WO2017215282A1 - 电化学法回收锂电池正极材料中的锂的方法 - Google Patents

电化学法回收锂电池正极材料中的锂的方法 Download PDF

Info

Publication number
WO2017215282A1
WO2017215282A1 PCT/CN2017/074131 CN2017074131W WO2017215282A1 WO 2017215282 A1 WO2017215282 A1 WO 2017215282A1 CN 2017074131 W CN2017074131 W CN 2017074131W WO 2017215282 A1 WO2017215282 A1 WO 2017215282A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
lithium battery
solution
recovering
Prior art date
Application number
PCT/CN2017/074131
Other languages
English (en)
French (fr)
Inventor
曹乃珍
高洁
徐川
高宜宝
陶帅
党春霞
Original Assignee
天齐锂业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天齐锂业股份有限公司 filed Critical 天齐锂业股份有限公司
Publication of WO2017215282A1 publication Critical patent/WO2017215282A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/02Electrolytic production, recovery or refining of metals by electrolysis of solutions of light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to a method for recovering lithium in a cathode material of a lithium battery by an electrochemical method, and belongs to the technical field of energy materials.
  • Lithium batteries including lithium-ion batteries and lithium metal batteries.
  • Lithium-ion batteries generally use a lithium-containing compound as a positive electrode and a carbon material as a negative electrode.
  • the lithium metal battery is a battery using a lithium compound as a positive electrode, a lithium metal or a lithium alloy as a negative electrode material, and a nonaqueous electrolyte solution.
  • the lithium battery in the present invention includes a lithium ion battery and a lithium metal battery.
  • Lithium metal batteries were first proposed and studied by Gilbert N. Lewis in 1912. In the 1970s, M.S. Whittingham proposed and began researching lithium-ion batteries. Due to the very active chemical properties of lithium metal, the processing, storage and use of lithium metal are very demanding on the environment. Therefore, lithium batteries have not been used for a long time. With the development of science and technology, lithium batteries have become the mainstream. Lithium-ion batteries are also a series of green batteries with excellent performance. They have been widely used in civil and military applications such as mobile phones, notebook computers, video cameras, and digital cameras for more than 10 years.
  • lithium batteries With the wide application of lithium batteries, it has entered a large number of failure and recycling stages. How to recycle lithium batteries and recycle resources has become a common concern of the society.
  • the recycling of lithium batteries can not only solve a series of environmental problems caused by used batteries, but also recycle the non-ferrous metals in the batteries, which can effectively alleviate the shortage of resources.
  • Patent 2012800276260 discloses a method for recovering lithium by electrochemical method, and recovering lithium in waste cathode raw material by electrochemical method.
  • the method uses unqualified cathode material as raw material, and only targets lithium manganese oxide LixMyMnzO 4 (where M represents Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Si, Mg, and Zn, x is 1.33 to 2, y is 0 to 0.5, and z is 1 to 1.67).
  • the raw material is subjected to pulping and coating to form a positive electrode sheet, and a non-aqueous solution in which a lithium salt is dissolved is used as an electrolyte, and the electrode plate is a lithium plate or a copper plate which forms a mesh form.
  • the cathode material for this patent is single, and does not contain cathode materials such as lithium iron phosphate, ternary composite materials, and lithium cobalt oxide.
  • the raw materials used in this patent recovery are not the positive electrode sheets in the lithium ion battery.
  • Patent 201310105752.X discloses a method for electrochemically recovering lithium, using FePO 4 material as a negative electrode, and a lithium-containing solution (a near-neutral solution in which a lithium iron ion battery lithium iron phosphate positive electrode material is dissolved and treated by acid) is electrolysis.
  • the liquid, the inert electrode is a positive electrode, and the Li 1-x FePO 4 material formed by lithium is directly recovered from the solution by electrochemical method, and the formed Li 1-x FePO 4 material is newly prepared to form a new LiFePO 4 material.
  • the method is to recover lithium by using an acid-dissolved solution of a lithium-ion battery lithium iron phosphate cathode material as an electrolyte, and the recovered lithium enters the iron phosphate to form lithium iron phosphate, which is high in one fell swoop. Novelty, but this method can only be recovered for low-value ionic solutions such as lithium iron phosphate solution.
  • the technical problem to be solved by the present invention is to provide a method for recovering lithium in a positive electrode material of a lithium battery, and directly recovering lithium in the positive electrode material by an electrochemical method.
  • the method for electrochemically recovering lithium in a positive electrode material of a lithium battery using a positive electrode material of a lithium battery as a positive electrode, a metal or carbon as a negative electrode, and an aqueous solution as an electrolyte, applying an electric potential to move lithium ions in a positive electrode material of the lithium battery A lithium-containing solution is formed in the aqueous electrolyte solution.
  • the source of the lithium battery positive electrode material is a positive electrode scrap produced during the production process of the lithium battery, a positive electrode waste generated during the production process of the lithium battery, a waste generated during the production process of the positive electrode material of the lithium battery or a positive electrode disassembled after the lithium battery is disassembled.
  • the lithium battery positive electrode material is a lithium-containing compound capable of reversible insertion and removal.
  • the lithium-containing compound is preferably at least one of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese nickel cobalt composite oxide, manganese nickel aluminum composite oxide, lithium vanadium oxide, and lithium iron oxide. .
  • the material of the metal or carbon electrode is platinum, nickel, copper, ruthenium, titanium or carbon.
  • the aqueous solution electrolyte is a lithium hydroxide solution, a sodium chloride solution, a lithium sulfate solution or a lithium nitrate solution.
  • the aqueous solution electrolyte has a concentration of 0.01 to 1 mol/L, preferably 0.025 to 0.8 mol/L.
  • a potential of 0.1 to 2.0 V is applied, and the time for applying the potential is 1.5 to 8 hours.
  • the method for recovering lithium in a positive electrode material of a lithium battery of the present invention can prepare a lithium-containing solution into a lithium salt.
  • the lithium salt prepared is lithium carbonate, lithium chloride or lithium hydroxide.
  • the invention directly moves lithium ions from the positive electrode material into the electrolyte by electrochemical method, and extracts lithium from the positive electrode material at one time to form a lithium solution, and the migration rate thereof is high, and can reach more than 90%, even up to 99. %. Since only lithium can be removed at a certain potential, it is not sensitive to iron ions, aluminum ions, ammonium ions, cobalt ions, manganese ions, etc., and has high selectivity, and the content of impurities in the solution is low, which is favorable for obtaining Grade-adjustable lithium salt.
  • the lithium element in the positive electrode material of the lithium battery can be recovered simply and efficiently.
  • the raw materials targeted by the invention cover the positive electrode material scraps and scraps which are commonly found in the market, the waste materials in the production of lithium battery materials and the positive electrode of the lithium battery, and the lithium salt products formed by the recycling have the characteristics of various types and adjustable quality.
  • the method for electrochemically recovering lithium in a positive electrode material of a lithium battery using a positive electrode material of a lithium battery as a positive electrode, a metal or carbon as a negative electrode, and an aqueous solution as an electrolyte, applying an electric potential to move lithium ions in a positive electrode material of the lithium battery A lithium-containing solution is formed in the aqueous electrolyte solution.
  • the method of the invention can recover the positive electrode scrap produced in the production process of the lithium battery commonly used in the market, such as lithium nickel cobalt manganese oxide, lithium manganate, lithium iron phosphate, lithium cobalt oxide, etc., and the positive electrode waste generated in the production process of the lithium battery The waste generated during the production of the lithium battery cathode material or the anode after the lithium battery is disassembled.
  • the lithium battery positive electrode material is a lithium-containing compound material capable of reversible insertion and removal. Both the lithium ion battery and the lithium metal battery can be recovered by the method of the present invention as long as the positive electrode material is a lithium-containing compound reversibly intercalated.
  • the lithium-containing compound is at least one of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese nickel cobalt composite oxide, manganese nickel aluminum composite oxide, and lithium iron oxide.
  • the positive electrode material of the lithium battery may be a positive electrode material commonly available on the market such as lithium nickel cobalt manganese oxide, lithium manganate, lithium iron phosphate, lithium cobaltate, lithium nickel cobalt aluminate, and lithium titanate.
  • a high voltage type positive electrode material can also be recovered by the method of the present invention.
  • the material of the metal or carbon electrode is platinum, nickel, copper, ruthenium, titanium or carbon.
  • the aqueous solution is an aqueous electrolyte solution.
  • the aqueous solution electrolyte is a lithium hydroxide solution, a sodium chloride solution, a lithium sulfate solution or a lithium nitrate solution.
  • the aqueous solution electrolyte has a concentration of 0.01 to 1 mol/L, preferably 0.025 to 0.8 mol/L.
  • a potential of 0.1 to 2.0 V is applied, and the time for applying the potential is 1.5 to 8 hours.
  • the method for recovering lithium in a positive electrode material of a lithium battery of the present invention can prepare a lithium-containing solution into a lithium salt.
  • a commonly used method for preparing a lithium salt from a lithium-containing solution is suitable for use in the present invention.
  • the prepared lithium salt is lithium carbonate, lithium chloride or lithium hydroxide.
  • the preparation method is a prior art in the art, for example, lithium carbonate is prepared by the following method: a lithium-containing solution is concentrated to a solution having a Li 2 O content of 30 to 35 g/L, and 280 to 285 g/L of Na 2 is added thereto. CO 3 , the excess coefficient is 105%, the precipitation of lithium carbonate is obtained, and the precipitation is completed and aged for 20 minutes.
  • the solid-liquid separation is carried out to obtain the crude lithium carbonate, and the crude lithium carbonate is stirred with deionized water at a solid-liquid ratio of 1:3.
  • a lithium carbonate product having a purity of a battery grade is obtained.
  • Step 1 The lithium iron phosphate material is used as the positive electrode sheet, the sodium chloride solution is used as the electrolyte, and the graphite is used as the negative electrode.
  • the potential is applied to the electrolytic cell by 0.1 V potential, wherein the concentration of the sodium chloride solution is 0.025 mol/L for 2 h, the lithium ions in the positive electrode sheet were moved into the electrolyte solution to form a lithium-containing solution. A lithium-containing solution is obtained. After the end of the experiment, the lithium content in the positive electrode sheet was measured, and the lithium removal rate was 95.3%, and the lithium content in the lithium-containing solution was measured to be 1.1 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 is concentrated to a solution having a Li 2 O content of 33 g/L, and 280 g/L of Na 2 CO 3 is added thereto, and the excess coefficient is 105% to obtain lithium carbonate precipitation, and the precipitation is completed. After aging for 20 min, solid-liquid separation was carried out to obtain a crude lithium carbonate product, and the crude lithium carbonate was stirred twice with a solid-liquid ratio of 1:3 with deionized water to obtain a lithium carbonate product having a purity of a battery grade.
  • Step 1 The lithium iron phosphate material is used as the positive electrode sheet, the lithium sulfate solution is used as the electrolyte, the copper piece is used as the negative electrode, and the potential of 0.3 V is applied to the electrolytic cell for electrochemical recovery, wherein the concentration of the sodium chloride solution is determined.
  • the lithium ions in the positive electrode sheet were moved into the electrolyte solution to form a lithium-containing solution.
  • the lithium content in the positive electrode sheet was measured, and the lithium removal rate was 99.1%, and the lithium content in the lithium-containing solution was 1.1 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 is concentrated to a solution having a Li 2 O content of 33 g/L, and 280 g/L of Na 2 CO 3 is added thereto, and the excess coefficient is 105% to obtain lithium carbonate precipitation, and the precipitation is completed. After aging for 20 min, solid-liquid separation was carried out to obtain a crude lithium carbonate product, and the crude lithium carbonate was stirred twice with a solid-liquid ratio of 1:3 with deionized water to obtain a lithium carbonate product having a purity of a battery grade.
  • Step 1 Lithium cobaltate is used as the positive electrode sheet, lithium hydroxide solution is used as the electrolyte, copper plate is used as the negative electrode, and an electric potential of 1.05 V is applied to the electrolytic cell for electrochemical recovery.
  • the concentration of the lithium hydroxide solution is 0.35.
  • the mol/L time is 2.5 h, and the lithium ions in the positive electrode sheet are moved into the electrolyte solution to form a lithium-containing solution.
  • the lithium content in the positive electrode sheet was measured, and the lithium removal rate was 72.8%, and the lithium content in the lithium-containing solution was measured to be 1.1 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 is concentrated to a solution having a Li 2 O content of 33 g/L, and CO 2 is introduced thereto, and the reaction end point is controlled to be: the Li 2 O concentration in the solution is about 6 g/L and the solution When the pH is about 9, the CO 2 is stopped, and lithium carbonate is precipitated, and solid-liquid separation is performed to obtain a crude lithium carbonate.
  • the crude lithium carbonate is stirred twice with a solid-liquid ratio of 1:3 with deionized water to obtain a purity battery. Grade lithium carbonate products.
  • Step 1 Lithium iron phosphate was used as the positive electrode sheet, lithium sulfate was used as the electrolyte, and the copper plate was used as the negative electrode.
  • the potential of 1.2 V was applied to the electrolytic cell for electrochemical recovery, wherein the electrolyte concentration was 0.8 mol/L.
  • the time is 5h, and the lithium ions in the positive electrode sheet are moved into the electrolyte solution to form a lithium-containing solution.
  • the lithium content in the positive electrode sheet was measured, the lithium removal rate was 99.6%, and the lithium content in the lithium-containing solution was measured to be 1.5 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 was concentrated to a solution having a Li 2 O content of 30 g/L, and 285 g/L of Na 2 CO 3 was added thereto, and the excess coefficient was 105% to obtain lithium carbonate precipitation, and the precipitation was completed. After aging for 20 min, solid-liquid separation was carried out to obtain a crude lithium carbonate product, and the crude lithium carbonate was stirred twice with a solid-liquid ratio of 1:3 with deionized water to obtain a lithium carbonate product having a purity of a battery grade.
  • Step 1 The nickel-cobalt-manganese ternary material is used as the positive electrode sheet, lithium nitrate is used as the electrolyte, and the copper piece is used as the negative electrode.
  • the potential of 0.9V is applied to the electrolytic cell for electrochemical recovery.
  • the concentration of the lithium nitrate electrolyte is 0.55 mol/L
  • charging time is 7.0 h
  • lithium ions in the positive electrode sheet are moved into the electrolyte solution to form a lithium-containing solution.
  • the lithium content in the positive electrode sheet was measured, and the lithium removal rate was 81.2%, and the lithium content in the lithium-containing solution was measured to be 1.2 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 was concentrated to a solution having a Li 2 O content of 36 g/L, and 285 g/L of Na 2 CO 3 was added thereto in an amount ratio of the substance, and the excess coefficient was 105% to obtain carbonic acid. Lithium precipitation, aging after precipitation is completed for 20 min, solid-liquid separation is carried out to obtain crude lithium carbonate, and crude lithium carbonate is stirred twice with deionized water at a solid-liquid ratio of 1:3 to obtain a battery-grade lithium carbonate product.
  • Step 1 Lithium manganate is used as the positive electrode sheet, lithium sulfate is used as the electrolyte, copper plate is used as the negative electrode, and an electric potential of 2.0 V is applied to the electrolytic cell for electrochemical recovery.
  • the concentration of the lithium salt electrolyte is 0.25 mol. /L
  • the charging time is 8h
  • the lithium ions in the positive electrode sheet are moved into the electrolyte solution to form a lithium-containing solution.
  • the lithium content in the positive electrode sheet was measured, and the lithium removal rate was 74.7%, and the lithium content in the lithium-containing solution was measured to be 1.4 g/L (calculated as Li 2 O).
  • Step 2 The lithium-containing solution obtained in the step 1 was concentrated to a solution having a Li 2 O content of 35 g/L, and 285 g/L of Na 2 CO 3 was added thereto, and the excess coefficient was 105% to obtain lithium carbonate precipitation, and the precipitation was completed. After aging for 20 min, solid-liquid separation was carried out to obtain a crude lithium carbonate product, and the crude lithium carbonate was stirred twice with a solid-liquid ratio of 1:3 with deionized water to obtain a lithium carbonate product having a purity of a battery grade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及电化学法回收锂电池正极材料中的锂的方法,属于能源材料技术领域。本发明解决的技术问题是提供电化学法回收锂电池正极材料中的锂的方法,该方法将锂电池正极材料作为正极,金属或碳类电极作为负极,水性溶液作为电解质,施加电势,使锂电池正极材料中的锂离子迁入电解质水溶液中形成含锂溶液。通过本发明方法,能简单、高效的回收锂电池正极材料中的锂元素。此外,本发明所针对的原材料覆盖了市面上普遍存在的正极材料边角料、废料和锂电池正极,回收所形成的锂盐产品具有种类多、品质可调等特点。

Description

电化学法回收锂电池正极材料中的锂的方法 技术领域
本发明涉及电化学法回收锂电池正极材料中的锂的方法,属于能源材料技术领域。
背景技术
锂电池,包括锂离子电池和锂金属电池。锂离子电池通常以含锂的化合物作正极,以碳素材料为负极。而锂金属电池是由锂的化合物作正极、锂金属或锂合金为负极材料、使用非水电解质溶液的电池。本发明中的锂电池包括了锂离子电池和锂金属电池。
1912年锂金属电池最早由Gilbert N.Lewis提出并研究。20世纪70年代时,M.S.Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。随着科学技术的发展,现在锂电池已经成为了主流。而锂离子电池也是具有一系列优良性能的绿色电池,问世10多年以来,已被广泛应用于移动电话、笔记本电脑、摄像机、数码相机等民用及军事应用领域。
随着锂电池的广泛应用,已大量进入失效、回收阶段,如何回收锂电池和资源化循环利用已成为社会普遍关注的问题。回收处理锂电池不仅可以解决废旧电池所带来的一系列环境问题,而且对电池中有色金属进行了回收利用,能有效缓解资源的紧缺。
专利2012800276260公开了利用电化学法的锂的回收方法,利用电化学法回收废旧正极原材料中的锂,该方法选用不合格的正极材料作为原料,且只针对锂锰氧化物LixMyMnzO4(其中M代表Ti、V、Cr、Fe、Co、Ni、Cu、Zr、Nb、Mo、Si、Mg及Zn,x为1.33至2,y为0至0.5,z为1至1.67)。将这种原料经过制浆、涂布后形成正极片,以溶解了锂盐的非水溶液做电解质,电极板为形成网形态的锂板或铜板。采用该方法,可回收正极材料中的锂,其回收率高,使用的化学物质的消耗量少,具有卓越的经济性。但该项专利针对的正极材料单一,并没有包含如:磷酸铁锂、三元复合材料、钴酸锂等正极材料。而且此项专利回收所采用的原料并不是锂离子电池中的正极片为原料。
专利201310105752.X公开了一种电化学回收锂的方法,以FePO4材料为负极,含锂的溶液(废旧锂离子电池磷酸铁锂正极材料经酸溶解并处理后的近中性溶液)为电解液,惰性电极为正极,通过电化学方法直接从溶液中回收锂形成的Li1-xFePO4材料, 并将形成的Li1-xFePO4材料重新制备生成新的LiFePO4材料。该方法是将废旧的锂离子电池磷酸铁锂正极材料经过酸溶解后的溶液作为电解液进行回收锂,而回收的锂进入到磷酸铁中形成了磷酸铁锂,一举双得,有很高的新颖性,但是此方法只能针对价值不高的离子溶液(如磷酸铁锂溶液)进行回收。
发明内容
本发明解决的技术问题是提供回收锂电池正极材料中的锂的方法,采用电化学法直接回收正极材料中的锂。
本发明电化学法回收锂电池正极材料中的锂的方法,将锂电池正极材料作为正极,金属或碳类作为负极,水性溶液作为电解质,施加电势,使锂电池正极材料中的锂离子迁入电解质水溶液中形成含锂溶液。
其中,所述锂电池正极材料的来源为锂电池生产过程中产生的正极边角料、锂电池生产过程中产生的正极废料、锂电池正极材料生产过程中产生的废料或锂电池拆解后的正极。
所述锂电池正极材料为能可逆嵌入脱出的含锂化合物。
所述含锂化合物优选为锂钴氧化物、锂镍氧化物、锂锰氧化物、锰镍钴复合氧化物、锰镍铝复合氧化物、锂钒氧化物、锂铁氧化物中的至少一种。
所述金属或碳类电极的材料为铂、镍、铜、钌、钛或碳。
所述水性溶液电解质为氢氧化锂溶液、氯化钠溶液、硫酸锂溶液或硝酸锂溶液。
进一步的,所述水性溶液电解质浓度为0.01~1mol/L,优选为0.025~0.8mol/L。
作为优选方案,施加0.1~2.0V的电势,施加电势的时间为1.5~8h。
本发明回收锂电池正极材料中的锂的方法,可以将含锂溶液制备成锂盐。优选的,制备得到的锂盐为碳酸锂、氯化锂或氢氧化锂。
本发明通过电化学方法使锂离子从正极材料直接迁入到电解液中,一次性将锂从正极材料中提取出来,形成锂溶液,其迁出率高,能达到90%以上,甚至高达99%。由于在一定的电势下只能迁出锂,对铁离子、铝离子、铵离子、钴离子、锰离子等都不敏感,具有高的选择性,实现在溶液中杂质含量较低,有利于得到品级可调的锂盐。通过本发明方法,能简单、高效的回收锂电池正极材料中的锂元素。此外,本发明所针对的原材料覆盖了市面上普遍存在的正极材料边角料、废料,锂电池材料生产中的废料和锂电池正极,回收所形成的锂盐产品具有种类多、品质可调等特点。
具体实施方式
本发明电化学法回收锂电池正极材料中的锂的方法,将锂电池正极材料作为正极,金属或碳类作为负极,水性溶液作为电解质,施加电势,使锂电池正极材料中的锂离子迁入电解质水溶液中形成含锂溶液。
本发明的方法,可以回收镍钴锰酸锂、锰酸锂、磷酸亚铁锂、钴酸锂等市面上普遍存在的锂电池生产过程中产生的正极边角料、锂电池生产过程中产生的正极废料、锂电池正极材料生产过程中产生的废料或锂电池拆解后的正极。
所述锂电池正极材料为能可逆嵌入脱出的含锂化合物材料。无论是锂离子电池还是锂金属电池,只要其正极材料是可逆嵌入脱出的含锂化合物,均可通过本发明的方法进行回收。
作为优选方案,所述含锂化合物优选为锂钴氧化物、锂镍氧化物、锂锰氧化物、锰镍钴复合氧化物、锰镍铝复合氧化物、锂铁氧化物中的至少一种。例如,锂电池正极材料可以为镍钴锰酸锂、锰酸锂、磷酸亚铁锂、钴酸锂、镍钴铝酸锂、钛酸锂等市面上普遍存在的正极材料。此外,高电压类正极材料也可采用本发明的方法进行回收。
所述金属或碳类电极的材料为铂、镍、铜、钌、钛或碳。
所述水性溶液即为电解质水溶液。
所述水性溶液电解质为氢氧化锂溶液、氯化钠溶液、硫酸锂溶液或硝酸锂溶液。
进一步的,所述水性溶液电解质浓度为0.01~1mol/L,优选为0.025~0.8mol/L。
作为优选方案,施加0.1~2.0V的电势,施加电势的时间为1.5~8h。
本发明回收锂电池正极材料中的锂的方法,可以将含锂溶液制备成锂盐。常用的从含锂溶液中制备得到锂盐的方法均适用于本发明,优选的,制备得到的锂盐为碳酸锂、氯化锂或氢氧化锂。其制备方法为本领域现有技术,例如,采用如下方法制备得到碳酸锂:将含锂溶液浓缩至Li2O含量为30~35g/L的溶液,向其中加入280~285g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
步骤1:以磷酸亚铁锂材料为正极片,以氯化钠溶液为电解液,以石墨为负极,在电解槽中对其施加0.1V电势进行电化学回收,其中氯化钠溶液的浓度为0.025mol/L,时间为2h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。得到含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到95.3%,检测含锂溶液中的锂含量,为1.1g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为33g/L的溶液,向其中加入280g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
实施例2
步骤1:以磷酸亚铁锂材料为正极片,以硫酸锂溶液为电解液,以铜片为负极,在电解槽中对其施加0.3V的电势进行电化学回收,其中氯化钠溶液的浓度为0.5mol/L,时间为1.5h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到99.1%,检测含锂溶液中的锂含量,为1.1g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为33g/L的溶液,向其中加入280g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
实施例3
步骤1:以钴酸锂为正极片,以氢氧化锂溶液为电解液,以铜片为负极,在电解槽中对其施加1.05V的电势进行电化学回收,其中氢氧化锂溶液浓度为0.35mol/L,时间为2.5h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到72.8%,检测含锂溶液中的锂含量,为1.1g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为33g/L的溶液,向其中通入CO2,控制反应终点为:溶液中Li2O浓度为6g/L左右且溶液pH为9左右时停止通入CO2,得到碳酸锂沉淀,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
实施例4
步骤1:以磷酸亚铁锂为正极片,以硫酸锂为电解液,以铜片为负极,在电解槽中对其施加1.2V的电势进行电化学回收,其中电解液浓度为0.8mol/L,时间为5h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到99.6%,检测含锂溶液中的锂含量,为1.5g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为30g/L的溶液,向其中加入285g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
实施例5
步骤1:以镍钴锰三元材料为正极片,以硝酸锂为电解液,以铜片为负极,在电解槽中对其施加0.9V的电势进行电化学回收,其中硝酸锂电解液浓度为0.55mol/L,充电时间为7.0h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到81.2%,检测含锂溶液中的锂含量,为1.2g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为36g/L的溶液,以物质的量比向其中加入285g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。
实施例6
步骤1:以锰酸锂为正极片,以硫酸锂为电解液,以铜片为负极,在电解槽中对其施加2.0V的电势进行电化学回收,其中锂盐类电解液浓度为0.25mol/L,充电时间为8h,使正极片中的锂离子迁入电解质溶液中形成含锂溶液。实验结束后检测正极片中的锂含量,锂的迁出率能达到74.7%,检测含锂溶液中的锂含量,为1.4g/L(以Li2O计)。
步骤2:将步骤1中所得的含锂溶液浓缩至Li2O含量为35g/L的溶液,向其中加入285g/L的Na2CO3,过量系数为105%,得到碳酸锂沉淀,沉淀完成后陈化20min,进行固液分离得到碳酸锂粗品,将碳酸锂粗品以固液比为1:3用去离子水搅洗两次,得到纯度为电池级的碳酸锂产品。

Claims (11)

  1. 电化学法回收锂电池正极材料中的锂的方法,其特征在于:将锂电池正极材料作为正极,金属或碳类作为负极,水性溶液作为电解质,施加电势,使锂电池正极材料中的锂离子迁入电解质水溶液中形成含锂溶液。
  2. 根据权利要求1所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述锂电池正极材料的来源为锂电池生产过程中产生的正极边角料、锂电池生产过程中产生的正极废料、锂电池正极材料生产过程中产生的废料或锂电池拆解后的正极。
  3. 根据权利要求1或2所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述锂电池正极材料为能可逆嵌入脱出的含锂化合物。
  4. 根据权利要求3所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述含锂化合物为锂钴氧化物、锂镍氧化物、锂锰氧化物、锰镍钴复合氧化物、锰镍铝复合氧化物、锂钒氧化物、锂铁氧化物中的至少一种。
  5. 根据权利要求1~3任一项所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述金属或碳类电极的材料为铂、镍、铜、钌、钛或碳。
  6. 根据权利要求1~4任一项所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述水性溶液为氢氧化锂溶液、氯化钠溶液、硫酸锂溶液或硝酸锂溶液。
  7. 根据权利要求1~5任一项所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述水性溶液浓度为0.01~1mol/L。
  8. 根据权利要求7所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述水性溶液的浓度为0.025~0.8mol/L。
  9. 根据权利要求1~7任一项所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:施加0.1~2.0V的电势,施加电势的时间为1.5~8h。
  10. 根据权利要求1~8任一项所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:将含锂溶液制备成锂盐。
  11. 根据权利要求10所述的电化学法回收锂电池正极材料中的锂的方法,其特征在于:所述锂盐为碳酸锂、氯化锂或氢氧化锂。
PCT/CN2017/074131 2016-06-17 2017-02-20 电化学法回收锂电池正极材料中的锂的方法 WO2017215282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610439079.7 2016-06-17
CN201610439079.7A CN105937039A (zh) 2016-06-17 2016-06-17 电化学法回收锂电池正极材料中的锂的方法

Publications (1)

Publication Number Publication Date
WO2017215282A1 true WO2017215282A1 (zh) 2017-12-21

Family

ID=56872879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074131 WO2017215282A1 (zh) 2016-06-17 2017-02-20 电化学法回收锂电池正极材料中的锂的方法

Country Status (2)

Country Link
CN (1) CN105937039A (zh)
WO (1) WO2017215282A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205491A (zh) * 2019-06-25 2019-09-06 中南大学 一种金属锂单质及其制备方法与应用
CN111276767A (zh) * 2018-12-04 2020-06-12 荆门市格林美新材料有限公司 一种废旧磷酸铁锂电池的回收方法
CN113584312A (zh) * 2021-07-28 2021-11-02 南昌航空大学 一种从废弃锂电池正极片电化学优先提锂的方法
CN114566730A (zh) * 2022-03-05 2022-05-31 贺州学院 利用废旧锰酸锂电池制备正极复合材料的方法
CN115947353A (zh) * 2022-12-13 2023-04-11 河南佰利新能源材料有限公司 利用磷酸铁锂废料制备碳酸锂和磷酸铁的方法及其应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105937038A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收磷酸铁锂中的锂的方法
CN105937039A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收锂电池正极材料中的锂的方法
CN106823816B (zh) * 2016-12-19 2020-04-17 天齐锂业股份有限公司 废旧锂电池正极材料中锂的电化学回收方法
CN107658518B (zh) * 2017-09-12 2019-08-09 贵州中伟资源循环产业发展有限公司 一种低成本稳定回收锂电池正极材料的方法
CN108270045A (zh) * 2018-01-05 2018-07-10 昆明理工大学 一种废旧锂电池正极材料的电化学浸出方法
CN108808150B (zh) * 2018-06-13 2020-09-04 合肥工业大学 一种综合回收再利用废旧三元电极材料的方法
CN108906320B (zh) * 2018-06-14 2019-12-27 中山大学 一种废旧锂离子电池中不同磁性金属的分离方法
CN109706321B (zh) * 2019-02-28 2021-07-09 江南大学 一种从盐湖卤水中选择性电吸附锂离子的方法
CN110526273A (zh) * 2019-09-02 2019-12-03 北京邮电大学 一种电化学脱锂制备高价过渡金属氧化物纳米材料的方法
CN110820014B (zh) * 2019-12-16 2021-04-02 山东理工大学 从废旧锂离子电池负极片中回收石墨片和金属的方法
CN112551600B (zh) * 2020-12-08 2022-03-25 中南大学 回收废旧锂离子电池正极材料联合电化学制氢气的方法
CN113026035B (zh) * 2021-03-02 2022-03-29 常熟理工学院 一种利用垃圾焚烧飞灰回收磷酸铁锂阴极材料中锂的方法
CN115852151A (zh) * 2023-02-17 2023-03-28 湖南五创循环科技股份有限公司 一种矿浆电解氧化处理废旧动力电池的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277495A (zh) * 2010-06-12 2011-12-14 深圳市雄韬电源科技股份有限公司 从废旧锂离子二次电池回收金属锂的方法
CN102965508A (zh) * 2012-11-02 2013-03-13 中南大学 一种废旧锂电池正极材料电解处理方法
US20140076734A1 (en) * 2012-09-19 2014-03-20 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Method and electrochemical device for low environmental impact lithium recovery from aqueous solutions
CN105895904A (zh) * 2014-08-13 2016-08-24 法拉赛斯能源公司 制备和回收锂离子电池的正极活性材料的方法
CN105937038A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收磷酸铁锂中的锂的方法
CN105937039A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收锂电池正极材料中的锂的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056322A1 (en) * 2008-11-17 2010-05-20 Chemetall Foote Corporation Recovery of lithium from aqueous solutions
CN104112882A (zh) * 2014-07-24 2014-10-22 国家电网公司 一种锂离子电池正极材料电化学提取锂的方法
CN105506310B (zh) * 2016-01-07 2017-12-08 李震祺 一种从含锂卤水中提取锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277495A (zh) * 2010-06-12 2011-12-14 深圳市雄韬电源科技股份有限公司 从废旧锂离子二次电池回收金属锂的方法
US20140076734A1 (en) * 2012-09-19 2014-03-20 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) Method and electrochemical device for low environmental impact lithium recovery from aqueous solutions
CN102965508A (zh) * 2012-11-02 2013-03-13 中南大学 一种废旧锂电池正极材料电解处理方法
CN105895904A (zh) * 2014-08-13 2016-08-24 法拉赛斯能源公司 制备和回收锂离子电池的正极活性材料的方法
CN105937038A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收磷酸铁锂中的锂的方法
CN105937039A (zh) * 2016-06-17 2016-09-14 天齐锂业股份有限公司 电化学法回收锂电池正极材料中的锂的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276767A (zh) * 2018-12-04 2020-06-12 荆门市格林美新材料有限公司 一种废旧磷酸铁锂电池的回收方法
CN111276767B (zh) * 2018-12-04 2021-04-13 荆门市格林美新材料有限公司 一种废旧磷酸铁锂电池的回收方法
CN110205491A (zh) * 2019-06-25 2019-09-06 中南大学 一种金属锂单质及其制备方法与应用
CN113584312A (zh) * 2021-07-28 2021-11-02 南昌航空大学 一种从废弃锂电池正极片电化学优先提锂的方法
CN114566730A (zh) * 2022-03-05 2022-05-31 贺州学院 利用废旧锰酸锂电池制备正极复合材料的方法
CN114566730B (zh) * 2022-03-05 2024-02-06 贺州学院 利用废旧锰酸锂电池制备正极复合材料的方法
CN115947353A (zh) * 2022-12-13 2023-04-11 河南佰利新能源材料有限公司 利用磷酸铁锂废料制备碳酸锂和磷酸铁的方法及其应用

Also Published As

Publication number Publication date
CN105937039A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2017215282A1 (zh) 电化学法回收锂电池正极材料中的锂的方法
WO2017215283A1 (zh) 电化学法回收磷酸铁锂中的锂的方法
CN109309244B (zh) 一种混合水性可充电电池
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
Li et al. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries
CN109687051A (zh) 一种废旧锂离子电池的正极材料回收方法
CN101886178B (zh) 一种镍氢废旧电池的综合回收方法
US20150247216A1 (en) Method for the hydrometallurgical recovery of lithium, nickel and cobalt from the lithium transition metal oxide-containing fraction of used galvanic cells
CN111477985B (zh) 一种回收废旧锂离子电池的方法
CN102347521A (zh) 一种电动汽车用动力型锰酸锂电池中锰和锂的回收方法
CN104112882A (zh) 一种锂离子电池正极材料电化学提取锂的方法
CN106992328B (zh) 废旧磷酸铁锂正极材料在铁镍电池中资源化再利用的方法
CN104037468A (zh) 一种从废旧锂离子电池中回收锰和铜资源的方法
WO2023155544A1 (zh) 一种聚阴离子型正极材料的制备方法
KR20210009133A (ko) 리튬 이차전지용 폐 양극물질로부터 리튬 또는 리튬 화합물, 및 유가금속의 회수방법
JP2021524986A (ja) 低純度出発前駆体を使用するリチオ化遷移金属酸化物の電気めっき
CN111517340B (zh) 一种从废弃三元锂离子电池的ncm111正极材料中回收碳酸锂的方法
CN110498434B (zh) 一种锂离子电池正极活性材料的回收方法及其应用
CN112645362B (zh) 一种氯化物型含锂盐水电化学提锂制备碳酸锂的方法
CN112680596A (zh) 一种联合废旧三元正极材料回收和电化学制氢气的方法
CN115321505B (zh) 一种含锂废水综合回收制取磷酸铁锂的方法及应用
CN110668473A (zh) 一种从废旧锂离子电池负极材料中回收锂的方法
CN113086961B (zh) 一种基于电化学的废旧磷酸铁锂修复回收方法
CN114551861A (zh) 镍钴锰三元正极材料纳米棒及其应用
CN113998742A (zh) 镍钴锰三元锂电池的回收利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812400

Country of ref document: EP

Kind code of ref document: A1