WO2022016768A1 - 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法 - Google Patents

一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法 Download PDF

Info

Publication number
WO2022016768A1
WO2022016768A1 PCT/CN2020/133548 CN2020133548W WO2022016768A1 WO 2022016768 A1 WO2022016768 A1 WO 2022016768A1 CN 2020133548 W CN2020133548 W CN 2020133548W WO 2022016768 A1 WO2022016768 A1 WO 2022016768A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
organic pollutants
photo
bivo
electron acceptors
Prior art date
Application number
PCT/CN2020/133548
Other languages
English (en)
French (fr)
Inventor
江心白
施鹤飞
沈锦优
陈丹
侯成
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to US17/798,210 priority Critical patent/US20230119366A1/en
Publication of WO2022016768A1 publication Critical patent/WO2022016768A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to sewage treatment technology, and relates to a method for biologically enhanced treatment of refractory organic pollutants based on photo-excited holes as electron acceptors.
  • Biological treatment technology has a wide range of applications in the field of industrial wastewater treatment due to its convenient operation, low cost and environmental friendliness.
  • aerobic biotechnology has the characteristics of high treatment efficiency, short degradation period and good effluent quality.
  • the pollutants contained in industrial wastewater often have the characteristics of high concentration, high toxicity and difficult biodegradation.
  • VOCs volatile organic pollutants
  • Anaerobic biotechnology has the characteristics of high processing load and strong anti-load capacity, but the shortcomings of long degradation cycle limit the application and development of anaerobic biotechnology.
  • anoxic biotechnology is widely used in the field of wastewater treatment as an efficient biological treatment technology.
  • Organic pollutants are consumed as carbon sources and organic electron donors, and also provide energy for microbial growth and metabolism.
  • anoxic biotechnology requires suitable and sufficient electron acceptors (eg NO 3 - ) in the degradation process, and adding electron acceptors during the actual wastewater treatment will inevitably lead to an increase in treatment costs. Therefore, finding suitable and inexpensive electron acceptors has become an unavoidable problem for the further development of anoxic biotechnology in wastewater treatment.
  • the present invention couples semiconductor photocatalysis technology and biological treatment technology, using The synergistic reaction of semiconductor materials and microorganisms enhances the enhanced degradation of organic pollutants in wastewater.
  • Photo-excited holes act as electron acceptors to enhance the degradation of organic pollutants by biological systems, while holes are continuously consumed as electron acceptors in the biodegradation process, avoiding the recombination of photo-excited electrons and holes, and improving the performance of the semiconductor interface.
  • the reaction efficiency is beneficial to improve the degradation of organic pollutants by the system.
  • the invention provides a method for bio-enhanced treatment of refractory organic pollutants based on photo-excited holes as electron acceptors, comprising the following steps:
  • the compound semiconductor@carrier material is placed in a reactor, and wastewater is introduced into the reactor inoculated with anaerobic sludge, so that the wastewater is immersed in the compound semiconductor@carrier material;
  • the compound semiconductor@carrier material includes a conductive material.
  • the conductive carrier has the characteristics of high surface area, good physical and chemical stability, non-toxic and harmless and good biocompatibility, and the function of loading the composite semiconductor material on the conductive carrier is as follows: it is convenient to construct the composite semiconductor material
  • the coupling interface with microorganisms avoids the loss of semiconductor materials and the degradation of catalytic performance. If the compound semiconductor material is directly added, the problems of deactivation of the catalytic activity of the semiconductor material and difficulty in recycling will arise.
  • the conductive carrier includes carbon paper or carbon felt.
  • the conductive carrier needs to meet the requirements of a certain thickness. Too thick will easily lead to excessive deposition of semiconductor materials on the conductive carrier, resulting in increased cost and reduced utilization of semiconductor materials. Too thin will easily lead to too low mechanical strength of the conductive carrier, which cannot be tolerated. Water impact.
  • the compound semiconductor@support material includes any one of BiVO 4 /FeOOH@CP, CdS/gC 3 N 4 @GF or BiVO 4 /gC 3 N 4 @GF.
  • the reactor includes a quartz reactor or a glass reactor, preferably a quartz reactor in order to have better light transmittance
  • the light source for providing visible light includes a light source that can be natural light or a light source capable of simulating visible light, including LEDs lamps and xenon lamps.
  • the compound semiconductor@support material is BiVO 4 /FeOOH@CP
  • the preparation process of BiVO 4 /FeOOH@CP is as follows: firstly, BiOI@CP is prepared by electrodeposition; BiOI@CP is converted into BiVO 4 @ CP, and then the BiVO 4 @CP was immersed in FeCl 3 ⁇ 6H 2 O solution for a period of time and washed with deionized water to obtain BiVO 4 /FeOOH@CP.
  • the inoculation concentration of the sludge is about 3.0-6.0 g/L, and the acclimation and cultivation time of the anaerobic sludge shall not be less than 30 days.
  • the electrodeposition method comprises the following steps:
  • the mixture was added to a three-electrode system and electrodeposited at the cathodic potential for a period of time to electrodeposit BiOI onto carbon paper to prepare BiOI@CP.
  • the steps of converting the BiOI@CP into BiVO 4 @CP are as follows:
  • the VO(acac) 2 /DMSO solution was coated on BiOI@CP and heated to a certain temperature at a certain heating rate for a period of time; after treatment with NaOH to remove excess V 2 O 5 , BiVO 4 @CP was obtained.
  • the wastewater includes refractory organic pollutants, Na 2 HPO 4 ⁇ 12H 2 O, KH 2 PO 4 , MgSO 4 ⁇ 7H 2 O, CaCl 2 and a mixed solution of trace elements.
  • the refractory organic pollutants include nitrogen-containing heterocyclic organic compounds (such as pyridine), chlorinated organic compounds (such as chlorophenol) and antibiotic organic compounds (such as tetracycline).
  • nitrogen-containing heterocyclic organic compounds such as pyridine
  • chlorinated organic compounds such as chlorophenol
  • antibiotic organic compounds such as tetracycline
  • pyridine is selected as the target pollutant because pyridine is widely used as a solvent and intermediate commonly used in industry in the fields of drugs, pesticides, paints, dyes, explosives and petrochemicals, so industrial wastewater often contains pyridine.
  • Pyridine has been listed as a priority pollutant by the U.S. Environmental Protection Agency due to its toxicity and teratogenicity, which adversely affects human health and environmental quality. Once the industrial wastewater containing pyridine is discharged into the environment without treatment, it will cause irreversible consequences. Therefore, there is an urgent need to develop an efficient and economical treatment method to remove pyridine from wastewater.
  • a 150mL quartz reactor (4.5 ⁇ 4.5 ⁇ 7.5cm) is used for microbial domestication and cultivation and organic pollutant degradation, and a 150W LED lamp is used as a visible light source.
  • Carbon paper CP, 4 ⁇ 4 cm
  • the BiVO 4 /FeOOH semiconductor material was fixed on the carbon paper carrier.
