WO2017209295A1 - 積層体、成形体及び当該成形体の製造方法 - Google Patents

積層体、成形体及び当該成形体の製造方法 Download PDF

Info

Publication number
WO2017209295A1
WO2017209295A1 PCT/JP2017/020701 JP2017020701W WO2017209295A1 WO 2017209295 A1 WO2017209295 A1 WO 2017209295A1 JP 2017020701 W JP2017020701 W JP 2017020701W WO 2017209295 A1 WO2017209295 A1 WO 2017209295A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polypropylene
laminate
laminated body
thin film
Prior art date
Application number
PCT/JP2017/020701
Other languages
English (en)
French (fr)
Inventor
要 近藤
亮祐 荒木
圭志 多田
辰郎 松浦
悠介 戒能
教雄 羽切
Original Assignee
出光ユニテック株式会社
尾池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社, 尾池工業株式会社 filed Critical 出光ユニテック株式会社
Priority to JP2017541892A priority Critical patent/JP6412659B2/ja
Priority to EP17806845.8A priority patent/EP3466684B1/en
Priority to US16/306,085 priority patent/US20190176437A1/en
Priority to CN201780041450.7A priority patent/CN109476140B/zh
Priority to KR1020187034748A priority patent/KR20190015709A/ko
Publication of WO2017209295A1 publication Critical patent/WO2017209295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2623/00Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2623/10Polymers of propylene
    • B29K2623/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2701/00Use of unspecified macromolecular compounds for preformed parts, e.g. for inserts
    • B29K2701/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene

Definitions

  • the present invention relates to a laminate, a molded body, and a method for producing the molded body.
  • painting is used as a method for improving the appearance design.
  • VOC volatile organic compounds
  • temperature and humidity control and baking processes in the painting booth consume a large amount of energy and emit a large amount of carbon dioxide.
  • painting accounts for 20% of the carbon dioxide emitted, and in order to reduce the environmental burden associated with painting, means to replace painting are being actively developed.
  • Patent document 1 discloses the decoration sheet which consists of a laminated body of a glitter layer and a clear layer as an alternative means of coating, and is decorating by bonding the said decoration sheet to the surface of a housing
  • Patent Document 2 discloses a decorative sheet having high luminance by mixing a high luminance pigment with an adhesive for sheet bonding. The adhesive layer containing a high brightness pigment is formed by dissolving an adhesive in an organic solvent and applying it to a substrate with a knife coater or the like.
  • Patent document 3 discloses the manufacturing method of the metal foil powder obtained by crushing the laminated body which has a metal thin film layer.
  • patent document 1 even if it is a decorating sheet, depending on the shape of the housing
  • Patent Document 2 there is a possibility that a defective phenomenon such as diffusion of VOC due to residual solvent and swelling of the adhesive may occur. Further, when the thickness of the adhesive layer is increased in order to improve the brightness, the amount of residual solvent increases, and thus there is a problem that the possibility of occurrence of a defective phenomenon is further improved.
  • patent document 3 although the manufacturing method of metal foil powder is described, the evaluation regarding the laminated body using it is not made
  • a first layer made of polypropylene containing smectic crystals
  • a laminated body comprising a second layer made of a resin composition containing a thermoplastic resin and metal foil powder in this order,
  • the said metal foil powder is a laminated body which is a flat piece which has the laminated body structure which coat
  • the said metal foil powder is a laminated body which is a flat piece which has the laminated body structure which coat
  • the metal thin film layer is a single metal selected from the group consisting of aluminum, silver, gold, nickel, chromium, tin, zinc, indium, titanium, iron and silicon, or an alloy consisting of two or more selected from the group or A mixture of
  • the average major axis which is the average value of the longest end-to-end lengths on the surface of the atypical flat piece, is 10 ⁇ m or more, and the ratio of the average major axis to the thickness (average major axis / thickness) is 2.5 or more. 4.
  • the laminate according to any one of 1 to 4 wherein the polypropylene of the first layer is a polypropylene having an isotactic pendant fraction of 85 mol% to 99 mol%.
  • thermoplastic resin of the second layer includes any one of 1 to 6 including one or more selected from the group consisting of polypropylene, polyethylene, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer and acrylic resin.
  • Laminated body. 8 A molded body produced using the laminate according to any one of 1 to 7. 9.
  • a method for producing a molded body comprising mounting the laminated body according to any one of 11.1 to 7 on a mold and supplying and integrating a molding resin. 12.
  • a core material is arranged in the chamber box, The laminated body according to any one of 1 to 7 is disposed above the core material, Depressurize the chamber box, Heat softening the laminate, The manufacturing method of a molded object which presses and coat
  • FIG. 1 is a schematic configuration diagram of a manufacturing apparatus used for manufacturing a laminated body of Example 1.
  • FIG. 2 is a schematic configuration diagram of a manufacturing apparatus used for manufacturing a laminated body of Comparative Example 1.
  • FIG. It is a schematic block diagram which shows an example of the manufacturing apparatus for implementing a profile extrusion molding.
  • the first laminate of the present invention is a laminate comprising, in this order, a first layer made of polypropylene containing smectic crystals and a second layer made of a resin composition containing thermoplastic resin and metal foil powder.
  • the metal foil powder in the second layer is a flat piece having a laminate structure in which both surfaces of a metal thin film layer are covered with a transparent thin film layer.
  • the first layer made of polypropylene containing smectic crystals functions as a layer that imparts design depth to the second layer.
  • the second layer made of the resin composition containing the thermoplastic resin and the metal foil powder functions as a layer that imparts a sense of brightness to the laminate by the strong reflection of light by the metal foil powder.
  • the second laminate of the present invention comprises a first layer made of polypropylene containing smectic crystals, a second layer made of a resin composition containing thermoplastic resin and metal foil powder, a thermoplastic resin and a colorant.
  • a flat piece comprising a third layer composed of a resin composition comprising, in this order, and a metal foil powder in the second layer having a laminated structure in which both sides of the metal thin film layer are covered with a transparent thin film layer. It is.
  • the second laminate of the present invention is the same as the first laminate except that it further includes a third layer made of a resin composition containing a thermoplastic resin and a colorant.
  • the third layer is a colored layer containing a colorant.
  • the third layer prevents the transmission of visible light, increases the amount of light reflected by the second layer to improve the brightness, such as pearl tone or metal tone that could not be realized by conventional printing methods
  • a high-luminance design can be realized.
  • various designs can be provided by arbitrarily changing the color of the colorant.
  • the first laminate and the second laminate of the present invention may be collectively referred to as “the laminate of the present invention”.
  • the laminate of the present invention may include the first layer and the second layer in this order, or may include the first layer, the second layer, and the third layer in this order, and further include other layers. But you can.
  • the layer structure of the laminate of the present invention is as follows: first layer / second layer / first layer, first layer / second layer / third layer, first layer / second layer / Third layer / first layer, first layer / second layer / resin layer / third layer, first layer / second layer / resin layer / third layer / first layer Layer and the like.
  • the “resin layer” is a layer made of the same or different thermoplastic resin as the thermoplastic resin constituting the second layer, for example.
  • each layer of the laminate of the present invention will be described.
  • the first layer is a layer made of polypropylene containing smectic crystals.
  • Polypropylene is a crystalline resin, and can take crystal forms such as ⁇ crystal, ⁇ crystal, ⁇ crystal, and smectic crystal.
  • smectic crystals can be produced as an intermediate between amorphous and crystalline by cooling polypropylene from a molten state at a rate of 80 ° C. or more per second.
  • the upper limit of the cooling rate is not particularly limited, but is usually 500 ° C. or less per second.
  • the smectic crystal is not a stable structure having a regular structure like a crystal but a metastable structure in which fine structures are gathered together.
  • the interaction between the molecular chains is weak, and it has the property of being easily softened when heated as compared with ⁇ crystals having a stable structure.
  • the first layer of the laminate of the present invention is made of polypropylene containing smectic crystals, the stress at the time of forming the first layer is reduced, and whitening of the first layer can be prevented. Therefore, even if the laminate of the present invention is molded into a complicated three-dimensional shape, the design is not impaired.
  • the proportion of smectic crystals in the first layer is more preferably 30% or more, 50% or more, 70% or more, or 90% or more. It can be confirmed by the method described in the Examples that the first layer is made of polypropylene containing smectic crystals.
  • the first layer does not contain smectic crystals and is made of polypropylene containing ⁇ crystals having a stable structure
  • the molecules in the first layer are formed when the laminate is formed into a three-dimensional shape by vacuum forming or the like.
  • the interaction between the chains is larger than that of the smectic crystal. Therefore, in a portion with a large aperture such as the R portion or the boss, the first layer may be forcibly stretched and the first layer may be whitened, resulting in a loss of brightness and design depth.
  • Polypropylene containing ⁇ crystals in a stable state is generated when a nucleating agent is used for transparency in addition to the heating temperature.
  • the first layer preferably does not contain a nucleating agent.
  • a nucleating agent In order to make the polypropylene, which is a crystalline resin, transparent, for example, a method of cooling at 80 ° C./second or more during the production of the first layer to form a smectic crystal, and a nucleating agent is added to force fine crystals. There is a way to generate.
  • the nucleating agent improves the crystallization rate of polypropylene to a rate exceeding 2.5 min ⁇ 1 , generates a large number of crystals and fills them, thereby eliminating the physical growth space and reducing the crystal size. Yes.
  • the nucleating agent since the nucleating agent has a core substance, it is slightly white even if it becomes transparent, and there is a possibility that the design property may be lowered. Therefore, a laminate having excellent design properties can be obtained by forming a smectic crystal by setting the crystallization rate of polypropylene to 2.5 min ⁇ 1 or less and cooling at 80 ° C./second or more without adding a nucleating agent. . Furthermore, when the laminate is heated with an infrared heater and shaped, the first layer transitions to the ⁇ crystal while maintaining the fine structure derived from the smectic crystal. By this transition, the surface hardness and transparency can be further improved as compared with the case where a nucleating agent is used.
  • the polypropylene of the first layer preferably has a melt flow rate (hereinafter referred to as MFR, sometimes referred to as a melt flow index) of 0.5 g / 10 min or more and 15 g / 10 min or less. . 0.5 g / 10 min or more and 5.0 g / 10 min or less is more preferable, and 2.0 g / 10 min or more and 4.0 g / 10 min or less is more preferable.
  • MFR melt flow rate
  • MFR exceeds 15 g / 10 minutes, there is a possibility that drawdown becomes large at the time of thermoforming and moldability is lowered.
  • MFR can be measured according to JIS-K7210 at a measurement temperature of 230 ° C. and a load of 2.16 kg.
  • the polypropylene of the first layer is preferably a polypropylene having an isotactic pendant fraction of 85 mol% to 99 mol% from the viewpoint of scratch resistance.
  • the isotactic pentad fraction is an isotactic fraction in a pentad unit (one in which five propylene monomers are isotactically bonded) in a molecular chain of a resin composition.
  • the isotactic pendant fraction of polypropylene is preferably 85 mol% to 99 mol%, more preferably 90 mol% or more. If the isotactic pendant fraction is less than 85 mol%, the surface hardness is inferior, and the surface of the laminate may be damaged and the appearance may be impaired.
  • the isotactic pendant fraction of the polypropylene of the first layer can be confirmed by the method described in the examples.
  • the polypropylene of the first layer is preferably a polypropylene having a crystallization rate at 130 ° C. of 2.5 min ⁇ 1 or less from the viewpoint of moldability.
  • the lower limit is not particularly limited, but is usually 0.01 min ⁇ 1 or more.
  • Crystallization rate of the polypropylene is preferably 2.5 min -1 or less, 2.0Min -1 or less is more preferable. If the crystallization rate exceeds 2.5 min ⁇ 1 , the laminate that is heated and softened during molding will harden rapidly at the part that first contacts the mold, resulting in poor elongation. There is a risk of whitening and deterioration in design.
  • the crystallization rate at 130 ° C. can be measured using, for example, a differential scanning calorimeter.
  • the thickness of the first layer may be appropriately determined according to the shape and size of the structure to be decorated, and is, for example, 5 ⁇ m to 300 ⁇ m, preferably 10 ⁇ m to 200 ⁇ m.
  • a cross section is cut with a sliding microtome HM340E (manufactured by Micron Technology Co., Ltd.), and this is magnified and observed with an optical microscope, whereby the thickness in the depth direction of each layer can be measured.
  • the scattering intensity distribution and the long period by the small angle X-ray scattering analysis method it is determined whether or not the polypropylene of the first layer is obtained by cooling at 80 ° C./second or more. be able to. That is, it is possible to determine whether or not the first layer of polypropylene has a fine structure derived from smectic crystals by the above analysis.
  • the measurement is performed under the following conditions. -An X-ray generator uses ultraX 18HF (made by Rigaku Corporation), and an imaging plate is used for detection of scattering.
  • the polypropylene of the first layer preferably has an exothermic peak of 1.0 J / g or more (more preferably 1.5 J / g or more) on the low temperature side of the maximum endothermic peak in the differential scanning calorimetry curve.
  • an upper limit is not specifically limited, Usually, it is 10 J / g or less.
  • the exothermic peak can be measured using, for example, a differential scanning calorimeter.
  • the second layer is a layer made of a resin composition containing a thermoplastic resin and metal foil powder.
  • the metal foil powder of the second layer is a flat piece having a laminate structure in which both surfaces of a metal thin film layer are covered with a transparent thin film layer.
  • the laminated body of the present invention can express a design with a high brightness that cannot be expressed by painting.
  • the glossy pigment is granular, the incident light beam is irregularly reflected, and there is a possibility that sufficient glossiness cannot be obtained.
  • it is a layered flat piece, the irregular reflection of the incident light ray will decrease and the metallic luster feeling can be increased as compared with the granular case.
  • a design having a high brightness may not be obtained if the glass flake or aluminum flake does not have a layered structure (laminated structure).
  • aluminum flakes have high reflectivity of aluminum itself, but the surface smoothness is poor, so the ratio of irregular reflection may be high and a design with high brightness may not be obtained.
  • Glass flakes are smooth and flat.
  • the reflectivity of the glass itself is lower than that of metal, a design with a high brightness feeling may not be obtained.
  • the flat piece has a flat shape with an aspect ratio as high as possible.
  • the aspect ratio referred to here is a value obtained from the average major axis / average thickness of the flat piece.
  • the shape of the metal foil powder contained in the second layer is preferably an atypical flat piece.
  • the flat piece has an average length (average major axis) of the longest end to end in the surface of 10 ⁇ m or more, and a ratio of the average major axis to the thickness of the flat piece (average major axis / thickness) is 2.5.
  • the upper limit of the average major axis is not particularly limited, but is usually 1000 ⁇ m or less.
  • the upper limit of the average major axis / thickness is not particularly limited, but is usually 500 or less.
  • the average major axis of the metal foil powder can be measured using, for example, a particle size distribution meter. About thickness of metal foil powder, it can measure using SEM (scanning electron microscope, section observation), for example.
  • the metal foil powder having the above shape is obtained by crushing a laminate in which both sides of a metal thin film layer having a thickness of 0.01 ⁇ m to 0.2 ⁇ m are sandwiched by transparent thin film layers having a thickness of 0.05 ⁇ m to 2.0 ⁇ m. can get.
  • the both surfaces of a metal thin film layer here are the surface with the largest surface area in a metal thin film layer, and the surface on the opposite side to the surface.
  • the thickness of the metal thin film layer can be measured using, for example, a fluorescent X-ray analyzer. About the thickness of a transparent thin film layer, it can measure using SEM (scanning electron microscope, cross-sectional observation), for example.
  • the metal species constituting the metal thin film layer is preferably selected from a single metal selected from the group consisting of aluminum, silver, gold, nickel, chromium, tin, zinc, indium, titanium, and iron and silicon, or selected from the group Two or more alloys or mixtures. Silicon is a semimetal and is included in the metal species constituting the metal thin film layer.
  • a siloxane-based resin can be used, and a specific example of the siloxane-based resin includes polydimethylsiloxane.
  • pulverization method The crushing using a jet mill, a ball mill, a ring roll mill, a hammer mill, a tube mill etc. is mentioned.
  • the content of the metal foil powder contained in the second layer is preferably 0.05 to 10 parts by weight, preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin contained in the second layer. Is more preferable.
  • thermoplastic resin contained in the second layer examples include polypropylene, polyethylene, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer, and acrylic resin.
  • polypropylene is preferable from the viewpoint of chemical resistance, durability, and moldability.
  • the said thermoplastic resin may be used individually by 1 type or in mixture of 2 or more types.
  • polypropylene examples include homopolypropylene and copolymers of propylene and olefins such as ethylene.
  • homopolypropylene is preferred for reasons of heat resistance and hardness.
  • the copolymer may be a block copolymer, a random copolymer, or a mixture thereof.
  • Polypropylene preferably has a melt flow rate (hereinafter referred to as MFR) of 0.5 g / 10 min or more and 5.0 g / 10 min or less.
  • MFR melt flow rate
  • 0.5 g / 10 min or more and 5.0 g / 10 min or less is more preferable, and 2.0 g / 10 min or more and 4.0 g / 10 min or less is more preferable.
  • MFR melt flow rate
  • MFR melt flow rate
  • MFR melt flow rate
  • thermoplastic resin of the second layer is polypropylene
  • the polypropylene of the second layer and the polypropylene of the first layer are the same from the viewpoint of economy. That is, when the thermoplastic resin of the second layer is polypropylene, the polypropylene is preferably polypropylene containing smectic crystals.
  • the resin composition which comprises a 2nd layer should just contain a thermoplastic resin and metal foil powder, and may consist essentially of a thermoplastic resin and metal foil powder.
  • “essential” means that the total content of the thermoplastic resin and the metal foil powder in the resin composition constituting the second layer is 80% by weight, 90% by weight, 95% by weight, 97% by weight. It means above or 99% by weight or more.
  • the resin composition constituting the second layer may consist only of a thermoplastic resin and metal foil powder.
  • the resin composition constituting the second layer may contain additives such as a pigment, an antioxidant, a stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired.
  • the thickness of the second layer may be appropriately determined according to the shape and size of the structure to be decorated, and is, for example, 20 ⁇ m to 900 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m.
  • the third layer is a layer made of a resin composition containing a thermoplastic resin and a colorant.
  • a colorant contained in the third layer various known dyes, inorganic pigments, organic pigments and the like can be used. In consideration of blending with the raw material resin in advance, it is preferable to employ a pigment such as an inorganic pigment or an organic pigment as the colorant.
  • dyes As dyes, azo dyes, anthraquinone dyes, azoic dyes, naphthol dyes, triphenylmethane dyes, polymethine dyes, metal complex dyes, metal-containing dyes, reactive dyes, direct dyes, bisazo dyes, trisazo dyes, sulfur dyes, sulfur vat dyes Dyes, vat dyes, indigoid dyes, ice dyes, mordant dyes, acid mordant dyes, fluorescent whitening agents, composite dyes, organic solvent-soluble dyes, basic dyes, pigment resin printing dyes (pigment resin colors), etc. .
  • Inorganic pigments include carbon black, mica-like iron oxide, lead white, red lead, silver vermilion, ultramarine, bitumen, cobalt oxide, titanium dioxide, titanium dioxide coated mica, strontium chromate, titanium yellow, titanium black, zinc chromate, iron Black, molybdenum red, molybdenum white, risurge, lithopone, emerald green, guinea green, cobalt blue, and the like.
  • organic pigments examples include naphthol-soluble azo pigments, naphthol-insoluble azo pigments, oxynaphthoic acid-based azo pigments, naphthol-AS-based soluble azo pigments, naphthol-AS-based insoluble azo pigments, acetoacetanilide-based soluble azo pigments, acetoacetanilide-based insoluble azo pigments, Examples include pyrazolone-based azo pigments, naphthol AS-based non-condensed azo pigments, acetoacetanilide-based condensed soluble azo pigments, phthalocyanine blue, dyed lake, isoindolinone, quinacridone, dioxazine bio red, perinone, perylene, and azulene.
  • the content of the colorant contained in the third layer is preferably 0.5 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin contained in the third layer, and 3 to 15 parts by weight. More preferred.
  • thermoplastic resin contained in the third layer can be the same as the thermoplastic resin of the second layer.
  • the thermoplastic resin of the third layer and the thermoplastic resin of the second layer may be the same or different. From the viewpoint of economy, the thermoplastic resin of the third layer and the thermoplastic resin of the second layer are the same. Is preferable.
  • the resin composition which comprises a 3rd layer should just contain a thermoplastic resin and a coloring agent, and may consist essentially of a thermoplastic resin and a coloring agent.
  • “essential” means that the total content of the thermoplastic resin and the colorant in the resin composition constituting the third layer is 80 wt% or more, 90 wt% or more, 95 wt% or more, 97 wt% or more. Or 99% by weight or more.
  • the resin composition constituting the third layer may consist only of a thermoplastic resin and a colorant.
  • the resin composition constituting the third layer may contain additives such as an antioxidant, a stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired.
  • the thickness of the third layer may be appropriately determined according to the shape and size of the structure to be decorated, and is, for example, 5 ⁇ m to 900 ⁇ m, preferably 15 ⁇ m to 500 ⁇ m.
