WO2017212939A1 - 車両用送風システム - Google Patents

車両用送風システム Download PDF

Info

Publication number
WO2017212939A1
WO2017212939A1 PCT/JP2017/019562 JP2017019562W WO2017212939A1 WO 2017212939 A1 WO2017212939 A1 WO 2017212939A1 JP 2017019562 W JP2017019562 W JP 2017019562W WO 2017212939 A1 WO2017212939 A1 WO 2017212939A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vehicle
blower
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2017/019562
Other languages
English (en)
French (fr)
Inventor
史哉 原
吉田 憲司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017212939A1 publication Critical patent/WO2017212939A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers

Definitions

  • the present disclosure relates to a vehicle blower system that blows air into an engine room using a blower unit.
  • Patent Document 1 blows air to a radiator or a condenser arranged in an engine room of a vehicle using an ejector nozzle or a radiator blower.
  • the ejector nozzle blows in surrounding air by the air flowing out of the slit.
  • cooling of auxiliary machine parts other than radiators and condensers is performed using the wind of the fan for the radiator or traveling wind.
  • HV Hybrid Vehicle
  • This disclosure is intended to enable efficient cooling of auxiliary machine parts in the engine room.
  • a water-cooled internal combustion engine disposed in an engine room of a vehicle, and disposed in a front side of the vehicle with respect to the internal combustion engine in the engine room, the cooling water of the internal combustion engine is used as air.
  • a radiator that cools by heat exchange, a radiator fan that is disposed in front of the internal combustion engine in the engine room and supplies air to the radiator, and a vehicle rear side of the radiator fan in the engine room.
  • the vehicle blower system includes a blower unit that is disposed on the side and that can blow air by guiding the air on the radiator transmitter side to the vehicle rear side of the internal combustion engine.
  • a water-cooled internal combustion engine disposed in the engine room of the vehicle and a vehicle-cooled internal combustion engine disposed in front of the internal combustion engine in the engine room and heat exchange of the cooling water of the internal combustion engine with air.
  • the vehicle blower system includes a blower unit that winds ambient air with the air to be blown into the engine room.
  • the air can be intensively blown to a desired part in the engine room by the air blowing unit, it is possible to efficiently cool the auxiliary machine parts in the engine room.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 5.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is a front view of the ventilation unit in the ventilation system for vehicles concerning a 5th embodiment. It is a top view of the ventilation unit of FIG.
  • FIG. 1 A first embodiment will be described.
  • a water-cooled internal combustion engine (hereinafter referred to as an internal combustion engine) 12 is disposed in an engine room 11 of the vehicle 1.
  • An exhaust manifold 13 that collects exhaust gas discharged from the internal combustion engine 12 is integrally mounted on the vehicle rear side of the internal combustion engine 12.
  • a radiator 14 for cooling the cooling water of the internal combustion engine 12 by heat exchange with air is disposed.
  • a radiator blower 15 that generates an air flow and supplies air to the radiator 14 is integrally mounted on the vehicle rear side of the radiator 14.
  • the radiator 14 and the radiator blower 15 are disposed on the vehicle front side of the internal combustion engine 12.
  • a bent tube type first air blowing unit 2 is arranged in the engine room 11.
  • the first blower unit 2 is disposed on the vehicle rear side with respect to the radiator blower 15 and is disposed on both sides in the vehicle left-right direction with respect to the internal combustion engine 12 and is fixed to the vehicle body.
  • the vehicle blower system of this embodiment includes a water-cooled internal combustion engine 12, a radiator 14, a radiator blower 15, and a first blower unit 2.
  • the first blower unit 2 includes a cylindrical outer tube portion 21 and a cylindrical inner tube portion 22 arranged inside the outer tube portion 21.
  • a first air passage 23 through which air flows is formed between the outer cylinder portion 21 and the inner cylinder portion 22.
  • a second air passage 24 through which air flows is formed inside the inner cylinder portion 22.
  • a plurality of openings 25 for taking wind such as traveling wind into the first air passage 23 are formed on one end side end face of the first blower unit 2.
  • the 1st ventilation unit 2 is fixed to a vehicle so that this opening part 25 may oppose driving
  • Both ends of the second air passage 24 are open. Then, as will be described later, the air flows into the second air passage 24 as indicated by an arrow A and flows out from the second air passage 24 as indicated by an arrow B.
  • the inner cylindrical portion 22 includes an upstream inner cylindrical portion 221 positioned on the upstream side of the air flow in the second air passage 24 and a downstream inner cylindrical portion 222 positioned on the downstream side of the upstream inner cylindrical portion 221. It consists of.
  • a slit 26 is continuously formed in the entire circumferential direction of the inner cylindrical portion 22 between the air flow downstream end of the upstream inner cylindrical portion 221 and the air flow upstream end of the downstream inner cylindrical portion 222. Yes.
  • the wind flowing in from the opening 25 is guided to the slit 26 through the first air passage 23 as shown by an arrow C, and then flows out from the slit 26 to the second air passage 24.
  • the air flows out from the slit 26 into the second air passage 24 as a jet, so that the air around the slit 26 is drawn into the jet by the Coanda effect, and the air flows into the second air passage 24 as indicated by the arrow A. Get involved.
  • the air flowing out from the slit 26 into the second air passage 24 and the air entrained in the second air passage 24 flow through the second air passage 24 and then out of the second air passage 24 as shown by an arrow B. To do.
