WO2017213156A1 - 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物 - Google Patents

固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物 Download PDF

Info

Publication number
WO2017213156A1
WO2017213156A1 PCT/JP2017/021033 JP2017021033W WO2017213156A1 WO 2017213156 A1 WO2017213156 A1 WO 2017213156A1 JP 2017021033 W JP2017021033 W JP 2017021033W WO 2017213156 A1 WO2017213156 A1 WO 2017213156A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
electrode active
binder composition
battery
Prior art date
Application number
PCT/JP2017/021033
Other languages
English (en)
French (fr)
Inventor
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018521743A priority Critical patent/JP6904345B2/ja
Priority to US16/303,292 priority patent/US10985401B2/en
Priority to EP17810330.5A priority patent/EP3471182B1/en
Priority to KR1020187034498A priority patent/KR102340874B1/ko
Priority to CN201780031472.5A priority patent/CN109155414B/zh
Priority to PL17810330T priority patent/PL3471182T3/pl
Publication of WO2017213156A1 publication Critical patent/WO2017213156A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a binder composition for a solid electrolyte battery and a slurry composition for a solid electrolyte battery that can be used in the production of a solid electrolyte battery.
  • a solid electrolyte battery usually has a solid electrolyte layer as an electrolyte layer between a positive electrode and a negative electrode.
  • the solid electrolyte layer include a polymer solid electrolyte layer and an inorganic solid electrolyte layer.
  • Patent Document 1 describes a solid electrolyte layer obtained by molding a composition obtained by adding an electrolyte salt to polyethylene oxide or the like.
  • Patent Document 2 describes a solid electrolyte layer obtained by press molding a powder of a predetermined three-component glassy solid electrolyte.
  • a binder is used in producing a solid electrolyte battery.
  • the binder binds components such as solid electrolyte particles and electrode active material in the solid electrolyte layer or in the electrode active material layer of the electrode in which the electrode active material layer is provided on the current collector. It is used for the purpose of preventing detachment from battery members.
  • the above-mentioned binder is an important element for expressing the characteristics as a battery.
  • Patent Documents 3 to 5 for producing an electrode active material layer and / or a solid electrolyte layer using a binder have the following problems.
  • the electrode and the solid electrolyte layer having an electrode active material layer are inferior in flexibility, so that when the solid electrolyte battery is manufactured, the electrode or the solid electrolyte layer is cracked. -Chipping / cracking may occur (that is, the processability may be inferior).
  • a solid electrolyte battery including such an electrode and a solid electrolyte layer may not have sufficient battery characteristics such as capacity characteristics.
  • An object of the present invention is to provide a solid electrolyte battery binder composition and a solid electrolyte battery slurry composition that are excellent in processability and capable of exhibiting excellent battery characteristics in a solid electrolyte battery.
  • the inventor has found that the above object can be achieved by using a binder composition comprising a copolymer having a specific composition, a specific cellulosic polymer, and an organic solvent.
  • a binder composition comprising a copolymer having a specific composition, a specific cellulosic polymer, and an organic solvent.
  • a particulate polymer of a copolymer containing an acrylate monomer unit and an aromatic monomer unit and the following formula (I):
  • R 1 , R 2 and R 3 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 1 , R in the repeating unit of 50 mol% or more in all repeating units.
  • At least two of 2 and R 3 are alkyl groups having 2 to 4 carbon atoms, and n represents a natural number.
  • a solid comprising an organic solvent Binder composition for electrolyte batteries, (2) The binder composition for a solid electrolyte battery according to (1), wherein the weight ratio of the acrylate monomer unit to the aromatic monomer unit contained in the particulate polymer is 30:70 to 80:20. , (3) The binder composition for a solid electrolyte battery according to (1) or (2), wherein the alkyl-modified cellulose is ethyl cellulose having a degree of substitution of 2.2 to 2.7.
  • a solid electrolyte battery slurry composition comprising the solid electrolyte battery binder composition according to any one of (1) to (4) and solid electrolyte particles, and (6) The slurry composition for a solid electrolyte battery according to (5), wherein the solid electrolyte particles are solid electrolyte particles made of sulfide. Is provided.
  • a binder composition for a solid electrolyte battery and a slurry composition for a solid electrolyte battery that are excellent in processability and capable of exhibiting excellent battery characteristics for a solid electrolyte battery.
  • the binder composition for a solid electrolyte battery of the present invention is used for production of a solid electrolyte battery (for example, formation of a solid electrolyte layer or an electrode active material layer constituting an electrode).
  • the slurry composition for a solid electrolyte battery of the present invention includes at least the solid electrolyte particles and the binder composition for a solid electrolyte battery of the present invention described above, and includes a solid electrolyte layer included in the solid electrolyte battery and a solid electrolyte battery. Is used to form an electrode active material layer constituting an electrode included in the electrode.
  • the binder composition for a solid electrolyte battery of the present invention includes a particulate polymer of a copolymer containing an acrylate monomer unit and an aromatic monomer unit, and the following formula (I):
  • R 1 , R 2 and R 3 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and in the repeating unit of 50 mol% or more in all repeating units, R 1 , At least two of R 2 and R 3 are alkyl groups having 2 to 4 carbon atoms, and n represents a natural number.
  • the particulate polymer used in the present invention is a copolymer containing at least an acrylate monomer unit and an aromatic monomer unit.
  • “including a monomer unit” means “a repeating unit derived from a monomer is contained in a polymer obtained by using the monomer”. That is, the copolymer can be obtained by copolymerizing at least an acrylate monomer and an aromatic monomer.
  • acrylate monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, benzyl acrylate, and other acrylic acid alkyl esters; 2-methoxyethyl acrylate, Acrylic acid alkoxyalkyl esters such as 2-ethoxyethyl acrylate; 2- (perfluorobutyl) ethyl acrylate, 2- (perfluoropentyl) ethyl acrylate and other acrylic acid 2- (perfluoroalkyl) esters; methyl methacrylate, ethyl methacrylate , N-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2- Methacryl
  • the content ratio of the acrylate monomer unit in the particulate polymer is preferably 30% by weight or more, more preferably 40%, where the total of all monomer units (excluding the structural unit derived from a crosslinking agent described later) is 100% by weight.
  • % By weight or more, preferably 80% by weight or less, more preferably 75% by weight or less.
  • the content rate of an acrylate-type monomer unit is 30 weight% or more, the softness
  • the content ratio of the acrylate monomer unit is 80% by weight or less, the rigidity of the electrode including the electrode active material layer and the solid electrolyte layer can be sufficiently secured, and the battery characteristics of the solid electrolyte battery can be further improved. it can.
  • Aromatic monomers include styrene, vinyl toluene (methyl styrene), t-butyl styrene, vinyl benzoic acid (4-carboxymethyl styrene), methyl vinyl benzoate, vinyl naphthalene, hydroxymethyl styrene, ⁇ -methyl styrene, etc.
  • a styrene-type monomer is mentioned. These may be used alone or in combination of two or more. Among these, styrene is preferable.
  • the content ratio of the aromatic monomer unit in the particulate polymer is preferably 20% by weight or more, more preferably 100% by weight, where the total of all monomer units (excluding the structural unit derived from the crosslinking agent described later) is 100% by weight. It is 25% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less. If the content ratio of the aromatic monomer unit is 20% by weight or more, the rigidity of the electrode including the electrode active material layer and the solid electrolyte layer is sufficiently secured, and the battery characteristics of the solid electrolyte battery can be further improved. . On the other hand, when the content ratio of the aromatic monomer unit is 70% by weight or less, the flexibility of the electrode including the electrode active material layer and the solid electrolyte layer can be sufficiently secured, and the processability can be further improved.
  • the weight ratio of the acrylate monomer unit to the aromatic monomer unit in the particulate polymer is preferably 30:70 to 80:20, and more preferably 40:60 to 75:25. . If the weight ratio of the acrylate monomer unit to the aromatic monomer unit is within the above range, the processability can be further improved and the battery characteristics of the solid electrolyte battery can be further improved.
  • the particulate polymer may contain monomer units (other monomer units) other than the acrylate monomer units and the aromatic monomer units as long as the effects of the present invention are not impaired.
  • Examples of other monomers that lead to such other monomer units include monomers that are copolymerizable with acrylate monomers and aromatic monomers.
  • Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid.
  • ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Vinyl such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate Esters: Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone, etc.
  • Vinyl ketones include heterocyclic vinyl-containing compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole. These may be used alone or in combination of two or more. Among these, amide monomers and ⁇ , ⁇ -unsaturated nitrile compounds are preferable from the viewpoint of affinity for organic solvents.
  • monomers that can form a self-crosslinking structure for example, diene monomers such as butadiene and isoprene, and ⁇ , ⁇ - It is preferable to use an unsaturated nitrile compound, and it is more preferable to use acrylonitrile.
  • the content ratio of the monomer units derived from the copolymerizable monomer (other monomer units) is 100 weights in total of all monomer units (excluding a structural unit derived from a crosslinking agent described later).
  • Crosslinking agent in order to give the particulate polymer a particle shape, a compound that can generally function as a crosslinking agent may be used in the polymerization of the particulate polymer.
  • Examples of the compound (crosslinking agent) that can function as a crosslinking agent include compounds having two or more double bonds (particularly, ethylenic double bonds) (excluding the compounds described above as “monomer”).
  • polyfunctional acrylate compounds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane triacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, polyfunctionality such as divinylbenzene An aromatic compound is mentioned. These may be used alone or in combination of two or more. Of these, polyfunctional acrylate compounds such as ethylene glycol dimethacrylate are preferred.
  • a suitable amount of the crosslinking agent to be used varies depending on the type thereof, but is preferably 0.01 parts by weight or more and 5 parts by weight or less, more preferably 0. It is 05 parts by weight or more and 1 part by weight or less.
  • any method of polymerizing in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the emulsion polymerization method is preferable because the particulate polymer is obtained as it is dispersed in an aqueous solvent.
  • the aqueous solvent is a solvent containing water, and is preferably flammable and water is preferable from the viewpoint of easily obtaining a dispersion of the particulate polymer.
  • water may be used as a main solvent and an aqueous solvent other than water may be mixed and used as long as the dispersed state of the particulate polymer can be secured without impairing the effects of the present invention.
  • aqueous solvents other than water include ketones, alcohols, glycols, glycol ethers, and ethers.
  • the emulsion polymerization can be performed according to a conventional method.
  • a commonly used polymerization auxiliary material such as an emulsifier, a polymerization initiator, a molecular weight modifier or a chain transfer agent can be used.
  • Any emulsifier can be used as long as a desired polymer is obtained, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactants such as alkyl benzene sulfonates, aliphatic sulfonates, higher alcohol sulfates, ⁇ -olefin sulfonates, and alkyl ether sulfates can be preferably used.
  • the amount of the emulsifier is arbitrary as long as the desired particulate polymer can be obtained, and is preferably 0.5 parts by weight or more, more preferably 1 part by weight with respect to 100 parts by weight of the total amount of monomers (excluding the crosslinking agent). It is above, Preferably it is 10 weight part or less, More preferably, it is 5 weight part or less.
  • polymerization initiator used for the polymerization examples include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • seed polymerization may be performed using seed particles.
  • the polymerization conditions can also be arbitrarily selected depending on the polymerization method and the type of polymerization initiator.
  • the content rate of each monomer in the monomer composition used for preparation of a particulate polymer can be defined according to the content rate of each monomer unit (repeating unit) in a particulate polymer.
  • Solvent exchange It is preferable to replace the solvent of the aqueous dispersion containing the particulate polymer obtained as described above with an organic solvent.
  • This aqueous dispersion contains the particulate polymer containing the acrylate monomer unit and the aromatic monomer unit obtained above.
  • the solvent of this aqueous dispersion is an aqueous solvent such as water.
  • the solvent exchange can be performed by a known method.
  • an aqueous dispersion and an organic solvent can be placed in a rotary evaporator, and the solvent can be exchanged and dehydrated at a predetermined temperature by reducing the pressure.
  • the solid content concentration of the binder composition for a solid electrolyte battery used in the present invention is preferably 1% by weight or more and 30% by weight or less.
  • the water content in the organic solvent containing the particulate polymer after the solvent exchange is preferably less than 1000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm.
  • the organic solvent used in the present invention is preferably an organic solvent having a boiling point of 100 ° C. or higher.
  • aromatic hydrocarbons such as toluene and xylene; ethers such as cyclopentylmethyl ether; esters such as butyl acetate are preferable, and xylene is more preferable.
  • these solvents can be used individually or in mixture of 2 or more types.
  • the “boiling point” means a normal pressure boiling point.
  • the alkyl-modified cellulose used in the present invention has the following formula (I):
  • R 1 , R 2 and R 3 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the total repeating unit is 100 mol%, 50 mol%
  • at least two of R 1 , R 2 and R 3 are alkyl groups having 2 or more and 4 or less carbon atoms, and n represents a natural number.
  • R 1 , R 2 and R 3 may be different from each other, or two or more of R 1 , R 2 and R 3 may be the same.
  • n which is a natural number (a positive integer) is not particularly limited, but is usually in a range that can be taken by general cellulose, and is, for example, 1,000 or more and 1,000,000 or less.
  • the structure of the n repeating unit which comprises the alkyl-modified cellulose used for this invention may mutually differ, and all may be the same.
  • the structural features of the alkyl-modified cellulose can be specified by a known analysis method (for example, nuclear magnetic resonance (NMR) spectroscopy).
  • alkyl-modified cellulose examples include ethyl cellulose, propyl cellulose, ethyl propyl cellulose, butyl cellulose, and ethyl methyl cellulose. These may be used alone or in combination of two or more.
  • ethyl cellulose is preferable, and ethyl cellulose having a substitution degree of 2.2 or more and 2.7 or less is more preferable.
  • the "degree of substitution", as well as the meaning which is generally used as a degree of substitution of cellulose, means the ratio of R 1, R 2 and R 3 are etherified. When not etherified, the degree of substitution is 0, and when all of R 1 , R 2 and R 3 are etherified, the degree of substitution is 3. In the present invention, the “degree of substitution” can be measured, for example, by the method described in JP-A-2011-34962.
  • the binder composition for a solid electrolyte battery of the present invention comprises the particulate polymer described above, the alkyl-modified cellulose represented by the formula (I), and an organic solvent.
  • the binder composition for a solid electrolyte battery can be obtained, for example, by dissolving the alkyl-modified cellulose in an organic solvent containing the particulate polymer after exchanging the solvent of the aqueous dispersion of the particulate polymer with an organic solvent. it can.
  • the amount of the alkyl-modified cellulose represented by the formula (I) in the binder composition for a solid electrolyte battery of the present invention is preferably 10 parts by weight or more and 1000 parts by weight or less, more preferably 100 parts by weight of the particulate polymer. 70 parts by weight or more and 500 parts by weight or less. If the amount of the alkyl-modified cellulose represented by the formula (I) is within this range, the amount of the alkyl-modified cellulose is too large, so that the solid electrolyte layer and the electrode active material layer become hard and cracks, chips and cracks are generated. Can be suppressed. Moreover, since the amount of the alkyl-modified cellulose is too small, the phenomenon that the binding force of the binder composition for a solid electrolyte battery is insufficient can be suppressed.
  • a solid electrolyte battery can be produced using the above-described binder composition for a solid electrolyte battery of the present invention. Specifically, in producing a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte battery having a solid electrolyte layer between these positive and negative electrode active material layers, solid electrolyte particles, Using the solid electrolyte battery slurry composition of the present invention comprising the solid electrolyte battery binder composition of the present invention, at least one layer, preferably all layers of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer Can be formed.
  • the negative electrode active material layer is formed of a negative electrode active material layer slurry composition as a solid electrolyte battery slurry composition
  • the positive electrode active material layer is a positive electrode active material layer slurry as a solid electrolyte battery slurry composition
  • the solid electrolyte layer is formed of a slurry composition for a solid electrolyte layer as a slurry composition for a solid electrolyte battery.
  • the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer will be described.
  • the solid electrolyte layer is obtained, for example, by applying a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a binder composition for a solid electrolyte battery onto a positive electrode active material layer or a negative electrode active material layer described later, and then drying. It is formed.
  • Solid electrolyte particles are usually in the form of particles because they are subjected to a pulverization step, but are not completely spherical but irregular.
  • the size of the fine particles is measured by a method of measuring the scattered light by irradiating the laser light to the particles.
  • the particle diameter is a value assuming that the shape of one particle is spherical.
  • the proportion of particles having a corresponding particle diameter can be expressed as a particle size distribution.
  • the solid electrolyte particles forming the solid electrolyte layer are often shown as an average particle diameter as measured by this method.
  • the average particle diameter of the solid electrolyte particles is preferably 0.3 ⁇ m or more and 1.3 ⁇ m or less from the viewpoint of obtaining a slurry composition for a solid electrolyte layer having good dispersibility and coating properties.
  • the average particle diameter of the solid electrolyte particles is a number average particle diameter that can be obtained by measuring the particle size distribution by laser diffraction.
  • the solid electrolyte particle is not particularly limited as long as it has conductivity of a charge carrier (for example, lithium ion).
  • a charge carrier for example, lithium ion
  • the solid electrolyte battery in which the binder composition for a solid electrolyte battery of the present invention is used is all solid lithium.
  • the solid electrolyte particles preferably include a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion conductor.
  • solid electrolyte particle may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Examples of the crystalline inorganic lithium ion conductor include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 ), perovskite type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4-x N x ), And Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ).
  • the amorphous inorganic lithium ion conductor it is particularly preferable if it contains S (sulfur atom) and has ion conductivity (sulfide solid electrolyte material, that is, solid electrolyte particles made of sulfide). It is not limited.
  • the sulfide solid electrolyte material to be used is Li 2 S, Group 13 to Group Examples thereof include those obtained by using a raw material composition containing a sulfide of an element belonging to Group 15.
  • Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because according to the mechanical milling method, processing at room temperature is possible, and the manufacturing process can be simplified.
  • Examples of the Group 13 to Group 15 elements include Al, Si, Ge, P, As, and Sb.
  • Specific examples of the sulfides of elements belonging to Group 13 to Group 15 include Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , and Sb 2. S 3 etc. can be mentioned. Among them, it is preferable to use a Group 14 or Group 15 sulfide.
  • a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 includes Li 2 SP—P 2 S 5 material, Li 2 S.
  • It is preferably a —SiS 2 material, a Li 2 S—GeS 2 material or a Li 2 S—Al 2 S 3 material, and more preferably a Li 2 S—P 2 S 5 material. This is because Li ion conductivity is excellent.
  • the sulfide solid electrolyte material preferably has bridging sulfur. It is because ion conductivity becomes high by having bridge
  • the molar fraction of Li 2 S in the Li 2 S—P 2 S 5 material or the Li 2 S—Al 2 S 3 material is, for example, from the viewpoint of obtaining a sulfide solid electrolyte material having bridging sulfur more reliably. It is preferably in the range of 50% to 74%, particularly in the range of 60% to 74%.
  • the sulfide solid electrolyte material may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
  • the sulfide glass can be obtained, for example, by the above-described amorphization method. Crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass.
  • the sulfide solid electrolyte material is preferably a crystallized sulfide glass represented by Li 7 P 3 S 11 .
  • a sulfide glass is synthesized by mixing Li 2 S and P 2 S 5 at a molar ratio of 70:30 and amorphizing with a ball mill.
  • Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. or higher and 360 ° C. or lower.
  • Binder composition for solid electrolyte layer The binder composition for a solid electrolyte layer contained in the slurry composition for a solid electrolyte battery is used for binding solid electrolyte particles to form a solid electrolyte layer. And it is preferable to use the binder composition for solid electrolyte batteries of this invention mentioned above as a binder composition for solid electrolyte layers.
  • the positive electrode active material layer is formed, for example, by applying a slurry composition for a positive electrode active material layer including a positive electrode active material, solid electrolyte particles, and a positive electrode binder composition to the surface of a current collector, which will be described later, and drying.
  • the positive electrode active material layer slurry composition is, for example, in the presence of an organic solvent, a positive electrode active material, solid electrolyte particles, a positive electrode binder composition, and other components added as necessary. Manufactured by.
  • Positive electrode active material is a compound that can occlude and release lithium ions, for example, in an all-solid lithium secondary battery. And a positive electrode active material is divided roughly into what consists of inorganic compounds, and what consists of organic compounds.
  • the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • transition metal Fe, Co, Ni, Mn and the like are used.
  • inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
  • the positive electrode active material one type may be used alone, or two or more types may be used in combination, and for example, a mixture of the above inorganic compound and the above organic compound may be used.
  • the average particle size of the positive electrode active material used in the present invention is such that a solid electrolyte secondary battery having a large charge / discharge capacity can be obtained in terms of improving battery characteristics such as load characteristics and charge / discharge cycle characteristics, and positive electrode active From the viewpoint of easy handling of the slurry composition for the material layer and easy handling when producing the positive electrode, it is usually 0.1 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • Solid electrolyte particles the same solid electrolyte particles as those exemplified above in the section of “Solid electrolyte layer” can be used.
  • Binder composition for positive electrode The positive electrode binder composition contained in the positive electrode active material layer slurry composition is used to bind the positive electrode active material and solid electrolyte particles to form a positive electrode active material layer. And as a binder composition for positive electrodes, it is preferable to use the binder composition for solid electrolyte batteries of this invention mentioned above.
  • the content of the positive electrode binder composition in the positive electrode active material layer slurry composition is not particularly limited.
  • the slurry composition for the positive electrode active material layer has a binder (this When the binder composition for a solid electrolyte battery of the invention is used, it corresponds to the solid content of the particulate polymer (copolymer)), preferably 0.1 parts by weight or more and 5 parts by weight or less, more preferably 0.2 parts by weight.
  • the positive electrode binder composition is included in an amount of 4 parts by weight or less.
  • Organic solvent The content of the organic solvent in the positive electrode active material layer slurry composition is based on 100 parts by weight of the positive electrode active material from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte particles. Preferably they are 20 to 80 weight part, More preferably, they are 30 to 70 weight part.
  • the organic solvent in the positive electrode active material layer slurry composition may be composed of only the organic solvent contained in the positive electrode binder composition, or at the time of preparing the positive electrode active material layer slurry composition. In addition, an organic solvent may be added separately as necessary.
  • the positive electrode active material layer slurry composition may contain additives that exhibit various functions, such as a conductive agent and a reinforcing material, as other components added as necessary. These are not particularly limited as long as they do not affect the battery reaction.
  • the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals. These may be used alone or in combination of two or more.
  • reinforcing material various inorganic and organic spherical, plate-shaped, rod-shaped or fibrous various fillers can be used. These may be used alone or in combination of two or more.
  • the negative electrode active material layer is a layer containing at least a negative electrode active material.
  • Negative electrode active material examples include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
  • oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicon, etc.
  • a metal material a metal foil or a metal plate can be used as an electrode as it is, but it may be in the form of particles.
  • the negative electrode active material layer is, for example, a negative electrode active material layer slurry composition containing a negative electrode active material, solid electrolyte particles, and a negative electrode binder composition. It is formed by applying to the body surface and drying.
  • the slurry composition for negative electrode active material layers mixes the negative electrode active material, a solid electrolyte particle, the binder composition for negative electrodes, and the other component added as needed, for example in presence of an organic solvent. Manufactured by.
