CN108686645A - 一种TiO2/BiVO4异质结复合材料的制备方法和应用 - Google Patents

一种TiO2/BiVO4异质结复合材料的制备方法和应用 Download PDF

Info

Publication number
CN108686645A
CN108686645A CN201810498534.XA CN201810498534A CN108686645A CN 108686645 A CN108686645 A CN 108686645A CN 201810498534 A CN201810498534 A CN 201810498534A CN 108686645 A CN108686645 A CN 108686645A
Authority
CN
China
Prior art keywords
preparation
bivo
pucherite
tio
heterojunction composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810498534.XA
Other languages
English (en)
Inventor
姜毅
蒋文超
夏立新
张谦
佟静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201810498534.XA priority Critical patent/CN108686645A/zh
Publication of CN108686645A publication Critical patent/CN108686645A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种TiO2/BiVO4异质结复合材料的制备方法和应用。于含有硝酸铋、碘化钾和对苯醌的电沉积溶液中,采用三电极体系,在FTO上沉积BiOI膜,于BiOI膜上均匀滴加乙酰丙酮氧矾的DMSO溶液后,于450℃保温2h,冷却至室温后,放入无机碱溶液中浸泡30min;将得到的钒酸铋基底浸入二氧化钛水溶胶中,60℃保持30‑60min后,在500℃煅烧2h,得TiO2/BiVO4异质结。本发明制备方法简单,采用浸渍的方法,将纳米球状的二氧化钛负载在多孔的钒酸铋上,通过高温煅烧,形成二氧化钛钒酸铋异质结。不仅提高了半导体对光解水的催化活性,而且对于制备其他半导体异质结提供了一种思路。