  • the outer cylindrical portion 21 and the downstream inner cylindrical portion 222 are bent by approximately 90 ° at the intermediate portion, and are configured such that the air inflow direction of the second air passage 24 and the air outflow direction of the second air passage 24 are different. ing.
  • the first blower unit 2 is fixed to the vehicle so that the opening 25 faces the traveling wind, that is, the opening 25 faces the front side of the vehicle. Further, the first blower unit 2 is configured so that the outflow direction of the air flowing out from the second air passage 24 faces the vehicle rear portion of the internal combustion engine 12, more specifically, toward the exhaust manifold 13 side. It is fixed to the vehicle.
  • the upstream side (that is, the air inflow side) portion of the first blower unit 2 extends substantially in the vehicle front-rear direction
  • the downstream side (that is, the air outflow side) portion of the first blower unit 2 is substantially the vehicle left-right direction. It extends to.
  • FIG. 1 has shown the flow of the wind of the fan 15 for radiators, and a driving
  • FIG. 1 has shown the flow of the wind of the fan 15 for radiators, and a driving
  • the wind of the radiator fan 15 and the traveling wind flow in the engine room 11, and a part of the wind flows into the first air passage 23 from the opening 25 and out of the slit 26 into the second air passage 24.
  • air is caught in the second air passage 24.
  • the air flowing out from the slit 26 into the second air passage 24 and the air entrained in the second air passage 24 are blown from both sides of the internal combustion engine 12 in the left-right direction of the vehicle toward the vehicle rear portion of the internal combustion engine 12.
  • the exhaust manifold 13 is cooled.
  • auxiliary machine parts arranged in the vehicle rear portion of the internal combustion engine 12 for example, auxiliary machine parts such as a wire harness and a hydraulic sensor for detecting the pressure of the engine oil are cooled.
  • a straight pipe-type second blower unit 3 is disposed in the engine room 11 together with the first blower unit 2.
  • the vehicle blower system of this embodiment includes a water-cooled internal combustion engine 12, a radiator 14, a radiator blower 15, a first blower unit 2, and a second blower unit 3.
  • the first blower unit 2 is disposed on the vehicle rear side of the radiator blower 15 and is disposed above the upper surface of the internal combustion engine 12.
  • One first blower unit 2 is disposed near the center of the internal combustion engine 12 in the left-right direction of the vehicle.
  • the second blower unit 3 is disposed on the vehicle rear side of the radiator blower 15 and the internal combustion engine 12 and below the bottom surface of the internal combustion engine 12, and is fixed to the vehicle body.
  • One second blower unit 3 is disposed near the center of the internal combustion engine 12 in the left-right direction of the vehicle.
  • the second blower unit 3 includes a linear and cylindrical outer cylindrical portion 31, and a linear and cylindrical inner cylindrical portion arranged inside the outer cylindrical portion 31. 32.
  • a first air passage 33 through which air flows is formed between the outer cylinder portion 31 and the inner cylinder portion 32.
  • a second air passage 34 through which air flows is formed inside the inner cylinder portion 32.
  • a plurality of openings 35 for taking wind such as traveling wind into the first air passage 33 are formed on one end side end surface of the second blower unit 3.
  • the 2nd ventilation unit 3 is fixed to a vehicle so that this opening part 35 may oppose driving
  • Both ends of the second air passage 34 are open. Then, as will be described later, the air flows into the second air passage 34 as indicated by the arrow A and flows out of the second air passage 34 as indicated by the arrow B.
  • the inner cylinder part 32 includes an upstream inner cylinder part 321 located on the upstream side of the air flow in the second air passage 34 and a downstream inner cylinder part 322 located on the downstream side of the upstream air cylinder part 321. It consists of.
  • a slit 36 is continuously formed in the entire circumferential direction of the inner cylinder 32. Yes.
  • the wind flowing from the opening 35 is guided to the slit 36 through the first air passage 33 as shown by an arrow C, and then flows out from the slit 36 to the second air passage 34.
  • the air flows out from the slit 36 into the second air passage 34 as a jet, so that the air around the slit 36 is drawn into the jet by the Coanda effect, and the air flows into the second air passage 34 as indicated by the arrow A. Get involved.
  • the air that flows out from the slit 36 into the second air passage 34 and the air that is entrained in the second air passage 34 flows through the second air passage 34 and then flows out of the second air passage 34 as shown by the arrow B. To do.
  • the first blower unit 2 is fixed to the vehicle so that the opening 25 faces the traveling wind, that is, the opening 25 faces the front side of the vehicle. Further, the first blower unit 2 is configured so that the outflow direction of the air flowing out from the second air passage 24 faces the vehicle rear portion of the internal combustion engine 12, more specifically, toward the exhaust manifold 13 side. It is fixed to the vehicle.
  • the upstream side (that is, the air inflow side) portion of the first air blowing unit 2 extends substantially in the vehicle front-rear direction, and the downstream side (that is, the air outflow side) portion of the first air blowing unit 2 faces downward. It extends.
  • the second blower unit 3 is fixed to the vehicle so that the opening 35 faces the traveling wind, that is, the opening 35 faces the front side of the vehicle. Moreover, the 2nd ventilation unit 3 is being fixed to the vehicle so that the outflow direction of the air which flows out out of the 2nd air channel
  • the air blown from the first blower unit 2 is blown from above the internal combustion engine 12 toward the vehicle rear portion of the internal combustion engine 12.