  • the preparation method of BiVO 4 /FeOOH@CP specifically includes the following steps:
  • the mixture was added to a three-electrode system and electrodeposited at a cathodic potential of -0.1 V (vs. Ag/AgCl) for 10 minutes to electrodeposit BiOI onto the CP.
  • the specific construction method of the photo-excited hole-enhanced bioreactor includes:
  • the anaerobic sludge was inoculated into the quartz reactor, the concentration of mixed liquid suspended solids (MLSS) was 3.0-6.0 g/L, and the semiconductor material was immersed and fixed in the reactor.
  • MMS mixed liquid suspended solids
  • Simulated wastewater components organic pollutants, Na 2 HPO 4 ⁇ 12H 2 O 3.06g/L, KH 2 PO 4 ⁇ 0.76g/L, MgSO 4 ⁇ 7H 2 O 0.2g/L, CaCl 2 0.05g/L, and 1mL/L mixed solution of trace elements
  • the components of mixed solution of trace elements include: ZnSO 4 ⁇ 7H 2 O 0.01g/L, MnCl 2 ⁇ 4H 2 O 0.003g/L, H 3 BO 3 0.03g/L, CoCL 2 ⁇ 6H 2 O 0.02g/L, CuCl 2 2H 2 O 0.001g/L, NiCl 2 6H 2 O 0.002g/L, Na 2 MoO 4 2H 2 O 0.003g/L, EDTA 0.5g/L, FeSO 4 ⁇ 7H 2 O 0.2 g/L.
  • the carbon and nitrogen elements required for photo-excited holes to enhance the growth and metabolism of microorganisms in biological systems are provided by organic pollutants.
  • the method for bio-enhanced treatment of refractory organic pollutants based on photo-excited holes as electron acceptors of the present invention uses semiconductor material curing technology to fix BiVO 4 /FeOOH semiconductor material on a conductive carrier to construct a compound semiconductor, and uses The oxygen sludge acclimation method makes the surface of the compound semiconductor support biofilm, so that the BiVO 4 /FeOOH semiconductor material can be effectively combined with the biological system, and the photo-excited holes are used as electron acceptors to enhance the degradation of organic pollutants by the biological system.
  • the method for bio-enhanced treatment of refractory organic pollutants based on photo-excited holes as electron acceptors of the present invention does not simply combine semiconductor materials and biological treatment technologies.
  • the mechanism simultaneously improves the processing capacity of the device.
  • the photo-excited holes as electron acceptors in the microbial degradation process not only improve the biodegradation effect, but also enhance the microbial activity, enhance the stability of the enhanced system and the ability to resist load shocks.
  • Photo-excited holes as electron acceptors are consumed in the biodegradation process and also effectively inhibit the recombination of photo-excited electron-holes, which greatly improves the reaction efficiency at the interface of semiconductor materials, thereby helping to improve the overall degradation effect of the enhanced system. .
  • the method for bio-enhancing treatment of refractory organic pollutants based on photo-excited holes as electron acceptors of the present invention utilizes photo-excited holes as electron acceptors to enhance the degradation of organic pollutants by biological systems, and does not require additional additions Electron acceptor, effectively saving cost.
  • the method for bio-enhanced treatment of refractory organic pollutants based on photoexcited holes as electron acceptors of the present invention is different from traditional semiconductor materials, and the semiconductor materials used in the present invention have good stability and biocompatibility, Without reducing microbial activity, biofilms can grow stably on the surface of semiconductor materials.
  • the bio-enhanced treatment method for refractory organic pollutants based on photo-excited holes as electron acceptors of the present invention adopts the semiconductor material curing technology to fix the BiVO 4 /FeOOH semiconductor material on the carbon paper carrier; Compared with homogeneous technology, it solves the problems of difficult recycling of semiconductor materials, large dosage and high cost.
  • the constructed photo-excited hole-enhanced biological system has excellent anti-load ability, even when degrading high concentrations of pyridine The system did not collapse even at the time, and the maximum processing load was as high as 2.34mol m -3 ⁇ d -1 .
  • the excellent anti-loading ability of the light-excited hole-enhanced biological system can adapt to the complex and changeable industrial wastewater, which makes it have great potential in the treatment of actual industrial wastewater.
  • Figure 1 is a schematic structural diagram of a photo-excited hole-enhanced bioreactor
  • Fig. 2 is the removal effect of different experimental groups to pyridine
  • Fig. 3 is the removal effect of different experimental groups on total organic carbon (TOC);
  • Fig. 4 is the generation effect of ammonia nitrogen in different experimental groups
  • Figure 5 is the effect of different masking agents on the degradation effect of photoexcited holes enhancing biological system
  • Fig. 6 is the removal effect of photo-excited hole-enhanced biological system for different concentrations of pyridine
  • the method for bio-enhanced treatment of refractory organic pollutants based on photoexcited holes as electron acceptors includes the following operations:
  • the schematic diagram of the structure of the photo-excited hole-enhanced bioreactor is shown in Figure 1.
  • the enhanced biological system is made by immersing carbon paper immobilized with BiVO 4 /FeOOH composite semiconductor material in a quartz reactor 2.
  • the quartz reactor specifications It is 4.5 ⁇ 4.5 ⁇ 7.5cm and the volume is 150mL.
  • the present invention adopts the semiconductor immobilization technology to fix the BiVO 4 /FeOOH composite semiconductor material 4 on the carbon paper carrier (CP, 4 ⁇ 4 cm) to form BiVO 4 /FeOOH@CP; and then inoculate the anaerobic sludge into the reactor in advance. , using sludge acclimation, the BiVO4/FeOOH composite semiconductor surface is loaded with biofilm 3, and the photo-excited hole-enhanced biological system is constructed.
  • the anaerobic sludge is inoculated into the quartz reactor, the concentration of the mixed liquid suspended solids (MLSS) is 3.0-6.0g/L, and the semiconductor material is immersed and fixed in the reactor. After two days, the supernatant was removed and 125 mL of freshly prepared simulated wastewater was added to the reactor to start a new batch. After acclimation culture for not less than 30 days, biofilms grow and enrich on the surface of the semiconductor material to remove excess suspended sludge in the reactor.
  • MMS mixed liquid suspended solids
  • a 150W LED lamp tube 1 was used as the visible light source, and the above-mentioned enhanced system was used to treat the refractory organic matter in the wastewater under illumination conditions.
  • Simulated wastewater components organic pollutants, Na 2 HPO 4 ⁇ 12H 2 O 3.06g/L, KH 2 PO 4 ⁇ 0.76g/L, MgSO 4 ⁇ 7H 2 O 0.2g/L, CaCl 2 0.05g/L, and 1mL/L mixed solution of trace elements
  • the components of mixed solution of trace elements include: ZnSO 4 ⁇ 7H 2 O 0.01g/L, MnCl 2 ⁇ 4H 2 O 0.003g/L, H 3 BO 3 0.03g/L, CoCL 2 ⁇ 6H 2 O 0.02g/L, CuCl 2 2H 2 O 0.001g/L, NiCl 2 6H 2 O 0.002g/L, Na 2 MoO 4 2H 2 O 0.003g/L, EDTA 0.5g/L, FeSO 4 ⁇ 7H 2 O 0.2 g/L.
  • the carbon and nitrogen elements required for photo-excited holes to enhance the growth and metabolism of microorganisms in biological systems are provided by organic pollutants.
  • Example 2 This example is basically the same as Example 1.
  • pyridine simulated wastewater is added to the photoexcited hole-enhanced biological system, and the sequence batch degradation is carried out with a cycle of two days.
  • Pyridine simulated wastewater contains pyridine, buffer solution, inorganic salts, trace elements, etc.
  • the reactor configured with blank carbon paper to run in the light but not loaded with biofilm was named R con ;
  • the biofilm reactor was named R bio ;
  • the reactor configured with semiconductor material to operate under light but without biofilm was named R pho ;
  • the reactor configured with semiconductor material and biofilm loaded but not operated under light was named R pho -bio-dark ;
  • the reactor configured to run the semiconductor material under light and load the biofilm is named R pho-bio .
  • R con and R bio have almost no degradation effect on pyridine, and the pyridine concentration is only reduced from 150 mg/L to 133 and 137 mg/L, which indicates that pyridine will not degrade by itself in light, and the biological effect of pyridine degradation is also Minimal.
  • R pho shows a relatively obvious removal effect on pyridine, and the pyridine concentration is reduced from 150mg/L to 100mg/L, which shows that the semiconductor material BiVO 4 /FeOOH selected in the present invention has a degrading effect on pyridine under light, but far less The removal effect of R pho-bio is remarkable.
  • FIG. 3 shows the removal effect of total organic carbon (TOC) by different experimental groups; the reactor configured with blank carbon paper to run under light but without biofilm loaded is named R con ; the reactor configured with blank carbon paper to run under light and loaded with biofilm is named R con .
  • the reactor was named R bio ; the reactor configured with semiconductor material to operate under light without biofilm was named R pho ; the reactor configured with semiconductor material and biofilm loaded but not under light was named R pho-bio -dark ; the reactor configured to run the semiconductor material under light and load the biofilm is named R pho-bio .
  • TOC Total organic carbon
  • pyridine removal showed similar trends. As shown in Figure 3, the removal of TOC by R con , R bio and R pho-bio-dark was almost negligible. R pho showed a certain removal effect on TOC, and the TOC concentration was reduced from 110mg/L to 80mg/L. R pho-bio showed the most excellent effect in TOC removal. After two days of degradation, the TOC concentration was reduced from 110mg/L to 13mg/L, and the TOC removal rate was as high as 88%. This indicates that the photoexcited hole-enhanced biological system can not only completely remove pyridine, but also maintain a significant mineralization ability.
  • Figure 4 is the generation effect of ammonia nitrogen in different experimental groups; the reactor configured with blank carbon paper to run under the light but without biofilm loaded is named R con ; the reactor configured with blank carbon paper to run under the light and loaded with biofilm is named as R bio ; a reactor configured with semiconductor material to operate under light but not loaded with biofilm was named R pho ; a reactor configured with semiconductor material and loaded with biofilm but not under light named R pho-bio-dark ; a semiconductor configured with a biofilm The reactor in which the material was run under light and loaded with biofilms was named R pho-bio .
  • the complete degradation of pyridine is usually accompanied by the formation of ammonia nitrogen, so the generation efficiency of ammonia nitrogen can be used as an important indicator for the complete degradation of pyridine.
  • no ammonia nitrogen generation was detected in R con , R bio , R pho-bio-dark and R pho during the whole degradation process, which once again confirmed that R con , R bio , R pho-bio-
  • the degradation effect of dark and R pho is not good.
  • semiconductors can be used to remove pyridine to a certain extent, the low mineralization rate and incomplete degradation are the main reasons for their limited applications.
  • the photoexcited hole-enhanced biological system has a significant removal effect on pyridine, while maintaining a very high mineralization ability.
  • the photo-excited hole-enhanced biological system can not only completely degrade pyridine, but also overcome the defects of low mineralization rate, low load of traditional biotechnology and slow degradation effect in traditional semiconductor photocatalysis technology.
  • the semiconductor immobilization technology adopted in the present invention solves the problems of high cost and difficult catalyst recovery.
  • the semiconductor material Under the excitation of light, the semiconductor material generates photo-excited electron-hole pairs, and the photo-excited electron-hole pairs can generate superoxide radicals and hydroxyl radicals with oxygen and water.
  • different masking agents were used to explore the role of photoexcited holes, superoxide radicals and hydroxyl radicals in photoexcited hole-enhanced biological systems.
  • Methanol (MET) and isopropanol (IPA) were used as a masking agent photoexcitation of the hole and hydroxyl radicals, superoxide radicals in order to explore the hole photoexcitation strengthening effect in biological systems, the solution with nitrogen (N 2) Blow off for 15 minutes to ensure the removal of possible dissolved oxygen in the system.
  • Figure 6 shows the removal effect of the photo-excited hole-enhanced biological system for different concentrations of pyridine; as shown in Figure 6, as the concentration of pyridine increases, although the degradation effect of the photo-excited hole-enhanced biological system decreases slightly, when the pyridine concentration increases When the concentration is as high as 450mg/L, the system can still maintain a high degradation effect (the removal rate of pyridine is 82%, the removal rate of TOC is 70% and the generation rate of ammonia nitrogen is 64%).
  • the photoexcited hole-enhanced biological system has excellent anti-loading ability, the system does not collapse even when degrading high concentrations of pyridine, and the maximum processing load is as high as 2.34mol m -3 ⁇ d -1 .
  • the excellent anti-loading ability of the light-excited hole-enhanced biological system can adapt to the complex and changeable industrial wastewater, which makes it have great potential in the treatment of actual industrial wastewater.
  • Example 2 This example is basically the same as Example 1.
  • CdS/gC 3 N 4 @GF was fixed in the reactor, and then chlorophenol simulated wastewater was added to the photo-excited hole-enhanced biological system for a period of two days. sequence batch degradation.
  • Chlorophenol simulated wastewater contains chlorophenol, buffer solution, inorganic salts, trace elements, etc.
  • the chlorophenol removal rate and TOC removal rate of R pho-bio are as high as 96% and 78%, respectively, which indicates that the photo-excited hole-enhanced biological system has a significant removal effect on chlorophenol, while maintaining a very high mineralization ability. .
  • Tetracycline simulated wastewater contains chlorophenol, buffer solution, inorganic salts, trace elements, etc.
  • the removal rate of tetracycline of R pho reached 78%, indicating that the structure of tetracycline was destroyed under the catalysis of semiconductor materials, but the removal rate of TOC was only 17%, indicating that the catalysis of semiconductor materials alone could not mineralize tetracycline. Its derived organic compounds can be obtained.
  • the tetracycline removal rate and TOC removal rate of R pho-bio were as high as 91% and 68%, respectively, indicating that the photo-excited hole-enhanced biological system has a significant removal effect on chlorophenols, while maintaining a high mineralization ability.
  • Examples 4 and 5 illustrate that the excellent degradation ability of the light-excited hole-enhanced biological system can be adapted to industrial wastewater with complex components, and undoubtedly has broad prospects in industrial practical wastewater treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法。包括以下步骤:1)将复合半导体@载体材料置于反应器中,向接种有厌氧污泥的反应器中导入废水,使废水浸没所述复合半导体@载体材料;所述复合半导体@载体材料包括导电载体以及导电载体上负载的复合半导体材料;2)对厌氧污泥进行驯化培养一段时间,使复合半导体材料的表面负载生物膜,构建光激发空穴强化生物反应器;3)利用所述反应器在光照条件下处理废水中难降解污染物。本方法将半导体光催化技术与生物处理技术耦合,利用半导体材料与微生物的协同反应加强对废水中有机污染物的强化降解,大大提高降解效率。

Description

一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法 技术领域
本发明属于污水处理技术,涉及一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法。
背景技术
生物处理技术由于其操作方便、成本低和环境友好的特点,在工业废水处理领域有着广泛的应用。好氧生物技术作为废水处理的常用技术之一,有着处理效率高、降解周期短和出水水质好等特点。但是工业废水含有的污染物常常具有浓度大、毒性大和难生物降解的特性,当工业废水中含有高浓度的挥发性有机污染物(VOCs)时,不仅容易导致好氧生物体系崩溃,同时也会造成污染物在空气中挥发。厌氧生物技术具有处理负荷高和抗负荷能力强的特点,但是降解周期长的缺点限制了厌氧生物技术的应用和发展。为了解决上述存在的问题,缺氧生物技术作为一种高效的生物处理技术被广泛应用在废水处理领域,有机污染物作为碳源和有机电子供体被消耗,同时也为微生物生长代谢提供能量。但是缺氧生物技术在降解过程中需要合适并充足的电子受体(如:NO 3 -),在实际废水处理的过程中投加电子受体势必导致处理成本的增加。因此,寻找合适且价格低廉的电子受体成为缺氧生物技术在废水处理方面进一步发展而无法回避的问题。
近年来,为了提高常规生化技术的废水处理效率,研究学者将生物处理技术与高级氧化技术结合构建了许多新型的反应体系,其中包括有将半导体材料投加至生物体系,在光照下半导体材料受激发产生光生电子空穴对,用于氧化还原反应,进而强化生物对有机物的降解。半导体材料因其可以将光能转化为化学能的特点,在杀菌、污水处理和光解水制氢等领域有广泛的应用前景。光激发空穴作为生物降解过程中的电子受体不需要额外进行投加,是强化厌氧生物降解的理想电子受体。截止到目前,已经有许多研究学者证明了半导体材料和微生物能够共存在同一体系内,并且由于其二者的协同效应可以极大地增强体系对污染物的降解效果。这无疑为构建半导体材料强化生物体系提供了充分的理论支持。
因此,基于现有技术的缺陷,亟需发明一种新的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法。
发明内容
1.要解决的问题
针对传统半导体光催化技术在处理难降解有机污染物时存在的效率低、成本高、催化剂回收困难,以及生物降解技术负荷低等问题,本发明将半导体光催化技术与生物处理技术进行耦合,利用半导体材料与微生物的协同反应加强对废水中有机污染物的强化降解。光激发空穴作为电子受体强化生物系统对有机污染物的降解,同时空穴作为生物降解过程中的电子受体不断被消耗,避免了光激发电子和空穴的复合,提高了半导体界面的反应效率,有利于提高体系对有机污染物的降解。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明提供了一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,包括以下步骤:
1-1)将复合半导体@载体材料置于反应器中,向接种有厌氧污泥的反应器中导入废水,使废水浸没所述复合半导体@载体材料;所述复合半导体@载体材料包括导电载体以及导电载体上负载的复合半导体材料;
1-2)对厌氧污泥进行驯化培养一段时间,使复合半导体材料的表面负载生物膜,构建光激发空穴强化生物反应器;
1-3)利用所述反应器在光照条件下处理废水中难降解污染物。
所述的导电载体具有较高的表面积,良好的物理化学稳定性,无毒无害以及良好的生物相容性的特点,将复合半导体材料负载在导电载体上的作用为:便于构建复合半导体材料与微生物之间的耦合界面,避免半导体材料流失以及催化性能降低。如果直接投加复合半导体材料,则会产生半导体材料催化活性失活以及回收困难的问题。
优选的方案,所述导电载体包括碳纸或碳毡。所述的导电载体需要满足一定的薄度的要求,太厚容易在导电载体上沉积过量的半导体材料导致成本增加以及半导体材料的利用率降低,太薄容易导致导电载体机械强度过低,承受不了水流冲击。
优选的方案,所述复合半导体@载体材料包括BiVO 4/FeOOH@CP、CdS/g-C 3N 4@GF或BiVO 4/g-C 3N 4@GF中的任意一种。
优选的方案,所述反应器包括石英反应器或玻璃反应器,为了具有更好的透光性,优选为石英反应器,提供可见光的光源包括可以是自然光照或能够模拟可见光的光源,包括LED灯以及氙灯。
优选的方案,所述复合半导体@载体材料为BiVO 4/FeOOH@CP,所述BiVO 4/FeOOH@CP制备过程如下:首先利用电沉积法制备BiOI@CP;将BiOI@CP转化为BiVO 4@CP,然后将所述的BiVO 4@CP浸没在FeCl 3·6H 2O溶液中一段时间,用去离子水洗净,得到 BiVO 4/FeOOH@CP。
优选的方案,所述污泥的接种浓度约为3.0~6.0g/L,所述厌氧污泥进行驯化培养的时间不得少于30天。
优选的方案,所述电沉积法包括以下步骤:
将Bi(NO 3) 3·5H 2O和KI溶解在去离子水中;用硝酸调节pH值,然后与对苯醌乙醇溶液混合一段时间,得到混合物;
将混合物添加到三电极系统中,在阴极电位下电沉积一段时间,将BiOI电沉积到碳纸上,制备成为BiOI@CP。
优选的方案,所述BiOI@CP转化为BiVO 4@CP的步骤如下:
将VO(acac) 2/DMSO溶液涂敷在BiOI@CP上,并以一定加热速率加热至一定温度,保持一段时间;用NaOH处理以除去过量的V 2O 5后,获得BiVO 4@CP。
优选的方案,所述废水中包括难降解有机污染物、Na 2HPO 4·12H 2O、KH 2PO 4、MgSO 4·7H 2O、CaCl 2以及微量元素混合溶液。
优选的方案,所述难降解有机污染物包括含氮杂环有机物(如吡啶),氯代有机物(如氯酚)以及抗生素类有机物(如四环素)。
实施方式中选择吡啶作为目标污染物是由于吡啶作为工业上常用的溶剂和中间体被广泛应用在药物、杀虫剂、油漆、染料、炸药和石化等领域,因此工业废水中常常含有吡啶。吡啶由于其毒性和致畸性而对人体健康和环境质量产生不利影响,已被美国环境保护署列为重点污染物。一旦含有吡啶的工业废水未经处理排入环境,将会造成难以挽回的后果。因此,迫切需要开发一种有效且经济的处理方法以从废水中去除吡啶。
优选的方案,本发明以150mL石英反应器(4.5×4.5×7.5cm)用于微生物驯化培养以及有机污染物降解,采用150W LED灯作为可见光源。以碳纸(CP,4×4cm)作为导电载体材料、所述的BiVO 4/FeOOH半导体材料固定在碳纸载体上。
优选的方案,所述BiVO 4/FeOOH@CP的制备方法具体包括如下步骤:
将1.94g Bi(NO 3) 3·5H 2O和6.64g KI溶解在100mL去离子水中。用硝酸将pH调节至1.7,然后与40mL对苯醌乙醇溶液(0.23M)混合5分钟。
将混合物添加到三电极系统中,在-0.1V(vs.Ag/AgCl)的阴极电位下电沉积进行10分钟,将BiOI电沉积到CP上。
然后,将1mL VO(acac) 2/DMSO溶液涂敷在BiOI@CP上,并在2℃/min的加热速率加热至450℃并保持2小时。用10M的NaOH处理30分钟以除去过量的V 2O 5后,获得BiVO 4@CP。为了获得BiVO 4/FeOOH@CP,将制成的BiVO 4@CP进一步浸没在5mM的 FeCl 3·6H 2O溶液中12小时,然后用去离子水洗净。
优选的方案,所述光激发空穴强化生物反应器的具体构建方法包括:
在反应器启动之前,将厌氧污泥接种到石英反应器中,混合液悬浮固体(MLSS)的浓度为3.0~6.0g/L,将半导体材料浸没并固定在反应器内。
两天后,去除上清液,然后将125mL新鲜配制的废水添加到反应器中以开始新批次。驯化培养不少于30天后,生物膜在半导体材料的表面生长并富集,去除反应器中多余的悬浮污泥。
模拟废水组分:有机污染物、Na 2HPO 4·12H 2O 3.06g/L、KH 2PO 4·0.76g/L、MgSO 4·7H 2O0.2g/L、CaCl 20.05g/L以及1mL/L微量元素混合溶液,微量元素混合溶液组分包括:ZnSO 4·7H 2O0.01g/L、MnCl 2·4H 2O 0.003g/L、H 3BO 3 0.03g/L、CoCL 2·6H 2O 0.02g/L、CuCl 2·2H 2O 0.001g/L、NiCl 2·6H 2O 0.002g/L、Na 2MoO 4·2H 2O 0.003g/L、EDTA 0.5g/L、FeSO 4·7H 2O 0.2g/L。光激发空穴强化生物体系中微生物生长代谢所需的碳、氮元素由有机污染物所提供。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,利用半导体材料固化技术将BiVO 4/FeOOH半导体材料固定在导电载体上构建复合半导体,利用厌氧污泥驯化方式使复合半导体的表面负载生物膜,从而将BiVO 4/FeOOH半导体材料与生物系统进行有效的结合,利用光激发空穴作为电子受体强化生物系统对有机污染物的降解,同时随着光激发空穴被消耗,有效抑制了光激发电子和空穴的复合,提高了催化效率,实现1+1>2的协同催化效果,显著提高了体系对难降解有机污染物的降解效率,对废水中吡啶表现出了高效的去除能力,同时也能达到优异的TOC去除和氨氮生成效果,具有广阔的应用前景。
(2)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,并不是简单地将半导体材料和生物处理技术组合在一起,半导体材料与生物处理技术通过协同机制同步提高装置的处理能力,光激发空穴作为微生物降解过程的电子受体不仅提高了生物降解效果,同时也加强了微生物活性,增强了强化体系的稳定性和抗负荷冲击的能力。光激发空穴作为电子受体在生物降解过程中被消耗的同时也有效抑制光激发电子-空穴的复合,极大地提高了半导体材料界面的反应效率,从而有利于提高强化体系整体的降解效果。
(3)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,利用光激发空穴作为电子受体强化生物系统对有机污染物的降解,不需要额外添加电子受体,有效节省了成本。
(4)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,与传统半导体材料不同,本发明采用的半导体材料具有良好的稳定性和生物相容性,不会降低微生物活性,生物膜可以在半导体材料表面稳定生长。
(5)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,采用半导体材料固化技术,将BiVO 4/FeOOH半导体材料固定在碳纸载体上;与传统的均相技术相比,解决了半导体材料回收困难、投加量大、成本高的问题。
(6)本发明的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,构建的光激发空穴强化生物体系有着优异的抗负荷能力,即使在降解高浓度的吡啶时体系也没有崩溃,最高处理负荷更是高达2.34mol m -3·d -1。光激发空穴强化生物体系优异的抗负荷能力能够适应复杂多变的工业废水,使其在处理工业实际废水时具有巨大的潜力。
附图说明
图1是光激发空穴强化生物反应器的结构示意图;
图2是不同实验组对吡啶的去除效果;
图3是不同实验组对总有机碳(TOC)的去除效果;
图4是不同实验组中氨氮的生成效果;
图5是不同掩蔽剂对光激发空穴强化生物体系降解效果的影响;
图6是光激发空穴强化生物体系对于不同浓度吡啶的去除效果;
其中:1、LED灯管;2、石英反应器;3、生物膜;4、BiVO 4/FeOOH复合半导体材料;5、碳纸。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
本实施例中基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法包括如下操作:
光激发空穴强化生物反应器的结构示意图如图1所示,该强化生物体系通过将固定负载有BiVO 4/FeOOH复合半导体材料的碳纸浸没在石英反应器2中,所述石英反应器规格为4.5×4.5×7.5cm,体积为150mL。
本发明采用半导体固定化技术将BiVO 4/FeOOH复合半导体材料4固定在碳纸载体(CP,4×4cm)上,形成BiVO 4/FeOOH@CP;再通过向反应器中提前接种厌氧污泥,利用污泥驯化,使BiVO4/FeOOH复合半导体表面负载生物膜3,构建得到光激发空穴强化生物体系。
具体步骤如下:
1)制备BiOI@CP:将1.94g Bi(NO 3) 3·5H 2O和6.64g KI溶解在100mL去离子水中。用硝酸将pH调节至1.7,然后与40mL对苯醌乙醇溶液(0.23M)混合5分钟。将混合物添加到三电极系统中,在-0.1V(vs.Ag/AgCl)的阴极电位下电沉积进行10分钟,将BiOI电沉积到CP上,制备BiOI@CP。
2)制备BiVO 4@CP:将1mL VO(acac) 2/DMSO溶液涂敷在BiOI@CP上,并在2℃/min的加热速率加热至450℃并保持2小时。用10M的NaOH处理30分钟以除去过量的V 2O 5后,获得BiVO 4@CP。
3)获得BiVO 4/FeOOH@CP:将制成的BiVO 4@CP进一步浸没在5mM的FeCl 3·6H 2O溶液中12小时,然后用去离子水洗净。
4)在反应器启动之前,将厌氧污泥接种到石英反应器中,混合液悬浮固体(MLSS)的浓度3.0~6.0g/L,将半导体材料浸没并固定在反应器内。两天后,去除上清液,然后将125mL新鲜配制的模拟废水添加到反应器中以开始新批次。驯化培养不少于30天后,生物膜在半导体材料的表面生长并富集,去除反应器中多余的悬浮污泥。
采用150W LED灯管1作为可见光源,在光照条件下利用上述强化体系处理废水中的难降解有机物。
模拟废水组分:有机污染物、Na 2HPO 4·12H 2O 3.06g/L、KH 2PO 4·0.76g/L、MgSO 4·7H 2O0.2g/L、CaCl 20.05g/L以及1mL/L微量元素混合溶液,微量元素混合溶液组分包括:ZnSO 4·7H 2O0.01g/L、MnCl 2·4H 2O 0.003g/L、H 3BO 3 0.03g/L、CoCL 2·6H 2O 0.02g/L、CuCl 2·2H 2O 0.001g/L、NiCl 2·6H 2O 0.002g/L、Na 2MoO 4·2H 2O 0.003g/L、EDTA 0.5g/L、FeSO 4·7H 2O 0.2g/L。光激发空穴强化生物体系中微生物生长代谢所需的碳、氮元素由有机污染物所提供。
实施例2
本实施例基本与实施例1相同,在实际运行中,将吡啶模拟废水加入到光激发空穴强化生物体系,进行周期两天的序批降解。吡啶模拟废水含有吡啶、缓冲溶液、无机盐、微量元素等。
按照实施例1中的方法配置不同的反应器,设置不同的实验组:配置空白碳纸在光下运行但没有负载生物膜的反应器命名为R con;配置空白碳纸在光下运行并负载生物膜的反应器命名为R bio;配置半导体材料在光下运行但没有负载生物膜的反应器命名为R pho;配置半导体材料并负载生物膜但没有在光下运行的反应器命名为R pho-bio-dark;配置半导体材料在光下运行并负载生物膜的反应器命名为R pho-bio
如图2所示,R con和R bio对吡啶几乎没有降解作用,吡啶浓度仅仅只是从150mg/L减少到133和137mg/L,这说明吡啶在光照不会自我降解,同时生物对于吡啶降解也微乎其微。 R pho对吡啶表现出了较明显的去除效果,吡啶浓度从150mg/L减少到100mg/L,这说明本发明中选择的半导体材料BiVO 4/FeOOH在光照下对吡啶有降解效果,但是远没有R pho-bio的去除效果显著。经过两天的降解,在R pho-bio中已经检测不到吡啶的存在,这说明光激发空穴强化生物体系对吡啶表现出显著的去除效果,这归因于半导体材料与微生物之间的协同效应,极大地增强了强化体系对吡啶的降解效果。值得注意的是,R pho-bio-dark中的吡啶去除效果与R bio相同,这说明在没有光照的条件下,半导体材料无法促进微生物对吡啶进行显著降解,这也侧面证明了强化体系中存在协同效应。
图3是不同实验组对总有机碳(TOC)的去除效果;配置空白碳纸在光下运行但没有负载生物膜的反应器命名为R con;配置空白碳纸在光下运行并负载生物膜的反应器命名为R bio;配置半导体材料在光下运行但没有负载生物膜的反应器命名为R pho;配置半导体材料并负载生物膜但没有在光下运行的反应器命名为R pho-bio-dark;配置半导体材料在光下运行并负载生物膜的反应器命名为R pho-bio
总有机碳(TOC)去除和吡啶去除表现出类似的趋势。如图3所示,R con、R bio和R pho-bio-dark对TOC的去除几乎可以忽略不计。R pho对TOC表现出一定的去除效果,TOC浓度从110mg/L减少到80mg/L。R pho-bio在TOC去除方面表现出最优异的效果,经过两天的降解TOC浓度从110mg/L减少到13mg/L,TOC的去除率高达88%。这说明光激发空穴强化生物体系不仅可以完全去除吡啶,同时还能保持显著的矿化能力。
图4是不同实验组中氨氮的生成效果;配置空白碳纸在光下运行但没有负载生物膜的反应器命名为R con;配置空白碳纸在光下运行并负载生物膜的反应器命名为R bio;配置半导体材料在光下运行但没有负载生物膜的反应器命名为R pho;配置半导体材料并负载生物膜但没有在光下运行的反应器命名为R pho-bio-dark;配置半导体材料在光下运行并负载生物膜的反应器命名为R pho-bio
吡啶的完全降解通常都伴随氨氮的生成,因此氨氮的生成效率可以作为吡啶降解完全的重要指标。如图4所示,R con、R bio、R pho-bio-dark和R pho在整个降解过程中都没有检测到氨氮的生成,这再一次印证了R con、R bio、R pho-bio-dark和R pho的降解效果不佳。光照条件下,半导体虽然可以在一定程度上用于去除吡啶,但是矿化率低下和降解不完全是其应用受到限制的主要原因。经过两天的降解,R pho-bio中氨氮的浓度达到了23mg/L,氨氮的生成效率高达84%,这说明光激发空穴强化生物体系可以完全降解吡啶。
综上所述,光激发空穴强化生物体系对吡啶有着显著的去除效果,同时也保持了极高的矿化能力。光激发空穴强化生物体系不仅可以完全降解吡啶,而且还克服了传统半导体光催化技术中矿化率低以及传统生物技术负荷低,降解效果缓慢的缺陷。本发明中采用的半导体 固定化技术解决成本高和催化剂回收困难的问题。
实施例3
本实施例采用不同的掩蔽剂用于探究光激发空穴、超氧自由基和羟基自由基在光激发空穴强化生物体系中作用。
在光照激发下,半导体材料产生光激发电子-空穴对,光激发电子-空穴对可以与氧气和水产生超氧自由基和羟基自由基。如图5所示,不同的掩蔽剂用于探究光激发空穴、超氧自由基和羟基自由基在光激发空穴强化生物体系中作用。甲醇(MET)和异丙醇(IPA)分别作为光激发空穴和羟基自由基的掩蔽剂,为了探究超氧自由基在光激发空穴强化生物体系中作用,将溶液用氮气(N 2)吹脱15分钟来确保去除体系中可能的溶解氧。当去除体系中的溶解氧后,光激发空穴强化生物体系对吡啶的降解效果并没有受到抑制,吡啶去除率和氨氮生成率几乎没有改变,这说明在光激发空穴强化生物体系中超氧自由基并没有起到作用。当光激发空穴强化生物体系中加入异丙醇后,体系在吡啶去除和氨氮生成方面都受到的轻微抑制,但是并不明显,这说明羟基自由基子在光激发空穴强化生物体系中并没有起到主要作用。当光激发空穴强化生物体系中加入甲醇后,吡啶去除和氨氮的生成都受到显著抑制,吡啶去除率下降到了79%,这说明在光激发空穴强化生物体系中光激发空穴是影响吡啶降解的重要因素。值得注意的是,在添加甲醇至光激发空穴强化生物体系中后,就无法在体系中检测到氨氮的存在,这说明相比于吡啶去除,光激发空穴对氨氮生成(即吡啶的完全降解)影响更大。这也从侧面说明,光激发空穴并没有直接和吡啶发生反应。结合半导体材料表面负载的生物膜这一事实,吡啶首先和生物膜接触,在微生物降解吡啶的过程中,光激发空穴作为电子受体接受微生物降解吡啶过程产生的电子,从而促进微生物对吡啶的降解效果。
图6是光激发空穴强化生物体系对于不同浓度吡啶的去除效果;如图6所示,随着吡啶浓度的升高,虽然光激发空穴强化生物体系的降解效果有些许下降,但是当吡啶浓度高达450mg/L,体系仍能保持较高的降解效果(吡啶去除率82%,TOC去除率70%以及氨氮生成率64%)。这些结果说明光激发空穴强化生物体系有着优异的抗负荷能力,即使在降解高浓度的吡啶时体系也没有崩溃,最高处理负荷更是高达2.34mol m -3·d -1。光激发空穴强化生物体系优异的抗负荷能力能够适应复杂多变的工业废水,使其在处理工业实际废水时具有巨大的潜力。
实施例4
本实施例基本与实施例1相同,在实际运行中,将CdS/g-C 3N 4@GF固定在反应器内,然后将氯酚模拟废水加入到光激发空穴强化生物体系,进行周期两天的序批降解。氯酚模拟废水含有氯酚、缓冲溶液、无机盐、微量元素等。
在R con、R bio、和R pho-bio-dark中,氯酚去除和TOC去除几乎可以忽略不计,这说明氯酚本身在光照下能稳定存在且无法被生物降解。同时半导体材料在没有光照的情况下对氯酚的降解起不到帮助。R pho的氯酚去除率达到了84%,表明在半导体材料的催化作用下,氯酚的结构被破坏了,但是TOC去除率仅仅只有28%,说明单纯依靠半导体材料的催化作用无法矿化氯酚,只能得到其衍生有机物。而R pho-bio的氯酚去除率和TOC去除率分别高达96%和78%,这说明光激发空穴强化生物体系对氯酚有着显著的去除效果,同时也保持了极高的矿化能力。
实施例5
本实施例基本与实施例1相同,在实际运行中,将BiVO 4/g-C 3N 4@GF固定在反应器内,然后将四环素模拟废水加入到光激发空穴强化生物体系,进行周期两天的序批降解。四环素模拟废水含有氯酚、缓冲溶液、无机盐、微量元素等。
在R con中四环素去除仅为12%,TOC浓度在降解过程中并没有发生变化,四环素轻微的去除归因于导电载体对四环素的吸附。而在R bio、和R pho-bio-dark中,四环素去除率分别是53%和55%,TOC去除几乎可以忽略不计,这说明四环素可以被生物降解,但是生物降解的效率十分有限。同时半导体材料在没有光照的情况下对四环素的降解起不到帮助。R pho的四环素去除率达到了78%,表明在半导体材料的催化作用下,四环素的结构被破坏了,但是TOC去除率仅仅只有17%,说明单纯依靠半导体材料的催化作用无法矿化四环素,只能得到其衍生有机物。而R pho-bio的四环素去除率和TOC去除率分别高达91%和68%,这说明光激发空穴强化生物体系对氯酚有着显著的去除效果,同时也保持了较高的矿化能力。
实施例4和实施例5说明光激发空穴强化生物体系优异的降解能力能够适应成分复杂的工业废水,在工业实际废水处理方面无疑具有广阔的前景。
上述的实施方案为了更加方便地理解本发明,但并非限制本发明。熟悉本领域的技术人员显然可以容易地对这些实施案例做出各种修改,并把在此说明的一般原理应用到其他实施案例而不经过创造性的劳动。因此,凡是在本发明的原理和原则之内,做出的任何修改、等同替换、改进等,都应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:包括以下步骤:
    1-1)将复合半导体@载体材料置于反应器中,向接种有厌氧污泥的反应器中导入废水,使废水浸没所述复合半导体@载体材料;所述复合半导体@载体材料包括导电载体以及导电载体上负载的复合半导体材料;
    1-2)对厌氧污泥进行驯化培养一段时间,使复合半导体材料的表面负载生物膜,构建光激发空穴强化生物反应器;
    1-3)利用所述反应器在光照条件下处理废水中难降解污染物。
  2. 根据权利要求1所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述复合半导体材料包括BiVO 4/FeOOH、CdS/g-C 3N 4或BiVO 4/g-C 3N 4中的任意一种。
  3. 根据权利要求1或2所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述导电载体包括碳纸或碳毡,和/或所述反应器包括石英反应器或玻璃反应器。
  4. 根据权利要求3所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述复合半导体@载体材料包括BiVO 4/FeOOH@CP、CdS/g-C 3N 4@GF或BiVO 4/g-C 3N 4@GF中的任意一种。
  5. 根据权利要求4所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述BiVO 4/FeOOH@CP制备过程如下:首先利用电沉积法制备BiOI@CP;再将BiOI@CP转化为BiVO 4@CP,然后将所述的BiVO 4@CP浸没在FeCl 3·6H 2O溶液中一段时间,用去离子水洗净,得到BiVO 4/FeOOH@CP。
  6. 根据权利要求5所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述污泥的接种浓度约为3.0-6.0g/L,所述厌氧污泥进行驯化培养的时间不得少于30天。
  7. 根据权利要求5或6所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述电沉积法包括以下步骤:
    7-1)将Bi(NO 3) 3·5H 2O和KI溶解在去离子水中;用硝酸调节pH值,然后与对苯醌乙醇溶液混合一段时间,得到混合物;
    7-2)将混合物添加到三电极系统中,在阴极电位下电沉积一段时间,将BiOI电沉积到碳纸上,制备成为BiOI@CP。
  8. 根据权利要求7所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物 的方法,其特征在于:所述BiOI@CP转化为BiVO 4@CP的步骤如下:
    8-1)将VO(acac) 2/DMSO溶液涂敷在BiOI@CP上,并以一定加热速率加热至一定温度,保持一段时间;
    8-2)用NaOH处理以除去过量的V 2O 5后,获得BiVO 4@CP。
  9. 根据权利要求3所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述废水中包括难降解有机污染物、Na 2HPO 4·12H 2O、KH 2PO 4、MgSO 4·7H 2O、CaCl 2以及微量元素混合溶液。
  10. 根据权利要求9所述的基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法,其特征在于:所述难降解有机污染物包括含氮杂环有机物、氯代有机物以及抗生素类有机物。
PCT/CN2020/133548 2020-07-22 2020-12-03 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法 WO2022016768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/798,210 US20230119366A1 (en) 2020-07-22 2020-12-03 Method for enhanced bio-treatment of refractory organic pollutants with photo-excited holes as electron acceptors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010711300.6A CN111762880B (zh) 2020-07-22 2020-07-22 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法
CN202010711300.6 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022016768A1 true WO2022016768A1 (zh) 2022-01-27

Family

ID=72727167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133548 WO2022016768A1 (zh) 2020-07-22 2020-12-03 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Country Status (3)

Country Link
US (1) US20230119366A1 (zh)
CN (1) CN111762880B (zh)
WO (1) WO2022016768A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403139A (zh) * 2022-08-09 2022-11-29 大连理工大学 一种基于光能驱动-厌氧氨氧化工艺去除氨氮的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167496B (zh) * 2020-01-09 2020-12-25 南开大学 一种可见光催化材料及其制备方法和应用
CN111762880B (zh) * 2020-07-22 2021-12-10 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法
CN113881713B (zh) * 2021-11-04 2024-02-09 重庆大学 强化气体发酵产乙醇的光催化微生物耦合体系构建方法
CN114988651B (zh) * 2022-06-29 2023-07-25 西南交通大学 微生物-光催化偶联降解材料及制备方法和废水处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150139429A (ko) * 2014-05-29 2015-12-11 대구대학교 산학협력단 광촉매반응공정과 통합된 오염원 처리방법
WO2017019146A1 (en) * 2015-07-29 2017-02-02 Regents Of The University Of California The Z-scheme microbial photoelectrochemical system (mps) for wastewater-to-chemical fuel conversion
CN108686645A (zh) * 2018-05-23 2018-10-23 辽宁大学 一种TiO2/BiVO4异质结复合材料的制备方法和应用
CN110093257A (zh) * 2019-05-13 2019-08-06 重庆大学 可见光响应的新型微生物/光电耦合固碳产甲烷系统和方法
CN110550721A (zh) * 2019-08-29 2019-12-10 河海大学 一种污水脱氮光催化耦合微生物反应器
CN111146004A (zh) * 2020-01-10 2020-05-12 北京化工大学 一种金属羟基氧化物复合B-BiVO4光电阳极及其制备方法
CN111762880A (zh) * 2020-07-22 2020-10-13 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191766A (zh) * 2013-04-15 2013-07-10 南京理工大学 CdS/g-C3N4复合可见光催化剂、制备方法及应用
CN104701561B (zh) * 2015-02-05 2017-03-22 浙江工商大学 一种光电‑微生物复合阳极微生物燃料电池及处理生活污水的方法
CN106047850B (zh) * 2016-05-24 2019-07-02 浙江清华长三角研究院 一种微生物固定化剂及其制备方法和应用
CN109092319B (zh) * 2018-06-27 2022-04-26 宁波工程学院 一种WO3/BiVO4/FeOOH三元体系复合材料及其制备方法和应用
CN108855193B (zh) * 2018-07-23 2021-04-13 辽宁大学 TaN/BiVO4异质结复合材料及其制备方法和应用
CN110776086A (zh) * 2019-10-28 2020-02-11 南京理工大学 用于降解有机污染物的光电催化-生物耦合装置及其工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150139429A (ko) * 2014-05-29 2015-12-11 대구대학교 산학협력단 광촉매반응공정과 통합된 오염원 처리방법
WO2017019146A1 (en) * 2015-07-29 2017-02-02 Regents Of The University Of California The Z-scheme microbial photoelectrochemical system (mps) for wastewater-to-chemical fuel conversion
CN108686645A (zh) * 2018-05-23 2018-10-23 辽宁大学 一种TiO2/BiVO4异质结复合材料的制备方法和应用
CN110093257A (zh) * 2019-05-13 2019-08-06 重庆大学 可见光响应的新型微生物/光电耦合固碳产甲烷系统和方法
CN110550721A (zh) * 2019-08-29 2019-12-10 河海大学 一种污水脱氮光催化耦合微生物反应器
CN111146004A (zh) * 2020-01-10 2020-05-12 北京化工大学 一种金属羟基氧化物复合B-BiVO4光电阳极及其制备方法
CN111762880A (zh) * 2020-07-22 2020-10-13 南京理工大学 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403139A (zh) * 2022-08-09 2022-11-29 大连理工大学 一种基于光能驱动-厌氧氨氧化工艺去除氨氮的方法
CN115403139B (zh) * 2022-08-09 2024-01-26 大连理工大学 一种基于光能驱动-厌氧氨氧化工艺去除氨氮的方法

Also Published As

Publication number Publication date
CN111762880B (zh) 2021-12-10
US20230119366A1 (en) 2023-04-20
CN111762880A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2022016768A1 (zh) 一种基于光激发空穴为电子受体的生物强化处理难降解有机污染物的方法
Liu et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps
Jiaqi et al. Successful bio-electrochemical treatment of nitrogenous mariculture wastewater by enhancing nitrogen removal via synergy of algae and cathodic photo-electro-catalysis
Dong et al. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications
Liu et al. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review
Syed et al. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward
CN103553273A (zh) 一种光催化耦合微生物法一体化处理废水的方法
CN110357347B (zh) 一种过硫酸盐高级氧化耦合生物硫酸盐还原处理废水方法
Liu et al. Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques
Hou et al. Ag-TiO2/biofilm/nitrate interface enhanced visible light-assisted biodegradation of tetracycline: The key role of nitrate as the electron accepter
CN110776086A (zh) 用于降解有机污染物的光电催化-生物耦合装置及其工艺
Shi et al. BiVO4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine
CN110668556B (zh) 一种可见光催化耦合生物电化学湿地系统及其应用
Zhou et al. Time-delayed photocatalysis enhanced microbial nitrate reduction via solar energy storage in carbon nitrides
CN106865896A (zh) 一种锂电池生产废水处理系统
Lu et al. Insight into integration of photocatalytic and microbial wastewater treatment technologies for recalcitrant organic pollutants: From sequential to simultaneous reactions
Gao et al. Bioaugmented removal of 17β-estradiol, nitrate and Mn (II) by polypyrrole@ corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response
WO2012137992A1 (ko) 유기물 함유 폐수로부터 전기에너지를 생산하는 미생물 연료전지
CN106904728B (zh) 光驱动的废水脱氮方法
Ahmad et al. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: a review
CN114736422B (zh) 一种均三嗪环修饰的石墨烯-聚氨酯泡沫复合物及其制备、应用
CN107098461B (zh) 一种生物-光催化水处理转盘及净化水体的方法及装置
CN111875054B (zh) 一种沸石-磁铁矿复合材料、制备方法及其生物脱氮除磷的使用方法
Sarkar Light-responsive biodegradation of wastewater pollutants: New developments and potential perspectives
CN107626326B (zh) 一种用于降解煤化工废水的催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945832

Country of ref document: EP

Kind code of ref document: A1