WO2017217508A1 - 植物体の耐塩性向上方法 - Google Patents

植物体の耐塩性向上方法 Download PDF

Info

Publication number
WO2017217508A1
WO2017217508A1 PCT/JP2017/022187 JP2017022187W WO2017217508A1 WO 2017217508 A1 WO2017217508 A1 WO 2017217508A1 JP 2017022187 W JP2017022187 W JP 2017022187W WO 2017217508 A1 WO2017217508 A1 WO 2017217508A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
perk13
salt tolerance
gene
plants
Prior art date
Application number
PCT/JP2017/022187
Other languages
English (en)
French (fr)
Inventor
世吾 小野
善平 島谷
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP17813402.9A priority Critical patent/EP3409105A4/en
Priority to AU2017285758A priority patent/AU2017285758A1/en
Priority to JP2017562360A priority patent/JP6435060B2/ja
Priority to CN201780028506.5A priority patent/CN109640631A/zh
Priority to US16/080,900 priority patent/US20190169631A1/en
Priority to SG11201809744YA priority patent/SG11201809744YA/en
Publication of WO2017217508A1 publication Critical patent/WO2017217508A1/ja
Priority to US16/450,001 priority patent/US20190345508A1/en
Priority to US17/841,084 priority patent/US20220411812A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • A01H3/04Processes for modifying phenotypes, e.g. symbiosis with bacteria by treatment with chemicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/25Paenibacillus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/13Abiotic stress
    • Y02A40/135Plants tolerant to salinity