  • the second blower unit 3 a part of the wind of the radiator blower 15 and traveling wind flows into the first air passage 33 from the opening 35, and out of the slit 36 into the second air passage 34, thereby Air is entrained in the second air passage 34.
  • the air flowing out from the slit 36 into the second air passage 34 and the air entrained in the second air passage 34 are blown from the vehicle front side of the internal combustion engine 12 toward the vehicle rear side of the internal combustion engine 12.
  • the air that is blown from the first blower unit 2 and the second blower unit 3 cools the exhaust manifold 13 and the auxiliary machine parts that are arranged in the vehicle rear portion of the internal combustion engine 12.
  • the same effect as the first embodiment can be obtained. Moreover, according to this embodiment, since the 2nd ventilation unit 3 does not require the air blower which generate
  • the first blower unit 2 includes a unit blower 27 that generates an air flow.
  • the unit blower 27 includes a fan 271 that generates an air flow and an electric motor 272 that drives the fan 271.
  • the first air blowing unit 2 has the opening 25 in the first embodiment eliminated. In other words, both ends of the first air passage 23 are closed.
  • a cylindrical blower-accommodating tube portion 28 communicating with the first air passage 23 is integrally formed on the outer peripheral portion of the outer tube portion 21.
  • a unit blower 27 is housed in the blower housing cylinder 28.
  • the effects (a) and (c) in the first embodiment can be obtained.
  • the unit blower 27 since the unit blower 27 is provided, air can be stably discharged from the slit 26 and air can be reliably blown to a desired portion in the engine room 11.
  • FIGS. 9 and 10 A fourth embodiment will be described with reference to FIGS. 9 and 10.
  • the structure of the 2nd ventilation unit 3 is different from 2nd Embodiment.
  • description of the same or equivalent parts as in the second embodiment will be omitted or simplified.
  • the outer cylindrical portion 31 and the inner cylindrical portion 32 of the second blower unit 3 have an elliptical cross-sectional shape.
  • the same effect as that of the second embodiment can be obtained.
  • the 2nd ventilation unit 3 can make the height direction dimension at the time of vehicle mounting small.
  • the outer cylinder portion 31 and the inner cylinder portion 32 of the second blower unit 3 are divided into a plurality of downstream sides of the air flow. Specifically, the outer cylinder portion 31 and the inner cylinder portion 32 are divided into two on the downstream side of the air flow. In other words, the second air passage 34 is branched into a plurality of air outlets.
  • the air outlet side of the first air passage 23 in the first blower unit 2 may be branched into a plurality.
  • a plurality of openings 25 that are fixed to face the traveling wind and take in winds such as traveling wind into the first air passage 23 are formed.
  • a plurality of openings 35 that are fixed to face the traveling wind and take in wind such as traveling wind into the first air passage 33 are formed.
  • the openings 25 and 35 may be closed similarly to those shown in FIGS.
  • a blower unit capable of blowing air by sending air on the radiator sending side to the vehicle rear side of the internal combustion engine is provided in the engine room. It is arrange
  • the blower unit entrains the surrounding air with the air flowing out from the slit and blows it into the engine room.
  • the air blowing unit that entrains the surrounding air with the air flowing out from the slit and blows the air into the engine room is disposed in the engine room on the rear side of the vehicle relative to the radiator fan.
  • the blower unit includes an opening that opens so as to face the traveling wind and takes in the traveling wind, and a first air passage that guides the traveling wind taken from the opening to the slit. .
  • the air blowing unit since the air blower which generates the air flow for making air flow out from the slit is unnecessary, the air blowing unit can be simplified.
  • the blower unit includes a unit blower that generates an air flow and a first air passage that guides air sent from the unit blower to the slit.
  • the unit blower since the unit blower is provided, the air can be stably discharged from the slit, and the air can be reliably blown to a desired part in the engine room.
  • the blower unit includes a cylindrical outer cylindrical portion and a cylindrical inner cylindrical portion disposed inside the outer cylindrical portion.
  • a first air passage is formed between the outer cylinder part and the inner cylinder part, and the second air in which the air flowing out from the slit and the air caught by the air flowing out from the slit circulates inside the inner cylinder part.
  • a passage is formed.
  • the inner cylinder portion is bent at the intermediate portion, and is configured such that the air inflow direction of the second air passage is different from the air outflow direction of the second air passage. According to this, it can blow easily also to the vehicle rear part in an internal combustion engine, for example.
  • the second air passage is branched into a plurality of air outlets. According to this, it is possible to blow air to different parts with one blower unit.
  • the air outflow direction of the second air passage is directed to the vehicle rear portion in the internal combustion engine.
  • the blower unit includes a cylindrical tube portion, and an air passage through which air flows is formed inside the tube portion.
  • the cylinder part is bent by the intermediate part, and is comprised so that the air inflow direction of an air path may differ from the air outflow direction of an air path.
  • the blower unit includes a cylindrical tube portion, and an air passage through which air flows is formed inside the tube portion.
  • the air passage is branched into a plurality of air outlets.
  • the blower unit includes a cylindrical tube portion, and an air passage through which air flows is formed inside the tube portion.
  • the air outflow direction of the air passage is directed to the vehicle rear portion of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