  • the average particle diameter of the negative electrode active material is usually 1 ⁇ m or more and 50 ⁇ m or less, preferably 15 ⁇ m or more and 30 ⁇ m or less from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, charge / discharge cycle characteristics, etc. It is.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • Solid electrolyte particles the same solid electrolyte particles as those exemplified above in the section of “Solid electrolyte layer” can be used.
  • the phenomenon can be suppressed.
  • the weight ratio of the solid electrolyte particles is too small, it is possible to suppress a phenomenon in which sufficient conductivity cannot be obtained and the negative electrode active material cannot be effectively used, resulting in a decrease in capacity as a battery.
  • Binder composition for negative electrode The negative electrode binder composition contained in the negative electrode active material layer slurry composition is used to bind the negative electrode active material and solid electrolyte particles to form a negative electrode active material layer. And as a binder composition for negative electrodes, it is preferable to use the binder composition for solid electrolyte batteries of this invention mentioned above.
  • the content of the negative electrode binder composition in the negative electrode active material layer slurry composition is not particularly limited.
  • the binder (the binder composition for a solid electrolyte battery of the present invention is added to 100 parts by weight of the negative electrode active material).
  • it is equivalent to the solid content of the particulate polymer (copolymer)), preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, A negative electrode binder composition is included.
  • the organic solvent in the negative electrode active material layer slurry composition may be composed of only the organic solvent contained in the negative electrode binder composition, or when preparing the negative electrode active material layer slurry composition, You may add an organic solvent separately as needed. Further, as the other components added to the negative electrode active material layer slurry composition as necessary, the same components as those described above in the section of “Positive electrode active material layer” can be used.
  • the current collector used for forming the positive electrode active material layer and the negative electrode active material layer is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, Metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet having a thickness of about 0.001 mm to about 0.5 mm is preferable. In order to increase the adhesive strength with the above-described positive electrode active material layer or negative electrode active material layer, the current collector is preferably used after roughening in advance.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive electrode active material layer or the negative electrode active material layer.
  • the slurry composition for a solid electrolyte layer is obtained, for example, by mixing the above-described solid electrolyte particles, the binder composition for a solid electrolyte layer, and other components added as necessary in the presence of an organic solvent.
  • the slurry composition for a positive electrode active material layer is obtained by mixing, for example, the above-described positive electrode active material, solid electrolyte particles, positive electrode binder composition, and other components added as necessary in the presence of an organic solvent. can get.
  • the slurry composition for the negative electrode active material layer is prepared by, for example, mixing the above-described negative electrode active material, solid electrolyte particles, negative electrode binder composition, and other components added as necessary in the presence of an organic solvent. can get.
  • the mixing method of each of the above slurry compositions is not particularly limited. For example, stirring method, shaking method, etc. And a method using a mixing apparatus such as a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader can be mentioned. From the viewpoint that aggregation of solid electrolyte particles can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
  • the positive electrode in the solid electrolyte battery is obtained by forming a positive electrode active material layer on a current collector.
  • the positive electrode active material layer is formed, for example, by applying and drying the slurry composition for positive electrode active material layer on a current collector.
  • the negative electrode in the solid electrolyte battery may be used as it is as the negative electrode when the negative electrode active material is a metal foil or a metal plate.
  • the negative electrode active material when the negative electrode active material is in the form of particles, it can be obtained by forming a negative electrode active material layer on a current collector different from the current collector of the positive electrode.
  • the negative electrode active material layer is formed by applying and drying the slurry composition for negative electrode active material layer on a current collector different from the current collector of the positive electrode.
  • a slurry composition for a solid electrolyte layer is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
  • the solid electrolyte battery element is manufactured by bonding together the electrode in which the solid electrolyte layer is not formed and the electrode in which the solid electrolyte layer is formed.
  • the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method It is applied by the extrusion method, brush coating or the like.
  • the amount to be applied is not particularly limited, but is an amount such that the thickness of the active material layer formed after removing the organic solvent is usually 5 ⁇ m to 300 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a range of speeds where stress concentration occurs and the electrode active material layer does not crack or peel off from the current collector. To do. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
  • the drying temperature is a temperature at which the organic solvent is sufficiently volatilized.
  • the temperature is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 80 ° C. or higher and 200 ° C. The following is preferred. Although it does not specifically limit about drying time, Usually, it is performed in the range of 10 minutes or more and 60 minutes or less.
  • the method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer or the negative electrode active material layer is not particularly limited, and the current collection of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer described above is performed.
  • the gravure method is preferable from the viewpoint that a thin solid electrolyte layer can be formed.
  • the amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the organic solvent is usually 2 ⁇ m to 20 ⁇ m, preferably 3 ⁇ m to 15 ⁇ m.
  • the drying method, drying conditions, and drying temperature are also the same as those of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition described above.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure for press-pressing is preferably 5 MPa or more and 700 MPa or less, from the viewpoint of exhibiting good battery characteristics because resistance at each interface between the electrode and the solid electrolyte layer, and further, contact resistance between particles in each layer is reduced. Preferably, it is 7 MPa or more and 500 MPa or less.
  • the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
  • the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
  • the obtained solid electrolyte battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain a solid electrolyte battery.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • a solid electrolyte layer was formed by applying and drying the slurry composition for a solid electrolyte layer on one surface of an aluminum foil, and this was used as a test piece. Then, the surface of the test piece on which the solid electrolyte layer was not formed was placed along a metal rod having a diameter of 1.0 mm and wound around this metal rod to evaluate whether or not the solid electrolyte layer was broken.
  • Table 1 The results are shown in Table 1, where “A” indicates that the solid electrolyte layer was not cracked and “B” indicates that the solid electrolyte layer was cracked. Those in which no cracks are observed in the solid electrolyte layer indicate that the test piece (particularly, the solid electrolyte layer) has high flexibility and excellent processability.
  • Example 1 Manufacture of particulate polymer>
  • 50 parts of n-butyl acrylate as an acrylate monomer 50 parts of styrene as an aromatic monomer, and 1 part of ethylene glycol dimethacrylate (hereinafter sometimes referred to as “EGDMA”) as a crosslinking agent.
  • 1 part of sodium dodecylbenzenesulfonate as an emulsifier 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 70 ° C. for polymerization. Started. When the polymerization conversion rate reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of particulate polymer.
  • the pH of the obtained aqueous dispersion was adjusted to 7 using a 10 wt% NaOH aqueous solution.
  • ion-exchanged water was added to adjust the solid content concentration to 30% by weight.
  • ⁇ Manufacture of binder composition for solid electrolyte battery 100 parts of ethyl cellulose (made by Wako Pure Chemical Industries, Ltd., reagent, having a structure of the above formula (I), about 49% ethoxylation) are added to 100 parts of solid content of the particulate polymer in which the solvent is replaced with xylene.
  • a binder composition for a solid electrolyte battery was prepared.
  • the slurry composition for negative electrode active material layers was prepared by mixing with a Lee mixer.
  • a slurry composition for a solid electrolyte layer was prepared.
  • the positive electrode active material layer slurry composition was applied to the surface of the current collector (aluminum foil) and dried (110 ° C., 20 minutes) to form a positive electrode active material layer having a thickness of 50 ⁇ m to produce a positive electrode. Also, the negative electrode active material layer slurry composition is applied to the surface of another current collector (copper foil) and dried (110 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m. Manufactured.
  • the solid electrolyte layer slurry composition is applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form a solid electrolyte layer having a thickness of 18 ⁇ m.
  • a positive electrode for an electrolyte battery was obtained.
  • the solid electrolyte layer of the positive electrode for a solid electrolyte battery with a solid electrolyte layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain a solid electrolyte battery.
  • the thickness of the solid electrolyte layer of the solid electrolyte battery after pressing was 11 ⁇ m.
  • Example 2 The monomer used in the production of the particulate polymer was changed to 70 parts 2-ethylhexyl acrylate as an acrylate monomer and 30 parts styrene as an aromatic monomer, and the amount of EGDMA as a crosslinking agent was changed to 2 parts. Except for the above, a particulate polymer was produced in the same manner as in Example 1. A solid electrolyte battery binder composition and a solid electrolyte battery were produced in the same manner as in Example 1 except that this particulate polymer was used.
  • Example 3 The amount of EGDMA as a crosslinking agent is changed by changing the monomers used in the production of the particulate polymer to 50 parts of n-butyl acrylate and 25 parts of ethyl acrylate as acrylate monomers and 25 parts of styrene as aromatic monomers.
  • a particulate polymer was produced in the same manner as in Example 1 except that the amount of was changed to 2 parts.
  • the amount of ethylcellulose to add was changed into 50 parts of ethylcellulose with respect to 100 parts of solid content of a particulate polymer.
  • a solid electrolyte battery was produced in the same manner as in Example 1 except that this binder composition for a solid electrolyte battery was used.
  • Example 4 The monomer used in the production of the particulate polymer was changed to 50 parts of 2-ethylhexyl acrylate as an acrylate monomer and 50 parts of styrene as an aromatic monomer, and the amount of EGDMA as a crosslinking agent was changed to 2 parts. Except for the above, a particulate polymer was produced in the same manner as in Example 1. Moreover, when manufacturing the binder composition for solid electrolyte batteries using this particulate polymer, the amount of ethyl cellulose added was changed to 500 parts of ethyl cellulose with respect to 100 parts of solid content of particulate polymer. A solid electrolyte battery was produced in the same manner as in Example 1 except that this binder composition for a solid electrolyte battery was used.
  • Example 2 (Comparative Example 2) Example 1 except that the monomer used in producing the particulate polymer was changed to 50 parts of n-butyl acrylate and 50 parts of ethyl acrylate as the acrylate monomer, and the amount of EGDMA as the crosslinking agent was changed to 2 parts.
  • a particulate polymer was produced in the same manner as in Example 1.
  • a solid electrolyte battery binder composition and a solid electrolyte battery were produced in the same manner as in Example 1 except that this particulate polymer was used.
  • Example 3 A particulate polymer was produced in the same manner as in Example 1 except that the monomer used for producing the particulate polymer was changed to 100 parts of styrene as the aromatic monomer. Except that this particulate polymer was used, production of a binder composition for a solid electrolyte battery and production of a solid electrolyte battery were attempted in the same manner as in Example 1. However, since the solid electrolyte layer has poor flexibility, a solid electrolyte battery could not be obtained.
  • a solid comprising a particulate polymer of a copolymer containing an acrylate monomer unit and an aromatic monomer unit, an alkyl-modified cellulose represented by the formula (I), and an organic solvent
  • the obtained layer was excellent in flexibility (processability) and peel strength.
  • the resistance value is low, and the battery capacity is good when a solid electrolyte battery is manufactured and charged and discharged for 5 cycles, and the excellent battery characteristics of the solid electrolyte battery are sufficiently secured. We were able to.
  • a binder composition for a solid electrolyte battery and a slurry composition for a solid electrolyte battery that are excellent in processability and capable of exhibiting excellent battery characteristics for a solid electrolyte battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、プロセス性に優れ、且つ、固体電解質電池に優れた電池特性を発揮させることが可能な、固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物の提供を目的とする。本発明のバインダー組成物は、アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体の粒子状ポリマーと、式(I)で表されるアルキル変性セルロースと、有機溶媒とを含む。なお、式(I)中、R、RおよびRは、それぞれ水素原子または炭素数が1以上4以下のアルキル基を示し、全繰り返し単位中50モル%以上の繰り返し単位において、R、RおよびRの少なくとも2つは、炭素数が2以上4以下のアルキル基である。また、nは自然数を示す。

Description

固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物
 本発明は、固体電解質電池の製造に用いることができる固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物に関するものである。
 近年、リチウムイオン電池等の電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、電動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途での需要が増加している。
 このような用途の広がりに伴い、電池の更なる安全性の向上が要求されている。電池の安全性を確保するためには、例えば、電解質を有機溶媒に溶解させてなる有機電解液の液漏れを防止する方法が有効である。一方で、有機電解液に代えて、固体電解質を用いる電池(固体電解質電池)を作製する技術も従来から検討されている。
 具体的に、固体電解質電池は、通常、正極及び負極の間に、電解質層として固体電解質層を有する。ここで、固体電解質層としては、高分子固体電解質層と無機固体電解質層が挙げられる。高分子固体電解質層としては、例えば特許文献1に、ポリエチレンオキサイドなどに電解質塩を添加した組成物を成形して得られる固体電解質層が記載されている。一方の無機固体電解質層としては、例えば特許文献2に、所定の3成分系ガラス状固体電解質の粉末をプレス成型して得られる固体電解質層が記載されている。そして、特に無機固体電解質層を備える固体電解質電池は、有機電解液を用いた電池に比較して、安全性が非常に高い。このような理由から、特に近年では、無機固体電解質層を備える、高い安全性を備えた固体電解質電池の開発が進んでいる(例えば、特許文献3~5参照)。
 ここで、特許文献3~5では、固体電解質電池の作製に際し、バインダーを使用している。バインダーは、例えば、固体電解質層中や、集電体上に電極活物質層を設けてなる電極の当該電極活物質層中において、固体電解質粒子や電極活物質等の成分を結着し、電極等の電池部材からの脱離を防ぐ目的で使用される。
 そして、電極活物質層および固体電解質層においては、上述したバインダーが、電池としての特性を発現させるための重要な要素となる。
特許第4134617号 特開昭59-151770号公報 特開2009-176484号公報 特開2009-211950号公報 特開2012-243476号公報
 本発明者が検討したところ、バインダーを用いて電極活物質層及び/又は固体電解質層を製造する特許文献3~5の技術には、以下のような問題があった。
 特許文献3および4に記載の全固体リチウム二次電池では、固体電解質層内部や、電極活物質層内部のイオン伝導性が十分ではないために、電池の容量特性が不十分な場合があった。
 また、特許文献5に記載の技術を採用しても、電極活物質層を備える電極や、固体電解質層が柔軟性に劣るため、固体電解質電池を作製する際に、電極や固体電解質層に割れ・欠け・ヒビが発生してしまう場合があった(即ち、プロセス性に劣る虞があった)。そして、このような電極および固体電解質層を備える固体電解質電池は、容量特性等の電池特性が十分でない場合があった。
 そこで、本発明は、プロセス性に優れ、且つ、固体電解質電池に優れた電池特性を発揮させることが可能な、固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物を提供することを目的とする。
 本発明者は、鋭意検討の結果、特定の組成を有する共重合体と、特定のセルロース系の高分子と、有機溶媒とを含んでなるバインダー組成物を用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
(1) アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体の粒子状ポリマーと、下記式(I):
Figure JPOXMLDOC01-appb-C000002
(式(I)中、R、RおよびRはそれぞれ水素原子または炭素数が1以上4以下のアルキル基を示し、全繰り返し単位中50モル%以上の繰り返し単位において、R、RおよびRの少なくとも2つは、炭素数が2以上4以下のアルキル基である。また、nは自然数を示す。)で表されるアルキル変性セルロースと、有機溶媒と、を含んでなる固体電解質電池用バインダー組成物、
(2) 前記粒子状ポリマーに含まれる前記アクリレート系モノマー単位と前記芳香族系モノマー単位との重量比は、30:70~80:20である(1)に記載の固体電解質電池用バインダー組成物、
(3) 前記アルキル変性セルロースは、置換度が2.2以上2.7以下のエチルセルロースである、(1)または(2)に記載の固体電解質電池用バインダー組成物、
(4) 前記有機溶媒は、沸点が100℃以上である、(1)~(3)の何れかに記載の固体電解質電池用バインダー組成物、
(5) (1)~(4)の何れかに記載の固体電解質電池用バインダー組成物と、固体電解質粒子とを含む、固体電解質電池用スラリー組成物、並びに、
(6) 前記固体電解質粒子が、硫化物からなる固体電解質粒子である、(5)に記載の固体電解質電池用スラリー組成物、
が提供される。
 本発明によれば、プロセス性に優れ、且つ、固体電解質電池に優れた電池特性を発揮させることが可能な、固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物が提供される。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の固体電解質電池用バインダー組成物は、固体電解質電池の製造(例えば、固体電解質層や、電極を構成する電極活物質層の形成)に用いられる。そして、本発明の固体電解質電池用スラリー組成物は、固体電解質粒子と、上述した本発明の固体電解質電池用バインダー組成物とを少なくとも含み、固体電解質電池に含まれる固体電解質層や、固体電解質電池に含まれる電極を構成する電極活物質層の形成に用いられる。
(固体電解質電池用バインダー組成物)
 以下、本発明の固体電解質電池用バインダー組成物について説明する。本発明の固体電解質電池用バインダー組成物は、アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体の粒子状ポリマーと、下記式(I):
Figure JPOXMLDOC01-appb-C000003
(式(I)中、R、RおよびRは、それぞれ水素原子または炭素数が1以上4以下のアルキル基を示し、全繰り返し単位中50モル%以上の繰り返し単位において、R、RおよびRの少なくとも2つは、炭素数が2以上4以下のアルキル基である。また、nは自然数を示す。)で表されるアルキル変性セルロースと、有機溶媒とを含んでなる。
<粒子状ポリマー>
 本発明に用いる粒子状ポリマーは、少なくとも、アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体である。ここで、本発明において、「モノマー単位を含む」とは、「そのモノマーを用いて得た重合体中にモノマー由来の繰り返し単位が含まれている」ことを意味する。即ち、共重合体は、少なくとも、アクリレート系モノマーと芳香族系モノマーとを共重合することにより得られる。
<<アクリレート系モノマー>>
 アクリレート系モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレート、ベンジルアクリレートなどのアクリル酸アルキルエステル;2-メトキシエチルアクリレート、2-エトキシエチルアクリレートなどのアクリル酸アルコキシアルキルエステル;2-(パーフルオロブチル)エチルアクリレート、2-(パーフルオロペンチル)エチルアクリレートなどのアクリル酸2-(パーフルオロアルキル)エステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、トリデシルメタアクリレート、ステアリルメタクリレートなどのメタクリル酸アルキルエステル;2-(パーフルオロブチル)エチルメタクリレート、2-(パーフルオロペンチル)エチルメタクリレートなどのメタクリル酸2-(パーフルオロアルキル)エステル;ベンジルアクリレート、ベンジルメタクリレート;が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そして、これらの中でも、本発明においては、固体電解質粒子との密着性の高さから、エチルアクリルレート、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましい。
 粒子状ポリマーにおけるアクリレート系モノマー単位の含有割合は、全モノマー単位(但し、後述する架橋剤由来の構造単位を除く。)の合計を100重量%として、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは80重量%以下、より好ましくは75重量%以下である。アクリレート系モノマー単位の含有割合が30重量%以上であれば、電極活物質層を備える電極や固体電解質層の柔軟性を十分に確保して、プロセス性を更に高めることができる。一方、アクリレート系モノマー単位の含有割合が80重量%以下であれば、電極活物質層を備える電極や固体電解質層の剛性が十分に確保されて、固体電解質電池の電池特性を一層向上させることができる。
<<芳香族系モノマー>>
 芳香族系モノマーとしては、スチレン、ビニルトルエン(メチルスチレン)、t-ブチルスチレン、ビニル安息香酸(4-カルボキシメチルスチレン)、ビニル安息香酸メチル、ビニルナフタレン、ヒドロキシメチルスチレン、α-メチルスチレン等のスチレン系モノマーが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、スチレンが好ましい。
 粒子状ポリマーにおける芳香族系モノマー単位の含有割合は、全モノマー単位(但し、後述する架橋剤由来の構造単位を除く。)の合計を100重量%として、好ましくは20重量%以上、より好ましくは25重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。芳香族系モノマー単位の含有割合が20重量%以上であれば、電極活物質層を備える電極や固体電解質層の剛性が十分に確保されて、固体電解質電池の電池特性を一層向上させることができる。一方、芳香族系モノマー単位の含有割合が70重量%以下であれば、電極活物質層を備える電極や固体電解質層の柔軟性を十分に確保して、プロセス性を更に高めることができる。
 また、粒子状ポリマー中におけるアクリレート系モノマー単位と、芳香族系モノマー単位との重量比は、30:70~80:20であることが好ましく、40:60~75:25であることがより好ましい。アクリレート系モノマー単位と芳香族系モノマー単位との重量比が上述の範囲内であれば、プロセス性を更に高めると共に、固体電解質電池の電池特性を一層向上させることができる。
<<その他のモノマー>>
 また、粒子状ポリマーは、本発明の効果を阻害しない範囲で、アクリレート系モノマー単位および芳香族系モノマー単位以外のモノマー単位(その他のモノマー単位)を含んでいてもよい。このようなその他のモノマー単位を導くその他のモノマーとしては、アクリレート系モノマーおよび芳香族系モノマーと共重合可能なモノマーが挙げられる。前記共重合可能なモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系モノマー;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、有機溶媒への親和性の観点から、アミド系モノマー、α,β-不飽和ニトリル化合物が好ましい。
 また、上述したその他のモノマーとして、粒子状ポリマーに粒子形状を持たせる観点からは、自己架橋構造を形成しうるモノマー、例えば、ブタジエン、イソプレン等のジエン系モノマーや、アクリロニトリルなどのα,β-不飽和ニトリル化合物を用いることが好ましく、アクリロニトリルを用いることがより好ましい。
 粒子状ポリマーにおける、前記共重合可能なモノマーから導かれるモノマー単位(その他のモノマー単位)の含有割合は、全モノマー単位(但し、後述する架橋剤由来の構造単位を除く。)の合計を100重量%として、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下である。
<<架橋剤>>
 本発明において、粒子状ポリマーに粒子形状を持たせるために、一般的に架橋剤として機能し得る化合物を、上記粒子状ポリマーの重合の際に用いてもよい。
 架橋剤として機能し得る化合物(架橋剤)としては、二重結合(特には、エチレン性二重結合)を2つ以上有する化合物(但し、「モノマー」として上述した化合物は除く。)が挙げられる。たとえば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレートなどの多官能アクリレート化合物、ジビニルベンゼンなどの多官能芳香族化合物が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でもエチレングリコールジメタクリレートなどの多官能アクリレート化合物が好ましい。
 架橋剤の好適な使用量は、その種類によって異なるが、モノマー(架橋剤を除く)の合計量100重量部に対して、好ましくは0.01重量部以上5重量部以下、より好ましくは0.05重量部以上1重量部以下である。
<<粒子状ポリマーの製造>>
 本発明に用いる粒子状ポリマーの製造方法は、懸濁重合法、塊状重合法、乳化重合法などの分散系で重合する方法のいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。
 これらの中でも、粒子状ポリマーがそのまま水系の溶媒に分散した状態で得られることなどから、乳化重合法が好ましい。ここで、水系の溶媒とは水を含む溶媒であり、可燃性がなく、上記粒子状ポリマーの分散液が容易に得られる観点から、水が好ましい。
 なお、本発明の効果を損なわず、さらに上記粒子状ポリマーの分散状態が確保可能な範囲において、主溶媒として水を使用し、水以外の水系の溶媒を混合して用いても良い。水以外の水系の溶媒としては、ケトン類、アルコール類、グリコール類、グリコールエーテル類、エーテル類が挙げられる。
 なお、乳化重合は、常法に従い行うことができる。また、乳化重合するに際しては、乳化剤、重合開始剤、分子量調整剤又は連鎖移動剤等の通常用いられる重合副資材を使用することができる。
 乳化剤としては、所望のポリマーが得られる限り任意のものを用いることができ、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。これらの中でも、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、高級アルコールの硫酸エステル塩、α-オレフィンスルホン酸塩、アルキルエーテル硫酸エステル塩等のアニオン性界面活性剤が好ましく使用できる。
 乳化剤の量は、所望の粒子状ポリマーが得られる限り任意であり、モノマー(架橋剤を除く)の合計量100重量部に対して、好ましくは0.5重量部以上、より好ましくは1重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。
 重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
 なお、重合に際しては、シード粒子を採用してシード重合を行ってもよい。また、重合条件も、重合方法および重合開始剤の種類などにより任意に選択することができる。また、粒子状ポリマーの調製に用いるモノマー組成物中の各モノマーの含有割合は、粒子状ポリマー中の各モノマー単位(繰り返し単位)の含有割合に準じて定めることができる。
<<溶媒交換>>
 上記のようにして得られた粒子状ポリマーを含む水系分散液の溶媒を、有機溶媒に溶媒交換することが好ましい。この水系分散液は、上記にて得られたアクリレート系モノマー単位と芳香族系モノマー単位とを含む粒子状ポリマーを含む。また、この水系分散液の溶媒は、水などの水系の溶媒である。
 溶媒交換は、公知の方法により行うことができる。例えば、ロータリーエバポレーターに水系分散液及び有機溶媒を入れ、減圧して所定の温度にて溶媒交換及び脱水操作を行うことができる。
 なお、溶媒交換においては、本発明に用いる有機溶媒として後述する有機溶媒を用いることが好ましい。
 なお、本発明に用いられる固体電解質電池用バインダー組成物の固形分濃度は、好ましくは1重量%以上30重量%以下である。また、溶媒交換後の粒子状ポリマーを含む有機溶媒中の水分量は、好ましくは1000ppm未満であり、より好ましくは500ppm未満であり、さらに好ましくは100ppm未満である。
<有機溶媒>
 本発明に用いる有機溶媒としては、沸点が100℃以上の有機溶媒が好ましい。沸点が100℃以上の有機溶媒としては、トルエン、キシレンなどの芳香族炭化水素類;シクロペンチルメチルエーテルなどのエーテル類;酢酸ブチルなどのエステル類が好ましく、キシレンがより好ましい。また、これらの溶媒は、単独または2種以上を混合して用いることができる。
 なお、本発明において「沸点」とは、常圧沸点を意味する。
<アルキル変性セルロース>
 本発明に用いるアルキル変性セルロースは、下記式(I):
Figure JPOXMLDOC01-appb-C000004
(式(I)中、R、RおよびRは、それぞれ水素原子または炭素数が1以上4以下のアルキル基を示す。また、全繰り返し単位を100モル%とした場合、50モル%以上の繰り返し単位において、R、RおよびRの少なくとも2つは、炭素数が2以上4以下のアルキル基である。そして、nは自然数を示す。)で表される。
 なお、式(I)中、R、RおよびRは、互いに異なっていてもよいし、R、RおよびRのうちの2つ以上が同じものであってもよい。
 また式(I)中、自然数(正の整数)であるnの値は、特に限定されないが、通常は、一般的なセルロースがとりうる範囲であり、例えば1000以上1000000以下である。
 そして、本発明に用いるアルキル変性セルロースを構成するn個の繰り返し単位の構造は、互いに異なっていてもよいし、全て同一であってもよい。
 なお、アルキル変性セルロースの上記構造的な特徴は、既知の分析手法(例えば、核磁気共鳴(NMR)分光法など)により特定することができる。
 このようなアルキル変性セルロースとしては、具体的には、エチルセルロース、プロピルセルロース、エチルプロピルセルロース、ブチルセルロース、エチルメチルセルロース等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 これらの中でもエチルセルロースが好ましく、置換度が2.2以上2.7以下のエチルセルロースがより好ましい。前記「置換度」とは、セルロースの置換度として一般的に用いられている意味と同じく、R、RおよびRがエーテル化されている割合を意味する。エーテル化されていない場合、置換度は0であり、R、RおよびRのすべてがエーテル化された場合置換度は3となる。
 なお、本発明において、「置換度」は、例えば、特開2011-34962号公報に記載の方法で測定することができる。
 エチルセルロースを用いる場合に置換度が2.2以上2.7以下にあると、置換度が低すぎるためにエチルセルロースが有機溶媒に溶解しない、という現象を抑えることができ、置換度が高すぎるために反応条件が厳しくなりエチルセルロースの工業生産に適さない、という現象を抑えることができる。
<固体電解質電池用バインダー組成物の調製>
 本発明の固体電解質電池用バインダー組成物は、上記にて説明した粒子状ポリマー、式(I)で表されるアルキル変性セルロースおよび有機溶媒を含んでなる。そして、固体電解質電池用バインダー組成物は、たとえば、粒子状ポリマーの水分散液の溶媒を有機溶媒に溶媒交換した後に、粒子状ポリマーを含む有機溶媒にアルキル変性セルロースを溶解することにより得ることができる。
 本発明の固体電解質電池用バインダー組成物中の式(I)で表されるアルキル変性セルロースの量は、粒子状ポリマー100重量部に対して好ましくは10重量部以上1000重量部以下、より好ましくは70重量部以上500重量部以下である。式(I)で表されるアルキル変性セルロースの量がこの範囲にあると、アルキル変性セルロースの量が多すぎるために固体電解質層や電極活物質層が硬くなり、割れ・欠け・ヒビが発生する、という現象を抑えることができる。また、アルキル変性セルロースの量が少なすぎるために、固体電解質電池用バインダー組成物の結着力が不足する、という現象を抑えることができる。
(固体電解質電池)
 上述した本発明の固体電解質電池用バインダー組成物を用いて、固体電解質電池を作製することができる。具体的には、正極活物質層を有する正極、負極活物質層を有する負極、および、これらの正負極活物質層の間に固体電解質層を有する固体電解質電池の作製に際し、固体電解質粒子と、本発明の固体電解質電池用バインダー組成物とを含む本発明の固体電解質電池用スラリー組成物を用いて、正極活物質層、負極活物質層、および固体電解質層の少なくとも一層、好ましくは全ての層を形成することができる。
 なお、負極活物質層は、固体電解質電池用スラリー組成物としての負極活物質層用スラリー組成物により形成され、正極活物質層は、固体電解質電池用スラリー組成物としての正極活物質層用スラリー組成物により形成され、固体電解質層は、固体電解質電池用スラリー組成物としての固体電解質層用スラリー組成物により形成される。
 以下において、固体電解質層、正極活物質層、及び負極活物質層について説明する。
<固体電解質層>
 固体電解質層は、例えば、固体電解質粒子及び固体電解質電池用バインダー組成物を含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。
<<固体電解質粒子>>
 固体電解質粒子は、通常、粉砕工程を経たものを用いるため粒子状であるが、完全な球形ではなく不定形である。一般に微粒子の大きさは、レーザー光を粒子に照射し散乱光を測定する方法などにより測定されるが、この場合の粒子径は1個の粒子としては形状を球形と仮定した値である。複数の粒子をまとめて測定した場合、相当する粒子径の粒子の存在割合を粒度分布として表すことができる。固体電解質層を形成する固体電解質粒子は、この方法で測定した値で、平均粒子径として示されることが多い。
 固体電解質粒子の平均粒子径は、分散性及び塗工性の良好な固体電解質層用スラリー組成物を得ることができる観点から、好ましくは0.3μm以上1.3μm以下である。なお、固体電解質粒子の平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
 固体電解質粒子は、電荷担体(例えば、リチウムイオン)の伝導性を有していれば特に限定されず、例えば、本発明の固体電解質電池用バインダー組成物が用いられる固体電解質電池が、全固体リチウム二次電池である場合、固体電解質粒子は、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。なお、固体電解質粒子は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結晶性の無機リチウムイオン伝導体としては、Li3N、LISICON(Li14Zn(GeO44)、ペロブスカイト型Li0.5La0.5TiO3、LIPON(Li3+yPO4-xx)、Thio-LISICON(Li3.25Ge0.250.754)などが挙げられる。
 非晶性の無機リチウムイオン伝導体としては、S(硫黄原子)を含有し、かつ、イオン伝導性を有するもの(硫化物固体電解質材料、すなわち、硫化物からなる固体電解質粒子)であれば特に限定されるものではない。ここで、本発明の固体電解質電池用バインダー組成物が用いられる固体電解質電池が、全固体リチウム二次電池である場合、用いられる硫化物固体電解質材料として、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。メカニカルミリング法によれば、常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 上記第13族~第15族の元素としては、例えばAl、Si、Ge、P、As、Sb等を挙げることができる。また、第13族~第15族の元素の硫化物としては、具体的には、Al23、SiS2、GeS2、P23、P25、As23、Sb23等を挙げることができる。中でも、第14族または第15族の硫化物を用いることが好ましい。特に、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料は、Li2S-P25材料、Li2S-SiS2材料、Li2S-GeS2材料またはLi2S-Al23材料であることが好ましく、Li2S-P25材料であることがより好ましい。これらは、Liイオン伝導性が優れているからである。
 また、硫化物固体電解質材料は、架橋硫黄を有することが好ましい。架橋硫黄を有することで、イオン伝導性が高くなるからである。さらに、硫化物固体電解質材料が架橋硫黄を有する場合、通常、正極活物質との反応性が高く、高抵抗層が生じやすい。しかし、本発明においては、アクリレート系モノマー単位と芳香族系モノマー単位を含む共重合体を含むバインダー組成物を用いるため、高抵抗層の発生を抑制できるという本発明の効果を充分に発揮することができる。なお、「架橋硫黄を有する」ことは、例えば、ラマン分光スペクトルによる測定結果、原料組成比、NMRによる測定結果等を考慮することでも判断することができる。
 Li2S-P25材料またはLi2S-Al23材料におけるLi2Sのモル分率は、より確実に架橋硫黄を有する硫化物固体電解質材料を得ることができる観点から、例えば50%以上74%以下の範囲内、中でも60%以上74%以下の範囲内であることが好ましい。
 また、硫化物固体電解質材料は、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。硫化物ガラスは、例えば、上述した非晶質化法により得ることができる。結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
 特に、硫化物固体電解質材料が、Li7311で表される結晶化硫化物ガラスであることが好ましい。Liイオン伝導度が特に優れているからである。Li7311を合成する方法としては、例えば、Li2SおよびP25を、モル比70:30で混合し、ボールミルで非晶質化することで、硫化物ガラスを合成し、得られた硫化物ガラスを150℃以上360℃以下で熱処理することにより、Li7311を合成することができる。
<<固体電解質層用バインダー組成物>>
 固体電解質電池用スラリー組成物に含まれる固体電解質層用バインダー組成物は、固体電解質粒子同士を結着して固体電解質層を形成するために用いられる。そして、固体電解質層用バインダー組成物としては、上述した本発明の固体電解質電池用バインダー組成物を用いることが好ましい。
<正極活物質層>
 正極活物質層は、例えば、正極活物質、固体電解質粒子、及び正極用バインダー組成物を含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。なお、正極活物質層用スラリー組成物は、例えば、有機溶媒の存在下で、正極活物質、固体電解質粒子、正極用バインダー組成物、及び必要に応じて添加される他の成分を混合することにより製造される。
<<正極活物質>>
 正極活物質は、例えば全固体リチウム二次電池においては、リチウムイオンを吸蔵および放出可能な化合物である。そして、正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiFePO4、LiFeVO4などのリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2等の遷移金属硫化物;Cu223、非晶質V2O-P25、MoO3、V25、V613などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。正極活物質は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよく、例えば、上記の無機化合物と上記の有機化合物の混合物であってもよい。
 本発明で用いる正極活物質の平均粒子径は、負荷特性、充放電サイクル特性などの電池特性の向上の観点、また、充放電容量が大きい固体電解質二次電池を得ることができ、かつ正極活物質層用スラリー組成物の取扱い、および正極を製造する際の取扱いが容易である観点から、通常0.1μm以上50μm以下、好ましくは1μm以上20μm以下である。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。
<<固体電解質粒子>>
 固体電解質粒子は、上述の「固体電解質層」の項において例示したものと同じものを用いることができる。
 ここで、正極活物質と固体電解質粒子との重量比率は、好ましくは正極活物質:固体電解質粒子=90:10~30:70、より好ましくは正極活物質:固体電解質粒子=80:20~40:60である。正極活物質と固体電解質粒子の重量比率がこの範囲であると、正極活物質の重量比率が少なすぎるために、電池内の正極活物重量が低減する結果、電池としての容量低下につながる、という現象を抑えることができる。また、固体電解質粒子の重量比率が少なすぎるために、導電性が十分に得られず正極活物質を有効に利用することができない結果、電池としての容量低下につながる、という現象を抑えることができる。
<<正極用バインダー組成物>>
 正極活物質層用スラリー組成物に含まれる正極用バインダー組成物は、正極活物質および固体電解質粒子を結着して正極活物質層を形成するために用いられる。そして、正極用バインダー組成物としては、上述した本発明の固体電解質電池用バインダー組成物を用いることが好ましい。
 正極活物質層用スラリー組成物中の正極用バインダー組成物の含有量は特に限定されない。しかしながら、電池反応を阻害せずに、正極から正極活物質が脱落するのを防ぐことができる観点から、正極活物質層用スラリー組成物は、正極活物質100重量部に対して、バインダー(本発明の固体電解質電池用バインダー組成物を用いる場合は、粒子状ポリマー(共重合体))の固形分相当で、好ましくは0.1重量部以上5重量部以下、より好ましくは0.2重量部以上4重量部以下となる量で、正極用バインダー組成物を含む。
<<有機溶媒>>
 正極活物質層用スラリー組成物中の有機溶媒の含有量は、固体電解質粒子の分散性を保持しながら、良好な塗料特性を得ることができる観点から、正極活物質100重量部に対して、好ましくは20重量部以上80重量部以下、より好ましくは30重量部以上70重量部以下である。なお、正極活物質層用スラリー組成物中の有機溶媒は、正極用バインダー組成物に含まれていた有機溶媒のみで構成されていてもよいし、正極活物質層用スラリー組成物の調製の際に、有機溶媒を必要に応じて別途添加してもよい。
<<他の成分>>
 正極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
[導電剤]
 導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[補強材]
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状の各種フィラーが使用できる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<負極活物質層>
 負極活物質層は、少なくとも負極活物質を含む層である。
<<負極活物質>>
 負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。金属材料の場合は金属箔または金属板をそのまま電極として用いることができるが、粒子状でも良い。
 負極活物質が粒子状である場合には、負極活物質層は、例えば、負極活物質、固体電解質粒子、及び負極用バインダー組成物を含む負極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。なお、負極活物質層用スラリー組成物は、例えば、有機溶媒の存在下で、負極活物質、固体電解質粒子、負極用バインダー組成物、及び必要に応じて添加される他の成分を混合することにより製造される。
 負極活物質が粒子状の場合、負極活物質の平均粒子径は、初期効率、負荷特性、充放電サイクル特性などの電池特性の向上の観点から、通常1μm以上50μm以下、好ましくは15μm以上30μm以下である。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。
<<固体電解質粒子>>
 固体電解質粒子は、上述の「固体電解質層」の項において例示したものと同じものを用いることができる。
 ここで、負極活物質と固体電解質粒子との重量比率は、好ましくは負極活物質:固体電解質粒子=90:10~50:50、より好ましくは負極活物質:固体電解質粒子=60:40~80:20である。負極活物質と固体電解質粒子の重量比率がこの範囲であると、負極活物質の重量比率が少なすぎるために、電池内の負極活物重量が低減する結果、電池としての容量低下につながる、という現象を抑えることができる。また、固体電解質粒子の重量比率が少なすぎるために、導電性が十分に得られず負極活物質を有効に利用できない結果、電池としての容量低下につながる、という現象を抑えることができる。
<<負極用バインダー組成物>>
 負極活物質層用スラリー組成物に含まれる負極用バインダー組成物は、負極活物質および固体電解質粒子を結着して負極活物質層を形成するために用いられる。そして、負極用バインダー組成物としては、上述した本発明の固体電解質電池用バインダー組成物を用いることが好ましい。
 負極活物質が粒子状の場合、負極活物質層用スラリー組成物中の負極用バインダー組成物の含有量は特に限定されない。しかしながら、電池反応を阻害せずに、負極から負極活物質が脱落するのを防ぐことができる観点から、負極活物質100重量部に対して、バインダー(本発明の固体電解質電池用バインダー組成物を用いる場合は、粒子状ポリマー(共重合体))の固形分相当で、好ましくは0.1重量部以上5重量部以下、より好ましくは0.2重量部以上4重量部以下となる量で、負極用バインダー組成物を含む。
<<有機溶媒及び他の成分>>
 負極活物質層用スラリー組成物中の有機溶媒は、負極用バインダー組成物に含まれていた有機溶媒のみで構成されていてもよいし、負極活物質層用スラリー組成物の調製の際に、有機溶媒を必要に応じて別途添加してもよい。
 また、負極活物質層用スラリー組成物に必要に応じて添加される他の成分は、「正極活物質層」の項で上述したものと同様のものを用いることができる。
<集電体>
 正極活物質層及び負極活物質層の形成に用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有する観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。これらの中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。
 集電体の形状は特に制限されないが、厚さ0.001mm以上0.5mm以下程度のシート状のものが好ましい。
 集電体は、上述した正極活物質層又は負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正極活物質層又は負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
<固体電解質層用スラリー組成物の製造>
 固体電解質層用スラリー組成物は、例えば、有機溶媒の存在下で、上述した固体電解質粒子、固体電解質層用バインダー組成物、及び必要に応じて添加される他の成分を混合して得られる。
<正極活物質層用スラリー組成物の製造>
 正極活物質層用スラリー組成物は、例えば、有機溶媒の存在下で、上述した正極活物質、固体電解質粒子、正極用バインダー組成物、及び必要に応じて添加される他の成分を混合して得られる。
<負極活物質層用スラリー組成物の製造>
 負極活物質層用スラリー組成物は、例えば、有機溶媒の存在下で、上述した負極活物質、固体電解質粒子、負極用バインダー組成物、及び必要に応じて添加される他の成分を混合して得られる。
 上記の各スラリー組成物(固体電解質用スラリー組成物、正極活物質層用スラリー組成物および負極活物質層用スラリー組成物)の混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、固体電解質粒子の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
<固体電解質電池の製造>
 固体電解質電池における正極は、集電体上に正極活物質層を形成することにより得られる。ここで、正極活物質層は、例えば、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥することにより形成される。
 また、固体電解質電池における負極は、負極活物質が金属箔又は金属板である場合にはそのまま負極として用いてもよい。一方、負極活物質が粒子状である場合には、正極の集電体とは別の集電体上に負極活物質層を形成することにより得られる。ここで、負極活物質層は、上記の負極活物質層用スラリー組成物を正極の集電体とは別の集電体上に塗布、乾燥することにより形成される。
 次いで、形成した正極活物質層または負極活物質層の上に、例えば、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、固体電解質電池素子を製造する。
 正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法は特に限定されず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される活物質層の厚さが通常5μm以上300μm以下、好ましくは10μm以上250μm以下になる程度の量である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は、通常は応力集中が起こって電極活物質層に亀裂が入ったり、電極活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く有機溶媒が揮発するように調整する。更に、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレスやカレンダープレスなどの方法が挙げられるが、限定されるものではない。
 乾燥温度は、有機溶媒が十分に揮発する温度で行う。具体的には、正極用のバインダーおよび負極用のバインダーの熱分解なく良好な活物質層を形成することが可能となる観点から、50℃以上250℃以下が好ましく、さらには80℃以上200℃以下が好ましい。乾燥時間については、特に限定されることはないが、通常10分以上60分以下の範囲で行われる。
 固体電解質層用スラリー組成物を、正極活物質層又は負極活物質層へ塗布する方法は特に限定されず、上述した正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行われるが、薄膜の固体電解質層を形成できるという観点からグラビア法が好ましい。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される固体電解質層の厚さが通常2μm以上20μm以下、好ましくは3μm以上15μm以下になる程度の量である。乾燥方法、乾燥条件及び乾燥温度も、上述の正極活物質層用スラリー組成物および負極活物質層用スラリー組成物と同様である。
 更に、上記の固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。加圧方法としては特に限定されず、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)などが挙げられる。加圧プレスする圧力としては、電極と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くなり良好な電池特性を示す観点から、好ましくは5MPa以上700MPa以下、より好ましくは7MPa以上500MPa以下である。
 正極活物質層または負極活物質層のどちらに固体電解質層用スラリー組成物を塗布するかは特に限定されないが、使用する電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、スラリー組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。
 得られた固体電解質電池素子を、電池形状に応じてそのままの状態又は巻く、折るなどして電池容器に入れ、封口して固体電解質電池が得られる。また、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを電池容器に入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。各特性は、以下の方法により評価する。なお、本実施例における「部」および「%」は、特に断りのない限り、それぞれ、「重量部」および「重量%」である。
 <柔軟性(プロセス性)>
 固体電解質層用スラリー組成物をアルミ箔の片面に塗布・乾燥することにより、固体電解質層を形成し、これを試験片とした。そして、試験片の固体電解質層が形成されていない面を直径1.0mmの金属棒に沿わせ、この金属棒に巻き付けて固体電解質層が割れるか否かを評価した。固体電解質層が割れなかったものを「A」、固体電解質層が割れたものを「B」として、結果を表1に示す。固体電解質層の割れが見られないものは、試験片(特には固体電解質層)の柔軟性が高く、プロセス性に優れていることを示す。
 <剥離強度>
 実施例および比較例にて用いた正極活物質層用スラリーをアルミ箔に塗布し、80℃で10分間乾燥させた試験片を作製した。この試験片について18mm幅のテープを用いて剥離速度30mm/分にて90°剥離試験を行った。剥離試験開始後に剥離強度が最大になった値を剥離強度(N/18mm)として記録し、結果を表1に示した。5N/18mm以上であると剥離強度が良好であることを示し、また、剥離強度の値が大きいほど、剥離強度に優れることを示す。
 <抵抗値の測定>
 実施例および比較例にて作製した固体電解質層の抵抗値を、インピーダンスメーターを用いて測定し、ナイキストプロットから抵抗値(Ω)を算出した。結果を表1に示す。抵抗値の値が小さいほど、電池性能が良好な固体電解質電池が得られることを示す。
 <電池容量>
 実施例および比較例にて作製した固体電解質電池を用いて、それぞれ25℃で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルを5サイクル行い、5サイクル目の放電容量を電池容量(mAh)として表1に示した。この値が大きいほど、容量特性に優れることを示す。
 (実施例1)
 <粒子状ポリマーの製造>
 攪拌機付きガラス容器に、アクリレート系モノマーとしてのn-ブチルアクリレート50部、芳香族系モノマーとしてのスチレン50部、架橋剤としてのエチレングリコールジメタクリレート(以下、「EGDMA」ということがある。)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。
 次いで、得られた水分散液を10重量%のNaOH水溶液を用いてpHを7に調整した。また、pHを7に調整したポリマーの水分散液に対しては、未反応モノマーを除去するため加熱減圧処理を行った後、イオン交換水を添加し、固形分濃度を30重量%に調整した。
 粒子状ポリマーの溶媒を水から有機溶媒に交換するため、固形分濃度を調整した粒子状ポリマーの水分散液100gに、有機溶媒としてのキシレンを500g添加し、減圧下で水を蒸発させた。
 <固体電解質電池用バインダー組成物の製造>
 溶媒をキシレンに交換した粒子状ポリマーの固形分100部に対して、エチルセルロース(和光純薬工業株式会社製、試薬、上記式(I)の構造を有する、約49%エトキシ化。)100部を加え、固体電解質電池用バインダー組成物を調製した。
 <正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.4μm)150部と、導電剤としてアセチレンブラック13部と、固体電解質電池用バインダー組成物を固形分相当で2部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度78%に調整した後にプラネタリーミキサーで60分間混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。
 <負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.4μm)50部と、固体電解質電池用バインダー組成物を固形分相当で2部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:1.2μm、累積90%の粒子径:2.1μm)100部と、固体電解質電池用バインダー組成物を固形分相当で2部とを混合し、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。
 <固体電解質電池の製造>
 集電体(アルミニウム箔)表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが50μmの正極活物質層を形成して正極を製造した。また、別の集電体(銅箔)表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが30μmの負極活物質層を形成して負極を製造した。
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて厚さが18μmの固体電解質層を形成し、固体電解質層付き固体電解質電池用正極を得た。
 固体電解質層付き固体電解質電池用正極の固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして固体電解質電池を得た。プレス後の固体電解質電池の固体電解質層の厚さは11μmであった。
 (実施例2)
 粒子状ポリマーを製造する際に用いるモノマーを、アクリレート系モノマーとしての2-エチルヘキシルアクリレート70部および芳香族系モノマーとしてのスチレン30部に変更し、架橋剤としてのEGDMAの量を2部に変更した以外は、実施例1と同様に粒子状ポリマーを製造した。この粒子状ポリマーを用いた以外は、実施例1と同様に固体電解質電池用バインダー組成物の製造、固体電解質電池の製造を行った。
 (実施例3)
 粒子状ポリマーを製造する際に用いるモノマーを、アクリレート系モノマーとしてのn-ブチルアクリレート50部及びエチルアクリレート25部、並びに芳香族系モノマーとしてのスチレン25部に変更し、架橋剤としてのEGDMAの量を2部に変更した以外は、実施例1と同様に粒子状ポリマーを製造した。また、この粒子状ポリマーを用いて固体電解質電池用バインダー組成物の製造を行う際に、加えるエチルセルロースの量を粒子状ポリマーの固形分100部に対してエチルセルロース50部に変更した。この固体電解質電池用バインダー組成物を用いた以外は、実施例1と同様に固体電解質電池の製造を行った。
 (実施例4)
 粒子状ポリマーを製造する際に用いるモノマーを、アクリレート系モノマーとしての2-エチルヘキシルアクリレート50部および芳香族系モノマーとしてのスチレン50部に変更し、架橋剤としてのEGDMAの量を2部に変更した以外は、実施例1と同様に粒子状ポリマーを製造した。また、この粒子状ポリマーを用いて固体電解質電池用バインダー組成物の製造を行う際に、加えるエチルセルロースの量を粒子状ポリマーの固形分100部に対してエチルセルロース500部に変更した。この固体電解質電池用バインダー組成物を用いた以外は、実施例1と同様に固体電解質電池の製造を行った。
 (比較例1)
 固体電解質電池用バインダー組成物の製造において、エチルセルロースに代えてカルボキシメチルセルロースナトリウム(和光純薬工業株式会社製、試薬)を粒子状ポリマーの固形分100部に対して100部加えた。この固体電解質電池用バインダー組成物を用いて、実施例1と同様に固体電解質電池の製造を試みた。しかし、固体電解質層が柔軟性に劣るため固体電解質電池を得ることができなかった。
 (比較例2)
 粒子状ポリマーを製造する際に用いるモノマーを、アクリレート系モノマーとしてのn-ブチルアクリレート50部およびエチルアクリレート50部に変更し、架橋剤としてのEGDMAの量を2部に変更した以外は、実施例1と同様に粒子状ポリマーを製造した。この粒子状ポリマーを用いた以外は、実施例1と同様に固体電解質電池用バインダー組成物の製造、固体電解質電池の製造を行った。
 (比較例3)
 粒子状ポリマーを製造する際に用いるモノマーを、芳香族系モノマーとしてのスチレン100部に変更した以外は、実施例1と同様に粒子状ポリマーを製造した。この粒子状ポリマーを用いた以外は、実施例1と同様に固体電解質電池用バインダー組成物の製造、固体電解質電池の製造を試みた。しかし、固体電解質層が柔軟性に劣るため固体電解質電池を得ることができなかった。
 
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体の粒子状ポリマーと、式(I)で表されるアルキル変性セルロースと、有機溶媒とを含んでなる固体電解質電池用バインダー組成物を用いた実施例1~4では、得られる層の柔軟性(プロセス性)および剥離強度に優れていた。また、実施例1~4では、抵抗値も低く、さらに固体電解質電池を製造して充放電を5サイクル行った場合の電池容量は良好であり、固体電解質電池の優れた電池特性を十分に確保することができた。
 本発明によれば、プロセス性に優れ、且つ、固体電解質電池に優れた電池特性を発揮させることが可能な、固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物が提供される。

Claims (6)

  1.  アクリレート系モノマー単位と芳香族系モノマー単位とを含む共重合体の粒子状ポリマーと、
     下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R、RおよびRは、それぞれ水素原子または炭素数が1以上4以下のアルキル基を示し、全繰り返し単位中50モル%以上の繰り返し単位において、R、RおよびRの少なくとも2つは、炭素数が2以上4以下のアルキル基である。また、nは自然数を示す。)
    で表されるアルキル変性セルロースと、
     有機溶媒と、
    を含んでなる固体電解質電池用バインダー組成物。
  2.  前記粒子状ポリマーに含まれる前記アクリレート系モノマー単位と前記芳香族系モノマー単位との重量比は、30:70~80:20である請求項1に記載の固体電解質電池用バインダー組成物。
  3.  前記アルキル変性セルロースは、置換度が2.2以上2.7以下のエチルセルロースである、請求項1または2に記載の固体電解質電池用バインダー組成物。
  4.  前記有機溶媒は、沸点が100℃以上である、請求項1~3の何れかに記載の固体電解質電池用バインダー組成物。
  5.  請求項1~4の何れかに記載の固体電解質電池用バインダー組成物と、固体電解質粒子とを含む、固体電解質電池用スラリー組成物。
  6.  前記固体電解質粒子が、硫化物からなる固体電解質粒子である、請求項5に記載の固体電解質電池用スラリー組成物。
PCT/JP2017/021033 2016-06-09 2017-06-06 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物 WO2017213156A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018521743A JP6904345B2 (ja) 2016-06-09 2017-06-06 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物
US16/303,292 US10985401B2 (en) 2016-06-09 2017-06-06 Binder composition for solid electrolyte battery and slurry composition for solid electrolyte battery
EP17810330.5A EP3471182B1 (en) 2016-06-09 2017-06-06 Binder composition for solid electrolyte batteries and slurry composition for solid electrolyte batteries
KR1020187034498A KR102340874B1 (ko) 2016-06-09 2017-06-06 고체 전해질 전지용 바인더 조성물 및 고체 전해질 전지용 슬러리 조성물
CN201780031472.5A CN109155414B (zh) 2016-06-09 2017-06-06 固体电解质电池用粘结剂组合物、及固体电解质电池用浆料组合物
PL17810330T PL3471182T3 (pl) 2016-06-09 2017-06-06 Kompozycja substancji wiążącej do baterii z elektrolitem stałym i kompozycja zawiesinowa do baterii z elektrolitem stałym

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016115242 2016-06-09
JP2016-115242 2016-06-09

Publications (1)

Publication Number Publication Date
WO2017213156A1 true WO2017213156A1 (ja) 2017-12-14

Family

ID=60578646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021033 WO2017213156A1 (ja) 2016-06-09 2017-06-06 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物

Country Status (8)

Country Link
US (1) US10985401B2 (ja)
EP (1) EP3471182B1 (ja)
JP (1) JP6904345B2 (ja)
KR (1) KR102340874B1 (ja)
CN (1) CN109155414B (ja)
HU (1) HUE051397T2 (ja)
PL (1) PL3471182T3 (ja)
WO (1) WO2017213156A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097906A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019097903A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN110299560A (zh) * 2018-03-22 2019-10-01 丰田自动车株式会社 硫化物固体电池
WO2020012972A1 (ja) * 2018-07-10 2020-01-16 株式会社ダイセル 芳香族脂肪族混合セルロースエステル、非水電解質二次電池正極用添加剤、非水電解質二次電池用正極、及び非水電解質二次電池用正極の製造方法
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
EP3904405A4 (en) * 2018-12-28 2022-09-21 Zeon Corporation ALL SOLID SECONDARY BATTERY ELECTRODE CONDUCTIVE MATERIAL PASTE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812026A (zh) * 2019-03-29 2021-12-17 Jsr株式会社 全固体二次电池用粘结剂、全固体二次电池用粘结剂组合物、全固体二次电池用浆料、全固体二次电池用固体电解质片材及其制造方法、以及全固体二次电池及其制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151770A (ja) 1983-02-16 1984-08-30 Sanyo Electric Co Ltd 固体電解質電池
JPH0589871A (ja) * 1991-09-27 1993-04-09 Asahi Chem Ind Co Ltd 二次電池電極
JPH05226004A (ja) * 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd 二次電池
JP2003272625A (ja) * 2002-03-15 2003-09-26 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006228468A (ja) * 2005-02-15 2006-08-31 Sii Micro Parts Ltd 電解質二次電池
JP4134617B2 (ja) 2001-07-23 2008-08-20 日本ゼオン株式会社 高分子固体電解質用組成物の製造方法、高分子固体電解質の製造方法および電池の製造方法
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2009211950A (ja) 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2011034962A (ja) 2009-07-07 2011-02-17 Nippon Zeon Co Ltd リチウムイオン二次電池電極の製造方法、及びリチウムイオン二次電池
JP2012243476A (ja) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2015191864A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに全固体二次電池の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134617A (ja) 1990-09-25 1992-05-08 Victor Co Of Japan Ltd 記録再生素子の駆動装置
JP3627586B2 (ja) * 1999-09-03 2005-03-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用
CN1797825A (zh) * 2004-12-30 2006-07-05 比亚迪股份有限公司 锂离子电池和该电池的电极及它们的制备方法
US8029927B2 (en) * 2005-03-22 2011-10-04 Blue Spark Technologies, Inc. Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
US8119289B2 (en) * 2005-04-28 2012-02-21 Zeon Corporation Electro-chemical element electrode
BRPI0620590B1 (pt) * 2005-12-06 2019-07-09 Lg Chem, Ltd. Separador compósito orgânico/inorgânico, método para fabricar um separador compósito orgânico/inorgânico e dispositivo eletroquímico
CN101595583B (zh) * 2007-01-16 2012-10-24 日本瑞翁株式会社 粘合剂组合物、电极用浆料、电极和非水电解质二次电池
KR101002161B1 (ko) * 2007-11-29 2010-12-17 주식회사 엘지화학 다공성 코팅층이 형성된 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR101664526B1 (ko) * 2010-02-26 2016-10-11 제온 코포레이션 전고체 2 차 전지 및 전고체 2 차 전지의 제조 방법
WO2012026462A1 (ja) * 2010-08-24 2012-03-01 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
US9685658B2 (en) * 2011-07-15 2017-06-20 Zeon Corporation Composite particles for electrochemical device electrode, material for electrochemical device electrode, and electrochemical device electrode
JP6059019B2 (ja) * 2013-01-07 2017-01-11 日立マクセル株式会社 非水電解質二次電池
CN103943377A (zh) * 2013-01-21 2014-07-23 天津普兰纳米科技有限公司 多孔电极制备
KR101739298B1 (ko) * 2013-02-20 2017-05-24 삼성에스디아이 주식회사 전지용 바인더, 이를 채용한 음극과 리튬전지
US20140370382A1 (en) * 2013-06-12 2014-12-18 E I Du Pont De Nemours And Company Hybrid battery binder
JP6337554B2 (ja) * 2014-03-24 2018-06-06 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151770A (ja) 1983-02-16 1984-08-30 Sanyo Electric Co Ltd 固体電解質電池
JPH05226004A (ja) * 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd 二次電池
JPH0589871A (ja) * 1991-09-27 1993-04-09 Asahi Chem Ind Co Ltd 二次電池電極
JP4134617B2 (ja) 2001-07-23 2008-08-20 日本ゼオン株式会社 高分子固体電解質用組成物の製造方法、高分子固体電解質の製造方法および電池の製造方法
JP2003272625A (ja) * 2002-03-15 2003-09-26 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006228468A (ja) * 2005-02-15 2006-08-31 Sii Micro Parts Ltd 電解質二次電池
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2009211950A (ja) 2008-03-04 2009-09-17 Idemitsu Kosan Co Ltd 固体電解質及びその製造方法
JP2011034962A (ja) 2009-07-07 2011-02-17 Nippon Zeon Co Ltd リチウムイオン二次電池電極の製造方法、及びリチウムイオン二次電池
JP2012243476A (ja) 2011-05-17 2012-12-10 Nippon Zeon Co Ltd 全固体二次電池の製造方法
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2015191864A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに全固体二次電池の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097906A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019097903A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US11552331B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
US11552332B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
CN110299560A (zh) * 2018-03-22 2019-10-01 丰田自动车株式会社 硫化物固体电池
WO2020012972A1 (ja) * 2018-07-10 2020-01-16 株式会社ダイセル 芳香族脂肪族混合セルロースエステル、非水電解質二次電池正極用添加剤、非水電解質二次電池用正極、及び非水電解質二次電池用正極の製造方法
EP3904405A4 (en) * 2018-12-28 2022-09-21 Zeon Corporation ALL SOLID SECONDARY BATTERY ELECTRODE CONDUCTIVE MATERIAL PASTE
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池

Also Published As

Publication number Publication date
JPWO2017213156A1 (ja) 2019-03-28
KR20190016021A (ko) 2019-02-15
CN109155414B (zh) 2021-08-13
EP3471182A4 (en) 2020-01-15
US20190214673A1 (en) 2019-07-11
US10985401B2 (en) 2021-04-20
HUE051397T2 (hu) 2021-03-01
PL3471182T3 (pl) 2021-02-08
CN109155414A (zh) 2019-01-04
EP3471182A1 (en) 2019-04-17
JP6904345B2 (ja) 2021-07-14
KR102340874B1 (ko) 2021-12-16
EP3471182B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
EP3276734B1 (en) All-solid secondary battery
JP6834963B2 (ja) 全固体二次電池および全固体二次電池の製造方法
JP6904345B2 (ja) 固体電解質電池用バインダー組成物および固体電解質電池用スラリー組成物
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
JP6459691B2 (ja) 全固体二次電池
EP3486981B1 (en) Binder composition for solid electrolyte batteries
JPWO2012173089A1 (ja) 全固体二次電池
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
JP2016181472A (ja) 全固体二次電池
WO2019116964A1 (ja) 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、全固体二次電池用機能層、および全固体二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018521743

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187034498

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017810330

Country of ref document: EP

Effective date: 20190109