薄膜还包括基质高分子层,所述基质高分子层主要由基质高分子组成;
所述基质高分子为聚乙烯吡咯烷酮、聚乙烯醇或聚乙二醇;
所述基质高分子层的厚度为0.5 ~ 50μm。
2. 根据权利要求1 所述的纳米晶量子点薄膜,其特征在于:所述CdS 纳米晶量子点为纯CdS 纳米晶,或以CdS 纳米晶为核心的核壳结构纳米晶。
3. 一种使用如权利要求1 所述的纳米晶量子点薄膜改性的晶体硅太阳能电池,其特征在于:所述晶体硅太阳能电池的工作面覆有所述的纳米晶量子点薄膜。
4. 根据权利要求3所述的晶体硅太阳能电池,其特征在于:所述纳米晶量子点薄膜的尺寸小于晶体硅太阳能电池的工作面的尺寸。
5. 一种如权利要求3所述的晶体硅太阳能电池的制备方法,其特征在于:包括下列步骤:
a) 配制基质高分子饱和水溶液,备用;取分散有CdS 纳米晶量子点和基质高分子的水基分散体系为纳米晶量子点分散液,备用;
b) 在晶体硅太阳能电池的工作面涂覆基质高分子饱和水溶液,干燥形成基质高分子层;
c) 在基质高分子层表面涂覆纳米晶量子点分散液,干燥形成纳米晶量子点分散层,即得纳米晶量子点薄膜改性的晶体硅太阳能电池。
CN201410344202.8A 2014-07-18 2014-07-18 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法 Expired - Fee Related CN104332514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410344202.8A CN104332514B (zh) 2014-07-18 2014-07-18 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410344202.8A CN104332514B (zh) 2014-07-18 2014-07-18 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104332514A CN104332514A (zh) 2015-02-04
CN104332514B true CN104332514B (zh) 2016-10-05

Family

ID=52407206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410344202.8A Expired - Fee Related CN104332514B (zh) 2014-07-18 2014-07-18 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104332514B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428070B (zh) * 2015-12-18 2017-11-14 哈尔滨工业大学 基于花状TiO2粉体及蓝绿色荧光C量子点的染料敏化太阳能电池光阳极的制备方法
CN107379724B (zh) * 2017-07-06 2019-11-22 北京北达聚邦科技有限公司 一种高显色性量子点荧光粉薄膜及其制备方法
CN113554972A (zh) * 2020-04-08 2021-10-26 陈学仕 Qled显示面板的串扰改善方法以及qled显示面板
CN113340866B (zh) * 2021-06-28 2023-03-31 上海应用技术大学 一种基于黄色荧光碳量子点检测亚硫酸根离子的方法
CN116396749A (zh) * 2023-02-15 2023-07-07 桂林电子科技大学 一种金属硒化物量子点及碳点的合成与发光器件制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223718B1 (ko) * 2005-06-18 2013-01-18 삼성디스플레이 주식회사 나노 도전성 막의 패터닝 방법
CN101101930A (zh) * 2007-08-01 2008-01-09 上海芯光科技有限公司 一种高效太阳能电池光波转换纳米复合材料
CN101567406B (zh) * 2009-06-09 2011-03-30 华东师范大学 硅基太阳能电池表面量子点光波转换层的制备方法
KR101054394B1 (ko) * 2009-12-15 2011-08-04 엘지전자 주식회사 반도체 나노결정을 이용한 태양전지 모듈

Also Published As

Publication number Publication date
CN104332514A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
Zhao et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots
Zhou et al. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators
Huang et al. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells
McKenna et al. Towards efficient spectral converters through materials design for luminescent solar devices
Kalytchuk et al. Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells
Tang et al. CsPbBr3/Reduced Graphene Oxide nanocomposites and their enhanced photoelectric detection application
CN104332514B (zh) 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法
Wei et al. Research progress on hybrid organic–inorganic perovskites for photo-applications
Ten Kate et al. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function
Wang et al. Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator
Gholizadeh et al. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting
JP2011129925A (ja) 半導体ナノ結晶を用いた太陽電池モジュール
Sadhu et al. Recent advances in colloidal quantum dots or perovskite quantum dots as a luminescent downshifting layer embedded on solar cells
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
KR101079008B1 (ko) 다결정 실리콘 태양전지용 합성 발광 컨버터 및 그에 기반을 둔 태양전지 소자
Dai et al. Tuning solar absorption spectra via carbon quantum dots/VAE composite layer and efficiency enhancement for crystalline Si solar module
Song et al. Feasibility of emission-enhanced CsPbCl3 quantum dots co-doped with Mn2+ and Er3+ as luminescent downshifting layers in crystalline silicon solar modules
CN102779904A (zh) 防止晶硅太阳能模块的有害极化和黑线现象发生的方法
Lesyuk et al. Toward cadmium-free spectral down-shifting converters for photovoltaic applications
Gholizadeh et al. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters
Zhao et al. Three-dimensional ZnO/ZnxCd1− xS/CdS nanostructures modified by microwave hydrothermal reaction-deposited CdSe quantum dots for chemical solar cells
Fan et al. Light-trapping characteristics of Ag nanoparticles for enhancing the energy conversion efficiency of hybrid solar cells
Pei et al. 3D surface microstructure of silicon modified by QDs to improve solar cell performance through down-conversion and anti-reflection mechanism
Deng et al. TiO 2 nanoparticle/ZnO nanowire hybrid photoanode for enhanced quantum dot-sensitized solar cell performance
Solodovnyk et al. Luminescent down-shifting layers with Eu2+ and Eu3+ doped strontium compound particles for photovoltaics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161005

Termination date: 20170718

CF01 Termination of patent right due to non-payment of annual fee