車両(1)のエンジンルーム(11)内に配置された水冷式内燃機関(12)と、前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記内燃機関の冷却水を空気との熱交換により冷却するラジエータ(14)と、前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記ラジエータに空気を供給するラジエータ用送風機(15)と、前記エンジンルーム内において前記ラジエータ用送風機よりも車両後方側に配置され、前記ラジエータ用送付機側の空気を前記内燃機関の車両後方側に導いて送風可能な送風ユニット(2、3)とを、車両用送風システムが備える

Description

車両用送風システム 関連出願への相互参照
 本出願は、2016年6月7日に出願された日本特許出願番号2016-113809号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、送風ユニットを用いてエンジンルーム内に送風する車両用送風システムに関するものである。
 従来、この種の送風システムとして、例えば特許文献1に記載されたものがある。この特許文献1に記載された送風システムは、エジェクタノズルまたはラジエータ用送風機を用いて、車両のエンジンルーム内に配置されたラジエータやコンデンサに送風するようになっている。エジェクタノズルは、スリットから流出する空気により周囲の空気を巻き込んで送風する。
 また、ラジエータ用送風機の風、或いは走行風を利用して、ラジエータやコンデンサ以外の補機部品の冷却も行っている。
特開2015-124747号公報
 しかしながら、エンジンルーム内には補機部品が多くあり、明確な風の流路が確保されていない。また、キャビンスペースの拡大やHV化に伴い、エンジンルーム自体が狭くなっているため、各部品間のスペースが狭くなり、風の通り道が確保されていない。HVは、Hybrid Vehicleの略である。したがって、発明者の検討によれば、エンジンルーム内の補機部品を効率よく冷却することができない。
 本開示は、エンジンルーム内の補機部品を効率よく冷却可能にすることを目的とする。
 本開示の1つの観点では、車両のエンジンルーム内に配置された水冷式内燃機関と、前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記内燃機関の冷却水を空気との熱交換により冷却するラジエータと、前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記ラジエータに空気を供給するラジエータ用送風機と、前記エンジンルーム内において前記ラジエータ用送風機よりも車両後方側に配置され、前記ラジエータ用送付機側の空気を前記内燃機関の車両後方側に導いて送風可能な送風ユニットとを、車両用送風システムが備える。
 本開示の他の観点では、車両のエンジンルーム内に配置された水冷式内燃機関と、エンジンルーム内において内燃機関よりも車両前方側に配置され、内燃機関の冷却水を空気との熱交換により冷却するラジエータと、エンジンルーム内において内燃機関よりも車両前方側に配置され、ラジエータに空気を供給するラジエータ用送風機と、エンジンルーム内においてラジエータ用送風機よりも車両後方側に配置され、スリットから流出する空気により周囲の空気を巻き込んでエンジンルーム内に送風する送風ユニットとを、車両用送風システムが備える。
 これによると、送風ユニットにより、エンジンルーム内の所望の部位に集中的に送風することができるため、エンジンルーム内の補機部品を効率よく冷却することが可能になる。
第1実施形態に係る車両用送風システムを車両に搭載した状態を示す模式的な平面図である。 図1の第1送風ユニットの正面図である。 図2のIII-III断面図である。 第2実施形態に係る車両用送風システムを車両に搭載した状態を示す模式的な側面図である。 図4の第2送風ユニットの正面図である。 図5のVI-VI断面図である。 第3実施形態に係る車両用送風システムにおける送風ユニットの正面図である。 図7のVIII-VIII断面図である。 第4実施形態に係る車両用送風システムにおける送風ユニットの正面図である。 図9のX-X断面図である。 第5実施形態に係る車両用送風システムにおける送風ユニットの正面図である。 図11の送風ユニットの平面図である。
 以下、実施形態について図面を参照して説明する。なお、以下の各実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、各実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。
 (第1実施形態)
 第1実施形態について説明する。図1に示すように、車両1のエンジンルーム11内には、水冷式内燃機関(以下、内燃機関という)12が配置されている。また、内燃機関12の車両後方側には、内燃機関12から排出される排気ガスを集合させる排気マニホールド13が、一体的に装着されている。
 エンジンルーム11内には、内燃機関12の冷却水を空気との熱交換により冷却するラジエータ14が配置されている。また、ラジエータ14の車両後方側には、空気流を発生させてラジエータ14に空気を供給するラジエータ用送風機15が、一体的に装着されている。ラジエータ14およびラジエータ用送風機15は、内燃機関12よりも車両前方側に配置されている。
 エンジンルーム11内には、曲がり管型の第1送風ユニット2が配置されている。この第1送風ユニット2は、ラジエータ用送風機15よりも車両後方側に配置されるとともに、内燃機関12に対して車両左右方向両側に配置されて、車体に固定されている。本実施形態の車両用送風システムは、水冷式内燃機関12、ラジエータ14、ラジエータ用送風機15、および第1送風ユニット2を備える。
 図2、図3に示すように、第1送風ユニット2は、円筒状の外側筒部21と、外側筒部21の内側に配置された円筒状の内側筒部22とを備えている。そして、外側筒部21と内側筒部22との間には、空気が流通する第1空気通路23が形成されている。また、内側筒部22の内側には、空気が流通する第2空気通路24が形成されている。
 第1送風ユニット2の一端側端面には、走行風等の風を第1空気通路23に取り入れる開口部25が複数個形成されている。第1送風ユニット2は、この開口部25が走行風に対向するようにして車両に固定される。
 第2空気通路24は、両端がともに開口している。そして、後述するように、空気は、矢印Aで示すように第2空気通路24に流入し、矢印Bで示すように第2空気通路24から流出する。
 内側筒部22は、第2空気通路24内の空気流れの上流側に位置する上流側内側筒部221と、上流側内側筒部221よりも空気流れ下流側に位置する下流側内側筒部222とからなる。
 上流側内側筒部221の空気流れ下流側端部と下流側内側筒部222の空気流れ上流側端部との間に、内側筒部22の周方向全域に連続してスリット26が形成されている。
 開口部25から流入した風は、矢印Cで示すように第1空気通路23を介してスリット26に導かれた後、スリット26から第2空気通路24に流出するようになっている。
