WO2017221987A1 - 有機物質の製造装置及び有機物質の製造方法 - Google Patents
有機物質の製造装置及び有機物質の製造方法 Download PDFInfo
- Publication number
- WO2017221987A1 WO2017221987A1 PCT/JP2017/022904 JP2017022904W WO2017221987A1 WO 2017221987 A1 WO2017221987 A1 WO 2017221987A1 JP 2017022904 W JP2017022904 W JP 2017022904W WO 2017221987 A1 WO2017221987 A1 WO 2017221987A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic substance
- unit
- gas
- synthesis gas
- sorbent
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
- B01D3/146—Multiple effect distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0438—Cooling or heating systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0462—Temperature swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/1516—Multisteps
- C07C29/1518—Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/20—Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Definitions
- the present invention relates to an apparatus for producing an organic substance from synthesis gas and a method for producing an organic substance from synthesis gas.
- This application claims priority based on Japanese Patent Application No. 2016-122454 for which it applied to Japan on June 21, 2016, and uses the content here.
- organic materials such as ethanol are produced by microbial fermentation of synthesis gas containing carbon monoxide and hydrogen, such as waste-derived gas, coal gas, natural gas, and petroleum exhaust gas, using gas-assimilating bacteria.
- synthesis gas containing carbon monoxide and hydrogen
- Many methods have been studied.
- the method of producing organic materials using synthesis gas which is a partially oxidized carbon source collected as garbage, can produce organic materials without consuming new petroleum or edible resources. It is attracting attention from around the world as an important technology for realizing a recycling-oriented society.
- the synthesis gas contains many impurities derived from raw materials in addition to carbon monoxide and hydrogen.
- synthesis gas containing a large amount of impurities is supplied to microorganisms as they are, impurities may adversely affect the microorganisms contained in the synthesis gas, and the microorganisms may be killed or the utilization rate of the microorganisms may be reduced. Therefore, it is known that it is necessary to reduce components that adversely affect microorganisms through an impurity concentration reduction step before supplying synthesis gas to microorganisms.
- TSA Temperature Swing Adsorption
- PSA Pressure Swing Adsorption
- the present invention includes the embodiments described in [1] to [9] below.
- a synthesis gas generation unit for generating synthesis gas
- Impurity concentration reduction unit comprising a sorbent having the ability to sorb impurities in the synthesis gas, and obtaining a purified gas by contacting the synthesis gas and the sorption material
- An organic material synthesis unit in which the purified gas is used as a raw material and an organic material-containing solution containing an organic material is synthesized
- An extraction unit in which the organic substance is extracted by heating the organic substance-containing solution;
- a heating unit in which a heated gas supplied to the sorbent material is prepared;
- a heat providing unit that provides the extraction unit with the amount of heat of the heated gas fed into the sorbent from the heating unit;
- An organic substance manufacturing apparatus comprising: [2] The apparatus for producing an organic substance according to [1], wherein the organic substance-containing solution contains water, and the organic substance is ethanol.
- a synthesis gas generation step for generating synthesis gas Impurity concentration reduction step of bringing the synthesis gas into contact with a sorbent having the ability to sorb impurities in the synthesis gas to obtain a purified gas by reducing the impurity concentration;
- a method for producing an organic substance containing It has a desorption process in which a heated gas is brought into contact with the sorbent used in the impurity concentration reduction process to desorb impurities from the sorbent, and the amount of heat of the heated gas that has passed through the desorption process is recovered and extracted.
- a method for producing an organic substance used in a process has a desorption process in which a heated gas is brought into contact with the sorbent used in the impurity concentration reduction process to desorb impurities from the sorbent, and the amount of heat of
- the organic substance production apparatus and method of the present invention can produce an organic substance from synthesis gas with high energy efficiency.
- FIG. 1 is a schematic diagram showing an organic substance manufacturing apparatus used in Example 1.
- FIG. 3 is a schematic diagram showing an organic substance manufacturing apparatus used in Example 2.
- the organic material manufacturing apparatus 1 includes a synthesis gas generation unit 10, an impurity concentration reduction unit 20, an organic material synthesis unit 30, an extraction unit 40, a heating unit 50, and a heat providing unit 60. Is provided.
- the synthesis gas generation unit 10 is an apparatus that partially oxidizes a carbon source to generate synthesis gas, and is not particularly limited as long as it is a reaction apparatus that reacts the carbon source and oxygen.
- the carbon source include waste generally called waste (household waste, industrial waste, waste plastic, etc.), biomass resources, coal, natural gas, oil, and the like.
- a waste gasification furnace is preferable because of environmental protection and high carbon monoxide concentration in the synthesis gas.
- the synthesis gas in the present invention is not particularly limited as long as it contains a component that becomes a raw material for organic substance synthesis, but a gas containing at least one of carbon monoxide and hydrogen is preferable, and both carbon monoxide and hydrogen are contained. The gas containing is more preferable.
- the synthesis gas generated by the synthesis gas generation unit 10 usually contains impurities.
- the impurities contained in the synthesis gas mean those other than the components usually contained in the air, such as oxygen, nitrogen, carbon monoxide, hydrogen, carbon dioxide and water.
- Specific examples of impurities are soot, tar, benzene, toluene, ethylbenzene, xylene, ethane, ethylene, acetylene, naphthalene, acetamide, hydrogen cyanide, acetonitrile, acrylonitrile, methyl chloride, Examples thereof include carbon sulfide, thiophene, and methanethiol.
- aromatic ring compounds aromatic hydrocarbons
- saturated hydrocarbons such as ethane and ethylene
- unsaturated hydrocarbons such as ethylene and acetylene
- amide compounds such as acetamide
- Sulfur compounds such as carbon disulfide
- the impurities having cytotoxicity to microorganisms are generally 100 ppm or less, preferably 10 ppm or less, more preferably 1 ppm or less in total concentration of impurities in the synthesis gas before introducing the synthesis gas containing impurities into the organic material synthesis unit 30. It is preferable to reduce until it becomes.
- the manufacturing apparatus 1 of the present embodiment is particularly suitable when the impurity is at least one selected from benzene, toluene, ethylbenzene, and xylene.
- the impurity is a conventionally known measurement method, for example, a gas chromatography apparatus, a mass spectrometer, a gas chromatography-mass spectrometer, a secondary ion mass spectrometer, an atomic absorption spectrometer, a Raman spectrometer, a Fourier transform infrared. It can be measured with a spectroscopic device or the like.
- the impurity concentration reduction unit 20 in the present embodiment includes at least a sorption device including a sorption material.
- the sorption device may be single or plural. It is also preferable to have two or more of the same sorption device so that sorption and desorption can be performed simultaneously in parallel.
- the sorbent used in the sorption apparatus is a material that has an sorption ability of impurities and can reduce impurities by utilizing at least one of an adsorption action and an absorption action. When the sorbent has sorption ability, when the sorbent and the synthesis gas come into contact, the sorbent adsorbs or absorbs impurities, and reduces the impurity content in the synthesis gas after contact. A purified gas with few impurities can be obtained.
- the impurity concentration reduction unit 20 in this embodiment includes a scrubber 21, a desulfurization unit 22, a pressure swing adsorption unit 23 (hereinafter referred to as “PSA unit 23”), and a temperature swing adsorption unit 24 (hereinafter referred to as “TSA unit”). 24 ”), an oxygen removing unit 25, and a heat exchanger 26.
- PSA unit 23 pressure swing adsorption unit 23
- TSA unit temperature swing adsorption unit 24
- the scrubber 21 is connected to the synthesis gas generator 10 and includes means for reducing the concentration of water-soluble impurities contained in the synthesis gas.
- the scrubber 21 may be a wet device that captures water-soluble impurities, or may be a dry device that captures water-soluble impurities. In capturing the water-soluble impurities, at least one of an adsorbent that adsorbs the water-soluble impurities, an absorbent that absorbs the water-soluble impurities, and a means that can structurally capture the water-soluble impurities can be used.
- the desulfurization unit 22 is connected to the scrubber 21 and includes means for removing sulfur components contained in the synthesis gas.
- the desulfurization part 22 can be set as the structure containing the iron oxide etc. which function as a sulfur component capture
- the dehydration part which removes the water
- the dehydrating agent silica gel or the like is usually used.
- the PSA unit 23 is connected to the desulfurization unit 22 and includes a pressure swing adsorption device including a sorbent.
- impurities contained in the synthesis gas can be reduced by the pressure swing adsorption method.
- impurities that can be reduced by the PSA portion 23 include aromatic hydrocarbons such as benzene, toluene, and xylene; saturated hydrocarbons such as ethane; unsaturated hydrocarbons such as ethylene and acetylene.
- the TSA unit 24 is connected to the PSA unit 23 and includes a temperature swing adsorption device including a sorbent material.
- impurities contained in the synthesis gas can be reduced by the temperature swing adsorption method.
- impurities that can be reduced by the PSA portion 24 include aromatic hydrocarbons such as benzene, toluene, and xylene; saturated hydrocarbons such as ethane; unsaturated hydrocarbons such as ethylene and acetylene.
- Examples of the TSA portion 24 in the present embodiment include those having a first container and a second container each filled with a sorbent material.
- the first container is supplied with synthesis gas and used to remove impurities in the synthesis gas
- the second container is supplied with heated gas, which will be described later, to regenerate the sorbent.
- the first container is supplied with synthesis gas and used to remove impurities in the synthesis gas
- the second container is supplied with heated gas, which will be described later, to regenerate the sorbent.
- the TSA unit 24 for example, by increasing the number of containers each filled with a sorbent material to three or more, it is possible to spend time on the regeneration process of the sorbent material and improve the adsorption capacity. Can be made.
- the third container can be sent to a maintenance process such as replacement of the sorbent.
- the sorbent used for the PSA part 23 and the TSA part 24 can be appropriately selected for the impurities described above.
- the sorbent include adsorbents such as porous silica, zeolite, and activated carbon; absorbents such as K 2 CO 3 aqueous solution and amine solution; and solid absorbents such as amine-modified porous silica.
- activated carbon is preferable because it has a high adsorption capacity for aromatic hydrocarbons such as benzene and can be easily regenerated by heating.
- the oxygen removing unit 25 has a configuration including a catalyst for removing oxygen contained in the synthesis gas in the container. In the synthesis gas that has passed through the oxygen removing unit 25, the oxygen concentration is reduced. Moreover, the oxygen removal part 25 may be comprised so that acetylene density
- the heat exchanger 26 is disposed between the TSA unit 24 and the oxygen removing unit 25, and is a heating unit for heating the synthesis gas sent out from the TSA unit 24. Since the oxygen removing unit 25 including the catalyst for removing oxygen functions at a high temperature of, for example, 150 ° C. or higher, the synthesis gas supplied to the oxygen removing unit 25 is exchanged with the heat medium by the heat exchanger 26. Heat.
- the oxygen removing unit 25 using a catalyst operates at a high temperature of, for example, 150 ° C. or higher.
- high-temperature synthesis gas is supplied to the oxygen removal unit 25, and oxygen reacts with hydrogen and carbon monoxide in the oxygen removal unit 25, and as a result, the temperature of the synthesis gas rises to about 200 ° C. To do. Therefore, the synthesis gas discharged from the oxygen removing unit 25 is also at a high temperature.
- the heat exchanger 27 is provided between the oxygen removing unit 25 and the organic material synthesis unit 30.
- This heat exchanger 27 can reduce the temperature of the synthesis gas, and as a result, a low-temperature synthesis gas of, for example, 100 ° C. or less can be supplied from the heat exchanger 27 to the organic material synthesis unit 30. Therefore, by providing the heat exchanger 27, it is possible to suppress the death of microorganisms in the organic material synthesis unit 30.
- the organic material synthesis unit 30 is not particularly limited as long as an organic material-containing solution containing an organic material can be produced using the purified gas containing a synthesis gas as a raw material, but preferably includes a fermenter having gas-assimilating bacteria.
- combination part 30 is provided with a fermenter, the culture solution containing gas utilization bacteria is supplied to a fermenter with a synthesis gas.
- the organic material produced in the organic material synthesis unit 30 is not particularly limited.
- organic substances include alcohols, organic acids, fatty acids, fats and oils, ketones, biomass, sugars, formic acid, and lactic acid. More specifically, examples of the organic substance include methanol, ethanol, butanol, isopropyl alcohol, 2,3-butanediol, acetic acid, lactic acid, and isoprene.
- an organic substance containing ethanol is preferable from the viewpoint of high yield and low energy consumption.
- the use of the organic substance to be produced is not particularly limited, and it can be used as a raw material such as resin, cosmetics, beverages, chemical substances, or as various fuels.
- the gas-assimilating bacterium used in the present embodiment is a microorganism that can produce an organic substance by fermentation using synthetic gas as a nutrient, and examples include true bacteria or archaea.
- the true bacteria include bacteria of the genus Clostridium, bacteria of the genus Moorella, bacteria of the genus Acetobacteria, bacteria of the genus Carboxydocella, bacteria of the genus Rhodopseudomonas, eubacterium
- Examples include bacteria belonging to the genus (Eubacterium), bacteria belonging to the genus Butyribacterium, bacteria belonging to the genus Oligotropha, bacteria belonging to the genus Bradyrhizobium, bacteria belonging to the genus Ralsotonia, which is an aerobic hydrogen-oxidizing bacterium, and the like.
- the Archaea e.g., Methanobacterium sp, Methanobrevibacter sp, Methanocalculus genus, Methanococcus spp, Methanosarcina sp, Methanosphaera genus, Methanothermobacter genus, Methanothrix sp, Methanoculleus genus, Methanofollis genus, Methanogenium sp, Methanospirillium genus, Methanosaeta sp, Thermococcus genus, Thermofilum And those belonging to the genus Arcaheoglobus.
- Methanobacterium sp Methanobrevibacter sp, Methanocalculus genus, Methanococcus spp, Methanosarcina sp, Methanosphaera genus, Methanothermobacter genus, Methanothrix sp, Methanocul
- the genus Methanosarcina, the genus Methanococcus, the genus Methanotherbacter, the genus Methanothrix, the genus Thermococcus, the genus Thermofilum, or the genus Archaeoglobus is preferred. Furthermore, from the viewpoint of carbon monoxide and carbon dioxide assimilation properties, the genus Methanarcarcina, the genus Methanotherbactor, or the genus Methanococcus is more preferable, and the genus Methanocarcina or the genus Methanococcus is particularly preferable.
- archaea belonging to the genus Methanosarcina include Methanosarcina barkeri, Methanosarcina mazei, Methanosarcina acetivorans, and the like.
- bacteria having a high ability to produce a target organic substance are appropriately selected and used.
- the organic material synthesis unit 30 for example, when ethanol is produced as an organic material, as a gas-assimilating bacterium, the ethanol-producing ability of Clostridium autoethanogenum (Clostridium autoethanogenum), Clostridium ljungdahlii, Clostridium aceticum, Clostridium carboxydiborans, Moorella thermoacetica, Acetobacteria woody, etc. are used.
- Clostridium autoethanogenum Clostridium autoethanogenum
- Clostridium ljungdahlii Clostridium aceticum
- Clostridium carboxydiborans Clostridium carboxydiborans
- Moorella thermoacetica Acetobacteria woody, etc.
- the manufacturing apparatus 1 of this embodiment is particularly suitable when the organic material generated in the organic material synthesis unit 30 is ethanol and the resulting organic material-containing solution contains water.
- the organic material synthesis unit 30 includes a culture medium
- a specific example of the liquid contained in the culture medium includes, for example, water.
- the extraction unit 40 is connected to the organic material synthesis unit 30 and is a portion that extracts a target organic material from the organic material-containing solution to be highly purified.
- the extraction unit 40 for example, a distillation apparatus, a processing apparatus including a pervaporation film, a processing apparatus including a zeolite dehydration film, a processing apparatus for removing a low-boiling substance (such as water) having a boiling point lower than that of the organic substance, and a boiling point of the organic substance. And a processing apparatus that removes a high-boiling substance having a high concentration and a processing apparatus that includes an ion exchange membrane.
- the extraction part 40 can extract an organic substance easily and is suitable for reuse of calorie
- TSA device temperature swing adsorption device
- the heating unit 50 is an apparatus for preparing a heated gas supplied to the sorbent material.
- impurities are sorbed and removed from the sorbent material. Therefore, when the operation time of the organic material manufacturing apparatus 1 becomes longer, the amount of impurity sorption in the sorbent material gradually decreases, and finally It reaches sorption saturation. Therefore, it is necessary to desorb the sorbed impurities when the sorption amount is reduced to some extent.
- the sorbent is heated to desorb and regenerate impurities adsorbed on the sorbent.
- the heating unit 50 is a device that includes a heating unit that heats the heating gas, generates a heated gas for heating the sorbent, and supplies the heated gas to the sorbent.
- the heated gas can be prepared by heating a heating gas comprising air, an inert gas such as nitrogen or argon, or a mixed gas thereof. Nitrogen gas, rare gas, and superheated steam are preferable as the heated gas prepared by heating the heating gas, and nitrogen gas and superheated steam are more preferable from the viewpoint of cost.
- a heating means for heating the heating gas an electric heater, a combustion furnace, or the like may be used, or exhaust heat in an electric furnace, a boiler, a gasification furnace, or the like may be used.
- the heat providing unit 60 is a means for providing the extraction unit 40 with the amount of heat of the heated gas sent from the heating unit 50 to the sorbent.
- the heat providing unit 60 includes a pipe connected to the extraction unit 40 for a high-temperature gas used for regeneration of the sorbent, a heat exchanger, and the like, and has a heat exchanger for the following reasons. It is preferable.
- the heat providing unit 60 in the present embodiment includes a pipe 61 connected to the TSA unit 24 and a heat exchanger 62 connected to the pipe 61.
- the heated gas after contacting the sorbent contains the desorbed impurities.
- the heat providing unit 60 has a heat exchanger and exchanges the amount of heat of the heated gas with a heat medium provided to the extraction unit 40, the heated gas does not need to be brought into contact with the organic substance-containing solution. It can prevent mixing in a substance containing solution.
- the heating medium passing through the heat exchanger toward the extraction unit 40 is not particularly limited as long as it is a commonly used heating medium such as superheated steam, various gases, high-boiling point liquid (metal sodium, etc.), but nitrogen gas is preferable. .
- the method for producing an organic material of the present embodiment produces an organic material including a synthesis gas generation step, an impurity concentration reduction step, an organic material synthesis step, and an extraction step. Further, the method for producing an organic substance of the present embodiment includes a desorption step of desorbing impurities from the sorbent by bringing a heated gas into contact with the sorbent used in the impurity concentration reduction step, The amount of heat of the heated gas that has passed through the desorption step is recovered and used in the extraction step.
- the synthesis gas generation step is a step of generating synthesis gas. Specifically, it is a step of generating a synthesis gas by partially oxidizing the carbon source. Examples of the method for partially oxidizing the carbon source include a method of burning the carbon source under a condition that oxygen is stoichiometrically less than the carbon amount of the carbon source.
- the synthesis gas a gas containing at least one of carbon monoxide and hydrogen is preferable, and a gas containing both carbon monoxide and hydrogen is more preferable.
- the synthesis gas obtained by the synthesis gas generation step mainly contains impurities derived from the carbon source in addition to carbon monoxide and hydrogen.
- the impurity concentration reducing step is a step of obtaining a purified gas by bringing the synthesis gas into contact with a sorbent having the ability to sorb impurities in the synthesis gas to reduce the impurity concentration.
- the impurity concentration reduction step in the present embodiment first, the synthesis gas supplied from the synthesis gas generation unit 10 is passed through the scrubber 21 to reduce the concentration of water-soluble impurities contained in the synthesis gas.
- the gas passed through the scrubber 21 is passed through the desulfurization section 22 to remove sulfur components contained in the synthesis gas.
- the gas passed through the desulfurization unit 22 is passed through the PSA unit 23 and further through the TSA unit 24 to remove hydrocarbon impurities.
- hydrocarbon impurities are adsorbed or absorbed by the sorbent and captured and removed.
- the synthesis gas is supplied so that the pressure is equal to or higher than normal pressure, and when the impurities are desorbed from the sorbent, the sorbent Depressurize the surrounding atmosphere.
- the TSA section 24 when the impurities in the synthesis gas are adsorbed on the sorbent, the temperature of the sorbent is lowered, and when the impurities are desorbed from the sorbent, the temperature of the sorbent is raised.
- the synthesis gas is supplied from the PSA section 23 to the first container to remove impurities in the synthesis gas. Can do.
- heated gas can be supplied from the heating unit 50 to the second container, and the sorbent can be heated and regenerated. Therefore, if the TSA unit 24 has two containers, impurities in the synthesis gas can be continuously removed without stopping the supply of the synthesis gas from the synthesis gas generation step.
- the synthesis gas that has passed through the TSA section 24 is passed through the heat exchanger 26, heated to, for example, 150 ° C. or higher, preferably 250 ° C. or higher, and supplied to the oxygen removing section 25.
- the oxygen removing unit 25 the synthesis gas comes into contact with a catalyst that removes oxygen, and oxygen is removed. Therefore, the oxygen concentration in the synthesis gas can be reduced.
- the oxygen removing unit 25 is configured to remove acetylene, the concentration of acetylene in the synthesis gas can be reduced by passing the oxygen removing unit 25.
- the oxygen removing unit 25 When the oxygen removing unit 25 is configured to be able to hydrogenate unsaturated hydrocarbons, the unsaturated hydrocarbons in the synthesis gas can be hydrogenated to saturated hydrocarbons by passing through the oxygen removing unit 25. it can.
- the gas temperature may increase due to the reaction of oxygen with hydrogen or carbon monoxide, and the rising temperature of the gas depends on the oxygen concentration of the synthesis gas.
- impurities are usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass with respect to the total amount of impurities in the synthesis gas before being sent to the impurity concentration reduction unit 20. More preferably, 80% by mass or more, particularly preferably 95% by mass or more, and most preferably 98% by mass or more are removed.
- the desorption step is a step of regenerating the sorbent by detaching impurities from the sorbent.
- the sorption amount of impurities on the sorbent gradually decreases as the manufacturing time of the organic substance becomes longer. Therefore, in this embodiment, when the amount of sorption is reduced to some extent, the sorbent is heated to desorb and regenerate impurities adsorbed on the sorbent.
- the desorption step in the present embodiment is not particularly limited as long as the heated gas passes through the TSA portion 24 and the desorption of impurities sorbed on the sorbent can be caused.
- a method of feeding heated gas generated in the heating unit 50 to a sorbent used in the TSA unit 24 and bringing it into contact with the sorbent may be applied.
- the heating unit 50 and the TSA unit 24 may be combined, and the heating gas may be supplied after the TSA unit 24 is heated.
- impurities adsorbed on the sorbent are desorbed to regenerate the sorbent.
- the sorbent may be decompressed with heating. Impurities can be more easily desorbed if the pressure is reduced with heating.
- the temperature of the heated gas sent to the sorbent can be appropriately set depending on the temperature at which impurities are desorbed from the sorbent, but is usually 60 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher. Preferably it is 200 degreeC or more, Especially preferably, it is 300 degreeC or more, Most preferably, it is 320 degreeC or more.
- the contact time between the heated gas and the sorbent is not particularly limited, but is usually 30 seconds or longer, preferably 30 minutes or longer, more preferably 1 hour or longer, further preferably 4 hours or longer, particularly preferably 8 hours or longer. When the contact time between the heated gas and the sorbent is within the above range, impurities tend to be sufficiently desorbed from the sorbent.
- the organic substance synthesis step is a step of synthesizing an organic substance-containing solution containing an organic substance using the purified gas as a raw material.
- the organic substance synthesizing unit 30 uses the purified gas containing the synthesis gas as a nutrient and ferment the microorganisms using the gas assimilating bacteria to prepare an organic substance-containing solution containing the organic substance. Can be manufactured.
- the extraction step is a step of extracting the organic substance by heating the organic substance-containing solution. Specifically, in the extraction process, the organic material is extracted from the extraction unit 40 from the organic material-containing solution containing the organic material supplied from the organic material synthesis unit 30. When the organic substance is taken out from the extraction unit 40, the extraction unit 40 is heated. For example, when a distillation apparatus equipped with a distillation tower is used in the extraction step, the organic substance-containing solution supplied from the organic substance synthesis unit 30 is distilled to take out the organic substance. In distillation, the inside of the distillation column is heated.
- the organic substance-containing solution supplied from the organic substance synthesizing unit 30 is adsorbed or absorbed by the adsorbent, and then the TSA apparatus is heated to absorb or absorb the adsorbent or absorption. Remove the organic substance from the agent.
- an organic substance and other substances can be separated to obtain a high-purity organic substance.
- the temperature in the distillation apparatus is not particularly limited, but is usually 80 ° C. or higher, and preferably 100 ° C. or higher.
- the temperature in the distillation apparatus is usually 80 ° C. or higher, and preferably 100 ° C. or higher.
- the temperature in the distillation apparatus means the temperature at the highest temperature in the lower part of the distillation column or in the reboiler.
- it is 95 degreeC or more normally, Preferably it is 120 degreeC or more, More preferably, it is 140 degreeC or less.
- the temperature of the aggregator when a gas vaporized by distillation is agglomerated is usually 60 ° C. or lower, preferably 40 ° C. or lower, more preferably 35 ° C. or lower.
- the lower the temperature of the aggregator the higher the recovery rate.
- the condenser for condensing becomes larger, and a chiller that consumes a large amount of power may be required.
- the pressure in the distillation apparatus during the distillation of the organic substance is not particularly limited, but is preferably less than atmospheric pressure from the viewpoint of lowering the heat source, and more preferably about 60 to 95 kPa (gauge pressure). preferable.
- the pressure in the distillation apparatus can be increased to atmospheric pressure or higher. The higher the pressure in the distillation apparatus, the easier it is to condense the organic substance, so that the target organic substance tends to be sufficiently obtained without setting the temperature during aggregation to an excessively low temperature.
- the distillation apparatus is divided into a plurality of distillation zones, and the pressure is different in each distillation zone.
- heat amount of the heating gas which passed through the said desorption process is collect
- the heated gas used for regenerating the sorbent is introduced into the heat exchanger 62 through the pipe 61.
- the organic substance containing solution sent to an extraction process is heated.
- heat exchanger 62 heat exchange between the heated gas supplied through the pipe 61 and the organic substance-containing solution can be performed in a non-contact manner, and the organic substance-containing solution can be heated.
- Non-contact heat exchange can prevent impurities contained in the heated gas from being mixed into the organic substance-containing solution, so that a higher-purity organic substance can be easily produced.
- the temperature of the heated gas introduced into the heat exchanger 62 is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 300 ° C. or higher, and particularly preferably 325 ° C. or higher.
- the organic substance manufacturing apparatus 1 and the manufacturing method described above the amount of heat of the heated gas used when the sorbent of the TSA unit 24 is regenerated is recovered and reused in the extraction unit 40. For this reason, in order to heat the extraction part 40, the calorie
- the production apparatus 1 and the production method of the present embodiment are particularly suitable when producing synthesis gas from waste and producing ethanol from the synthesis gas.
- the organic material manufacturing apparatus 2 of this embodiment includes a synthesis gas generation unit 10, an impurity concentration reduction unit 20, an organic material synthesis unit 30, an extraction unit 40, a heating unit 50, and a heat providing unit 60. Is provided.
- the heated gas discharged from the TSA unit 24 is supplied to the heat exchanger 62 through the heat exchanger 26 and the pipe 61 connected to the heat exchanger 62. This is different from the first embodiment.
- the manufacturing apparatus 2 according to the second embodiment is different from the manufacturing apparatus 1 according to the first embodiment in that the heating gas is supplied to the heating unit 50 via the heat exchanger 27.
- the heated gas discharged from the TSA section 24 has a very high temperature of, for example, 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 320 ° C. or higher. For this reason, in the manufacturing apparatus 1 of the first embodiment, the temperature difference between the temperature of the heated gas sent to the heat exchanger 62 and the organic substance-containing solution supplied to the heat exchanger 62 is too large. It cannot be said that the heat exchange efficiency at 62 is sufficiently high. On the other hand, in the manufacturing apparatus 2 of the present embodiment, the temperature of the synthesis gas supplied to the oxygen removing unit 25 is raised by passing the high-temperature heated gas discharged from the TSA unit 24 through the heat exchanger 26. Can do.
- the heated gas that has been cooled down can be supplied to the heat exchanger 62 by exchanging heat between the heated gas and the synthesis gas in the heat exchanger 26. Therefore, in the manufacturing apparatus 2 of this embodiment, the temperature difference between the temperature of the heated gas sent to the heat exchanger 62 and the organic substance-containing solution supplied to the heat exchanger 62 is reduced, and the heat exchanger 62 The heat exchange efficiency of can be improved. From this, according to the manufacturing apparatus 2 and the manufacturing method of this embodiment, the energy efficiency at the time of manufacturing an organic substance can be raised more, and the manufacturing cost of an organic substance can be reduced more.
- the manufacturing apparatus 1 of the first embodiment a large amount of energy is supplied to the heating unit 50 in order to supply the heating gas directly to the heating unit 50 and to sufficiently raise the temperature in the heating unit 50.
- the heating gas is preheated. Can be fed into the heating unit 50. For this reason, it is not necessary to raise the temperature of the heating gas using another heating device different from the manufacturing device 1, and a heating gas having a low temperature can be used.
- the energy required for heating the heating gas in the heating unit 50 can be reduced even though the heating gas having a low temperature is used.
- the energy efficiency in manufacturing the organic substance can be further increased, and the manufacturing cost of the organic substance can be further reduced.
- the PSA unit and the TSA unit are used in combination, and the synthesis gas is processed by the TSA unit after the synthesis gas is processed by the PSA unit, but the present invention is not limited to this configuration.
- the organic substance manufacturing apparatus of the present invention may have only the TSA section.
- the organic substance manufacturing apparatus of the present invention may have a TSA section and a PSA section connected to the downstream side of the TSA section. That is, the synthesis gas may be processed by the PSA unit after being processed by the TSA unit.
- the organic substance manufacturing apparatus of the present invention may have a plurality of at least one of the TSA part and the PSA part.
- the order of connection between the TSA part and the PSA part is not particularly limited.
- the PSA part, the TSA part, and the PSA part may be provided from the upstream side along the flow of the synthesis gas.
- the impurity concentration reduction part which comprises the manufacturing method of the organic substance of this invention should just be equipped with the TSA part at least, and a scrubber and a desulfurization part are arbitrary structures.
- the scrubber, the desulfurization section and the PSA section are appropriately installed according to the type of impurities contained in the synthesis gas, the concentration of the target organic substance, and the like.
- FIG. 3 the manufacturing apparatus 3 of the organic substance in the comparative example 1 is shown.
- the organic material manufacturing apparatus 3 includes a synthesis gas generation unit 10, an impurity concentration reduction unit 20, an organic material synthesis unit 30, an extraction unit 40, and a heating unit 50, but is the first except that it does not include a heat providing unit. This is the same as the organic substance manufacturing apparatus of the embodiment.
- this production apparatus 3 as a result of performing a simulation for producing ethanol from synthesis gas for 24 hours under the following conditions, the amount of heat necessary for ethanol production was 5499 kW.
- the raw material waste is brought into contact with oxygen gas produced from the air by cryogenic separation, so that the raw material waste is obtained.
- the carbon source contained in the gas was partially oxidized to obtain a synthesis gas containing carbon monoxide, carbon dioxide, hydrogen, etc. at 10000 Nm 3 / h.
- the synthesis gas was passed through a scrubber 21, a desulfurization unit 22, and a PSA unit 23 to remove impurities.
- the amount of purified gas when leaving the PSA section 23 was 7000 Nm 3 / h.
- the purified gas was passed through the TSA unit 24 and the oxygen removing unit 25, and then supplied to the organic material synthesis unit 30 including a fermentor containing Clostridium bacteria.
- combination part 30 the aqueous solution containing 5 mass% ethanol was obtained by raise
- the oxygen removing unit 25 is set to 235 ° C.
- the extracting unit 40 is set to 100 ° C.
- a heated gas that regenerates the sorbent in the TSA unit 24 nitrogen gas from which oxygen has been removed by cryogenic separation).
- 7000 Nm 3 was heated up to 325 ° C. and pre-flowed for 12 hours.
- the TSA portion 24 includes a first container and a second container filled with a sorbent material. When the impurities in the synthesis gas are adsorbed on the sorbent in the first container, the impurities in the synthesis gas are desorbed from the sorbent in the second container, and the impurities in the synthesis gas in the second container.
- FIG. 3 shows the gas temperature obtained from the simulation.
- the amount of heat used in the oxygen removing unit 25 is 260 kW
- the amount of heat used for heating the nitrogen gas for regenerating the sorbent of the TSA unit 24 is 378 kW
- the amount of heat used when distilling the aqueous ethanol solution in the extracting unit 40 is It was 4861 kW. Therefore, the total amount of heat required for producing ethanol from synthesis gas was 5499 kW.
- Example 1 In FIG. 4, the manufacturing apparatus 2 of the organic substance in Example 1 is shown.
- the organic material manufacturing apparatus 2 includes a synthesis gas generation unit 10, an impurity concentration reduction unit 20, an organic material synthesis unit 30, an extraction unit 40, a heating unit 50, and a heat providing unit 60, and the organic material of the second embodiment. This is the same as the manufacturing apparatus.
- this production apparatus 2 as a result of performing a simulation for producing ethanol from synthesis gas for 24 hours under the following conditions, the amount of heat necessary for ethanol production was 4967 kW.
- the heat generated in the oxygen removing unit 25 is used for preheating the nitrogen gas, and the amount of heat of the heated nitrogen gas discharged from the TSA unit 24 is supplied to the oxygen removing unit 25.
- FIG. 4 shows the gas temperature obtained from the simulation.
- the amount of heat used in the oxygen removing unit 25 is 0 kW
- the amount of heat used for heating the nitrogen gas for regenerating the sorbent of the TSA unit 24 is 257 kW
- a new amount used when the aqueous ethanol solution is distilled in the extraction unit 40 The amount of heat applied was 4710 kW. Therefore, the total amount of heat required to produce ethanol from synthesis gas was 4967 kW. Therefore, it is clear that the amount of energy consumed when producing ethanol from synthesis gas can be greatly reduced by supplying the heat of the nitrogen gas used for regeneration of the sorbent material to the extraction unit by the heat providing unit. became.
- Example 2 In FIG. 5, the manufacturing apparatus 1 of the organic substance in Example 2 is shown.
- the organic material manufacturing apparatus 1 includes a synthesis gas generation unit 10, an impurity concentration reduction unit 20, an organic material synthesis unit 30, an extraction unit 40, a heating unit 50, and a heat providing unit 60, and includes the organic material of the first embodiment. This is the same as the manufacturing method.
- This manufacturing apparatus 1 is the same as the manufacturing apparatus 3 of Comparative Example 1 except that there is a pipe through which the heated gas passes between the TSA section 24 and the heat exchanger 29. As a result of performing a simulation for producing ethanol from synthesis gas for 24 hours in this production apparatus 1, the amount of heat necessary for ethanol production was 5121 kW.
- Example 2 The simulation of Example 2 is different from Comparative Example 1 in that the amount of heat of the heated nitrogen gas discharged from the TSA unit 24 is used to heat the distillation column of the extraction unit 40 using the heat providing unit 60. Other conditions were the same as in Comparative Example 1.
- FIG. 5 shows the gas temperature obtained from the simulation.
- the amount of heat used in the oxygen removing unit 25 is 260 kW
- the amount of heat used for heating the nitrogen gas for regenerating the sorbent of the TSA unit 24 is 378 kW
- the amount of heat applied was 4483 kW. Therefore, the total amount of heat required for producing ethanol from synthesis gas was 5121 kW. Therefore, it is clear that the amount of energy consumed when producing ethanol from synthesis gas can be greatly reduced by supplying the heat of the nitrogen gas used for regeneration of the sorbent material to the extraction unit by the heat providing unit. became
- the organic substance production apparatus and method of the present invention can produce an organic substance from synthesis gas with high energy efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation Of Gases By Adsorption (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Industrial Gases (AREA)
Abstract
合成ガスが生成される合成ガス生成部と、前記合成ガス中の不純物の収着能を有する収着材を備え、前記合成ガスと前記収着材とが接触することにより精製ガスを得る不純物濃度低減部と、前記精製ガスが原料として使用され、有機物質を含む有機物質含有溶液が合成される有機物質合成部と、前記有機物質含有溶液が加熱されて前記有機物質が抽出される抽出部と、前記収着材に供給される加熱気体が調製される加熱部と、前記加熱部から前記収着材に送入された加熱気体の熱量を前記抽出部に提供する熱提供部と、を備える有機物質の製造装置。
Description
本発明は、合成ガスから有機物質を製造する装置及び合成ガスから有機物質を製造する方法に関する。
本願は、2016年06月21日に、日本に出願された特願2016-122454号に基づき優先権を主張し、その内容をここに援用する。
本願は、2016年06月21日に、日本に出願された特願2016-122454号に基づき優先権を主張し、その内容をここに援用する。
近年、廃棄物由来のガス、石炭ガス、天然ガス、石油排ガス等の一酸化炭素及び水素を含む合成ガスを、ガス資化性細菌を用いて微生物発酵させることによりエタノールなどの有機物質を製造する方法が数多く検討されている。中でも、一般にゴミとして集められた炭素源を部分酸化した合成ガスを原料として有機物質を製造する方法は、新たな石油資源又は可食資源を消費せずに有機物質を製造できるため、将来の資源循環型社会実現に向けた重要な技術として世界中から注目されている。
しかし、上記合成ガスには、一酸化炭素及び水素以外にも原料由来の不純物が数多く含まれている。不純物が多い合成ガスをそのまま微生物に供給すると、不純物が合成ガス内に含まれる微生物に悪影響を及ぼして、微生物が死滅したり、微生物の資化率が低下したりする場合がある。そのため、合成ガスを微生物に供給する前に、不純物濃度低減工程を経て、微生物に悪影響を及ぼす成分を低減させる必要があることが知られている。
しかし、上記合成ガスには、一酸化炭素及び水素以外にも原料由来の不純物が数多く含まれている。不純物が多い合成ガスをそのまま微生物に供給すると、不純物が合成ガス内に含まれる微生物に悪影響を及ぼして、微生物が死滅したり、微生物の資化率が低下したりする場合がある。そのため、合成ガスを微生物に供給する前に、不純物濃度低減工程を経て、微生物に悪影響を及ぼす成分を低減させる必要があることが知られている。
合成ガスに含まれる不純物を除去してその濃度を低減させる工程として、具体的には、温度スイング吸着法(TSA:Temperature Swing Adsorption)や、圧力スイング吸着法(PSA:Pressure Swing Adsorption)を用いることが知られている(特許文献1、2)。これらの吸着法では、収着材に不純物を吸着させて除去する。
本発明者らは、特許文献1又は特許文献2に記載されているような、不純物濃度低減工程を含む有機物質の製造装置では、収着材に吸着した不純物を除去する際の熱エネルギーが多いことを見出した。本明細書における「エネルギー」とは、熱及び電気等のユーティリティに利用される資源のことである。
本発明者らは、微生物発酵を利用して有機物質を製造する方法では、微生物によって製造された有機物質含有水溶液を蒸留して有機物質を精製する抽出工程において、水分を除去する際の熱エネルギーが極めて多いことを見出した。
したがって、微生物発酵を利用して有機物質を製造する方法は、石油由来の有機物質又は可食資源由来の有機物質を製造する公知の方法に比べて、地球環境に与える悪影響がかえって大きくなることがあった。
本発明は上記状況に鑑みてなされたものであり、合成ガスから有機物質を製造するに際して、有機物質の製造装置及び製造方法のエネルギー効率を向上させることを課題とする。
本発明者らは、微生物発酵を利用して有機物質を製造する方法では、微生物によって製造された有機物質含有水溶液を蒸留して有機物質を精製する抽出工程において、水分を除去する際の熱エネルギーが極めて多いことを見出した。
したがって、微生物発酵を利用して有機物質を製造する方法は、石油由来の有機物質又は可食資源由来の有機物質を製造する公知の方法に比べて、地球環境に与える悪影響がかえって大きくなることがあった。
本発明は上記状況に鑑みてなされたものであり、合成ガスから有機物質を製造するに際して、有機物質の製造装置及び製造方法のエネルギー効率を向上させることを課題とする。
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、前記不純物濃度低減工程に使用された収着材から不純物を脱離させて再生する際に使用した熱量を抽出工程にも使用することで、上記課題を解決できることを見出した。
本発明は、以下の[1]~[9]に記載の態様を包含する。
本発明は、以下の[1]~[9]に記載の態様を包含する。
[1]合成ガスが生成される合成ガス生成部と、
前記合成ガス中の不純物の収着能を有する収着材を備え、前記合成ガスと前記収着材とが接触することにより精製ガスを得る不純物濃度低減部と、
前記精製ガスが原料として使用され、有機物質を含む有機物質含有溶液が合成される有機物質合成部と、
前記有機物質含有溶液が加熱されて前記有機物質が抽出される抽出部と、
前記収着材に供給される加熱気体が調製される加熱部と、
前記加熱部から前記収着材に送入された加熱気体の熱量を前記抽出部に提供する熱提供部と、
を備える有機物質の製造装置。
[2]前記有機物質含有溶液が水を含み、前記有機物質がエタノールである、[1]に記載の有機物質の製造装置。
[3]前記抽出部が蒸留装置を備える、[1]又は[2]に記載の有機物質の製造装置。
[4]前記蒸留装置が多重効用蒸留装置である、[3]に記載の有機物質の製造装置。
[5]前記熱提供部が熱交換器を有する、[1]~[4]のいずれかに記載の有機物質の製造装置。
[6]前記合成ガス生成部が、炭素源を部分酸化して、一酸化炭素及び不純物を含む合成ガスを生成する装置を有する、[1]~[5]のいずれかに記載の有機物質の製造装置。
[7]前記不純物が、ベンゼン、トルエン、エチルベンゼン、キシレンから選ばれる少なくとも一種である、[6]に記載の有機物質の製造装置。
[8]合成ガスを生成する合成ガス生成工程と、
前記合成ガスと前記合成ガス中の不純物の収着能を有する収着材とを接触させ、不純物濃度を低減させて精製ガスを得る不純物濃度低減工程と、
前記精製ガスを原料として、有機物質を含む有機物質含有溶液を合成する有機物質合成工程と、
前記有機物質含有溶液を加熱して有機物質を抽出する抽出工程と、
を含む有機物質の製造方法であって、
前記不純物濃度低減工程に使用した収着材に加熱気体を接触させて収着材から不純物を脱離させる脱離工程を有し、前記脱離工程を経た加熱気体の熱量を回収して前記抽出工程で利用する、有機物質の製造方法。
[9]前記抽出工程が前記有機物質含有溶液を蒸留する工程である、[8]に記載の有機物質の製造方法。
前記合成ガス中の不純物の収着能を有する収着材を備え、前記合成ガスと前記収着材とが接触することにより精製ガスを得る不純物濃度低減部と、
前記精製ガスが原料として使用され、有機物質を含む有機物質含有溶液が合成される有機物質合成部と、
前記有機物質含有溶液が加熱されて前記有機物質が抽出される抽出部と、
前記収着材に供給される加熱気体が調製される加熱部と、
前記加熱部から前記収着材に送入された加熱気体の熱量を前記抽出部に提供する熱提供部と、
を備える有機物質の製造装置。
[2]前記有機物質含有溶液が水を含み、前記有機物質がエタノールである、[1]に記載の有機物質の製造装置。
[3]前記抽出部が蒸留装置を備える、[1]又は[2]に記載の有機物質の製造装置。
[4]前記蒸留装置が多重効用蒸留装置である、[3]に記載の有機物質の製造装置。
[5]前記熱提供部が熱交換器を有する、[1]~[4]のいずれかに記載の有機物質の製造装置。
[6]前記合成ガス生成部が、炭素源を部分酸化して、一酸化炭素及び不純物を含む合成ガスを生成する装置を有する、[1]~[5]のいずれかに記載の有機物質の製造装置。
[7]前記不純物が、ベンゼン、トルエン、エチルベンゼン、キシレンから選ばれる少なくとも一種である、[6]に記載の有機物質の製造装置。
[8]合成ガスを生成する合成ガス生成工程と、
前記合成ガスと前記合成ガス中の不純物の収着能を有する収着材とを接触させ、不純物濃度を低減させて精製ガスを得る不純物濃度低減工程と、
前記精製ガスを原料として、有機物質を含む有機物質含有溶液を合成する有機物質合成工程と、
前記有機物質含有溶液を加熱して有機物質を抽出する抽出工程と、
を含む有機物質の製造方法であって、
前記不純物濃度低減工程に使用した収着材に加熱気体を接触させて収着材から不純物を脱離させる脱離工程を有し、前記脱離工程を経た加熱気体の熱量を回収して前記抽出工程で利用する、有機物質の製造方法。
[9]前記抽出工程が前記有機物質含有溶液を蒸留する工程である、[8]に記載の有機物質の製造方法。
本発明の有機物質の製造装置及び製造方法によれば、高いエネルギー効率で合成ガスから有機物質を製造できる。
以下、本発明の有機物質の製造装置及び製造方法の一実施形態について説明する。但し、下記の実施形態は、単なる例示である。本発明は、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。本発明は、下記実施形態に限定されることはなく、請求の範囲によってのみ限定される。
(第1の実施形態)
[有機物質の製造装置]
図1に示すように、本実施形態の有機物質の製造装置1は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60とを備える。
[有機物質の製造装置]
図1に示すように、本実施形態の有機物質の製造装置1は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60とを備える。
<合成ガス生成部>
合成ガス生成部10は、炭素源を部分酸化し、合成ガスを生成する装置であり、炭素源と酸素とを反応させる反応装置であれば特に限定されない。
前記炭素源としては、一般にゴミと呼ばれる廃棄物(家庭ゴミ、産業廃棄物、廃プラスチック等)、バイオマス資源、石炭、天然ガス、石油等が挙げられる。
合成ガス生成部10としては、環境保護及び合成ガス中の一酸化炭素濃度が高いという利点から、廃棄物のガス化炉が好ましい。
本発明における合成ガスは、有機物質合成の原料になる成分が含まれていれば特に限定されないが、一酸化炭素及び水素のどちらか一方を少なくとも含むガスが好ましく、一酸化炭素及び水素の両方を含むガスがより好ましい。
合成ガス生成部10は、炭素源を部分酸化し、合成ガスを生成する装置であり、炭素源と酸素とを反応させる反応装置であれば特に限定されない。
前記炭素源としては、一般にゴミと呼ばれる廃棄物(家庭ゴミ、産業廃棄物、廃プラスチック等)、バイオマス資源、石炭、天然ガス、石油等が挙げられる。
合成ガス生成部10としては、環境保護及び合成ガス中の一酸化炭素濃度が高いという利点から、廃棄物のガス化炉が好ましい。
本発明における合成ガスは、有機物質合成の原料になる成分が含まれていれば特に限定されないが、一酸化炭素及び水素のどちらか一方を少なくとも含むガスが好ましく、一酸化炭素及び水素の両方を含むガスがより好ましい。
合成ガス生成部10で生成される合成ガスは、通常、不純物を含む。合成ガスに含まれる不純物とは、酸素、窒素、一酸化炭素、水素、二酸化炭素、水等の空気中に通常含まれる成分以外のものを意味する。
不純物の具体例としては、炭素源をガス化する過程で副生するスス、タール、ベンゼン、トルエン、エチルベンゼン、キシレン、エタン、エチレン、アセチレン、ナフタレン、アセトアミド、シアン化水素、アセトニトリル、アクリロニトリル、塩化メチル、二硫化炭素、チオフェン、メタンチオール等が挙げられる。
前記不純物のうち、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族環化合物(芳香族炭化水素);エタン、エチレン等の飽和炭化水素;エチレン、アセチレン等の不飽和炭化水素;アセトアミド等のアミド化合物;二硫化炭素等の硫黄化合物は、廃棄物のガス化工程で副生する。しかも、これらの副生物は微生物に対する細胞毒性を有する。そのため、微生物に対する細胞毒性を有する不純物は、不純物を含む合成ガスを有機物質合成部30に導入する前に、合成ガスにおける不純物の合計濃度が通常100ppm以下、好ましくは10ppm以下、より好ましくは1ppm以下になるまで低減させることが好ましい。
本実施形態の製造装置1は、前記不純物が、ベンゼン、トルエン、エチルベンゼン、キシレンから選ばれる少なくとも一種の場合に特に好適である。
不純物の具体例としては、炭素源をガス化する過程で副生するスス、タール、ベンゼン、トルエン、エチルベンゼン、キシレン、エタン、エチレン、アセチレン、ナフタレン、アセトアミド、シアン化水素、アセトニトリル、アクリロニトリル、塩化メチル、二硫化炭素、チオフェン、メタンチオール等が挙げられる。
前記不純物のうち、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族環化合物(芳香族炭化水素);エタン、エチレン等の飽和炭化水素;エチレン、アセチレン等の不飽和炭化水素;アセトアミド等のアミド化合物;二硫化炭素等の硫黄化合物は、廃棄物のガス化工程で副生する。しかも、これらの副生物は微生物に対する細胞毒性を有する。そのため、微生物に対する細胞毒性を有する不純物は、不純物を含む合成ガスを有機物質合成部30に導入する前に、合成ガスにおける不純物の合計濃度が通常100ppm以下、好ましくは10ppm以下、より好ましくは1ppm以下になるまで低減させることが好ましい。
本実施形態の製造装置1は、前記不純物が、ベンゼン、トルエン、エチルベンゼン、キシレンから選ばれる少なくとも一種の場合に特に好適である。
前記不純物は、従来公知の測定方法、例えば、ガスクロマトグラフィー装置、質量分析装置、ガスクロマトグラフィー-質量分析装置、二次イオン質量分析装置、原子吸光分析装置、ラマン分光分析装置、フーリエ変換赤外分光法装置等で測定することができる。
<不純物濃度低減部>
本実施形態における不純物濃度低減部20は、少なくとも、収着材を備える収着装置を有する。該収着装置は単独であってもよいし複数であってもよい。また、同じ収着装置を2つ以上有し、収着と脱離を並行して同時におこなえるようにすることが好ましい。
収着装置に用いられる収着材とは、吸着作用及び吸収作用の少なくとも一方を利用することによって、不純物の収着能を有して不純物を低減させることが可能な材料である。収着材が収着能を有することにより、収着材と合成ガスとが接触した際に収着材に不純物を吸着又は吸収させて、接触後の合成ガス中の不純物含有量を低減させ、不純物が少ない精製ガスを得ることができる。
本実施形態における不純物濃度低減部20は、少なくとも、収着材を備える収着装置を有する。該収着装置は単独であってもよいし複数であってもよい。また、同じ収着装置を2つ以上有し、収着と脱離を並行して同時におこなえるようにすることが好ましい。
収着装置に用いられる収着材とは、吸着作用及び吸収作用の少なくとも一方を利用することによって、不純物の収着能を有して不純物を低減させることが可能な材料である。収着材が収着能を有することにより、収着材と合成ガスとが接触した際に収着材に不純物を吸着又は吸収させて、接触後の合成ガス中の不純物含有量を低減させ、不純物が少ない精製ガスを得ることができる。
具体的に、本実施形態における不純物濃度低減部20は、スクラバ21と脱硫部22、圧力スイング吸着部23(以下、「PSA部23」という。)と温度スイング吸着部24(以下、「TSA部24」という。)と酸素除去部25と熱交換器26とを備える。
スクラバ21は、合成ガス生成部10に接続されており、合成ガス中に含まれる水溶性不純物の濃度を低減させる手段を備えている。スクラバ21は、湿式で水溶性不純物を捕捉する装置であってもよいし、乾式で水溶性不純物を捕捉する装置であってもよい。水溶性不純物の捕捉に際しては、水溶性不純物を吸着する吸着剤、水溶性不純物を吸収する吸収剤、構造的に水溶性不純物を捕捉できる手段等の少なくとも1つを用いることができる。
脱硫部22は、スクラバ21に接続されており、合成ガスに含まれる硫黄成分を除去する手段を備えている。例えば、脱硫部22は、容器内に硫黄成分の捕捉剤として機能する酸化鉄等を含む構成とすることができる。
脱硫部22とPSA部23との間には、合成ガスに含まれる水分を除去する脱水部が含まれていてもよい。脱水剤としては、通常シリカゲル等が用いられる。上記のように脱水部が含まれていると、その後のPSA部23、TSA部24の収着材に水分が反応し、収着量が減少することを抑制できる傾向にある。
PSA部23は、脱硫部22に接続されており、収着材を備える圧力スイング吸着装置を備える。PSA部23では、圧力スイング吸着法によって、合成ガスに含まれる不純物を低減させることができる。PSA部23により低減させることができる不純物としては、ベンゼン、トルエン、キシレン等の芳香族系炭化水素;エタン等の飽和炭化水素;エチレン、アセチレン等の不飽和炭化水素等が挙げられる。
TSA部24は、PSA部23に接続されており、収着材を備える温度スイング吸着装置を備える。TSA部24では、温度スイング吸着法によって、合成ガスに含まれる不純物を低減させることができる。PSA部24により低減させることができる不純物としては、ベンゼン、トルエン、キシレン等の芳香族系炭化水素;エタン等の飽和炭化水素;エチレン、アセチレン等の不飽和炭化水素等が挙げられる。
本実施形態におけるTSA部24としては、例えば、収着材が各々充填された第1の容器及び第2の容器を有するものが挙げられる。2つの容器を有する場合、第1の容器には合成ガスが供給されて合成ガス中の不純物の除去に使用され、第2の容器には後述する加熱気体が供給されて、収着材を再生する処理が施される。2つの容器を有することによって、不純物の除去と収着材の再生を並行して同時におこなうことができ、合成ガス生成部10からの合成ガスの供給を停止することなく、合成ガス中の不純物を連続的に除去できる。
また、TSA部24としては、例えば、収着材が各々充填された容器の数を3つ以上にすることにより、収着材の再生処理に時間をかけることが可能になり、吸着能力を向上させることができる。また、第1の容器が吸着モード、第2の容器が再生モードのときに、第3の容器を収着材の交換などのメンテナンス工程に回すことができる。
本実施形態におけるTSA部24としては、例えば、収着材が各々充填された第1の容器及び第2の容器を有するものが挙げられる。2つの容器を有する場合、第1の容器には合成ガスが供給されて合成ガス中の不純物の除去に使用され、第2の容器には後述する加熱気体が供給されて、収着材を再生する処理が施される。2つの容器を有することによって、不純物の除去と収着材の再生を並行して同時におこなうことができ、合成ガス生成部10からの合成ガスの供給を停止することなく、合成ガス中の不純物を連続的に除去できる。
また、TSA部24としては、例えば、収着材が各々充填された容器の数を3つ以上にすることにより、収着材の再生処理に時間をかけることが可能になり、吸着能力を向上させることができる。また、第1の容器が吸着モード、第2の容器が再生モードのときに、第3の容器を収着材の交換などのメンテナンス工程に回すことができる。
PSA部23及びTSA部24に用いられる収着材は、上述した不純物に対して適宜選択することができる。収着材の具体例としては、多孔質シリカ、ゼオライト、活性炭等の吸着材;K2CO3水溶液、アミン溶液等の吸収剤;アミン修飾多孔質シリカ等の固体吸収剤等が挙げられる。これら収着材のなかでも、ベンゼン等の芳香族系炭化水素に対する吸着能が高く、加熱によって容易に再生可能であることから、活性炭が好ましい。
酸素除去部25は、容器内に、合成ガス中に含まれる酸素を除去する触媒を含む構成を有する。酸素除去部25を通過した合成ガスにおいては、酸素濃度が低減される。また、酸素除去部25は、酸素と共に、アセチレン濃度を低減するように構成されていてもよい。さらに、酸素除去部25は、酸素除去部25に到達した合成ガスに含まれるアセチレン等の不飽和炭化水素等に水素添加する機能を有していてもよい。
熱交換器26は、TSA部24と酸素除去部25との間に配置され、TSA部24から送り出された合成ガスを加熱するための加熱手段である。酸素を除去する触媒を含む前記の酸素除去部25は、例えば150℃以上という高温で機能するため、熱交換器26によって、酸素除去部25に供給する合成ガスを、熱媒との熱交換により加熱する。
上述したように、触媒を用いた酸素除去部25は、例えば150℃以上という高温で作動する。このため、酸素除去部25には高温の合成ガスが供給され、さらに、酸素除去部25において酸素が水素や一酸化炭素と反応して、結果的に200℃程度にまで合成ガスの温度が上昇する。よって、酸素除去部25から排出される合成ガスも高温になっている。しかし、有機物質合成部30に高温のガスをそのまま供給すると、ガス資化性細菌が死滅するおそれがある。
このため、本実施形態では、酸素除去部25と有機物質合成部30との間には、熱交換器27が設けられている。この熱交換器27により合成ガスの温度を低減させることができ、その結果、熱交換器27から例えば100℃以下の低温の合成ガスを有機物質合成部30に供給することができる。よって、熱交換器27を設けることによって、有機物質合成部30内の微生物が死滅することを抑制できる。
このため、本実施形態では、酸素除去部25と有機物質合成部30との間には、熱交換器27が設けられている。この熱交換器27により合成ガスの温度を低減させることができ、その結果、熱交換器27から例えば100℃以下の低温の合成ガスを有機物質合成部30に供給することができる。よって、熱交換器27を設けることによって、有機物質合成部30内の微生物が死滅することを抑制できる。
<有機物質合成部>
有機物質合成部30は、合成ガスを含む前記精製ガスを原料として、有機物質を含む有機物質含有溶液を製造できれば特に限定されないが、ガス資化性細菌を有する発酵槽を備えることが好ましい。
有機物質合成部30が発酵槽を備える場合には、合成ガスと共に、ガス資化性細菌を含む培養液が発酵槽に供給される。
有機物質合成部30は、合成ガスを含む前記精製ガスを原料として、有機物質を含む有機物質含有溶液を製造できれば特に限定されないが、ガス資化性細菌を有する発酵槽を備えることが好ましい。
有機物質合成部30が発酵槽を備える場合には、合成ガスと共に、ガス資化性細菌を含む培養液が発酵槽に供給される。
有機物質合成部30において製造される有機物質としては特に制限されない。有機物質としては、アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖、ギ酸、乳酸等が挙げられる。より具体的には、有機物質としては、メタノール、エタノール、ブタノール、イソプロピルアルコール、2,3-ブタンジオール、酢酸、乳酸、イソプレン等が挙げられる。前記有機物質のなかでも、収率が高く、消費エネルギーが少ない点から、エタノールを含む有機物質が好ましい。製造される有機物質の用途としては特に限定されず、樹脂等の原料、化粧品、飲料、化学物質として用いることもできるし、各種燃料として用いることもできる。
本実施形態で使用されるガス資化性細菌は、合成ガスを養分として発酵することにより有機物質を生成させることが可能な微生物であり、真性細菌又は古細菌が挙げられる。
真性細菌としては、例えば、クロストリジウム(Clostridium)属細菌、ムーレラ(Moorella)属細菌、アセトバクテリウム(Acetobacterium)属細菌、カルボキシドセラ(Carboxydocella)属細菌、ロドシュードモナス(Rhodopseudomonas)属細菌、ユーバクテリウム(Eubacterium)属細菌、ブチリバクテリウム(Butyribacterium)属細菌、オリゴトロファ(Oligotropha)属細菌、ブラディリゾビウム(Bradyrhizobium)属細菌、好気性水素酸化細菌であるラルソトニア(Ralsotonia)属細菌等が挙げられる。
古細菌としては、例えば、Methanobacterium属、Methanobrevibacter属、Methanocalculus属、Methanococcus属、Methanosarcina属、Methanosphaera属、Methanothermobacter属、Methanothrix属、Methanoculleus属、Methanofollis属、Methanogenium属、Methanospirillium属、Methanosaeta属、Thermococcus属、Thermofilum属、Arcaheoglobus属等に属するものが挙げられる。
前記古細菌のうち、Methanosarcina属、Methanococcus属、Methanothermobacter属、Methanothrix属、Thermococcus属、Thermofilum属、又はArchaeoglobus属が好ましい。さらに、一酸化炭素及び二酸化炭素資化性の観点から、Methanosarcina属、Methanothermobactor属、又はMethanococcus属がより好ましく、Methanosarcina属又はMethanococcus属が特に好ましい。
Methanosarcina属に属するアーキアの具体例として、Methanosarcina barkeri、Methanosarcina mazei、Methanosarcina acetivorans等が挙げられる。
上記のようなガス資化性細菌の中から、目的とする有機物質の生成能の高い細菌が適宜選択されて用いられる。
真性細菌としては、例えば、クロストリジウム(Clostridium)属細菌、ムーレラ(Moorella)属細菌、アセトバクテリウム(Acetobacterium)属細菌、カルボキシドセラ(Carboxydocella)属細菌、ロドシュードモナス(Rhodopseudomonas)属細菌、ユーバクテリウム(Eubacterium)属細菌、ブチリバクテリウム(Butyribacterium)属細菌、オリゴトロファ(Oligotropha)属細菌、ブラディリゾビウム(Bradyrhizobium)属細菌、好気性水素酸化細菌であるラルソトニア(Ralsotonia)属細菌等が挙げられる。
古細菌としては、例えば、Methanobacterium属、Methanobrevibacter属、Methanocalculus属、Methanococcus属、Methanosarcina属、Methanosphaera属、Methanothermobacter属、Methanothrix属、Methanoculleus属、Methanofollis属、Methanogenium属、Methanospirillium属、Methanosaeta属、Thermococcus属、Thermofilum属、Arcaheoglobus属等に属するものが挙げられる。
前記古細菌のうち、Methanosarcina属、Methanococcus属、Methanothermobacter属、Methanothrix属、Thermococcus属、Thermofilum属、又はArchaeoglobus属が好ましい。さらに、一酸化炭素及び二酸化炭素資化性の観点から、Methanosarcina属、Methanothermobactor属、又はMethanococcus属がより好ましく、Methanosarcina属又はMethanococcus属が特に好ましい。
Methanosarcina属に属するアーキアの具体例として、Methanosarcina barkeri、Methanosarcina mazei、Methanosarcina acetivorans等が挙げられる。
上記のようなガス資化性細菌の中から、目的とする有機物質の生成能の高い細菌が適宜選択されて用いられる。
有機物質合成部30において、例えば、有機物質としてエタノールを製造する場合には、ガス資化性細菌として、エタノール生成能の高いクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)、クロストリジウム・ユングダリイ(Clostridium ljungdahlii)、クロストリジウム・アセチクム(Clostridium aceticum)、クロストリジウム・カルボキシジボランス(Clostridium carboxidivorans)、ムーレラ・サーモアセチカ(Moorella thermoacetica)、アセトバクテリウム・ウッディイ(Acetobacterium woodii)等が用いられる。
本実施形態の製造装置1は、有機物質合成部30において生成される有機物質がエタノール、得られる有機物質含有溶液が水を含む場合に特に好適である。
合成ガスからエタノール等のアルコールを精製させる微生物としては、クロストリジウム属が好ましい。有機物質合成部30に培地が含まれる場合、その培地に含まれる液の具体例としては、例えば、水等が挙げられる。
合成ガスからエタノール等のアルコールを精製させる微生物としては、クロストリジウム属が好ましい。有機物質合成部30に培地が含まれる場合、その培地に含まれる液の具体例としては、例えば、水等が挙げられる。
<抽出部>
抽出部40は、有機物質合成部30に接続されており、有機物質含有溶液から、目的とする有機物質を抽出して高純度化する部分である。抽出部40としては、例えば、蒸留装置、浸透気化膜を含む処理装置、ゼオライト脱水膜を含む処理装置、有機物質より沸点の低い低沸点物質(水等)を除去する処理装置、有機物質より沸点の高い高沸点物質を除去する処理装置、イオン交換膜を含む処理装置等が挙げられる。これらのなかでも、抽出部40は、有機物質を容易に抽出でき且つ熱量の再利用に適していることから、蒸留装置を備えることが好ましい。さらに、蒸留装置としては、有機物質合成部30から供給された有機物質含有溶液の蒸留に要する熱量を容易に低減させることができ、エネルギー効率が高いことから、多重効用蒸留装置がより好ましい。多重効用蒸留装置としては、二重効用蒸留部を有するものが挙げられる。
また、抽出部40は、有機物質を吸着する吸着剤又は有機物質を吸収する吸収剤を有する温度スイング吸着装置(TSA装置)であってもよい。抽出部40を構成するTSA装置は、不純物濃度低減部20を構成するTSA部24とは別個の装置である。
抽出部40は、有機物質合成部30に接続されており、有機物質含有溶液から、目的とする有機物質を抽出して高純度化する部分である。抽出部40としては、例えば、蒸留装置、浸透気化膜を含む処理装置、ゼオライト脱水膜を含む処理装置、有機物質より沸点の低い低沸点物質(水等)を除去する処理装置、有機物質より沸点の高い高沸点物質を除去する処理装置、イオン交換膜を含む処理装置等が挙げられる。これらのなかでも、抽出部40は、有機物質を容易に抽出でき且つ熱量の再利用に適していることから、蒸留装置を備えることが好ましい。さらに、蒸留装置としては、有機物質合成部30から供給された有機物質含有溶液の蒸留に要する熱量を容易に低減させることができ、エネルギー効率が高いことから、多重効用蒸留装置がより好ましい。多重効用蒸留装置としては、二重効用蒸留部を有するものが挙げられる。
また、抽出部40は、有機物質を吸着する吸着剤又は有機物質を吸収する吸収剤を有する温度スイング吸着装置(TSA装置)であってもよい。抽出部40を構成するTSA装置は、不純物濃度低減部20を構成するTSA部24とは別個の装置である。
<加熱部>
加熱部50は、前記収着材に供給される加熱気体が調製される装置である。
上記のTSA部24においては、収着材に不純物を収着させて除去するため、有機物質の製造装置1の運転時間が長くなると、収着材における不純物収着量が次第に減少し、最終的には収着飽和に達する。そのため、ある程度収着量が減少した時点で、収着した不純物を脱離させる必要がある。本実施形態では、収着材を加熱することにより、収着材に収着した不純物を脱離させて再生する。加熱部50は、加熱用ガスを加熱する加熱手段を備え、収着材を加熱するための加熱気体を生成し、収着材に供給するための装置である。
上記加熱気体は、空気、窒素やアルゴン等の不活性ガス又はこれらの混合気体からなる加熱用ガスを加熱することにより調製できる。加熱用ガスを加熱することにより調製される加熱気体としては、取り扱いやすいことから、窒素ガス、希ガス、過熱水蒸気が好ましく、コスト面からは、窒素ガス、過熱水蒸気がより好ましい。
加熱用ガスを加熱する加熱手段としては、電気ヒータ、燃焼炉等を用いてもよいし、電気炉、ボイラー、ガス化炉における排熱等を用いてもよい。
加熱部50は、前記収着材に供給される加熱気体が調製される装置である。
上記のTSA部24においては、収着材に不純物を収着させて除去するため、有機物質の製造装置1の運転時間が長くなると、収着材における不純物収着量が次第に減少し、最終的には収着飽和に達する。そのため、ある程度収着量が減少した時点で、収着した不純物を脱離させる必要がある。本実施形態では、収着材を加熱することにより、収着材に収着した不純物を脱離させて再生する。加熱部50は、加熱用ガスを加熱する加熱手段を備え、収着材を加熱するための加熱気体を生成し、収着材に供給するための装置である。
上記加熱気体は、空気、窒素やアルゴン等の不活性ガス又はこれらの混合気体からなる加熱用ガスを加熱することにより調製できる。加熱用ガスを加熱することにより調製される加熱気体としては、取り扱いやすいことから、窒素ガス、希ガス、過熱水蒸気が好ましく、コスト面からは、窒素ガス、過熱水蒸気がより好ましい。
加熱用ガスを加熱する加熱手段としては、電気ヒータ、燃焼炉等を用いてもよいし、電気炉、ボイラー、ガス化炉における排熱等を用いてもよい。
<熱提供部>
熱提供部60は、加熱部50から前記収着材に送入された加熱気体の熱量を抽出部40に提供する手段である。
具体的には、熱提供部60は、収着材の再生に使用された高温のガスを抽出部40に接続される配管、熱交換器等が挙げられ、下記の理由から熱交換器を有することが好ましい。本実施形態における熱提供部60は、TSA部24に接続された配管61と、配管61に接続された熱交換器62とを備える。
収着材に接触した後の加熱気体は脱離した不純物を含有する。その不純物を含む加熱気体をそのまま有機物質含有溶液に接触させると、脱離した不純物が有機物質中に混入し、有機物質と共に抽出されてしまう懸念がある。熱提供部60が熱交換器を有して、前記加熱気体の熱量を抽出部40に提供する熱媒に交換すれば、加熱気体を有機物質含有溶液に接触させずに済むため、不純物が有機物質含有溶液に混入することを防ぐことができる。
熱交換器を経て抽出部40に向かう熱媒としては、過熱蒸気、各種ガス、高沸点液体(金属ナトリウム、など)等、一般に用いられる熱媒であれば特に限定はされないが、窒素ガスが好ましい。
熱提供部60は、加熱部50から前記収着材に送入された加熱気体の熱量を抽出部40に提供する手段である。
具体的には、熱提供部60は、収着材の再生に使用された高温のガスを抽出部40に接続される配管、熱交換器等が挙げられ、下記の理由から熱交換器を有することが好ましい。本実施形態における熱提供部60は、TSA部24に接続された配管61と、配管61に接続された熱交換器62とを備える。
収着材に接触した後の加熱気体は脱離した不純物を含有する。その不純物を含む加熱気体をそのまま有機物質含有溶液に接触させると、脱離した不純物が有機物質中に混入し、有機物質と共に抽出されてしまう懸念がある。熱提供部60が熱交換器を有して、前記加熱気体の熱量を抽出部40に提供する熱媒に交換すれば、加熱気体を有機物質含有溶液に接触させずに済むため、不純物が有機物質含有溶液に混入することを防ぐことができる。
熱交換器を経て抽出部40に向かう熱媒としては、過熱蒸気、各種ガス、高沸点液体(金属ナトリウム、など)等、一般に用いられる熱媒であれば特に限定はされないが、窒素ガスが好ましい。
[有機物質の製造方法]
本実施形態の有機物質の製造方法は、合成ガス生成工程と不純物濃度低減工程と有機物質合成工程と抽出工程とを含んで、有機物質を製造する。
また、本実施形態の有機物質の製造方法においては、前記不純物濃度低減工程に使用した収着剤に加熱気体を接触させて、収着材から不純物を脱離させる脱離工程を有し、前記脱離工程を経た加熱気体の熱量を回収して前記抽出工程で利用する。
本実施形態の有機物質の製造方法は、合成ガス生成工程と不純物濃度低減工程と有機物質合成工程と抽出工程とを含んで、有機物質を製造する。
また、本実施形態の有機物質の製造方法においては、前記不純物濃度低減工程に使用した収着剤に加熱気体を接触させて、収着材から不純物を脱離させる脱離工程を有し、前記脱離工程を経た加熱気体の熱量を回収して前記抽出工程で利用する。
<合成ガス生成工程>
合成ガス生成工程は、合成ガスを生成する工程である。具体的には、前記の炭素源を部分酸化して合成ガスを生成する工程である。
炭素源の部分酸化方法としては、例えば、炭素源の炭素量に対して化学量論的に酸素が少ない条件下で、炭素源を燃焼させる方法が挙げられる。
合成ガスとしては、一酸化炭素及び水素の少なくとも一方を少なくとも含むガスが好ましく、一酸化炭素及び水素の両方を含むガスがより好ましい。また、合成ガス生成工程により得られる合成ガスは、一酸化炭素及び水素以外に、主に炭素源由来の不純物を含む。
合成ガス生成工程は、合成ガスを生成する工程である。具体的には、前記の炭素源を部分酸化して合成ガスを生成する工程である。
炭素源の部分酸化方法としては、例えば、炭素源の炭素量に対して化学量論的に酸素が少ない条件下で、炭素源を燃焼させる方法が挙げられる。
合成ガスとしては、一酸化炭素及び水素の少なくとも一方を少なくとも含むガスが好ましく、一酸化炭素及び水素の両方を含むガスがより好ましい。また、合成ガス生成工程により得られる合成ガスは、一酸化炭素及び水素以外に、主に炭素源由来の不純物を含む。
<不純物濃度低減工程>
不純物濃度低減工程は、前記合成ガスと前記合成ガス中の不純物の収着能を有する収着材とを接触させ、不純物濃度を低減させて精製ガスを得る工程である。
本実施形態における不純物濃度低減工程では、まず、合成ガス生成部10から供給された合成ガスを、スクラバ21に通して、合成ガス中に含まれる水溶性不純物の濃度を低減させる。次いで、スクラバ21に通したガスを脱硫部22に通して、合成ガスに含まれる硫黄成分を除去する。
次いで、脱硫部22に通したガスをPSA部23に通し、さらに、TSA部24に通して、炭化水素系不純物を除去する。PSA部23及びTSA部24においては、炭化水素系不純物を収着材に吸着又は吸収させて捕捉して除去する。
PSA部23において、合成ガス中の不純物を収着材に吸着させる際には、常圧以上になるように合成ガスを供給し、不純物を収着材から脱離させる際には、収着材周囲の雰囲気を減圧する。
TSA部24において、合成ガス中の不純物を収着材に吸着させる際には、収着材の温度を下げ、不純物を収着材から脱離させる際には、収着材の温度を上げる。
不純物濃度低減工程は、前記合成ガスと前記合成ガス中の不純物の収着能を有する収着材とを接触させ、不純物濃度を低減させて精製ガスを得る工程である。
本実施形態における不純物濃度低減工程では、まず、合成ガス生成部10から供給された合成ガスを、スクラバ21に通して、合成ガス中に含まれる水溶性不純物の濃度を低減させる。次いで、スクラバ21に通したガスを脱硫部22に通して、合成ガスに含まれる硫黄成分を除去する。
次いで、脱硫部22に通したガスをPSA部23に通し、さらに、TSA部24に通して、炭化水素系不純物を除去する。PSA部23及びTSA部24においては、炭化水素系不純物を収着材に吸着又は吸収させて捕捉して除去する。
PSA部23において、合成ガス中の不純物を収着材に吸着させる際には、常圧以上になるように合成ガスを供給し、不純物を収着材から脱離させる際には、収着材周囲の雰囲気を減圧する。
TSA部24において、合成ガス中の不純物を収着材に吸着させる際には、収着材の温度を下げ、不純物を収着材から脱離させる際には、収着材の温度を上げる。
TSA部24が、収着材が各々充填された第1の容器及び第2の容器を有する場合、PSA部23から第1の容器に合成ガスを供給し、合成ガス中の不純物を除去することができる。それと同時に、加熱部50から第2の容器に加熱気体を供給し、収着材を加熱して再生処理することができる。したがって、TSA部24が2つの容器を有すれば、合成ガス生成工程からの合成ガスの供給を停止することなく、合成ガス中の不純物を連続的に除去できる。
TSA部24を通った合成ガスは、熱交換器26に通して例えば150℃以上、好ましくは250℃以上に加熱し、酸素除去部25に供給する。酸素除去部25においては、合成ガスが、酸素を除去する触媒に接触して酸素が除去される。したがって、合成ガス中の酸素濃度を低減させることができる。
酸素除去部25がアセチレンを除去できる構成になっている場合には、酸素除去部25を通すことによって合成ガス中のアセチレン濃度を低減させることができる。
酸素除去部25が不飽和炭化水素に水素添加できる構成になっている場合には、酸素除去部25を通すことによって合成ガス中の不飽和炭化水素に水素添加して飽和炭化水素にすることができる。
酸素除去部25においては、酸素が水素や一酸化炭素と反応することによりガス温度が上昇することがあり、そのガスの上昇温度は、合成ガスの酸素濃度に依存する。
酸素除去部25がアセチレンを除去できる構成になっている場合には、酸素除去部25を通すことによって合成ガス中のアセチレン濃度を低減させることができる。
酸素除去部25が不飽和炭化水素に水素添加できる構成になっている場合には、酸素除去部25を通すことによって合成ガス中の不飽和炭化水素に水素添加して飽和炭化水素にすることができる。
酸素除去部25においては、酸素が水素や一酸化炭素と反応することによりガス温度が上昇することがあり、そのガスの上昇温度は、合成ガスの酸素濃度に依存する。
不純物濃度低減工程では、不純物濃度低減部20に送入される前の合成ガス中の不純物総量に対して、不純物が、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは80質量%以上、特に好ましくは質量95%以上、最も好ましくは98質量%以上が除去される。不純物濃度低減工程によって不純物を除去することで、後の有機物質合成工程で用いられるガス資化性細菌の使用効率低下を抑制できる傾向にある。そのため、有機物質の収率を向上させることができる。
<脱離工程>
脱離工程は、収着材から不純物を脱離させて、収着材を再生する工程である。
上述したように、有機物質の製造時間が長くなるにつれて、収着材への不純物の収着量が次第に減少する。そのため、本実施形態では、ある程度収着量が減少した時点で、収着材を加熱することにより、収着材に収着した不純物を脱離させて再生する。
本実施形態における脱離工程においては、TSA部24内を加熱気体が通過し、収着材に収着した不純物の脱離を生じさせることが出来れば特に限定されない。具体的には、加熱部50において生成した加熱気体を、TSA部24において使用されている収着材に送入し、接触させて加熱する方法を適用してもよい。あるいは、加熱部50とTSA部24とを組み合わせ、TSA部24を加熱した上で加熱用ガスを供給してもよい。これにより、収着材に収着した不純物を脱離させて、収着材を再生させる。
脱離工程の際には、加熱と共に収着材を減圧してもよい。加熱と共に減圧すれば、不純物をより容易に脱離させることができる。
加熱気体を収着材に送入しているときには、収着材への合成ガスの供給を停止する。
脱離工程は、収着材から不純物を脱離させて、収着材を再生する工程である。
上述したように、有機物質の製造時間が長くなるにつれて、収着材への不純物の収着量が次第に減少する。そのため、本実施形態では、ある程度収着量が減少した時点で、収着材を加熱することにより、収着材に収着した不純物を脱離させて再生する。
本実施形態における脱離工程においては、TSA部24内を加熱気体が通過し、収着材に収着した不純物の脱離を生じさせることが出来れば特に限定されない。具体的には、加熱部50において生成した加熱気体を、TSA部24において使用されている収着材に送入し、接触させて加熱する方法を適用してもよい。あるいは、加熱部50とTSA部24とを組み合わせ、TSA部24を加熱した上で加熱用ガスを供給してもよい。これにより、収着材に収着した不純物を脱離させて、収着材を再生させる。
脱離工程の際には、加熱と共に収着材を減圧してもよい。加熱と共に減圧すれば、不純物をより容易に脱離させることができる。
加熱気体を収着材に送入しているときには、収着材への合成ガスの供給を停止する。
収着材に送られる加熱気体の温度は、収着材から不純物が脱離する温度によって適宜設定することができるが、通常60℃以上、好ましくは100℃以上、より好ましくは150℃以上、さらに好ましくは200℃以上、特に好ましくは300℃以上、最も好ましくは320℃以上である。加熱気体の温度が前記範囲であると収着材から不純物が十分に脱離される傾向にある。
加熱気体と収着材の接触時間は特に限定されないが、通常30秒以上、好ましくは30分以上、より好ましくは1時間以上、さらに好ましくは4時間以上、特に好ましくは8時間以上である。加熱気体と収着材との接触時間が前記範囲であると収着材から不純物が十分に脱離される傾向にある。
加熱気体と収着材の接触時間は特に限定されないが、通常30秒以上、好ましくは30分以上、より好ましくは1時間以上、さらに好ましくは4時間以上、特に好ましくは8時間以上である。加熱気体と収着材との接触時間が前記範囲であると収着材から不純物が十分に脱離される傾向にある。
<有機物質合成工程>
有機物質合成工程は、前記精製ガスを原料として、有機物質を含む有機物質含有溶液を合成する工程である。
例えば、有機物質合成工程では、有機物質合成部30において、合成ガスを含む前記精製ガスを養分とし、ガス資化性細菌を利用して微生物発酵させることにより、有機物質を含む有機物質含有溶液を製造することができる。
有機物質合成工程は、前記精製ガスを原料として、有機物質を含む有機物質含有溶液を合成する工程である。
例えば、有機物質合成工程では、有機物質合成部30において、合成ガスを含む前記精製ガスを養分とし、ガス資化性細菌を利用して微生物発酵させることにより、有機物質を含む有機物質含有溶液を製造することができる。
<抽出工程>
抽出工程は、前記有機物質含有溶液を加熱して有機物質を抽出する工程である。具体的に、抽出工程では、有機物質合成部30から供給された、有機物質を含む有機物質含有溶液を抽出部40から有機物質を取り出す。抽出部40から有機物質を取り出す際には、抽出部40を加熱する工程を有する。
例えば、抽出工程において、蒸留塔を備える蒸留装置を利用する場合には、有機物質合成部30から供給された前記有機物質含有溶液を蒸留して有機物質を取り出す。蒸留においては蒸留塔の内部を加熱する。
抽出工程においてTSA装置を利用する場合には、有機物質合成部30から供給された前記有機物質含有溶液を吸着剤に吸着又は吸収剤に吸収させ、その後、TSA装置を加熱して吸着剤又は吸収剤から有機物質を脱離させて取り出す。
上記のような抽出工程によって、有機物質とそれ以外の物質とを分離して、高純度の有機物質を得ることができる。
抽出工程は、前記有機物質含有溶液を加熱して有機物質を抽出する工程である。具体的に、抽出工程では、有機物質合成部30から供給された、有機物質を含む有機物質含有溶液を抽出部40から有機物質を取り出す。抽出部40から有機物質を取り出す際には、抽出部40を加熱する工程を有する。
例えば、抽出工程において、蒸留塔を備える蒸留装置を利用する場合には、有機物質合成部30から供給された前記有機物質含有溶液を蒸留して有機物質を取り出す。蒸留においては蒸留塔の内部を加熱する。
抽出工程においてTSA装置を利用する場合には、有機物質合成部30から供給された前記有機物質含有溶液を吸着剤に吸着又は吸収剤に吸収させ、その後、TSA装置を加熱して吸着剤又は吸収剤から有機物質を脱離させて取り出す。
上記のような抽出工程によって、有機物質とそれ以外の物質とを分離して、高純度の有機物質を得ることができる。
抽出工程において、有機物質含有溶液を蒸留する場合、蒸留装置内の温度は特に限定されないが、通常80℃以上であり、100℃以上が好ましい。特に有機物質含有溶液がエタノール水溶液の場合には、蒸留装置内の温度は、通常80℃以上であり、100℃以上が好ましい。
蒸留装置内の温度とは、蒸留塔の下部又はリボイラー内の最も温度が高い箇所の温度を意味する。また、多重効用蒸留装置を採用する場合には通常95℃以上、好ましくは120℃以上であり、より好ましくは140℃以下である。
蒸留によって気化した気体を凝集する際の凝集器の温度は、通常60℃以下、好ましくは40℃以下、より好ましくは35℃以下である。凝集器の温度は低いほど、回収率が上がるが、凝縮させるためのコンデンサーが大きくなり、電力を多量に消費するチラーが必要になることもある。
蒸留装置内の温度を前記範囲に設定することにより、有機物質を十分に蒸留して、必要な有機物質とその他の成分(廃液)とを容易に分離でき、有機物質を確実に回収することができる。
蒸留装置内の温度とは、蒸留塔の下部又はリボイラー内の最も温度が高い箇所の温度を意味する。また、多重効用蒸留装置を採用する場合には通常95℃以上、好ましくは120℃以上であり、より好ましくは140℃以下である。
蒸留によって気化した気体を凝集する際の凝集器の温度は、通常60℃以下、好ましくは40℃以下、より好ましくは35℃以下である。凝集器の温度は低いほど、回収率が上がるが、凝縮させるためのコンデンサーが大きくなり、電力を多量に消費するチラーが必要になることもある。
蒸留装置内の温度を前記範囲に設定することにより、有機物質を十分に蒸留して、必要な有機物質とその他の成分(廃液)とを容易に分離でき、有機物質を確実に回収することができる。
また、有機物質の蒸留時における蒸留装置内の圧力は、特に限定されないが、熱源の低温化という観点では、大気圧未満であることが好ましく、60~95kPa(ゲージ圧)程度であることがより好ましい。しかし、高温の熱源を準備できるときには蒸留装置内の圧力を大気圧以上にすることもできる。蒸留装置内が高圧であるほど、有機物質を凝縮させやすいため、凝集時の温度を過度の低温としなくても十分に目的の有機物質を得られる傾向にある。また、多重効用蒸留装置を使用するときには、蒸留装置を複数の蒸留域に分け、各蒸留域でそれぞれ圧力が異なることが好ましい。
蒸留装置内の圧力を前記範囲に設定することにより、有機物質の分離効率を向上させることができ、有機物質の収率を向上させることができる。
蒸留装置内の圧力を前記範囲に設定することにより、有機物質の分離効率を向上させることができ、有機物質の収率を向上させることができる。
また、本実施形態では、前記脱離工程を経た加熱気体の熱量を回収して抽出工程において利用する。
具体的には、収着材の再生に使用した加熱気体を、配管61を通して熱交換器62に導入する。熱交換器62では、抽出工程に送られる有機物質含有溶液を加熱する。熱交換器62を用いると、配管61を通して供給された加熱気体と有機物質含有溶液とを非接触で熱交換することができ、有機物質含有溶液を加熱することができる。非接触の熱交換により、加熱気体に含まれる不純物が有機物質含有溶液に混入することを防止できるため、より高純度の有機物質を容易に製造できる。
熱交換器62に導入される加熱気体の温度は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、更に好ましくは300℃以上、特に好ましくは325℃以上である。
具体的には、収着材の再生に使用した加熱気体を、配管61を通して熱交換器62に導入する。熱交換器62では、抽出工程に送られる有機物質含有溶液を加熱する。熱交換器62を用いると、配管61を通して供給された加熱気体と有機物質含有溶液とを非接触で熱交換することができ、有機物質含有溶液を加熱することができる。非接触の熱交換により、加熱気体に含まれる不純物が有機物質含有溶液に混入することを防止できるため、より高純度の有機物質を容易に製造できる。
熱交換器62に導入される加熱気体の温度は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、更に好ましくは300℃以上、特に好ましくは325℃以上である。
<作用効果>
上記の有機物質の製造装置1及び製造方法では、TSA部24の収着材を再生する際に使用する加熱気体の熱量を回収し、抽出部40において再利用する。このため、抽出部40を加熱するために、他の熱源から別途供給する熱量を低減させることができる。
よって、本実施形態によれば、合成ガスから有機物質を製造する際のエネルギー効率を向上させることができる。その結果、製造装置1を用いることにより、有機物質を安価に製造できる。
本実施形態の製造装置1及び製造方法は、廃棄物から合成ガスを生成し、その合成ガスからエタノールを製造する場合に特に好適である。
上記の有機物質の製造装置1及び製造方法では、TSA部24の収着材を再生する際に使用する加熱気体の熱量を回収し、抽出部40において再利用する。このため、抽出部40を加熱するために、他の熱源から別途供給する熱量を低減させることができる。
よって、本実施形態によれば、合成ガスから有機物質を製造する際のエネルギー効率を向上させることができる。その結果、製造装置1を用いることにより、有機物質を安価に製造できる。
本実施形態の製造装置1及び製造方法は、廃棄物から合成ガスを生成し、その合成ガスからエタノールを製造する場合に特に好適である。
(第2の実施形態)
[有機物質の製造装置]
図2に示すように、本実施形態の有機物質の製造装置2は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60とを備える。
第2の実施形態に係る製造装置2は、TSA部24から排出された加熱気体が熱交換器26を経由し、熱交換器62に接続された配管61を通って熱交換器62に供給される点が第1の実施形態と異なる。また、第2の実施形態に係る製造装置2は、加熱用ガスが熱交換器27を経由して加熱部50に供給される点が第1の実施形態の製造装置1と異なる。
[有機物質の製造装置]
図2に示すように、本実施形態の有機物質の製造装置2は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60とを備える。
第2の実施形態に係る製造装置2は、TSA部24から排出された加熱気体が熱交換器26を経由し、熱交換器62に接続された配管61を通って熱交換器62に供給される点が第1の実施形態と異なる。また、第2の実施形態に係る製造装置2は、加熱用ガスが熱交換器27を経由して加熱部50に供給される点が第1の実施形態の製造装置1と異なる。
TSA部24から排出される加熱気体は、例えば250℃以上、好ましく300℃以上、より好ましくは320℃以上という非常に高い温度を有する。このため、第1の実施形態の製造装置1では、熱交換器62に送られる加熱気体の温度と熱交換器62に供給される有機物質含有溶液との温度差が大きすぎるため、熱交換器62での熱交換効率が十分に高いとはいえない。それに対し、本実施形態の製造装置2では、TSA部24から排出された高温の加熱気体を熱交換器26に経由させることで、酸素除去部25に供給する合成ガスの温度を昇温させることができる。それと共に、熱交換器26において加熱気体と合成ガスとで熱交換させることにより、降温させた加熱気体を熱交換器62に供給することができる。
したがって、本実施形態の製造装置2では、熱交換器62に送られる加熱気体の温度と熱交換器62に供給される有機物質含有溶液との温度差を小さくしており、熱交換器62での熱交換効率を向上させることができる。これより、本実施形態の製造装置2及び製造方法によれば、有機物質を製造する際のエネルギー効率をより高めることができ、有機物質の製造コストをより低減させることができる。
したがって、本実施形態の製造装置2では、熱交換器62に送られる加熱気体の温度と熱交換器62に供給される有機物質含有溶液との温度差を小さくしており、熱交換器62での熱交換効率を向上させることができる。これより、本実施形態の製造装置2及び製造方法によれば、有機物質を製造する際のエネルギー効率をより高めることができ、有機物質の製造コストをより低減させることができる。
また、第1の実施形態の製造装置1のように、加熱用ガスを加熱部50に直接供給し、加熱部50において十分に昇温するためには、加熱部50に多量のエネルギーを供給する必要がある。それに対して、本実施形態の製造装置2では、高温の合成ガスが供給される熱交換器27において、加熱用ガスと合成ガスとの間で熱交換させた後、加熱用ガスを予熱した状態で加熱部50に送入することができる。このため、加熱用ガスを製造装置1とは異なる別の加熱装置を用いて昇温する必要がなく、加熱用ガスとして温度が低いものを使用することができる。
したがって、第2の実施形態の製造装置2では、加熱用ガスとして温度が低いものを使用するにもかかわらず、加熱部50において加熱用ガスの加熱に要するエネルギーを削減することができる。これより、実施形態の製造装置2及び製造方法によれば、有機物質を製造する際のエネルギー効率をより高めることができ、有機物質の製造コストをより低減することができる。
したがって、第2の実施形態の製造装置2では、加熱用ガスとして温度が低いものを使用するにもかかわらず、加熱部50において加熱用ガスの加熱に要するエネルギーを削減することができる。これより、実施形態の製造装置2及び製造方法によれば、有機物質を製造する際のエネルギー効率をより高めることができ、有機物質の製造コストをより低減することができる。
(他の実施形態)
上記の実施形態では、PSA部とTSA部とを併用し、PSA部により合成ガスを処理した後にTSA部により合成ガスを処理したが、本発明は、この構成に限定されない。本発明の有機物質の製造装置は、TSA部のみを有していてもよい。また、例えば、本発明の有機物質の製造装置は、TSA部とTSA部の下流側に接続されたPSA部とを有していてもよい。すなわち、合成ガスをTSA部により処理した後にPSA部により処理してもよい。
また、本発明の有機物質の製造装置は、TSA部とPSA部との少なくとも一方を複数有していてもよい。その場合、TSA部とPSA部との接続の順序は特に限定されず、例えば、合成ガスの流れに沿って上流側から、PSA部、TSA部及びPSA部が設けられていてもよい。
また、本発明の有機物質の製造方法を構成する不純物濃度低減部は、少なくともTSA部を備えていればよく、スクラバ及び脱硫部は任意の構成である。スクラバ、脱硫部及びPSA部は、合成ガスに含まれる不純物の種類、目的とする有機物質の濃度等に応じて適宜設置される。
上記の実施形態では、PSA部とTSA部とを併用し、PSA部により合成ガスを処理した後にTSA部により合成ガスを処理したが、本発明は、この構成に限定されない。本発明の有機物質の製造装置は、TSA部のみを有していてもよい。また、例えば、本発明の有機物質の製造装置は、TSA部とTSA部の下流側に接続されたPSA部とを有していてもよい。すなわち、合成ガスをTSA部により処理した後にPSA部により処理してもよい。
また、本発明の有機物質の製造装置は、TSA部とPSA部との少なくとも一方を複数有していてもよい。その場合、TSA部とPSA部との接続の順序は特に限定されず、例えば、合成ガスの流れに沿って上流側から、PSA部、TSA部及びPSA部が設けられていてもよい。
また、本発明の有機物質の製造方法を構成する不純物濃度低減部は、少なくともTSA部を備えていればよく、スクラバ及び脱硫部は任意の構成である。スクラバ、脱硫部及びPSA部は、合成ガスに含まれる不純物の種類、目的とする有機物質の濃度等に応じて適宜設置される。
<比較例1>
図3に、比較例1における有機物質の製造装置3を示す。この有機物質の製造装置3は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50とを備えるが、熱提供部を備えないこと以外は第1の実施形態の有機物質の製造装置と同様である。
この製造装置3において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は5499kWであった。
有機物質の製造装置3を用いた有機物質の製造方法では、はじめに、合成ガス生成部10において、原料廃棄物と、深冷分離によって空気から製造された酸素ガスとを接触させて、原料廃棄物に含まれる炭素源を部分酸化して、10000Nm3/hの、一酸化炭素、二酸化炭素及び水素等を含む合成ガスを得た。
次に、該合成ガスを、スクラバ21、脱硫部22、PSA部23に通して不純物を除去した。PSA部23を出た時点での精製ガス量は7000Nm3/hであった。
その後、該精製ガスを、TSA部24、酸素除去部25に通した後、クロストリジウム属細菌を含む発酵槽からなる有機物質合成部30に供給した。有機物質合成部30において、合成ガスを原料とした発酵を起こすことにより、5質量%のエタノールを含む水溶液を得た。
そして、5質量%エタノール水溶液を、蒸留塔から構成された抽出部40に入れ、濃度が92質量%になるまで蒸留して、エタノールを得た。
本シミュレーションでは、酸素除去部25を235℃に設定し、抽出部40を100℃に設定し、TSA部24内の収着材を再生させる加熱気体(深冷分離によって酸素を除去された窒素ガス)7000Nm3を325℃まで加熱し、12時間流入させる前提条件とした。また、TSA部24は、収着材が充填された第1の容器と第2の容器を備えるものとした。第1の容器において収着材に合成ガス中の不純物を吸着させているときには、第2の容器において収着材から不純物を脱離させ、第2の容器において収着材に合成ガス中の不純物を吸着させているときには、第1の容器において収着材から不純物を脱離させるモデルとした。
図3には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は260kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は378kW、抽出部40においてエタノール水溶液を蒸留する際に用いる熱量は4861kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は5499kWであった。
図3に、比較例1における有機物質の製造装置3を示す。この有機物質の製造装置3は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50とを備えるが、熱提供部を備えないこと以外は第1の実施形態の有機物質の製造装置と同様である。
この製造装置3において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は5499kWであった。
有機物質の製造装置3を用いた有機物質の製造方法では、はじめに、合成ガス生成部10において、原料廃棄物と、深冷分離によって空気から製造された酸素ガスとを接触させて、原料廃棄物に含まれる炭素源を部分酸化して、10000Nm3/hの、一酸化炭素、二酸化炭素及び水素等を含む合成ガスを得た。
次に、該合成ガスを、スクラバ21、脱硫部22、PSA部23に通して不純物を除去した。PSA部23を出た時点での精製ガス量は7000Nm3/hであった。
その後、該精製ガスを、TSA部24、酸素除去部25に通した後、クロストリジウム属細菌を含む発酵槽からなる有機物質合成部30に供給した。有機物質合成部30において、合成ガスを原料とした発酵を起こすことにより、5質量%のエタノールを含む水溶液を得た。
そして、5質量%エタノール水溶液を、蒸留塔から構成された抽出部40に入れ、濃度が92質量%になるまで蒸留して、エタノールを得た。
本シミュレーションでは、酸素除去部25を235℃に設定し、抽出部40を100℃に設定し、TSA部24内の収着材を再生させる加熱気体(深冷分離によって酸素を除去された窒素ガス)7000Nm3を325℃まで加熱し、12時間流入させる前提条件とした。また、TSA部24は、収着材が充填された第1の容器と第2の容器を備えるものとした。第1の容器において収着材に合成ガス中の不純物を吸着させているときには、第2の容器において収着材から不純物を脱離させ、第2の容器において収着材に合成ガス中の不純物を吸着させているときには、第1の容器において収着材から不純物を脱離させるモデルとした。
図3には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は260kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は378kW、抽出部40においてエタノール水溶液を蒸留する際に用いる熱量は4861kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は5499kWであった。
<実施例1>
図4に、実施例1における有機物質の製造装置2を示す。この有機物質の製造装置2は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60を備え、第2の実施形態の有機物質の製造装置と同様である。
この製造装置2において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は4967kWであった。
実施例1でのシミュレーションでは、酸素除去部25で生じた熱を窒素ガスの予熱に利用した点、TSA部24から排出された加熱窒素ガスの熱量を、酸素除去部25に供給する合成ガスの加熱に利用すると共に熱提供部60を用いて抽出部40の蒸留塔の加熱に利用した点が比較例1とは異なる。その他の条件は比較例1と同様とした。
図4には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は0kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は257kW、抽出部40においてエタノール水溶液を蒸留する際に用いる新たに加える熱量は4710kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は4967kWであった。
よって、収着材の再生に用いた窒素ガスの熱量を、熱提供部によって抽出部に供給することにより、合成ガスからエタノールを製造する際の消費エネルギー量を大きく削減することができることが明らかになった。
図4に、実施例1における有機物質の製造装置2を示す。この有機物質の製造装置2は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60を備え、第2の実施形態の有機物質の製造装置と同様である。
この製造装置2において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は4967kWであった。
実施例1でのシミュレーションでは、酸素除去部25で生じた熱を窒素ガスの予熱に利用した点、TSA部24から排出された加熱窒素ガスの熱量を、酸素除去部25に供給する合成ガスの加熱に利用すると共に熱提供部60を用いて抽出部40の蒸留塔の加熱に利用した点が比較例1とは異なる。その他の条件は比較例1と同様とした。
図4には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は0kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は257kW、抽出部40においてエタノール水溶液を蒸留する際に用いる新たに加える熱量は4710kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は4967kWであった。
よって、収着材の再生に用いた窒素ガスの熱量を、熱提供部によって抽出部に供給することにより、合成ガスからエタノールを製造する際の消費エネルギー量を大きく削減することができることが明らかになった。
<実施例2>
図5に、実施例2における有機物質の製造装置1を示す。この有機物質の製造装置1は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60を備え、第1の実施形態の有機物質の製造方法と同様である。この製造装置1は、TSA部24と熱交換器29の間に加熱気体が通過する配管があることを除けば比較例1の製造装置3と同様である。
この製造装置1において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は5121kWであった。
実施例2のシミュレーションでは、TSA部24から排出された加熱窒素ガスの熱量を熱提供部60を用いて抽出部40の蒸留塔の加熱に利用した点が比較例1とは異なる。その他の条件は比較例1と同様とした。
図5には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は260kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は378kW、抽出部40においてエタノール水溶液を蒸留する際に用いる新たに加える熱量は4483kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は5121kWであった。
よって、収着材の再生に用いた窒素ガスの熱量を、熱提供部によって抽出部に供給することにより、合成ガスからエタノールを製造する際の消費エネルギー量を大きく削減することができることが明らかになった
図5に、実施例2における有機物質の製造装置1を示す。この有機物質の製造装置1は、合成ガス生成部10と不純物濃度低減部20と有機物質合成部30と抽出部40と加熱部50と熱提供部60を備え、第1の実施形態の有機物質の製造方法と同様である。この製造装置1は、TSA部24と熱交換器29の間に加熱気体が通過する配管があることを除けば比較例1の製造装置3と同様である。
この製造装置1において、以下の条件で、合成ガスからエタノールを24時間製造するシミュレーションを行った結果、エタノール製造に必要な熱量は5121kWであった。
実施例2のシミュレーションでは、TSA部24から排出された加熱窒素ガスの熱量を熱提供部60を用いて抽出部40の蒸留塔の加熱に利用した点が比較例1とは異なる。その他の条件は比較例1と同様とした。
図5には、シミュレーションから求められたガスの温度を記載した。
シミュレーションの結果、酸素除去部25において用いる熱量は260kW、TSA部24の収着材を再生するための窒素ガスの加熱に用いる熱量は378kW、抽出部40においてエタノール水溶液を蒸留する際に用いる新たに加える熱量は4483kWであった。したがって、合成ガスからエタノールを製造する際に要した熱量の合計は5121kWであった。
よって、収着材の再生に用いた窒素ガスの熱量を、熱提供部によって抽出部に供給することにより、合成ガスからエタノールを製造する際の消費エネルギー量を大きく削減することができることが明らかになった
本発明の有機物質の製造装置及び製造方法によれば、高いエネルギー効率で合成ガスから有機物質を製造できる。
1,2:製造装置
11:合成ガス生成部
20:不純物濃度低減部
21:スクラバ
22:脱硫部
23:圧力スイング吸着部(PSA部)
24:温度スイング吸着部(TSA部)
25:酸素除去部
26:熱交換器
27:熱交換器
30:有機物質合成部
40:抽出部
50:加熱部
60:熱提供部
61:配管
62:熱交換器
11:合成ガス生成部
20:不純物濃度低減部
21:スクラバ
22:脱硫部
23:圧力スイング吸着部(PSA部)
24:温度スイング吸着部(TSA部)
25:酸素除去部
26:熱交換器
27:熱交換器
30:有機物質合成部
40:抽出部
50:加熱部
60:熱提供部
61:配管
62:熱交換器
Claims (9)
- 合成ガスが生成される合成ガス生成部と、
前記合成ガス中の不純物の収着能を有する収着材を備え、前記合成ガスと前記収着材とが接触することにより精製ガスを得る不純物濃度低減部と、
前記精製ガスが原料として使用され、有機物質を含む有機物質含有溶液が合成される有機物質合成部と、
前記有機物質含有溶液が加熱されて前記有機物質が抽出される抽出部と、
前記収着材に供給される加熱気体が調製される加熱部と、
前記加熱部から前記収着材に送入された加熱気体の熱量を前記抽出部に提供する熱提供部と、
を備える有機物質の製造装置。 - 前記有機物質含有溶液が水を含み、前記有機物質がエタノールである、請求項1に記載の有機物質の製造装置。
- 前記抽出部が蒸留装置を備える、請求項1又は2に記載の有機物質の製造装置。
- 前記蒸留装置が多重効用蒸留装置である、請求項3に記載の有機物質の製造装置。
- 前記熱提供部が熱交換器を有する、請求項1~4のいずれか一項に記載の有機物質の製造装置。
- 前記合成ガス生成部が、炭素源を部分酸化して、一酸化炭素及び不純物を含む合成ガスを生成する装置を有する、請求項1~5のいずれか一項に記載の有機物質の製造装置。
- 前記不純物が、ベンゼン、トルエン、エチルベンゼン、キシレンから選ばれる少なくとも一種である、請求項6に記載の有機物質の製造装置。
- 合成ガスを生成する合成ガス生成工程と、
前記合成ガスと前記合成ガス中の不純物の収着能を有する収着材とを接触させ、不純物濃度を低減させて精製ガスを得る不純物濃度低減工程と、
前記精製ガスを原料として、有機物質を含む有機物質含有溶液を合成する有機物質合成工程と、
前記有機物質含有溶液を加熱して有機物質を抽出する抽出工程と、
を含む有機物質の製造方法であって、
前記不純物濃度低減工程に使用した収着材に加熱気体を接触させて、収着材から不純物を脱離させる脱離工程を有し、前記脱離工程を経た加熱気体の熱量を回収して前記抽出工程で利用する、有機物質の製造方法。 - 前記抽出工程が前記有機物質含有溶液を蒸留する工程である、請求項8に記載の有機物質の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/311,909 US10626070B2 (en) | 2016-06-21 | 2017-06-21 | Device for manufacturing organic substance and method for manufacturing organic substance |
CN201780048979.1A CN109563420A (zh) | 2016-06-21 | 2017-06-21 | 有机物质的制造装置和有机物质的制造方法 |
JP2018524145A JP6705896B2 (ja) | 2016-06-21 | 2017-06-21 | 有機物質の製造装置及び有機物質の製造方法 |
EP17815455.5A EP3476920A4 (en) | 2016-06-21 | 2017-06-21 | DEVICE FOR PRODUCING AN ORGANIC SUBSTANCE AND METHOD FOR PRODUCING THE ORGANIC SUBSTANCE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-122454 | 2016-06-21 | ||
JP2016122454 | 2016-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221987A1 true WO2017221987A1 (ja) | 2017-12-28 |
Family
ID=60784427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022904 WO2017221987A1 (ja) | 2016-06-21 | 2017-06-21 | 有機物質の製造装置及び有機物質の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10626070B2 (ja) |
EP (1) | EP3476920A4 (ja) |
JP (1) | JP6705896B2 (ja) |
CN (1) | CN109563420A (ja) |
WO (1) | WO2017221987A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188838A1 (ja) | 2018-03-26 | 2019-10-03 | 積水化学工業株式会社 | 有機物質の製造方法 |
WO2020021930A1 (ja) * | 2018-07-25 | 2020-01-30 | 積水化学工業株式会社 | 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法 |
JP2020063429A (ja) * | 2019-09-10 | 2020-04-23 | 積水化学工業株式会社 | 制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル及び制御方法 |
JP2021004189A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004190A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004192A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004191A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021049482A (ja) * | 2019-09-24 | 2021-04-01 | 積水化学工業株式会社 | 精製ガスの製造方法及びガス精製装置 |
CN112689535A (zh) * | 2018-09-25 | 2021-04-20 | 积水化学工业株式会社 | 沸石吸附材料的重复利用方法和再生吸附材料 |
JP2021512782A (ja) * | 2018-02-12 | 2021-05-20 | ランザテク,インコーポレイテッド | ガス流から構成成分を濾過するための統合プロセス |
JP2022125125A (ja) * | 2018-05-28 | 2022-08-26 | ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド | 植物材料の有機酸前処理から生成物を回収するための効率的な方法および組成物 |
JP2023509749A (ja) * | 2020-01-19 | 2023-03-09 | 浙江新和成股▲分▼有限公司 | アジポニトリルの製造方法及び装置 |
US12110355B2 (en) | 2019-01-28 | 2024-10-08 | Sekisui Chemical Co., Ltd. | Method for producing conjugated diene polymer |
KR102718060B1 (ko) * | 2018-02-12 | 2024-10-15 | 란자테크, 인크. | 가스 스트림에서 성분 가스를 여과하기 위한 통합 공정 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114159922A (zh) * | 2021-11-10 | 2022-03-11 | 宁夏首朗吉元新能源科技有限公司 | 一种铁合金尾气净化系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085099A (ja) | 2002-08-27 | 2004-03-18 | Mayekawa Mfg Co Ltd | 排出co2の回収システム |
WO2016017549A1 (ja) * | 2014-07-30 | 2016-02-04 | 積水化学工業株式会社 | 化学品製造装置及び化学品製造方法 |
JP2016059296A (ja) | 2014-09-16 | 2016-04-25 | 積水化学工業株式会社 | 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置 |
JP2016122454A (ja) | 2012-10-15 | 2016-07-07 | 株式会社ソニー・インタラクティブエンタテインメント | 操作デバイス |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971606A (en) * | 1989-11-06 | 1990-11-20 | Air Products And Chemicals, Inc. | Closed-loop thermal regeneration of adsorbents containing reactive adsorbates |
CA2759898C (en) * | 2009-04-29 | 2013-07-16 | Lanzatech New Zealand Limited | Improved carbon capture in fermentation |
US8163809B2 (en) * | 2009-11-30 | 2012-04-24 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit |
US8895274B2 (en) * | 2011-11-28 | 2014-11-25 | Coskata, Inc. | Processes for the conversion of biomass to oxygenated organic compound, apparatus therefor and compositions produced thereby |
CN105518147B (zh) * | 2013-09-13 | 2021-08-03 | 积水化学工业株式会社 | 有机物质的制造装置及有机物质的制造方法 |
CN103521201B (zh) * | 2013-10-09 | 2015-05-20 | 四川天一科技股份有限公司 | 用焦炉气和转炉气制甲醇中转炉气变温吸附剂再生的方法 |
-
2017
- 2017-06-21 US US16/311,909 patent/US10626070B2/en not_active Expired - Fee Related
- 2017-06-21 CN CN201780048979.1A patent/CN109563420A/zh active Pending
- 2017-06-21 WO PCT/JP2017/022904 patent/WO2017221987A1/ja unknown
- 2017-06-21 EP EP17815455.5A patent/EP3476920A4/en not_active Withdrawn
- 2017-06-21 JP JP2018524145A patent/JP6705896B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004085099A (ja) | 2002-08-27 | 2004-03-18 | Mayekawa Mfg Co Ltd | 排出co2の回収システム |
JP2016122454A (ja) | 2012-10-15 | 2016-07-07 | 株式会社ソニー・インタラクティブエンタテインメント | 操作デバイス |
WO2016017549A1 (ja) * | 2014-07-30 | 2016-02-04 | 積水化学工業株式会社 | 化学品製造装置及び化学品製造方法 |
JP2016059296A (ja) | 2014-09-16 | 2016-04-25 | 積水化学工業株式会社 | 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3476920A4 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102718060B1 (ko) * | 2018-02-12 | 2024-10-15 | 란자테크, 인크. | 가스 스트림에서 성분 가스를 여과하기 위한 통합 공정 |
JP2021512782A (ja) * | 2018-02-12 | 2021-05-20 | ランザテク,インコーポレイテッド | ガス流から構成成分を濾過するための統合プロセス |
WO2019188838A1 (ja) | 2018-03-26 | 2019-10-03 | 積水化学工業株式会社 | 有機物質の製造方法 |
US11566267B2 (en) | 2018-03-26 | 2023-01-31 | Sekiguji Chemical Co., Ltd. | Method for producing organic substance |
JP2022125125A (ja) * | 2018-05-28 | 2022-08-26 | ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド | 植物材料の有機酸前処理から生成物を回収するための効率的な方法および組成物 |
WO2020021930A1 (ja) * | 2018-07-25 | 2020-01-30 | 積水化学工業株式会社 | 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法 |
JP2020015821A (ja) * | 2018-07-25 | 2020-01-30 | 積水化学工業株式会社 | 制御装置、サーバ、管理システム、コンピュータプログラム、学習モデル及び制御方法 |
EP3828251A4 (en) * | 2018-07-25 | 2022-04-06 | Sekisui Chemical Co., Ltd. | CONTROL DEVICE, OPERATION CONTROL DEVICE, SERVER, MANAGEMENT SERVER, COMPUTER PROGRAM, LEARNING MODEL, CONTROL METHOD AND OPERATION CONTROL METHOD |
EP3858477A4 (en) * | 2018-09-25 | 2022-06-29 | Sekisui Chemical Co., Ltd. | Method for reusing zeolite adsorbent, and regenerated adsorbent |
US12023647B2 (en) | 2018-09-25 | 2024-07-02 | Sekisui Chemical Co., Ltd. | Method for reusing zeolite adsorbent and regenerated adsorbent |
CN112689535A (zh) * | 2018-09-25 | 2021-04-20 | 积水化学工业株式会社 | 沸石吸附材料的重复利用方法和再生吸附材料 |
US12110355B2 (en) | 2019-01-28 | 2024-10-08 | Sekisui Chemical Co., Ltd. | Method for producing conjugated diene polymer |
JP2021004190A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004191A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004192A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2021004189A (ja) * | 2019-06-25 | 2021-01-14 | 積水化学工業株式会社 | エタノール |
JP2020063429A (ja) * | 2019-09-10 | 2020-04-23 | 積水化学工業株式会社 | 制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル及び制御方法 |
JP2021049482A (ja) * | 2019-09-24 | 2021-04-01 | 積水化学工業株式会社 | 精製ガスの製造方法及びガス精製装置 |
JP2023509749A (ja) * | 2020-01-19 | 2023-03-09 | 浙江新和成股▲分▼有限公司 | アジポニトリルの製造方法及び装置 |
JP7417962B2 (ja) | 2020-01-19 | 2024-01-19 | 浙江新和成股▲分▼有限公司 | アジポニトリルの製造方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6705896B2 (ja) | 2020-06-03 |
CN109563420A (zh) | 2019-04-02 |
EP3476920A1 (en) | 2019-05-01 |
US20190202763A1 (en) | 2019-07-04 |
EP3476920A4 (en) | 2020-01-01 |
JPWO2017221987A1 (ja) | 2019-05-16 |
US10626070B2 (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6705896B2 (ja) | 有機物質の製造装置及び有機物質の製造方法 | |
CN105749699B (zh) | 一种全温程变压吸附气体分离提纯与净化的方法 | |
JP6943733B2 (ja) | 有機物質の製造方法 | |
JP6659717B2 (ja) | 水素回収法 | |
WO2011069264A1 (en) | Alcohol-based gas stripping process | |
US12023647B2 (en) | Method for reusing zeolite adsorbent and regenerated adsorbent | |
CN103087780A (zh) | 生物质燃气焦油多级深度脱除工艺 | |
CN105820846A (zh) | 一种焦炉煤气脱苯脱萘的全温程变压吸附净化方法 | |
JP2018058042A (ja) | 合成ガスの浄化処理方法及び装置 | |
Haldar et al. | Purification of biogas for methane enrichment using biomass-based adsorbents: A review | |
Dicko et al. | Adsorption and biomass: Current interconnections and future challenges | |
JP6680960B1 (ja) | ガス処理方法及びガス処理装置 | |
JP7284738B2 (ja) | 有機物質の製造方法 | |
Zhang et al. | Simulated biomass tar removal mechanism by a Quench Coupled with ADsorption Technology (QCADT) | |
JP7149864B2 (ja) | ゼオライト吸着材の再利用方法および再生吸着材 | |
CN102441313B (zh) | 一种油气回收方法 | |
CN205055476U (zh) | 一种全密闭焦化尾气处理装置 | |
CN116099331B (zh) | 一种co2及h2s协同捕集与分离回收的方法 | |
US12049610B2 (en) | Apparatus for producing an organic substance | |
JP2011036149A (ja) | 微生物による酢酸の製造方法 | |
JP2020049406A (ja) | ガス配管装置、ガス処理システムおよび管の洗浄方法 | |
Garnaik et al. | and Animesh Dutta | |
Alengebawy et al. | 12 Carbonaceous Sorbents | |
JPH08224440A (ja) | タルクによる二酸化炭素の高温分離方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815455 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018524145 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017815455 Country of ref document: EP Effective date: 20190121 |