Description

一种TiO2/BiVO4异质结复合材料的制备方法和应用
技术领域
本发明涉及光解水催化体系领域,具体为通过简单的方法制备TiO2/BiVO4异质结复合材料,实现高效光解水制氢。
背景技术
随着能源的日益枯竭,人们在不断地寻找可代替的再生能源。实现人工光合作用,利用太阳能光催化分解水制氢,使太阳能转化为便于人们利用的化学能,对当今社会的可持续发展有着重要的战略意义。光解水产氢,不仅是因为光能是取之不尽用之不完的,而且氢能还是一种绿色能源,其燃烧产物为水,对环境无污染。目前通过太阳光实现光解水产氢产氧已经逐渐热起来。
单独的半导体对水的催化活性低,在光激发电子后,其电子和空穴再结合速率快,所以实现高效的光解水产氢比较困难,但是半导体具有良好的吸光性能,因此人们在不断地修饰改造半导体,用于实现光解水产氢。在半导体表面修饰催化剂是一种提高催化效果的方法,可以修饰一些无机催化剂,用于加速半导体表面的电子传输效率,加快电子转移,提高水分解效率。
半导体材料在实现光解水体系中扮演者越来越重要的角色,使用半导体材料作为光催化体系中的基底,并通过修饰半导体,实现高效分解水已经成为研究热点。然而光催化体系的催化剂大部分是含有贵金属,不仅成本高,而且制备过程比较繁琐复杂。
发明内容
本发明的目的是提供一种方法简单,成本低,将两种半导体复合,形成异质结的一种TiO2/BiVO4异质结复合材料的制备方法。
本发明采用的技术方案是:一种TiO2/BiVO4异质结复合材料的制备方法,包括如下步骤:
1)制备钒酸铋基底:于含有硝酸铋、碘化钾和对苯醌的电沉积溶液中,采用三电极体系,在导电载体FTO上沉积一层BiOI膜,水洗,氮气吹干后,于BiOI膜上均匀滴加乙酰丙酮氧矾的DMSO溶液后,于450℃保持2h,冷却至室温后,放入无机碱溶液中浸泡30min,取出,用水冲洗,氮气吹干,得钒酸铋基底;
2)制备TiO2/BiVO4异质结复合材料:将钒酸铋基底浸入二氧化钛水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
上述的一种TiO2/BiVO4异质结复合材料的制备方法,所述的电沉积溶液的制备方法是:取适量去离子水,用硝酸调节其pH到1.7,加入硝酸铋和碘化钾,充分溶解后,加入对苯醌的乙醇溶液,充分搅拌,制成电沉积溶液。
上述的一种TiO2/BiVO4异质结复合材料的制备方法,采用三电极体系,沉积条件为:外加-0.1V vs Ag/AgCl的偏压沉积5分钟。
上述的一种TiO2/BiVO4异质结复合材料的制备方法,所述的无机碱为氢氧化钠或氢氧化钾。
上述的一种TiO2/BiVO4异质结复合材料的制备方法,所述的二氧化钛水溶胶的制备方法是:向四氯化钛的盐酸溶液中加入水,静止,待烟雾消失后,离心,去掉上清液,沉淀物加去离子水,超声分散,形成二氧化钛水溶胶。
上述的一种TiO2/BiVO4异质结复合材料的制备方法,所述的离心,转速为10000r/min,离心10分钟。
按照上述的方法制备的TiO2/BiVO4异质结复合材料可作为修饰电极在光催化分解水制氢中的应用。
本发明的有益效果是:
1、本发明,制备方法简单,采用浸渍的方法,将纳米球状的氧化钛负载在多孔的钒酸铋上,通过高温煅烧,形成氧化钛钒酸铋异质结。不仅提高了半导体对光解水的催化活性,而且对于制备其他半导体异质结提供了一种思路。
2、本发明,利用四氯化钛具有水解的特性,将四氯化钛水解为纳米球状的二氧化钛,同时通过电沉积的方法制备半导体钒酸铋,将钒酸铋浸渍在含有二氧化钛的水溶液中,将氧化钛负载在多孔钒酸铋上,通过高温煅烧,最后形成二氧化钛钒酸铋异质结。通过检测所制备的复合物具有良好光催化性能。
3、本发明,将两种半导体制成异质结,使得电子与空穴在半导体之间不断地转移,间接地加快了电荷与空穴的分离效率。进一步地提高了光激发的电子利用率,光能的利用率提高,间接地加速了光催化效率。
4、本发明,基于多孔性的钒酸铋,采用简单的浸渍法很容易将二氧化钛镶嵌在钒酸铋的孔隙中形成异质结,相比于其他的方法,本方法在于操作简单,催化效果显著。
附图说明
图1是多孔钒酸铋的扫描电镜图(SEM)。
图2是二氧化钛水溶胶的纳米粒子的动态光散射图(DLS)。
图3是二氧化钛钒酸铋异质结的扫描电镜图(SEM)。
图4是二氧化钛钒酸铋异质结的X射线光电子能谱图(XPS)全图。
图5是二氧化钛钒酸铋异质结的能谱图(EDS)。
图6是二氧化钛钒酸铋异质结在含有亚硫酸钠的线性扫描图(LSV)。
图7是二氧化钛钒酸铋异质结在磷酸缓冲液中的线性扫描图(LSV)。
具体实施方式
为了更好地理解本发明的技术方案,特以具体的实施例作进一步详细说明,但方案不限于此。
(一)制备方法
1、电沉积溶液的制备
量取150ml去离子水,用硝酸调节其pH到1.7。加入2.91g硝酸铋和9.96g碘化钾,充分溶解后,加入20ml溶有1.49g对苯醌的乙醇溶液,充分搅拌,形成电沉积溶液。
2、钒酸铋基底的制备
采用三电极体系,外加-0.1V vs Ag/AgCl的偏压沉积5分钟,于导电载体FTO上沉积一层BiOI膜,用水清洗BiOI膜,氮气吹干。最后在BiOI膜上均匀滴加50微升的含有1.06g乙酰丙酮氧矾的DMSO溶液,于450℃保持2h。待其冷却到室温后,将其放入0.1M的氢氧化钠溶液中,大约浸泡30min后取出,用水冲洗,氮气吹干,得到淡黄色的多孔的钒酸铋基底。用氢氧化钠水溶液浸泡的目的是溶掉基底表面的五氧化钒等杂质。
3、二氧化钛水溶胶的制备
吸取1ml浓度为99.9%的四氯化钛盐酸溶液,用水稀释到50ml,静止,待烟雾消失后,离心(转速为10000r/min)10分钟,去掉上清液,沉淀物加去离子水再稀释到50ml,超声分散5分钟,形成二氧化钛水溶胶。
4、TiO2/BiVO4异质结复合材料的制备
将钒酸铋基底浸入二氧化钛水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
(二)检测
1、图1为多孔钒酸铋的扫描电镜图(SEM)。由图1可见,得到的钒酸铋是多孔的、均匀的结构,其孔道可以为二氧化钛的负载提供适当的位置。
2、图2是二氧化钛水溶胶的纳米粒子的动态光散射图(DLS)。由图2可见,二氧化钛的粒径大约在200-500nm之间,进一步证明二氧化钛能进入到钒酸铋的孔道中。
3、图3是二氧化钛钒酸铋异质结的扫描电镜图(SEM)。由图3可见,球状的二氧化钛均匀地负载在多孔状的钒酸铋中。进一步证明本发明的可行性。
4、图4是二氧化钛钒酸铋异质结的X射线光电子能谱图(XPS)全图。由图4可以看到Ti,Bi,V,O,等元素,进一步证明二氧化钛和钒酸铋异质结的形成。
5、图5是二氧化钛钒酸铋异质结的能谱图(EDS)。由图5可见,二氧化钛均匀地分散在多孔状的钒酸铋上。
6、图6是二氧化钛钒酸铋异质结在含有亚硫酸钠的电化学测试图。由图6可见,从图中的Linear Sweep Voltammetry(LSV)curves可以看到复合材料在含有亚硫酸钠的电解液中的光电流比单独的钒酸铋有明显的提高,进一步证明异质结的形成。
7、图7是二氧化钛钒酸铋异质结在磷酸缓冲液中的电化学测试图。由图7可见,从图中的Linear Sweep Voltammetry(LSV)curves可以看出,在磷酸缓冲溶液中,单独的氧化钛与钒酸铋的光催化性能较低,而钒酸铋二氧化钛的异质结其催化性能明显的提高,说明异质结能提高光解水的催化性能。

Claims (7)

1.一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,包括如下步骤:
1)制备钒酸铋基底:于含有硝酸铋、碘化钾和对苯醌的电沉积溶液中,采用三电极体系,在导电载体FTO上沉积一层BiOI膜,水洗,氮气吹干后,于BiOI膜上均匀滴加乙酰丙酮氧矾的DMSO溶液后,于450℃保温2h,冷却至室温后,放入无机碱溶液中浸泡30min,取出,用水冲洗,氮气吹干,得钒酸铋基底;
2)制备TiO2/BiVO4异质结复合材料:将钒酸铋基底浸入二氧化钛水溶胶中,60℃保持30-60min后,置于马弗炉中500℃煅烧2h。
2.根据权利要求1所述的一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,所述的电沉积溶液的制备方法是:取适量去离子水,用硝酸调节其pH到1.7,加入硝酸铋和碘化钾,充分溶解后,加入对苯醌的乙醇溶液,充分搅拌,制成电沉积溶液。
3.根据权利要求1所述的一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,采用三电极体系,沉积条件为:外加-0.1V vs Ag/AgCl的偏压沉积5分钟。
4.根据权利要求1所述的一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,所述的无机碱为氢氧化钠或氢氧化钾。
5.根据权利要求1所述的一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,所述的二氧化钛水溶胶的制备方法是:向四氯化钛的盐酸溶液中加入水,静止,待烟雾消失后,离心,去掉上清液,沉淀物加去离子水,超声分散,形成二氧化钛水溶胶。
6.根据权利要求5所述的一种TiO2/BiVO4异质结复合材料的制备方法,其特征在于,所述的离心,转速为10000r/min,离心10分钟。
7.按照权利要求1-6任一项所述的方法制备的TiO2/BiVO4异质结复合材料作为修饰电极在光催化分解水制氢中的应用。
CN201810498534.XA 2018-05-23 2018-05-23 一种TiO2/BiVO4异质结复合材料的制备方法和应用 Pending CN108686645A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498534.XA CN108686645A (zh) 2018-05-23 2018-05-23 一种TiO2/BiVO4异质结复合材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498534.XA CN108686645A (zh) 2018-05-23 2018-05-23 一种TiO2/BiVO4异质结复合材料的制备方法和应用

Publications (1)

Publication Number Publication Date
CN108686645A true CN108686645A (zh) 2018-10-23

Family

ID=63846747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498534.XA Pending CN108686645A (zh) 2018-05-23 2018-05-23 一种TiO2/BiVO4异质结复合材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108686645A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391651A (zh) * 2020-09-18 2021-02-23 厦门大学 含氧空穴的BiOBr/TiO2纳米管阵列复合电极及其制备方法和其光电催化固氮应用
CN112538638A (zh) * 2020-11-19 2021-03-23 中国科学院海洋研究所 一种高效的Bi2MoO6包覆BiVO4异质结光电极体系的制备方法
CN113373470A (zh) * 2021-05-31 2021-09-10 深圳先进技术研究院 钒酸铋光阳极及其制备方法、光电化学器件
WO2022016768A1 (zh) * 2020-07-22 2022-01-27 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988533A (zh) * 2015-06-26 2015-10-21 湖北大学 TiO2/BiVO4光阳极材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104988533A (zh) * 2015-06-26 2015-10-21 湖北大学 TiO2/BiVO4光阳极材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIAO KAN等: "A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
OLIVIER MONFORT等: "Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode", 《ELECTROCHIMICA ACTA》 *
杨保祥等: "《钒基材料制造》", 31 March 2014, 冶金工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016768A1 (zh) * 2020-07-22 2022-01-27 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法
CN112391651A (zh) * 2020-09-18 2021-02-23 厦门大学 含氧空穴的BiOBr/TiO2纳米管阵列复合电极及其制备方法和其光电催化固氮应用
CN112391651B (zh) * 2020-09-18 2021-10-26 厦门大学 含氧空穴的BiOBr/TiO2纳米管阵列复合电极及其制备方法和其光电催化固氮应用
CN112538638A (zh) * 2020-11-19 2021-03-23 中国科学院海洋研究所 一种高效的Bi2MoO6包覆BiVO4异质结光电极体系的制备方法
CN112538638B (zh) * 2020-11-19 2022-03-08 中国科学院海洋研究所 一种高效的Bi2MoO6包覆BiVO4异质结光电极体系的制备方法
CN113373470A (zh) * 2021-05-31 2021-09-10 深圳先进技术研究院 钒酸铋光阳极及其制备方法、光电化学器件

Similar Documents

Publication Publication Date Title
Jing et al. Different morphologies of SnS2 supported on 2D g-C3N4 for excellent and stable visible light photocatalytic hydrogen generation
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
Pu et al. Surface passivation of TiO2 nanowires using a facile precursor-treatment approach for photoelectrochemical water oxidation
Chen et al. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems
CN108686645A (zh) 一种TiO2/BiVO4异质结复合材料的制备方法和应用
CN104988533B (zh) TiO2/BiVO4光阳极材料及其制备方法
CN108103525B (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
Chandrasekaran et al. Nanostructured silicon photoelectrodes for solar water electrolysis
Kim et al. Rational design of branched WO3 nanorods decorated with BiVO4 nanoparticles by all-solution processing for efficient photoelectrochemical water splitting
CN105044180B (zh) 一种异质结光电极的制备方法和用途
CN109267096B (zh) 高效稳定的硅基光解水制氢电极及其制备方法和应用
CN104465118A (zh) 一种蜂窝结构石墨烯/氧化锌纳米棒复合薄膜、制备方法及应用
CN102531050A (zh) 制备TiO2(B)纳米线的方法及制得的TiO2(B)纳米线的用途
CN110016691B (zh) 一种WO3/Fe2O3/Mn3O4复合光阳极薄膜的制备方法
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
CN110252352A (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
Yu et al. Fabrication of a stable light-activated and p/n type AgVO3/V2O5-TiO2 heterojunction for pollutants removal and photoelectrochemical water splitting
CN103871750A (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN107326394B (zh) 一种制备具有核壳结构氮化碳修饰二氧化钛光阳极的方法
CN114808013A (zh) 一种三氧化钨/钨酸锰/钨酸钴光电极材料及其制备方法和应用
CN107268022A (zh) α‑Fe2O3多孔纳米棒阵列光阳极材料的制备方法及应用
CN106967979A (zh) 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法
CN109821559A (zh) 一种核壳结构复合光电材料的制备方法及其应用
Peng et al. ZnO quantum dots decorated TiO2 nanorod pn heterojunction for efficient photoelectrocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181023