Definitions

  • the present invention relates to a method of improving the salt tolerance of a plant.
  • the present application is applied to Japan in Japanese Patent Application No. 2016-121235 filed on June 17, 2016, Japanese Patent Application No. 2016-241469 filed on December 13, 2016, and April 25, 2017. Priority is claimed based on Japanese Patent Application No. 2017-086654 and Japanese Patent Application No. 2017-100286 filed on May 19, 2017, the contents of which are incorporated herein by reference.
  • a method of enhancing salt tolerance of a plant there is a method of introducing a gene involved in a salt tolerance mechanism using genetic recombination technology. For example, there are halophytes that have acquired resistance to osmotic pressure by accumulating osmolytes (proline and betaine) in plant cells. It has been reported that a recombinant plant into which a gene for accumulating this osmolyte has been introduced has acquired salt tolerance.
  • intracellular sodium ion concentration in plants is mainly a non-selective cation channel (NSCC) that controls intracellular uptake and cell membrane Na + that controls extracellular efflux.
  • NSCC non-selective cation channel
  • SOS1 Salt Overly Sensitive 1
  • SOS1 SOS pathway, vacuolar Na + / H + antiporter controlling uptake into vacuoles, and high affinity allowing sodium ion to flow along with potassium ion from the conduit It is controlled by the active potassium transporter (High affinity K Transporter; HKT) (see Non-Patent Document 1).
  • Patent Document 1 in the transformed plant overexpressing the SOS1 gene identified from a salt-tolerant plant, Thellungiella halophila, the excretion of sodium ions outside the cell is promoted and the salt tolerance is enhanced. Has been reported to improve.
  • Patent Document 2 reports that salt tolerance has been improved even in a transformed plant in which the SOS2 gene, which is a protein kinase constituting the SOS pathway, is overexpressed.
  • Patent Document 3 in the transformed plant in which the vacuolar Na + / H + antiporter (HvNHX1) gene of barley (Hordeum vulgare) is overexpressed, the uptake of sodium ion into vacuoles is promoted and the salt tolerance is enhanced. Has been reported to improve.
  • Non-Patent Document 2 in transformed plants in which the HKT gene of Arabidopsis thaliana (Arabidopsis thaliana) is overexpressed, accumulation of sodium ion in the root is increased, and increase in shoot salt concentration is suppressed, and the whole plant body is It has been reported that salt tolerance has been improved.
  • a method of enhancing the salt tolerance of a plant without using a genetic engineering technology a method of administering a drug or a microorganism having a salt tolerance imparting effect to a plant to a plant has been studied.
  • a drug having a salt tolerance imparting effect for example, pyrroloquinoline quinone (see, for example, Patent Document 4), strigolactone of a plant hormone, and the like are known.
  • a microorganism having a salt tolerance imparting effect for example, Paenibacillus fukuinensis (see, for example, Patent Document 5) is known.
  • Non-Patent Document 1 the mechanism of controlling the sodium ion concentration in plants has been elucidated to some extent. Moreover, as described in Patent Document 1 etc., it is known that the salt tolerance of a plant can be improved by overexpressing a gene involved in the mechanism such as the SOS1 gene. However, most of transgenic plants into which a gene involved in the mechanism has been introduced have been confirmed to be resistant to sodium chloride of about 100 mM, and further improvement of salt tolerance is desired.
  • An object of the present invention is to provide a method for improving the salt tolerance of a plant so that cultivation under a high salt concentration environment is possible.
  • PERK13 Protein-rich extensin-like receptor kinase 13
  • PERK13 Proline-rich extensin-like receptor kinase 13
  • the present inventors have found that the salt resistance of a plant body is improved by the treatment, and the present invention has been completed.
  • the method for improving the salt tolerance of a plant according to the present invention is the following [1] to [16].
  • [1] A method for improving the salt tolerance of a plant, which suppresses or inhibits the function of PERK 13 (Proline-rich extensin-like receptor kinase 13) of the plant.
  • [2] The method for improving salt tolerance of a plant of [1], wherein an antagonist of PERK13 is brought into contact with the root of the plant.
  • the antagonist is one or more kinds of microorganisms, or a secretory substance thereof.
  • [4] The method for improving salt tolerance of a plant of [2] or [3], comprising the step of immersing at least a part of the root of the plant in an aqueous solution containing the antagonist.
  • [5] The method for improving salt tolerance of plants according to the above [1], wherein the function of PERK13 is suppressed by suppressing the expression of PERK13 gene, or the function of PERK13 is inhibited by suppressing the expression of PERK13 gene .
  • [6] The method for improving salt tolerance of a plant of [1] or [5], wherein a PERK13 gene is deleted or a mutation that reduces the function of the PERK13 gene is introduced into the plant.
  • the plant is selected from the group consisting of nonselective cation channel, cell membrane Na + / H + antiporter, vacuolar Na + / H + antiporter, and high affinity potassium transporter
  • the plant is selected from the group consisting of non-selective cation channel, cell membrane Na + / H + antiporter, vacuolar Na + / H + antiporter, and high affinity potassium transporter
  • the plant is a transformant into which a foreign gene has been introduced, The salt tolerance of any one of the above-mentioned [1] to [6], wherein the foreign gene is one or more selected from the group consisting of SOS1 gene, SOS2 gene, SOS3 gene, NHX1 gene, and HKT1 gene How to improve.
  • the above plant body is a gramineous plant, a solanaceous plant, a cruciferous plant, a cucurbitaceous plant, a grapevine plant, a citrus family plant, a rosaceous plant, a leguminous plant, a lotus family [1] a plant selected from the group consisting of: plants of the Sesame family, plants of the family Sesaceous family, plants of the family Cinamiaceae, plants of the family Sacaceae; The salt tolerance improvement method of the plant body in any one of 1]-[9].
  • the above-mentioned plant body is rice, corn, sorghum, wheat, barley, rye, hen, fox, tomato, eggplant, paprika, pepper, potato, tobacco, Arabidopsis thaliana, Brassica napus, Japanese radish, radish, cabbage, purple cabbage, Chinese cabbage (petit ver), Chinese cabbage, Chinese cabbage, kale, watercress, komatsuna, broccoli, cauliflower, cauliflower, turnip, wasabi, mustard, cucumber, bitter melon, pumpkin, melon, watermelon, grape, lemon, orange, navel orange, grapefruit, orange, lime , Sudachi, yuzu, shiikuwasha, tangan, apple, cherry, plum, peach, strawberry, loquat, apricot, plum (sumomo), prune, almond, pear, pear, pear, raspberry, blackberry, cassis, cranberry ⁇ Blueberries, soybeans, beans, peas, fava beans, fern beans, mung
  • a method for cultivating a plant wherein the plant in which the microorganism is allowed to coexist is grown under an environment having a sodium chloride concentration of 1.5% by mass or more, and the survival rate of the plant is 10% or more.
  • the salt tolerance of a plant having originally low salt tolerance can be improved by the method for improving salt tolerance of a plant according to the present invention. Therefore, plants having improved salt tolerance by the method can be grown even in an environment with a relatively high sodium chloride concentration.
  • FIG. 1 is a fluorescence staining image by fluorescence sodium indicator of a wild strain of Arabidopsis thaliana after salt stress in Example 3.
  • FIG. 2 is a fluorescence staining image by fluorescence sodium indicator of a functionally deficient mutant of PERK13 of Arabidopsis thaliana after salt stress in Example 3.
  • FIG. 3 is a diagram showing the measurement results of the fluorescence intensity of roots of a wild strain of Arabidopsis thaliana and a functionally deficient mutant of PERK13 after salt stress in Example 3.
  • FIG. 1 is a fluorescence staining image by fluorescence sodium indicator of a wild strain of Arabidopsis thaliana after salt stress in Example 3.
  • FIG. 2 is a fluorescence staining image by fluorescence sodium indicator of a functionally deficient mutant of PERK13 of Arabidopsis thaliana after salt stress in Example 3.
  • FIG. 3 is a diagram showing the measurement results of the fluorescence intensity of roots of
  • FIG. 4 shows the survival rate under each sodium chloride concentration when hydroponically cultivating a wild-type strain of Arabidopsis thaliana and a functionally deficient mutant of PERK13 in Example 4 under the symbiosis of the identified salt tolerance improving microorganism mixture in Example 4. It is the figure which showed the result of having investigated.
  • FIG. 5 shows that in Example 5, salt stress (sodium concentration 2.5 mass) in the presence of the salt tolerance improving microorganism mixture obtained in Example 4 with respect to the wild strain of Arabidopsis thaliana and the functionally deficient mutant of PERK13. It is the figure which showed the measurement result of the fluorescence intensity of the root of each plant after applying%.
  • FIG. 5 shows that in Example 5, salt stress (sodium concentration 2.5 mass) in the presence of the salt tolerance improving microorganism mixture obtained in Example 4 with respect to the wild strain of Arabidopsis thaliana and the functionally deficient mutant of PERK13. It is the figure which showed the measurement result of the fluorescence
  • FIG. 6 shows that in Example 5, salt stress (sodium concentration 1.0 mass) in the presence of the salt tolerance-improved microorganism mixture obtained in Example 4 with respect to the wild strain of Arabidopsis thaliana and the functionally deficient mutant of PERK13. It is the figure which showed the measurement result of the fluorescence intensity of the root of each plant after applying%.
  • FIG. 7 is a structural map of an RNAi vector targeting the tomato SlPERK gene (pBI-SlPERKs-sense, anti sense vector) constructed in Example 6.
  • FIG. 8 is a photograph of the transformed tomato obtained in Example 6 at the time of hydroponic cultivation for 21 days in a 0.5 or 1.0% by mass sodium chloride environment.
  • FIG. 7 is a structural map of an RNAi vector targeting the tomato SlPERK gene (pBI-SlPERKs-sense, anti sense vector) constructed in Example 6.
  • FIG. 8 is a photograph of the transformed tomato obtained in Example 6 at the time of hydroponic cultivation for 21 days in
  • FIG. 10 shows that the concentration of sodium chloride in the recombinantly redifferentiated plant (KO) into which the vector for knockout of non-recombinant redifferentiated rice (WT) and the PERK13 ortholog gene knockout vector (KO) in Example 7 was introduced was 1.5% by mass. It is a photograph at the time of making it grow for 2 weeks under environment.
  • the method for improving salt tolerance of a plant according to the present invention is characterized by suppressing or inhibiting the function of PERK13 of a plant.
  • PERK13 is a membrane protein specifically expressed in plant roots and has a kinase active site in cells.
  • PERK13 is similar to PERK4 (Proline-rich extensins-like receptor kinase 4) (see, for example, Non-Patent Document 3), which is a receptor having an action to promote the calcium ion influx of NSCC due to the similarity in amino acid sequence. It has been estimated that it has an action effect, but the present inventors' research has revealed that it is involved in the control of the influx of sodium ions into the plant body.
  • Non-Patent Document 1 the control mechanism of sodium ion concentration is widely common in plants.
  • PERK13 which is an end of the mechanism, is also a protein conserved in a wide variety of plants, and has the function of controlling the influx of sodium ions into the plant body in many plants.
  • PERK13 gene includes orthologs of PERK13 gene of Arabidopsis thaliana whose Gene ID of NCBI is At1g 70460 (Arabidopsis thaliana), and specifically, Gene ID of NCBI is 101266034 (Solanum lycopersicum), 107059185 (Solanum tuberosum) ), 107279382 (Oryza sativa Japonica Group), 4333279 (Oryza sativa Japonica Group), 102703815 (Oryza brachyantha), 103649394 (Zea mays), 106804357 (Setaria italica), 101775206 (Setaria italica), 106322706 (Brassica oleracea), Brassica napus), 106416704 (Brassica napus), 103852653 (Brassica rapa), 101215732 (Cucumis sativus), 100247217 (Vitis vinifera), 104882493 (Vitis vinifera), 10
  • the PERK 13 whose function is suppressed or inhibited is not particularly limited as long as it retains the function as the PERK 13.
  • PERK13 which suppresses or inhibits the function may be wild-type PERK13 present in a wild-type plant, and the PERK13 mutation produced by mutation. It may be a body, may be a PERK13 mutant into which a mutation has been introduced by various types of mutation treatments such as ultraviolet irradiation treatment, or may be a PERK13 variant which has been modified by gene modification technology or the like.
  • the plant according to the present invention is a plant body which is a modified PERK13 in which the PERK13 possessed is a PERK13 modified product in which the wild type PERK13 is subjected to various modification treatments to enhance or attenuate the sodium ion influx promoting function by PERK13.
  • Salt resistance can be improved by carrying out the method for improving the salt resistance of the body.
  • the degree of suppression or inhibition of the function of PERK13 possessed by the plant to improve the salt tolerance of the plant includes, for example, hydroponicing the plant for 6 to 24 hours in a 1.0% by mass sodium chloride environment. 90% or less, preferably 100% or less, when the amount of sodium chloride in the root when cultivated is 100% when the plant before cultivation or function of PERK13 is cultivated under the same conditions 80% or less, more preferably 60% or less, further preferably 50% or less, still more preferably 40% or less, particularly preferably 30% or less.
  • the relative amount of sodium chloride in the roots of plants can be measured, for example, using the fluorescence intensity when fluorescently staining the inside of the roots with a fluorescent substance that binds to sodium ions as an indicator.
  • the method for suppressing or inhibiting the function of PERK13 originally possessed by the plant is not particularly limited, and may be a method for reducing the expression level of PERK13, and mutation to the PERK13 gene in genomic DNA may be used. May be a method of expressing a PERK13 mutant having a reduced function by introducing S. or a method of inhibiting intracellular signaling of PERK13.
  • the expression level of PERK13 in the plant body after reduction is 100% of the expression level of PERK13 in the plant body before reduction 90% or less, preferably 80% or less, more preferably 60% or less, still more preferably 50% or less, still more preferably 30% or less, particularly preferably 0% (not fully expressed) It is preferable to make it become.
  • the expression level of PERK13 in plants can be measured by various methods used when measuring the expression level of proteins in the art, such as RT-PCR.
  • the function of PERK13 of the plant body after reduction is based on 100% function of PERK13 of the plant body before reduction. 90% or less, preferably 80% or less, more preferably 60% or less, still more preferably 50% or less, still more preferably 30% or less, particularly preferably 0% (completely lost function) It is preferable to do so.
  • a method of modifying genomic DNA may be used, or a method which does not modify genomic DNA like RNA interference may be used.
  • Methods of reducing the expression level of PERK13 by modifying genomic DNA include methods of deleting PERK13 gene, methods of introducing nonsense mutation into PERK13 gene, methods of modifying expression regulatory sequences such as promoter sequence of PERK13 gene, etc. It can be mentioned.
  • mutations that reduce or delete the function of PERK13 include, for example, mutations in which the kinase activity is eliminated or reduced in the kinase domain in the intracellular domain of PERK13, and ligands in the ligand binding site in the extracellular domain of PERK13. And mutations that reduce the affinity to
  • the PERK13 gene is deleted by replacing the region encoding the PERK13 gene with a DNA fragment encoding another gene, or replacing it with a DNA fragment encoding a mutated PERK13 mutant gene,
  • the mutant PERK13 can be expressed instead of the type PERK13.
  • the homology (sequence identity) of the nucleotide sequence required for homologous recombination is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more.
  • the gene manipulation method by the homologous recombination method has already been established in many plants.
  • a transformation vector containing a DNA fragment to be substituted by homologous recombination is introduced into the callus of a plant for the purpose of improving salt tolerance to prepare a transformant, and the resulting transformant is differentiated.
  • Undifferentiated calli can be prepared by a conventional method.
  • the transformation vector may be linear DNA or may be a plasmid.
  • Transfer of vectors into plant cells such as callus can be carried out by those skilled in the art such as the Agrobacterium method, particle gun method, polyethylene glycol method, electroporation method, liposome method, calcium phosphate precipitation method, lipofection method, microinjection method and the like. Various methods known to those skilled in the art can be used.
  • RNA interference is a small interfering RNA (siRNA) that has a double-stranded structure consisting of a sense strand and an antisense strand of a partial region (RNAi (RNA interference) target region) of a PERK13 gene cDNA (shutter) in plants. It can be carried out by introducing RNA) or miRNA (micro RNA). An RNAi-inducing vector capable of producing siRNA or the like may be introduced into a target plant cell. Preparation of siRNA, shRNA, miRNA, and RNAi induction vector can be designed and manufactured by a conventional method from the base sequence information of the cDNA of PERK13 gene to be targeted.
  • the RNAi-inducing vector can also be prepared by inserting the base sequence of the RNAi target region into the base sequences of various commercially available RNAi vectors.
  • the introduction of the RNAi-inducing vector can be carried out in the same manner as the introduction of the above-mentioned transformation vector.
  • the intracellular signal transduction of PERK13 may be inhibited by contacting an antagonist of PERK13 with the surface of the root of the plant, and an inhibitor that inhibits the kinase activity of PERK13 may be intracellular in the root of the plant. May be introduced into the
  • the antagonist of PERK13 means a substance that inhibits binding of PERK13 ligand to PERK13 by binding to the extracellular domain of PERK13.
  • a method for improving the salt tolerance of a plant according to the present invention a method in which an antagonist of PERK13 is brought into contact with the surface of the root of a plant is particularly preferable, from the viewpoint that there is no need to modify genomic DNA and processing is more simple.
  • the antagonist of PERK13 used in the present invention may be a compound, may be one or more types of microorganisms, or may be a secreted substance of one or more types of microorganisms.
  • the antagonist is a substance secreted by a specific microorganism
  • the culture supernatant of the microorganism may be used as it is or a crude product thereof may be brought into contact with the surface of the root of the plant.
  • an antagonist of PERK13 As a method of bringing an antagonist of PERK13 into contact with the surface of the root of a plant, in the case of hydroponics where cultivation is carried out in a state where at least a part of the root of the plant is immersed in a solution for cultivation, By immersing at least a part of the root of the plant in a treatment solution containing an antagonist of PERK13 for a certain period of time, the antagonist is bound to PERK13 on the surface of the root of the plant, and the function of PERK13 is inhibited. It suppresses the influx of sodium ions from the roots and improves the salt tolerance of the plant.
  • the composition of the treatment solution in particular the composition of the salt, may be the same as or different from the cultivation solution.
  • the cultivation solution may be mixed with an antagonist of PERK13 directly.
  • the soil on which the plant is planted may be wetted with an aqueous solution containing the antagonist, and granules containing the antagonist may be placed near the roots in the soil.
  • the plant that improves salt tolerance is not particularly limited as long as it is a plant originally having the PERK13 gene or its homolog gene in genomic DNA, and may be angiosperm, and It may be a plant or may be a fern or moss. Also, it may be a monocotyledonous plant or a dicotyledonous plant.
  • gramineous plants such as rice, corn, sorghum, wheat, barley, rye, barn and so on; solanaceous plants such as tomato, eggplant, paprika, peppers, potatoes and tobacco; Arabidopsis thaliana, Brassica napus, Plants of the Brassicaceae family such as Chinese cabbage, Japanese radish, cabbage, purple cabbage, cabbage (Japanese cabbage), Chinese cabbage, Chinese cabbage, kale, watercress, komatsuna, broccoli, cauliflower, turnip, wasabi, mustard, etc .; cucumber, bitter melon, pumpkin, melon, watermelon Plants of the family Uraceae, such as grapes, etc .; Plants of the family Vitis, such as grapes; Plants of the family Cimicidae, such as lemon, orange, navel orange, grapefruit, oranges, limes, sudachi, jujubes, shikwashas, tankans; apples, cherry blossoms, plums , Strawberry, loquat, a
  • palm such as date palm, oil palm, coconut palm, acai etc Plants of the family Family Family; plants of the family Family Family Family, such as bananas, plants and manila hemp; plants of family Family Family Family, such as cotton and okra; plants of the Family Family Family Group, such as Eucalyptus;
  • the treatment for reducing the sodium ion concentration in the root of a plant include non-selective cation channel of a plant, cell membrane Na + / H + antiporter, vacuolar Na + / H + antiporter And a treatment that enhances the function of one or more proteins selected from the group consisting of high affinity potassium transporters.
  • these proteins include SOS1, SOS2, SOS3, NHX1, and HKT1 (Non-patent Document 1). The function of these proteins can be enhanced by increasing the expression level of the protein.
  • the expression level of the protein in the plant can be increased by introducing and transforming a foreign gene encoding the protein.
  • the foreign gene may be a gene derived from an organism of the same species as the plant to be introduced, or may be a gene derived from a different organism.
  • the method is selected from the group consisting of SOS1 gene, SOS2 gene, SOS3 gene, NHX1 gene, and HKT1 gene which are the same or different from the target plant to improve salt tolerance. It is preferable to suppress or inhibit the function of PERK13 in a transformant into which one or more types of foreign genes have been introduced.
  • the introduction of the foreign gene into the plant can be carried out using the transformation vector into which the DNA fragment encoding the foreign gene has been incorporated, in the same manner as the introduction of the transformation vector.
  • the method for improving the salt tolerance of a plant according to the present invention it is possible to obtain a plant having improved salt tolerance over a plant before suppressing or inhibiting the function of PERK13.
  • the salt tolerance be improved to such an extent that it can be grown even in an environment of a sodium concentration that can grow no more than 10%.
  • the plant obtained by the method for improving salt tolerance of a plant according to the present invention is grown by hydroponic culture using a culture solution having a high sodium ion concentration or by soil culture using a soil having a high sodium ion concentration.
  • the sodium ion concentration is 0.2 mass% or more, preferably 0.5 mass% or more, more preferably 1 mass% or more, further preferably 1.5 mass
  • plants that can be grown can be obtained even by water culture using a culture solution of% or more, more preferably 2.0% by mass or more, particularly preferably 2.5% by mass or more.
  • magnesium chloride as a cultivation solution used for cultivation of the plant which improved salt tolerance, and it is more preferable to contain 0.5 mass% or less of magnesium chloride, and 0. More preferably, it contains 1 to 0.5% by mass of magnesium chloride.
  • the said solution for cultivation contains various nutrient components required for growth of a plant body besides sodium chloride and magnesium chloride.
  • the said nutrient component can be suitably adjusted according to the kind of plant body to grow.
  • elements such as aluminum and silicon may be contained as salts.
  • the composition of the culture solution may be changed according to the growth stage of the plant.
  • the culture solution for example, a solution obtained by adding a deficient salt such as sodium chloride to a commercially available liquid fertilizer, or a solution obtained by diluting a commercially available concentrated liquid fertilizer with water and diluting it with seawater is used. It can be used. In addition, a solution obtained by appropriately adding insufficient salts such as phosphorus to seawater can also be used.
  • a deficient salt such as sodium chloride
  • a solution obtained by diluting a commercially available concentrated liquid fertilizer with water and diluting it with seawater can be used. It can be used.
  • a solution obtained by appropriately adding insufficient salts such as phosphorus to seawater can also be used.
  • Hydroponic cultivation of the plant body which improved salt tolerance can be performed by a general hydroponic cultivation method.
  • a relatively large amount of culture solution may be stored in a culture tank using a solution-type hydroponic method, or a thin-film hydroponic method in which the culture solution is allowed to flow down little by little on a gently sloping plane. Good.
  • Example 1 Mutants with improved salt tolerance were screened against a library of mutants in which random mutations were introduced into Arabidopsis thaliana, and genes contributing to improvement in salt tolerance were examined.
  • Paenibacillus a microorganism of the genus Paenibacillus (Paenibacillus) was used. Paenibacillus bacteria promote the influx of sodium chloride into cells of Arabidopsis thaliana. Therefore, Arabidopsis thaliana in the presence of Paenibacillus spp. Also dies in a 0.5% by mass sodium chloride environment which does not usually die. Using this property, we screened for genes that could improve salt tolerance even in the presence of Paenibacillus spp.
  • Example 2 In Example 1, two strains out of the four strains confirmed to be a functionally deficient mutant of PERK13 were grown in a 1.5% by mass sodium chloride environment, and salt tolerance was examined.
  • the seeds are sterilized with hypochlorous acid and then seeded on a gel plate medium of MS medium, and this gel plate medium is subjected to hydroponic culture with at least the bottom portion being in contact with the liquid medium for hydroponic culture.
  • a liquid medium a 1/2 MS medium was used.
  • 24 seeds were inoculated for sodium chloride treatment and 24 seeds for control treatment, respectively.
  • sodium chloride was added to a plant for sodium chloride treatment in an amount such that the final concentration would be 1.5% by mass, and water culture was carried out for one week. None was added to the control treatment plants, and hydroponic culture was performed for one more week.
  • hydroponic cultivation was similarly performed on wild strains.
  • control-treated plants ie, plants grown in 1/2 MS medium without addition of sodium chloride, did not wither all of the 24 wild-type and PERK13 functionally deficient mutants. It grew normally.
  • Example 3 Among the functionally deleted mutants of PERK13, the amount of sodium in the roots was examined for one of the two strains examined for salt tolerance in Example 2.
  • the seeds are sown on a gel plate medium of MS medium containing 1% sucrose, and at least the bottom of the gel plate medium is for hydroponic culture.
  • Hydroponic cultivation was carried out in an artificial weather apparatus in a state of being in contact with a liquid medium (1/2 MS medium). The weather conditions were 25 ° C., 5000 lux, 16 hours light, 8 hours dark. 10 to 14 days after germination, the liquid medium in contact with the bottom of the gel plate medium is replaced with a 1/2 mass medium containing sodium chloride at a final concentration of 1.0% by mass, and water is further continued for 6 to 24 hours Cultivation and salt stress was applied. The culture was carried out for the same time without adding anything to the liquid medium of the control treatment plant.
  • CoroNa-Green AM is a sodium indicator whose green fluorescence intensity is increased by binding to sodium ions.
  • PERK13 is involved in the influx of sodium ions in the root, and the improvement of salt stress tolerance in the functionally deleted mutant of PERK13 is due to the influx of sodium ions into the plant under high salt concentration environment It turned out that it was.
  • Example 4 Using a wild-type Arabidopsis thaliana, plant symbionts having a symbiotic effect to enhance salt tolerance were selected from microorganisms extracted from soil.
  • Sucrose-containing MS agar medium (MS medium containing 0.5% (w / v) sucrose and 0.9% (w / v) agar) was injected into a cylindrical pot with an open top and bottom. By setting and hardening, the pot for growing a plant body was produced. A plurality of the pots were placed in each of eight containers containing sucrose-containing MS medium (liquid medium obtained by adding 0.5% (w / v) sucrose to MS medium).
  • hypochlorous acid treatment of seeds Arabidopsis thaliana seed was purchased from LEHLE (Round Rock, TX, USA). The seeds were sterilized by immersion for 1 minute while immersed in 1% hypochlorous acid, and then the hypochlorous acid was removed by centrifugation. The hypochlorous acid-treated seeds were washed three times with sterile water, seeded at the top of the pot, and stored at 4 ° C. for 24 hours in the dark.
  • a sucrose-containing MS medium a liquid medium obtained by adding 0.5% (w / v) sucrose to MS medium.
  • Each pot was placed so that the bottom surface was immersed in sucrose-containing MS medium but the top surface was not.
  • seeds of wild type after hypochlorous acid treatment and washing three times with sterile water are sown, and in an incubator at 25 ° C, 16 hours of light and 8 days of dark. Nurtured for 14 days.
  • the same procedure was carried out except that 100 ⁇ L of the first microorganism recovery solution was added to a sucrose-containing MS medium to which sodium chloride was added so that the final concentration of sodium chloride would be 1.5% by mass as a solution for cultivation. Hydroponic culture, and after 14 days of culture under salt stress, cut the roots and above-ground parts (leaves and stems) of the growing plants, collect the roots, homogenize, and carry out the second microorganism It was a recovery solution.
  • the symbiosis of the microorganism mixture contained in the third microorganism recovery solution with the roots of the plant made it possible to grow the plant under salt stress. That is, the microorganism mixture or the secretory substance contained in the third microorganism recovery solution has an effect of improving the salt tolerance of the plant, that is, the microorganism mixture is a plant under salt stress. It was found that it is a plant symbionts that enables the growth of
  • Microorganisms that constitute plant symbionts capable of growing plants under selected salt stress were identified.
  • cells are recovered from the third microorganism recovery solution, and genomic DNA is obtained from a portion of the recovered cells using GenElute Bacterial Genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA).
  • GenElute Bacterial Genomic DNA kit Sigma-Aldrich, St. Louis, MO, USA.
  • a 16S rDNA is amplified by PCR using the recovered genomic DNA as a template and the forward primer (5'-AGAGTTTGATCATGGCTCAG-3 ', SEQ ID NO: 1) and the reverse primer (5'-TACGGTTACCTTGTTACGACTT-3', SEQ ID NO: 2) did.
  • the temperature condition of PCR is a cycle consisting of a heating step of 95 ° C. for 3 minutes, a denaturation step of 95 ° C. for 30 seconds, an annealing step of 50 ° C. for 30 seconds, and an elongation step of 72 ° C. for 1 minute 30 seconds. After cycling, the reaction was carried out under the conditions that an extension reaction at 72 ° C. for 5 minutes was finally added.
  • the resulting PCR products were confirmed by 1.2% agarose gel electrophoresis and extracted from the gel using QIAquick gel extraction kit (Quiagen, Germantown, MD, USA).
  • the extracted PCR product was inserted into a plasmid using TOPO-TA cloning kit (Life Technologies, Carlsbad, CA, USA) and transformed into E. coli.
  • 30 E. coli colonies grown overnight on LB medium containing ampicillin were randomly picked, transferred to LB liquid medium containing ampicillin, and cultured.
  • the plasmid was purified from E. coli cultured using QIAprep spin miniprep kit (Quiagen).
  • the purified plasmid was subjected to Thermalcycle reaction using BigDye terminator v3.1 Cycle sequence kit (Life Technologies), and the nucleotide sequence of 16S rDNA incorporated into the plasmid was determined with a DNA sequencer (ABI 3130 x L) . As a result, two types of 16S rDNA (strains YROK-1 and YROK-2) were identified.
  • the YROK-1 strain (SEQ ID NO: 3) was identical in sequence identity to Paenarthrobacter nitroguajacolicus (accession number: AJ512504)
  • the YROK-2 strain (SEQ ID NO: 4) had a sequence identity of 97.14% with Arthrobacter psychrochitiniphilus (Accession number: AJ810896). From these results, it was found that the YROK-1 strain is a new strain of Paenarthrobacter nitroguajacolicus, and the YROK-2 strain is a new strain of Arthrobacter psychrochitiniphilus.
  • Paenarthrobacter nitroguajacolicus strain YROK-1 was 98.0%
  • Arthrobacter psychrochitiniphilus was 2.0%.
  • the final concentration of sodium chloride is adjusted to 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mass% in the sucrose-containing MS medium in which the bottom of the pot is immersed
  • a sterile 5 M sodium chloride aqueous solution was added thereto, and the above-mentioned microorganism mixture for salt tolerance improvement was further added to carry out hydroponic cultivation, and the survival rate after culture for 14 days was examined.
  • hydroponic cultivation was carried out similarly with the cultivation solution to which the microorganism mixture for salt tolerance improvement was not added, and the survival rate after cultivation for 14 days was examined.
  • non-microbe WT is the result of a wild strain grown in the state where the salt mixture for improving salt tolerance is not coexisting
  • microorganism-containing WT is cultivated in the state where the mixture for salt tolerance improvement is in symbiosis
  • Microbial MT indicates the results of functionally deficient mutants of PERK13 grown in the state where the salt mixture for improving salt tolerance coexists.
  • the sodium chloride concentration is 1% by mass and the survival rate is 10% or less
  • the survival rate at a sodium chloride concentration of 1% by mass is as high as 90% or more
  • the survival rate at a sodium chloride concentration of 3% by mass is 30% or more as in the functionally deficient mutant of PERK13 It was high.
  • the functionally deficient mutant of PERK13 was slightly higher than the survival rate of the wild strain. It was speculated that this may be because the salt mixture for improving salt tolerance has some effect not only on the pathway via the functional loss of PERK13 but also on other routes for improving salt tolerance.
  • the salt tolerance improving effect of the mixture for salt tolerance for the wild strain on the wild strain Is considered to be the salt tolerance improving effect brought about by the functional defect of PERK13. That is, the salt mixture for improving salt tolerance or the secretion thereof is an antagonist of PERK13, and the function of PERK13 is suppressed or inhibited by symbiosis with the root of the plant with the salt mixture for improving salt tolerance. It has been suggested that bringing the antagonist of PERK13 into contact with the surface of the root of the plant also suggests that the same salt tolerance improvement effect as the gene deficient form of PERK13 can be obtained.
  • Example 5 With respect to a wild strain of Arabidopsis thaliana and a functionally deficient mutant of PERK13, the effect of the mixture of the microorganism for improving salt tolerance obtained in Example 4 on sodium influx to the roots of plants under salt stress was examined.
  • the liquid medium in contact with the bottom of the gel plate medium on which the plant body is placed is sodium chloride at a final concentration of 2.5% by mass or 1.0% by mass sodium chloride
  • the medium was changed to a contained 1/2 MS medium, and the above-mentioned microorganism mixture for salt tolerance improvement was further added. Thereafter, it was subjected to hydroponic cultivation for 6 hours to apply salt stress in the presence of the above-mentioned microorganism for improving salt tolerance.
  • the roots of plants after salt stress are stained with a fluorescent sodium indicator (CoroNa-Green AM) in the same manner as in Example 3.
  • a fluorescent sodium indicator CoroNa-Green AM
  • roots after salt stress are stained.
  • the fluorescence intensity per cross-sectional area was measured.
  • the results of plants hydroponically grown at a sodium chloride concentration of 2.5% by mass are shown in FIG. 5, and the results of plants hydroponically grown at a sodium chloride concentration of 1.0% by mass are shown in FIG.
  • Example 6 A PERK13 functionally deleted mutant of tomato (Solanum lycopersicum) was prepared and its salt tolerance was examined.
  • the target sequence of S1PERK10 gene (SEQ ID NO: 5), the target sequence of S1PERK9a gene (SEQ ID NO: 6), and the target sequence of S1PERK9b gene (SEQ ID NO: 6)
  • the chimeric gene consisting of the base sequence which connected 7) was produced.
  • RNAi vector pBI-SlPERKs-sense, anti sense vector targeting the SlPERK gene was constructed. The structural map of the vector is shown in FIG.
  • the RNA of the chimeric gene transcribed under the control of the CaMV 35S promoter formed a double-stranded RNA consisting of a sense RNA and an antisense RNA through intron cleavage.
  • RNAi vector was introduced into Agrobacterium (Agrobacterium tumefaciens) GV3101 strain by a conventional method to obtain a recombinant Agrobacterium.
  • Agrobacterium Agrobacterium tumefaciens
  • GV3101 strain Agrobacterium tumefaciens
  • the cotyledon pieces from tomato variety Microtom were infected with the obtained recombinant Agrobacterium, and callus formation was induced in callus formation medium. Thereafter, drug resistant calli were selected and allowed to redifferentiate.
  • DNA was extracted from the leaf of a tomato individual obtained by redifferentiation, and PCR was performed to select a transformed tomato into which the chimeric gene had been introduced. DNA extraction from leaves and PCR were performed as follows.
  • extraction buffer 100 mM Tris, 50 mM EDTA, 500 mM NaCl (p
  • PCR reaction solution so that the final concentration of the forward primer (5'-GTTCTTCTACACCATTTGCAGC, SEQ ID NO: 8) and the reverse primer (5'-ATTGTGGTAGTGTTGGTAAGGC, SEQ ID NO: 9) becomes 0.2 ⁇ M using GoTaq polymerase (Promega)
  • GoTaq polymerase GoTaq polymerase (Promega)
  • the PCR is maintained at 95 ° C. for 3 minutes, repeated 35 cycles of 95 ° C. for 30 seconds, then 55 ° C. for 30 seconds, then 72 ° C. for 30 seconds, and finally held at 72 ° C. for 3 minutes It did, on condition of doing.
  • the resulting transformed tomato is a tomato in which the function of PERK13 (SlPERK) of tomato has been deleted by the introduced chimeric gene.
  • the PERK13 deficient tomato was hydroponically cultured in a 1/2 MS medium containing sodium chloride to a final concentration of 0.5, 1.0, 1.5 or 2.0 mass%. Hydroponic cultivation was carried out in an artificial weather apparatus (25 ° C., 16 hours light, 8 hours dark). In the case of wild type tomato, when hydroponic culture is performed with 1/2 MS medium containing sodium chloride so that the final concentration is 0.5% by mass, on the 21st day of cultivation, sodium chloride Unable to survive, leaves turn white, roots turn brown and wither (not shown).
  • Example 7 A PERK13 functional deletion mutant of rice (Oryza sativa) was prepared and its salt tolerance was examined.
  • target gene is OsPERK13 (Os03g056880, NCBI GeneID 4333279), a gene with 70% or more amino acid sequence identity to PERK13 in Arabidopsis thaliana (PERK13 orthologous gene in rice)
  • a knockout vector was constructed.
  • a polynucleotide consisting of the target sequence of OsPERK13 gene was produced by gene artificial synthesis.
  • the knockout vector pOsPERK-KO1 targeting rice PERK13 orthologous gene is a modified pRIT1 vector (Terada et al., Nature Biotechnology, 2002, vol. 20, p. It was introduced and constructed in 1030-1034.
  • the transformation of rice was performed according to the method of Toki et al. (Plant Journal, Vol. 47, pp. 69-76, 2006).
  • the knockout vector was introduced into Agrobacterium strain EHA101 strain or LBA 4404 strain by a conventional method to obtain a recombinant Agrobacterium.
  • the obtained recombinant Agrobacterium was infected with scutella-derived calli of the rice variety "Nipponbare".
  • the infected rice calli were cultured in a medium containing 0.25 ⁇ M bispyribac salt and bispyribac salt resistant calli were selected.
  • genomic DNA is extracted using a DNA extraction kit "Maxwell 16 LEV Plant DNA kit (manufactured by Promega)", and PCR is performed to introduce the knockout vector. Callus was selected. PCR was carried out at 94 ° C. for 1 minute using a DNA polymerase (Tks Gflex, manufactured by Takara Bio Inc.), a forward primer (5′-AAGCTCAAGCTCCAATACGCAAACCCCTC, SEQ ID NO: 11) and a reverse primer (5 ′ The cycle is repeated at 35 ° C for 10 seconds at 98 ° C, then 15 seconds at 60 ° C, then 1 minute at 68 ° C, and finally held for 7 minutes at 68 ° C. The bispyribac-resistant calli from which a PCR product of the size was obtained was selected as a transformed calli into which the knockout vector was introduced.
  • a DNA polymerase Tks Gflex, manufactured by Takara Bio Inc.
  • a forward primer 5′-AAGCTCAAGCTCCAATACGCAAACCCC
  • PCR was performed using 3g 05688 No1-F primer (5'-AGTCAAGCTTCGCCGGCGCCAATGCCGATGTGAGCCGCGC, SEQ ID NO: 13) and 3g 05688 No1-R primer (5'-TGACGAATTCGCTCGGCACGAGACGAGGGTTCTCCTCGCG, SEQ ID NO: 14).
  • the resulting PCR amplified product was purified using a nucleic acid purification kit "DNA Cleaner (manufactured by Wako Pure Chemical Industries, Ltd.)", treated with a restriction enzyme (TspRI), and the state of cleavage of the DNA fragment was confirmed by agarose electrophoresis.
  • FIG. 9 shows the results of agarose electrophoresis of a digested product obtained by TspRI-treated PCR-amplified fragment derived from the OsPERK13 gene.
  • FIG. 10 (A) and 10 (C) are photographs of the above-ground part of the individual plant, and FIG. 10 (B) is a photograph of the underground part of the individual plant shown in FIG. 10 (A). ) Is a photograph of the underground part of the individual plant shown in FIG. 10 (C). As shown in FIGS.

Abstract

本発明は、高塩濃度環境下での栽培が可能となるように、植物体の耐塩性を向上させるための方法を提供する。本発明は、植物体のPERK13(Proline-rich extensin-like receptor kinase 13)の機能を抑制又は阻害する、植物体の耐塩性向上方法;PERK13のアンタゴニストを前記植物体の根に接触させる、前記記載の植物体の耐塩性向上方法;前記アンタゴニストが、1種若しくは2種以上の微生物、又はこれらの分泌物質である、前記いずれかに記載の耐塩性向上方法;PERK13の機能の抑制をPERK13遺伝子の発現を抑制することによって行う、又はPERK13の機能の阻害をPERK13遺伝子の発現を阻害することによって行う、前記記載の植物体の耐塩性向上方法である。

Description

植物体の耐塩性向上方法
 本発明は、植物体の耐塩性を向上させる方法に関する。
 本願は、日本国に、2016年6月17日に出願された特願2016-121235号、2016年12月13日に出願された特願2016-241469号、2017年4月25日に出願された特願2017-086654号、及び2017年5月19日に出願された特願2017-100286号に基づき優先権を主張し、その内容をここに援用する。
 近年、世界各国における人口増加による食糧生産量の増大により、大量の農業用水が必要とされ、水不足が深刻な問題となっている。地球上に最も多く存在する水資源は海水であり、海水を農業用水として利用できれば、この問題を解決できる。ただし、植物の多くは、高塩濃度下では、浸透圧による吸水阻害とナトリウムイオンによる細胞内酵素の阻害により、育成することができない。本来耐塩性の低い植物について、海水の塩濃度程度にまで耐塩性を高めることができれば、海水を用いて栽培可能となることが期待できる。
 植物の耐塩性を高める方法としては、遺伝子組換え技術を用いて、塩耐性機構に関与する遺伝子を導入する方法が挙げられる。例えば、植物細胞内にオスモライト(プロリンやベタイン)を蓄積させることによって浸透圧に対する耐性を獲得している塩生植物が存在している。このオスモライトを蓄積させる遺伝子を導入した組み換え植物は、耐塩性を獲得していることが報告されている。
 また、植物における細胞内ナトリウムイオン濃度は、主に、細胞内への取り込みを制御する非選択性陽イオンチャネル(Non-selective cation channel;NSCC)、細胞外への排出を制御する細胞膜型Na/Hアンチポーター(Salt Overly Sensitive 1;SOS1)を含むSOS経路、液胞への取り込みを制御する液胞型Na/Hアンチポーター、及び導管からカリウムイオンと共にナトリウムイオンを流入させる高親和性カリウムトランスポーター(High affinity K Transporter;HKT)により制御されている(非特許文献1参照。)。例えば、特許文献1には、耐塩性植物であるテランギエラ・ハロフィリア(Thellungiella halophila)から同定されたSOS1遺伝子を過剰発現させた形質転換植物では、細胞外へのナトリウムイオンの排出が促進され、耐塩性が向上したことが報告されている。特許文献2には、SOS経路を構成する蛋白質キナーゼであるSOS2遺伝子を過剰発現させた形質転換植物でも耐塩性が向上したことが報告されている。特許文献3には、オオムギ(Hordeum vulgare)の液胞型Na/Hアンチポーター(HvNHX1)遺伝子を過剰発現させた形質転換植物では、液胞へのナトリウムイオンの取り込みが促進され、耐塩性が向上したことが報告されている。非特許文献2には、シロイヌナズナ(Arabidopsis thaliana)のHKT遺伝子を過剰発現させた形質転換植物では、根でのナトリウムイオンの蓄積が増大し、シュートの塩濃度の増大が抑えられ、植物体全体の耐塩性が向上したことが報告されている。
 遺伝子組換え技術を使用せずに植物の耐塩性を高める方法としては、植物体への耐塩性付与効果を有する薬剤や微生物を植物体に投与する方法が検討されてきている。耐塩性付与効果を有する薬剤としては、例えば、ピロロキノリンキノン(例えば、特許文献4参照。)や植物ホルモンのストリゴラクトン等が知られている。また、耐塩性付与効果を有する微生物としては、例えば、パエニバチルス・フクイネンシス(Paenibacillus fukuinensis)(例えば、特許文献5参照。)が知られている。
国際公開第2006/053246号 国際公開第2006/079045号 オーストラリア特許出願公開第2009201381号明細書 日本国特許第5013326号公報 日本国特開2013-75881号公報
Takeda and Matsuoka, Nature Reviews Genetics, 2008. Vol.9, p.444-457. Moller, et. al.,The Plant Cell,2009,Vol.21,p.2163-2178. Bai, et. al.,The Plant Journal,2009,Vol.60,p.314-327.
 非特許文献1に開示されているように、植物におけるナトリウムイオン濃度を制御するメカニズムはある程度解明されている。また、特許文献1等に記載されているように、SOS1遺伝子等の当該メカニズムに関与する遺伝子を過剰発現することによって植物の耐塩性を向上させられることが知られている。しかしながら、当該メカニズムに関与する遺伝子を導入した遺伝子組換え植物では、100mM程度の塩化ナトリウムに対する耐性が確認されたものがほとんどであり、さらなる耐塩性の向上が望まれている。
 本発明は、高塩濃度環境下での栽培が可能となるように、植物体の耐塩性を向上させるための方法を提供することを目的とする。
 本発明者は鋭意研究した結果、機能が未同定であったPERK13(Proline-rich extensin-like receptor kinase 13)が、植物におけるナトリウムイオン濃度を制御するメカニズムに関与しており、PERK13の機能を阻害することによって植物体の耐塩性が向上することを見出し、本発明を完成させた。
 本発明に係る植物体の耐塩性向上方法は、下記[1]~[16]である。
[1] 植物体のPERK13(Proline-rich extensin-like receptor kinase 13)の機能を抑制又は阻害する、植物体の耐塩性向上方法。
[2] PERK13のアンタゴニストを前記植物体の根に接触させる、前記[1]の植物体の耐塩性向上方法。
[3] 前記アンタゴニストが、1種若しくは2種以上の微生物、又はこれらの分泌物質である、前記[2]の植物体の耐塩性向上方法。
[4] 前記アンタゴニストを含む水溶液に、前記植物体の根の少なくとも一部を浸漬させる工程を含む、前記[2]又は[3]の植物体の耐塩性向上方法。
[5] PERK13の機能の抑制をPERK13遺伝子の発現を抑制することによって行う、又はPERK13の機能の阻害をPERK13遺伝子の発現を阻害することによって行う、前記[1]の植物体の耐塩性向上方法。
[6] 前記植物体に対して、PERK13遺伝子を欠損させる、又はPERK13遺伝子にその機能を低下させる変異を導入する、前記[1]又は[5]の植物体の耐塩性向上方法。
[7] 前記植物体が、非選択性陽イオンチャネル、細胞膜型Na/Hアンチポーター、液胞型Na/Hアンチポーター、及び高親和性カリウムトランスポーターからなる群より選択される1種以上の蛋白質の機能が亢進している、前記[1]~[6]のいずれかの植物体の耐塩性向上方法。
[8] 前記植物体が、非選択性陽イオンチャネル、細胞膜型Na/Hアンチポーター、液胞型Na/Hアンチポーター、及び高親和性カリウムトランスポーターからなる群より選択される1種以上の蛋白質が過剰発現している、前記[1]~[6]のいずれかの植物体の耐塩性向上方法。
[9] 前記植物体が、外来遺伝子が導入された形質転換体であり、
 前記外来遺伝子が、SOS1遺伝子、SOS2遺伝子、SOS3遺伝子、NHX1遺伝子、及びHKT1遺伝子からなる群より選択される1種以上である、前記[1]~[6]のいずれかの植物体の耐塩性向上方法。
[10] 前記植物体が、双子葉植物である、前記[1]~[9]のいずれかの植物体の耐塩性向上方法。
[11] 前記植物体が、単子葉植物である、前記[1]~[9]のいずれかの植物体の耐塩性向上方法。
[12] 前記植物体が、イネ科の植物、ナス科の植物、アブラナ科の植物、ウリ科の植物、ブドウ科の植物、ミカン科の植物、バラ科の植物、マメ科の植物、ハス科の植物、ゴマ科の植物、アカザ科の植物、ヤシ科の植物、バショウ科の植物、アオイ科の植物、フトモモ科の植物、及びフウチョウソウ科の植物より選ばれる1種の植物である、前記[1]~[9]のいずれかの植物体の耐塩性向上方法。
[13] 前記植物体が、イネ、トウモロコシ、モロコシ、コムギ、オオムギ、ライムギ、ヒエ、アワ、トマト、ナス、パプリカ、ピーマン、ジャガイモ、タバコ、シロイヌナズナ、セイヨウアブラナ、ナズナ、ダイコン、キャベツ、紫キャベツ、メキャベツ(プチヴェール)、ハクサイ、チンゲンサイ、ケール、クレソン、小松菜、ブロッコリー、カリフラワー、カブ、ワサビ、マスタード、キュウリ、ニガウリ、カボチャ、メロン、スイカ、ブドウ、レモン、オレンジ、ネーブルオレンジ、グレープフルーツ、ミカン、ライム、スダチ、ユズ、シイクワシャー、タンカン、リンゴ、サクラ、ウメ、モモ、イチゴ、ビワ、アンズ、プラム(スモモ)、プルーン、アーモンド、ナシ、洋ナシ、ラズベリー、ブラックベリー、カシス、クランベリー、ブルーベリー、ダイズ、インゲンマメ、エンドウマメ、ソラマメ、エダマメ、リョクトウ、ヒヨコマメ、ハス(レンコン)、ゴマ、ホウレンソウ、ビート、テンサイ、キヌア、ヒユ、アマランサス、ケイトウ、ナツメヤシ、アブラヤシ、ココヤシ、アサイー、バナナ、バショウ、マニラアサ、ワタ、オクラ、ユーカリ、フウチョウソウ 、及びセイヨウフウチョウソウより選ばれる1種の植物である、前記[1]~[9]のいずれかの植物体の耐塩性向上方法。
[14] 微生物を共生させた植物体を、塩化ナトリウム濃度が1.5質量%以上の環境下で栽培し、当該植物体の生存率が10%以上である、植物体の栽培方法。
[15] PERK13の機能が抑制又は阻害された、植物体。
[16] 植物体のPERK13の機能を抑制又は阻害する、耐塩性植物体の製造方法。
 本発明に係る植物体の耐塩性向上方法により、元々耐塩性が低い植物体の耐塩性を向上させることができる。よって、当該方法により耐塩性が向上された植物体は、塩化ナトリウム濃度が比較的高い環境下でも栽培できるようになる。
図1は、実施例3において、塩ストレス後のシロイヌナズナの野生株の蛍光ナトリウムインジケーターによる蛍光染色像である。 図2は、実施例3において、塩ストレス後のシロイヌナズナのPERK13の機能欠失変異体の蛍光ナトリウムインジケーターによる蛍光染色像である。 図3は、実施例3において、塩ストレス後のシロイヌナズナの野生株及びPERK13の機能欠失変異体の根の蛍光強度の測定結果を示した図である。 図4は、実施例4において、シロイヌナズナの野生株とPERK13の機能欠失変異体を、同定した耐塩性向上用微生物混合物の共生下で水耕栽培した場合の各塩化ナトリウム濃度下における生存率を調べた結果を示した図である。 図5は、実施例5において、シロイヌナズナの野生株とPERK13の機能欠失変異体に対して、実施例4で取得した耐塩性向上用微生物混合物の存在下で塩ストレス(ナトリウム濃度2.5質量%)をかけた後に、各植物体の根の蛍光強度の測定結果を示した図である。 図6は、実施例5において、シロイヌナズナの野生株とPERK13の機能欠失変異体に対して、実施例4で取得した耐塩性向上用微生物混合物の存在下で塩ストレス(ナトリウム濃度1.0質量%)をかけた後に、各植物体の根の蛍光強度の測定結果を示した図である。 図7は、実施例6において構築した、トマトSlPERK遺伝子を標的とするRNAi用ベクター(pBI-SlPERKs-sense, anti senseベクター)の構造マップである。 図8は、実施例6において得られた形質転換トマトの、塩化ナトリウム濃度0.5又は1.0質量%環境下において21日間水耕栽培した時点においける写真である。 図9は、実施例7において、作製された組換え再分化植物体から抽出されたゲノムDNAを鋳型として得られたPCR産物のTspRI処理物を電気泳動した結果を示した図である。 図10は、実施例7において、イネの非組換え再分化植物体(WT)とPERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体(KO)を、塩化ナトリウム濃度1.5質量%環境下において2週間生育させた時点の写真である。
 本発明に係る植物体の耐塩性向上方法は、植物体のPERK13の機能を抑制又は阻害することを特徴とする。後記実施例に記載されているように、PERK13遺伝子に変異が導入され、その機能が阻害された変異体では、根からの植物体内へのナトリウムイオンの流入が抑制され、耐塩性が向上する。PERK13は、植物体の根で特異的に発現している膜蛋白質であり、細胞内にキナーゼ活性部位を有する。PERK13は、アミノ酸配列の類似性から、NSCCのカルシウムイオンの流入を促進する作用を有する受容体であるPERK4(Proline-rich extensin-like receptor kinase 4)(例えば、非特許文献3参照。)と同様の作用効果を有すると推定されていたが、本発明者の研究により、植物体内へのナトリウムイオンの流入の制御に関与していることがわかった。
 非特許文献1に記載されているように、ナトリウムイオン濃度の制御メカニズムは、広く植物において共通している。当該メカニズムの一端を担うPERK13も、多種多様な植物で保存されている蛋白質であり、多くの植物において植物体内へのナトリウムイオンの流入を制御する機能を担っている。例えば、PERK13遺伝子としては、NCBIのGene IDがAt1g70460(Arabidopsis thaliana)であるシロイヌナズナのPERK13遺伝子のオーソログ遺伝子が挙げられ、具体的には、NCBIのGene IDが101266034(Solanum lycopersicum)、107059185(Solanum tuberosum)、107279382(Oryza sativa Japonica Group)、4333279(Oryza sativa Japonica Group)、102703815(Oryza brachyantha)、103649394(Zea mays)、106804357(Setaria italica)、101775206(Setaria italica)、106322706(Brassica oleracea)、106405068(Brassica napus)、106416704(Brassica napus)、103852653(Brassica rapa)、101215732(Cucumis sativus)、100247217(Vitis vinifera)、104882493(Vitis vinifera)、104822150(Tarenaya hassleriana)、102616604(Citrus sinensis)、105766022(Gossypium raimondii)、104438961(Eucalyptus grandis)、100807815(Glycine max)、106779893(Vigna radiata)、101497672(Cicer arietinum)、103321809(Prunus mume)、103927247(Pyrus x bretschneideri)、104586282(Nelumbo nucifera)、100832398(Brachypodium distachyon)、103708226(Phoenix dactylifera)、105049377(Elaeis guineensis)、103989453(Musa acuminata)、105172671(Sesamum indicum)、104904972(Beta vulgaris subsp. vulgaris)、18429568(Amborella trichopoda)、及び103452847(Malus domestica)等が挙げられる。
 本発明に係る植物体の耐塩性向上方法において、機能が抑制又は阻害されるPERK13としては、PERK13としての機能を保持している物であれば特に限定されるものではない。本発明に係る植物体の耐塩性向上方法において、機能を抑制又は阻害するPERK13としては、野生型の植物体内に存在している野生型のPERK13であってもよく、突然変異によって生じたPERK13変異体であってもよく、紫外線照射処理等の各種変異処理によって変異が導入されたPERK13変異体であってもよく、遺伝子改変技術等によって改変されたPERK13改変体であってもよい。例えば、保有するPERK13が、野生型のPERK13に各種の改変処理を施してPERK13によるナトリウムイオン流入促進機能が増強又は減弱されているPERK13改変体である植物体であっても、本発明に係る植物体の耐塩性向上方法を行うことによって耐塩性を向上させることができる。
 植物体の耐塩性を向上させるために当該植物体が保有するPERK13の機能を抑制又は阻害させる程度としては、例えば、当該植物体を1.0質量%塩化ナトリウム環境下で6から24時間水耕栽培した場合の根における塩化ナトリウム量が、PERK13の機能を抑制又は阻害させる前の植物体を同じ条件で栽培した場合の根における塩化ナトリウム量を100%とした場合に、90%以下、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下、よりさらに好ましくは40%以下、特に好ましくは30%以下となるようにすることができる。植物体の根における塩化ナトリウムの相対量は、例えば、根の内部をナトリウムイオンと結合する蛍光物質で蛍光染色した場合の蛍光強度を指標として測定することができる。
 植物体が本来有しているPERK13の機能を抑制又は阻害させる方法としては、特に限定されるものではなく、PERK13の発現量を低減させる方法であってもよく、ゲノムDNA中のPERK13遺伝子に変異を導入して機能が低下したPERK13変異体を発現させる手法であってもよく、PERK13の細胞内シグナル伝達を阻害する方法であってもよい。
 植物体の耐塩性を向上させるために当該植物体が保有するPERK13の発現量を低減させる場合、低減後の植物体のPERK13の発現量は、低減前の植物体のPERK13の発現量を100%とした場合に、90%以下、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下、よりさらに好ましくは30%以下、特に好ましくは0%(完全に発現していない状態)になるようにすることが好ましい。植物体のPERK13の発現量は、RT-PCR法等の当該技術分野で蛋白質の発現量を測定する際に用いられる各種方法で測定することができる。植物体の耐塩性を向上させるために当該植物体が保有するPERK13の機能を低下させる場合、低下後の植物体のPERK13の機能は、低下前の植物体のPERK13の機能を100%とした場合に、90%以下、好ましくは80%以下、より好ましくは60%以下、さらに好ましくは50%以下、よりさらに好ましくは30%以下、特に好ましくは0%(完全に機能を失った状態)となるようにすることが好ましい。
 PERK13の発現量を低減させる方法としては、ゲノムDNAを改変する方法であってもよく、RNA干渉のようにゲノムDNAを改変しない方法であってもよい。ゲノムDNAを改変してPERK13の発現量を低減させる方法としては、PERK13遺伝子を削除する方法、PERK13遺伝子にナンセンス変異を導入する方法、PERK13遺伝子のプロモーター配列等の発現調節配列を改変する方法等が挙げられる。PERK13の機能が低下又は欠損する変異としては、例えば、PERK13の細胞内領域にあるキナーゼドメインに、キナーゼ活性が消失又は低下するような変異や、PERK13の細胞外領域にあるリガンド結合部位に、リガンドとの親和性を低下させる変異が挙げられる。
 ゲノムDNA中のPERK13遺伝子領域を改変する方法としては、相同組換えを利用して、PERK13遺伝子領域の全部又は一部を、別のDNA断片に置換する方法が汎用されている。例えば、PERK13遺伝子をコードする領域を、他の遺伝子をコードするDNA断片に置換したり、変異を導入したPERK13の変異遺伝子をコードするDNA断片に置換することによって、PERK13遺伝子を欠損させたり、野生型のPERK13にかえて変異型のPERK13を発現させることができる。相同組換えに求められる塩基配列の相同性(配列同一性)は、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。なお、相同組換え法による遺伝子操作法は既に多くの植物で確立されている。例えば、相同組換えにより置換するDNA断片を含む形質転換用ベクターを、耐塩性を向上させる目的の植物体のカルスに導入して形質転換体を作製し、得られた形質転換体を分化させることによってPERK13遺伝子領域が改変されたゲノムDNAを有する植物体が得られる。未分化のカルスは、常法により調製することができる。また、形質転換用ベクターとしては、直鎖状DNAであってもよく、プラスミドであってもよい。カルス等の植物細胞へのベクターの導入は、アグロバクテリウム法、パーティクルガン法、ポリエチレングリコール法、電気穿孔法(エレクトロポーレーション)、リポソーム法、リン酸カルシウム沈殿法、リポフェクション法、マイクロインジェクション法など当業者に公知の種々の方法を用いることができる。
 RNA干渉は、植物体に、PERK13遺伝子のcDNAの部分領域(RNAi(RNA干渉)標的領域)のセンス鎖とアンチセンス鎖からなる二本鎖構造を有するsiRNA(small interfering RNA)、shRNA(short hairpin RNA)又はmiRNA(micro RNA)を導入することにより実施できる。標的である植物細胞内において、siRNA等を生産させることができるRNAi誘導ベクターを導入してもよい。siRNA、shRNA、miRNA、及びRNAi誘導ベクターの作製は、標的とするPERK13遺伝子のcDNAの塩基配列情報から、常法により設計し製造することができる。また、RNAi誘導ベクターは、市販の各種RNAiベクターの塩基配列に、RNAi標的領域の塩基配列を挿入することによって作製することもできる。RNAi誘導ベクターの導入は、前記形質転換用ベクターの導入と同様にして行うことができる。
 PERK13の細胞内シグナル伝達を阻害する方法としては、PERK13のアンタゴニストを植物体の根の表面に接触させる方法であってもよく、PERK13のキナーゼ活性を阻害する阻害剤を植物体の根の細胞内に導入する方法であってもよい。PERK13のアンタゴニストとは、PERK13の細胞外領域に結合することによって、PERK13のリガンドがPERK13に結合することを阻害する物質を意味する。ゲノムDNAを改変する必要がなく、処理がより簡便である点から、本発明に係る植物体の耐塩性向上方法としては、PERK13のアンタゴニストを植物体の根の表面に接触させる方法が特に好ましい。
 本発明において用いられるPERK13のアンタゴニストは、化合物であってもよく、1種又は2種以上の微生物であってもよく、1種又は2種以上の微生物の分泌物質であってもよい。当該アンタゴニストが特定の微生物の分泌物質である場合には、当該微生物の培養上清をそのまま又はその粗精製物を、植物体の根の表面に接触させてもよい。
 PERK13のアンタゴニストを植物体の根の表面に接触させる方法としては、植物体の根の少なくとも一部を栽培用溶液に浸漬させた状態で栽培する水耕栽培の場合、栽培用溶液に代えて、PERK13のアンタゴニストを含む処理用溶液に植物体の根の少なくとも一部を一定期間浸漬させることによって、当該アンタゴニストを植物体の根の表面のPERK13に結合させ、PERK13の機能を阻害し、植物体の根からのナトリウムイオンの流入を抑制し、当該植物体の耐塩性を向上させる。処理用溶液の組成、特に塩の組成は、栽培用溶液と同じであってもよく、異なっていてもよい。また、栽培用溶液に直接PERK13のアンタゴニストを混合させてもよい。植物体を土壌で栽培する場合には、植物体を植えた土壌を当該アンタゴニストを含む水溶液で湿らせてもよく、土壌中の根付近に当該アンタゴニストを含む顆粒を配置してもよい。
 本発明において耐塩性を向上させる植物体としては、元々ゲノムDNA中にPERK13遺伝子又はそのホモログ遺伝子を有している植物であれば特に限定されるものではなく、被子植物であってもよく、裸子植物であってもよく、シダ類やコケ類であってもよい。また、単子葉植物であってもよく、双子葉植物であってもよい。具体的には、イネ、トウモロコシ、モロコシ、コムギ、オオムギ、ライムギ、ヒエ、アワ等のイネ科の植物;トマト、ナス、パプリカ、ピーマン、ジャガイモ、タバコ等のナス科の植物;シロイヌナズナ、セイヨウアブラナ、ナズナ、ダイコン、キャベツ、紫キャベツ、メキャベツ(プチヴェール)、ハクサイ、チンゲンサイ、ケール、クレソン、小松菜、ブロッコリー、カリフラワー、カブ、ワサビ、マスタード等のアブラナ科の植物;キュウリ、ニガウリ、カボチャ、メロン、スイカ、等のウリ科の植物;ブドウ等のブドウ科の植物;レモン、オレンジ、ネーブルオレンジ、グレープフルーツ、ミカン、ライム、スダチ、ユズ、シイクワシャー、タンカン等のミカン科の植物;リンゴ、サクラ、ウメ、モモ、イチゴ、ビワ、アンズ、プラム(スモモ)、プルーン、アーモンド、ナシ、洋ナシ、ラズベリー、ブラックベリー、カシス、クランベリー、ブルーベリー等のバラ科の植物;ダイズ、インゲンマメ、エンドウマメ、ソラマメ、エダマメ、リョクトウ、ヒヨコマメ等のマメ科の植物;ハス(レンコン)等のハス科の植物;ゴマ等のゴマ科の植物;ホウレンソウ、ビート、テンサイ、キヌア、ヒユ、アマランサス、ケイトウ等のアカザ科の植物;ナツメヤシ、アブラヤシ、ココヤシ、アサイー等のヤシ科の植物;バナナ、バショウ、マニラアサ等のバショウ科の植物;ワタ、オクラ等のアオイ科の植物;ユーカリ等のフトモモ科の植物;フウチョウソウ 、セイヨウフウチョウソウ等のフウチョウソウ科の植物等が挙げられる。
 本発明に係る植物体の耐塩性向上方法においては、PERK13の機能を抑制又は阻害することに加えて、植物体の根の細胞内のナトリウムイオン濃度を低下させるその他の処理を併用してもよい。植物体の根の細胞内のナトリウムイオン濃度を低下させる処理としては、例えば、植物体の非選択性陽イオンチャネル、細胞膜型Na/Hアンチポーター、液胞型Na/Hアンチポーター、及び高親和性カリウムトランスポーターからなる群より選択される1種以上の蛋白質の機能を亢進させる処理が挙げられる。これらの蛋白質としては、例えば、SOS1、SOS2、SOS3、NHX1、及びHKT1等が挙げられる(非特許文献1)。これらの蛋白質の機能は、当該蛋白質の発現量を増大させることにより亢進させることができる。
 植物体内の蛋白質の発現量は、当該蛋白質をコードする外来遺伝子を導入し形質転換することにより増大させることができる。当該外来遺伝子としては、導入する植物体と同種の生物由来の遺伝子であってもよく、異種の生物由来の遺伝子であってもよい。本発明に係る植物体の耐塩性向上方法においては、耐塩性を向上させる標的の植物体と同種又は異種のSOS1遺伝子、SOS2遺伝子、SOS3遺伝子、NHX1遺伝子、及びHKT1遺伝子からなる群より選択される1種以上の外来遺伝子が導入された形質転換体について、PERK13の機能を抑制又は阻害することが好ましい。植物体への外来遺伝子の導入は、外来遺伝子をコードするDNA断片を組込んだ形質転換用ベクターを用いて、前記形質転換用ベクターの導入と同様にして行うことができる。
 本発明に係る植物体の耐塩性向上方法により、PERK13の機能を抑制又は阻害する前の植物体よりも耐塩性を向上させた植物体を得ることができる。本発明に係る植物体の耐塩性向上方法では、耐塩性向上前の植物体の10~50%しか生育できない程度のナトリウム濃度の環境下でも生育可能な程度にまで耐塩性を向上させられることが好ましく、耐塩性向上前の植物体の10~30%しか生育できない程度のナトリウム濃度の環境下でも生育可能な程度にまで耐塩性を向上させられることがより好ましく、耐塩性向上前の植物体の10%以下しか生育できない程度のナトリウム濃度の環境下でも生育可能な程度にまで耐塩性を向上させられることがさらに好ましい。
 本発明に係る植物体の耐塩性向上方法により得られた植物体は、ナトリウムイオン濃度が高い栽培用溶液を用いた水耕栽培や、ナトリウムイオン濃度が高い土壌を用いた土耕栽培により栽培することができる。例えば、本発明に係る植物体の耐塩性向上方法により、ナトリウムイオン濃度が0.2質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上、さらに好ましくは1.5質量%以上、よりさらに好ましくは2.0質量%以上、特に好ましくは2.5質量%以上の栽培用溶液を用いた水耕栽培でも栽培可能な植物体を得られる場合がある。
 耐塩性を向上させた植物体の栽培に用いる栽培用溶液としては、塩化ナトリウムに加えて塩化マグネシウムを含むことが好ましく、0.5質量%以下の塩化マグネシウムを含有することがより好ましく、0.1~0.5質量%の塩化マグネシウムを含有することがさらに好ましい。
 当該栽培用溶液は、塩化ナトリウムや塩化マグネシウム以外にも、植物体の生育に必要な各種栄養成分を含有していることが好ましい。当該栄養成分は、栽培する植物体の種類に応じて適宜調整することができる。特に、窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、鉄、マンガン、銅、モリブデン、ホウ素等の植物体の生育に必要な元素を塩類として含有していることが好ましい。その他、植物体の種類によっては、アルミニウムや珪素等の元素を塩類として含有する場合もある。また、植物体の生育段階に応じて栽培用溶液の組成を変更してもよい。
 当該栽培用溶液としては、例えば、市販されている液肥に塩化ナトリウムをはじめとする不足の塩類を添加した溶液や、市販されている濃縮された液肥を、水に代えて海水で希釈した溶液を用いることができる。また、海水に、リン等の不足の塩類を適宜添加した溶液を用いることもできる。
 耐塩性を向上させた植物体の水耕栽培は、一般的な水耕栽培方法によって行うことができる。例えば、比較的多量の栽培用溶液を栽培用槽にためる湛液型水耕法で行ってもよく、緩やかな傾斜を持つ平面上に培養液を少量ずつ流下させる薄膜水耕法で行ってもよい。
 以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
[実施例1]
 シロイヌナズナにランダム変異を導入した変異体のライブラリーに対して、耐塩性が向上している変異体をスクリーニングし、耐塩性向上に寄与している遺伝子を調べた。このスクリーニングには、パエニバシラス(Paenibacillus)属の微生物を用いた。パエニバシラス属菌は、シロイヌナズナの細胞内への塩化ナトリウムの流入を促進する。このため、パエニバシラス属菌共存下のシロイヌナズナは、通常は枯死することはない0.5質量%の塩化ナトリウム環境下でも枯死する。この性質を利用し、パエニバシラス属菌共存下でも耐塩性を向上させることができる遺伝子をスクリーニングした。
 まず、シロイヌナズナ(Col-0)の種子をEMS(エチルメタンスルホン酸)処理し、ランダム変異を導入した変異体ライブラリーを作製した。このライブラリーの種子を、次亜塩素酸にて滅菌した後、MS(Murashige-Skoog)培地のゲル平板培地上に播種し、このゲル平板培地を少なくとも底部が水耕栽培用の液体培地に接する状態として水耕栽培を行った。液体培地としては、1/2MS培地(MS培地を等量の水で希釈した液体培地)を用いた。
 発芽後の2週齢時に、塩化ナトリウム処理用の植物体に、終濃度が0.5質量%になる量の塩化ナトリウムと、パエニバシラス属菌とを添加し、さらに1週間水耕栽培を行った。コントロール処理用の植物体には、パエニバシラス属菌のみを添加し、さらに1週間水耕栽培を行った。
 この結果、対照である野生株は、パエニバシラス属菌との共存効果により枯死したが、約25,000のランダム変異株のうちの10株は、枯死することなく正常に生育した。この10株のうちの4株から種子を収穫し、シロイヌナズナを育成させ、葉からゲノムを抽出した。抽出されたゲノムの塩基配列を、次世代シーケンスにより解析したところ、これら4株の変異体全てにおいて、PERK13遺伝子(At1g70460)に共通の変異が導入されていた。このPERK13遺伝子の変異は、chr5:13434602の位置への一塩基の挿入であり、これによりフレームシフトが生じる結果、これらの変異体では、PERK13の機能が失われていることが判明した。なお、PERK13遺伝子以外には、これら4株の変異体に共通する変異遺伝子はなかった。
 本実験で示すように、PERK13遺伝子にフレームシフト変異を有する変異体では、パエニバシラス属菌による植物体への塩化ナトリウムの流入促進の影響が抑えられ、耐塩性が向上した。これらの結果から、PERK13の機能を抑制又は阻害することにより、根からのナトリウムイオンの流入を抑制し、植物体の耐塩性を向上させられることがわかった。
[実施例2]
 実施例1において、PERK13の機能欠失変異体であることを確認した4株のうちの2株について、1.5質量%の塩化ナトリウム環境下で栽培し、耐塩性を調べた。
 具体的には、種子を次亜塩素酸にて滅菌した後、MS培地のゲル平板培地上に播種し、このゲル平板培地を少なくとも底部が水耕栽培用の液体培地に接する状態として水耕栽培を行った。液体培地としては、1/2MS培地を用いた。各変異体につき、それぞれ塩化ナトリウム処理用として24種子、コントロール処理用として24種子を播種した。発芽後の2週齢時に、塩化ナトリウム処理用の植物体に、終濃度が1.5質量%になる量の塩化ナトリウムを添加し、さらに1週間水耕栽培を行った。コントロール処理用の植物体には何も添加せず、さらに1週間水耕栽培を行った。対照として、野生株についても同様に水耕栽培を行った。
 この結果、コントロール処理した植物体、すなわち塩化ナトリウムを添加していない1/2MS培地で栽培した植物体は、野生株とPERK13の機能欠失変異体のいずれも24個体全ての個体が枯死せず正常に生育していた。塩化ナトリウム処理した植物体では、野生型は24個体のうち20個体が枯死した([枯死体数]/[全数植物体数]=20/24)のに対して、2株のPERK13の機能欠失変異体ではいずれも枯死した植物個体数が4個以下であり、その大部分が1.5質量%の塩化ナトリウム含有液体培地中でも枯死することなく生長した([枯死体数]/[全数植物体数]≦4/24)。これらの結果から、PERK13の機能を抑制又は阻害することにより、根からのナトリウムイオンの流入が抑制され、植物体の耐塩性が向上することが確認された。
[実施例3]
 PERK13の機能欠失変異体のうち、実施例2において耐塩性を調べた2株のうちの1株について、根におけるナトリウムの量を調べた。
 具体的には、種子を70%エタノールと次亜塩素酸を用いて滅菌した後、1%スクロース含有MS培地のゲル平板培地上に播種し、このゲル平板培地を少なくとも底部が水耕栽培用の液体培地(1/2MS培地)に接する状態として、人工気象器内にて水耕栽培を行った。人工気象器は、25℃、照度5000lux、明期16時間、暗期8時間の条件にした。発芽後の10日から14日後に、ゲル平板培地の底部が接触している液体培地を、終濃度1.0質量%の塩化ナトリウム含有1/2MS培地に交換し、さらに6時間から24時間水耕栽培して塩ストレスをかけた。コントロール処理用の植物体の液体培地に対しては何も添加せずに、同じ時間栽培した。
 塩ストレス後の植物体の根を50μMのCoroNa(登録商標)-Green AM溶液で蛍光染色した後、当該根の表面を水洗した。水洗後の根の内部を共焦点レーザー顕微鏡にて観察した。CoroNa-Green AMは、ナトリウムイオンと結合することによって緑色蛍光強度が増大するナトリウムインジケーターである。野性株とPERK13の機能欠失変異体のうち、塩ストレス後の根の蛍光染色像を図1及び図2に示す。また、野性株とPERK13の機能欠失変異体のうち、塩ストレス後の根の断面積当たりの蛍光強度の測定結果を図3に示す。
 塩ストレスをかけていないコントロール処理用の植物体の根では、野生株とPERK13の機能欠失変異体のいずれにおいても、内部に緑色蛍光はほとんど観察されなかった(図示せず)。これに対して、野生株の根(図1)では、内部に緑色蛍光が強く生じており、塩ストレスによりナトリウムイオンの流入が顕著に増大したことが確認された。これに対して、PERK13の機能欠失変異体の根(図2)では、緑色蛍光がほとんど観察されず、塩ストレスによってもナトリウムイオンの流入が増えていないことが確認された。この結果から、PERK13は根におけるナトリウムイオンの流入に関与しており、PERK13の機能欠失変異体における塩ストレス耐性の向上は、高塩濃度環境下における植物体内へのナトリウムイオンの流入抑制によるものであることがわかった。
[実施例4]
 野生型シロイヌナズナを用い、土壌から抽出された微生物から、耐塩性を高める共生効果を有する植物共生菌群を選抜した。
<微生物懸濁液の調製>
 沖縄県にて採取された土壌1gを、緩衝液で懸濁し、十分に撹拌し、微生物懸濁液として用いた。
<ポットの作成>
 天面と底面が開口した円柱状のポットに、スクロース含有MS寒天培地(MS培地に0.5%(w/v)スクロースと0.9%(w/v)アガーを加えた培地)を注入して固めることにより、植物体を育成するためのポットを作製した。当該ポットを、スクロース含有MS培地(MS培地に0.5%(w/v)スクロースを加えた液体培地)を入れた8つの容器にそれぞれ複数個ずつ設置した。
<種子の次亜塩素酸処理>
 シロイヌナズナの種子(Col-0)は、LEHLE社(Round Rock, TX, USA)より購入した。種子は、1%次亜塩素酸に浸漬させた状態で1分間撹拌をすることによって表面を滅菌した後、遠心分離処理により次亜塩素酸を除いた。次亜塩素酸処理後の種子は、滅菌水にて3回水洗した後、前記ポットの上部に播種して、4℃で24時間暗所にて保存した。
<植物体の水耕栽培>
 前記ポットを複数個用意し、スクロース含有MS培地(MS培地に0.5%(w/v)スクロースを加えた液体培地)を入れた1つの容器に全て設置した。各ポットは、底面はスクロース含有MS培地に浸っているが天面は浸っていない状態となるように設置した。これらのポットの上部に、次亜塩素酸処理後に滅菌水にて3回水洗した後の野生型の種子を播種し、25℃、明期16時間と暗期8時間の長日条件のインキュベーター内で14日間育成した。
<塩ストレス及び微生物の接種> 
 14日間水耕栽培後に、当該ポットの底面を浸したスクロース含有MS培地に、塩化ナトリウムの最終濃度が1質量%となるように滅菌済の5M 塩化ナトリウム水溶液を添加し、さらに100μLの微生物懸濁液を添加した。その後、当該ポットを14日間培養した。
<塩ストレス耐性向上作用を有する微生物の回収> 
 塩ストレス下での14日間の培養後、生育している植物体の根と地上部(葉と茎)を切断し、根を回収し、ホモジナイズして第1の微生物回収溶液とした。
 栽培用溶液として、塩化ナトリウムの最終濃度が1.5質量%となるように塩化ナトリウムを添加したスクロース含有MS培地に、前記第1の微生物回収溶液100μLを添加した溶液を用いた以外は同様にして水耕栽培を行い、塩ストレス下での14日間の培養後、生育している植物体の根と地上部(葉と茎)を切断し、根を回収し、ホモジナイズして第2の微生物回収溶液とした。
 栽培用溶液として、塩化ナトリウムの最終濃度が3.0質量%となるように塩化ナトリウムを添加したスクロース含有MS培地に、前記第2の微生物回収溶液100μLを添加した溶液を用いた以外は同様にして水耕栽培を行い、塩ストレス下での14日間の培養後、生育している植物体の根と地上部(葉と茎)を切断し、根を回収し、ホモジナイズして第3の微生物回収溶液とした。
 シロイヌナズナは、第3の微生物回収溶液に含まれている微生物混合物が植物体の根に共生することにより、塩ストレス下での植物体の生育が可能となった。つまり、第3の微生物回収溶液に含まれている微生物混合物又はこれらの分泌物質が、植物の耐塩性を向上させる作用を有していること、すなわち当該微生物混合物は、塩ストレス下での植物体の生育を可能とする植物共生菌群であることがわかった。
<微生物の同定>
 選抜された塩ストレス下での植物体の生育を可能とする植物共生菌群(耐塩性向上用微生物混合物)を構成する微生物を同定した。
 まず、前記第3の微生物回収溶液から菌体を回収し、回収した菌体の一部からゲノムDNAを、GenElute Bacterial Genomic DNA kit(Sigma-Aldrich、St. Louis, MO, USA)を用いて得た。
 回収されたゲノムDNAを鋳型とし、フォワードプライマー(5’-AGAGTTTGATCATGGCTCAG-3’、配列番号1)とリバースプライマー(5’-TACGGTTACCTTGTTACGACTT-3’、配列番号2)を用いて、16S rDNAをPCRにより増幅した。PCRの温度条件は、95℃、3分間の加熱工程後、95℃、30秒間の変性工程、50℃、30秒間のアニーリング工程、及び72℃、1分30秒間の伸長工程からなるサイクルを30サイクル行った後、最後に72℃、5分間の伸長反応を加える条件で行った。得られたPCR産物を、1.2%のアガロースゲル電気泳動により確認し、QIAquick gel extraction kit (Quiagen, Germantown, MD, USA)を用いてゲルから抽出した。抽出されたPCR産物を、TOPO-TA cloning kit (Life Technologies, Carlsbad, CA, USA)を用いてプラスミド中に挿入し、大腸菌に形質転換を行った。アンピシリン含有LB平板培地上で一晩培養した大腸菌コロニーをランダムに30個取り、アンピシリン含有LB液体培地に移植して培養した。QIAprep spin miniprep kit (Quiagen)を用いて培養された大腸菌からプラスミドを精製した。精製されたプラスミドに対して、BigDye terminator v3.1 Cycle sequence kit (Life Techonologies)を用いたThermalcycle反応を行い、DNAシークエンサー(ABI 3130xL)にて当該プラスミドに組み込まれた16S rDNAの塩基配列を決定した。この結果、2種類の16S rDNA(YROK-1株及びYROK-2株)が同定された。
 配列が決定された2種類の16S rDNAの塩基配列についてそれぞれEzBIOCloud検索を行ったところ、2種類のうち、YROK-1株(配列番号3)はPaenarthrobacter nitroguajacolicus(アクセッション番号:AJ512504)と配列同一性が98.89%、YROK-2株(配列番号4)はArthrobacter psychrochitiniphilus(アクセッション番号:AJ810896)と配列同一性が97.14%であった。これらの結果から、YROK-1株はPaenarthrobacter nitroguajacolicusの新規株であり、YROK-2株はArthrobacter psychrochitiniphilusの新規株であることがわかった。
 また、同定した52個の形質転換体に挿入されていた16S rDNAの割合から、これら2種類の微生物の存在比を調べたところ、Paenarthrobacter nitroguajacolicus YROK-1株は98.0%であり、Arthrobacter psychrochitiniphilus  YROK-2株は2.0%であった。
<同定した耐塩性向上用微生物混合物の耐塩性を高める共生効果>
 シロイヌナズナの野生株とPERK13の機能欠失変異体について、同定した耐塩性向上用微生物混合物の耐塩性向上効果を調べた。
 まず、前記<植物体の水耕栽培>と同様にして、ポットにて14日間水耕栽培した植物体を用意した。当該ポットの底面を浸したスクロース含有MS培地に、塩化ナトリウムの最終濃度が0、0.5、1.0、1.5、2.0、2.5、又は3.0質量%となるように滅菌済の5M 塩化ナトリウム水溶液を添加し、さらに前記耐塩性向上用微生物混合物を添加して水耕栽培を行い、14日間培養後の生存率を調べた。対照として、耐塩性向上用微生物混合物を添加していない栽培用溶液で同様に水耕栽培し、14日間栽培後の生存率を調べた。
 生存率の測定結果を図4に示す。図中、「微生物無WT」は耐塩性向上用微生物混合物が共生していない状態で栽培した野生株の結果を、「微生物有WT」は耐塩性向上用微生物混合物が共生している状態で栽培した野生株の結果を、「微生物有MT」は耐塩性向上用微生物混合物が共生している状態で栽培したPERK13の機能欠失変異体の結果を、それぞれ示す。
 この結果、野生株では、耐塩性向上用微生物混合物が共生していない状態では、塩化ナトリウム濃度が1質量%で生存率が10%以下であったのに対して、耐塩性向上用微生物混合物が共生している状態では、PERK13の機能欠失変異体と同様に、塩化ナトリウム濃度が1質量%での生存率は90%以上と高く、塩化ナトリウム濃度が3質量%でも生存率は30%以上と高かった。図4に示すように、耐塩性向上用微生物混合物が共生している状態では、塩化ナトリウム濃度が2%以上では、PERK13の機能欠失変異体のほうが野生株の生存率よりもやや高かったが、これは、耐塩性向上用微生物混合物は、PERK13の機能欠失を介する経路のみならず、その他の耐塩性を向上させる経路にも何等かの作用を有するためではないかと推察された。
 耐塩性向上用微生物混合物が共生している状態で、野生株とPERK13の機能欠失変異体の生存曲線がほぼ同一であったことから、耐塩性向上用微生物混合物の野生株に対する耐塩性向上効果は、PERK13の機能欠損によりもたらされる耐塩性向上効果であると考えられる。つまり、当該耐塩性向上用微生物混合物又はその分泌物が、PERK13のアンタゴニストであり、当該耐塩性向上用微生物混合物が植物体の根に共生することによって、PERK13の機能が抑制又は阻害されることが示唆され、PERK13のアンタゴニストを植物体の根の表面に接触させることによっても、PERK13の遺伝子欠損体と同様の耐塩性向上効果が得られることが示唆された。
[実施例5]
 シロイヌナズナの野生株とPERK13の機能欠失変異体について、実施例4で取得した耐塩性向上用微生物混合物の、塩ストレス下における植物体の根へのナトリウム流入に対する影響を調べた。
 まず、シロイヌナズナの野生株及びPERK13の機能欠失変異体について、それぞれ、種子を70%エタノールと次亜塩素酸を用いて滅菌した後、1%スクロース含有MS培地のゲル平板培地上に播種し、このゲル平板培地を少なくとも底部が水耕栽培用の液体培地(1/2MS培地)に接する状態として、人工気象器内にて水耕栽培を行った。人工気象器は、25℃、照度5000lux、明期16時間、暗期8時間の長日条件にした。種子が発芽してから10~14日後に、当該植物体が置かれているゲル平板培地の底部が接触している液体培地を、終濃度2.5質量%又は1.0質量%の塩化ナトリウム含有1/2MS培地に交換し、さらに前記耐塩性向上用微生物混合物を添加した。その後、6時間水耕栽培して、前記耐塩性向上用微生物混合物存在下で塩ストレスをかけた。
 塩ストレス後の植物体の根を、実施例3と同様にして、蛍光のナトリウムインジケーター(CoroNa-Green AM)で染色し、野性株とPERK13の機能欠失変異体のうち、塩ストレス後の根の断面積当たりの蛍光強度を測定した。塩化ナトリウム濃度が2.5質量%で水耕栽培した植物体の結果を図5に、塩化ナトリウム濃度が1.0質量%で水耕栽培した植物体の結果を図6に、それぞれ示す。
 この結果、実施例4で取得した耐塩性向上用微生物混合物の存在下では、野生株とPERK13の機能欠失変異体の根の断面積当たりの蛍光強度は、ほぼ同程度であり、有意差はなかった。これらの結果から、野生株において、前記耐塩性向上用微生物混合物により、PERK13の機能欠失変異体都同様に塩ストレス環境下での根へのナトリウム流入が抑制されること、この根へのナトリウム流入抑制により、野生株の塩ストレス耐性が、PERK13の機能欠失変異体と同程度にまで改善されること、及び、前記耐塩性向上用微生物混合物が、PERK13の機能を抑制又は阻害する作用を有すること、がわかった。
[実施例6]
 トマト(Solanum lycopersicum)のPERK13機能欠失変異体を作製し、その耐塩性を調べた。
<標的遺伝子の選定>
 トマトのゲノムDNAに含まれている遺伝子のうち、シロイヌナズナのPERK13に60%以上の配列同一性のある3種の遺伝子(トマトのPERK13オーソログ遺伝子)、SlPERK9b(Solyc05g010140.2.1)、SlPERK10(Solyc01g010030.2.1)、SlPERK9a(Solyc04g006930.2.1)を標的遺伝子とするRNAiのベクターを構築した。これらは、互いにアミノ酸配列の配列同一性が98%以上であり、トマトのPERK13オーソログ遺伝子(NCBIのGene IDが101266034)のパラログと考えられる。標的配列は各遺伝子の遺伝子翻訳領域の5’末端側の200塩基とした。また、各遺伝子を同時にRNAiの標的配列とするため、遺伝子人工合成によって、SlPERK10遺伝子の標的配列(配列番号5)、SlPERK9a遺伝子の標的配列(配列番号6)、及びSlPERK9b遺伝子の標的配列(配列番号7)を連結した塩基配列からなるキメラ遺伝子を作製した。
<ベクター構築>
 人工合成した前記キメラ遺伝子を、相同組換えによって、pBI-sense, anti sense-GWベクター(Clontech社製)の改変ベクターに導入した。具体的には、当該キメラ遺伝子を、当該改変ベクターのカリフラワーモザイクウイルス35S(CaMV 35S)プロモーターとノパリン合成酵素遺伝子ターミネーター配列(NOS)の発現カセットの間に、センス方向とアンチセンス方向にそれぞれクローニングし、SlPERK遺伝子を標的とするRNAi用ベクター(pBI-SlPERKs-sense, anti senseベクター)を構築した。当該ベクターの構造マップを図7に示す。CaMV 35Sプロモーター制御下で転写された前記キメラ遺伝子のRNAは、イントロンの切断を介して、センスRNAとアンチセンスRNAからなる2本鎖RNAを形成した。
<トマトの形質転換>
 作製したRNAi用ベクターをアグロバクテリウム(Agrobacterium tumefaciens)GV3101系統に常法により導入し、組換えアグロバクテリウムを得た。トマト品種マイクロトム由来の子葉片に、得られた組換えアグロバクテリウムを感染させ、カルス形成培地にてカルス形成を誘導した。その後、薬剤耐性カルスを選抜し、再分化させた。
 再分化により得られたトマト個体の葉からDNAを抽出し、PCRを行うことによって、前記キメラ遺伝子が導入された形質転換トマトを選抜した。葉からのDNA抽出及びPCRは、以下の通りにして行った。
<DNA抽出>
 植物サンプル100mgを、液体窒素で凍結させて粉末状にした。この粉末に、300μLの抽出緩衝液(100mM Tris、50mM EDTA、500mM NaCl (pH8.0))と15μLの20% SDSを加えて混合してサンプル溶液を調製し、このサンプル溶液を65℃、10分間インキュベートした。インキュベート後のサンプル溶液は、90μLの5M 酢酸カリウムを添加した後、14,000rpmで10分間遠心分離を行なった。上清を新しいチューブに移し、400μLのイソプロパノールを添加して、室温で2分間静置した後、14,000rpmで2分間の遠心分離を行なった。得られたペレットを、500μLの70%エタノールで洗い、乾燥後に100μLの水で溶解したものを、DNAサンプルとした。
<PCR>
 GoTaqポリメラーゼ(Promega社製)を用いて、フォワードプライマー(5’-GTTCTTCTACACCATTTGCAGC、配列番号8)とリバースプライマー(5’-ATTGTGGTAGTGTTGGTAAGGC、配列番号9)の終濃度が0.2μMになるようにPCR反応液を調製して、PCRを行なった。PCRは、95℃で3分間保持した後、95℃で30秒間、次いで55℃で30秒間、次いで72℃で30秒間を1サイクルとするサイクルを35サイクル繰り返し、最後に72℃で3分間保持する、という条件で行なった。
<耐塩性評価>
 得られた形質転換トマトは、導入された前記キメラ遺伝子により、トマトのPERK13(SlPERK)の機能が欠失したトマトである。このPERK13機能欠失トマトを、塩化ナトリウムを終濃度が0.5、1.0、1.5、又は2.0質量%となるように含有させた1/2MS培地にて水耕栽培した。水耕栽培は、人工気象器内(25℃、16時間明期、8時間暗期)で行なった。野生型のトマトの場合、塩化ナトリウムを終濃度が0.5質量%となるように含有させた1/2MS培地で水耕栽培を行うと、栽培21日目には、高濃度の塩化ナトリウムに耐え切れず、葉が白化し、根が褐変して枯れてしまう(図示せず。)。これに対して、PERK13機能欠失トマトでは、栽培21日目において、0.5及び1.0質量%の塩化ナトリウム含有1/2MS培地では、いずれも葉が白化せずに生育している個体が確認された(図8)。また、1.5及び2.0質量%の塩化ナトリウム含有1/2MS培地では、葉の白化が観察されたが、根の褐変は観察されなかった。これらの結果から、トマトにおいても、PERK13の機能を抑制又は阻害することにより、植物体の耐塩性を向上させられることがわかった。
[実施例7]
 イネ(Oryza sativa)のPERK13機能欠失変異体を作製し、その耐塩性を調べた。
<標的遺伝子の選定及びノックアウト用ベクターの構築>
 イネのゲノムDNAに含まれている遺伝子のうち、シロイヌナズナのPERK13に70%以上のアミノ酸配列の配列同一性のある遺伝子(イネのPERK13オーソログ遺伝子)OsPERK13(Os03g056880、NCBI GeneID 4333279)を標的遺伝子とするノックアウト用ベクターを構築した。当該遺伝子をノックアウトの標的配列とするため、遺伝子人工合成によってOsPERK13遺伝子の標的配列(配列番号10)からなるポリヌクレオチドを作製した。イネPERK13オーソログ遺伝子を標的とするノックアウト用ベクターpOsPERK-KO1は、人工合成した前記ポリヌクレオチドを、相同組換えによって、改変型pRIT1ベクター(Terada et al.,Nature Biotechnology,2002,vol.20,p.1030-1034)に導入して構築した。
<イネの形質転換>
 イネの形質転換は、Toki らの方法(Plant Journal、2006年、第47巻、第69~76ページ)の手法に沿って行った。まず、前記ノックアウト用ベクターをアグロバクテリウム菌EHA101系統又はLBA4404系統に常法により導入し、組換えアグロバクテリウムを得た。得られた組換えアグロバクテリウムを、イネ品種「日本晴」の胚盤由来カルスに感染させた。感染させたイネカルスを0.25μM ビスピリバック塩を含む培地で培養し、ビスピリバック塩耐性カルスを選抜した。
 選抜されたビスピリバック塩耐性カルスから、DNA抽出キット「Maxwell 16 LEV Plant DNA kit(Promega社製)」を用いてゲノムDNAを抽出し、PCRを行うことによって、前記ノックアウト用ベクターが導入された形質転換カルスを選抜した。PCRは、DNAポリメラーゼ(Tks Gflex、タカラバイオ社製)とフォワードプライマー(5’- AAGCTCAAGCTCCAATACGCAAACCGCCTC、配列番号11)とリバースプライマー(5’- GACGGTATCGATAAGCTTGGCGCGCCATTA、配列番号12)を用いて、94℃で1分間保持した後、98℃で10秒間、次いで60℃で15秒間、次いで68℃で1分間を1サイクルとするサイクルを35サイクル繰り返し、最後に68℃で7分間保持する、という条件で行ない、目的の大きさのPCR産物が得られたビスピリバック塩耐性カルスを、前記ノックアウト用ベクターが導入された形質転換カルスとして選抜した。
<イネ植物体の再分化>
 前記ノックアウト用ベクターの導入が確認できたイネカルスを再分化培地へ継代し、25℃の明所で約3週間培養した。その結果、PERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体と、非組換え再分化植物体とを得た。同様に、非組換えイネカルスからも再分化植物体を誘導した。
<イネPERK13オーソログ遺伝子のノックアウト状況確認
 組換え再分化植物体におけるOsPERK13遺伝子のノックアウト状況は、CAPS(Cleaved Amplified Polymorphic Sequences)法により解析した。まず、各植物体からDNA抽出キット「Maxwell 16 LEV Plant DNA kit(Promega社製)」を用いてゲノムDNAを抽出した。続いて、3g05688特異的プライマーである3g05688 No1-Fプライマー(5’-AGTCAAGCTTCGCCGGCGCCAATGCCGATGTGAGCCCGGC、配列番号13)と3g05688 No1-Rプライマー(5’-TGACGAATTCGCTCCGGCACGACGAGGGTTCTCCTGCGCG、配列番号14)を用いたPCRを行った。得られたPCR増幅産物は核酸精製キット「DNA Cleaner(和光純薬社製)」を用いて精製した後、制限酵素(TspRI)処理し、アガロース電気泳動によりDNA断片の切断状況を確認した。
 標的遺伝子がノックアウトされた場合は、PCR増幅断片中に存在する制限酵素の認識配列を含むDNA配列が失われるため、切断されないPCR増幅産物の存在によりノックアウト状況が判断可能となる。図9に、OsPERK13遺伝子由来のPCR増幅断片をTspRI処理した消化物をアガロース電気泳動した結果を示す。図中、「WT」の「-RE」は、非組換え再分化植物体のPCR増幅断片をアプライしたレーンであり、「WT」の「+RE」は、非組換え再分化植物体のPCR増幅断片をTspRI処理した消化物をアプライしたレーンであり、「KO lines」の「#1」~「#4」は、それぞれ、OsPERK13遺伝子ノックアウト用ベクターを導入した組換え再分化植物体のPCR増幅断片をTspRI処理した消化物をアプライしたレーンである。CAPS法による解析の結果、図9に示すように、「WT」の「-RE」で観察されたバンドは「WT」の「+RE」では観察されなかったのに対して、「KO lines」の「#1」~「#4」では、「WT」の「-RE」と同様に未消化のPCR増幅断片のバンドが検出された。この結果から、得られた組換え再分化植物体のうちの複数個体において、OsPERK13遺伝子がノックアウトされていることが確認された。
<イネPERK13オーソログ遺伝子ノックアウト改変体の耐塩性評価>
 PERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体、及び非組換え再分化植物体は、個体ごとに1.5質量%の塩化ナトリウムを含む発根培地(固形1/2MS)に継代した。その後、人工気象器(25℃、常時明期)にて約2週間育成し、植物体の表現型を観察した。
 各植物個体を2週間生育させた時点の写真を図10に示す。図中、「WT」が非組換え再分化植物体であり、「KO」がPERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体である。また、図10(A)と(C)はそれぞれ植物個体の地上部の写真であり、図10(B)は図10(A)に示す植物個体の地下部の写真であり、図10(D)は図10(C)に示す植物個体の地下部の写真である。図10(A)及び(B)に示すように、非組換え再分化植物体では、葉が全て黄変しており、また、基部が褐変しており、根はほとんど伸長しておらず、生長が停止していることが観察された。この葉の黄変、基部の褐変、及び根の伸長阻害は、いずれもナトリウム障害の典型的な表現型である。これに対して、PERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体では、葉の一部は黄変していたものの、緑の葉が伸長しており、また、複数の根が順調に伸長しており、生長していることが観察された。さらに、図10(C)及び(D)に示すように、PERK13オーソログ遺伝子ノックアウト用ベクターを導入した組換え再分化植物体では、葉の黄変が観察されず、葉も根も健全に生長している個体もあった。これらの結果から、PERK13のイネオーソログ遺伝子であるOsPERK13遺伝子をノックアウトした植物個体では耐塩性が向上し、1.5質量%の塩化ナトリウム環境下でも生育可能となること、すなわち、イネにおいても、PERK13の機能を抑制又は阻害することにより、植物体の耐塩性を向上させられることがわかった。

Claims (16)

  1.  植物体のPERK13(Proline-rich extensin-like receptor kinase 13)の機能を抑制又は阻害する、植物体の耐塩性向上方法。
  2.  PERK13のアンタゴニストを前記植物体の根に接触させる、請求項1に記載の植物体の耐塩性向上方法。
  3.  前記アンタゴニストが、1種若しくは2種以上の微生物、又はこれらの分泌物質である、請求項2に記載の植物体の耐塩性向上方法。
  4.  前記アンタゴニストを含む水溶液に、前記植物体の根の少なくとも一部を浸漬させる工程を含む、請求項2又は3に記載の植物体の耐塩性向上方法。
  5.  PERK13の機能の抑制をPERK13遺伝子の発現を抑制することによって行う、又はPERK13の機能の阻害をPERK13遺伝子の発現を阻害することによって行う、請求項1に記載の植物体の耐塩性向上方法。
  6.  前記植物体に対して、PERK13遺伝子を欠損させる、又はPERK13遺伝子にその機能を低下させる変異を導入する、請求項1又は5に記載の植物体の耐塩性向上方法。
  7.  前記植物体が、非選択性陽イオンチャネル、細胞膜型Na/Hアンチポーター、液胞型Na/Hアンチポーター、及び高親和性カリウムトランスポーターからなる群より選択される1種以上の蛋白質の機能が亢進している、請求項1~6のいずれか一項に記載の植物体の耐塩性向上方法。
  8.  前記植物体が、非選択性陽イオンチャネル、細胞膜型Na/Hアンチポーター、液胞型Na/Hアンチポーター、及び高親和性カリウムトランスポーターからなる群より選択される1種以上の蛋白質が過剰発現している、請求項1~6のいずれか一項に記載の植物体の耐塩性向上方法。
  9.  前記植物体が、外来遺伝子が導入された形質転換体であり、
     前記外来遺伝子が、SOS1遺伝子、SOS2遺伝子、SOS3遺伝子、NHX1遺伝子、及びHKT1遺伝子からなる群より選択される1種以上である、請求項1~6のいずれか一項に記載の植物体の耐塩性向上方法。
  10.  前記植物体が、双子葉植物である、請求項1~9のいずれか一項に記載の植物体の耐塩性向上方法。
  11.  前記植物体が、単子葉植物である、請求項1~9のいずれか一項に記載の植物体の耐塩性向上方法。
  12.  前記植物体が、イネ科の植物、ナス科の植物、アブラナ科の植物、ウリ科の植物、ブドウ科の植物、ミカン科の植物、バラ科の植物、マメ科の植物、ハス科の植物、ゴマ科の植物、アカザ科の植物、ヤシ科の植物、バショウ科の植物、アオイ科の植物、フトモモ科の植物、及びフウチョウソウ科の植物より選ばれる1種の植物である、請求項1~9のいずれか一項に記載の植物体の耐塩性向上方法。
  13.  前記植物体が、イネ、トウモロコシ、モロコシ、コムギ、オオムギ、ライムギ、ヒエ、アワ、トマト、ナス、パプリカ、ピーマン、ジャガイモ、タバコ、シロイヌナズナ、セイヨウアブラナ、ナズナ、ダイコン、キャベツ、紫キャベツ、メキャベツ、ハクサイ、チンゲンサイ、ケール、クレソン、小松菜、ブロッコリー、カリフラワー、カブ、ワサビ、マスタード、キュウリ、ニガウリ、カボチャ、メロン、スイカ、ブドウ、レモン、オレンジ、ネーブルオレンジ、グレープフルーツ、ミカン、ライム、スダチ、ユズ、シイクワシャー、タンカン、リンゴ、サクラ、ウメ、モモ、イチゴ、ビワ、アンズ、プラム、プルーン、アーモンド、ナシ、洋ナシ、ラズベリー、ブラックベリー、カシス、クランベリー、ブルーベリー、ダイズ、インゲンマメ、エンドウマメ、ソラマメ、エダマメ、リョクトウ、ヒヨコマメ、ハス、ゴマ、ホウレンソウ、ビート、テンサイ、キヌア、ヒユ、アマランサス、ケイトウ、ナツメヤシ、アブラヤシ、ココヤシ、アサイー、バナナ、バショウ、マニラアサ、ワタ、オクラ、ユーカリ、フウチョウソウ 、及びセイヨウフウチョウソウより選ばれる1種の植物である、請求項1~9のいずれか一項に記載の植物体の耐塩性向上方法。
  14.  微生物を共生させた植物体を、塩化ナトリウム濃度が1.5質量%以上の環境下で栽培し、当該植物体の生存率が10%以上である、植物体の栽培方法。
  15.  PERK13の機能が抑制又は阻害された、植物体。
  16.  植物体のPERK13の機能を抑制又は阻害する、耐塩性植物体の製造方法。
PCT/JP2017/022187 2016-06-17 2017-06-15 植物体の耐塩性向上方法 WO2017217508A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17813402.9A EP3409105A4 (en) 2016-06-17 2017-06-15 METHOD FOR IMPROVING THE SALT TOLERANCE OF A PLANT
AU2017285758A AU2017285758A1 (en) 2016-06-17 2017-06-15 Method for improving salt tolerance of plant
JP2017562360A JP6435060B2 (ja) 2016-06-17 2017-06-15 植物体の耐塩性向上方法
CN201780028506.5A CN109640631A (zh) 2016-06-17 2017-06-15 提高植物体耐盐性的方法
US16/080,900 US20190169631A1 (en) 2016-06-17 2017-06-15 Method for improving salt tolerance of plant
SG11201809744YA SG11201809744YA (en) 2016-06-17 2017-06-15 Method for improving salt tolerance of plant
US16/450,001 US20190345508A1 (en) 2016-06-17 2019-06-24 Method for improving salt tolerance of plant
US17/841,084 US20220411812A1 (en) 2016-06-17 2022-06-15 Method for improving salt tolerance of plant