  • the laminate of the present invention can be produced by producing each of the first layer, the second layer and the third layer by a known production method and bonding them by a known method such as dry lamination or thermal lamination. .
  • the laminated body of this invention can be manufactured also by manufacturing one part of a 1st layer, a 2nd layer, a 3rd layer, etc. previously, and making these into a laminated body by extrusion lamination.
  • the laminate of the present invention is preferably produced by coextrusion of a laminate comprising the first layer and the second layer, or a laminate comprising the first layer, the second layer and the third layer. Even when each of the first layer, the second layer, and the third layer is produced and bonded to form a laminate, the first layer and the third layer are preferably produced by an extrusion method. . If it is an extrusion method, the internal temperature of a 1st layer can be made into the crystallization temperature or less of a polypropylene, and the 1st layer containing a smectic crystal can be manufactured. However, the polypropylene crystal of the first layer becomes a smectic crystal when the extruded molten resin is cooled at 80 ° C.
  • the 3rd layer larger thickness than a printing method can be manufactured, and the depth of the design can be provided to a laminated body.
  • an extrusion method that does not use a solvent is preferable from the viewpoint that a defective phenomenon due to a residual solvent does not occur.
  • the first layer when the first layer is manufactured by injection molding, it is difficult to obtain the first layer made of polypropylene containing smectic crystals by heating during molding.
  • opaque resins such as block PP (polypropylene), ABS (acrylonitrile-butadiene-styrene), and PC (polycarbonate) / ABS are used in consideration of the impact strength of the molded body. This is because if one layer is formed, it becomes a cloudy color, and the intended first layer may not be obtained.
  • the third layer when the third layer is produced by injection molding, the color may be changed depending on the colorant, and the intended third layer may not be obtained.
  • the material of each layer is melted and cooled at a cooling rate of 80 ° C./second or more until the internal temperature of the laminate becomes the crystallization temperature or less.
  • the polypropylene is cooled from the molten state at a rate of 80 ° C./second or more, it has a structure in which a large number of smectic crystals are occupied. Smectic crystals are metastable mesophases, and each domain size is small, so it has excellent transparency.
  • the sheet since the sheet is in a metastable state, the sheet is softened with a lower amount of heat as compared with the ⁇ crystal that has been crystallized, and thus has a feature of excellent moldability.
  • the laminate of the present invention includes a mirror endless belt wound around a plurality of cooling rolls and a mirror cooling roll, and the surface temperature of the mirror endless belt and the mirror cooling roll is maintained at a dew point of 50 ° C. or less.
  • the material of each layer melted by a T-die extruder is introduced between the mirror surface cooling roll and the mirror surface endless belt, pressed into a sheet shape, and the mirror surface endless belt has a temperature lower than the surface temperature of the belt. Cooling water is sprayed to quench and produce a laminate.
  • the obtained laminate is formed into a non-planar shape and provided on at least a part of the substrate. Even if it is molded into a complicated shape, whitening of the sheet can be prevented, and even a molded product having a complicated shape can be well-decorated without deteriorating the appearance.
  • FIG. 1 the schematic block diagram of an example of the manufacturing apparatus for manufacturing the laminated body of this invention is shown.
  • the manufacturing apparatus shown in FIG. 1 includes a T die 12 of an extruder, a first cooling roll 13, a second cooling roll 14, a third cooling roll 15, a fourth cooling roll 16, and a metal endless belt 17.
  • An embodiment of a method for producing a laminated sheet (laminated body) 11 by rapid cooling using the production apparatus configured as described above will be described below.
  • the surface temperature of the metal endless belt 17 and the fourth cooling roll 16 that directly contacts and cools the extruded molten resin is maintained at a dew point of 50 ° C. or less, preferably 30 ° C. or less. Temperature control of each cooling roll 13, 14, 15, 16 is performed in advance.
  • the surface temperature of the fourth cooling roll 16 and the metal endless belt 17 is below the dew point, condensation may occur on the surface, and uniform film formation may be difficult.
  • the surface temperature is higher than 50 ° C., the transparency of the resulting laminated sheet 11 is lowered, and ⁇ crystals are increased, which may make it difficult to thermoform. Therefore, the surface temperature is 20 ° C., for example.
  • the molten resin (excluding the nucleating agent) extruded from the T die 12 of the extruder is sandwiched between the metal endless belt 17 and the fourth cooling roll 16 on the first cooling roll 13.
  • the molten resin is pressed by the first and fourth cooling rolls 13 and 16 and rapidly cooled at 14 ° C.
  • the elastic material 22 is compressed and elastically deformed by the pressing force between the first cooling roll 13 and the fourth cooling roll 16.
  • the rapidly cooled sheet is press-contacted by the cooling rolls 13 and 16 at the portion where the elastic material 22 is elastically deformed, that is, the arc portion corresponding to the central angle ⁇ 1 of the first cooling roll 13.
  • the surface pressure at this time is usually 0.1 MPa or more and 20 MPa or less.
  • the sheet press-contacted as described above and sandwiched between the fourth cooling roll 16 and the metal endless belt 17 continues with the metal endless belt 17 at an arc portion corresponding to the substantially lower half circumference of the fourth cooling roll 16.
  • the sheet is sandwiched between the fourth cooling rolls 16 and pressed in a planar manner.
  • the surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
  • the sheet that is in close contact with the metal endless belt 17 is moved onto the second cooling roll 14 as the metal endless belt 17 rotates.
  • the sheet guided by the peeling roll 21 and pressed to the second cooling roll 14 side is pressed by the metal endless belt 17 at the arc portion corresponding to the substantially upper half circumference of the second cooling roll 14 as described above.
  • the surface pressure at this time is usually 0.01 MPa or more and 0.5 MPa or less.
  • the laminated sheet cooled on the second cooling roll 14 is wound up at a predetermined speed by a winding roll (not shown).
  • the molded body of the present invention is obtained by molding the laminate of the present invention.
  • a molding method it is preferable to use in-mold molding, insert molding, coating molding, or profile extrusion molding.
  • In-mold molding is a method in which a laminate is placed in a mold and molded into a desired shape with the pressure of a molding resin supplied into the mold to obtain a molded body.
  • the in-mold molding is preferably performed by mounting the laminate on a mold and supplying and integrating a molding resin.
  • Insert molding is a method of obtaining a molded body by preliminarily shaping a shaped body to be installed in a mold and filling the shape with a molding resin. More complicated shapes can be produced.
  • the insert molding is preferably performed by forming the laminated body so as to match the mold, mounting the shaped laminated body on the mold, and supplying and integrating the molding resin.
  • the attachment (preliminary attachment) that matches the mold is preferably performed by vacuum forming, pressure forming, vacuum / pressure forming, press forming, plug assist forming, or the like.
  • the molding resin is preferably a moldable thermoplastic resin.
  • Specific examples include polypropylene, polyethylene, polycarbonate, acrylonitrile-styrene-butadiene copolymer, and acrylic polymer, but are not limited thereto.
  • Inorganic fillers such as fiber and talc may be added.
  • the supply is preferably performed by injection, and the pressure is preferably 5 MPa or more and 120 MPa or less.
  • the mold temperature is preferably 20 ° C. or higher and 90 ° C. or lower.
  • a core material is arranged in a chamber box, a laminate is arranged above the core material, the inside of the chamber box is decompressed, the laminate is heated and softened, and the laminate is placed on the upper surface of the core material. It is preferable that the laminated body that has been brought into contact and softened by heating is pressed against the core material to be coated. After heat softening, it is preferable to bring the laminate into contact with the upper surface of the core material. In the pressing, it is preferable to pressurize the opposite side of the core of the laminate while reducing the pressure of the side of the laminate that contacts the core in the chamber box.
  • the core material may be convex or concave, and examples thereof include a resin having a three-dimensional curved surface, metal, and ceramic.
  • examples of the resin include the same resins as those used for the molding described above.
  • a chamber box composed of two upper and lower molding chambers that can be separated from each other.
  • a core material is placed and set on a table in the lower molding chamber.
  • the laminate of the present invention which is a molding object, is fixed to the upper surface of the lower molding chamber with a clamp.
  • the upper and lower molding chambers are at atmospheric pressure.
  • the upper molding chamber is lowered, the upper and lower molding chambers are joined, and the inside of the chamber box is closed. Both the upper and lower molding chambers are brought into the vacuum suction state from the atmospheric pressure state by the vacuum tank.
  • the heater is turned on and the decorative sheet is heated.
  • the table in the lower molding chamber is raised while the upper and lower molding chambers are in a vacuum state.
  • the laminate of the present invention which is a molding object
  • the laminate of the present invention is pressed against the core material and overlaid (molded).
  • the laminate of the present invention which is a molding object
  • the heater is turned off, the vacuum in the lower molding chamber is released to return to atmospheric pressure, the upper molding chamber is raised, and the product with the decorative printed laminate coated as the skin material is taken out. .
  • the molding when the molding is extruded by a profile extrusion machine, the molding is extruded while supplying the laminate of the present invention to the die.
  • a molded body (mole) in which the laminate and the decorative tape for molding are integrated by heat fusion can be obtained.
  • the decorative tape for molding and the laminate of the present invention are integrated, and the laminate of the present invention functions as a backing material for the decorative tape for molding.
  • a known tape can be used, for example, a tape having a resin layer made of polyester or fluororesin and a metal layer.
  • the laminate of the present invention is preferably fused to the metal layer side of the tape.
  • FIG. 3 is a schematic configuration diagram showing an example of a manufacturing apparatus for carrying out the profile extrusion molding.
  • An extruder 111 that supplies a laminate that forms the lip portions 114 c 1 and 114 c 2 of the molding 114 and an extruder 112 that supplies a laminate that forms the molding main portion 114 b of the molding 114 are attached to the die 110. Further, a decorative tape for molding 113 is supplied to the die 110 to become a bright portion 114a of the molding 114 as a product.
  • the portion of the polypropylene corresponding to the first layer of the laminate is a polypropylene having an isotactic pendant fraction of 85 mol% to 99 mol%. preferable.
  • the portion of the polypropylene corresponding to the first layer of the laminate is a polypropylene having a crystallization rate at 130 ° C. of 2.5 min ⁇ 1 or less. It is preferable.
  • the lower limit is not particularly limited, but is usually 0.01 min ⁇ 1 or more. It is possible to specify the portion corresponding to the first layer of the laminate by using a phase microscope or the like even after forming the molded body.
  • Example 1 In manufacturing the laminate, the following materials were prepared.
  • First layer polypropylene Homopolypropylene (trade name: Prime Polypro F-133A Prime Polymer Co., Ltd. Melt Flow Index 2.8 g / 10 min)
  • Second layer thermoplastic resin Homopolypropylene (trade name: Prime Polypro F-133A, Prime Polymer Co., Ltd., Melt Flow Index 2.8 g / 10 min)
  • -Metal foil powder of the second layer an aluminum flat piece having a laminate structure in which both sides of a metal thin film layer are sandwiched by transparent thin film layers made of siloxane resin (trade name: LG neo # 200, manufactured by Oike Imaging Co., Ltd., average major axis : 60 ⁇ m, average major axis / thickness ratio: 30)
  • Third layer thermoplastic resin Homopolypropylene (trade name: Prime Polypro F-133A, Prime Polymer Co., Ltd., Melt Flow Index 2.8 g /
  • the average major axis of the metal foil powder was measured using a particle size distribution meter.
  • the thickness of the metal foil powder was measured using SEM (scanning electron microscope, cross-sectional observation).
  • the melt flow index was measured according to JIS-K7210 at a measurement temperature of 230 ° C. and a load of 2.16 kg.
  • a laminate composed of four layers (thickness: 35 ⁇ m) was produced by a coextrusion method.
  • the cross section was cut with a sliding microtome HM340E (manufactured by Micron Technology Co., Ltd.), this was magnified and observed with an optical microscope, and the thickness in the depth direction of each layer was measured.
  • Isotactic pendant fraction The isotactic pendant fraction was measured by evaluating the 13 C-NMR spectrum of the polypropylene used in the first layer. Specifically, the measurement of the isotactic pendart fraction is carried out according to the following equipment and conditions according to the attribution of the peak proposed in “Macromolecules, 8, 687 (1975)” by A. Zambelli et al. And the calculation formula. [Equipment / Conditions] Apparatus: JNM-EX400 type 13 C-NMR apparatus manufactured by JEOL Ltd.
  • Crystallization speed Using a differential scanning calorimeter (DSC) (product name “Diamond DSC”, manufactured by Perkin Elmer), the crystallization speed of polypropylene used for the first layer was measured. Specifically, the temperature of polypropylene is raised from 50 ° C. to 230 ° C. at 10 ° C./min, held at 230 ° C. for 5 minutes, cooled from 230 ° C. to 130 ° C. at 80 ° C./min, and then raised to 130 ° C. Crystallization was carried out by holding. From the point of time when the temperature reached 130 ° C., the measurement of the change in calorie was started to obtain a DSC curve.
  • DSC differential scanning calorimeter
  • the crystallization rate was determined by the following procedures (i) to (iv).
  • (I) A baseline obtained by approximating a change in calorie from a time point 10 times from the start of measurement to the peak top to a time point 20 times by a straight line was used as a baseline.
  • (Ii) The intersection of the tangent line having the slope at the inflection point of the peak and the baseline was determined, and the crystallization start and end times were determined.
  • the time from the obtained crystallization start time to the peak top was measured as the crystallization time.
  • (Iv) The crystallization speed was determined from the reciprocal of the obtained crystallization time.
  • Crystal form of polypropylene in the first layer is T.C.
  • T.C Referring to the method used by Konishi et al. (Macromolecules, 38, 8749, 2005), it was confirmed by wide-angle X-ray diffraction (WAXD: Wide-angle X-ray Diffraction).
  • WAXD Wide-angle X-ray Diffraction
  • the amorphous phase, the intermediate phase, and the crystalline phase were subjected to peak separation for the X-ray diffraction profile, and the abundance ratio was obtained from the peak area attributed to each phase.
  • Luminance sensation of the laminate was visually evaluated according to the following criteria. ⁇ : Excellent brightness feeling with deep design ⁇ : Excellent brightness feeling, but slightly inferior to ⁇ because light is transmitted X: Inferior brightness feeling due to cloudiness and whitening
  • Depth of the design of the laminate The depth of the design of the laminate was visually evaluated according to the following criteria. ⁇ : There is depth in the design, and it is observed in three dimensions. ⁇ : There is no depth in the design, and it is observed in a plane.
  • the obtained laminate was thermoformed by vacuum / pressure forming using a vacuum / pressure forming machine (FM-3M / H manufactured by Minos Co., Ltd.) to obtain a formed body.
  • the heating conditions were set so that the polypropylene crystals of the first layer did not exceed the melting point so that the polypropylene crystals could be thermoformed while maintaining the fine structure.
  • the resulting molded article was evaluated for brightness and design depth in the same manner as in the case of the laminate. The results are shown in Table 1.
  • molding a laminated body into a molded object was evaluated on the following references
  • the first layer is whitened and the brightness and design depth are lower than before molding. ing
  • Example 2 Other than using the white masterbatch (SCPPM 10E658 white (Z), Sankyo Chemical Industry Co., Ltd.) as the colorant of the third layer, the thickness of the first layer and the third layer was changed to the thickness of Table 1. Manufactured and evaluated the laminated body and the molded object in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Other than using the blue masterbatch (PPM 5BG132 BLUE, manufactured by Tokyo Ink Co., Ltd.) as the colorant of the third layer, the thicknesses of the first layer, the second layer and the third layer were changed to the thicknesses shown in Table 1. Manufactured and evaluated the laminated body and the molded object in the same manner as in Example 1. The results are shown in Table 1.
  • PPM 5BG132 BLUE blue masterbatch
  • Example 4 A red masterbatch (PPM 4BG148 RED, manufactured by Tokyo Ink Co., Ltd.) was used as the colorant for the third layer, and the thicknesses of the first layer, the second layer, and the third layer were changed to those shown in Table 1. Manufactured and evaluated the laminated body and the molded object in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Aluminum flat piece having a laminate structure in which both sides of the metal thin film layer are sandwiched by transparent thin film layers made of a siloxane resin as the metal foil powder of the second layer (trade name LG neo # 500, manufactured by Oike Imaging Co., Ltd., average major axis: 15 ⁇ m, average major axis / thickness ratio: 7.5), and the thickness of the first layer, the second layer, and the third layer was changed to the thicknesses shown in Table 1, and the lamination was performed in the same manner as in Example 1. The body and the molded body were manufactured and evaluated. The results are shown in Table 1.
  • the average major axis of the metal foil powder and the thickness of the metal foil powder were measured in the same manner as LG neo # 200.
  • Example 6 Example 1 except that the thickness of the laminate was changed to the first layer (thickness 101 ⁇ m) / second layer (thickness 300 ⁇ m) / third layer (thickness 215 ⁇ m) / first layer (thickness 80 ⁇ m) Thus, a laminate and a molded body were produced and evaluated. The results are shown in Table 1.
  • Example 7 The thickness of the laminate was changed to the first layer (thickness 110 ⁇ m) / second layer (thickness 290 ⁇ m) / third layer (thickness 211 ⁇ m) / first layer (thickness 83 ⁇ m). Thus, a laminate and a molded body were produced and evaluated. The results are shown in Table 1.
  • Example 8 The structure of the laminate was the same as in Example 1 except that the third layer was not formed and the laminate was composed of two layers of the first layer (thickness 61 ⁇ m) / second layer (thickness 163 ⁇ m). Laminates and molded bodies were manufactured and evaluated. The results are shown in Table 1.
  • First layer thermoplastic resin Homopolypropylene (trade name: Prime Polypro F-133A, Prime Polymer Co., Ltd., Melt Flow Index 2.8 g / 10 min)
  • Second layer thermoplastic resin Homopolypropylene (trade name: Prime Polypro F-133A, Prime Polymer Co., Ltd., Melt Flow Index 2.8 g / 10 min)
  • Second layer metal foil powder aluminum powder (trade name LG neo # 200, manufactured by Oike Imaging Co., Ltd., average major axis: 60 ⁇ m, average major axis / thickness ratio: 30)
  • Third layer thermoplastic resin homopolypropylene (trade name: Prime Polypro F-133A, Prime Polymer Co., Ltd., Melt Flow Index 2.8 g / 10 min)
  • -Colorant of the third layer Black masterbatch (trade name: PPM 91291 BLACK AL # 94 manufactured by Tokyo Ink Co., Ltd.)
  • the manufacturing apparatus shown in FIG. 2 (24 in FIG. 2 is an air knife, 26 and 28 are chill rolls), and under the manufacturing conditions shown below, the first layer (thickness 18 ⁇ m) / second layer (thickness 240 ⁇ m) A laminate composed of four layers of / first layer (thickness 21 ⁇ m) / third layer (thickness 44 ⁇ m) was produced.
  • Example 1 Evaluation similar to Example 1 was performed about the obtained laminated body. Moreover, the molded object was manufactured from the laminated body obtained like Example 1, and evaluated. The results are shown in Table 1.
  • Comparative Example 2 The laminate was made in the same manner as in Comparative Example 1 except that the laminate was composed of three layers of first layer (thickness 107 ⁇ m) / second layer (thickness 277 ⁇ m) / first layer (73 ⁇ m). And a molded object was manufactured and evaluated. The results are shown in Table 1.
  • Comparative Example 3 A sorbitol nucleating agent (Riquemaster FC-1 manufactured by Riken Vitamin Co., Ltd.) as a nucleating agent is added to the polypropylene of each of the first layer, the second layer, and the third layer, 1.5% by weight, A laminate and a molded body were produced and evaluated in the same manner as in Comparative Example 1 except that the thicknesses of the first layer, the second layer, and the third layer were changed to the thicknesses shown in Table 1. The results are shown in Table 1. In addition, the value of the crystallization speed of propylene in Comparative Example 3 was evaluated for a composition further containing a nucleating agent in propylene.
  • Comparative Example 4 A sorbitol nucleating agent (Riquemaster FC-1 manufactured by Riken Vitamin Co., Ltd.) as a nucleating agent is added in an amount of 1.5% by weight to the polypropylene of each of the first layer and the second layer. A laminate and a molded body were produced and evaluated in the same manner as in Comparative Example 2 except that the thickness of the second layer was changed to the thickness shown in Table 1. The results are shown in Table 1.
  • the molded body obtained from the laminate of the present invention and the molded body obtained from the method of the present invention are casings in various fields such as transportation equipment (automobiles, motorcycles, etc.), housing equipment, building materials, home appliances, etc. It can be used as a decorative sheet that replaces painting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

スメチカ晶を含むポリプロピレンからなる第一の層と、熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層を、この順で含む積層体であって、前記金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である積層体。

Description

積層体、成形体及び当該成形体の製造方法
 本発明は、積層体、成形体及び当該成形体の製造方法に関するものである。
 自動車や家電、建材、日用品、情報通信機器等様々な分野において、外観の意匠性を向上させる方法として塗装が用いられている。しかしながら、塗装は大量の揮発性有機化合物(VOC)を排出するため、環境負荷が大きい手段である。さらに、塗装ブースの温度・湿度コントロールや焼き付け工程では多量のエネルギーを消費し、大量の二酸化炭素を排出している。特に自動車の生産では、排出する二酸化炭素のうち塗装が2割を占めており、塗装に伴う環境負荷を低減させるため、塗装に代替する手段が積極的に開発されている。
 塗装の代替手段として、筐体表面にフィルムを被覆する方法が挙げられる。これは、塗装と比較して環境負荷が低い方法である。一般に、フィルムによる筐体の加飾は、透明フィルムに印刷をして意匠を附与している。しかし、印刷では、パール調や金属調等の高輝度の意匠表現に限界があり、塗装には程遠い仕上がりである。
 特許文献1は、塗装の代替手段として光輝層及びクリア層の積層体からなる加飾シートを開示し、当該加飾シートを筐体の表面に貼合することによって加飾している。
 特許文献2は、シート貼り合せ用の接着剤に高輝度顔料を混合し、輝度の高い化粧シートを開示する。高輝度顔料を含む接着剤層は、接着剤を有機溶剤に溶解させ、ナイフコーター等で基材に塗布して形成している。
 特許文献3は、金属薄膜層を有する積層体を破砕して得られる金属箔粉の製造方法を開示する。
特開2006-321124号公報 特開平8-156215号公報 特開2016-65262号公報
 しかしながら、特許文献1では、加飾シートであっても筐体の形状によってはシートの一部が白化して、目的の加飾効果が得られない場合があった。特許文献2では、残留溶剤によるVOCの拡散や接着剤の膨れ等の不良現象が発生する可能性がある。また、輝度感を向上させるため、接着剤層の膜厚を増加すると、残留溶剤の量が増えるので、不良現象発生の可能性がさらに向上する問題があった。
 特許文献3では、金属箔粉の製法については記載されているものの、それを用いた積層体に関する評価はなされていない。
 本発明の目的は、複雑な三次元形状に対応可能であり、輝度感と意匠の深みを与えることができる積層体を提供することである。
 本発明によれば、以下の積層体等が提供される。
1.スメチカ晶を含むポリプロピレンからなる第一の層と、
 熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層を、この順で含む積層体であって、
 前記金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である積層体。
2.スメチカ晶を含むポリプロピレンからなる第一の層と、
 熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層と、
 熱可塑性樹脂及び着色剤を含む樹脂組成物からなる第三の層を、この順で含む積層体であって、
 前記金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である積層体。
3.前記第三の層の熱可塑性樹脂が、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体及びアクリル樹脂からなる群から選択される1以上を含む、2に記載の積層体。
4.前記金属箔粉が、厚さが0.01μm~0.2μmの金属薄膜層の両面を、厚さが0.05μm~2.0μmの透明薄膜層で被覆した積層体構造を有する非定型偏平片であり、
 前記金属薄膜層が、アルミニウム、銀、金、ニッケル、クロム、錫、亜鉛、インジウム、チタン、鉄及びシリコンからなる群から選択される単体金属、又は前記群から選択される2以上からなる合金もしくは混合物からなり、
 前記非定型偏平片の面における最も長い端から端の長さの平均値である平均長径が10μm以上であり、前記平均長径と厚みの比(平均長径/厚み)が、2.5以上である1~3のいずれかに記載の積層体。
5.前記第一の層のポリプロピレンが、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンである1~4のいずれかに記載の積層体。
6.前記第一の層のポリプロピレンが、130℃での結晶化速度が2.5min-1以下のポリプロピレンである1~5のいずれかに記載の積層体。
7.前記第二の層の熱可塑性樹脂が、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体及びアクリル樹脂からなる群から選択される1以上を含む、1~6のいずれかに記載の積層体。
8.1~7のいずれかに記載の積層体を用いて作製した成形体。
9.前記成形体の第一の層のポリプロピレンが、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンである8に記載の成形体。
10.前記成形体の第一の層のポリプロピレンが、130℃での結晶化速度が2.5min-1以下のポリプロピレンである8又は9に記載の成形体。
11.1~7のいずれかに記載の積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
12.1~7のいずれかに記載の積層体を金型に合致するよう附形し、前記附形した積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
13.チャンバーボックス内に芯材を配設し、
 前記芯材の上方に、1~7のいずれかに記載の積層体を配置し、
 前記チャンバーボックス内を減圧し、
 前記積層体を加熱軟化し、
 加熱軟化させた積層体を前記芯材に押圧して被覆させる、成形体の製造方法。
14.モールを異形押し出し機により押し出し成形する際に、前記異形押し出し機のダイスに1~7のいずれかに記載の積層体を供給して、熱融着によってモール本体と一体化する、成形体の製造方法。
 本発明によれば、複雑な三次元形状に対応可能であり、輝度感と意匠の深みを与えることができる積層体が提供できる。
実施例1の積層体の製造に用いた製造装置の概略構成図である。 比較例1の積層体の製造に用いた製造装置の概略構成図である。 異形押し出し成形を実施するための製造装置の一例を示す概略構成図である。
<積層体>
 本発明の第一の積層体は、スメチカ晶を含むポリプロピレンからなる第一の層と、熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層をこの順で含む積層体であり、第二の層中の金属箔粉が、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である。
 本発明の第一の積層体において、スメチカ晶を含むポリプロピレンからなる第一の層は、第二の層に意匠の深みを附与する層として機能する。また、熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層は、金属箔粉によって光が強く反射することで積層体に輝度感を附与する層として機能する。
 本発明の第二の積層体は、スメチカ晶を含むポリプロピレンからなる第一の層と、熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層と、熱可塑性樹脂及び着色剤を含む樹脂組成物からなる第三の層をこの順で含む積層体であり、第二の層中の金属箔粉が、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である。
 本発明の第二の積層体は、熱可塑性樹脂及び着色剤を含む樹脂組成物からなる第三の層をさらに備える他は第一の積層体と同じである。当該第三の層は着色剤を含む着色された層である。第三の層は、可視光の透過を防止し、第二の層での光の反射量を増やして輝度を向上させ、従来の印刷等の方法では実現できなかったパール調や金属調等の高輝度な意匠を実現することができる。また、着色剤の色を任意に変更することで様々な意匠を附与することができる。
 以下、本発明の第一の積層体及び第二の積層体をまとめて「本発明の積層体」という場合がある。
 本発明の積層体は、第一の層及び第二の層をこの順に含む、又は第一の層、第二の層、及び第三の層をこの順に含めばよく、さらに他の層を含んでもよい。
 本発明の積層体の層構成としては、第一の層/第二の層/第一の層、第一の層/第二の層/第三の層、第一の層/第二の層/第三の層/第一の層、第一の層/第二の層/樹脂層/第三の層、第一の層/第二の層/樹脂層/第三の層/第一の層等が挙げられる。
 尚、上記「樹脂層」とは、例えば第二の層を構成する熱可塑性樹脂と同じ又は異なる熱可塑性樹脂からなる層である。
 以下、本発明の積層体の各層について説明する。
 第一の層はスメチカ晶を含むポリプロピレンからなる層である。
 ポリプロピレンは結晶性樹脂であり、α晶、β晶、γ晶、スメチカ晶等の結晶形をとることができる。これら結晶形のうちスメチカ晶は、ポリプロピレンを溶融状態から、毎秒80℃以上の速度で冷却することで、非晶と結晶の中間体として生成させることができる。冷却速度の上限値は特に制限されないが、通常毎秒500℃以下である。スメチカ晶は、結晶の様な規則的構造をとった安定構造ではなく、微細な構造が寄り集まった準安定的な構造である。そのため、分子鎖間の相互作用が弱く、安定構造であるα晶等と比較して、加熱すると軟化しやすい性質を有する。
 本発明の積層体の第一の層は、スメチカ晶を含むポリプロピレンからなることで、第一の層の附形時の応力が低下し、第一の層の白化を防ぐことができる。従って、本発明の積層体を複雑な三次元形状に成形しても、意匠が損なわれない。第一の層中のスメチカ晶の割合は、30%以上、50%以上、70%以上、又は90%以上であるとより好ましい。
 第一の層がスメチカ晶を含むポリプロピレンからなることは実施例に記載の方法で確認できる。
 尚、例えば第一の層がスメチカ晶を含まず、安定構造のα晶を含むポリプロピレンからなる場合、積層体を真空成形等で三次元形状へ附形する際に、第一の層中の分子鎖間の相互作用がスメチカ晶の場合と比較して大きくなる。そのため、R部やボス等の絞りが大きい部分では、無理やり伸ばされて第一の層が白化し、輝度感と意匠の深みが失われてしまうおそれがある。
 安定状態のα晶を含むポリプロピレンは、加熱温度の他に透明化に造核剤を用いた場合にも生じる。
 第一の層は造核剤を含まないと好ましい。
 結晶性樹脂であるポリプロピレンを透明にするには、例えば第一の層製造時に80℃/秒以上で冷却し、スメチカ晶を形成する方法と、造核剤を添加して、強制的に微細結晶を生成させる方法がある。造核剤は、ポリプロピレンの結晶化速度を2.5min-1を超える速度まで向上させ、結晶を多数発生させて充填することで、物理的に成長するスペースを無くし、結晶のサイズを低減している。しかし、造核剤は、核となる物質が存在するので、透明になっても若干白味を帯びているため、意匠性が低下するおそれがある。
 そこで、造核剤を添加しないでポリプロピレンの結晶化速度を2.5min-1以下とし、80℃/秒以上で冷却してスメチカ晶を形成することにより、意匠性に優れた積層体を得られる。さらに、赤外線ヒーターで積層体を加熱し、附形した場合は、第一の層がスメチカ晶由来の微細構造を維持したまま、α晶に転移する。この転移により、表面硬度や透明性が造核剤を使用した場合と比較して、さらに向上できる。
 第一の層のポリプロピレンは、メルトフローレート(Melt Flow Rate:以下、MFRと称す、メルトフローインデックスと記載する場合もある)が0.5g/10分以上15g/10分以下であることが好ましい。0.5g/10分以上5.0g/10分以下がより好ましく、さらに好ましくは2.0g/10分以上4.0g/10分以下である。
 MFRが0.5g/10分未満の場合、押出成形時のダイスリップ部でのせん断応力が強くなり、結晶化を促進して透明性が低下するおそれがある。一方、MFRが15g/10分を超える場合、熱成形時にドローダウンが大きくなって成形性が低下するおそれがある。
 MFRの測定については、JIS-K7210に準拠し、測定温度230℃、荷重2.16kgで測定できる。
 第一の層のポリプロピレンは、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンであると耐傷付き性の観点から好ましい。アイソタクチックペンタッド分率とは、樹脂組成の分子鎖中のペンタッド単位(プロピレンモノマーが5個連続してアイソタクチック結合したもの)でのアイソタクチック分率である。
 ポリプロピレンのアイソタクチックペンダット分率は、85モル%~99モル%が好ましく、90モル%以上がより好ましい。アイソタクチックペンダット分率が85モル%未満では、表面硬度に劣り、積層体表面に傷が入って外観を損なうおそれがある。
 第一の層のポリプロピレンのアイソタクチックペンダット分率は実施例に記載の方法で確認できる。
 第一の層のポリプロピレンは、130℃での結晶化速度が2.5min-1以下のポリプロピレンであると成形性の観点から好ましい。下限値は特に限定されないが、通常0.01 min-1以上である。
 ポリプロピレンの結晶化速度は、2.5min-1以下が好ましく、2.0min-1以下がより好ましい。結晶化速度が、2.5min-1を超えると、附形時に加熱されて軟化した積層体が、最初に金型へ接触した部分が急速に硬化して伸びが悪くなり、無理矢理伸ばされる部分が白化して意匠性が低下するおそれがある。
 130℃での結晶化速度は、例えば示差走査熱量測定器を用いて測定することができる。
 第一の層の厚みは、加飾したい構造物の形状及び大きさに応じて適宜決定すればよく、例え5μm~300μmであり、好ましくは10μm~200μmである。
 各層の厚さについて、例えばスライディングミクロトームHM340E(マイクロン・テクノロジー社製)で断面を切削し、これを光学顕微鏡にて拡大観察し、各層の深さ方向の厚みを測定できる。
 また、例えば小角X線散乱解析法により散乱強度分布と長周期を算出することにより、第一の層のポリプロピレンが80℃/秒以上で冷却して得られたものか、そうでないかを判断することができる。即ち、上記解析により第一の層のポリプロピレンがスメチカ晶由来の微細構造を有しているか否かを判断することが可能である。測定は以下の条件で行う。
・X線発生装置はultraX 18HF(株式会社リガク製)を用い、散乱の検出にはイメージングプレートを使用する。
・光源波長:0.154nm
・電圧/電流:50kV/250mA
・照射時間:60min
・カメラ長:1.085mm
・試料厚み:1.5~2.0mmになるようにシートを重ねる。製膜(MD)方向が揃うようにシートを重ねる。
 また、第一の層のポリプロピレンが、好ましくは示差走査熱量測定曲線において最大吸熱ピークの低温側に1.0J/g以上(より好ましくは1.5J/g以上)の発熱ピークを有する。上限値は特に限定されないが、通常10J/g以下である。
 発熱ピークは、例えば示差走査熱量測定器を用いて測定することができる。
 第二の層は、熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる層である。
 第二の層の金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である。偏平片である金属箔粉を用いることで、本発明の積層体は塗装では表現できない輝度感の高い意匠を表現することができる。
 光沢顔料が粒状である場合、入射した光線が乱反射し、光沢感を充分に得られないおそれがある。一方、層状の偏平片であれば、粒状の場合に比べて、入射した光線の乱反射が少なくなり、金属光沢感を増大させることができる。但し、ガラスフレークやアルミフレークなどの層状構造(積層体構造)を有さないものでは、輝度感の高い意匠が得られない場合がある。例えばアルミフレークは、アルミニウム自体の反射率が高い一方で、表面の平滑性が悪いために乱反射の割合が高くなって輝度感の高い意匠が得られない場合があり、ガラスフレークは平滑性・平坦性が高い一方で、ガラス自体の反射率が金属と比較して低いため高輝度感の高い意匠が得られない場合がある。
 偏平片を用いて光沢感を得るためには、偏平片ができるだけアスペクト比の高い偏平状であると好ましい。尚、ここで言うアスペクト比とは、偏平片の平均長径/平均厚みにより得られる値である。
 第二の層に含まれる金属箔粉の形状は、非定型偏平片であると好ましい。当該偏平片は、面において最長となる端から端までの長さの平均値(平均長径)が10μm以上であり、当該平均長径と偏平片の厚みの比(平均長径/厚み)が2.5以上であると好ましい。平均長径の上限値は特に限定されないが、通常1000 μm 以下である。また、平均長径/厚みの上限値は特に限定されないが、通常500以下である。
 金属箔粉の平均長径については、例えば粒度分布計を用いて測定することができる。金属箔粉の厚みについては、例えばSEM(走査型電子顕微鏡、断面観察)を用いて測定することができる。
 上記形状を有する金属箔粉は、厚さが0.01μm~0.2μmの金属薄膜層の両面を厚さが0.05μm~2.0μmの透明薄膜層で挟持した積層体を破砕することにより得られる。ここでいう金属薄膜層の両面とは、金属薄膜層において表面積の最も大きい面と、その面と反対側の面のことである。
 金属薄膜層の厚さについては、例えば蛍光X線分析装置を用いて測定することができる。透明薄膜層の厚さについては、例えばSEM(走査型電子顕微鏡、断面観察)を用いて測定することができる。
 金属薄膜層を構成する金属種は、好ましくはアルミニウム、銀、金、ニッケル、クロム、錫、亜鉛、インジウム、チタン、及び鉄及びシリコンからなる群から選択される単体金属、又は当該群から選択される2種以上の合金もしくは混合物である。尚、シリコンは半金属であり、前記金属薄膜層を構成する金属種に含まれるものとする。
 上記透明薄膜層の材料としては、例えばシロキサン系樹脂を用いることができ、当該シロキサン系樹脂の具体例としては、ポリジメチルシロキサンを挙げることができる。
 粉砕方法としては、特に限定されないが、ジェットミル、ボールミル、リングロールミル、ハンマーミル、チューブミル等を用いた破砕が挙げられる。
 第二の層に含まれる金属箔粉の含有量は、第二の層に含まれる熱可塑性樹脂100重量部に対して0.05~10重量部であると好ましく、0.1~2重量部であるとより好ましい。
 第二の層に含まれる熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体、アクリル樹脂が挙げられる。これらのうち、耐薬品性、耐久性、成形性の観点から、ポリプロピレンが好ましい。
 上記熱可塑性樹脂は1種単独で、又は2種以上を混合して用いてよい。
 上記ポリプロピレンとしては、具体的には、ホモポリプロピレン、プロピレンとエチレン等のオレフィンとの共重合体等が挙げられる。特に、耐熱性、硬度の理由からホモポリプロピレンが好ましい。
 共重合体としては、ブロック共重合体でも、ランダム共重合体でもよく、これらの混合物でもよい。
 ポリプロピレンは、メルトフローレート(Melt Flow Rate:以下、MFRと称す)が0.5g/10分以上5.0g/10分以下であることが好ましい。0.5g/10分以上5.0g/10分以下がより好ましく、さらに好ましくは2.0g/10分以上4.0g/10分以下である。
 MFRが0.5g/10分未満の場合、押出成形時のダイスリップ部でのせん断応力が強くなり、結晶化を促進して透明性が低下するおそれがある。一方、MFRが5.0g/10分を超える場合、熱成形時にドローダウンが大きくなって成形性が低下するおそれがある。
 MFRの測定については、JIS-K7210に準拠し、測定温度230℃、荷重2.16kgで測定できる。
 第二の層の熱可塑性樹脂がポリプロピレンである場合、経済性の観点から、第二の層のポリプロピレンと第一の層のポリプロピレンは同じであると好ましい。即ち、第二の層の熱可塑性樹脂がポリプロピレンである場合、当該ポリプロピレンはスメチカ晶を含むポリプロピレンであると好ましい。
 第二の層を構成する樹脂組成物は熱可塑性樹脂と金属箔粉を含めばよく、熱可塑性樹脂及び金属箔粉から本質的になってもよい。ここで「本質的」とは、第二の層を構成する樹脂組成物における熱可塑性樹脂及び金属箔粉の合計含有量が80重量%以上、90重量%以上、95重量%以上、97重量%以上、又は99重量%以上であることを意味する。第二の層を構成する樹脂組成物は熱可塑性樹脂と金属箔粉のみからなってもよい。
 第二の層を構成する樹脂組成物は、本発明の効果を損なわない範囲で、顔料、酸化防止剤、安定剤、紫外線吸収剤等の添加剤を含んでもよい。
 第二の層の厚みは、加飾したい構造物の形状及び大きさに応じて適宜決定すればよく、例えば20μm~900μmであり、好ましくは50μm~500μmである。
 第三の層は、熱可塑性樹脂及び着色剤を含む樹脂組成物からなる層である。
 第三の層に含まれる着色剤としては、公知の染料、無機顔料、有機顔料等を種々使用することができる。予め原料樹脂に配合することを考慮すると、着色剤は、無機顔料、有機顔料などの顔料を採用するのが好ましい。
 染料としては、アゾ染料、アントラキノン染料、アゾイック染料、ナフトール染料、トリフェニルメタン染料、ポリメチン染料、金属錯塩染料、含金属染料、反応染料、直接染料、ビスアゾ染料、トリスアゾ染料、硫化染料、硫化建染染料、建染染料、インジゴイド染料、アイス染料、媒染染料、酸性媒染染料、蛍光性増白剤、複合染料、有機溶剤溶解染料、塩基性染料、顔料樹脂捺染料(ピグメントレジンカラー)などが挙げられる。
 無機顔料としては、カーボンブラック、雲母状酸化鉄、鉛白、鉛丹、銀朱、群青、紺青、酸化コバルト、二酸化チタン、二酸化チタン被覆雲母、ストロンチウムクロメート、チタニウム・イエロー、チタンブラック、ジンククロメート、鉄黒、モリブデン赤、モリブデンホワイト、リサージ、リトポン、エメラルドグリーン、ギネー緑、コバルト青などが挙げられる。
 有機顔料としては、ナフトール溶性アゾ顔料、ナフトール不溶性アゾ顔料、オキシナフトエ酸系アゾ顔料、ナフトールAS系溶性アゾ顔料、ナフトールAS系不溶性アゾ顔料、アセトアセトアニリド系溶性アゾ顔料、アセトアセトアニリド系不溶性アゾ顔料、ピラゾロン系アゾ顔料、ナフトールAS系不縮合アゾ顔料、アセトアセトアニリド系縮合溶性アゾ顔料、フタロシアニンブルー、染色レーキ、イソインドリノン、キナクリドン、ジオキサジンバイオレッド、ペリノン、ペリレン、アズレンなどが挙げられる。
 第三の層に含まれる着色剤の含有量は、第三の層に含まれる熱可塑性樹脂100重量部に対して0.5~50重量部であると好ましく、3~15重量部であるとより好ましい。
 第三の層に含まれる熱可塑性樹脂は、第二の層の熱可塑性樹脂と同じものが使用できる。
 第三の層の熱可塑性樹脂と第二の層の熱可塑性樹脂は同じでも異なってもよく、経済性の観点から、第三の層の熱可塑性樹脂と第二の層の熱可塑性樹脂は同じであると好ましい。
 第三の層を構成する樹脂組成物は、熱可塑性樹脂と着色剤を含めばよく、熱可塑性樹脂及び着色剤から本質的になってもよい。ここで「本質的」とは、第三の層を構成する樹脂組成物における熱可塑性樹脂及び着色剤の合計含有量が80重量%以上、90重量%以上、95重量%以上、97重量%以上、又は99重量%以上であることを意味する。第三の層を構成する樹脂組成物は熱可塑性樹脂と着色剤のみからなってもよい。
 第三の層を構成する樹脂組成物は、本発明の効果を損なわない範囲で、酸化防止剤、安定剤、紫外線吸収剤等の添加剤を含んでもよい。
 第三の層の厚みは、加飾したい構造物の形状及び大きさに応じて適宜決定すればよく、例えば5μm~900μmであり、好ましくは15μm~500μmである。
<積層体の製造方法>
 本発明の積層体は、第一の層、第二の層及び第三の層の各層をそれぞれ公知の製造方法で製造し、ドライラミネートや熱ラミネート等の公知の方法で貼り合せることで製造できる。また、本発明の積層体は、第一の層、第二の層、第三の層等の一部を予め製造しておき、これらを押出ラミネートで積層体とすることでも製造できる。
 本発明の積層体は、第一の層及び第二の層を含む積層体、又は第一の層、第二の層及び第三の層を含む積層体を共押出し法で製造すると好ましい。第一の層、第二の層、第三の層の各層をそれぞれ製造して貼り合わせて積層体とする場合であっても、第一の層及び第三の層は押出し法で製造すると好ましい。押出し法であれば、第一の層の内部温度をポリプロピレンの結晶化温度以下とすることができ、スメチカ晶を含む第一の層が製造可能である。但し、第一の層のポリプロピレンの結晶がスメチカ晶となるのは、押し出した溶融樹脂を毎秒80℃以上で冷却した場合である(シングルベルト成形法もしくは水冷法等が該当)。また、押出し法であれば、印刷法よりも厚みの大きい第三の層が製造でき、積層体に意匠の深みを附与することができる。加えて、溶媒を使用しない押出し法は、残留溶剤による不良現象が発生しない点からも好ましい。
 尚、例えば第一の層を射出成形で製造する場合、成形時の加熱によってスメチカ晶を含むポリプロピレンからなる第一の層を得ることは難しい。射出成形では、成形体の衝撃強度を考慮して、ブロックPP(ポリプロピレン)やABS(アクリロニトリル-ブタジエン-スチレン)、PC(ポリカーボネート)/ABSなどの不透明な樹脂が使用され、このような樹脂で第一の層を形成すると、白濁した色となってしまうため、意図する第一の層が得られない場合があるからである。
 第一の層と同様に、第三の層を射出成形で製造する場合、着色剤によっては変色してしまい、意図する第三の層が得られない場合がある。
 本発明の積層体を共押出し法で製造する際には、各層の材料を溶融し、80℃/秒以上の冷却速度で、積層体の内部温度が結晶化温度以下となるまで冷却することが好ましい。
 ポリプロピレンは、溶融状態から80℃/秒以上の速度で冷却されると、スメチカ晶が多数を占める構造となる。スメチカ晶は、準安定状態の中間相であり、一つ一つのドメインサイズが小さいため、透明性に優れる。また、準安定状態であるため、結晶化が進んだα晶と比較して、低い熱量でシートが軟化するため、成形性に優れる特徴がある。
 この場合、急冷を表面温度が露点以上50℃以下に保たれた冷却ロールを用いて行うことが好ましい。このようにすることで、積層体の白化をさらに防止することができる。
 また、本発明の積層体は、複数の冷却ロールに巻装された鏡面エンドレスベルトと鏡面冷却ロールとを備え、鏡面エンドレスベルトと鏡面冷却ロールの表面温度が露点以上50℃以下に保たれた装置を用いて、製造することができる。
 この場合、鏡面冷却ロールと鏡面エンドレスベルトとの間に、Tダイ押出機によって溶融した各層の材料を導入、圧接してシート状に成形し、鏡面エンドレスベルトに当該ベルトの表面温度より低い温度の冷却水を吹き付けて急冷して積層体を製造する。
 得られた積層体を非平面状に成形して、基体の少なくとも一部に設けると好ましい。複雑な形状に成形してもシートの白化を防止でき、複雑な形状の成形物でも外観を損なうことなく良好に加飾成形することができる。
 図1に、本発明の積層体を製造するための製造装置の一例の概略構成図を示す。
 図1に示す製造装置は、押出機のTダイ12、第1冷却ロール13、第2冷却ロール14、第3冷却ロール15、第4冷却ロール16、金属製エンドレスベルト17を備える。
 このように構成された製造装置を用いた急冷による積層シート(積層体)11の製造方法の一実施形態を以下に説明する。
 まず、押し出された溶融樹脂と直接接触し、これを冷却する金属製エンドレスベルト17及び第4冷却ロール16の表面温度が露点以上、50℃以下、好ましくは30℃以下に保たれるように、予め各冷却ロール13、14、15、16の温度制御を行う。
 ここで、第4冷却ロール16及び金属製エンドレスベルト17の表面温度が露点以下では、表面に結露が生じ均一な製膜が困難になる可能性がある。一方、表面温度が50℃より高いと、得られる積層シート11の透明性が低くなるとともに、α晶が多くなり、熱成形しにくいものとなる可能性がある。従って、表面温度は例えば20℃である。
 次に、押出機のTダイ12より押し出された溶融樹脂(造核剤を含まない)を第1冷却ロール13上で金属製エンドレスベルト17と、第4冷却ロール16との間に挟み込む。この状態で、溶融樹脂を第1、第4冷却ロール13、16で圧接するとともに、14℃で急冷する。
 この際、第1冷却ロール13及び第4冷却ロール16間の押圧力で弾性材22が圧縮されて弾性変形する。
 この弾性材22が弾性変形している部分、即ち、第1冷却ロール13の中心角度θ1に対応する円弧部分で、急冷されたシートは各冷却ロール13、16により面状圧接されている。この際の面圧は、通常0.1MPa以上20MPa以下である。
 上述のように圧接され、第4冷却ロール16及び金属製エンドレスベルト17間に挟まれたシートは、続いて、第4冷却ロール16の略下半周に対応する円弧部分で金属製エンドレスベルト17と第4冷却ロール16とに挟まれて面状圧接される。この際の面圧は、通常0.01MPa以上0.5MPa以下である。
 このように第4冷却ロール16で面状圧接及び冷却された後、金属製エンドレスベルト17に密着したシートは、金属製エンドレスベルト17の回動とともに第2冷却ロール14上に移動される。ここで、剥離ロール21によりガイドされて第2冷却ロール14側に押圧されたシートは、前述同様、第2冷却ロール14の略上半周に対応する円弧部分で金属製エンドレスベルト17により面状圧接され、再び30℃以下の温度で冷却される。この際の面圧は、通常0.01MPa以上0.5MPa以下である。
 第2冷却ロール14上で冷却された積層シートは、巻き取りロール(図示省略)により、所定の速度で巻き取られる。
<成形体及び成形体の製造方法>
 本発明の積層体を成形することにより本発明の成形体が得られる。
 成形方法としては、インモールド成形、インサート成形、被覆成形、又は異形押し出し成形を用いると好ましい。
 インモールド成形は、金型内に積層体を設置して、金型内に供給される成形用樹脂の圧力で所望の形状に成形して成形体を得る方法である。
 インモールド成形として、積層体を金型に装着し、成形用樹脂を供給して一体化して行うことが好ましい。
 インサート成形では、金型内に設置する附形体を予備附形しておき、その形状に成形用樹脂を充填することで、成形体を得る方法である。より複雑な形状を出すことができる。
 インサート成形として、積層体を金型に合致するよう附形し、附形した積層体を金型に装着し、成形用樹脂を供給して一体化して行うことが好ましい。
 金型に合致するようする附形(予備附形)は、真空成型、圧空成型、真空圧空成型、プレス成型、プラグアシスト成形等で行うことが好ましい。
 成形用樹脂は、成形可能な熱可塑性樹脂が好ましい。具体的には、ポリプロピレン、ポリエチレン、ポリカーボネート、アクリロニトリル-スチレン-ブタジエン共重合体、アクリル重合体等が例示できるが、この限りではない。ファイバーやタルク等の無機フィラーを添加してもよい。
 供給は、射出で行うことが好ましく、圧力5MPa以上120MPa以下が好ましい。
 金型温度は20℃以上90℃以下であることが好ましい。
 被覆成形として、チャンバーボックス内に芯材を配設し、芯材の上方に、積層体を配置し、チャンバーボックス内を減圧し、積層体を加熱軟化し、芯材の上面に、積層体を接触し、加熱軟化させた積層体を芯材に押圧して被覆させることが好ましい。
 加熱軟化後、芯材の上面に、積層体を接触させることが好ましい。
 押圧は、チャンバーボックス内において、積層体の、芯材と接する側を減圧したまま、積層体の、芯材の反対側を加圧することが好ましい。
 芯材は、凸状でも凹状であってもよく、例えば三次元曲面を有する樹脂、金属、セラミック等が挙げられる。樹脂は、上述の成形に用いる樹脂と同様のものが挙げられる。
 具体的には、互いに分離可能な、上下ふたつの成型室から構成されるチャンバーボックスを用いることが好ましい。
 まず、下成型室内のテーブル上へ芯材を載せ、セットする。被成型物である本発明の積層体を下成型室上面にクランプで固定する。この際、上・下成型室内は大気圧である。
 次に上成型室を降下させ、上・下成型室を接合させ、チャンバーボックス内を閉塞状態にする。上・下成型室内の両方を大気圧状態から、真空タンクによって真空吸引状態とする。
 上・下成型室内を真空吸引状態にした後、ヒータを点けて加飾シートの加熱を行なう。次に上・下成型室内は真空状態のまま下成型室内のテーブルを上昇させる。
 次に、上成型室内の真空を開放し大気圧を入れることによって、被成型物である本発明の積層体は芯材へ押し付けられてオーバーレイ(成型)される。尚、上成型室内に圧縮空気を供給することで、より大きな力で被成型物である本発明の積層体を芯材へ密着させることも可能である。
 オーバーレイが完了した後、ヒータを消灯し、下成型室内の真空も開放して大気圧状態へ戻し、上成型室を上昇させ、加飾印刷された積層体が表皮材として被覆された製品を取り出す。
 異形押し出し成形は、モールを異形押し出し機により押出し成形する際に、そのダイスに本発明の積層体を供給しながらモールを押し出し成形する。異形押し出し成形により、熱融着によって積層体とモール用装飾テープとが一体化した成形体(モール)を得ることができる。
 得られるモールは、モール用装飾テープと本発明の積層体が一体化しており、本発明の積層体はモール用装飾テープのバッキング材として機能する。
 成形に使用するモール用装飾テープは、公知のテープを使用でき、例えばポリエステル又はフッ素樹脂からなる樹脂層と金属層とを有するテープである。本発明の積層体はテープの金属層側に融着させるとよい。
 図3は、異形押し出し成形を実施するための製造装置の一例を示す概略構成図である。
 モール114のリップ部114c1及び114c2を形成する積層体を供給する押出機111と、モール114のモール主部114bを形成する積層体を供給する押出機112と、がダイス110に取り付けられている。さらにこのダイス110にはモール用装飾テープ113が供給され、製品であるモール114の光輝部114aとなる。
 本発明の積層体を用いて得られた成形体について、積層体の第一の層に対応する部分のポリプロピレンが、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンであると好ましい。
 同様に、本発明の積層体を用いて得られた成形体について、積層体の第一の層に対応する部分のポリプロピレンが、130℃での結晶化速度が2.5min-1以下のポリプロピレンであると好ましい。下限値は特に限定されないが、通常0.01min-1以上である。
 成形体とした後でも位相顕微鏡などを用いることで、積層体の第一の層に対応する部分を特定することは可能である。
 以下、本発明を実施例と比較例を用いて説明する。しかしながら、本発明はこれら実施例に限定されない。
実施例1
 積層体の製造にあたり、下記材料を準備した。
・第一の層のポリプロピレン:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min)
・第二の層の熱可塑性樹脂:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min)
・第二の層の金属箔粉:金属薄膜層の両面をシロキサン系樹脂からなる透明薄膜層で挟持した積層体構造を有するアルミニウム偏平片(商品名 LG neo#200 尾池イメージング株式会社製 平均長径:60μm、平均長径/厚みの比率:30)
・第三の層の熱可塑性樹脂:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min)
・第三の層の着色剤:黒色マスターバッチ(商品名 PPM 91291 BLACK AL#94 東京インキ株式会社製)
 金属箔粉の平均長径については粒度分布計を用いて測定した。金属箔粉の厚みについては、SEM(走査型電子顕微鏡、断面観察)を用いて測定した。
 メルトフローインデックスは、JIS-K7210に準拠し、測定温度230℃、荷重2.16kgで測定した。
 図1に示す製造装置を用い、以下に示す製造条件で、第一の層(厚さ48μm)/第二の層(厚さ125μm)/第三の層(厚さ96μm)/第一の層(厚さ35μm)の四層からなる積層体を共押出し法により製造した。
[製造条件]
・第二の層の配合:ホモポリプロピレン99.5wt%+金属箔粉0.5wt%
・第三の層の配合:ホモポリプロピレン90wt%+黒色マスターバッチ10wt%
・第一の層の押出機の直径:65mm
・第二の層の押出機の直径:75mm
・第三の層の押出機の直径:50mm
・Tダイの幅:900mm
・積層シートの引取速度:6m/分
・冷却ロール及び金属製エンドレスベルトの表面温度:20℃
・冷却速度:10,800℃/分
 各層の厚さについて、スライディングミクロトームHM340E(マイクロン・テクノロジー社製)で断面を切削し、これを光学顕微鏡にて拡大観察し、各層の深さ方向の厚みを測定した。
 得られた積層体について以下の評価を行った。結果を表1に示す。
(1)アイソタクチックペンダット分率
 第一の層に用いたポリプロピレンについて13C-NMRスペクトルを評価することでアイソタクチックペンダット分率を測定した。具体的には、アイソタクチックペンダット分率の測定は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案されたピークの帰属に従い、下記の装置、条件及び計算式を用いて行った。
[装置・条件]
 装置:日本電子(株)製JNM-EX400型13C-NMR装置
 方法:プロトン完全デカップリング法   濃度:220mg/ml
 溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
 温度:130℃
 パルス幅:45°
 パルス繰り返し時間:4秒
 積算:10000回
[計算式]
 アイソタクチックペンダット分率[mmmm]=m/S×100
 S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
 m:メソペンタッド連鎖:21.7~22.5ppm
(2)結晶化速度
 示差走査熱量測定器(DSC)(製品名「Diamond DSC」、パーキンエルマー社製)を用いて、第一の層に用いたポリプロピレンの結晶化速度を測定した。具体的には、ポリプロピレンを10℃/minにて50℃から230℃に昇温し、230℃にて5分間保持し、80℃/minで230℃から130℃に冷却し、その後130℃に保持して結晶化を行った。130℃になった時点から熱量変化について測定を開始し、DSC曲線を得た。得られたDSC曲線から、以下の手順(i)~(iv)により結晶化速度を求めた。
(i)測定開始からピークトップまでの時間の10倍の時点から、20倍の時点までの熱量変化を直線で近似したものをベースラインとした。
(ii)ピークの変曲点における傾きを有する接線とベースラインとの交点を求め、結晶化開始及び終了時間を求めた。
(iii)得られた結晶化開始時間から、ピークトップまでの時間を結晶化時間として測定した。
(iv)得られた結晶化時間の逆数から、結晶化速度を求めた。
(3)結晶形
 第一の層中のポリプロピレンの結晶形を、T.Konishiらの用いた方法(Macromolecules、38,8749,2005)を参考にして、広角X線回折(WAXD:Wide-Angle X-ray Diffraction)により確認した。
 解析は、X線回折プロファイルについて非晶相、中間相、及び結晶相それぞれのピーク分離を行い、各相に帰属されるピーク面積から存在比率を求めた。
(4)積層体の輝度感
 積層体の輝度感を、以下の基準で目視により評価した。
○:意匠の深みのある輝度感に優れる
△:輝度感に優れるが、光が透過するので○よりも若干劣る
×:曇り、白化により輝度感が劣る
(5)積層体の意匠の深み
 積層体の意匠の深みを、以下の基準で目視により評価した。
○:意匠の深みがあり、立体的に観察される
×:意匠の深みが無く、平面的に観察される
 得られた積層体を真空圧空成形機(FM-3M/H 株式会社ミノス製)を用いて、真空圧空成形により熱成形し、成形体を得た。熱成形時において、ポリプロピレンの結晶が微細構造を維持したまま熱成形をさせるべく、第一の層のポリプロピレン結晶が融点以上とならないように加熱条件を設定した。得られた成形体の輝度感と意匠の深みを、積層体の場合と同様に評価した。結果を表1に示す。
 また、積層体を成形体に成形後の白化の様子を以下の基準で評価した。結果を表1に示す。
   ○:第一の層が白化しておらず、輝度感と意匠の深みが、成形前と同等である
   ×:第一の層が白化し、成形前よりも輝度感と意匠の深みが低下している
実施例2
 第三の層の着色剤として白色マスターバッチ(SCPPM 10E658 ホワイト(Z)、三協化学工業株式会社製)を用い、第一の層及び第三の層の厚みを表1の厚みに変えた他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
実施例3
 第三の層の着色剤として青色マスターバッチ(PPM 5BG132 BLUE、東京インキ株式会社製)を用い、第一の層、第二の層及び第三の層の厚みを表1の厚みに変えた他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
実施例4
 第三の層の着色剤として赤色マスターバッチ(PPM 4BG148 RED、東京インキ株式会社製)を用い、第一の層、第二の層及び第三の層の厚みを表1の厚みに変えた他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
実施例5
 第二の層の金属箔粉として金属薄膜層の両面をシロキサン系樹脂からなる透明薄膜層で挟持した積層体構造を有するアルミニウム偏平片(商品名 LG neo#500 尾池イメージング株式会社製 平均長径:15μm、平均長径/厚みの比率:7.5)を用い、第一の層、第二の層及び第三の層の厚みを表1の厚みに変えた他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
 金属箔粉の平均長径及び金属箔粉の厚みは、LG neo#200と同様に測定した。
実施例6
 積層体の厚みを第一の層(厚み101μm)/第二の層(厚み300μm)/第三の層(厚み215μm)/第一の層(厚み80μm)に変更した他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
実施例7
 積層体の厚みを第一の層(厚み110μm)/第二の層(厚み290μm)/第三の層(厚み211μm)/第一の層(厚み83μm)に変更した他は実施例5と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
実施例8
 積層体の構成を、第三の層を形成せずに第一の層(厚み61μm)/第二の層(厚み163μm)の二層からなる積層体とした他は実施例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
比較例1
 積層体製造にあたり、下記材料を準備した。
・第一の層の熱可塑性樹脂:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min)
・第二の層の熱可塑性樹脂:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min)
・第二の層の金属箔粉:アルミニウム粉(商品名 LG neo#200 尾池イメージング株式会社製 平均長径:60μm、平均長径/厚みの比率:30)
・第三の層の熱可塑性樹脂:ホモポリプロピレン(商品名 プライムポリプロF-133A 株式会社プライムポリマー製 メルトフローインデックス2.8g/10min、)
・第三の層の着色剤:黒色マスターバッチ(商品名 PPM 91291 BLACK AL#94 東京インキ株式会社製)
 図2に示す製造装置(図2において24はエアナイフ、26及び28は冷却ロール)を用い、以下に示す製造条件で、第一の層(厚さ18μm)/第二の層(厚さ240μm)/第一の層(厚さ21μm)/第三の層(厚さ44μm)の四層からなる積層体を製造した。
[製造条件]
・第二の層の配合:ホモポリプロピレン99.5wt%+金属箔粉0.5wt%
・第三の層の配合:ホモポリプロピレン90wt%+黒色マスターバッチ10wt%
・第一の層の押出機の直径:30mm
・第二の層の押出機の直径:40mm
・第三の層の押出機の直径:30mm
・Tダイの幅:350mm
・積層シートの引取速度:1.6m/分
・冷却ロールの表面温度:80℃
・冷却速度:1154℃/分
 得られた積層体について、実施例1と同様の評価を行った。また、実施例1と同様にして得られた積層体から成形体を製造し、評価した。結果を表1に示す。
比較例2
 積層体の構成を第一の層(厚み107μm)/第二の層(厚み277μm)/第一の層(73μm)の三層からなる積層体とした他は比較例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
比較例3
 第一の層、第二の層及び第三の層の各層のポリプロピレンに、造核剤としてソルビトール系造核剤(リケマスターFC-1 理研ビタミン株式会社製)を1.5重量%添加し、第一の層、第二の層及び第三の層の厚みを表1の厚みに変えた他は比較例1と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
 尚、比較例3でのプロピレンの結晶化速度の値は、プロピレンにさらに造核剤を含んだ組成物を評価した。
比較例4
 第一の層及び第二の層の各層のポリプロピレンに、造核剤としてソルビトール系造核剤(リケマスターFC-1 理研ビタミン株式会社製)を1.5重量%添加し、第一の層及び第二の層の厚みを表1の厚みに変えた他は比較例2と同様にして積層体及び成形体を製造し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体から得られる成形体及び本発明の方法から得られる成形体は、輸送機器(自動車や二輪車等)、住宅設備、建築材料、家電等の多岐に渡る分野の筐体にて、塗装を代替する加飾シートとして使用することができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (14)

  1.  スメチカ晶を含むポリプロピレンからなる第一の層と、
     熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層を、この順で含む積層体であって、
     前記金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である積層体。
  2.  スメチカ晶を含むポリプロピレンからなる第一の層と、
     熱可塑性樹脂及び金属箔粉を含む樹脂組成物からなる第二の層と、
     熱可塑性樹脂及び着色剤を含む樹脂組成物からなる第三の層を、この順で含む積層体であって、
     前記金属箔粉は、金属薄膜層の両面を透明薄膜層で被覆した積層体構造を有する偏平片である積層体。
  3.  前記第三の層の熱可塑性樹脂が、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体及びアクリル樹脂からなる群から選択される1以上を含む、請求項2に記載の積層体。
  4.  前記金属箔粉が、厚さが0.01μm~0.2μmの金属薄膜層の両面を、厚さが0.05μm~2.0μmの透明薄膜層で被覆した積層体構造を有する非定型偏平片であり、
     前記金属薄膜層が、アルミニウム、銀、金、ニッケル、クロム、錫、亜鉛、インジウム、チタン、鉄及びシリコンからなる群から選択される単体金属、又は前記群から選択される2以上からなる合金もしくは混合物からなり、
     前記非定型偏平片の面における最も長い端から端の長さの平均値である平均長径が10μm以上であり、前記平均長径と厚みの比(平均長径/厚み)が、2.5以上である請求項1~3のいずれかに記載の積層体。
  5.  前記第一の層のポリプロピレンが、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンである請求項1~4のいずれかに記載の積層体。
  6.  前記第一の層のポリプロピレンが、130℃での結晶化速度が2.5min-1以下のポリプロピレンである請求項1~5のいずれかに記載の積層体。
  7.  前記第二の層の熱可塑性樹脂が、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体及びアクリル樹脂からなる群から選択される1以上を含む、請求項1~6のいずれかに記載の積層体。
  8.  請求項1~7のいずれかに記載の積層体を用いて作製した成形体。
  9.  前記成形体の第一の層のポリプロピレンが、アイソタクチックペンダット分率が85モル%~99モル%のポリプロピレンである請求項8に記載の成形体。
  10.  前記成形体の第一の層のポリプロピレンが、130℃での結晶化速度が2.5min-1以下のポリプロピレンである請求項8又は9に記載の成形体。
  11.  請求項1~7のいずれかに記載の積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
  12.  請求項1~7のいずれかに記載の積層体を金型に合致するよう附形し、前記附形した積層体を金型に装着し、成形用樹脂を供給して一体化する、成形体の製造方法。
  13.  チャンバーボックス内に芯材を配設し、
     前記芯材の上方に、請求項1~7のいずれかに記載の積層体を配置し、
     前記チャンバーボックス内を減圧し、
     前記積層体を加熱軟化し、
     加熱軟化させた積層体を前記芯材に押圧して被覆させる、成形体の製造方法。
  14.  モールを異形押し出し機により押し出し成形する際に、前記異形押し出し機のダイスに請求項1~7のいずれかに記載の積層体を供給して、熱融着によってモール本体と一体化する、成形体の製造方法。
PCT/JP2017/020701 2016-06-02 2017-06-02 積層体、成形体及び当該成形体の製造方法 WO2017209295A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017541892A JP6412659B2 (ja) 2016-06-02 2017-06-02 積層体、成形体及び当該成形体の製造方法
EP17806845.8A EP3466684B1 (en) 2016-06-02 2017-06-02 Laminate, molded body and method for producing molded body
US16/306,085 US20190176437A1 (en) 2016-06-02 2017-06-02 Laminate, molded body and method for producing molded body
CN201780041450.7A CN109476140B (zh) 2016-06-02 2017-06-02 层叠体、成形体和该成形体的制造方法
KR1020187034748A KR20190015709A (ko) 2016-06-02 2017-06-02 적층체, 성형체 및 당해 성형체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111258 2016-06-02
JP2016111258 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017209295A1 true WO2017209295A1 (ja) 2017-12-07

Family

ID=60477681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020701 WO2017209295A1 (ja) 2016-06-02 2017-06-02 積層体、成形体及び当該成形体の製造方法

Country Status (6)

Country Link
US (1) US20190176437A1 (ja)
EP (1) EP3466684B1 (ja)
JP (1) JP6412659B2 (ja)
KR (1) KR20190015709A (ja)
CN (1) CN109476140B (ja)
WO (1) WO2017209295A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030368A (ja) * 2016-08-23 2018-03-01 日本ポリプロ株式会社 加飾フィルムおよびそれを用いた加飾成形体の製造方法
JP2018030369A (ja) * 2016-08-23 2018-03-01 日本ポリプロ株式会社 加飾フィルムおよびそれを用いた加飾成形体の製造方法
WO2019155857A1 (ja) * 2018-02-08 2019-08-15 出光ユニテック株式会社 樹脂シート、積層体、成形体及び成形体の製造方法
WO2020178981A1 (ja) * 2019-03-05 2020-09-10 尾池工業株式会社 金属調成形品および金属調成形品の製造方法
WO2022080084A1 (ja) * 2020-10-16 2022-04-21 出光ユニテック株式会社 樹脂シート、積層体、成形体、及び成形体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288641A (ja) * 1990-04-05 1991-12-18 Tosoh Corp ポリプロピレン積層シート
JPH08156215A (ja) 1994-12-05 1996-06-18 Riken Vinyl Kogyo Kk 化粧シートおよびその製造方法
JPH11172059A (ja) * 1997-12-16 1999-06-29 Sumitomo Bakelite Co Ltd 医薬品包装用ポリプロピレン系シート
JP2000239394A (ja) * 1999-02-24 2000-09-05 Reiko Co Ltd 光輝性樹脂ペレット
JP2006240156A (ja) * 2005-03-04 2006-09-14 Nissha Printing Co Ltd 光輝性加飾シートと光輝性加飾成形品の製造方法
JP2006321124A (ja) 2005-05-19 2006-11-30 Sumitomo Chemical Co Ltd 加飾シート、熱成形体および加飾積層構造体
JP2014198414A (ja) * 2013-03-29 2014-10-23 出光ユニテック株式会社 積層体、成形体、成形物、および、成形物の製造方法
JP2016065262A (ja) 2013-12-03 2016-04-28 尾池工業株式会社 金属箔粉の製造方法、金属箔粉および該金属箔粉を用いた塗料、インク、光輝性樹脂ペレット、および化粧材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527203A (en) * 1978-08-16 1980-02-27 Showa Denko Kk Producing process of polypropyrene sheet having superior transparency
KR100737361B1 (ko) * 2000-04-06 2007-07-09 데이코쿠 잉키 세이조 가부시키가이샤 성형과 동시에 장식을 구현하기 위한 잉크 및 장식 시트
JP4303007B2 (ja) * 2003-03-10 2009-07-29 味の素株式会社 耐低温衝撃性密封殺菌包装体用積層フィルム又はシートとその共押出し法を用いる製造方法
JP4658749B2 (ja) * 2004-09-28 2011-03-23 大日本印刷株式会社 耐衝撃性及び耐スクラッチ性に優れた床材用化粧シート
JP2012206297A (ja) * 2011-03-29 2012-10-25 Sumitomo Chemical Co Ltd 積層構造体およびそれを製造する方法
CN202480742U (zh) * 2011-12-26 2012-10-10 东莞市彩虹塑胶颜料有限公司 一种具有金属亮点的塑料装饰片材
KR20140123511A (ko) * 2012-01-31 2014-10-22 도레이 카부시키가이샤 장식 성형용 필름
JP6540029B2 (ja) * 2014-03-26 2019-07-10 大日本印刷株式会社 化粧シート及びそれを用いた化粧板
JP6549937B2 (ja) * 2014-09-26 2019-07-24 セーレン株式会社 積層シートおよび成形体、並びにそれらの製造方法
JP6636776B2 (ja) * 2014-11-11 2020-01-29 凸版印刷株式会社 化粧シートおよび化粧シートの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288641A (ja) * 1990-04-05 1991-12-18 Tosoh Corp ポリプロピレン積層シート
JPH08156215A (ja) 1994-12-05 1996-06-18 Riken Vinyl Kogyo Kk 化粧シートおよびその製造方法
JPH11172059A (ja) * 1997-12-16 1999-06-29 Sumitomo Bakelite Co Ltd 医薬品包装用ポリプロピレン系シート
JP2000239394A (ja) * 1999-02-24 2000-09-05 Reiko Co Ltd 光輝性樹脂ペレット
JP2006240156A (ja) * 2005-03-04 2006-09-14 Nissha Printing Co Ltd 光輝性加飾シートと光輝性加飾成形品の製造方法
JP2006321124A (ja) 2005-05-19 2006-11-30 Sumitomo Chemical Co Ltd 加飾シート、熱成形体および加飾積層構造体
JP2014198414A (ja) * 2013-03-29 2014-10-23 出光ユニテック株式会社 積層体、成形体、成形物、および、成形物の製造方法
JP2016065262A (ja) 2013-12-03 2016-04-28 尾池工業株式会社 金属箔粉の製造方法、金属箔粉および該金属箔粉を用いた塗料、インク、光輝性樹脂ペレット、および化粧材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466684A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030368A (ja) * 2016-08-23 2018-03-01 日本ポリプロ株式会社 加飾フィルムおよびそれを用いた加飾成形体の製造方法
JP2018030369A (ja) * 2016-08-23 2018-03-01 日本ポリプロ株式会社 加飾フィルムおよびそれを用いた加飾成形体の製造方法
WO2019155857A1 (ja) * 2018-02-08 2019-08-15 出光ユニテック株式会社 樹脂シート、積層体、成形体及び成形体の製造方法
CN111670217A (zh) * 2018-02-08 2020-09-15 出光统一科技株式会社 树脂片、层叠体、成形体和成形体的制造方法
JPWO2019155857A1 (ja) * 2018-02-08 2021-03-04 出光ユニテック株式会社 樹脂シート、積層体、成形体及び成形体の製造方法
JP7297686B2 (ja) 2018-02-08 2023-06-26 出光ユニテック株式会社 樹脂シート、積層体、成形体及び成形体の製造方法
WO2020178981A1 (ja) * 2019-03-05 2020-09-10 尾池工業株式会社 金属調成形品および金属調成形品の製造方法
JPWO2020178981A1 (ja) * 2019-03-05 2021-09-30 尾池工業株式会社 金属調成形品および金属調成形品の製造方法
WO2022080084A1 (ja) * 2020-10-16 2022-04-21 出光ユニテック株式会社 樹脂シート、積層体、成形体、及び成形体の製造方法

Also Published As

Publication number Publication date
JPWO2017209295A1 (ja) 2018-06-14
EP3466684B1 (en) 2021-12-01
US20190176437A1 (en) 2019-06-13
KR20190015709A (ko) 2019-02-14
JP6412659B2 (ja) 2018-10-24
EP3466684A1 (en) 2019-04-10
CN109476140B (zh) 2021-04-13
CN109476140A (zh) 2019-03-15
EP3466684A4 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6412659B2 (ja) 積層体、成形体及び当該成形体の製造方法
JP7073282B2 (ja) 積層体、成形体及び成形体の製造方法
US6649104B2 (en) Acrylic resin film and laminated film comprising the same
JP6943044B2 (ja) 加飾フィルムおよびそれを用いた加飾成形体の製造方法
JP2002210907A (ja) 加飾シート、及び射出成形同時加飾方法
WO2019139030A1 (ja) 金属層保持用フィルム、金属調加飾シート中間体、金属調加飾シート、押出ラミネート体、金属調成形体、射出成形体、金属調成形体の製造方法、射出成形体の製造方法および押出ラミネート体の製造方法
WO2014157320A1 (ja) 積層体、成形体、成形物、および、成形物の製造方法
JP4086342B2 (ja) 光輝性樹脂成形体
JP6745189B2 (ja) 合成樹脂成形体の製造方法
JP6037919B2 (ja) 積層体、成形体、成形物、および、成形物の製造方法
JP2018065333A (ja) 賦形加飾シートの製造方法
JP2016141745A (ja) 樹脂シート、成形物、樹脂シートの製造方法、および、成形物の製造方法
US20200047382A1 (en) Laminate, decorative sheet, method for producing laminate, method for producing molded body, and molded body
JP2017110081A (ja) 樹脂シート、積層シート、成形体、成形物及びそれらの製造方法
JP6064740B2 (ja) 加飾シート及び加飾樹脂成形品
JP5915307B2 (ja) 加飾シート及び加飾樹脂成形品
JP5915306B2 (ja) 加飾シート及び加飾樹脂成形品
EP1000978B1 (en) Acrylic resin film and laminated film containing the same
JP2017149144A (ja) 積層体、成形体及び成形体の製造方法
JP7297686B2 (ja) 樹脂シート、積層体、成形体及び成形体の製造方法
JP2002240077A (ja) 加飾シート、及び射出成形同時加飾方法
WO2021065999A1 (ja) シート、積層体、成形体、成形体の製造方法
WO2023286703A1 (ja) 樹脂シート、積層体、成形体及び成形体の製造方法
WO2021124943A1 (ja) 積層体、成形体及び成形体の製造方法
JP2021130306A (ja) 積層体、成形体及び成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017541892

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806845

Country of ref document: EP

Effective date: 20190102