 そして、スリット26から第2空気通路24に空気が噴流となって流出することにより、コアンダ効果によってスリット26周辺の空気が噴流に引き込まれ、矢印Aで示すように第2空気通路24に空気が巻き込まれる。スリット26から第2空気通路24に流出した空気、および第2空気通路24に巻き込まれた空気は、第2空気通路24内を流れた後、矢印Bで示すように第2空気通路24から流出する。
 外側筒部21および下流側内側筒部222は、中間部で略90°曲げられており、第2空気通路24の空気流入方向と第2空気通路24の空気流出方向とが異なるように構成されている。
 図1に示すように、第1送風ユニット2は、開口部25が走行風に対向するようにして、すなわち、開口部25が車両前方側を向くようにして、車両に固定されている。また、第1送風ユニット2は、第2空気通路24から流出する空気の流出方向が、内燃機関12における車両後方部位を向くようにして、より詳細には排気マニホールド13側を向くようにして、車両に固定されている。
 換言すると、第1送風ユニット2における上流側(すなわち、空気流入側)部位は、略車両前後方向に延び、第1送風ユニット2における下流側(すなわち、空気流出側)部位は、略車両左右方向に延びている。
 なお、図1中の矢印は、ラジエータ用送風機15の風や走行風の流れ、および第1送風ユニット2から送風される風の流れを示している。
 上記構成において、ラジエータ用送風機15の風や走行風がエンジンルーム11内を流れ、その風の一部が開口部25から第1空気通路23に流入し、スリット26から第2空気通路24に流出し、これにより第2空気通路24に空気が巻き込まれる。そして、スリット26から第2空気通路24に流出した空気、および第2空気通路24に巻き込まれた空気は、内燃機関12における車両左右方向両側から内燃機関12の車両後方部位に向かって送風され、排気マニホールド13が冷却される。また、内燃機関12の車両後方部位に配置されている補機部品、例えば、ワイヤハーネス、エンジンオイルの圧力を検出する油圧センサ等の補機部品も、冷却される。
 本実施形態によると、下記の(a)~(c)の効果が得られる。
 (a)第1送風ユニット2により、エンジンルーム11内の所望の部位に集中的に送風することができるため、エンジンルーム11内の補機部品等を効率よく冷却することができる。
 (b)第1送風ユニット2は、スリット26から空気を流出させるための空気流を発生させる送風機が不要であるため、第1送風ユニット2を簡素にすることができる。
 (c)第1送風ユニット2は、中間部で曲げられて、第2空気通路24の空気流入方向と第2空気通路24の空気流出方向とが異なるように構成されているため、例えば内燃機関12における車両後方部位にも容易に送風することができる。
 (第2実施形態)
 第2実施形態について、図4~図6を用いて説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 図4に示すように、エンジンルーム11内には、第1送風ユニット2とともに、直管型の第2送風ユニット3が配置されている。本実施形態の車両用送風システムは、水冷式内燃機関12、ラジエータ14、ラジエータ用送風機15、および第1送風ユニット2、第2送風ユニット3を備える。
 第1送風ユニット2は、ラジエータ用送風機15よりも車両後方側に配置されるとともに、内燃機関12の上面よりも上方に配置されている。また、第1送風ユニット2は、内燃機関12における車両左右方向中心付近に、1個配置されている。
 第2送風ユニット3は、ラジエータ用送風機15および内燃機関12よりも車両後方側で、且つ内燃機関12の底面よりも下方に配置されて、車体に固定されている。また、第2送風ユニット3は、内燃機関12における車両左右方向中心付近に、1個配置されている。
 図5、図6に示すように、第2送風ユニット3は、直線状で且つ円筒状の外側筒部31と、外側筒部31の内側に配置された直線状で且つ円筒状の内側筒部32とを備えている。そして、外側筒部31と内側筒部32との間には、空気が流通する第1空気通路33が形成されている。また、内側筒部32の内側には、空気が流通する第2空気通路34が形成されている。
 第2送風ユニット3の一端側端面には、走行風等の風を第1空気通路33に取り入れる開口部35が複数個形成されている。第2送風ユニット3は、この開口部35が走行風に対向するようにして車両に固定される。
 第2空気通路34は、両端がともに開口している。そして、後述するように、空気は、矢印Aで示すように第2空気通路34に流入し、矢印Bで示すように第2空気通路34から流出する。
 内側筒部32は、第2空気通路34内の空気流れの上流側に位置する上流側内側筒部321と、上流側内側筒部321よりも空気流れ下流側に位置する下流側内側筒部322とからなる。
 上流側内側筒部321の空気流れ下流側端部と下流側内側筒部322の空気流れ上流側端部との間に、内側筒部32の周方向全域に連続してスリット36が形成されている。
 開口部35から流入した風は、矢印Cで示すように第1空気通路33を介してスリット36に導かれた後、スリット36から第2空気通路34に流出するようになっている。
 そして、スリット36から第2空気通路34に空気が噴流となって流出することにより、コアンダ効果によってスリット36周辺の空気が噴流に引き込まれ、矢印Aで示すように第2空気通路34に空気が巻き込まれる。スリット36から第2空気通路34に流出した空気、および第2空気通路34に巻き込まれた空気は、第2空気通路34内を流れた後、矢印Bで示すように第2空気通路34から流出する。
 図4に示すように、第1送風ユニット2は、開口部25が走行風に対向するようにして、すなわち、開口部25が車両前方側を向くようにして、車両に固定されている。また、第1送風ユニット2は、第2空気通路24から流出する空気の流出方向が、内燃機関12における車両後方部位を向くようにして、より詳細には排気マニホールド13側を向くようにして、車両に固定されている。
 換言すると、第1送風ユニット2における上流側(すなわち、空気流入側)部位は、略車両前後方向に延び、第1送風ユニット2における下流側(すなわち、空気流出側)部位は、下方に向かって延びている。
 第2送風ユニット3は、開口部35が走行風に対向するようにして、すなわち、開口部35が車両前方側を向くようにして、車両に固定されている。また、第2送風ユニット3は、第2空気通路24から流出する空気の流出方向が、車両後方側になるようにして、車両に固定されている。換言すると、第2送風ユニット3は、略車両前後方向に延びている。
 上記構成において、第1送風ユニット2から送風される空気は、内燃機関12の上方から内燃機関12の車両後方部位に向かって送風される。
 また、第2送風ユニット3においては、ラジエータ用送風機15の風や走行風の一部が開口部35から第1空気通路33に流入し、スリット36から第2空気通路34に流出し、これにより第2空気通路34に空気が巻き込まれる。そして、スリット36から第2空気通路34に流出した空気、および第2空気通路34に巻き込まれた空気は、内燃機関12における車両前方側から内燃機関12の車両後方側に向かって送風される。
 第1送風ユニット2および第2送風ユニット3から送風される空気により、排気マニホールド13や、内燃機関12の車両後方部位に配置されている補機部品が、冷却される。
   