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016121235 2016-06-17
JP2016-121235 2016-06-17
JP2016-241469 2016-12-13
JP2016241469 2016-12-13
JP2017-086654 2017-04-25
JP2017086654 2017-04-25
JP2017100286 2017-05-19
JP2017-100286 2017-05-19

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/080,900 A-371-Of-International US20190169631A1 (en) 2016-06-17 2017-06-15 Method for improving salt tolerance of plant
US16/450,001 Division US20190345508A1 (en) 2016-06-17 2019-06-24 Method for improving salt tolerance of plant
US17/841,084 Division US20220411812A1 (en) 2016-06-17 2022-06-15 Method for improving salt tolerance of plant

Publications (1)

Publication Number Publication Date
WO2017217508A1 true WO2017217508A1 (ja) 2017-12-21

Family

ID=60664000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022187 WO2017217508A1 (ja) 2016-06-17 2017-06-15 植物体の耐塩性向上方法

Country Status (7)

Country Link
US (3) US20190169631A1 (ja)
EP (1) EP3409105A4 (ja)
JP (3) JP6435060B2 (ja)
CN (1) CN109640631A (ja)
AU (1) AU2017285758A1 (ja)
SG (1) SG11201809744YA (ja)
WO (1) WO2017217508A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070028A (zh) * 2018-02-13 2018-05-25 海南大学 一种提高植物耐盐性的方法
CN108753795A (zh) * 2018-06-28 2018-11-06 云南省烟草农业科学研究院 一种提高烟草叶片钾含量的基因NtNHX1-3及其克隆方法与应用
CN109258468A (zh) * 2018-10-22 2019-01-25 王开 一种马铃薯耐盐碱改良育种方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111088260A (zh) * 2020-01-16 2020-05-01 南京农业大学 萝卜耐盐基因RsNHX1及应用
WO2021156478A1 (en) * 2020-02-05 2021-08-12 Agrisea Corporation Methods and compositions for production of saline tolerant plants
CN111187780B (zh) * 2020-03-12 2022-05-27 南京农业大学 水稻钾离子转运蛋白基因OsHAK18的基因工程应用
CN111621508B (zh) * 2020-06-11 2022-07-01 云南中烟工业有限责任公司 烟草萜类合成酶NtTPS7基因及其载体与应用
CN113930440B (zh) * 2020-06-29 2023-12-12 中国科学院植物研究所 一种通过抑制OsSDP基因表达提高水稻耐盐性的方法
CN111837920A (zh) * 2020-07-30 2020-10-30 青岛农业大学 一种新型复合物在提高植物抵抗土壤铝毒中的应用方法
AU2022323747A1 (en) 2021-08-04 2024-02-29 Alora Innovations Inc. Salt tolerant plants
CN114885835A (zh) * 2022-05-27 2022-08-12 广西壮族自治区林业科学研究院 一种利用甲基磺酸乙酯探究桃金娘种子诱变效应的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053246A2 (en) * 2004-11-15 2006-05-18 Purdue Research Foundation A new sos 1 gene from halophila that confers salt tolerance
WO2006079045A2 (en) * 2005-01-24 2006-07-27 The Arizona Board Of Regents On Behalf Of The University Of Arizona Evaluation of salt tolerance in transgenic arabidopsis plants expressing sos2 mutant alleles .
JP2011500081A (ja) * 2007-10-24 2011-01-06 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー シネコシスティス(Synechocystis)から単離されたSyFBP/SBPase遺伝子を過発現させることによって植物の耐塩性を向上させる方法及びその方法によって製造された植物
JP2015149954A (ja) * 2014-02-17 2015-08-24 国立研究開発法人国際農林水産業研究センター ダイズ第3番染色体に座上する耐塩性を制御する遺伝子qNaCl3とその利用法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103198A (zh) * 2006-05-30 2013-05-15 克罗普迪塞恩股份有限公司 具有增强的产量相关性状的伸展蛋白受体样激酶受调节表达的植物和用于产生该植物的方法
KR100990333B1 (ko) * 2008-07-24 2010-10-29 전북대학교산학협력단 보리 유래의 nhx 유전자, 이를 이용하여 식물의 내염성을 증진시키는 방법, 및 상기 방법을 이용하여 내염성이 증진된 형질전환 식물체
CN101962649A (zh) * 2010-10-28 2011-02-02 南京农业大学 野生茄子耐盐基因StP5CS及其抗除草剂植物表达载体
JP5794689B2 (ja) * 2011-09-30 2015-10-14 公立大学法人福井県立大学 植物の生長促進及び耐塩性向上剤
CN102432679B (zh) * 2011-12-12 2014-03-05 华南农业大学 水稻类伸展蛋白OsPEX1及其应用
CN103014035B (zh) * 2012-12-29 2014-03-12 重庆邮电大学 茎瘤芥抗逆基因及其植物表达载体和构建方法及应用
JP6623015B2 (ja) * 2014-09-29 2019-12-18 国立研究開発法人理化学研究所 植物の耐塩性向上剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053246A2 (en) * 2004-11-15 2006-05-18 Purdue Research Foundation A new sos 1 gene from halophila that confers salt tolerance
WO2006079045A2 (en) * 2005-01-24 2006-07-27 The Arizona Board Of Regents On Behalf Of The University Of Arizona Evaluation of salt tolerance in transgenic arabidopsis plants expressing sos2 mutant alleles .
JP2011500081A (ja) * 2007-10-24 2011-01-06 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー シネコシスティス(Synechocystis)から単離されたSyFBP/SBPase遺伝子を過発現させることによって植物の耐塩性を向上させる方法及びその方法によって製造された植物
JP2015149954A (ja) * 2014-02-17 2015-08-24 国立研究開発法人国際農林水産業研究センター ダイズ第3番染色体に座上する耐塩性を制御する遺伝子qNaCl3とその利用法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG ET AL.: "Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth", JOURNAL OF EXPERIMENTAL BOTANY, vol. 67, no. 6, 16 February 2016 (2016-02-16), pages 2007 - 2022, XP055447937 *
See also references of EP3409105A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108070028A (zh) * 2018-02-13 2018-05-25 海南大学 一种提高植物耐盐性的方法
CN108753795A (zh) * 2018-06-28 2018-11-06 云南省烟草农业科学研究院 一种提高烟草叶片钾含量的基因NtNHX1-3及其克隆方法与应用
CN109258468A (zh) * 2018-10-22 2019-01-25 王开 一种马铃薯耐盐碱改良育种方法

Also Published As

Publication number Publication date
JP2018186834A (ja) 2018-11-29
EP3409105A4 (en) 2019-09-25
JP6435060B2 (ja) 2018-12-05
AU2017285758A1 (en) 2018-11-22
US20220411812A1 (en) 2022-12-29
JP2018186835A (ja) 2018-11-29
CN109640631A (zh) 2019-04-16
SG11201809744YA (en) 2019-01-30
US20190345508A1 (en) 2019-11-14
US20190169631A1 (en) 2019-06-06
JPWO2017217508A1 (ja) 2018-06-28
EP3409105A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017217508A1 (ja) 植物体の耐塩性向上方法
KR100845279B1 (ko) 중금속이나 염 축적성, 또는 중금속, 염 또는 건조에 대한내성을 변화시키는 유전자 및 이들을 이용하여 제조한형질전환체
CN104561023B (zh) 大豆GmCIB1基因和GmCRY2基因及其调控开花及衰老的作用
CN109021084A (zh) 枳抗寒基因PtrERF109及其在植物抗寒遗传改良中的应用
CN102952822A (zh) 丹波黑大豆c2h2型锌指蛋白基因stop1的植物表达载体及其应用
MX2009012816A (es) Aumento del rendimiento en plantas por modulacion del factor zmrr10_p de transcripcion de garp.
WO2012154884A2 (en) Method and compositions to promote plant growth in metal contaminated environments
CN109734784B (zh) SlDALR1基因在增强番茄细菌性叶斑病抗性中的应用
JP2020150858A (ja) 植物体の高浸透圧耐性向上方法
CN115161332B (zh) 一种刺葡萄VdERF2基因及其编码蛋白和应用
CN107164392B (zh) 一种草莓盐胁迫相关基因FvDIV及其应用
KR101431125B1 (ko) grxC 유전자가 형질전환된 저온 내성이 증진된 형질전환 식물체 및 그 제조방법
CN110612022A (zh) 产生碳水化合物的植物材料
KR20140063309A (ko) nrdH 유전자가 형질전환된 저온 내성 및 내염성이 증진된 형질전환 식물체 및 그 제조방법
CN107827963B (zh) 拟南芥idd14基因在提升植物干旱胁迫耐性中的应用
KR102000465B1 (ko) 식물의 키다리병 저항성을 증진시키는 방법
MX2009012258A (es) Aumento del rendimiento en plantas por modulacion de alfinos de maiz.
MX2009011397A (es) Mejora del rendimiento en plantas por modulacion de zmpkt.
KR20150003099A (ko) 식물의 생산성 증대 기능, 스트레스 내성 기능 및 노화 지연 기능을 갖는 atpg6 단백질과 그 유전자 및 이들의 용도
KR101592357B1 (ko) 식물의 냉해 스트레스 내성과 관련된 신규 유전자 및 그의 용도
CN112501196B (zh) 基于表达调控技术的番茄基因在花柄脱落过程中的应用
KR101825219B1 (ko) 담배 유래의 탈메틸화 관련 NtROS2a 유전자 및 이의 용도
KR20080092629A (ko) 식물체에서 AtSPF3의 수준을 조절하여 식물의 종자생산량을 변화시키는 방법
CN110272911A (zh) AOX1a基因在提高植物耐旱性方面的应用
WO2024008752A1 (en) Methods to increase iron content in plants

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017562360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017813402

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017813402

Country of ref document: EP

Effective date: 20180829

ENP Entry into the national phase

Ref document number: 2017285758

Country of ref document: AU

Date of ref document: 20170615

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE