CN109267096B - 高效稳定的硅基光解水制氢电极及其制备方法和应用 - Google Patents

高效稳定的硅基光解水制氢电极及其制备方法和应用 Download PDF

Info

Publication number
CN109267096B
CN109267096B CN201710582109.4A CN201710582109A CN109267096B CN 109267096 B CN109267096 B CN 109267096B CN 201710582109 A CN201710582109 A CN 201710582109A CN 109267096 B CN109267096 B CN 109267096B
Authority
CN
China
Prior art keywords
electrode
cadmium sulfide
hydrogen production
layer
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710582109.4A
Other languages
English (en)
Other versions
CN109267096A (zh
Inventor
巩金龙
刘珊珊
王拓
罗志斌
李澄澄
李慧敏
陈梦馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710582109.4A priority Critical patent/CN109267096B/zh
Publication of CN109267096A publication Critical patent/CN109267096A/zh
Application granted granted Critical
Publication of CN109267096B publication Critical patent/CN109267096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/059Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开高效稳定的硅基光解水制氢电极及其制备方法和应用,包括p型硅基底、硫化镉异质结层,氧化钛保护层,铂助催化剂;制备方法主要由硅片基底表面清洗、硫化镉层沉积、氧化钛层沉积、铂助剂负载四步构成。本发明有效实现了硅与硫化镉异质结的制备,提高了光生电压,并解决硅基光电阴极在水溶液不稳定的问题,提高了材料的稳定性。本发明的制备方法操作过程简单,可控性强,光电催化性能稳定,重复性好。

Description

高效稳定的硅基光解水制氢电极及其制备方法和应用
技术领域
本发明涉及光电化学池的半导体电极领域,具体为一种新型复合硅电极(p-Si/CdS/TiO2/Pt)结构设计及其制备方法。
背景技术
光催化分解水制氢技术,可将太阳能有效转换为氢能,是解决能源危机和环境问题的重要途径之一。Si具有优良的吸光能力(波长小于930nm)和电荷迁移能力(电子和空穴分别为1600和400cm2s-1V-1),在全光谱、无牺牲剂条件下,Si电极的光解水研究取得了一系列突破,引起业界的广泛关注[1]。并且,Si作为地壳中含量仅次于氧的元素,价格相对低廉。然而,由于Si产生光生电压较小,无法达到全解水电位1.23V,因此需要较大的外加偏压,增大能耗。目前光阴极p-Si提升光生电压的方式主要是表面P重掺杂结构(pn+)、金属绝缘层半导体结构(MIS)、与其他n型半导体形成异质结(p-n结)等。2011年,美国加州理工大学的Nathan S.Lewis等人制备的pn+平面光电阴极可以有效提高硅电极的光生电压,开路电压由0.3V提升至0.56V,能量换效率约9.6%[1]。Li Ji[2]等人使用分子束外延技术制备1.6-4nm的SrTiO3薄膜取代SiO2,制备新型MIS结构(p-Si/STO/Ti/Pt),研究发现1.6nm SrTiO3可以有效提升光生电压,光生电压可以达到0.45V。然而这些制备工艺复杂且成本高,不利于大面积应用实施。而利用n型半导体与p型硅形成异质结,工艺简单,成本降低,为实现全解水制氢提供可能,例如p-Si/n-ZnO[3],p-Si/n-WO3 [4],p-Si/n-Fe2O3 [5]等,然而存在光生电压不高、光电转换效率太低以及稳定性等一系列的问题。
硫化镉材料(CdS),其直接带隙在2.1至2.4eV之间,是II-VI族的重要半导体之一。CdS已被用于光电器件,发光二极管,光催化和光电探测器。例如,用于发光二极管的p-Si/n-CdS径向纳米线异质结具有明显的光谱响应。在PEC测量中,n型CdS主要沉积在黄铜矿半导体上以形成p-n结。事实上,许多合成方法已经用于制备CdS,包括真空蒸发,化学浴沉积(CBD),电渗析等。其中,CBD技术是生产低成本,粘合型佳和大面积生产CdS薄膜的最简单快速的方法。然而,CdS在含水电解质中的稳定性有限,在水分解过程中容易发生光腐蚀。为了水分解光电阴极的应用,必须加以保护,以防止含水介质中固有的光腐蚀。二氧化钛被认为是实现非常长期电化学稳定性的最理想的材料之一。2013年,丹麦科技大学的IbChorkendorf[6]等人在pn+平面光电阴极溅射5nm金属钛和100nm氧化钛,负载铂助剂后,红外光下(λ>635nm,38.6mW cm-2)可以稳定72h,后来采用原子层沉积技术优化,同样电极结构及测试条件可以稳定30天。因此我们选择在硅和硫化镉上面沉积氧化钛,以实现较好的稳定性。
参考文献:
[1]S.W.Boettcher,E.L.Warren,M.C.Putnam,E.A.Santori,D.Turner-Evans,M.D.Kelzenberg,M.G.Walter,J.R.McKone,B.S.Brunschwig,H.A.Atwater,N.S.Lewis,Journal of the American Chemical Society 2011,133,1216-1219.