 本実施形態によると、第1実施形態と同様の効果が得られる。また、本実施形態によると、第2送風ユニット3は、スリット36から空気を流出させるための空気流を発生させる送風機が不要であるため、第2送風ユニット3を簡素にすることができる。
 (第3実施形態)
 第3実施形態について、図7、図8を用いて説明する。本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 図7、図8に示すように、第1送風ユニット2は、空気流を発生させるユニット用送風機27を備えている。このユニット用送風機27は、空気流を発生させるファン271と、ファン271を駆動する電動機272を有している。
 第1送風ユニット2は、第1実施形態における開口部25が廃止されている。換言すると、第1空気通路23は、両端がともに閉じられている。
 外側筒部21の外周部には、第1空気通路23に連通する円筒状の送風機収容筒部28が一体に形成されている。この送風機収容筒部28内に、ユニット用送風機27が収容されている。
 上記構成において、電動機272にてファン271が駆動されると、矢印Cで示すように、図1のエンジンルーム11内の空気が送風機収容筒部28内の通路を通って第1空気通路23に送られる。そして、当該空気が、スリット26から第2空気通路24に流出し、これにより第2空気通路24に空気が巻き込まれる。
 そして、スリット26から第2空気通路24に流出した空気、および第2空気通路24に巻き込まれた空気は、第2空気通路24からエンジンルーム11内の所望の部位に向かって送風される。
 本実施形態によると、第1実施形態における(a)および(c)の効果が得られる。また、本実施形態によると、ユニット用送風機27を備えているため、スリット26から安定して空気を流出させることができ、エンジンルーム11内の所望の部位に確実に送風することができる。
 なお、本実施形態のユニット用送風機を、第2実施形態における直管型の第2送風ユニット3に採用してもよい。
 (第4実施形態)
 第4実施形態について、図9、図10を用いて説明する。本実施形態では、第2送風ユニット3の構成が第2実施形態と相違している。本実施形態では、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 図9、図10に示すように、第2送風ユニット3における外側筒部31および内側筒部32は、その断面形状が楕円形になっている。
 本実施形態によると、第2実施形態と同様の効果が得られる。また、本実施形態によると、第2送風ユニット3は、車両搭載時の高さ方向寸法を小さくすることができる。
 なお、第1送風ユニット2における外側筒部21および内側筒部22の断面形状を楕円形にしてもよい。
 (第5実施形態)
 第5実施形態について、図11、図12を用いて説明する。本実施形態では、第2送風ユニット3の構成が第2実施形態と相違している。本実施形態では、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
 図11、図12に示すように、第2送風ユニット3における外側筒部31および内側筒部32は、空気流れ下流側が複数に分割されている。具体的には、外側筒部31および内側筒部32は、空気流れ下流側が2つに分割されている。換言すると、第2空気通路34は、空気出口側が複数に分岐されている。
 本実施形態によると、第2実施形態と同様の効果が得られる。また、本実施形態によると、1つの第2送風ユニット3にて、異なる部位に送風することができる。
 なお、第1送風ユニット2における第1空気通路23の空気出口側を複数に分岐してもよい。
 (他の実施形態)
 上記第1実施形態では、図3に示すように、走行風に対向して固定され走行風等の風を第1空気通路23に取り入れる開口部25が複数個形成されている。また、上記第2、第4実施形態では、図6、図10に示すように、走行風に対向して固定され走行風等の風を第1空気通路33に取り入れる開口部35が複数個形成されている。しかし、これら実施形態において、図7、図8に示すものと同様に、開口部25、35が閉じられていてもよい。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。
 また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。
 また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、ラジエータ用送付機側の空気を内燃機関の車両後方側に導いて送風可能な送風ユニットが、エンジンルーム内においてラジエータ用送風機よりも車両後方側に配置される。
 また、第2の観点によれば、送風ユニットは、スリットから流出する空気により周辺の空気を巻き込んで前記エンジンルーム内に送風する。
 また、第3の観点によれば、スリットから流出する空気により周辺の空気を巻き込んでエンジンルーム内に送風する送風ユニットが、エンジンルーム内においてラジエータ用送風機よりも車両後方側に配置される。
 また、第4の観点によれば、送風ユニットは、走行風に対向するように開口して走行風を取り入れる開口部と、開口部から取り入れた走行風をスリットに導く第1空気通路とを備える。
 これによると、スリットから空気を流出させるための空気流を発生させる送風機が不要であるため、送風ユニットを簡素にすることができる。
 また、第5の観点によれば、送風ユニットは、空気流を発生させるユニット用送風機と、ユニット用送風機から送られる空気をスリットに導く第1空気通路とを備える。
 これによると、ユニット用送風機を備えているため、スリットから安定して空気を流出させることができ、エンジンルーム内の所望の部位に確実に送風することができる。
 また、第6の観点によれば、送風ユニットは、筒状の外側筒部と、外側筒部の内側に配置された筒状の内側筒部とを備える。また、外側筒部と内側筒部との間に第1空気通路が形成され、内側筒部の内側に、スリットから流出する空気、およびスリットから流出する空気により巻き込まれる空気が流通する第2空気通路が形成される。
 また、第7の観点によれば、内側筒部は、中間部で曲げられており、第2空気通路の空気流入方向と第2空気通路の空気流出方向とが異なるように構成されている。これによると、例えば内燃機関における車両後方部位にも、容易に送風することができる。
 また、第8の観点によれば、第2空気通路は、空気出口側が複数に分岐されている。これによると、1つの送風ユニットにて、異なる部位に送風することができる。
 また、第9の観点によれば、第2空気通路の空気流出方向が内燃機関における車両後方部位に向けられている。
 また、第10の観点によれば、送風ユニットは、筒状の筒部を備え、筒部の内側に、空気が流通する空気通路が形成されている。そして筒部は、中間部で曲げられており、空気通路の空気流入方向と空気通路の空気流出方向とが異なるように構成されている。
 また、第11の観点によれば、送風ユニットは、筒状の筒部を備え、筒部の内側に、空気が流通する空気通路が形成されている。そして空気通路は、空気出口側が複数に分岐されている。
 また、第12の観点によれば、送風ユニットは、筒状の筒部を備え、筒部の内側に、空気が流通する空気通路が形成されている。そして空気通路の空気流出方向が内燃機関における車両後方部位に向けられている。

Claims (12)

  1.  車両(1)のエンジンルーム(11)内に配置された水冷式内燃機関(12)と、
     前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記内燃機関の冷却水を空気との熱交換により冷却するラジエータ(14)と、
     前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記ラジエータに空気を供給するラジエータ用送風機(15)と、
     前記エンジンルーム内において前記ラジエータ用送風機よりも車両後方側に配置され、前記ラジエータ用送付機側の空気を前記内燃機関の車両後方側に導いて送風可能な送風ユニット(2、3)とを備える車両用送風システム。
  2.  前記送風ユニットは、スリット(26、36)から流出する空気により周辺の空気を巻き込んで前記エンジンルーム内に送風する請求項1に記載の車両用送風システム。
  3.  車両(1)のエンジンルーム(11)内に配置された水冷式内燃機関(12)と、
     前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記内燃機関の冷却水を空気との熱交換により冷却するラジエータ(14)と、
     前記エンジンルーム内において前記内燃機関よりも車両前方側に配置され、前記ラジエータに空気を供給するラジエータ用送風機(15)と、
     前記エンジンルーム内において前記ラジエータ用送風機よりも車両後方側に配置され、スリット(26、36)から流出する空気により周辺の空気を巻き込んで前記エンジンルーム内に送風する送風ユニット(2、3)とを備える車両用送風システム。
  4.  前記送風ユニットは、走行風に対向するように開口して走行風を取り入れる開口部(25、35)と、前記開口部から取り入れた走行風を前記スリットに導く第1空気通路(23、33)とを備える請求項3に記載の車両用送風システム。
  5.  前記送風ユニットは、空気流を発生させるユニット用送風機(27)と、前記ユニット用送風機から送られる空気を前記スリットに導く第1空気通路(23)とを備える請求項2または3に記載の車両用送風システム。
  6.  前記送風ユニットは、筒状の外側筒部(21、31)と、前記外側筒部の内側に配置された筒状の内側筒部(22、32)とを備え、
     前記外側筒部と前記内側筒部との間に前記第1空気通路が形成され、
     前記内側筒部の内側に、前記スリットから流出する空気、および前記スリットから流出する空気により巻き込まれる空気が流通する第2空気通路(24、34)が形成されている請求項4または5に記載の車両用送風システム。
  7.  前記内側筒部は、中間部で曲げられており、前記第2空気通路の空気流入方向と前記第2空気通路の空気流出方向とが異なるように構成されている請求項6に記載の車両用送風システム。
  8.  前記第2空気通路は、空気出口側が複数に分岐されている請求項6または7に記載の車両用送風システム。
  9.  前記第2空気通路の空気流出方向が前記内燃機関における車両後方部位に向けられている請求項6または7に記載の車両用送風システム。
  10.  前記送風ユニットは、筒状の筒部(22、32)を備え、
     前記筒部の内側に、空気が流通する空気通路(24、34)が形成されており、
     前記筒部は、中間部で曲げられており、前記空気通路の空気流入方向と前記空気通路の空気流出方向とが異なるように構成されている請求項1ないし3のいずれか1つに記載の車両用送風システム。
  11.  前記送風ユニットは、筒状の筒部(22、32)を備え、
     前記筒部の内側に、空気が流通する空気通路(24、34)が形成されており、
     前記空気通路は、空気出口側が複数に分岐されている請求項1ないし3のいずれか1つに記載の車両用送風システム。
  12.  前記送風ユニットは、筒状の筒部(22、32)を備え、
     前記筒部の内側に、空気が流通する空気通路(24、34)が形成されており、
     前記空気通路の空気流出方向が前記内燃機関における車両後方部位に向けられている請求項1ないし3のいずれか1つに記載の車両用送風システム。
PCT/JP2017/019562 2016-06-07 2017-05-25 車両用送風システム WO2017212939A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113809A JP2019135379A (ja) 2016-06-07 2016-06-07 車両用送風システム
JP2016-113809 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017212939A1 true WO2017212939A1 (ja) 2017-12-14

Family

ID=60578648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019562 WO2017212939A1 (ja) 2016-06-07 2017-05-25 車両用送風システム

Country Status (2)

Country Link
JP (1) JP2019135379A (ja)
WO (1) WO2017212939A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125857A (ja) * 1983-12-12 1985-07-05 Canon Inc 画像形成装置
JPH0840087A (ja) * 1994-08-03 1996-02-13 Aichi Mach Ind Co Ltd 車両における走行風の導入機構
JPH09287451A (ja) * 1996-04-22 1997-11-04 Aisin Chem Co Ltd ラジエータ冷却装置
JP2010058591A (ja) * 2008-09-02 2010-03-18 Caterpillar Japan Ltd 作業機械のエンジンルームの整流板,作業機械のエンジンルームの整流板の製造方法及び作業機械のエンジンルーム構造
US20150136515A1 (en) * 2013-04-18 2015-05-21 Ford Global Technologies, Llc Flush and sub-flush protective shields to reduce exhaust soot and condensate deposition
JP2016097802A (ja) * 2014-11-21 2016-05-30 株式会社デンソー エンジンルーム通風構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125857A (ja) * 1983-12-12 1985-07-05 Canon Inc 画像形成装置
JPH0840087A (ja) * 1994-08-03 1996-02-13 Aichi Mach Ind Co Ltd 車両における走行風の導入機構
JPH09287451A (ja) * 1996-04-22 1997-11-04 Aisin Chem Co Ltd ラジエータ冷却装置
JP2010058591A (ja) * 2008-09-02 2010-03-18 Caterpillar Japan Ltd 作業機械のエンジンルームの整流板,作業機械のエンジンルームの整流板の製造方法及び作業機械のエンジンルーム構造
US20150136515A1 (en) * 2013-04-18 2015-05-21 Ford Global Technologies, Llc Flush and sub-flush protective shields to reduce exhaust soot and condensate deposition
JP2016097802A (ja) * 2014-11-21 2016-05-30 株式会社デンソー エンジンルーム通風構造

Also Published As

Publication number Publication date
JP2019135379A (ja) 2019-08-15

Similar Documents

Publication Publication Date Title
JP5655952B2 (ja) 車両前部構造
US7617865B2 (en) Heat exchanger and method of connecting
WO2017098765A1 (ja) 冷却装置
JP6631565B2 (ja) 車両のダクト構造
WO2011151917A1 (ja) 冷却風導入構造
JP5447733B2 (ja) 冷却風導入構造
JP2015217829A (ja) 車両の冷却構造
CN103517817B (zh) 车辆用热交换结构
WO2016079938A1 (ja) エンジンルーム通風構造
US20150118949A1 (en) Airflow guiding system for vehicle
WO2017030079A1 (ja) 冷却装置
JP2006347385A (ja) 車体の前部構造
WO2017212939A1 (ja) 車両用送風システム
WO2016092795A1 (ja) 冷却装置、および冷却モジュール
JP2015120451A (ja) 車両下部構造
JP2018094948A (ja) 車両用エンジンの吸気装置
JP2012067721A (ja) エンジン冷却装置
JP6907837B2 (ja) エンジンカバー
CN110203063A (zh) 车辆前部结构
JP2010241367A (ja) 車両の空気抵抗低減構造
JP2019093865A (ja) 車両用空冷式オイルクーラ
CN110893765A (zh) 车辆前部构造
JP2015006837A (ja) インタークーラの冷却風取り込み構造
JP2020040632A (ja) ラジエータ構造
JP2019031122A (ja) 電力変換装置及び鉄道車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP