WO2020021930A1 - 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法 - Google Patents

制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法 Download PDF

Info

Publication number
WO2020021930A1
WO2020021930A1 PCT/JP2019/024881 JP2019024881W WO2020021930A1 WO 2020021930 A1 WO2020021930 A1 WO 2020021930A1 JP 2019024881 W JP2019024881 W JP 2019024881W WO 2020021930 A1 WO2020021930 A1 WO 2020021930A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
information
unit
control
purification device
Prior art date
Application number
PCT/JP2019/024881
Other languages
English (en)
French (fr)
Inventor
周知 佐藤
和都 夏山
心 濱地
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP19839911.5A priority Critical patent/EP3828251A4/en
Priority to US17/251,437 priority patent/US20210264269A1/en
Priority to CN201980041173.9A priority patent/CN112352034A/zh
Publication of WO2020021930A1 publication Critical patent/WO2020021930A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1665Conversion of synthesis gas to chemicals to alcohols, e.g. methanol or ethanol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a control device, an operation control device, a server, a management server, a computer program, a learning model, a control method, and an operation control method.
  • Patent Document 1 discloses that a magnetic substance is magnetically separated from incineration ash discharged from a refuse incinerator, and the selected magnetic substance is subjected to a reduction metallization treatment.
  • a waste treatment facility that can reduce the amount of landfill disposal is disclosed.
  • the present invention has been made in view of such circumstances, and a control device, an operation control device, a server, a management server, a computer program, a learning model, which can highly efficiently reuse combustible waste as an industrial raw material, It is an object to provide a control method and an operation control method.
  • a control device is a control device that controls a gas purification device, and a gas information acquisition unit that acquires gas information of a gas converted by a gasifier that converts collected waste into gas.
  • a control information acquisition unit that acquires control information for controlling the gas purification device that refines the gas converted by the gasification furnace, and a characteristic that acquires characteristic information including information on the purified gas purified by the gas purification device.
  • An information acquisition unit, and a generation unit that generates a learning model by machine learning based on the gas information, control information, and characteristic information.
  • a control device is a control device that controls a gas purification device, and gas information of a gas converted by a gasification furnace that converts collected waste into a gas.
  • a gas information acquisition unit for acquiring information; and an output unit for inputting the gas information acquired by the gas information acquisition unit to the learning model and outputting control information for controlling the gas purification device.
  • the server includes, from each of a plurality of waste treatment plants, identification information for identifying a plant, gas information of a gas converted by a gasification furnace that converts collected waste into gas, the gas Control information for controlling a gas purification device for purifying the gas converted by the gasification furnace, and a collection unit for collecting characteristic information including information on the purified gas purified by the gas purification device, and gas information collected by the collection unit;
  • a storage unit for storing control information and characteristic information in association with the identification information.
  • the management server provides, from each of a plurality of waste treatment plants, identification information for identifying a plant, and gas purification for purifying gas converted by a gasifier that converts collected waste into gas.
  • the apparatus includes a collection unit that collects the degree of deterioration of the suction device in the apparatus, and a storage unit that stores the degree of deterioration collected by the collection unit in association with the identification information.
  • An operation control device is an operation control device that controls a target gas purification device, and stores gas information of a gas converted by a target gasifier that converts collected waste into gas.
  • a control information output unit that outputs control information for controlling the target gas purification device obtained by inputting gas information acquired by the gas information acquisition unit to a learning model learned based on characteristic information including information.
  • a computer program includes a computer, a process for obtaining gas information of a gas converted by a gasifier that converts collected waste into a gas, and a process of purifying the gas converted by the gasifier.
  • processing for generating a learning model includes a computer, a process for obtaining gas information of a gas converted by a gasifier that converts collected waste into a gas, and a process of purifying the gas converted by the gasifier.
  • a computer program includes a computer, a process for obtaining gas information of a gas converted by a gasifier that converts collected waste into a gas, and a process of obtaining gas information of a gas converted by the gasifier.
  • Information control information for controlling a gas purification device for purifying the gas converted by the gasifier, and a learning model learned based on characteristic information including information on the purified gas purified by the gas purification device; Inputting information and outputting control information for controlling the gas purification device.
  • the learning model controls the gas information of the gas converted by the gasification furnace that converts collected waste into gas, and the control that controls the gas purification device that refines the gas converted by the gasification furnace.
  • the learning is performed based on the information and the characteristic information including the information on the purified gas purified by the gas purification device.
  • a control method is a control method for controlling a gas purification apparatus, wherein the gasification furnace for converting collected waste into gas acquires gas information of the converted gas, and the gasification is performed.
  • the furnace obtains control information for controlling the gas purification device that purifies the converted gas, obtains characteristic information including information on the purified gas purified by the gas purification device, and obtains the gas information, control information, and characteristic information. Based on machine learning, a learning model is generated.
  • a control method is a control method for controlling a gas purification apparatus, wherein the gasification furnace for converting collected waste into gas acquires gas information of the converted gas, and the gasification is performed. Learning based on gas information of the gas converted by the furnace, control information for controlling the gas purification device for purifying the gas converted by the gasification furnace, and characteristic information including information on the purified gas purified by the gas purification device. The obtained gas information is input to the learned model, and control information for controlling the gas purification device is output.
  • the operation control method is an operation control method for controlling a target gas purification apparatus, and includes a method for converting gas information of a gas converted by a target gasifier that converts collected waste into gas. Acquisition and gas information of the gas converted by the gasifier, control information for controlling a gas purification device for purifying the gas converted by the gasifier, and characteristic information including information on the purified gas purified by the gas purification device.
  • the control information for controlling the target gas purification apparatus which is obtained by inputting the obtained gas information to the learning model learned based on the above, is output.
  • combustible waste can be reused as an industrial raw material with high efficiency.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of an ethanol production system 100 according to the present embodiment.
  • the ethanol generation system is installed in, for example, a refuse treatment facility, and includes a gasification furnace 10, a gas purification device 20, an ethanol generation device 30, and a control device 50.
  • the gasification furnace 10 is a furnace capable of steaming refuse (combustible refuse) in a low-oxygen state and decomposing it to a molecular level (for example, including carbon monoxide gas and hydrogen gas).
  • the gas refining device 20 can remove and purify the impurity gas contained in the gas converted by the gasification furnace 10 to take out required gases (for example, carbon monoxide gas and hydrogen gas).
  • the ethanol generation device 30 can generate ethanol by a catalyst (for example, a metal catalyst, a microbial catalyst, or the like) using a required gas taken out by the gas purification device 20.
  • Ethanol it has an ethylenically similar C 2 structure occupying an approximately 60% of the petrochemical product, by converting the ethylene monomer or butadiene monomer by an existing chemical process, to induce the induced chemical material such as plastic it can.
  • the flammable garbage may be flammable, and includes industrial waste, general waste, agricultural waste, and the like, but is not particularly limited thereto.
  • an organic compound and / or an inorganic compound may be used as a substitute for the waste in the present embodiment, and the organic compound and / or the inorganic compound is a main component of the gas to be converted.
  • the present invention is applicable as long as it is converted into a gas containing one or more of CO, CO2, and H2 as a component.
  • the control device 50 includes a control unit 51 that controls the entire device, a gas information acquisition unit 52, a characteristic information acquisition unit 53, a communication unit 54, a storage unit 55, a sensor information acquisition unit 56, a recording medium reading unit 57, a determination unit 58, And a processing unit 60.
  • the processing unit 60 includes a reward calculation unit 61, an action selection unit 62, and an action evaluation unit 63.
  • the control unit 51 can be configured by a CPU, a ROM, a RAM, and the like.
  • the gas information acquisition unit 52 acquires gas information of the gas converted by the gasifier 10.
  • the gas information includes, for example, the concentration of the impurity gas (contaminant) extracted from the gasification furnace 10.
  • the impurity gas include, but are not limited to, gases such as hydrogen cyanide, benzene, toluene, ethylbenzene, xylene, and dioxin.
  • the concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the processing unit 60 has a function as a control information acquisition unit, and acquires control information for controlling the operation of the gas purification device 20. Details of the control information will be described later.
  • the characteristic information acquisition unit 53 acquires characteristic information including information on the purified gas purified by the gas purification device 20.
  • the information on the purified gas includes, for example, the purity of the carbon monoxide gas and the hydrogen gas.
  • the information on the purified gas may include the purity of the carbon dioxide gas, or may include the concentration of the impurity gas that could not be removed.
  • the communication unit 54 has a function of communicating with the management server 200 and the learning server 300 via the network 1 described below, and can transmit and receive required information.
  • the management server 200 and the learning server 300 will be described later.
  • the storage unit 55 is configured by a hard disk or a flash memory or the like, and can store information obtained from outside the control device 50, information such as a processing result inside the control device 50, and the like.
  • the sensor information acquisition unit 56 acquires sensor information from the gas purification device 20. Details of the sensor information will be described later.
  • the recording medium reading unit 57 can read a computer program recorded on a recording medium from a recording medium (not shown) recording a computer program defining processing of the control device 50.
  • the determination unit 58 determines the activity of the microorganism based on the state of the microorganism.
  • the activity includes, for example, the reaction rate and the survival rate of the microorganism.
  • the activity of the microorganism can be determined by monitoring the state of the microorganism from outside the culture solution layer in real time.
  • the activity of the microorganism may be determined by monitoring the state of the microorganism offline. Thus, for example, when the activity of the microorganism is reduced, the nutrient can be added and activated again, and the production rate of ethanol can be maintained at a high level.
  • the determination unit 58 may not be provided.
  • the processing unit 60 includes, for example, hardware such as a CPU (for example, a multi-processor having a plurality of processor cores), a GPU (Graphics Processing Units), a DSP (Digital Signal Processors), and an FPGA (Field-Programmable Gate Arrays). Can be combined. Further, the processing unit 60 may be configured by a virtual machine, a quantum computer, or the like. An agent described later is a virtual machine existing on a computer, and the state of the agent is changed by parameters or the like. Further, the processing unit 60 may learn with a computer other than another (control device 50).
  • a CPU for example, a multi-processor having a plurality of processor cores
  • a GPU Graphics Processing Units
  • DSP Digital Signal Processors
  • FPGA Field-Programmable Gate Arrays
  • the processing unit 60 may be configured by a virtual machine, a quantum computer, or the like. An agent described later is a virtual machine existing on a computer, and the state of the agent is changed by parameters
  • the processing unit 60 has a function as a generation unit, and can generate a learning model by machine learning based on gas information, control information, and characteristic information.
  • machine learning for example, deep learning, reinforcement learning, deep reinforcement learning, or the like can be used.
  • the gas information is set to “state”
  • the control information is set to “action”
  • “reward” is calculated based on the characteristic information
  • the Q value or the value of the Q function (action value function) is calculated. You just have to learn.
  • the action selection unit 62 has a function as an action output unit, and controls based on the gas information acquired by the gas information acquisition unit 52 and the Q value of the action evaluation unit 63 or the value of the Q function (action evaluation information). Output information.
  • the action evaluation unit 63 includes an evaluation value of an action in reinforcement learning, and specifically includes a Q value or a value of a Q function (action value function). That is, the action selection unit 62 selects and outputs an action from the actions that can be taken in the acquired state based on the evaluation value of the action in the acquired state (gas information).
  • the reward calculation unit 61 calculates a reward based on the acquired characteristic information.
  • the remuneration is calculated to be positive (with reward) if the property information is within the required value or range, and 0 (no reward) or if the property information is not within the required value or within the range. It can be made negative (penalty).
  • the action selecting section 62 has a function as an updating section, and updates the Q value or the value of the Q function of the action evaluating section 63 so that the reward calculated by the reward calculating section 61 increases.
  • the learning model can be trained so that control information that falls within a required value or range can be output.
  • the operation of the gas purification device 20 can be optimized and the desired ethanol can be generated. It can be reused with high efficiency.
  • the control unit 51 can store the updated Q value or Q function value (action evaluation information) of the action evaluation unit 63 in the storage unit 55. By reading the behavior evaluation information stored in the storage unit 55, the learned learning model can be reproduced.
  • FIG. 2 is a schematic diagram showing an example of a configuration of a main part of the gas purification device 20.
  • the gas purification device 20 includes a gas line communicating with the output side of the gasification furnace 10 and communicating with the input side of the ethanol generation device 30. In the middle of the gas line, a buffer is provided from the gasification furnace 10 side.
  • a tank 21, two adsorption devices 22, 23, a compressor 25, and a buffer tank 24 are interposed.
  • the buffer tanks 21 and 24 are for temporarily storing gas. Solenoid valves are provided in the gas lines on the inlet side and the gas lines on the outlet side of the adsorption devices 22 and 23.
  • the adsorption device 22 contains the gas adsorption member 221, and the adsorption device 23 contains the gas adsorption member 231.
  • Sensor units 27 are provided at required positions of the suction device 22 and the suction device 23, respectively. In FIG. 2, for convenience, the sensor unit 27 is illustrated outside the suction devices 22 and 23, but the installation position of the sensor unit 27 is not limited to the example in FIG. 2.
  • the adsorption device 22 and the adsorption device 23 are used alternately one by one. For example, in one cycle time, the adsorption device 22 is used, and in the next cycle time, the adsorption device 23 is used instead of the adsorption device 22. . Thereafter, the same switching is repeated. In one cycle time, operations such as raising and lowering the pressure in the adsorption device, desorption and cleaning of the adsorption device (for example, a gas adsorption member) are performed.
  • FIG. 3 is an explanatory view showing the principle of the pressure fluctuation adsorption method.
  • the vertical axis indicates the adsorption capacity
  • the horizontal axis indicates the gas pressure.
  • FIG. 3 schematically shows an adsorption isotherm of an impurity gas and an adsorption isotherm of a carbon monoxide gas or a hydrogen gas.
  • PSA Pressure Swing Adsorption
  • the adsorption capacity difference of the impurity gas (the difference between A1 and A2) becomes larger than the adsorption capacity difference of the carbon monoxide gas or the hydrogen gas (the difference between B1 and B2). Difference).
  • the adsorption capacity difference of the impurity gas (the difference between A1 and A2) becomes larger than the adsorption capacity difference of the carbon monoxide gas or the hydrogen gas (the difference between B1 and B2). Difference).
  • more impurity gas is adsorbed and removed by the gas adsorbing member than carbon monoxide gas or hydrogen gas.
  • the carbon monoxide gas and the hydrogen gas that have not been adsorbed by the gas adsorbing member are sent to the ethanol generator 30.
  • the operation control unit 26 includes a gas flow control unit 261, a temperature adjustment unit 262, a humidity adjustment unit 263, an adsorption device switching unit 264 that switches the operation of the adsorption devices 22 and 23, and a communication unit 265.
  • the communication unit 265 has a communication function, and can transmit and receive predetermined information to and from the control device 50.
  • the operation control unit 26 has a function as a use history acquisition unit, and acquires the use history of the adsorption devices 22 and 23 (for example, the gas adsorption members 221 and 231).
  • the usage history includes, for example, the cumulative usage time, the number of times of cleaning, and the like.
  • the sensor unit 27 includes a plurality of sensors of different types, and can detect the degree of deterioration of the suction devices 22 and 23 (for example, the gas suction members 221 and 231).
  • the degree of deterioration can be determined, for example, based on the color or stain on the surfaces of the gas adsorption members 221 and 223 after the gas adsorption members 221 and 231 have been cleaned, the amount of impurities adsorbed in a predetermined cycle time, and the like.
  • the sensor unit 27 can detect the presence or absence of a desorption operation of the adsorption devices 22 and 23 (for example, the gas adsorption members 221 and 231).
  • the desorption operation of the suction devices 22 and 23 can be, for example, an unintended desorption operation.
  • the communication unit 265 can transmit information such as the usage history, the degree of deterioration, and the presence / absence of a desorption operation of the suction devices 22 and 23 to the control device 50.
  • the gas flow control unit 261 controls the gas flow based on the control information output from the control device 50.
  • the temperature adjustment unit 262 adjusts the temperature of the gas based on the control information output from the control device 50.
  • the humidity adjustment unit 263 adjusts the humidity of the gas based on the control information output from the control device 50.
  • the adsorption device switching unit 264 adjusts the cycle time for switching the operation of the adsorption devices 22 and 23 based on the control information output from the control device 50.
  • FIG. 4 is a schematic diagram showing an example of the reinforcement learning according to the present embodiment.
  • Reinforcement learning is a machine learning algorithm that seeks measures (rules that act as agents when an agent acts) so that an agent placed in a certain environment acts on the environment and the obtained reward is maximized. is there.
  • an agent is like a learner who acts on the environment and is a learning target.
  • the environment updates the state of the agent and gives a reward to the action of the agent.
  • An action is an action that an agent can take for a certain state of the environment.
  • the state is a state of the environment held by the environment.
  • Rewards are awarded to agents when they exert a desired result on the environment.
  • the reward can be, for example, a value of positive, negative, or 0.
  • the action evaluation function is a function that determines an evaluation value of an action in a certain state, and can be expressed in a table format such as a table.
  • Q learning it is called a Q function, a Q value, an evaluation value, or the like.
  • Q learning is one of the methods often used in reinforcement learning. In the following, Q learning will be described, but reinforcement learning may alternatively be different from Q learning.
  • the gasification furnace 10, the gas purification device 20, the ethanol generation device 30, and the reward calculation unit 61 in the processing unit 60 correspond to “environment”, and the action selection unit 62 and the action evaluation unit 63 set “ Agent ".
  • the behavior evaluation unit 63 corresponds to the above-described Q function and Q value, and corresponds to a behavior evaluation function (behavior evaluation information).
  • behavior selection unit 62 acquires the state s t, based on the action evaluation unit 63, from among the possible actions in state s t, the highest rating (e.g., the largest value of the Q function) Action and outputs to the gas purification unit 20 as control information by selecting a t.
  • the gas purification device 20 performs operation control based on the control information.
  • Time (interval) is between time t + 1 to obtain the time t and state s t + 1 to obtain the state s t, can be appropriately set, for example, 1 second, 10 seconds, 30 seconds, 1 minute, It can be 2 minutes, but is not limited to these.
  • Compensation calculation unit 61 can calculate the reward r t + 1 based on the change characteristics information based on the action a t (control information).
  • the action selecting unit 62 causes a desired result to act on the gas purification device 20
  • a reward of a high value positive value
  • the reward calculation unit 61 determines at least one of the purity of the carbon monoxide gas and the hydrogen gas purified by the gas purification device 20, the purity or amount of the ethanol purified by the ethanol generation device 30, and the activity of the catalyst in the ethanol generation device 30.
  • the reward can be calculated based on the Thereby, the operation control of the gas purification device 20 can be performed so that the characteristic information falls within a required value or range.
  • the reward may be calculated using the concentration of the impurity gas output from the gas purification device 20. In this case, the higher the impurity gas concentration, the greater the penalty.
  • the action selection unit 62 updates, for example, the value of the Q function or the Q value of the action evaluation unit 63 based on the acquired state st + 1 and reward rt + 1 . More specifically, the action selection unit 62 updates the value of the Q function or the Q value in a direction that maximizes the reward for the action. As a result, it is possible to learn an action expected to have the maximum value in a certain state of the environment.
  • a table (also referred to as a Q table) having a size of (the number of states s ⁇ the number of actions a) can be updated.
  • the Q function is A method of expressing by a neural network can be adopted.
  • FIG. 5 is a schematic diagram showing an example of the configuration of the neural network model unit according to the present embodiment.
  • the neural network model unit represents the processing unit 60 (specifically, the action selection unit 62 and the action evaluation unit 63).
  • the neural network model unit has an input layer 601, an intermediate layer 602, and an output layer 603.
  • the number of input neurons in the input layer 601 can be the number of types of impurity gas.
  • the input neurons in the input layer 601 have the concentration of impurity gas G1, the concentration of impurity gas G2,. Is entered.
  • the number of types of impurity gas is, for example, about 400, but is not limited thereto.
  • the number of output neurons in the output layer 603 can be the number of action options. In FIG. 5, for convenience, the number of output neurons in the output layer 603 is set to 2, one output neuron outputs the value of the Q function when the cycle time is lengthened, and the other output neuron has the cycle time shortened. The value of the Q function at that time is output.
  • Machine learning (deep reinforcement learning) using the neural network model unit can be performed as follows. That is, by entering the state s t to the input neurons of the neural network model unit, output neuron outputs Q (s t, a t) .
  • Q is a function that stores the evaluation of the action a in the state s. Updating of the Q function can be performed by equation (1).
  • s t represents the state at time t
  • a t represents the actions that can be taken in the state s t
  • alpha is the learning rate (where, 0 ⁇ ⁇ 1) indicates
  • gamma is Indicates a discount rate (where 0 ⁇ ⁇ 1).
  • the learning rate ⁇ is also referred to as a learning coefficient, and is a parameter that determines a learning speed (step size). That is, the learning rate ⁇ is a parameter for adjusting the update amount of the Q value or the value of the Q function.
  • the discount rate ⁇ is a parameter that determines how much the evaluation (reward or penalty) of the future state is discounted and considered when updating the Q function. That is, when the evaluation in a certain state is connected to the evaluation in a past state, it is a parameter that determines how much a reward or a penalty is discounted.
  • rt + 1 is a reward obtained as a result of the action, and becomes 0 when no reward is obtained, and takes a negative value in the case of a penalty.
  • the parameters of the neural network model are updated so that the error between the expected reward value and the current behavior evaluation approaches zero.
  • the value of ( ⁇ ⁇ maxQ (s t + 1, a t + 1)) , the current Q (s t, a t) values and, after executing the action a t state s t It is corrected based on the maximum evaluation value obtained among actions that can be executed by +1 .
  • ⁇ Rewards may not always be obtained for performing actions in a certain state. For example, a reward may be obtained after repeating an action several times.
  • Expression (2) represents an update expression of the Q function when a reward is obtained by avoiding the problem of divergence in Expression (1).
  • Equation (3) represents an update equation for the Q function when no reward is obtained in equation (1).
  • the number of output neurons is two, but the number is not limited to this.
  • FIG. 6 is an explanatory diagram showing an example of actions a t.
  • action a t is the control cycle time (cycle time of the switching of the adsorption device 22 and the suction device 23), specifically, a longer cycle time, to shorten the cycle time, Alternatively, an action that does not change the cycle time can be used.
  • how long or short the cycle time is can be appropriately set.
  • action a t is the control of the gas temperature, specifically, raising the temperature, lowering the temperature, it is possible to use a behavior that does not change the temperature. Here, how much the temperature is raised or lowered can be set as appropriate.
  • action a t is the control of the amount of gas, specifically, increasing the gas volume, reducing the amount of gas, or can be used behaviors do not change the amount of gas.
  • how much the gas amount is increased or decreased can be appropriately set.
  • the action a t is the control of the gas humidity, specifically, increasing the humidity, lowering the humidity, or can be used behaviors do not change the humidity.
  • how much the humidity is increased or decreased can be set as appropriate.
  • the output neuron can be configured to output a Q function by combining all or some of the actions illustrated in FIG. Although not shown, it may be included the pressure of the gas into action a t, for example, raising the pressure of the gas, lowering the pressure of the gas, can be included, not changing the pressure of the gas.
  • FIG. 7 is a schematic diagram showing another example of the configuration of the neural network model unit according to the present embodiment.
  • the difference from the neural network model part illustrated in FIG. 5 is that the number of output neurons is increased instead of two.
  • different types of actions are combined.
  • the output neuron increases the value of the Q function and the cycle time when nothing is performed, increases the value of the Q function and the cycle time when the gas amount is increased, and increases the gas amount.
  • the value of the Q function at that time can be used. Note that the number of output neurons and the type of output are not limited to the example of FIG.
  • CNN convolutional neural network
  • the processing unit 60 (specifically, the behavior selection unit 62 and the behavior evaluation unit 63 as learning models) includes gas information of the gas converted by the gasification furnace 10, control information for controlling the gas purification device 20, and gas purification.
  • the learning is performed based on the characteristic information including the information on the purified gas purified by the device 20.
  • the processing unit 60 acquires gas information of the gas converted by the gasification furnace 10.
  • the processing unit 60 inputs the gas information to the learning model (the action selection unit 62 and the action evaluation unit 63) and outputs control information for controlling the gas purification device 20.
  • the control unit 51 can control the gas purification device 20 based on the control information output from the processing unit 60. Thereby, even when the components and the composition of the refuse fluctuate, the operation of the gas purification device 20 can be optimized and the desired ethanol can be generated, so that the combustible refuse can be reused as an industrial raw material with high efficiency. Can be.
  • FIG. 8 is a schematic diagram showing an example of the concentration of the impurity gas when the operation of the gas purification device 20 is controlled by the control device 50.
  • the figure on the left shows the impurity gas input to the gas purifier 20, and the figure on the right shows the impurity gas output from the gas purifier 20.
  • the vertical axis indicates gas concentration
  • the horizontal axis indicates time.
  • each time the combustible waste collected is put into the gasifier 10 for example, about once every 1 to 30 minutes
  • an impurity gas for changing the composition and composition of the waste is used.
  • the impurity gas whose concentration exceeds the threshold value is extracted from the gas purification device 20 and input to the ethanol generation device 30, for example, the purity of the generated ethanol decreases.
  • the concentration of the impurity gas is less than the threshold value and the concentration exceeds the threshold value, as shown in the diagram on the right. It is possible to prevent the impurity gas from being input to the ethanol generator 30.
  • the control unit 51 can store the characteristic information including the information of the purified gas purified by the gas purification device 20 in the storage unit 55 in the operation control mode of the gas purification device 20. Thereby, when the components and composition of the refuse fluctuate, characteristic information obtained as a result of optimizing the operation of the gas purification device 20 can be collected.
  • the control unit 51 can transmit the acquired gas information, the output control information, and the acquired characteristic information to the learning server 300 to be described later via the communication unit 54 in the operation control mode of the gas purification device 20.
  • the processing unit 60 can re-learn the learning model based on the acquired gas information, the output control information, and the acquired characteristic information in the operation control mode of the gas purification device 20. Thereby, the operation of the gas purification device 20 can be further optimized.
  • the control unit 51 can transmit information such as the usage history, the degree of deterioration of the adsorption devices 22 and 23, and the presence or absence of a desorption operation obtained from the gas purification device 20 to the management server 200 described below via the communication unit 54. it can.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of machine learning according to the present embodiment.
  • the processing unit 60 sets parameters of the neural network model unit to initial values (S11).
  • Processing unit 60 obtains the state s t (S12).
  • the state st is gas information of the gas converted by the gasification furnace 10, and specifically, is the concentration of the impurity gas.
  • Processor 60 selects and executes an action a t that can be taken in the state s t (S13).
  • the action a t is control information for the operation control of the gas purification unit 20, specifically, cycle time, gas volume, may be combined in whole or part of the gas temperature and gas humidity. In addition, it may be included in the action on nutrients to be supplied to the microorganisms (catalyst) in action a t.
  • Processing unit 60 obtains the state s t + 1 obtained as a result of the action a t (S14), obtains the reward r t + 1 (S15).
  • the reward can be calculated based on the characteristic information.
  • the characteristic information includes information on the purified gas purified by the gas purification device 20 (for example, the purity of carbon monoxide gas and hydrogen gas), the purity or amount of ethanol purified by the ethanol generation device 30, and microorganisms as an example of the catalyst. When using, at least one of the activities of the microorganism can be included.
  • the reward may be 0 (no reward).
  • the processing unit 60 determines whether or not to end the processing (S17).
  • whether or not to end the processing may be determined based on whether or not the parameters of the neural network model unit have been updated a predetermined number of times, or whether or not the characteristic information has reached an allowable value or within an allowable range. Can be determined.
  • step S13 continues the subsequent processing.
  • the processing unit 60 stores the parameters of the neural network model unit in the storage unit 55 (S19), and ends the processing. Note that the process shown in FIG. 9 can be repeatedly performed. Further, the processing shown in FIG. 9 can be repeatedly performed for each different learning model.
  • the Q value of the Q table is initialized by, for example, a random number. Can be. If there is a difference in the expected value of the reward once in the initial stage of Q-learning, a transition to a state that has not yet been experienced cannot be made, and a situation in which the target cannot be reached may occur. Therefore, the probability ⁇ can be used when determining an action for a certain state. Specifically, it is possible to randomly select and execute an action from all actions with a certain probability ⁇ , and select and execute the action with the maximum Q value with a probability (1 ⁇ ). Thereby, learning can be appropriately advanced regardless of the initial state of the Q value.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure in the operation control mode of the control device 50 according to the present embodiment. Note that, for convenience, the subject of the processing will be described as the control unit 51.
  • Control unit 51 reads the parameters of the neural network model unit (S31), obtains the state s t (S32), and stores the obtained state s t in the storage unit 55 (S33).
  • the state st is gas information of the gas converted by the gasification furnace 10, and specifically, is the concentration of the impurity gas.
  • Control unit 51 based on the learned model outputs an action a t for the state s t (S34), stores the output to action a t in the storage unit 55 (S35).
  • the action a t is control information for the operation control of the gas purification unit 20, specifically, cycle time, gas volume, may be combined in whole or part of the gas temperature and gas humidity. In addition, it may be included in the action on nutrients to be supplied to the microorganisms (catalyst) in action a t.
  • Control unit 51 performs operation control of the gas purification unit 20 on the basis of the output to action a t (S36), and acquires the characteristic information (S37).
  • the control unit 51 stores the acquired characteristic information in the storage unit 55 (S38).
  • Control unit 51 determines whether or not the operation of the gas purification unit 20 is completed (S39), if the operation is not terminated (NO at S39), acquires the state s t + 1 (S40), the state s t the +1 and state s t (S41), step S34 continues the subsequent processing.
  • the control unit 51 transmits the state, action, and characteristic information stored in the storage unit to the server (learning server 300) (S42), and ends the process. .
  • the processing unit 60 determines a learning model (the behavior selection unit 62 and the behavior selection unit 62) based on the gas information acquired by the gas information acquisition unit 52, the control information output by the processing unit 60, and the characteristic information acquired by the characteristic information acquisition unit 53.
  • the evaluation unit 63 can be re-learned. Thereby, the operation of the gas purification device 20 can be further optimized.
  • the control unit 51 and the processing unit 60 of the present embodiment can also be realized using a computer including a CPU (processor), GPU, RAM (memory), and the like.
  • a computer program or data for example, a learned Q function or Q value
  • a recording medium for example, an optically readable disk storage medium such as a CD-ROM
  • a recording medium reading unit 57 for example, an optical disk. Drive
  • RAM random access memory
  • FIGS. 9 and 10 a computer program that defines the procedure of each process is loaded into a RAM (memory) provided in the computer, and the computer program is executed by a CPU (processor), thereby controlling the computer.
  • the unit 51 and the processing unit 60 can be realized.
  • Q learning is described as an example of machine learning.
  • another learning algorithm such as another TD learning (Temporal Difference Learning) may be used.
  • TD learning Temporal Difference Learning
  • a learning method for updating the value of the state instead of updating the value of the action, such as Q learning may be used.
  • the value V (s t ) of the current state St is updated by the equation V (s t ) ⁇ V (s t ) + ⁇ ⁇ ⁇ t.
  • ⁇ t r t + 1 + ⁇ ⁇ V (s t + 1) a -V (s t)
  • is the learning rate
  • ⁇ t is a TD error.
  • the collected combustible waste can be converted into ethanol with extremely high production efficiency, and the combustible waste can be reused as an industrial raw material with high efficiency.
  • one waste treatment facility also referred to as a plant
  • the present embodiment can be applied to a plurality of plants installed in a plurality of places (regions). .
  • FIG. 11 is a schematic diagram showing an example of a configuration of a management system for managing a plurality of plants.
  • each control device 50 provided in a plurality of plants is connected to a network 1 such as the Internet.
  • the management server 200 and the learning server 300 are connected to the network 1. Information can be transmitted and received between each control device 50 and the management server 200 and the learning server 300 via the network 1.
  • the management server 200 includes a CPU 201, a RAM 202, a ROM 203, and a plant DB 204, and is connected to a display device 210.
  • the management server 200 (CPU 201) can control the processing of the display device 210.
  • the learning server 300 includes a processing unit 301 and a plant DB 302.
  • the processing unit 301 can have the same configuration as the processing unit 60 of the control device 50.
  • Each control device 50 can transmit the acquired gas information, the output control information, the acquired characteristic information, and the identification information for identifying the plant to the learning server 300 in the operation control mode of the gas purification device 20.
  • the learning server 300 sends the identification information for identifying the plant, the gas information of the gas converted by the gasification furnace 10, the control information for controlling the gas purification device 20, and the purified gas purified by the gas purification device 20 from each control device 50. Characteristic information including the above information can be collected.
  • the learning server 300 can store the collected gas information, control information, and characteristic information in the plant DB 302 in association with the identification information. Thereby, information necessary for optimizing the operation of the gas purification device 20 can be collected and recorded for each plant.
  • the learning server 300 can collect information on how to control the operation of the gas purification device 20 to obtain desired characteristic information when the components and composition of the refuse fluctuate. In addition, by transmitting similar information from the control device 50 of each of the plurality of refuse treatment facilities (plants), the learning server 300 can control the operation of the gas purification device 20 in each plant to obtain desired information. Information on whether characteristic information has been obtained can be collected.
  • the processing unit 301 can make the learning model learn based on the collected gas information, control information, and characteristic information. Accordingly, the learning server 300 can generate a customized learning model for each of the waste disposal facilities (plants) installed in various regions.
  • a new control device 50 is installed in an existing waste disposal facility or when a new plant is constructed, a learning model suitable for each plant can be distributed.
  • the learning model is delivered to the plant (specifically, in the control device 50)
  • the learning model (algorithm and parameters) can be encrypted and delivered using a secret key or the like.
  • the decryption may be performed using a unique secret key.
  • each control device 50 transmits to the management server 200 information such as the usage history of the adsorption devices 22 and 23, the degree of deterioration, the presence or absence of a desorption operation, and the activity of the catalyst (for example, microorganisms) obtained from the gas purification device 20. Can be sent.
  • the management server 200 can estimate the replacement time of the suction devices 22 and 23 by calculating the remaining number of uses and the remaining usage time until the suction devices 22 and 23 are replaced based on the use history. In addition, by transmitting similar information from the control device of each of the plurality of waste treatment facilities (plants), the management server 200 estimates the replacement time of the adsorption devices 22 and 23 in the gas purification device 20 in each plant. be able to.
  • FIG. 12 is a schematic diagram showing an example of the plant list screen 211 displayed by the display device 210.
  • the plant list screen 211 has a plant ID display area 212, a deterioration degree display area 213 of the adsorption device, an alert display area 214, and a catalyst (for example, microorganism) activity display area 215.
  • the management server 200 that is, the worker who monitors the display screen of the display device 210, in each plant based on the degree of deterioration of each adsorption device of each plant, displayed in the deterioration degree display area 213 of the adsorption device, It is possible to determine whether maintenance / inspection or replacement of the suction devices 22 and 23 is necessary.
  • the deterioration degree of the adsorption device has not reached the value to be replaced in any of the plants.
  • the management server 200 that is, the worker who monitors the display screen of the display device 210, when the alert in the alert display area 214 is turned on or blinks, indicates that an unintended detachment operation of the suction devices 22, 23 has been performed. Can be recognized. This makes it possible to find out, for example, the mounting of a suction device that is not a genuine product, and prevent the mounting of a non-genuine product.
  • the management server 200 can detect the installation of a non-genuine adsorption device in each plant, It is possible to prevent the mounting of the product.
  • the management server 200 that is, the worker who monitors the display screen of the display device 210 can identify whether the activity in the catalyst activity display area 215 is OK or NG. In FIG. 12, the activity is OK. Thereby, for example, when the activity of the microorganism is reduced, it is possible to remotely issue an instruction to feed the nutrient, the microorganism can be activated again, and the production rate of ethanol can be maintained at a high level. it can.
  • FIG. 13 is a flowchart showing an example of the procedure of the process of the management server 200.
  • the subject of the processing is the CPU 201.
  • the CPU 201 acquires the deterioration information of the gas adsorbers 22 and 23 in the gas purifiers 20 of the plurality of plants (S101), and displays the degree of deterioration of the gas adsorbers 22 and 23 for each plant (S102). .
  • the CPU 201 determines whether or not the desorption operation information of the gas adsorption devices 22 and 23 has been acquired (S103).
  • the desorption operation information is information indicating that an unintended desorption operation of the gas adsorption devices 22 and 23 has been performed, and does not include a desorption operation for cleaning the gas adsorption devices 22 and 23.
  • the CPU 201 When the desorption operation information of the gas adsorption devices 22 and 23 is acquired (YES in S103), the CPU 201 outputs an alert of the corresponding plant (for example, an alert in the alert display area 214 illustrated in FIG. 12) (S104). .
  • the output of the alert may be lighting or blinking of the indicator light, or may be output by voice. Further, the notification may be made to a worker's portable terminal device (not shown).
  • the CPU 201 When the desorption operation information of the gas adsorption devices 22 and 23 has not been acquired (NO in S103), the CPU 201 performs the process of step S105 described later.
  • the CPU 201 determines whether or not the activity information of the catalyst for producing ethanol (for example, a microorganism) has been acquired (S105). When the activity information has been acquired (YES in S105), the catalyst (for example, The activity of the microorganism is displayed (S106), and it is determined whether or not to end the process (S107). If the activity information has not been acquired (NO in S105), the CPU 201 performs the process of step S107. If the processing is not to be ended (NO in S107), CPU 201 continues the processing from step S101, and ends the processing (YES in S107).
  • the activity information of the catalyst for producing ethanol for example, a microorganism
  • each of the management server 200 and the learning server 300 may be configured by a plurality of servers, or the management server 200 and the learning server 300 may be integrated into one server.
  • FIG. 14 is a schematic diagram illustrating an example of the configuration of an operation control device 150 that controls the operation of a target gas purification device using the learning server 300.
  • the learning server 300 is connected to each control device 50 provided in a plurality of plants via the network 1.
  • the learning server 300 includes a processing unit 301, and the processing unit 301 includes a learned learning model as in the processing unit 60.
  • the learning server 300 is connected to operation control devices 150 in a plurality of plants P1, P2, and P3 via a network 2 such as the Internet, and the learning server 300 and the operation control device 150 Can give and receive.
  • the learning server 300 and the operation control device 150 may be installed in different countries or regions, respectively.
  • the learning server 300 and each control device 50 may be installed in the same country. Note that, for convenience, only the plant P1 is illustrated in detail.
  • the target gasifier 10, the target gas purification device 20, and the target ethanol generator 30 are installed.
  • target means that the operation is controlled by the operation control device 150.
  • the target gasification furnace 10, the target gas purification device 20, and the target ethanol generation device 30 have the same functions as the gasification furnace 10, the gas purification device 20, and the ethanol generation device 30 illustrated in FIG. Is omitted.
  • the operation control device 150 includes a control unit 151 that controls the entire device, a gas information acquisition unit 152, a communication unit 153, a storage unit 154, and a control information output unit 155. As shown in the figure, the operation control device 150 does not include the processing unit 60 (learning model).
  • the control unit 151 can be configured by a CPU, a ROM, a RAM, and the like.
  • the gas information acquisition unit 152 acquires gas information of the gas converted by the target gasifier 10.
  • the gas information includes, for example, the concentration of the impurity gas (contaminant) extracted from the gasification furnace 10.
  • the impurity gas include, but are not limited to, gases such as hydrogen cyanide, benzene, toluene, ethylbenzene, xylene, and dioxin.
  • the concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the storage unit 154 is configured by a hard disk, a flash memory, or the like, and can store required information such as information obtained from outside the operation control device 150.
  • the control information output unit 155 outputs control information for controlling the target gas purification apparatus 20 obtained by inputting the gas information acquired by the gas information acquisition unit 152 to the learning model.
  • the learning model includes gas information of a gas converted by a gasifier that converts collected garbage into gas (a gasifier different from the target gasifier 10), and gas converted by the gasifier.
  • the learning is performed based on control information for controlling a gas purification device to be purified (a gas purification device different from the target gas purification device 20) and characteristic information including information on a purified gas purified by the gas purification device.
  • the operation control device 150 provides the gas information acquired by the gas information acquisition unit 152 to the learning model even if the operation control device 150 does not include the learning model, and based on the control information obtained from the learning model.
  • the operation of the target gas purification device 20 can be controlled.
  • the communication unit 153 has a function as a transmission unit and a reception unit.
  • the communication unit 153 transmits the gas information acquired by the gas information acquisition unit 152 to the learning server 300.
  • the learning server 300 includes a learning model.
  • the learning model includes gas information of the gas converted by the gasifier, control information for controlling a gas purification device for purifying the gas converted by the gasifier, and information of the purified gas purified by the gas purification device. Learned based on characteristic information.
  • the communication unit 153 receives the control information for controlling the gas purification device transmitted by the learning server 300.
  • the control information output unit 155 outputs the control information received by the communication unit 153 to the target gas purification device 20.
  • the operation control device 150 transmits the gas information acquired by the gas information acquisition unit 152 to the learning server 300 including the learning model, even if the learning server 300 does not include the learning model.
  • the control information can be received, and the operation of the target gas purification device 20 can be controlled based on the received control information. Accordingly, the operation control device 150 can control the operation of the target gas purification device 20 by using the learning model of the learning server 300 connected via a network such as the Internet. Even if the server 300 and the operation control device 150 are installed in different countries and regions, the operation of the target gas purification device 20 can be controlled.
  • the operation control device 150 is configured to acquire the gas information by the gas information acquisition unit 152.
  • the configuration is not limited to this.
  • the operation control device 150 is configured to acquire, in addition to the gas information, information (control information and characteristic information) necessary for learning the learning model, and stores the acquired gas information, control information, and characteristic information in the learning server.
  • the learning model may be transmitted to the learning server 300 so that the learning model included in the learning server 300 is learned. Thereby, the operation control device 150 can learn the learning model of the learning server 300 based on the information of each of the target gasifier 10, the target gas refining device, and the target ethanol generation device 30.
  • the operation control of the gas purification device 20 can be performed with higher accuracy, and the collected combustible waste can be converted into ethanol with extremely high production efficiency in the plant P1, and the combustible waste can be recycled as industrial raw material with high efficiency. Can be used.
  • the control device is a control device that controls a gas purification device, and a gas information acquisition unit that acquires gas information of a gas converted by a gasification furnace that converts collected waste into a gas, A control information acquisition unit for acquiring control information for controlling the gas purification device for purifying the gas converted by the gasification furnace, and a characteristic information acquisition for acquiring characteristic information including information on a purified gas purified by the gas purification device. And a generation unit that generates a learning model by machine learning based on the gas information, control information, and characteristic information.
  • the computer program includes a computer, a process for obtaining gas information of a gas converted by a gasifier that converts collected waste into a gas, and a gas that purifies the gas converted by the gasifier.
  • the control method is a control method for controlling a gas purification device, and acquires gas information of a gas converted by a gasification furnace that converts collected waste into gas, and the gasification furnace Obtain control information for controlling the gas purifier that purifies the converted gas, obtain characteristic information including information on the purified gas purified by the gas purifier, and obtain a machine based on the gas information, the control information, and the characteristic information.
  • a learning model is generated by learning.
  • the gas information acquisition unit acquires gas information of the gas converted by the gasifier that converts collected waste into gas.
  • a gasification furnace is a furnace that can burn down refuse in a low oxygen state and decompose it to a molecular level (for example, including carbon monoxide gas and hydrogen gas).
  • the gas information includes, for example, the concentration of an impurity gas (contaminant) generated by the gasification furnace. The concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the control information acquisition unit acquires control information for controlling a gas purification device that purifies the gas converted by the gasification furnace.
  • the gas purification device can remove and purify the impurity gas contained in the gas converted by the gasification furnace to take out required gases (for example, carbon monoxide gas and hydrogen gas).
  • the control information is information for controlling the operation of the gas purification device.
  • the characteristic information acquisition unit acquires characteristic information including information on the purified gas purified by the gas purification device.
  • the information on the purified gas includes, for example, the purity of the carbon monoxide gas and the hydrogen gas. Further, the information of the purified gas may include the concentration of the impurity gas that could not be removed.
  • the purified gas can be converted to ethanol using a catalyst (eg, a metal catalyst, a microbial catalyst, etc.). Ethanol, it has an ethylenically similar C 2 structure occupying an approximately 60% of the petrochemical product, by converting the ethylene monomer or butadiene monomer by an existing chemical process, to induce the induced chemical material such as plastic it can.
  • the characteristic information includes, for example, the activity of a catalyst (for example, a microorganism) that produces ethanol from carbon monoxide gas and hydrogen gas, the purity or amount of produced ethylene, and the like.
  • the generator generates a learning model by machine learning based on the gas information, the control information, and the characteristic information.
  • machine learning for example, deep learning, reinforcement learning, deep reinforcement learning, or the like can be used.
  • the gas information is set to “state”
  • the control information is set to “action”
  • “reward” is calculated based on the characteristic information
  • the Q value or the value of the Q function is calculated. You just have to learn.
  • the learning model can be trained so that control information that falls within a required value or range can be output.
  • the operation of the gas purification device can be optimized and the desired ethanol can be generated. Can be reused with efficiency.
  • the generation unit the behavior output unit that outputs the control information based on the gas information and behavior evaluation information acquired by the gas information acquisition unit, acquired by the characteristic information acquisition unit
  • a reward calculating unit that calculates a reward based on the obtained characteristic information
  • an updating unit that updates the behavior evaluation information so that the reward calculated by the reward calculating unit increases.
  • the action output unit outputs control information based on the gas information and the action evaluation information acquired by the gas information acquisition unit.
  • the action evaluation information is an action evaluation value in reinforcement learning, and is equivalent to a Q value or a Q function (action value function). That is, the action output unit selects and outputs an action from the actions that can be taken in the acquired state, based on the evaluation value of the action in the acquired state.
  • the reward calculation unit calculates a reward based on the characteristic information acquired by the characteristic information acquisition unit.
  • the remuneration is calculated to be positive (with reward) if the property information is within the required value or range, and 0 (no reward) or if the property information is not within the required value or within the range. It can be made negative (penalty).
  • the update unit updates the behavior evaluation information so that the reward calculated by the reward calculation unit becomes large.
  • concentration of the gas (impurity gas) input to the gas purification device exceeds the threshold value due to large fluctuations in the composition and composition of the refuse, the characteristic information on the output side of the gas purification device is required.
  • the learning model can be trained so that control information that falls within a value or range can be output.
  • the control device includes a storage unit that stores the behavior evaluation information updated by the update unit.
  • the storage unit stores the behavior evaluation information updated by the update unit. By reading the behavior evaluation information stored in the storage unit, the learned learning model can be reproduced.
  • the gas information acquisition unit acquires gas information including the concentration of the impurity gas.
  • the gas information acquisition unit acquires gas information including the concentration of the impurity gas.
  • the impurity gas include, but are not limited to, gases such as hydrogen cyanide, benzene, toluene, ethylbenzene, xylene, and dioxin. Thereby, the impurity gas can be removed, and it becomes possible to thoroughly remove the contaminants contained in the gas from the gasification furnace.
  • the characteristic information acquisition unit is configured to control the purity of carbon monoxide gas and hydrogen gas, the purity or amount of ethanol, and the activity of a catalyst that generates ethanol from carbon monoxide gas and hydrogen gas.
  • Characteristic information including at least one of the following.
  • the characteristic information acquisition unit includes at least one of the purity of carbon monoxide gas and hydrogen gas, the purity or amount of ethanol, and the activity of a catalyst (for example, a microorganism) that produces ethanol from carbon monoxide gas and hydrogen gas. Get characteristic information. Thereby, the characteristic information can be set to be within a required value or range.
  • control information acquisition unit includes at least one of a gas amount, a gas temperature, and a gas humidity of the gas purification device, and a switching cycle time of an adsorption device in the gas purification device. Get control information.
  • the control information acquisition unit acquires control information including at least one of the gas amount, the gas temperature, and the gas humidity of the gas purification device, and the switching cycle time of the adsorption device in the gas purification device.
  • the gas adsorption member is a member provided in the adsorption device and adsorbing and capturing impurities.
  • the switching cycle time is, for example, the use time of one of the suction devices when two suction devices are alternately used. During the switching cycle time, the gas adsorbing member of the adsorber that is not used can be detached and the impurities adhering to the gas adsorbing member can be cleaned. This makes it possible to control the operation of the gas purification device so that the characteristic information falls within a required value or range.
  • the control device is a control device that controls a gas purification device, and gas information of a gas converted by a gasification furnace that converts collected waste into a gas, a gas that is converted by the gasification furnace.
  • the computer program according to the present embodiment, the computer, a process of obtaining gas information of the gas converted by the gasifier for converting the collected garbage to gas, and gas information of the gas converted by the gasifier, The control information for controlling the gas purification device for purifying the gas converted by the gasifier, and the learning model learned based on the characteristic information including the information on the purified gas purified by the gas purification device, the acquired gas information Inputting and outputting control information for controlling the gas purification device.
  • the learning model controls the gas information of the gas converted by the gasification furnace that converts collected waste into gas, and the control that controls the gas purification device that refines the gas converted by the gasification furnace.
  • the learning is performed based on the information and the characteristic information including the information on the purified gas purified by the gas purification device.
  • the control method is a control method for controlling a gas purification device, and acquires gas information of a gas converted by a gasification furnace that converts collected waste into gas, and the gasification furnace Learning learned based on gas information of the converted gas, control information for controlling the gas purification device for purifying the gas converted by the gasifier, and characteristic information including information on the purified gas purified by the gas purification device.
  • the obtained gas information is input to the model, and control information for controlling the gas purification device is output.
  • the learning model includes gas information of the gas converted by the gasifier that converts the collected garbage into gas, control information that controls the gas purification device that refines the gas that the gasifier converts, and the gas purification device that refines the gas.
  • the learning is performed based on the characteristic information including the information on the purified gas.
  • the gas information includes, for example, the concentration of impurity gas (contaminant) generated by the gasification furnace.
  • concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the control information is information for controlling the operation of the gas purification device.
  • the characteristic information includes, for example, the purity of the carbon monoxide gas and the hydrogen gas, the activity of a catalyst (for example, a microorganism) that produces ethanol from the carbon monoxide gas and the hydrogen gas, and the purity or amount of the produced ethylene.
  • the learning model is learned using, for example, deep learning, reinforcement learning, deep reinforcement learning, and the like.
  • the gas information acquisition unit acquires gas information of the gas converted by the gasifier.
  • a gasification furnace is a furnace that can burn down refuse in a low oxygen state and decompose it to a molecular level (for example, including carbon monoxide gas and hydrogen gas).
  • the gas information includes, for example, the concentration of an impurity gas (contaminant) generated by the gasification furnace. The concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the output unit inputs the gas information acquired by the gas information acquisition unit to the learning model and outputs control information for controlling the gas purification device. This makes it possible to optimize the operation of the gas purification device and produce the desired ethanol even when the components and composition of the refuse fluctuate, so that the combustible refuse can be reused as an industrial raw material with high efficiency. it can.
  • the control device controls the gas purification device based on the control information output from the output unit.
  • the control device a characteristic information acquisition unit that acquires characteristic information including information on the purified gas purified by the gas purification device, and a storage unit that stores the characteristic information acquired by the characteristic information acquisition unit Is provided.
  • the characteristic information acquisition unit acquires characteristic information including information on the purified gas purified by the gas purification device, and the storage unit stores the acquired characteristic information. This makes it possible to collect characteristic information obtained as a result of optimizing the operation of the gas purification device when the component or composition of the refuse varies.
  • the control device includes a transmission unit that transmits the gas information acquired by the gas information acquisition unit, the control information output by the output unit, and the characteristic information acquired by the characteristic information acquisition unit to a server. .
  • the transmitting unit transmits to the server the gas information obtained by the gas information obtaining unit, the control information output by the output unit, and the characteristic information obtained by the characteristic information obtaining unit. Accordingly, the server can collect information on how to control the operation of the gas purification device when desired components can be obtained when the components and the composition of the refuse change. In addition, by transmitting similar information from the control device of each of a plurality of waste treatment facilities (plants), the server can obtain desired characteristic information by controlling the operation of the gas purification device in each plant. You can collect information about the kid.
  • the control device re-learns the learning model based on the gas information acquired by the gas information acquisition unit, the control information output by the output unit, and the characteristic information acquired by the characteristic information acquisition unit.
  • a learning processing unit for causing the learning processing unit to perform the learning.
  • the learning processing unit re-learns the learning model based on the gas information obtained by the gas information obtaining unit, the control information output by the output unit, and the characteristic information obtained by the characteristic information obtaining unit. Thereby, the operation of the gas purification device can be further optimized.
  • the control device a use history acquisition unit that acquires the use history of the adsorption device in the gas purification device, and a transmission unit that transmits the use history acquired by the use history acquisition unit to the management server Prepare.
  • the usage history acquisition unit acquires the usage history of the adsorption device in the gas purification device.
  • the usage history includes, for example, the cumulative usage time, the number of times of cleaning, and the like.
  • the transmission unit transmits the usage history acquired by the usage history acquisition unit to the management server.
  • the management server can estimate the replacement time of the suction device by calculating the remaining number of uses and the remaining usage time until the suction device is replaced based on the usage history.
  • the management server can estimate the replacement time of the adsorption device in the gas purification device in each plant.
  • the control device includes a deterioration degree acquisition unit that acquires the degree of deterioration of the adsorption device in the gas purification device, and the transmission unit transmits the degree of deterioration acquired by the deterioration degree acquisition unit to the management server. Send to
  • the deterioration degree acquisition unit acquires the deterioration degree of the adsorption device in the gas purification device.
  • the degree of deterioration can be determined, for example, based on the color or stain on the surface of the gas adsorption member after cleaning the gas adsorption member, the amount of impurities adsorbed in a predetermined cycle time, and the like.
  • the transmission unit transmits the deterioration degree acquired by the deterioration degree acquisition unit to the management server.
  • the management server can determine whether maintenance / inspection or replacement of the suction device is necessary based on the degree of deterioration. In addition, by transmitting the same information from the control device of each of a plurality of refuse treatment facilities (plants), the management server determines in each plant whether maintenance / inspection or replacement of the adsorption device in the gas purification device is necessary. Can be determined.
  • the control device includes a desorption operation obtaining unit that obtains the presence or absence of a desorption operation of the adsorption device in the gas purification device, and the transmission unit obtains a desorption operation with the desorption operation obtaining unit. In this case, the fact that the detachment operation has been performed is transmitted to the management server.
  • the desorption operation acquisition unit acquires the presence or absence of a desorption operation of the adsorption device in the gas purification device.
  • the desorption operation of the adsorption device can be, for example, an unintended desorption operation.
  • the transmission unit transmits to the management server that the attachment / detachment operation has been performed.
  • the management server can determine the presence or absence of an unintended desorption operation of the suction device. For example, it is possible to detect the mounting of a non-genuine suction device and prevent the mounting of a non-genuine product.
  • the management server can detect the installation of a non-genuine suction device in each plant, Mounting can be prevented.
  • the control device includes a determination unit that determines the activity of the microorganism based on the state of the microorganism that produces ethanol from the carbon monoxide gas and the hydrogen gas purified by the gas purification device.
  • the determination unit determines the activity of the microorganism based on the state of the microorganism that produces ethanol from the carbon monoxide gas and the hydrogen gas purified by the gas purification device.
  • the activity includes, for example, the reaction rate and the survival rate of the microorganism.
  • the activity of the microorganism can be determined by monitoring the state of the microorganism from outside the culture solution layer in real time. The activity of the microorganism may be determined off-line. Thus, for example, when the activity of the microorganism is reduced, the nutrient can be added and activated again, and the production rate of ethanol can be maintained at a high level.
  • the server includes, from each of a plurality of waste treatment plants, identification information for identifying a plant, gas information of a gas converted by a gasifier that converts collected waste into a gas, Control information for controlling a gas purification device that purifies the converted gas, and a collection unit that collects characteristic information including information on the purified gas purified by the gas purification device, and gas information and control information collected by the collection unit. And a storage unit for storing characteristic information in association with the identification information.
  • the collection unit refines the identification information that identifies the plant, the gas information of the gas converted by the gasifier that converts the collected waste into gas, and the gas that is converted by the gasifier from each of the multiple waste treatment plants. And control information for controlling the gas purification apparatus to be performed, and characteristic information including information on the purified gas purified by the gas purification apparatus.
  • the storage unit stores the gas information, control information, and characteristic information collected by the collection unit in association with the identification information. Thereby, information necessary for optimizing the operation of the gas purification device can be collected and recorded for each plant.
  • the management server includes, in each of a plurality of waste treatment plants, identification information for identifying a plant, a gas purification device that purifies gas converted by a gasification furnace that converts collected waste into gas.
  • a collecting unit that collects the degree of deterioration of the suction device, and a storage unit that stores the degree of deterioration collected by the collecting unit in association with the identification information.
  • the collection unit is provided with identification information for identifying a plant from each of a plurality of waste treatment plants, a degree of deterioration of an adsorption device in a gas purification device for purifying gas converted by a gasifier that converts collected waste into gas. To collect.
  • the storage unit stores the degree of deterioration collected by the collection unit in association with the identification information. Thereby, it is possible to grasp the degree of deterioration of the adsorption device in the gas purification device for each plant.
  • the operation control device is an operation control device that controls a target gas purification device, and acquires gas information of a gas converted by a target gasifier that converts collected waste into gas.
  • a gas information acquisition unit gas information of the gas converted by the gasifier, control information for controlling a gas purification device that purifies the gas converted by the gasifier, and information of the purified gas purified by the gas purification device.
  • a control information output unit that outputs control information for controlling the target gas purification device, obtained by inputting the gas information acquired by the gas information acquisition unit to a learning model learned based on the characteristic information including the information.
  • the operation control method is an operation control method for controlling a target gas purification device, and acquires gas information of a gas converted by a target gasifier that converts collected waste into gas. , Gas information of the gas converted by the gasifier, control information for controlling a gas purification device for purifying the gas converted by the gasifier, and characteristic information including information on the purified gas purified by the gas purification device. Then, control information for controlling the target gas purification apparatus, which is obtained by inputting the acquired gas information to the learning model learned by the learning, is output.
  • the gas information acquisition unit acquires gas information of the gas converted by the gasifier that converts the collected waste into gas.
  • the target gasification furnace is a furnace that is capable of steaming refuse in a low oxygen state and decomposing it to a molecular level (for example, including carbon monoxide gas and hydrogen gas).
  • the gas information includes, for example, the concentration of an impurity gas (contaminant) generated by the gasification furnace. The concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the control information output unit outputs control information for controlling the target gas purification apparatus, which is obtained by inputting the gas information obtained by the gas information obtaining unit to the learning model. Note that the operation control device does not include a learning model.
  • the learning model includes gas information of the gas converted by a gasifier that converts collected waste into gas (a gasifier different from the target gasifier), and gas purification that purifies the gas converted by the gasifier.
  • the learning is performed based on control information for controlling the apparatus (a gas purifying apparatus different from the target gas purifying apparatus) and characteristic information including information on a purified gas purified by the gas purifying apparatus.
  • the gas information includes, for example, the concentration of the impurity gas (contaminant) generated by the gasification furnace.
  • the concentration of the impurity gas fluctuates depending on the components and compositions of various garbage.
  • the control information is information for controlling the operation of the gas purification device.
  • the characteristic information includes, for example, the purity of the carbon monoxide gas and the hydrogen gas, the activity of a catalyst (for example, a microorganism) that produces ethanol from the carbon monoxide gas and the hydrogen gas, and the purity or amount of the produced ethylene.
  • the learning model is learned using, for example, deep learning, reinforcement learning, deep reinforcement learning, and the like.
  • the operation control device provides the learning information with the gas information acquired by the gas information acquiring unit even if the operation control device does not include the learning model, and performs gas purification based on the control information obtained from the learning model.
  • the operation of the device can be controlled.
  • the operation control device controls the gas information acquired by the gas information acquisition unit, the gas information of the gas converted by the gasification furnace, and the gas purification device that purifies the gas converted by the gasification furnace.
  • a transmission unit for transmitting to a server having a learning model learned based on control information to be performed and characteristic information including information on purified gas purified by the gas purification device, and control for controlling the gas purification device transmitted by the server.
  • a receiving unit that receives information; and a control information output unit outputs the control information received by the receiving unit to the target gas purification device.
  • the transmission unit transmits the gas information acquired by the gas information acquisition unit to the server.
  • the server has a learning model.
  • the learning model includes gas information of the gas converted by the gasifier, control information for controlling a gas purification device for purifying the gas converted by the gasifier, and information of the purified gas purified by the gas purification device. Learned based on characteristic information.
  • the receiving unit receives the control information for controlling the gas purification device, transmitted by the server.
  • the control information output unit outputs the control information received by the receiving unit to a target gas purification device.
  • the operation control device transmits the gas information acquired by the gas information acquisition unit to the server having the learning model, even if the operation information does not include the learning model, and receives the control information transmitted by the server.
  • the operation of the gas purification device can be controlled based on the received control information.
  • the operation control device can control the operation of the target gas purification device by using the learning model provided in the server connected via the network such as the Internet. Even if they are installed in different countries or regions, the operation of the target gas purification device can be controlled.
  • the control device includes a gas information acquisition unit that acquires gas information of the gas converted by the gasification furnace that converts the organic compound and / or the inorganic compound into a gas, and a gas purification unit that purifies the gas converted by the gasification furnace.
  • a generation unit that generates a learning model.
  • control device includes gas information of the gas converted by the gasification furnace that converts the organic compound and / or the inorganic compound into gas, control information that controls a gas purification device that refines the gas converted by the gasification furnace, and gas.
  • a learning model learned based on characteristic information including information on a purified gas purified by a refining device, a gas information acquisition unit for acquiring gas information of a gas converted by a gasifier, and gas information acquired by a gas information acquisition unit To a learning model and output control information for controlling the gas purification device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

可燃性ごみを工業原料として高効率で再利用することができる制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法を提供する。 制御装置は、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得するガス情報取得部と、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する制御情報取得部と、ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する生成部とを備える。

Description

制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法
 本発明は、制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法に関する。
 日本で排出される可燃性ごみのエネルギー換算量は、プラスチック素材を生産するのに用いられる化石資源に比べて大きいにも関わらず、多くの可燃性ごみは焼却又は埋立処分されている。
 特許文献1には、ごみ焼却炉から排出した焼却灰から磁性物を磁力選別し、選別された磁性物を還元金属化処理することにより、従来、埋立処分されていた酸化鉄を還元処理して、埋立処分量を低減することができるごみ処理施設が開示されている。
特開2011-56392号公報
 しかし、特許文献1のようなごみ処理施設では、可燃性ごみの再利用は一部に留まる。また、可燃性のごみは、雑多・不均質であり、含まれる成分・組成の変動が大きいため、工業原料として再利用することが困難であった。
 本発明は、斯かる事情に鑑みてなされたものであり、可燃性ごみを工業原料として高効率で再利用することができる制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法を提供することを目的とする。
 本発明の実施の形態に係る制御装置は、ガス精製装置を制御する制御装置であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得するガス情報取得部と、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得する制御情報取得部と、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する生成部とを備える。
 本発明の実施の形態に係る制御装置は、ガス精製装置を制御する制御装置であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルと、前記ガス化炉が変換したガスのガス情報を取得するガス情報取得部と、前記ガス情報取得部で取得したガス情報を前記学習モデルに入力して前記ガス精製装置を制御する制御情報を出力する出力部とを備える。
 本発明の実施の形態に係るサーバは、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報を収集する収集部と、前記収集部で収集したガス情報、制御情報及び特性情報を前記識別情報と関連付けて記憶する記憶部とを備える。
 本発明の実施の形態に係る管理サーバは、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスを精製するガス精製装置内の吸着装置の劣化度を収集する収集部と、前記収集部で収集した劣化度を前記識別情報と関連付けて記憶する記憶部とを備える。
 本発明の実施の形態に係る運転制御装置は、対象のガス精製装置を制御する運転制御装置であって、収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得するガス情報取得部と、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、前記ガス情報取得部で取得したガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する制御情報出力部とを備える。
 本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する処理と、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する処理と、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する処理とを実行させる。
 本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する処理とを実行させる。
 本発明の実施の形態に係る学習モデルは、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習してある。
 本発明の実施の形態に係る制御方法は、ガス精製装置を制御する制御方法であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得し、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得し、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する。
 本発明の実施の形態に係る制御方法は、ガス精製装置を制御する制御方法であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する。
 本発明の実施の形態に係る運転制御方法は、対象のガス精製装置を制御する運転制御方法であって、収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得し、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得されたガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する。
 本発明によれば、可燃性ごみを工業原料として高効率で再利用することができる。
本実施の形態のエタノール生成システムの構成の一例を示す模式図である。 ガス精製装置の要部構成の一例を示す模式図である。 圧力変動吸着法の原理を示す説明図である。 本実施の形態の強化学習の一例を示す模式図である。 本実施の形態のニューラルネットワークモデル部の構成の一例を示す模式図である。 行動の一例を示す説明図である。 本実施の形態のニューラルネットワークモデル部の構成の他の例を示す模式図である。 制御装置によりガス精製装置の運転制御を行った場合の不純物ガスの濃度の一例を示す模式図である。 本実施の形態の機械学習の処理手順の一例を示すフローチャートである。 本実施の形態の制御装置の運転制御モードでの処理手順の一例を示すフローチャートである。 複数のプラントを管理する管理システムの構成の一例を示す模式図である。 表示装置が表示するプラント一覧画面の一例を示す模式図である。 管理サーバの処理の手順の一例を示すフローチャートである。 学習サーバを利用して対象のガス精製装置の運転を制御する運転制御装置の構成の一例を示す模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。図1は本実施の形態のエタノール生成システム100の構成の一例を示す模式図である。エタノール生成システムは、例えば、ごみ処理施設に設置され、ガス化炉10、ガス精製装置20、エタノール生成装置30、制御装置50を備える。
 ガス化炉10は、ごみ(可燃性ごみ)を低酸素状態で蒸し焼きして、分子レベル(例えば、一酸化炭素ガス及び水素ガスを含む)にまで分解することができる炉である。ガス精製装置20は、ガス化炉10が変換したガスに含まれる不純物ガスを除去・精製して、所要のガス(例えば、一酸化炭素ガス及び水素ガス)を取り出すことができる。エタノール生成装置30は、ガス精製装置20が取り出した所要のガスを用いて、触媒(例えば、金属触媒、微生物触媒など)によりエタノールを生成することができる。エタノールは、石油化学製品の6割程度を占めるエチレンと同様のC構造を有し、既存の化学プロセスによってエチレンモノマー又はブタジエンモノマーに変換することで、プラスチック等の誘起化学素材に誘導することができる。なお、可燃性ごみとは、可燃性であればよく、産業廃棄物、一般廃棄物、農業廃棄物などが一例として挙げられるが、特にこれらに限定されない。また、可燃性ごみとは異なり、例えば有機化合物及び/又は無機化合物を、本実施の形態のごみの代替物として用いてもよく、当該有機化合物及び/又は無機化合物は、変換されるガスの主たる成分として、CO、CO2、及びH2のうちの1つ以上を含むガスに変換されるものであれば、本発明を適用可能である。
 制御装置50は、装置全体を制御する制御部51、ガス情報取得部52、特性情報取得部53、通信部54、記憶部55、センサ情報取得部56、記録媒体読取部57、判定部58、及び処理部60を備える。処理部60は、報酬算出部61、行動選択部62、及び行動評価部63を備える。
 制御部51は、CPU、ROM及びRAMなどで構成することができる。
 ガス情報取得部52は、ガス化炉10が変換したガスのガス情報を取得する。ガス情報は、例えば、ガス化炉10から取り出された不純物ガス(夾雑物質)の濃度を含む。不純物ガスは、例えば、シアン化水素、ベンゼン、トルエン、エチルベンゼン、キシレン、ダイオキシンなどのガスを含むが、これらに限定されない。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。
 処理部60は、制御情報取得部としての機能を有し、ガス精製装置20の運転を制御するための制御情報を取得する。制御情報の詳細は後述する。
 特性情報取得部53は、ガス精製装置20が精製した精製ガスの情報を含む特性情報を取得する。精製ガスの情報は、例えば、一酸化炭素ガス及び水素ガスの純度を含む。また、精製ガスの情報は、二酸化炭素ガスの純度を含めてもよく、あるいは、除去できなかった不純物ガスの濃度を含めることもできる。また、特性情報は、一酸化炭素ガス及び水素ガスからエタノールを生成する触媒(公知の触媒であってもよく、例えば、金属触媒や微生物)の各種活性度、エタノール生成装置30によって生成されたエチレンの純度又は量などを含む。
 通信部54は、後述のネットワーク1を介して、管理サーバ200及び学習サーバ300との間で通信を行う機能を有し、所要の情報の送受信を行うことができる。管理サーバ200及び学習サーバ300については、後述する。
 記憶部55は、ハードディスク又はフラッシュメモリなどで構成され、制御装置50の外部から取得した情報、制御装置50内部での処理結果などの情報を記憶することができる。
 センサ情報取得部56は、ガス精製装置20からセンサ情報を取得する。センサ情報の詳細は後述する。
 記録媒体読取部57は、制御装置50の処理を定めたコンピュータプログラムを記録した記録媒体(不図示)から、記録媒体に記録されたコンピュータプログラムを読み取ることができる。
 判定部58は、エタノール生成装置30において、触媒の一例として、微生物を用いてエタノールを生成する場合、微生物の状態に基づいて、微生物の活性度を判定する。活性度は、例えば、微生物の反応速度、生存率などを含む。微生物の状態を培養液層の外部からリアルタイムに監視して微生物の活性度を判定することができる。なお、微生物の状態をオフラインで監視して微生物の活性度を判定してもよい。これにより、例えば、微生物の活性度が低下した場合、栄養剤を投入して再度活性化することができ、エタノールの生成速度を高レベルで維持することができる。なお、触媒の一例として、金属触媒を用いる場合には、判定部58を具備しなくてもよい。
 処理部60は、例えば、CPU(例えば、複数のプロセッサコアを実装したマルチ・プロセッサなど)、GPU(Graphics Processing Units)、DSP(Digital Signal Processors)、FPGA(Field-Programmable Gate Arrays)などのハードウェアを組み合わせることによって構成することができる。また、処理部60は、仮想マシン又は量子コンピュータなどで構成してもよい。後述のエージェントは、コンピュータ上に存在する仮想的なマシンであり、エージェントの状態はパラメータ等によって変更される。また、処理部60は、別の(制御装置50)以外のコンピュータで学習してもよい。
 処理部60は、生成部としての機能を有し、ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成することができる。機械学習は、例えば、深層学習、強化学習、深層強化学習などを用いることができる。例えば、強化学習を用いる場合、ガス情報を「状態」とし、制御情報を「行動」とし、特性情報に基づいて「報酬」を算出して、Q値又はQ関数(行動価値関数)の値を学習すればよい。
 すなわち、行動選択部62は、行動出力部としての機能を有し、ガス情報取得部52で取得したガス情報及び行動評価部63のQ値又はQ関数の値(行動評価情報)に基づいて制御情報を出力する。行動評価部63は、強化学習において、行動の評価値を含み、具体的には、Q値又はQ関数の値(行動価値関数)を含む。すなわち、行動選択部62は、取得した状態(ガス情報)での行動の評価値に基づいて、取得した状態において取り得る行動の中から行動を選択して出力する。
 報酬算出部61は、取得した特性情報に基づいて報酬を算出する。報酬の算出は、特性情報が所要の値又は範囲内になる場合、正(報酬あり)となるようにし、特性情報が所要の値にならない、又は範囲内にならない場合、0(報酬なし)又は負(ペナルティ)となるようにすることができる。
 行動選択部62は、更新部としての機能を有し、報酬算出部61で算出した報酬が大きくなるように行動評価部63のQ値又はQ関数の値を更新する。これにより、ごみの成分や組成の変動が大きいために、ガス精製装置20に入力されるガス(不純物ガス)の濃度が閾値を超えるような場合でも、ガス精製装置20の出力側の特性情報が所要の値又は範囲内になるような制御情報を出力できるように学習モデルを学習させることができる。
 学習させた学習モデルを用いることにより、ごみの成分や組成が変動する場合でも、ガス精製装置20の運転を最適化して、所望のエタノールを生成することができるので、可燃性ごみを工業原料として高効率で再利用することができる。
 制御部51は、更新された行動評価部63のQ値又はQ関数の値(行動評価情報)を記憶部55に記憶することができる。記憶部55に記憶した行動評価情報を読み出すことにより、学習済の学習モデルを再現することができる。
 図2はガス精製装置20の要部構成の一例を示す模式図である。ガス精製装置20は、ガス化炉10の出力側に連通するとともに、エタノール生成装置30の入力側に連通するガス管路を備え、ガス管路の中途には、ガス化炉10側から、バッファタンク21、二つの吸着装置22、23、圧縮機25、バッファタンク24が介装されている。バッファタンク21、24は、一時的にガスを貯留するためのものである。吸着装置22、23の入口側のガス管路及び出口側のガス管路には、電磁弁を設けてある。
 吸着装置22は、ガス吸着部材221を収容してあり、吸着装置23は、ガス吸着部材231を収容してある。吸着装置22及び吸着装置23それぞれの所要の箇所には、センサ部27を設けてある。なお、図2では、便宜上、センサ部27を吸着装置22、23の外部に図示しているが、センサ部27の設置位置は、図2の例に限定されない。
 吸着装置22及び吸着装置23は、片方ずつ交互に使用され、例えば、一のサイクルタイムでは、吸着装置22が使用され、次のサイクルタイムでは、吸着装置22に代わって吸着装置23が使用される。以降、同様の切替が繰り返される。一のサイクルタイムでは、吸着装置内の圧力の昇降、吸着装置(例えば、ガス吸着部材)の脱着及び洗浄などの操作が行われる。
 図3は圧力変動吸着法の原理を示す説明図である。図中、縦軸は吸着容量を示し、横軸はガスの圧力を示す。図3では、不純物ガスの吸着等温線と、一酸化炭素ガス又は水素ガスの吸着等温線を模式的に図示している。圧力変動吸着(PSA:Pressure Swing Adsorption)法の原理は以下の如くである。すなわち、吸着装置内の圧力を上下(昇降)させると、不純物ガスの吸着容量差(符号A1とA2との差)は、一酸化炭素ガス又は水素ガスの吸着容量差(符号B1とB2との差)よりも大きい。これにより、不純物ガスの方が一酸化炭素ガス又は水素ガスよりも多くガス吸着部材に吸着し除去される。ガス吸着部材に吸着しなかった一酸化炭素ガス及び水素ガスは、エタノール生成装置30へ送出される。
 運転制御部26は、ガス流量制御部261、温度調整部262、湿度調整部263、吸着装置22、23の運転の切替を行う吸着装置切替部264、及び通信部265を備える。通信部265は、通信機能を備え、制御装置50との間で所定の情報の送受信を行うことができる。
 運転制御部26は、使用履歴取得部としての機能を有し、吸着装置22、23(例えば、ガス吸着部材221、231)の使用履歴を取得する。使用履歴は、例えば、累積使用時間、洗浄回数などを含む。
 センサ部27は、種類が異なる複数のセンサで構成され、吸着装置22、23(例えば、ガス吸着部材221、231)の劣化度を検出することができる。劣化度は、例えば、ガス吸着部材221、231を洗浄した後のガス吸着部材221、223表面の色又は汚れ、所定のサイクルタイムにおいて吸着した不純物の量などにより判定することができる。
 センサ部27は、吸着装置22、23(例えば、ガス吸着部材221、231)の脱着操作の有無を検出することができる。吸着装置22、23の脱着操作は、例えば、意図しない脱着操作とすることができる。
 通信部265は、吸着装置22、23の使用履歴、劣化度、脱着操作の有無などの情報を制御装置50へ送信することができる。
 ガス流量制御部261は、制御装置50が出力する制御情報に基づいて、ガスの流量を制御する。
 温度調整部262は、制御装置50が出力する制御情報に基づいて、ガスの温度を調整する。
 湿度調整部263は、制御装置50が出力する制御情報に基づいて、ガスの湿度を調整する。
 吸着装置切替部264は、制御装置50が出力する制御情報に基づいて、吸着装置22、23の運転の切替のサイクルタイムを調整する。
 次に、制御装置50の処理部60の学習モードについて説明する。
 図4は本実施の形態の強化学習の一例を示す模式図である。強化学習は、ある環境下に置かれたエージェントが環境に対して行動をし、得られる報酬が最大化されるような方策(エージェントが行動する際の指標となるルール)を求める機械学習アルゴリズムである。強化学習において、エージェントは、環境に対して行動を起こす学習者のようなものであり、学習対象である。環境は、エージェントの行動に対して状態の更新と報酬の付与を行う。行動は、環境のある状態に対してエージェントが取ることができる行動である。状態は、環境が保持する環境の様子である。報酬は、エージェントが環境に対して望ましい結果を作用させたときにエージェントに付与される。報酬は、例えば、正、負、0の値とすることができ、正の場合は報酬そのものであり、負の場合はペナルティとなり、0の場合は報酬なしとなる。また、行動評価関数は、ある状態での行動の評価値を定める関数であり、表のようなテーブル形式で表すこともでき、Q学習においては、Q関数、Q値、評価値などという。Q学習は、強化学習の中でよく用いられている手法の一つである。以下では、Q学習について説明するが、強化学習は代替的にQ学習と異なるものでもよい。
 本実施の形態では、ガス化炉10、ガス精製装置20、エタノール生成装置30及び処理部60内の報酬算出部61が、「環境」に相当し、行動選択部62及び行動評価部63が「エージェント」に相当する。行動評価部63は、上述のQ関数、Q値に相当し、行動評価関数(行動評価情報)に対応する。
 まず、行動選択部62は、状態sを取得すると、行動評価部63に基づいて、状態sにおいて取り得る行動の中から、最も評価の高い(例えば、Q関数の値が最も大きい)行動aを選択して制御情報としてガス精製装置20に出力する。ガス精製装置20は、制御情報に基づいて運転制御を行う。
 次に、行動選択部62は、状態st+1 を取得するとともに、報酬算出部61から報酬rt+1を取得する。状態sを取得する時刻tと状態st+1 を取得する時刻t+1との間の時間(インターバル)は、適宜設定することができ、例えば、1秒、10秒、30秒、1分、2分などとすることができるが、これらに限定されない。
 ガス精製装置20が、行動a(制御情報)に基づいて運転制御を行うと、特性情報が変化する。報酬算出部61は、行動a(制御情報)に基づいて変化した特性情報に基づいて報酬rt+1を算出することができる。行動選択部62がガス精製装置20に対して望ましい結果を作用させたときに高い値(正値)の報酬が算出される。報酬が0のときは、報酬なしであり、報酬が負値のときはペナルティとなる。報酬算出部61は、ガス精製装置20が精製した一酸化炭素ガス及び水素ガスの純度、エタノール生成装置30が精製したエタノールの純度又は量、並びにエタノール生成装置30内の触媒の活性度の少なくとも一つに基づいて報酬を算出することができる。これにより、特性情報が所要の値又は範囲内になるようにガス精製装置20の運転制御を行うことができる。なお、ガス精製装置20が出力する不純物ガスの濃度を用いて報酬を算出してもよい。この場合、不純物ガスの濃度が高いほど、大きなペナルティとすることができる。
 行動選択部62は、取得した状態st+1及び報酬rt+1に基づいて、行動評価部63の、例えば、Q関数の値、あるいはQ値を更新する。より具体的には、行動選択部62は、行動に対する報酬を最大化する方向へQ関数の値又はQ値を更新する。これにより、環境のある状態において最大の価値が期待される行動を学習できる。
 上述の処理を繰り返して、行動評価部63の更新を繰り返すことにより、報酬を最大化できる行動評価部63を学習することができる。
 Q学習では、(状態数s×行動数a)のサイズのテーブル(Qテーブルとも称する)を更新することができるが、本実施の形態のように状態数が大きくなる場合には、Q関数をニューラルネットワークで表現する手法を採用することができる。
 図5は本実施の形態のニューラルネットワークモデル部の構成の一例を示す模式図である。ニューラルネットワークモデル部は、処理部60(具体的には、行動選択部62及び行動評価部63)を表したものである。ニューラルネットワークモデル部は、入力層601、中間層602及び出力層603を有する。入力層601の入力ニューロンの数は、不純物ガスの種類の数とすることができ、入力層601の入力ニューロンには、不純物ガスG1の濃度、不純物ガスG2の濃度、…、不純物ガスGnの濃度が入力される。不純物ガスの種類の数は、例えば、約400であるが、これに限定されない。
 出力層603の出力ニューロンの数は、行動の選択肢の数とすることができる。図5では、便宜上、出力層603の出力ニューロンの数を2とし、一方の出力ニューロンは、サイクルタイムを長くしたときのQ関数の値を出力し、他方の出力ニューロンは、サイクルタイムを短くしたときのQ関数の値を出力する。
 ニューラルネットワークモデル部を用いた機械学習(深層強化学習)は、次のようにすることができる。すなわち、ニューラルネットワークモデル部の入力ニューロンに状態sを入力すると、出力ニューロンは、Q(s,a)を出力する。ここで、Qは、状態sでの行動aの評価を格納する関数である。Q関数の更新は、式(1)により行うことができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、sは時点tでの状態を示し、aは状態sで取ることができる行動を示し、αは学習率(ただし、0<α<1)を示し、γは割引率(ただし、0<γ<1)を示す。学習率αは学習係数とも称され、学習の速度(ステップサイズ)を決定するパラメータである。すなわち、学習率αはQ値又はQ関数の値の更新量を調整するパラメータである。割引率γは、Q関数を更新する際に、未来の状態の評価(報酬又はペナルティ)をどれだけ割り引いて考慮するかを決定するパラメータである。すなわち、ある状態での評価が、過去の状態での評価と繋がっている場合、どの程度報酬やペナルティを割り引くかを定めるパラメータである。
 式(1)において、rt+1 は行動の結果得られた報酬であり、報酬が得られない場合は0となり、ペナルティの場合は負値となる。Q学習では、式(1)の第2項、{rt+1 +γ・maxQ(st+1 ,at+1 )-Q(s,a)}が0になるように、すなわち、Q関数のQ(s,a)が、報酬(rt+1 )と、次の状態st+1 で可能な行動の中で最大の価値(γ・maxQ(st+1 ,at+1 ))との和になるようにニューラルネットワークモデル部のパラメータを学習する。報酬の期待値と現在の行動評価との誤差を0に近づけるように、ニューラルネットワークモデル部のパラメータが更新される。別言すれば、(γ・maxQ(st+1 ,at+1 ))の値は、現在のQ(s,a)の値と、行動atを実行した後の状態st+1 で実行可能な行動の中で得られる最大の評価値に基づいて修正される。
 ある状態において行動を実行したときに、必ず報酬が得られるとは限らない。例えば、行動を何回か繰り返した後に報酬が得られる場合もある。式(2)は、式(1)において、発散の問題を回避して、報酬が得られたときのQ関数の更新式を表す。式(3)は、式(1)において、報酬が得られなかったときのQ関数の更新式を表す。
 図5の例では、出力ニューロンの数は2であったが、これに限定されない。
 図6は行動atの一例を示す説明図である。図6に示すように、行動atがサイクルタイム(吸着装置22及び吸着装置23の切替のサイクルタイム)の制御である場合、具体的には、サイクルタイムを長くする、サイクルタイムを短くする、あるいはサイクルタイムを変更しない行動を用いることができる。ここで、サイクルタイムをどの程度長く、あるいは短くするかは、適宜設定することができる。行動atがガス温度の制御である場合、具体的には、温度を上げる、温度を下げる、温度を変更しない行動を用いることができる。ここで、温度をどの程度上下させるかは、適宜設定することができる。行動atがガス量の制御である場合、具体的には、ガス量を増やす、ガス量を減らす、あるいはガス量を変更しない行動を用いることができる。ここで、ガス量をどの程度増減させるかは、適宜設定することができる。また、行動atがガス湿度の制御である場合、具体的には、湿度を上げる、湿度を下げる、あるいは湿度を変更しない行動を用いることができる。ここで、湿度をどの程度上下させるかは、適宜設定することができる。出力ニューロンは、図6に例示した行動の全部又は一部を組み合わせてQ関数を出力するように構成することができる。なお、図示していないが、行動atにガスの圧力を含めてもよく、例えば、ガスの圧力を上げる、ガスの圧力を下げる、ガスの圧力を変更しない等を含めることができる。
 図7は本実施の形態のニューラルネットワークモデル部の構成の他の例を示す模式図である。図5に例示したニューラルネットワークモデル部との違いは、出力ニューロンの数を2ではなく、増やした点である。図7の例では、種類の異なる行動を組み合わせている。例えば、図7に示すように、出力ニューロンは、何もしないときのQ関数の値、サイクルタイムを長くし、ガス量を増加したときのQ関数の値、サイクルタイムを長くし、ガス量を減少させたときのQ関数の値、…、サイクルタイムを短くし、ガス量を増やし、ガス温度を上げたときのQ関数の値、…、サイクルタイムを長くし、微生物に栄養剤を投入したときのQ関数の値などとすることができる。なお、出力ニューロンの数、出力の種類は図7の例に限定されない。
 なお、図5及び図7に示すニューラルネットワークモデル部としては、いわゆる畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を用いてもよい。
 次に、制御装置50によるガス精製装置20の運転制御モードについて説明する。
 処理部60(具体的には、学習モデルとしての行動選択部62及び行動評価部63)は、ガス化炉10が変換したガスのガス情報、ガス精製装置20を制御する制御情報、及びガス精製装置20が精製した精製ガスの情報を含む特性情報に基づいて学習されている。
 処理部60は、ガス化炉10が変換したガスのガス情報を取得する。
 処理部60は、ガス情報を学習モデル(行動選択部62及び行動評価部63)に入力してガス精製装置20を制御する制御情報を出力する。
 制御部51は、処理部60が出力した制御情報に基づいてガス精製装置20を制御することができる。これにより、ごみの成分や組成が変動する場合でも、ガス精製装置20の運転を最適化して、所望のエタノールを生成することができるので、可燃性ごみを工業原料として高効率で再利用することができる。
 図8は制御装置50によりガス精製装置20の運転制御を行った場合の不純物ガスの濃度の一例を示す模式図である。左側の図はガス精製装置20に入力される不純物ガスを示し、右側の図はガス精製装置20から出力される不純物ガスを示す。図中、縦軸はガスの濃度を示し、横軸は時間を示す。左側の図に示すように、収集された可燃ごみがガス化炉10に投入される都度(例えば、1分~30分に1回程度)、ごみの成分や組成が変動するための、不純物ガスの濃度も変動し、閾値を超える場合がある。濃度が閾値を超えた不純物ガスがガス精製装置20から取り出されてエタノール生成装置30に入力されると、例えば、生成されるエタノールの純度が低くなる。
 本実施の形態では、学習済の学習モデルを用いてガス精製装置20の運転制御を行うので、右側の図に示すように、不純物ガスの濃度は、閾値未満になり、濃度が閾値を超えた不純物ガスがエタノール生成装置30に入力されることを防止できる。
 制御部51は、ガス精製装置20の運転制御モードにおいて、ガス精製装置20が精製した精製ガスの情報を含む特性情報を記憶部55に記憶することができる。これにより、ごみの成分や組成が変動する場合に、ガス精製装置20の運転を最適化した結果得られた特性情報を収集することができる。
 制御部51は、ガス精製装置20の運転制御モードにおいて、取得したガス情報、出力した制御情報、及び取得した特性情報を、通信部54を介して後述の学習サーバ300へ送信することができる。
 処理部60は、ガス精製装置20の運転制御モードにおいて、取得したガス情報、出力した制御情報、及び取得した特性情報に基づいて学習モデルを再学習させることができる。これにより、ガス精製装置20の運転をさらに最適化することができる。
 制御部51は、ガス精製装置20から取得した、吸着装置22、23の使用履歴、劣化度、脱着操作の有無などの情報を、通信部54を介して後述の管理サーバ200へ送信することができる。
 次に、本実施の形態の学習モードでの処理について説明する。
 図9は本実施の形態の機械学習の処理手順の一例を示すフローチャートである。なお、便宜上、処理の主体を処理部60として説明する。処理部60は、ニューラルネットワークモデル部のパラメータを初期値に設定する(S11)。処理部60は、状態sを取得する(S12)。状態sは、ガス化炉10が変換したガスのガス情報であり、具体的には、不純物ガスの濃度である。
 処理部60は、状態sで取ることのできる行動aを選択して実行する(S13)。行動aはガス精製装置20の運転制御のための制御情報であり、具体的には、サイクルタイム、ガス量、ガス温度及びガス湿度の全部又は一部を組み合わせることができる。また、行動aに微生物(触媒)に与える栄養剤に関する行動を含めてもよい。
 処理部60は、行動aの結果得られる状態st+1 を取得し(S14)、報酬rt+1 を取得する(S15)。報酬は、特性情報に基づいて算出することができる。ここで、特性情報は、ガス精製装置20が精製した精製ガスの情報(例えば、一酸化炭素ガス及び水素ガスの純度)、エタノール生成装置30が精製するエタノールの純度又は量、触媒の一例として微生物を用いる場合の微生物の活性度の少なくとも一つを含めることができる。なお、報酬は0(報酬なし)の場合もある。
 処理部60は、前記の式(1)を用いて、現在(st、at)のQ関数の値が、状態st+1 で実行可能な行動の中で得られる最大の報酬になるようにニューラルネットワークモデル部のパラメータを学習(更新)する(S16)。
 処理部60は、処理を終了するか否かを判定する(S17)。ここで、処理を終了するか否かは、ニューラルネットワークモデル部のパラメータの更新を所定回数行ったか否かによって判定してもよく、あるいは特性情報が許容値又は許容範囲内に至ったか否か等で判定することができる。
 処理を終了しない場合(S17でNO)、処理部60は、状態st+1 を状態sとし(S18)、ステップS13以降の処理を続ける。処理を終了する場合(S17でYES)、処理部60は、ニューラルネットワークモデル部のパラメータを記憶部55に記憶し(S19)、処理を終了する。なお、図9に示す処理は、繰り返し行うことができる。また、図9に示す処理は、異なる学習モデル毎に繰り返し実施することができる。
 なお、上述のようなニューラルネットワークモデル部のパラメータを更新する学習に代わりに、Qテーブルを用いる学習では、Q学習の初期の状態では、QテーブルのQ値は、例えば、乱数で初期化することができる。Q学習の初期段階で一旦報酬の期待値に差が生じると、未だ経験したことがない状態に遷移することができず、目標に到達することができない事態が起こり得る。そこで、ある状態に対する行動を決定する場合に、確率εを用いることができる。具体的には、ある確率εで全ての行動の中からランダムに行動を選択して実行し、確率(1-ε)でQ値が最大の行動を選択して実行することができる。これにより、Q値の初期状態によらず適切に学習を進めることができる。
 図10は本実施の形態の制御装置50の運転制御モードでの処理手順の一例を示すフローチャートである。なお、便宜上、処理の主体を制御部51として説明する。制御部51は、ニューラルネットワークモデル部のパラメータを読み込み(S31)、状態sを取得し(S32)、取得した状態sを記憶部55に記憶する(S33)。状態sは、ガス化炉10が変換したガスのガス情報であり、具体的には、不純物ガスの濃度である。
 制御部51は、学習モデルに基づいて状態sに対する行動aを出力し(S34)、出力した行動aを記憶部55に記憶する(S35)。行動aはガス精製装置20の運転制御のための制御情報であり、具体的には、サイクルタイム、ガス量、ガス温度及びガス湿度の全部又は一部を組み合わせることができる。また、行動aに微生物(触媒)に与える栄養剤に関する行動を含めてもよい。
 制御部51は、出力した行動aに基づいてガス精製装置20の運転制御を行い(S36)、特性情報を取得する(S37)。制御部51は、取得した特性情報を記憶部55に記憶する(S38)。
 制御部51は、ガス精製装置20の運転が終了するか否かを判定し(S39)、運転が終了しない場合(S39でNO)、状態st+1 を取得し(S40)、状態st+1 を状態sとし(S41)、ステップS34以降の処理を続ける。ガス精製装置20の運転が終了する場合(S39でYES)、制御部51は、記憶部に記憶した状態、行動及び特性情報をサーバ(学習サーバ300)に送信し(S42)、処理を終了する。
 また、処理部60は、ガス情報取得部52で取得したガス情報、処理部60が出力した制御情報、及び特性情報取得部53で取得した特性情報に基づいて学習モデル(行動選択部62及び行動評価部63)を再学習させることができる。これにより、ガス精製装置20の運転をさらに最適化することができる。
 本実施の形態の制御部51及び処理部60は、CPU(プロセッサ)、GPU、RAM(メモリ)などを備えたコンピュータを用いて実現することもできる。例えば、記録媒体(例えば、CD-ROM等の光学可読ディスク記憶媒体)に記録されたコンピュータプログラムやデータ(例えば、学習済のQ関数又はQ値など)を記録媒体読取部57(例えば、光学ディスクドライブ)で読み取ってRAMに格納することができる。ハードディスク(図示しない)に格納しコンピュータプログラム実行時にRAMに格納してもよい。図9及び図10に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で制御部51及び処理部60を実現することができる。
 上述の実施の形態では、機械学習の一例として、Q学習について説明したが、代替的に、別のTD学習(Temporal Difference Learning)などの他の学習アルゴリズムを用いてもよい。例えば、Q学習のように、行動の価値を更新するのではなく状態の価値の更新を行う学習方法を用いてもよい。この方法では、現在の状態Stの価値V(s)を、V(s)<-V(s)+α・δtという式で更新する。ここで、δt=rt+1 +γ・V(st+1 )-V(s)であり、αは学習率、δtはTD誤差である。
 上述のように、本実施の形態によれば、収集した可燃性ごみを極めて高い生産効率でエタノールに変換することができ、可燃性ごみを工業原料として高効率で再利用することができる。
 上述の実施の形態では、一つのごみ処理施設(プラントとも称する)について説明したが、本実施の形態は、複数の場所(地域)に設置された複数のプラントに対しても適用することができる。
 図11は複数のプラントを管理する管理システムの構成の一例を示す模式図である。図11に示すように、複数のプラント内に設けられた各制御装置50は、インターネットなどのネットワーク1に接続されている。ネートワーク1には、管理サーバ200、学習サーバ300が接続されている。各制御装置50と、管理サーバ200及び学習サーバ300との間では、ネットワーク1を介して情報の送受信を行うことができる。管理サーバ200は、CPU201、RAM202、ROM203及びプラントDB204を備え、表示装置210が接続されている。なお、管理サーバ200(CPU201)は表示装置210の処理を制御することができる。学習サーバ300は、処理部301及びプラントDB302を備える。処理部301は、制御装置50の処理部60と同様の構成とすることができる。
 各制御装置50は、ガス精製装置20の運転制御モードにおいて、取得したガス情報、出力した制御情報、取得した特性情報及びプラントを識別する識別情報を学習サーバ300へ送信することができる。学習サーバ300は、各制御装置50から、プラントを識別する識別情報、ガス化炉10が変換したガスのガス情報、ガス精製装置20を制御する制御情報、及びガス精製装置20が精製した精製ガスの情報を含む特性情報を収集することができる。学習サーバ300は、収集したガス情報、制御情報及び特性情報を識別情報と関連付けてプラントDB302に記憶することができる。これにより、プラント毎に、ガス精製装置20の運転を最適化するのに必要な情報を収集して記録することができる。
 学習サーバ300では、ごみの成分や組成が変動する場合に、ガス精製装置20の運転をどのように制御すれば、所望の特性情報が得られかの情報を収集することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置50から同様の情報を送信することにより、学習サーバ300では、各プラントにおいて、ガス精製装置20の運転をどのように制御すれば、所望の特性情報が得られかの情報を収集することができる。
 処理部301は、収集したガス情報、制御情報及び特性情報に基づいて学習モデルを学習させることができる。これにより、学習サーバ300は、様々な地域に設置されたごみ処理施設(プラント)毎に、カスタマイズした学習モデルを生成することができる。既存のごみ処理施設に制御装置50を新たに設置する場合や新たにプラントを建設するような場合に、それぞれのプラントに適した学習モデルを配信することができる。なお、学習モデルをプラント(具体的には制御装置50内)に配信する場合には、秘密鍵などを用いて学習モデル(アルゴリリズム及びパラメータなど)を暗号化して配信することができる。各制御装置50では、固有の秘密鍵を用いて復号すればよい。
 また、各制御装置50は、ガス精製装置20から取得した、吸着装置22、23の使用履歴、劣化度、脱着操作の有無、触媒(例えば、微生物)の活性度などの情報を管理サーバ200へ送信することができる。
 管理サーバ200では、使用履歴に基づいて、吸着装置22、23を交換するまでの残余使用回数、残余使用時間などを算出することにより、吸着装置22、23の交換時期を推定することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置から同様の情報を送信することにより、管理サーバ200では、各プラントにおいて、ガス精製装置20内の吸着装置22、23の交換時期を推定することができる。
 図12は表示装置210が表示するプラント一覧画面211の一例を示す模式図である。図12に示すように、プラント一覧画面211は、プラントID表示領域212、吸着装置の劣化度表示領域213、アラート表示領域214、触媒(例えば、微生物)の活性度表示領域215を有する。管理サーバ200では、すなわち、表示装置210の表示画面を監視する作業員は、吸着装置の劣化度表示領域213に表示される、各プラントの各吸着装置の劣化度に基づいて、各プラントにおいて、吸着装置22、23の保守・点検、あるいは交換の要否を判定することができる。なお、図12の例では、いずれのプラントにおいても、吸着装置の劣化度は交換すべき値まで至っていない。
 また、管理サーバ200では、すなわち、表示装置210の表示画面を監視する作業員は、アラート表示領域214のアラートが点灯又は点滅した場合、吸着装置22、23の意図しない脱着操作があったことを認識することができる。これにより、例えば、正規品でない吸着装置の装着を発見することができ、非正規品の装着を防止することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置50から同様の情報を送信することにより、管理サーバ200では、各プラントにおいて、正規品でない吸着装置の装着を発見することができ、非正規品の装着を防止することができる。
 また、管理サーバ200では、すなわち、表示装置210の表示画面を監視する作業員は、触媒の活性度表示領域215での活性度がOKかNGかを識別することができる。図12では、活性度はOKとしている。これにより、例えば、微生物の活性度が低下した場合、遠隔で栄養剤を投入する指示を行うことができ、微生物を再度活性化することができ、エタノールの生成速度を高レベルで維持することができる。
 図13は管理サーバ200の処理の手順の一例を示すフローチャートである。以下では、便宜上、処理の主体をCPU201として説明する。CPU201は、複数のプラントそれぞれのガス精製装置20内のガスの吸着装置22、23の劣化情報を取得し(S101)、プラント毎にガスの吸着装置22、23の劣化度を表示する(S102)。
 CPU201は、ガスの吸着装置22、23の脱着操作情報を取得したか否かを判定する(S103)。ここで、脱着操作情報は、ガスの吸着装置22、23の意図しない脱着操作があったことを示す情報であり、ガスの吸着装置22、23を洗浄する際の脱着操作は含まない。
 ガスの吸着装置22、23の脱着操作情報を取得した場合(S103でYES)、CPU201は、該当するプラントのアラート(例えば、図12に例示するアラート表示領域214のアラート)を出力する(S104)。アラートの出力は、表示灯の点灯又は点滅でもよく、音声で出力してもよい。また、作業員の携帯端末装置(不図示)に通知するようにしてもよい。ガスの吸着装置22、23の脱着操作情報を取得していない場合(S103でNO)、CPU201は、後述のステップS105の処理を行う。
 CPU201は、エタノール生成用の触媒(例えば、微生物)の活性度情報を取得したか否かを判定し(S105)、活性度情報を取得した場合(S105でYES)、プラント毎に触媒(例えば、微生物)の活性度を表示し(S106)、処理を終了するか否かを判定する(S107)。活性度情報を取得していない場合(S105でNO)、CPU201は、ステップS107の処理を行う。処理を終了しない場合(S107でNO)、CPU201は、ステップS101以降の処理を続け、処理を終了する場合(S107でYES)、処理を終了する。
 上述の実施形態において、管理サーバ200又は学習サーバ300それぞれは複数のサーバで構成してもよく、また、管理サーバ200及び学習サーバ300を一つのサーバに統合してもよい。
 図14は学習サーバ300を利用して対象のガス精製装置の運転を制御する運転制御装置150の構成の一例を示す模式図である。図11の場合と同様に、学習サーバ300は、ネットワーク1を介して複数のプラント内に設けられた各制御装置50に接続されている。学習サーバ300は、処理部301を備え、処理部301は、処理部60と同様に学習済の学習モデルを備える。
 学習サーバ300には、インタネーネットなどのネットワーク2を介して、複数のプラントP1、P2、P3内の運転制御装置150が接続され、学習サーバ300と運転制御装置150とは、所要の情報の授受を行うことができる。学習サーバ300と運転制御装置150とは、それぞれ異なる国又は地域に設置されていてもよい。また、学習サーバ300と各制御装置50は、同じ国に設置されていてもよい。なお、便宜上、プラントP1だけを詳細に図示している。
 プラントP1には、対象のガス化炉10、対象のガス精製装置20、対象のエタノール生成装置30が設置されている。ここで、「対象の」とは、運転制御装置150による運転制御の対象となる、という意味である。対象のガス化炉10、対象のガス精製装置20、対象のエタノール生成装置30は、図1で例示したガス化炉10、ガス精製装置20、エタノール生成装置30と同様の機能を有するので、説明は省略する。
 運転制御装置150は、装置全体を制御する制御部151、ガス情報取得部152、通信部153、記憶部154、及び制御情報出力部155を備える。図に示すように、運転制御装置150は、処理部60(学習モデル)を具備しない。
 制御部151は、CPU、ROM及びRAMなどで構成することができる。
 ガス情報取得部152は、対象のガス化炉10が変換したガスのガス情報を取得する。ガス情報は、例えば、ガス化炉10から取り出された不純物ガス(夾雑物質)の濃度を含む。不純物ガスは、例えば、シアン化水素、ベンゼン、トルエン、エチルベンゼン、キシレン、ダイオキシンなどのガスを含むが、これらに限定されない。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。
 記憶部154は、ハードディスク又はフラッシュメモリなどで構成され、運転制御装置150の外部から取得した情報などの所要の情報を記憶することができる。
 制御情報出力部155は、学習モデルに、ガス情報取得部152で取得したガス情報を入力して得られた、対象のガス精製装置20を制御する制御情報を出力する。
 ここで、学習モデルは、収集されたごみをガスに変換するガス化炉(対象のガス化炉10とは異なるガス化炉)が変換したガスのガス情報、当該ガス化炉が変換したガスを精製するガス精製装置(対象のガス精製装置20とは異なるガス精製装置)を制御する制御情報、及び当該ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習されている。
 上述の構成により、運転制御装置150は、学習モデルを具備していなくても、ガス情報取得部152で取得したガス情報を学習モデルに提供し、当該学習モデルから得られた制御情報に基づいて対象のガス精製装置20の運転を制御することができる。
 より具体的には、通信部153は、送信部及び受信部としての機能を有する。通信部153は、ガス情報取得部152で取得したガス情報を学習サーバ300へ送信する。学習サーバ300は、学習モデルを備える。当該学習モデルは、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習してある。
 通信部153は、学習サーバ300が送信した、ガス精製装置を制御する制御情報を受信する。制御情報出力部155は、通信部153で受信した制御情報を対象のガス精製装置20に出力する。
 上述の構成により、運転制御装置150は、学習モデルを具備していなくても、ガス情報取得部152で取得したガス情報を、学習モデルを備える学習サーバ300に送信し、学習サーバ300が送信した制御情報を受信し、受信した制御情報に基づいて対象のガス精製装置20の運転を制御することができる。これにより、運転制御装置150は、インターネットなどのネットワークを経由して接続される学習サーバ300が具備する学習モデルを利用することにより、対象のガス精製装置20の運転を制御できるので、例えば、学習サーバ300と運転制御装置150とを異なる国や地域に設置しても対象のガス精製装置20の運転を制御できる。
 上述の構成では、運転制御装置150は、ガス情報取得部152でガス情報を取得する構成であったが、これに限定されるものではない。例えば、運転制御装置150は、ガス情報に加えて、学習モデルの学習に必要な情報(制御情報、特性情報)を取得するように構成し、取得したガス情報、制御情報、特性情報を学習サーバ300へ送信して、学習サーバ300が備える学習モデルを学習させてもよい。これにより、運転制御装置150は、対象のガス化炉10、対象のガス精製装置及び対象のエタノール生成装置30それぞれの情報に基づいて学習サーバ300の学習モデルを学習させることができるので、対象のガス精製装置20の運転制御を一層精度よく行うことができ、プラントP1において、収集した可燃性ごみを極めて高い生産効率でエタノールに変換することができ、可燃性ごみを工業原料として高効率で再利用することができる。
 本実施の形態に係る制御装置は、ガス精製装置を制御する制御装置であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得するガス情報取得部と、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得する制御情報取得部と、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する生成部とを備える。
 本実施の形態に係るコンピュータプログラムは、コンピュータに、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する処理と、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する処理と、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する処理とを実行させる。
 本実施の形態に係る制御方法は、ガス精製装置を制御する制御方法であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得し、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得し、前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する。
 ガス情報取得部は、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する。ガス化炉は、ごみを低酸素状態で蒸し焼きして、分子レベル(例えば、一酸化炭素ガス及び水素ガスを含む)にまで分解することができる炉である。ガス情報は、例えば、ガス化炉によって生成された不純物ガス(夾雑物質)の濃度を含む。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。
 制御情報取得部は、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する。ガス精製装置は、ガス化炉が変換したガスに含まれる不純物ガスを除去・精製して、所要のガス(例えば、一酸化炭素ガス及び水素ガス)を取り出すことができる。制御情報は、ガス精製装置を運転制御するための情報である。
 特性情報取得部は、ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する。精製ガスの情報は、例えば、一酸化炭素ガス及び水素ガスの純度を含む。また、精製ガスの情報は、除去できなかった不純物ガスの濃度を含めることもできる。精製ガスは、触媒(例えば、金属触媒、微生物触媒など)を用いてエタノールに変換することができる。エタノールは、石油化学製品の6割程度を占めるエチレンと同様のC構造を有し、既存の化学プロセスによってエチレンモノマー又はブタジエンモノマーに変換することで、プラスチック等の誘起化学素材に誘導することができる。特性情報は、例えば、一酸化炭素ガス及び水素ガスからエタノールを生成する触媒(例えば、微生物)の活性度、生成されたエチレンの純度又は量などを含む。
 生成部は、ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する。機械学習は、例えば、深層学習、強化学習、深層強化学習などを用いることができる。例えば、強化学習を用いる場合、ガス情報を「状態」とし、制御情報を「行動」とし、特性情報に基づいて「報酬」を算出して、Q値又はQ関数(行動価値関数)の値を学習すればよい。
 上述の構成により、ごみの成分や組成の変動が大きいために、ガス精製装置に入力されるガス(不純物ガス)の濃度が閾値を超えるような場合でも、ガス精製装置の出力側の特性情報が所要の値又は範囲内になるような制御情報を出力できるように学習モデルを学習させることができる。学習させた学習モデルを用いることにより、ごみの成分や組成が変動する場合でも、ガス精製装置の運転を最適化して、所望のエタノールを生成することができるので、可燃性ごみを工業原料として高効率で再利用することができる。
 本実施の形態に係る制御装置において、前記生成部は、前記ガス情報取得部で取得したガス情報及び行動評価情報に基づいて前記制御情報を出力する行動出力部と、前記特性情報取得部で取得した特性情報に基づいて報酬を算出する報酬算出部と、前記報酬算出部で算出する報酬が大きくなるように前記行動評価情報を更新する更新部とを備える。
 行動出力部は、ガス情報取得部で取得したガス情報及び行動評価情報に基づいて制御情報を出力する。行動評価情報は、強化学習において、行動の評価値であり、Q値又はQ関数(行動価値関数)と同意である。すなわち、行動出力部は、取得した状態での行動の評価値に基づいて、取得した状態において取り得る行動の中から行動を選択して出力する。
 報酬算出部は、特性情報取得部で取得した特性情報に基づいて報酬を算出する。報酬の算出は、特性情報が所要の値又は範囲内になる場合、正(報酬あり)となるようにし、特性情報が所要の値にならない、又は範囲内にならない場合、0(報酬なし)又は負(ペナルティ)となるようにすることができる。
 更新部は、報酬算出部で算出する報酬が大きくなるように行動評価情報を更新する。これにより、ごみの成分や組成の変動が大きいために、ガス精製装置に入力されるガス(不純物ガス)の濃度が閾値を超えるような場合でも、ガス精製装置の出力側の特性情報が所要の値又は範囲内になるような制御情報を出力できるように学習モデルを学習させることができる。
 本実施の形態に係る制御装置は、前記更新部で更新した行動評価情報を記憶する記憶部を備える。
 記憶部は、更新部で更新した行動評価情報を記憶する。記憶部に記憶した行動評価情報を読み出すことにより、学習済の学習モデルを再現することができる。
 本実施の形態に係る制御装置において、前記ガス情報取得部は、不純物ガスの濃度を含むガス情報を取得する。
 ガス情報取得部は、不純物ガスの濃度を含むガス情報を取得する。不純物ガスは、例えば、シアン化水素、ベンゼン、トルエン、エチルベンゼン、キシレン、ダイオキシンなどのガスを含むが、これらに限定されない。これにより、不純物ガスを除去することができ、ガス化炉からのガスに含まれる夾雑物質を徹底的に除去することが可能になる。
 本実施の形態に係る制御装置において、前記特性情報取得部は、一酸化炭素ガス及び水素ガスの純度、エタノールの純度又は量、並びに一酸化炭素ガス及び水素ガスからエタノールを生成する触媒の活性度の少なくとも一つを含む特性情報を取得する。
 特性情報取得部は、一酸化炭素ガス及び水素ガスの純度、エタノールの純度又は量、並びに一酸化炭素ガス及び水素ガスからエタノールを生成する触媒(例えば、微生物)の活性度の少なくとも一つを含む特性情報を取得する。これにより、特性情報が所要の値又は範囲内になるようにすることができる。
 本実施の形態に係る制御装置において、前記制御情報取得部は、前記ガス精製装置のガス量、ガス温度及びガス湿度、並びに前記ガス精製装置内の吸着装置の切替サイクルタイムの少なくとも一つを含む制御情報を取得する。
 制御情報取得部は、ガス精製装置のガス量、ガス温度及びガス湿度、並びにガス精製装置内の吸着装置の切替サイクルタイムの少なくとも一つを含む制御情報を取得する。ガス吸着部材は、吸着装置内に設けられ、不純物を吸着させて捕獲する部材である。切替サイクルタイムは、例えば、二つの吸着装置を交互に切り替えて使用する場合の一方の吸着装置の使用時間である。切替サイクルタイムの間に、使用していない吸着装置のガス吸着部材を脱着し、ガス吸着部材に付着した不純物を洗浄することができる。これにより、特性情報が所要の値又は範囲内になるようにガス精製装置の運転制御を行うことができる。
 本実施の形態に係る制御装置は、ガス精製装置を制御する制御装置であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルと、前記ガス化炉が変換したガスのガス情報を取得するガス情報取得部と、前記ガス情報取得部で取得したガス情報を前記学習モデルに入力して前記ガス精製装置を制御する制御情報を出力する出力部とを備える。
 本実施の形態に係るコンピュータプログラムは、コンピュータに、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する処理とを実行させる。
 本発明の実施の形態に係る学習モデルは、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習してある。
 本実施の形態に係る制御方法は、ガス精製装置を制御する制御方法であって、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する。
 学習モデルは、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及びガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習されている。
 ガス情報は、例えば、ガス化炉によって生成された不純物ガス(夾雑物質)の濃度を含む。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。制御情報は、ガス精製装置を運転制御するための情報である。特性情報は、例えば、一酸化炭素ガス及び水素ガスの純度、一酸化炭素ガス及び水素ガスからエタノールを生成する触媒(例えば、微生物)の活性度、生成されたエチレンの純度又は量などを含む。
 学習モデルは、例えば、深層学習、強化学習、深層強化学習などを用いて学習されている。
 ガス情報取得部は、ガス化炉が変換したガスのガス情報を取得する。ガス化炉は、ごみを低酸素状態で蒸し焼きして、分子レベル(例えば、一酸化炭素ガス及び水素ガスを含む)にまで分解することができる炉である。ガス情報は、例えば、ガス化炉によって生成された不純物ガス(夾雑物質)の濃度を含む。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。
 出力部は、ガス情報取得部で取得したガス情報を学習モデルに入力してガス精製装置を制御する制御情報を出力する。これにより、ごみの成分や組成が変動する場合でも、ガス精製装置の運転を最適化して、所望のエタノールを生成することができるので、可燃性ごみを工業原料として高効率で再利用することができる。
 本実施の形態に係る制御装置は、前記出力部が出力した制御情報に基づいて前記ガス精製装置を制御する。
 出力部が出力した制御情報に基づいてガス精製装置を制御する。これにより、ごみの成分や組成が変動する場合でも、ガス精製装置の運転を最適化して、所望のエタノールを生成することができるので、可燃性ごみを工業原料として高効率で再利用することができる。
 本実施の形態に係る制御装置は、前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、前記特性情報取得部で取得した特性情報を記憶する記憶部とを備える。
 特性情報取得部は、ガス精製装置が精製した精製ガスの情報を含む特性情報を取得し、記憶部は、取得した特性情報を記憶する。これにより、ごみの成分や組成が変動する場合に、ガス精製装置の運転を最適化した結果得られた特性情報を収集することができる。
 本実施の形態に係る制御装置は、前記ガス情報取得部で取得したガス情報、前記出力部が出力した制御情報、及び前記特性情報取得部で取得した特性情報をサーバへ送信する送信部を備える。
 送信部は、ガス情報取得部で取得したガス情報、出力部が出力した制御情報、及び特性情報取得部で取得した特性情報をサーバへ送信する。これにより、サーバでは、ごみの成分や組成が変動する場合に、ガス精製装置の運転をどのように制御すれば、所望の特性情報が得られかの情報を収集することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置から同様の情報を送信することにより、サーバでは、各プラントにおいて、ガス精製装置の運転をどのように制御すれば、所望の特性情報が得られかの情報を収集することができる。
 本実施の形態に係る制御装置は、前記ガス情報取得部で取得したガス情報、前記出力部が出力した制御情報、及び前記特性情報取得部で取得した特性情報に基づいて前記学習モデルを再学習させる学習処理部を備える。
 学習処理部は、ガス情報取得部で取得したガス情報、出力部が出力した制御情報、及び特性情報取得部で取得した特性情報に基づいて学習モデルを再学習させる。これにより、ガス精製装置の運転をさらに最適化することができる。
 本実施の形態に係る制御装置は、前記ガス精製装置内の吸着装置の使用履歴を取得する使用履歴取得部と、前記使用履歴取得部で取得した使用履歴を管理サーバへ送信する送信部とを備える。
 使用履歴取得部は、ガス精製装置内の吸着装置の使用履歴を取得する。使用履歴は、例えば、累積使用時間、洗浄回数などを含む。
 送信部は、使用履歴取得部で取得した使用履歴を管理サーバへ送信する。管理サーバでは、使用履歴に基づいて、吸着装置を交換するまでの残余使用回数、残余使用時間などを算出することにより、吸着装置の交換時期を推定することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置から同様の情報を送信することにより、管理サーバでは、各プラントにおいて、ガス精製装置内の吸着装置の交換時期を推定することができる。
 本実施の形態に係る制御装置は、前記ガス精製装置内の吸着装置の劣化度を取得する劣化度取得部を備え、前記送信部は、前記劣化度取得部で取得した劣化度を前記管理サーバへ送信する。
 劣化度取得部は、ガス精製装置内の吸着装置の劣化度を取得する。劣化度は、例えば、ガス吸着部材を洗浄した後のガス吸着部材表面の色又は汚れ、所定のサイクルタイムにおいて吸着した不純物の量などにより判定することができる。
 送信部は、劣化度取得部で取得した劣化度を管理サーバへ送信する。管理サーバでは、劣化度に基づいて、吸着装置の保守・点検、あるいは交換の要否を判定することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置から同様の情報を送信することにより、管理サーバでは、各プラントにおいて、ガス精製装置内の吸着装置の保守・点検、あるいは交換の要否を判定することができる。
 本実施の形態に係る制御装置は、前記ガス精製装置内の吸着装置の脱着操作の有無を取得する脱着操作取得部を備え、前記送信部は、前記脱着操作取得部で脱着操作ありを取得した場合、前記脱着操作があったことを前記管理サーバへ送信する。
 脱着操作取得部は、ガス精製装置内の吸着装置の脱着操作の有無を取得する。吸着装置の脱着操作は、例えば、意図しない脱着操作とすることができる。
 送信部は、脱着操作取得部で脱着操作ありを取得した場合、脱着操作があったことを管理サーバへ送信する。管理サーバでは、吸着装置の意図しない脱着操作の有無を判定することができるので、例えば、正規品でない吸着装置の装着を発見することができ、非正規品の装着を防止することができる。また、複数のごみ処理施設(プラント)それぞれの制御装置から同様の情報を送信することにより、管理サーバでは、各プラントにおいて、正規品でない吸着装置の装着を発見することができ、非正規品の装着を防止することができる。
 本実施の形態に係る制御装置は、前記ガス精製装置で精製した一酸化炭素ガス及び水素ガスからエタノールを生成する微生物の状態に基づいて、前記微生物の活性度を判定する判定部を備える。
 判定部は、ガス精製装置で精製した一酸化炭素ガス及び水素ガスからエタノールを生成する微生物の状態に基づいて、微生物の活性度を判定する。活性度は、例えば、微生物の反応速度、生存率などを含む。微生物の活性度は、微生物の状態を培養液層の外部からリアルタイムに監視して判定することができる。なお、微生物の活性度をオフラインで判定してもよい。これにより、例えば、微生物の活性度が低下した場合、栄養剤を投入して再度活性化することができ、エタノールの生成速度を高レベルで維持することができる。
 本実施の形態に係るサーバは、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報を収集する収集部と、前記収集部で収集したガス情報、制御情報及び特性情報を前記識別情報と関連付けて記憶する記憶部とを備える。
 収集部は、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及びガス精製装置が精製した精製ガスの情報を含む特性情報を収集する。
 記憶部は、収集部で収集したガス情報、制御情報及び特性情報を識別情報と関連付けて記憶する。これにより、プラント毎に、ガス精製装置の運転を最適化するのに必要な情報を収集して記録することができる。
 本実施の形態に係る管理サーバは、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスを精製するガス精製装置内の吸着装置の劣化度を収集する収集部と、前記収集部で収集した劣化度を前記識別情報と関連付けて記憶する記憶部とを備える。
 収集部は、複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスを精製するガス精製装置内の吸着装置の劣化度を収集する。
 記憶部は、収集部で収集した劣化度を識別情報と関連付けて記憶する。これにより、プラント毎に、ガス精製装置内の吸着装置の劣化度を把握することができる。
 本実施の形態に係る運転制御装置は、対象のガス精製装置を制御する運転制御装置であって、収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得するガス情報取得部と、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、前記ガス情報取得部で取得したガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する制御情報出力部とを備える。
 本実施の形態に係る運転制御方法は、対象のガス精製装置を制御する運転制御方法であって、収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得し、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得されたガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する。
 ガス情報取得部は、収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得する。対象のガス化炉は、ごみを低酸素状態で蒸し焼きして、分子レベル(例えば、一酸化炭素ガス及び水素ガスを含む)にまで分解することができる炉である。ガス情報は、例えば、ガス化炉によって生成された不純物ガス(夾雑物質)の濃度を含む。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。
 制御情報出力部は、学習モデルに、ガス情報取得部で取得したガス情報を入力して得られた、対象のガス精製装置を制御する制御情報を出力する。なお、運転制御装置は、学習モデルを具備していない。
 学習モデルは、収集されたごみをガスに変換するガス化炉(対象のガス化炉とは異なるガス化炉)が変換したガスのガス情報、当該ガス化炉が変換したガスを精製するガス精製装置(対象のガス精製装置とは異なるガス精製装置)を制御する制御情報、及び当該ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習されている。
 ガス情報は、例えば、当該ガス化炉によって生成された不純物ガス(夾雑物質)の濃度を含む。なお、不純物ガスの濃度は、雑多なごみの成分・組成によって変動する。制御情報は、当該ガス精製装置を運転制御するための情報である。特性情報は、例えば、一酸化炭素ガス及び水素ガスの純度、一酸化炭素ガス及び水素ガスからエタノールを生成する触媒(例えば、微生物)の活性度、生成されたエチレンの純度又は量などを含む。
 学習モデルは、例えば、深層学習、強化学習、深層強化学習などを用いて学習されている。
 上述の構成により、運転制御装置は、学習モデルを具備していなくても、ガス情報取得部で取得したガス情報を学習モデルに提供し、当該学習モデルから得られた制御情報に基づいてガス精製装置の運転を制御することができる。
 本実施の形態に係る運転制御装置は、前記ガス情報取得部で取得したガス情報を、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルを備えるサーバへ送信する送信部と、前記サーバが送信した、ガス精製装置を制御する制御情報を受信する受信部とを備え、制御情報出力部は、前記受信部で受信した制御情報を前記対象のガス精製装置に出力する。
 送信部は、ガス情報取得部で取得したガス情報をサーバへ送信する。サーバは、学習モデルを備える。当該学習モデルは、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習してある。
 受信部は、サーバが送信した、ガス精製装置を制御する制御情報を受信する。制御情報出力部は、受信部で受信した制御情報を対象のガス精製装置に出力する。
 上述の構成により、運転制御装置は、学習モデルを具備していなくても、ガス情報取得部で取得したガス情報を、学習モデルを備えるサーバに送信し、当該サーバが送信した制御情報を受信し、受信した制御情報に基づいてガス精製装置の運転を制御することができる。これにより、運転制御装置は、インターネットなどのネットワークを経由して接続されるサーバが具備する学習モデルを利用することにより、対象のガス精製装置の運転を制御できるので、例えば、サーバと運転制御装置とを異なる国や地域に設置しても対象のガス精製装置の運転を制御できる。
 なお、本実施の形態において、ごみの代替物として有機化合物及び/又は無機化合物を用いることができる。この場合、制御装置は、有機化合物及び/又は無機化合物をガスに変換するガス化炉が変換したガスのガス情報を取得するガス情報取得部と、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する制御情報取得部と、ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する生成部とを備えることができる。また、制御装置は、有機化合物及び/又は無機化合物をガスに変換するガス化炉が変換したガスのガス情報、ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及びガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルと、ガス化炉が変換したガスのガス情報を取得するガス情報取得部と、ガス情報取得部で取得したガス情報を学習モデルに入力してガス精製装置を制御する制御情報を出力する出力部と備えることができる。
 1、2 ネットワーク
 10 ガス化炉
 20 ガス精製装置
 22、23 吸着装置
 221、231 ガス吸着部材
 26 運転制御部
 261 ガス流量制御部
 262 温度調整部
 263 湿度調整部
 264 吸着装置切替部
 265 通信部
 30 エタノール生成装置
 50 制御装置
 51、151 制御部
 52、152 ガス情報取得部
 53 特性情報取得部
 54、153 通信部
 55、154 記憶部
 56 センサ情報取得部
 57 記録媒体読取部
 58 判定部
 60 処理部
 61 報酬算出部
 62 行動選択部
 63 行動評価部
 150 運転制御装置
 155 制御情報出力部
 200 管理サーバ
 201 CPU
 202 RAM
 203 ROM
 204 プラントDB
 210 表示装置
 300 学習サーバ
 301 処理部
 302 プラントDB
 

Claims (25)

  1.  ガス精製装置を制御する制御装置であって、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得するガス情報取得部と、
     前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得する制御情報取得部と、
     前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、
     前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する生成部と
     を備える制御装置。
  2.  前記生成部は、
     前記ガス情報取得部で取得したガス情報及び行動評価情報に基づいて前記制御情報を出力する行動出力部と、
     前記特性情報取得部で取得した特性情報に基づいて報酬を算出する報酬算出部と、
     前記報酬算出部で算出する報酬が大きくなるように前記行動評価情報を更新する更新部と
     を備える請求項1に記載の制御装置。
  3.  前記更新部で更新した行動評価情報を記憶する記憶部を備える請求項2に記載の制御装置。
  4.  前記ガス情報取得部は、
     不純物ガスの濃度を含むガス情報を取得する請求項1から請求項3のいずれか一項に記載の制御装置。
  5.  前記特性情報取得部は、
     一酸化炭素ガス及び水素ガスの純度、エタノールの純度又は量、並びに一酸化炭素ガス及び水素ガスからエタノールを生成する触媒の活性度の少なくとも一つを含む特性情報を取得する請求項1から請求項4のいずれか一項に記載の制御装置。
  6.  前記制御情報取得部は、
     前記ガス精製装置のガス量、ガス温度及びガス湿度、並びに前記ガス精製装置内の吸着装置の切替サイクルタイムの少なくとも一つを含む制御情報を取得する請求項1から請求項5のいずれか一項に記載の制御装置。
  7.  ガス精製装置を制御する制御装置であって、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルと、
     前記ガス化炉が変換したガスのガス情報を取得するガス情報取得部と、
     前記ガス情報取得部で取得したガス情報を前記学習モデルに入力して前記ガス精製装置を制御する制御情報を出力する出力部と
     を備える制御装置。
  8.  前記出力部が出力した制御情報に基づいて前記ガス精製装置を制御する請求項7に記載の制御装置。
  9.  前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する特性情報取得部と、
     前記特性情報取得部で取得した特性情報を記憶する記憶部と
     を備える請求項7又は請求項8に記載の制御装置。
  10.  前記ガス情報取得部で取得したガス情報、前記出力部が出力した制御情報、及び前記特性情報取得部で取得した特性情報をサーバへ送信する送信部を備える請求項9に記載の制御装置。
  11.  前記ガス情報取得部で取得したガス情報、前記出力部が出力した制御情報、及び前記特性情報取得部で取得した特性情報に基づいて前記学習モデルを再学習させる学習処理部を備える請求項9又は請求項10に記載の制御装置。
  12.  前記ガス精製装置内の吸着装置の使用履歴を取得する使用履歴取得部と、
     前記使用履歴取得部で取得した使用履歴を管理サーバへ送信する送信部と
     を備える請求項1から請求項11のいずれか一項に記載の制御装置。
  13.  前記ガス精製装置内の吸着装置の劣化度を取得する劣化度取得部を備え、
     前記送信部は、
     前記劣化度取得部で取得した劣化度を前記管理サーバへ送信する請求項12に記載の制御装置。
  14.  前記ガス精製装置内の吸着装置の脱着操作の有無を取得する脱着操作取得部を備え、
     前記送信部は、
     前記脱着操作取得部で脱着操作ありを取得した場合、前記脱着操作があったことを前記管理サーバへ送信する請求項12又は請求項13に記載の制御装置。
  15.  前記ガス精製装置で精製した一酸化炭素ガス及び水素ガスからエタノールを生成する微生物の状態に基づいて、前記微生物の活性度を判定する判定部を備える請求項1から請求項14のいずれか一項に記載の制御装置。
  16.  複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報を収集する収集部と、
     前記収集部で収集したガス情報、制御情報及び特性情報を前記識別情報と関連付けて記憶する記憶部と
     を備えるサーバ。
  17.  複数のごみ処理用のプラントそれぞれから、プラントを識別する識別情報、収集されたごみをガスに変換するガス化炉が変換したガスを精製するガス精製装置内の吸着装置の劣化度を収集する収集部と、
     前記収集部で収集した劣化度を前記識別情報と関連付けて記憶する記憶部と
     を備える管理サーバ。
  18.  対象のガス精製装置を制御する運転制御装置であって、
     収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得するガス情報取得部と、
     ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、前記ガス情報取得部で取得したガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する制御情報出力部と
     を備える運転制御装置。
  19.  前記ガス情報取得部で取得したガス情報を、ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルを備えるサーバへ送信する送信部と、
     前記サーバが送信した、ガス精製装置を制御する制御情報を受信する受信部と
     を備え、
     制御情報出力部は、
     前記受信部で受信した制御情報を前記対象のガス精製装置に出力する請求項18に記載の運転制御装置。
  20.  コンピュータに、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、
     前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報を取得する処理と、
     前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得する処理と、
     前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する処理と
     を実行させるコンピュータプログラム。
  21.  コンピュータに、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得する処理と、
     前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する処理と
     を実行させるコンピュータプログラム。
  22.  収集されたごみをガスに変換するガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習してある学習モデル。
  23.  ガス精製装置を制御する制御方法であって、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、
     前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報を取得し、
     前記ガス精製装置が精製した精製ガスの情報を含む特性情報を取得し、
     前記ガス情報、制御情報及び特性情報に基づき機械学習により学習モデルを生成する制御方法。
  24.  ガス精製装置を制御する制御方法であって、
     収集されたごみをガスに変換するガス化炉が変換したガスのガス情報を取得し、
     前記ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製する前記ガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得したガス情報を入力して前記ガス精製装置を制御する制御情報を出力する制御方法。
  25.  対象のガス精製装置を制御する運転制御方法であって、
     収集されたごみをガスに変換する対象のガス化炉が変換したガスのガス情報を取得し、
     ガス化炉が変換したガスのガス情報、前記ガス化炉が変換したガスを精製するガス精製装置を制御する制御情報、及び前記ガス精製装置が精製した精製ガスの情報を含む特性情報に基づいて学習した学習モデルに、取得されたガス情報を入力して得られた、前記対象のガス精製装置を制御する制御情報を出力する運転制御方法。
     
PCT/JP2019/024881 2018-07-25 2019-06-24 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法 WO2020021930A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19839911.5A EP3828251A4 (en) 2018-07-25 2019-06-24 CONTROL DEVICE, OPERATION CONTROL DEVICE, SERVER, MANAGEMENT SERVER, COMPUTER PROGRAM, LEARNING MODEL, CONTROL METHOD AND OPERATION CONTROL METHOD
US17/251,437 US20210264269A1 (en) 2018-07-25 2019-06-24 Control Device and Control Method
CN201980041173.9A CN112352034A (zh) 2018-07-25 2019-06-24 控制装置、运行控制装置、服务器、管理服务器、计算机程序、学习模式、控制方法以及运行控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139784 2018-07-25
JP2018139784A JP6608010B1 (ja) 2018-07-25 2018-07-25 制御装置、サーバ、管理システム、コンピュータプログラム、学習モデル及び制御方法

Publications (1)

Publication Number Publication Date
WO2020021930A1 true WO2020021930A1 (ja) 2020-01-30

Family

ID=68613368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024881 WO2020021930A1 (ja) 2018-07-25 2019-06-24 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法

Country Status (5)

Country Link
US (1) US20210264269A1 (ja)
EP (1) EP3828251A4 (ja)
JP (1) JP6608010B1 (ja)
CN (1) CN112352034A (ja)
WO (1) WO2020021930A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728495B2 (ja) * 2016-11-04 2020-07-22 ディープマインド テクノロジーズ リミテッド 強化学習を用いた環境予測
JP7409343B2 (ja) * 2021-03-17 2024-01-09 横河電機株式会社 コントローラ、制御方法及び制御プログラム
US20230126567A1 (en) * 2021-10-27 2023-04-27 Yokogawa Electric Corporation Operation system, operation method and recording medium having recorded thereon operation program
CN114621794B (zh) * 2022-05-16 2022-08-19 烟台尚美丽家新能源有限公司 一种生物质气化炉多能耦合智慧联供生产系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353295A (ja) * 1998-06-09 1999-12-24 Fujitsu Ltd 内部モデル学習方法及び装置
JP2005265918A (ja) * 2004-03-16 2005-09-29 Nippon Telegr & Teleph Corp <Ntt> オンライン入出力関係学習装置
JP2011056392A (ja) 2009-09-09 2011-03-24 Takuma Co Ltd ごみ処理施設及びごみ処理方法
JP2016059296A (ja) * 2014-09-16 2016-04-25 積水化学工業株式会社 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置
JP6097895B1 (ja) * 2016-06-09 2017-03-15 積水化学工業株式会社 有機物質の製造システム及び有機物質の製造方法
WO2017159614A1 (ja) * 2016-03-14 2017-09-21 オムロン株式会社 学習サービス提供装置
WO2017221987A1 (ja) * 2016-06-21 2017-12-28 積水化学工業株式会社 有機物質の製造装置及び有機物質の製造方法
JP2018092511A (ja) * 2016-12-07 2018-06-14 三菱重工業株式会社 運用支援装置、機器運用システム、運用方法、制御方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163809B2 (en) * 2009-11-30 2012-04-24 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit
DE102011075337A1 (de) * 2011-05-05 2012-11-08 Siemens Ag Verfahren und Vorrichtung zur Ansteuerung einer Anlage
US11028449B2 (en) * 2013-12-31 2021-06-08 Biota Technology, Inc. Microbiome based systems, apparatus and methods for monitoring and controlling industrial processes and systems
RU2649792C2 (ru) * 2016-09-09 2018-04-04 Общество С Ограниченной Ответственностью "Яндекс" Способ и система обучения алгоритма машинного обучения

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353295A (ja) * 1998-06-09 1999-12-24 Fujitsu Ltd 内部モデル学習方法及び装置
JP2005265918A (ja) * 2004-03-16 2005-09-29 Nippon Telegr & Teleph Corp <Ntt> オンライン入出力関係学習装置
JP2011056392A (ja) 2009-09-09 2011-03-24 Takuma Co Ltd ごみ処理施設及びごみ処理方法
JP2016059296A (ja) * 2014-09-16 2016-04-25 積水化学工業株式会社 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置
WO2017159614A1 (ja) * 2016-03-14 2017-09-21 オムロン株式会社 学習サービス提供装置
JP6097895B1 (ja) * 2016-06-09 2017-03-15 積水化学工業株式会社 有機物質の製造システム及び有機物質の製造方法
WO2017221987A1 (ja) * 2016-06-21 2017-12-28 積水化学工業株式会社 有機物質の製造装置及び有機物質の製造方法
JP2018092511A (ja) * 2016-12-07 2018-06-14 三菱重工業株式会社 運用支援装置、機器運用システム、運用方法、制御方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828251A4

Also Published As

Publication number Publication date
EP3828251A4 (en) 2022-04-06
EP3828251A1 (en) 2021-06-02
US20210264269A1 (en) 2021-08-26
CN112352034A (zh) 2021-02-09
JP6608010B1 (ja) 2019-11-20
JP2020015821A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2020021930A1 (ja) 制御装置、運転制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル、制御方法及び運転制御方法
Lawler et al. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes
Mazhar et al. Remaining life estimation of used components in consumer products: Life cycle data analysis by Weibull and artificial neural networks
WO2017184077A1 (en) System and method for wastewater treatment process control
WO2009114309A3 (en) Apparatus for optimizing a chemical looping combustion plant using a model predictive controller
CN110135057B (zh) 基于多层特征选择的固废焚烧过程二噁英排放浓度软测量方法
US20200331783A1 (en) Decision support system and method for watertreatment
Ahmad et al. Emission control in palm oil mills using artificial neural network and genetic algorithm
JP2020063429A (ja) 制御装置、サーバ、管理サーバ、コンピュータプログラム、学習モデル及び制御方法
Dursun Evaluation of wastewater treatment alternatives using fuzzy VIKOR method
KR101269056B1 (ko) 단위공정 해석 모델을 이용한 실시간 정수처리 공정 평가 시스템 및 그 방법
WO2001055924A1 (fr) Systeme et procede d&#39;assistance a la planification d&#39;un district de symbiose de l&#39;environnement
López et al. Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter
CN115358152B (zh) 垃圾焚烧气体控制与反馈调节系统和方法
CN116227895A (zh) 智慧河湖水生态修复mabc系统云管平台
JP4929125B2 (ja) 水融通運用装置
Huang et al. Modeling and optimization of the activated sludge process
CN110327739B (zh) 城市污染治理与在线监控综合管理平台
Mahadevan et al. Preventive maintenance optimization of critical equipments in process plant using heuristic algorithms
Wäger et al. A simulation system for waste management–from system dynamics modelling to decision support
Hess et al. Advanced dynamical risk analysis for monitoring anaerobic digestion process
Pandolfo et al. Zebrafish Aquatic Systems: Preventative Maintenance and Troubleshooting
CN113408800B (zh) 一种跨境可再生资源工业产品质量预测方法及系统
Tehupeiory et al. Evaluating Community Preferences for Waste-to-Energy Development in Jakarta: An Analysis Using the Choice Experiment Method
CN118134306A (zh) 一种焦化废水处理系统好氧运行性能评价方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019839911

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019839911

Country of ref document: EP

Effective date: 20210225