[2]L.Ji,M.D.McDaniel,S.Wang,A.B.Posadas,X.Li,H.Huang,J.C.Lee,A.A.Demkov,A.J.Bard,J.G.Ekerdt,E.T.Yu,Nature Nanotechnology 2015,10,84-90.
[3]A.Kargar,K.Sun,Y.Jing,C.Choi,H.Jeong,Y.Zhou,K.Madsen,P.Naughton,S.Jin,G.Y.Jung,D.Wang,Nano Letters 2013,13,3017-3022.
[4]K.H.Yoon,D.K.Seo,Y.S.Cho,D.H.Kang,Journal of Applied Physics 1998,84,3954-3959.
[5]A.Kargar,S.J.Kim,P.Allameh,C.Choi,N.Park,H.Jeong,Y.Pak,G.Y.Jung,X.Pan,D.Wang,S.Jin,Advanced Functional Materials 2015,25,2609-2615.
[6]B.Seger,T.Pedersen,A.B.Laursen,P.C.K.Vesborg,O.Hansen,I.Chorkendorff,Journal of the American Chemical Society 2013,135,1057-1064.
发明内容
本发明的目的在于克服现有技术的不足,提供高效稳定的硅基光解水制氢电极的新型设计(p-Si/CdS/TiO2/Pt)的结构设计及其制备方法。本发明要解决的是单晶硅光电阴极光生电压不足及在溶液中不稳定的问题,同时取代复杂昂贵、高耗能的pn+、MIS制备工艺,对硅电极化学浴沉积硫化镉层形成异质结提高光生电压,氧化钛材料作为外保护层,提高其稳定性,负载铂助剂后实现良好光电催化性能。
本发明的技术目的通过下述技术方案予以实现:
高效稳定的硅基光解水制氢电极,包括p型硅基底(p-Si)、硫化镉异质结层(CdS),二氧化钛保护层(TiO2)和铂(助)催化剂(Pt),在p型硅基底(p-Si)上化学沉积硫化镉异质结层,在硫化镉异质结层上原子层沉积二氧化钛保护层,在二氧化钛保护层上光电沉积铂纳米颗粒,作为铂催化剂(Pt)。
在上述技术方案中,p型硅基底为p型单晶(100)硅片,单面抛光,厚度300—800μm,优选500—800μm。
在上述技术方案中,铂纳米颗粒粒径为30—70nm,优选40—50nm。
在上述技术方案中,二氧化钛保护层旨在覆盖和保护硫化镉异质结层,以表面光腐蚀,需要均匀覆盖在硫化镉异质结层上,厚度为5~20nm,优选10—20nm。
在上述技术方案中,硫化镉异质结层均匀覆盖在p型硅基底上,以与p型硅基底形成硅—硫化镉异质结,其厚度为50—100nm,优选80—100nm。
在进行制备时,按照下述步骤进行:
步骤1,在硅片化学沉积硫化镉异质结层
将硅片垂直悬入前驱体溶液中进行化学沉积,前驱体溶液为硫酸镉和硫脲的水溶液并加入氨水混合均匀,其中硫酸镉为0.5—1质量份、硫脲为1—1.5质量份、去离子水为150—200体积份,氨水为20—25体积份,质量百分数为25%~28%(NH3/氨和水的质量之和);
在步骤1中,硫酸镉为0.5—0.7质量份、硫脲为1—1.2质量份、去离子水为180—200体积份,氨水为20—25体积份,每一质量份为1g,每一体积份为1ml。
在步骤1中,将配置好的前驱体溶液在70—80℃下水浴条件下搅拌预热1—5min后,再将Si片进行化学沉积,沉积时间为5—30min,优选10—20min。
在步骤1中,将化学沉积完毕的硅片从前驱体中迅速拿出,用去离子水冲洗掉表面的CdS,并将沉积好的Si片用N2吹干,装入样品盒中标记,用真空包装机抽取出空气保存备用。
步骤2,以原子层沉积仪器在已经化学沉积硫化镉异质结层上原子层沉积二氧化钛保护层,二氧化钛前驱体为钛酸四异丙酯,利用其与超纯水反应生成二氧化钛保护层;
在步骤2中,原子层沉积温度为150—300摄氏度,优选200—270摄氏度。
在步骤2中,选用的原子层沉积设备,如中国专利“一种原子层沉积设备”(申请号为201420770964X,申请日为2014年12月9日,授权公告日为2015年6月10日)记载,将二氧化钛前驱体钛酸四异丙酯和超纯水作为反应溶液,采用五氧化二钽原子层薄膜的生长制备工艺参数即可实现二氧化钛原子层的生长。
步骤3,将经步骤2已经化学沉积硫化镉异质结层和原子层沉积二氧化钛保护层的硅片进行电极封装,以使二氧化钛保护层裸露在外并沉积元素铂(作为铂助剂),采用标准三电极装置进行阴极光电沉积,将硅片作为工作电极,铂片电极作为对电极,银/氯化银电极作为参比电极,pH=7且浓度5—10mM氯铂酸钾的水溶液,为阴极电沉积过程的电沉积溶液。
在步骤3中,电沉积参数:在+0.1—0.5V(相对于银/氯化银电极)电压下沉积至少1min,优选1—10min,取出,去离子水冲洗干净,氮气吹干备用。
在进行制备时,将购买的硅片进行清洗—将p-Si成品切割成若干个2cm×2cm小正方形,第一步,在85℃下的食人鱼溶液(V浓硫酸:V浓过氧化氢=3:1)中浸泡10min,用去离子水冲洗干净,N2吹干,以除去Si片表面的有机污染物;第二步,再将硅片依次放置体积百分数1%HF水溶液中浸泡2min,用去离子水冲洗干净,N2吹干,此步骤可以除去SiO2及附带金属;第三步,为了进一步彻底清除Si片上的有机物和重金属,将Si片浸泡在75℃的RCAII号溶液(V浓过氧化氢:V浓盐酸:V水=1:1:6)中15min,用去离子水冲洗干净,N2吹干,备用,浓硫酸的质量百分数为98wt%,浓过氧化氢为体积百分数30wt%的过氧化氢的水溶液,浓盐酸为质量百分数38%的氯化氢的水溶液。
在进行制备时,在化学沉积硫化镉异质结层和原子层沉积二氧化钛保护层后,对硅片试样进行电极封装,以使硅片上硫化镉异质结层和二氧化钛保护层裸露在外,作为工作电极并沉积元素铂——将所制备硅片试样全部使用超纯水进行冲洗并用氮气枪吹干,裁剪宽1cm的铜片若干,用牙签取少许铟镓合金在硅片背面涂抹均匀,然后将硅片和铜片粘合在一起,随后将其放置在载玻片上,利用适量环氧树脂AB结构胶,将硅片四周封好,通风橱内风干12h或80℃烘箱内烘干2h,封装过程结束。
采用SEM和XRD进行分析表征,如附图所示,掠角XRD衍射图谱,入射角度为3°,分别说明硅电极,硅/硫化镉电极,硅/氧化钛电极,硅/硫化镉/氧化钛电极的物性,可以明显看出硫化镉存在明显结晶性,成闪锌矿相,并且高温270度沉积的氧化钛也存在明显锐钛矿结晶性质,且化学沉积硫化镉异质结层和原子层沉积二氧化钛保护层形成很好连接结构,即本发明的高效稳定的硅基光解水制氢电极作为工作电极,在光解水制氢中的应用。
本发明为了解决硅电极材料光生电压不足、不稳定的问题,取代复杂昂贵、高耗能的pn+、MIS制备工艺,同时利用硅电极良好的吸光性能和电荷迁移能力,设计一种高效稳定的新型硅基光解水制氢电极,包括硅片基底表面清洗,降低氧化硅的厚度;化学浴沉积CdS,提升光生电压;利用氧化钛材料作为外保护层,提高其稳定性;最后表面负载铂助催化剂(Pt),加速表面反应,减小过电位。试验表明,该电极起始电位在0.42V vs RHE,在0V vsRHE时,负载铂助剂后光电流最高达到21.3—21.9mA cm-2,能量转换效率可达2.01—2.07%,可稳定1h。
与现有技术相比,本发明的有益效果是:
(一)本发明通过自制含磷硅乳胶掺杂剂,在p型硅表面形成重掺杂,有效提升硅电极的光生电压,同时,相对于气相掺杂,无毒,少污染,操作过程简单,无需大型仪器设备,经济可行,并且制备过程可控性强,重复性好。
(二)本发明通过原子层沉积的方法在单晶硅电极上沉积二氧化钛保护层,光生电子传导提供了有效传输路径,有效的抑制了电子-空穴对的复合,从而提高了光电化学池光解水制氢活性,增强了单晶硅电极的稳定性。
(三)本发明通过光电沉积铂颗粒的方法,有效增大电极表面反应速率,提高了材料的光解水效率。
(四)本发明的p-Si/CdS/TiO2/Pt电极能够作为一种高效的光电阴极材料,可用于光电化学池光解水制氢,高效地将太阳能转化为清洁能源,有效缓解当今化石燃料短缺、环境污染严重的问题。
附图说明
图1为本发明制氢电极的结构示意图。
图2为本发明中不同电极的电流电位活性曲线,其中横坐标电压为与标准氢电极相比的电位,纵坐标为电流密度,曲线1为p-Si/Pt,2为p-Si/CdS/Pt,3为本发明的p-Si/CdS/TiO2/Pt。
图3为本发明中不同电极的电流时间稳定性曲线,其中测试条件为电极恒电位(0Vvs.RHE),曲线1为p-Si/Pt,2为p-Si/CdS/Pt,3为本发明的p-Si/CdS/TiO2/Pt。
图4为本发明中不同电极的光电转换效率图,其中横坐标电压为与标准氢电极相比的电位,曲线1为p-Si/Pt,2为p-Si/CdS/Pt,3为本发明的p-Si/CdS/TiO2/Pt。
图5为本发明制备的硅片上沉积CdS和二氧化钛的SEM照片,其中(1)为表面照片,(2)为断面照片。
图6为本发明制备方法中各个步骤产物的XRD测试谱图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。所用硅片为p型单晶(100)硅片,单面抛光,厚度500μm,购于合肥科晶材料技术有限公司,并在使用之前进行清洗。浓硫酸的质量百分数为98wt%,浓过氧化氢为体积百分数30wt%的过氧化氢的水溶液,浓盐酸为质量百分数38%的氯化氢水溶液,浓氨水的质量百分数为25wt%,氢氟酸质量百分数为40%。选用的原子层沉积设备,如中国专利“一种原子层沉积设备”(申请号为201420770964X,申请日为2014年12月9日,授权公告日为2015年6月10日)记载,将二氧化钛前驱体钛酸四异丙酯和超纯水作为反应溶液,采用五氧化二钽原子层薄膜的生长制备工艺参数即可实现二氧化钛原子层的生长。
实施例1:
(1)硅片清洗
将p-Si成品切割成若干个2cm×2cm小正方形。
a)在85℃下的食人鱼溶液(V浓硫酸:V浓过氧化氢=3:1)中浸泡10min,用去离子水冲洗干净,N2吹干,以除去Si片表面的有机污染物;
b)将硅片依次放置体积百分数1%HF的水溶液中浸泡2min,用去离子水冲洗干净,N2吹干,此步骤可以除去SiO2及附带金属;
c)为了进一步彻底清除Si片上的有机物和重金属,将Si片浸泡在75℃的RCAII号溶液(V浓过氧化氢:V浓盐酸:V=1:1:6)中15min,用去离子水冲洗干净,N2吹干,备用。
(2)硫化镉层的制备
a)前驱体溶液配制:取0.625g硫酸镉(CdSO4),溶于20mL去离子水,即硫酸镉浓度为0.015mol/L,将1.1418g硫脲溶于10mL去离子水,即硫脲浓度为1.5mol/L加入25mL浓氨水,再加入150mL去离子水,溶液搅拌均匀备用;
b)将配置好的前驱体溶液在70℃下水浴条件下搅拌预热1min,再将清洗过的Si片垂直悬入前驱体溶液中,计时沉积12min后,迅速拿出,用去离子水冲洗掉表面的CdS,并将沉积好的Si片用N2吹干,装入样品盒中标记,用真空包装机抽取出空气保存备用。
(3)保护层的制备
采用自制原子层沉积仪器(ALD)沉积氧化钛10nm,沉积温度为270℃。
(4)铂助剂的沉积
采用标准三电极装置进行阴极光电沉积步骤。将硅电极作为工作电极,铂片电极作为对电极,银/氯化银电极作为参比电极。将5mM氯铂酸钾溶液(pH=7)为阴极电沉积过程的电沉积溶液。在-0.6V(相对于银/氯化银电极)电压下沉积60s,取出,去离子水冲洗干净,氮气吹干备用。
实施例1的光电流密度-电势、光电流密度-时间曲线(恒电位+200mV vs标准氢电极)曲线图如说明书附图所示。
实施例2:
(1)硅片清洗
a)同实施例1;
b)将硅片依次放置体积浓度1%HF溶液中浸泡1min,用去离子水冲洗干净,N2吹干,此步骤可以除去SiO2及附带金属。
c)同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备同实施例1;
(4)铂助剂的沉积同实施例1。
实施例3:
(1)硅片清洗
a)同实施例1;
b)将硅片依次放置体积浓度1%HF溶液中浸泡3min,用去离子水冲洗干净,N2吹干,此步骤可以除去SiO2及附带金属。
c)同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备同实施例1;
(4)铂助剂的沉积同实施例1。
实施例4:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备
a)前驱体溶液配同实施例1;
b)硫化镉沉积时间6min,其余同实施例1。
(3)保护层的制备同实施例1;
(4)铂助剂的沉积同实施例1。
实施例5:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备
a)前驱体溶液配同实施例1;
b)硫化镉沉积时间18min,其余同实施例1。
(3)保护层的制备同实施例1;
(4)铂助剂的沉积同实施例1。
实施例6:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备
采用自制原子层沉积仪器(ALD)沉积氧化钛5nm,沉积温度为270℃。
(4)铂助剂的沉积同实施例1。
实施例7:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备
采用自制原子层沉积仪器(ALD)沉积氧化钛20nm,沉积温度为270℃。
(4)铂助剂的沉积同实施例1。
实施例8:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;。
(3)保护层的制备
采用自制原子层沉积仪器(ALD)沉积氧化钛10nm,沉积温度为150℃。
(4)铂助剂的沉积同实施例1。
实施例9:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备
采用自制原子层沉积仪器(ALD)沉积氧化钛10nm,沉积温度为200℃。
(4)铂助剂的沉积同实施例1。
实施例10:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备同实施例1
(4)铂助剂的沉积
采用标准三电极装置进行阴极光电沉积步骤。将硅电极作为工作电极,铂片电极作为对电极,银/氯化银电极作为参比电极。将5mM氯铂酸钾溶液(pH=7)为阴极电沉积过程的电沉积溶液。在-0.6V(相对于银/氯化银电极)电压下沉积30s,取出,去离子水冲洗干净,氮气吹干备用。
实施例11:
(1)硅片清洗同实施例1;
(2)硫化镉层的制备同实施例1;
(3)保护层的制备同实施例1
(4)铂助剂的沉积
采用标准三电极装置进行阴极光电沉积步骤。将硅电极作为工作电极,铂片电极作为对电极,银/氯化银电极作为参比电极。将5mM氯铂酸钾溶液(pH=7)为阴极电沉积过程的电沉积溶液。在-0.6V(相对于银/氯化银电极)电压下沉积90s,取出,去离子水冲洗干净,氮气吹干备用。
实施例12:复合硅电极用于光电化学池光解水制氢
将实施例1-11所制备的硅电极作为工作电极,铂片电极作为对电极,银/氯化银电极为参比电极组装成光电化学池,进行光电性质及光解水制氢性能试。电解液为1mol/L的磷酸缓冲液,工作电极光照面积为0.2-0.5cm2
采用300W的氙灯搭配AM 1.5G滤光片获得模拟太阳光,光电化学池工作电极处光强度经辐照计测试后为100mW/cm2
进行光电化学性能测试,在相对于标准氢电极0V下,实施例1-11所制备的复合硅电极的光电流密度如下表所示。
Figure GDA0002713819510000101
上述测定结果表明,表面重掺杂的程度以及铂负载的量影响硅电极的起始电位,氧化钛的厚度影响电极的稳定性。附图中曲线1和2均采用本发明制备工艺进行制备,直接在硅片上沉积铂形成p-Si/Pt,在硅片上设置CdS层后再沉积铂,形成p-Si/CdS/Pt。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (11)

1.高效稳定的硅基光解水制氢电极,其特征在于,包括p型硅基底、硫化镉异质结层,二氧化钛保护层和铂催化剂,在p型硅基底上化学沉积硫化镉异质结层,在硫化镉异质结层上原子层沉积二氧化钛保护层,在二氧化钛保护层上电沉积铂纳米颗粒,作为铂催化剂;p型硅基底为p型单晶(100),单面抛光,厚度300—800μm;铂纳米颗粒粒径为30—70nm;二氧化钛保护层旨在覆盖和保护硫化镉异质结层,需要均匀覆盖在硫化镉异质结层上,厚度为5~20nm;硫化镉异质结层均匀覆盖在p型硅基底上,以与p型硅基底形成硅—硫化镉异质结,其厚度为50—100nm。
2.根据权利要求1所述的高效稳定的硅基光解水制氢电极,其特征在于,p型硅基底厚度为500—800μm。
3.根据权利要求1所述的高效稳定的硅基光解水制氢电极,其特征在于,铂纳米颗粒粒径为40—50nm。
4.根据权利要求1所述的高效稳定的硅基光解水制氢电极,其特征在于,二氧化钛保护层厚度为10—20nm。
5.根据权利要求1所述的高效稳定的硅基光解水制氢电极,其特征在于,硫化镉异质结层厚度为80—100nm。
6.如权利要求1—5之一所述的高效稳定的硅基光解水制氢电极作为工作电极,在光解水制氢中的应用。
7.高效稳定的硅基光解水制氢电极的制备方法,其特征在于,按照下述步骤进行:
步骤1,在p型硅基底化学沉积硫化镉异质结层
将p型硅基底垂直悬入前驱体溶液中进行化学沉积,前驱体溶液为硫酸镉和硫脲的水溶液并加入氨水混合均匀,其中硫酸镉为0.5—1质量份、硫脲为1—1.5质量份、去离子水为150—200体积份,氨水为20—25体积份,质量百分数为25%~28%,每一质量份为1g,每一体积份为1ml;
步骤2,以原子层沉积仪器在已经化学沉积硫化镉异质结层上原子层沉积二氧化钛保护层,二氧化钛前驱体为钛酸四异丙酯,利用其与超纯水反应生成二氧化钛保护层;
步骤3,将经步骤2已经化学沉积硫化镉异质结层和原子层沉积二氧化钛保护层的p型硅基底进行电极封装,以使二氧化钛保护层裸露在外并沉积元素铂,采用标准三电极装置进行阴极电沉积,将p型硅基底作为工作电极,铂片电极作为对电极,银/氯化银电极作为参比电极,pH=7且浓度5—10mM氯铂酸钾的水溶液,为阴极电沉积过程的电沉积溶液。
8.根据权利要求7所述的高效稳定的硅基光解水制氢电极的制备方法,其特征在于,在步骤1中,硫酸镉为0.5—0.7质量份、硫脲为1—1.2质量份、去离子水为180—200体积份,氨水为20—25体积份,每一质量份为1g,每一体积份为1ml。
9.根据权利要求7所述的高效稳定的硅基光解水制氢电极的制备方法,其特征在于,在步骤1中,将配置好的前驱体溶液在70—80℃下水浴条件下搅拌预热1—5min后,再将p型硅基底进行化学沉积,沉积时间为5—30min。
10.根据权利要求7所述的高效稳定的硅基光解水制氢电极的制备方法,其特征在于,在步骤2中,原子层沉积温度为150—300摄氏度。
11.根据权利要求7所述的高效稳定的硅基光解水制氢电极的制备方法,其特征在于,在步骤3中,电沉积参数:相对于银/氯化银电极,在+0.1—0.5V电压下沉积1—10min,取出,去离子水冲洗干净,氮气吹干备用。
CN201710582109.4A 2017-07-17 2017-07-17 高效稳定的硅基光解水制氢电极及其制备方法和应用 Active CN109267096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710582109.4A CN109267096B (zh) 2017-07-17 2017-07-17 高效稳定的硅基光解水制氢电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710582109.4A CN109267096B (zh) 2017-07-17 2017-07-17 高效稳定的硅基光解水制氢电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109267096A CN109267096A (zh) 2019-01-25
CN109267096B true CN109267096B (zh) 2021-02-02

Family

ID=65152708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710582109.4A Active CN109267096B (zh) 2017-07-17 2017-07-17 高效稳定的硅基光解水制氢电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109267096B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876828B (zh) * 2019-01-29 2020-06-23 浙江大学 一种TNT/CdS/TiO2/Pt核壳结构纳米管及其制备方法
CN110923817A (zh) * 2019-11-21 2020-03-27 天津大学 具有均匀pn同质结层的金字塔硅基光阴极及其制备方法
CN111139449A (zh) * 2019-12-31 2020-05-12 深圳信息职业技术学院 氧化锌基透明电极光电探测器及其制备方法
CN113893869A (zh) * 2020-07-06 2022-01-07 吕锋仔 半导体异质结/同质结及其制备方法和具有其的光催化剂
CN111893512B (zh) * 2020-08-10 2021-08-06 浙江大学 一种硫化锑基异质结光阴极及其制备方法和用途
CN112126945B (zh) * 2020-09-28 2021-09-07 上海交通大学 一种磷化物修饰的硅基光电阴极材料及其制备方法
CN112176358B (zh) * 2020-10-10 2022-11-01 天津大学 Pn结型硅电极及其制备方法、光电阴极和应用
CN114108037B (zh) * 2021-11-22 2023-03-03 湖南大学 光电阴极及其制备方法、金属锂提取方法及提取装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087710B (zh) * 2013-01-30 2014-12-31 昆明理工大学 一种多孔硅基CdS量子点复合材料的制备方法
US20140342254A1 (en) * 2013-05-17 2014-11-20 Sunpower Technologies Llc Photo-catalytic Systems for Production of Hydrogen
CN103623869A (zh) * 2013-11-04 2014-03-12 江苏大学 一种温敏性表面分子印记负载型复合光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se2 Photocathode via TiO2-Coupled Buffer Layers;Bonhyeong Koo等;《ACS Applied Materials & Interfaces》;20170126;第5279-5287页 *

Also Published As

Publication number Publication date
CN109267096A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
CN109267096B (zh) 高效稳定的硅基光解水制氢电极及其制备方法和应用
Bagal et al. Cu2O as an emerging photocathode for solar water splitting-A status review
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Sheng et al. Quantum dot-sensitized hierarchical micro/nanowire architecture for photoelectrochemical water splitting
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN108796532B (zh) 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用
Liu et al. PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties
Sajjadizadeh et al. Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure
US20110240108A1 (en) Method To Synthesize Colloidal Iron Pyrite (FeS2) Nanocrystals And Fabricate Iron Pyrite Thin Film Solar Cells
CN105039938B (zh) 一种单源前驱体制备α-三氧化二铁薄膜的光电极的方法
Sharma et al. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films
Bielinski et al. Atomic layer deposition of bismuth vanadate core–shell nanowire photoanodes
CN110923817A (zh) 具有均匀pn同质结层的金字塔硅基光阴极及其制备方法
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
Zhao et al. Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO2 passivation on ZnO nanorod arrays
Lee et al. Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells
CN109267097B (zh) 氧化钽保护的p型硅光解水制氢电极及其制备方法
Qiao et al. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution
CN105568313A (zh) 3d分枝状半导体纳米异质结光电极材料及其制备方法
Dhas et al. Nebulizer spray-deposited CuInGaS2 thin films, a viable candidate for counter electrode in dye-sensitized solar cells
Wang et al. Stability of Photocathodes: A Review on Principles, Design, and Strategies
Zhao et al. InGaN/Cu2O heterostructure core-shell nanowire photoanode for efficient solar water splitting
Shilpa et al. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review
CN107841763B (zh) 一种基于表面氢氧壳层调控的光电极及其制备方法
CN102324306A (zh) 银纳米线掺杂的染料敏化太阳能电池工作电极及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant