WO2017209268A1 - 耐摩耗性に優れるポリアミド繊維およびその製造方法 - Google Patents

耐摩耗性に優れるポリアミド繊維およびその製造方法 Download PDF

Info

Publication number
WO2017209268A1
WO2017209268A1 PCT/JP2017/020546 JP2017020546W WO2017209268A1 WO 2017209268 A1 WO2017209268 A1 WO 2017209268A1 JP 2017020546 W JP2017020546 W JP 2017020546W WO 2017209268 A1 WO2017209268 A1 WO 2017209268A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin
fiber
polyamide fiber
polyalkylene oxide
Prior art date
Application number
PCT/JP2017/020546
Other languages
English (en)
French (fr)
Inventor
亮 金築
光洋 佐々木
こゆ 田代
浩紀 室谷
真理子 本多
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2018521008A priority Critical patent/JP6967784B2/ja
Publication of WO2017209268A1 publication Critical patent/WO2017209268A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the present invention relates to a polyamide fiber with improved wear resistance and a method for producing the same.
  • Polyamide fibers are evaluated for their high strength and excellent wear resistance, and are used in ropes, nets, papermaking screens, filters, fishing lines, and the like.
  • ropes used for safety belts that are required to be worn when working at high altitudes are usually made of polyamide fiber, but they are comprehensive in terms of strength, shock absorption, weather resistance, wear resistance, weight, etc. It is because it is excellent.
  • it has excellent wear resistance compared to other materials such as polyester, and has flexibility, toughness, and moderate elongation, so it can be used for sea fishing road thread, carp fishing underwater thread, and spatula fishing.
  • Polyamide is also preferably used as a material for fishing lines such as road thread, luer line and Harris.
  • Patent Document 1 a method of coating the surface of a monofilament made of synthetic fiber with a specific silane coating agent (Patent Document 1), a method of applying amino-modified silicone oil to the surface of a polyamide fiber (Patent) Document 2), polyamide fibers having a polysilazane transparent hard coat layer and an ultraviolet curable hard coat layer (Patent Document 3) are known.
  • Patent Document 3 a method of coating the surface of a monofilament made of synthetic fiber with a specific silane coating agent
  • Patent Document 2 a method of applying amino-modified silicone oil to the surface of a polyamide fiber
  • Patent Document 3 polyamide fibers having a polysilazane transparent hard coat layer and an ultraviolet curable hard coat layer
  • Patent Document 4 includes mixing an ethylene / 1-octene copolymer exhibiting flexibility and rubber elasticity
  • Patent Document 5 includes mixing maleic anhydride-modified polyethylene / polypropylene rubber
  • Patent Document 6 discloses mixing specific polyolefins.
  • the fibers obtained by these methods also have a problem that although the abrasion resistance is improved to some extent, the strength is not increased by kneading the different polymer, and the balance between the abrasion resistance and the strength is not good.
  • Polyamide resins are water-absorbing polymers, and are known to be plasticized by water absorption, to promote fibrillation, and to reduce wear resistance. Since fishing lines made of polyamide resin are also used in an environment where water is present, there is a need for a technique for suppressing a decrease in wear resistance due to water absorption.
  • the present invention solves the above problems, and provides a polyamide fiber that can maintain excellent wear resistance over a long period of time, has practical strength, and has an excellent balance between wear resistance and strength. This is a technical issue.
  • Item 1 A polyamide fiber composed of a polyamide-based resin, A polyamide fiber in which a polyalkylene oxide resin is dispersed in a polyamide resin.
  • Item 2. Item 2.
  • the polyamide fiber is a composite fiber comprising a portion composed of the polyamide-based resin and the polyalkylene oxide-based resin, and a portion composed of a resin not containing the polyalkylene oxide-based resin, Item 3.
  • the polyamide fiber according to item 1 or 2 wherein the polyamide-based resin is present on a surface of the polyamide fiber.
  • Item 4. Item 4.
  • Item 6. A method for producing a polyamide fiber composed of a polyamide-based resin, A method for producing a polyamide fiber, comprising a step of melt spinning a mixed resin obtained by mixing a polyamide-based resin and a polyalkylene oxide-based resin.
  • Item 7. Item 7.
  • Item 8. The method for producing a polyamide fiber according to Item 6 or 7, further comprising a step of bringing the obtained fiber into contact with water or water vapor after the step of melt spinning the mixed resin.
  • Item 9. Item 8. The method for producing a polyamide fiber according to Item 6 or 7, further comprising a step of stretching the obtained fiber in a water bath after the step of melt spinning the mixed resin.
  • the present invention it is possible to provide a polyamide fiber that can maintain excellent wear resistance over a long period of time, has practical strength, and has an excellent balance between wear resistance and strength.
  • the polyamide fiber can be suitably used in various fields where repeated bending is imposed, such as apparel use, industrial material, and civil engineering use.
  • the suitable manufacturing method of the said polyamide fiber can also be provided.
  • FIG. 2 is an electron micrograph (30000 times) of the fiber surface of the polyamide fiber of Example 1.
  • FIG. It is an electron micrograph (30000 times) of the fiber surface of the polyamide fiber of Example 6. It is an electron micrograph (3000 times) of the fiber surface of the polyamide fiber of Example 6.
  • the polyamide fiber of the present invention is a polyamide fiber composed of a polyamide resin, and is characterized in that a polyalkylene oxide resin is dispersed in the polyamide resin.
  • a polyalkylene oxide resin is dispersed in the polyamide resin.
  • the polyamide fiber of the present invention is a fiber composed of a polyamide resin. That is, the polyamide fiber of the present invention is a fiber containing a polyamide-based resin as a main component (for example, 80% by mass or more).
  • the polyamide resin in the present invention is not particularly limited as long as it has an amide group in the molecule. For example, nylon 6, nylon 66, nylon 69, nylon 46, nylon 610, nylon 1010, nylon 11, Examples thereof include nylon 12, nylon 6T, nylon 9T, polymetaxylene adipamide, and those obtained by copolymerizing and blending these components.
  • the relative viscosity of the polyamide-based resin is not particularly limited, but it is preferable to select one that is suitable for the application. In order to obtain a practical high elongation, the relative viscosity is 2.0 or more, more preferably 2.3 or more, and particularly for industrial materials, the relative viscosity is 2.5 or more, more preferably 3. 0 or more. As an upper limit of the relative viscosity of a polyamide-type resin, 5.5 or less is mentioned, for example.
  • the relative viscosity of the polyamide resin is a value measured by the following measurement method. That is, measurement is performed at a concentration of 1 g / dl and a temperature of 25 ° C. using 96% sulfuric acid as a solvent.
  • the polyamide fiber of the present invention is formed of a mixed resin in which a polyalkylene oxide resin is dispersed in a polyamide resin.
  • the content of the polyalkylene oxide resin contained in the polyamide resin is preferably about 0.5 to 15% by mass, more preferably about 1 to 12% by mass.
  • the polyalkylene oxide resin existing in the mixed resin before melt spinning is well dispersed in the polyamide resin.
  • the polyalkylene oxide resin mixed with the polyamide resin dissolves in water, the polyalkylene oxide resin present on the fiber surface is eluted in water in the step after melt spinning.
  • the micropores extending in the fiber direction can be formed on the surface of the polyamide fiber.
  • the polyamide fiber provided with the micropores on the surface of the polyamide fiber exhibits excellent wear resistance.
  • the mixed resin of the polyamide-based resin and the polyalkylene oxide-based resin contains, for example, about 0.5 to 20% by mass of the polyalkylene oxide-based resin
  • the obtained fiber is By contacting with water or water vapor, the polyalkylene oxide resin on the fiber surface is eluted (dropped off), and the content of the polyalkylene oxide resin contained in the fiber becomes, for example, about 0.5 to 15% by mass. . If the polyalkylene oxide resin content in the polyamide fiber of the present invention exceeds 15% by mass, the relative amount of the polyalkylene oxide resin is large. It tends to cause deterioration of characteristics.
  • the polyalkylene oxide resin dispersed in the polyamide resin has a weight average molecular weight of about 50,000 to 500,000, more preferably about 50,000 to 400,000. More preferably, about 50,000 to 350,000 are used.
  • the polyalkylene oxide resin having a weight average molecular weight of 50,000 to 500,000 is well mixed with the polyamide resin in the melt extruder before melt spinning and is well dispersed in the polyamide resin.
  • the weight average molecular weight of the polyalkylene oxide resin exceeds 500,000, it becomes difficult to disperse in the polyamide resin.
  • the spinning temperature is usually set to 300 ° C. or lower.
  • a polyalkylene oxide-based resin having a weight average molecular weight exceeding 500,000 is not limited even if heat at 300 ° C. is applied. If it is not in a state where it can be dispersed well, and an excessive amount of heat exceeding 300 ° C. is applied thereto, yarn breakage occurs during spinning, drawing, and winding during the fiber manufacturing process, and operability deteriorates. The resulting fibers tend to have poor mechanical properties such as strength.
  • the weight average molecular weight of the resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
  • polyalkylene oxide resin in the present invention examples include polyethylene oxide, polypropylene oxide, butylene oxide, or at least two kinds of copolymers of ethylene, propylene, and butylene.
  • a copolymer it may be a random copolymer or a block copolymer.
  • the copolymers an ethylene oxide / propylene oxide random copolymer obtained by random copolymerization of ethylene oxide and propylene oxide is preferable.
  • polyalkylene oxide resins polyethylene oxide is preferable.
  • the polyalkylene oxide resin is a nonionic polymer that is not easily affected by the coexisting substances, it has excellent compatibility with the polyamide resin and is well dispersed.
  • the polyalkylene oxide resin present on the fiber surface can be eluted in water to form a unique fiber surface form, which can further improve the abrasion resistance (flexural abrasion resistance) of the fiber. .
  • a polyalkylene oxide resin is contained at a high concentration of about 15% by mass in the polyamide resin, the strength of the polyamide fiber is not easily lowered, and the balance between wear resistance (flexible wear resistance) and strength is achieved. Excellent fiber.
  • polyamide fiber in the present invention in addition to the polyalkylene oxide resin, another resin may be further included in the polyamide resin.
  • polyolefin resins are preferably used from the viewpoint of maintaining a good abrasion resistance for a long period of time, having a practical strength, and a polyamide fiber having an excellent balance between wear resistance and strength.
  • the polyolefin resin include general-purpose polyolefins such as low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and polypropylene, and modified polyolefin resins, and modified polyolefin resins are preferred.
  • modified polyolefin resin examples include acid-modified polyolefin resins obtained by graft copolymerization of unsaturated carboxylic acids, anhydrides or derivatives thereof.
  • polyolefin to be modified examples include polypropylene and polyethylene.
  • An unsaturated carboxylic acid, its anhydride or a derivative thereof used for modification of polyolefin is a compound having an ethylenically unsaturated bond and a carboxyl group, an acid anhydride group or a derivative group in one molecule.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, endocis -Unsaturated carboxylic acids such as bicyclo [2.2.1] hept-2,3-dicarboxylic acid, methyl-endocis-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid; And unsaturated carboxylic acid anhydrides; unsaturated carboxylic acid halides, unsaturated carboxylic acid amides, and derivatives of unsaturated carboxylic acid imides.
  • examples include maleyl chloride, maleimide, N-phenylmaleimide, maleic anhydride, itaconic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.
  • acrylic acid, methacrylic acid, maleic acid, nadic acid, maleic anhydride, itaconic anhydride and nadic anhydride are preferable, and maleic anhydride is more preferable.
  • Such unsaturated carboxylic acids and derivatives thereof may be one kind or a combination of two or more kinds.
  • the content of the other resin contained in the polyamide resin is preferably About 0.5 to 10% by mass, more preferably 1 to 5% by mass.
  • the fiber structure of the polyamide fiber includes a single-phase fiber composed only of a polyalkylene oxide resin and, if necessary, a polyamide resin containing the other resin (for example, a polyolefin resin), or the single phase.
  • a polyamide resin containing the other resin for example, a polyolefin resin
  • examples thereof include hollow fibers having hollow portions in the fibers.
  • the polyamide fiber includes a portion made of a polyamide-based resin and a polyalkylene oxide-based resin (and other resin if necessary) and a portion made of a resin not containing the polyalkylene oxide-based resin. It may be a composite fiber.
  • the polyamide fiber is a composite fiber
  • a polyalkylene oxide resin, and further a polyamide resin containing another resin as required is disposed on the surface of the composite fiber.
  • a core-sheath type composite fiber having a polyamide resin containing the polyalkylene oxide resin or the like as a sheath component and a resin not containing the polyalkylene oxide resin as a core component; containing the polyalkylene oxide resin or the like Side-by-side composite fiber obtained by bonding a polyamide-based resin and a resin not containing the polyalkylene oxide-based resin; the polyalkylene oxide-based resin, and, if necessary, a polyamide-based resin containing another resin in the sea A sea-island type composite fiber in which a resin not containing the polyalkylene oxide resin is arranged on the island; the polyalkylene oxide resin, and, if necessary, a polyamide resin containing another resin;
  • a poly-alkylene oxide resin-free resin is arranged in parallel or
  • Type composite fibers such as radiation type conjugated fiber, splittable conjugate fibers, such as composite cross section and other modified cross-section composite fiber such as leafy type composite fibers, it can be suitably selected. It should be noted that such a composite type fiber may be spun by a normal method.
  • the resin that does not contain a polyalkylene oxide resin is not particularly limited as long as it is a thermoplastic resin, but a polyamide resin or an aromatic polyester resin that does not contain a polyalkylene oxide resin.
  • polylactic acid resin for example, what is necessary is just to use what was mentioned above as a polyamide-type resin, and as an aromatic polyester-type resin, the resin which uses polyethylene terephthalate or ethylene terephthalate as a main repeating unit is used preferably, ethylene terephthalate is made into a repeating unit, and is used as a copolymerization component.
  • Dicarboxylic acid components such as isophthalic acid, 5-sodiumsulfoisophthalic acid, phthalic anhydride, adipic acid and sebacic acid, and diol components such as 1,6-hexadiol and cyclohexanedimethanol may also be included.
  • the surface of the polyamide fiber of the present invention preferably has micropores extending in the fiber direction. Many such micropores exist on the surface of the polyamide fiber.
  • the surface of the polyamide fiber of the present invention preferably has a microporous structure extending in the fiber direction.
  • FIG. 1 shows an electron micrograph in which the fiber surface of the polyamide fiber obtained in Example 1 described later is magnified 30000 times.
  • a large number of micropores (voids) extending in the fiber direction are present on the fiber surface of the polyamide fiber, and the major axis of the micropores is positioned in the fiber axis direction (the vertical direction of the photograph).
  • the shape of the void on the fiber surface is an elliptical void.
  • the size of the micropores is various, and according to FIG. 1, the major axis (diameter in the longitudinal direction of the fiber) is about 0.16 ⁇ m to about 1.6 ⁇ m, and the minor axis (diameter in the lateral direction of the fiber) is.
  • FIG. 2 shows an electron micrograph obtained by enlarging the fiber surface of the polyamide fiber obtained in Example 6 described later at a magnification of 30000 times.
  • a large number of micropores (voids) extending in the fiber direction also exist on the fiber surface of the polyamide fiber.
  • the shape of the voids on the fiber surface is such that the major axis is much larger than the minor axis and can be said to be a linear void.
  • These voids (micropores) are also positioned such that the long diameter (the diameter in the longitudinal direction of the fiber) is the fiber axis direction (the vertical direction in the photograph).
  • the size of the voids (micropores) varies, and according to FIG.
  • FIG. 3 is the polyamide fiber of this invention obtained in Example 6 similar to FIG. 2, and is the electron micrograph which expanded the fiber surface 3000 times.
  • FIG. 4 is an electron micrograph (30000 times) of the surface of a polyamide fiber composed of a polyamide-based resin that does not contain a polyalkylene oxide-based resin. Although microscopic irregularities are observed, micropores (voids) are observed. Not.
  • the fibers in FIG. 4 are reference polyamide fibers obtained in Comparative Example 1 described later.
  • 5 and 6 are electron micrographs (FIG. 5: 30000 times, FIG. 6: 3000 times) of the surface of the polyamide fiber composed of the polyamide resin not containing the polyalkylene oxide resin. 5 and 6, fine irregularities are observed, but no micropores (voids) are observed. 5 and 6 are reference polyamide fibers obtained in Comparative Example 5 described later.
  • each micropore is not particularly limited, but the major axis of each micropore (diameter in the longitudinal direction of the fiber) is, for example, about 0.1 to 6 ⁇ m. Examples of the diameter (diameter in the short direction of the fiber) include about 0.02 to 0.3 ⁇ m.
  • the aspect ratio of each micropore is, for example, about 2 to 20.
  • the number of micropores present on the fiber surface is not particularly limited. For example, in a 2 ⁇ m ⁇ 2 ⁇ m field of view of an electron micrograph of a polyamide fiber magnified 30000 times, there are two or more micropores, It is preferable that five or more locations are observed.
  • the micropores on the surface of the polyamide fiber of the present invention do not need to be formed on the entire surface of the polyamide fiber, and may be formed only in a part, or formed with a partially formed region. It may also be a mixture of areas that are not.
  • the micropores on the surface of the polyamide fiber can be formed, for example, by eluting the polyalkylene oxide resin present on the surface of the fiber containing the polyamide resin and the polyalkylene oxide resin. More specifically, for example, in the process of producing a polyamide fiber, after the step of melt spinning a mixed resin obtained by mixing a polyamide-based resin and a polyalkylene oxide-based resin, the obtained fiber is treated with water or steam. By allowing the polyalkylene oxide-based resin, which is easily dissolved in water, to be selectively eluted from the surface of the fiber by bringing it into contact with the surface, micropores on the surface of the polyamide fiber can be formed.
  • the micropores usually have a shape extending in the fiber axis direction.
  • the major axis has a shape (ellipse shape, line shape, etc.) extending in the fiber axis direction, and it is considered that the shape of the micropores is also a shape corresponding to this by elution.
  • the reason why the polyamide fiber of the present invention has excellent abrasion resistance is not desired to be limited, but can be considered as follows. That is, it can be considered that the wear resistance is improved by forming a film with the polyalkylene oxide resin on the fiber surface in an environment where the polyamide fibers are worn.
  • the reason why the wear resistance is improved by the presence of a large number of micropores on the fiber surface can be considered as follows. That is, when a large number of micropores are present on the fiber surface, the fiber surface is not in a so-called smooth state, and irregularities are formed due to the presence of a large number of micropores (voids), thereby improving wear resistance. It is assumed that
  • the polyamide fiber of the present invention can be produced, for example, by a method including a step of melt spinning a mixed resin obtained by mixing a polyamide resin and a polyalkylene oxide resin.
  • the content of the polyalkylene oxide resin is in a predetermined range (for example, 0.5 to 20% by mass in the polyamide resin)
  • a polyalkylene oxide resin and a polyamide resin are appropriately mixed (blended), melt-mixed, and then melt-spun.
  • other resins such as polyolefin resin
  • the polyalkylene oxide resin is contained within a predetermined range (for example, about 0.5 to 20% by mass in the polyamide resin).
  • the oxide resin and the polyamide resin are appropriately mixed (blended) and melt-mixed.
  • the other resin to be combined is prepared and melted separately, and melt-spun using a normal composite spinning apparatus.
  • the method for mixing the polyalkylene oxide resin and the polyamide resin is not particularly limited.
  • a method of preparing a master batch containing the concentration and adding the master batch at the time of melting the polyamide-based resin may be used.
  • a method of directly adding a polyalkylene oxide resin to a polyamide resin is preferable.
  • the melting point of the polyalkylene oxide resin is generally low, when the polyamide resin is supplied to the melt extruder, the polyamide resin chips are agglomerated through the melted polyalkylene oxide resin, A blocking phenomenon may occur, and the supply of the polymer may stop. For this reason, when considering continuous productivity, it is preferable to prepare a masterbatch containing a polyalkylene oxide resin at a high concentration in advance and add it when the polyamide resin is melted.
  • a polyamide resin As the resin for producing a masterbatch containing a polyalkylene oxide resin at a high concentration, a polyamide resin is preferable.
  • polyamide resins used in the masterbatch include nylon 6, nylon 66, nylon 69, nylon 46, nylon 610, nylon 1010, nylon 11, nylon 12, nylon 6T, nylon 9T, polymetaxylene adipamide, and the like. Examples include those obtained by copolymerizing and blending each component.
  • polyolefin resin has a melting point lower than that of polyamide resin and close to that of polyalkylene oxide resin, without impairing the chemical properties of polyamide resin.
  • polyolefin resin can also be used as resin at the time of producing a masterbatch.
  • the polyolefin-based resin is a resin different from the polyamide-based resin, it is preferable to have a content that does not hinder the function of the polyamide fiber.
  • the content of the polyolefin-based resin in the polyamide fiber is about 10 Less than about 5% by weight, and even less than about 5% by weight.
  • polystyrene-based resin examples include general-purpose polyolefins such as low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and polypropylene, and the aforementioned modified polyolefin-based resins.
  • the polyamide fiber of the present invention is, for example, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light resistance agent, a weather resistance agent, an antioxidant as long as it does not impair the effects of the present invention.
  • various additives such as antibacterial agents, fragrances, plasticizers, dyes, surfactants, surface modifiers, various inorganic and organic electrolytes, fine powders, flame retardants, and the like.
  • fatty acid amides such as metaxylylene bisstearyl amide, metaxylylene bis oleyl amide, xylene bis stearamide, ethylene bis stearyl amide, ethylene bis stearamide, etc. May be included.
  • Cooling of the yarn after melt spinning includes cooling at room temperature, cooling by blowing cooling air, and cooling by passing through a water bath.
  • the stretching ratio in stretching is 2 to 8 times, and heat stretching is performed.
  • heat drawing is performed in a hot water bath or using a heating roller. After the hot drawing, the winding operation is continuously performed to obtain the target fiber.
  • the step of bringing the obtained fiber into contact with water or water vapor is provided.
  • the polyalkylene oxide resin dispersed and present on the fiber surface can be eluted to form a large number of the micropores (voids) on the fiber surface.
  • the yarn is passed through a water bath in the cooling process of the yarn after melt spinning, and the yarn is passed through a water bath (or warm bath) in the subsequent drawing process. Examples thereof include a method of drawing, a method of bringing the fiber into contact with water vapor, and a method of immersing in a water bath.
  • the polyalkylene oxide resin present in the resin mixed before melt spinning is well dispersed in the polyamide resin, the polyalkylene oxide resin present on the fiber surface elutes in water, About 20% by mass of the polyalkylene oxide resin is eluted from the fiber surface at a maximum with respect to the polyalkylene oxide resin present in the fiber. This maximum elution amount varies somewhat depending on the surface area and the fiber diameter of the obtained fiber. In addition, the amount of elution can be controlled by appropriately setting the time of contact with water for elution.
  • the temperature or time of water or water vapor when the fiber is brought into contact with water or water vapor is determined by the polyalkylene oxide resin from the fiber surface. If it elutes, it will not restrict
  • the temperature is preferably about 10 to 100 ° C.
  • the contact time is preferably 1 second or longer
  • the upper limit of the time is about 20 seconds, so that the polyalkylene oxide resin can be sufficiently eluted from the fiber surface.
  • the polyamide fiber of the present invention may be in the form of a monofilament yarn composed of a single polyamide fiber or in the form of a multifilament yarn composed of a plurality of polyamide fibers.
  • monofilament yarn as a process of obtaining the fiber, after melt spinning, it is cooled in a water bath, and then stretched in a warm bath. It is preferable to elute the existing polyalkylene oxide resin.
  • a multifilament yarn after melt spinning, in the cooling to drawing process, a multifilament yarn is obtained without contacting water, and after obtaining the multifilament yarn, it is passed through a water bath or steam, The polyalkylene oxide resin present on the fiber surface may be eluted.
  • the fabric is knitted or woven with a desired structure to form a fabric, and then immersed in a water bath or placed in a water vapor atmosphere.
  • the alkylene oxide resin is preferably eluted.
  • the single fiber fineness of the polyamide fiber constituting the multifilament yarn is preferably about 1 to 200 dtex, and the total fineness is preferably about 20 to 5000 dtex. It is more preferably about ⁇ 3000 dtex.
  • the fineness of the monofilament yarn is preferably about 150 to 5000 dtex.
  • the polyamide fiber of the present invention may be a continuous long fiber or may be used as a short fiber having a specific fiber length, and the fiber form is not particularly limited.
  • the polyamide fiber of the present invention is a standard polyamide fiber (a fiber obtained under substantially the same production conditions except that a polyamide-based resin not mixed with a polyalkylene oxide-based resin is used) in terms of the wear frequency ratio in wear resistance. In contrast, it exhibits wear resistance more than twice. In addition, the polyamide fiber of the present invention exhibits a wear resistance of at least twice as much as the number of wears of the reference polyamide fiber in terms of wear resistance in a wet state after being immersed in water. In addition, in order to confirm that there is an abrasion resistance effect due to the form of the polyamide fiber of the present invention, in the abrasion resistance evaluation, a fiber surface that has not been provided with an oil agent is evaluated. The wear resistance is evaluated by the following evaluation method.
  • ⁇ Abrasion resistance evaluation 1 metal round bar> A load of 0.6 g per decitex is applied to the sample polyamide fiber, and it is brought into contact with a stainless steel round bar with a diameter of 6 mm at an angle of 90 degrees, and reciprocatingly rubbed at a stroke width of 120 mm and a stroke speed of 35 ⁇ 1 times / min. The number of times until the polyamide fiber breaks is measured. Three samples are measured and all of them are compared with the one with the lowest number of wears. That is, a value obtained by dividing the minimum number of wear in the three polyamide fibers of the present invention by the minimum number of wear in the three reference polyamide fibers is obtained.
  • this contrast value is 2 or more, it is determined to be acceptable, preferably 5 or more, and more preferably 8 or more.
  • a sample of polyamide fiber whose abrasion resistance was evaluated at room temperature was “dry wear”, while a sample polyamide fiber was immersed in tap water for a certain period of time and then taken out and evaluated for wear resistance. Wet wear ".
  • the oil agent has adhered to the fiber surface, it evaluates after dropping an oil agent by washing
  • the polyamide fiber of the present invention has excellent wear resistance as described above, and can be used favorably in fields where polyamide fibers have been used conventionally and in various other fields and applications. .
  • it can be used favorably in the following applications.
  • the polyamide fiber of the present invention is suitably used as a marine material used in the form of nets or ropes in the sea or river. Examples include fishing nets, aquaculture materials, tegus, fishing lines, and the like.
  • the polyamide fiber of the present invention is also suitably used as an industrial material.
  • various types of ropes such as land, land nets, ball-proof nets, protective nets, reinforcing nets, papermaking nets, felt reinforcements. Examples include nets, filter nets, sling belts, harnesses, and hair materials for industrial brushes.
  • the papermaking net there are places where it contacts the ceramic plate in the process, and the net may be scraped by this contact, but if the polyamide fiber of the present invention is applied as a wire constituting the net, it is wear resistant. Therefore, the net can be used for a long time.
  • Suitable for sports use, for example, racket gut such as badminton and tennis.
  • Teggs and fishing net applications it is excellent in abrasion resistance in Teggs and fishing net applications, has slipperiness not too slippery and has thread release properties, and wear resistance does not change even if the surface oil agent falls in water or seawater Is required.
  • Excellent durability and wear resistance in Tegs and fishing nets requires that the static frictional force generated at the beginning of pulling is low, and repeated pulling places a heavy burden on that part, and that part will break. Because.
  • the polyamide fiber of the present invention containing a polyalkylene oxide resin can exhibit a low static frictional force.
  • the polyamide fiber of the present invention can have a static frictional force of about 80 to 98.5% as compared with a polyamide fiber not containing a polyalkylene oxide resin.
  • polyamide fibers are applied to various industrial applications because of their high strength and durability, and are widely used as reinforcing fibers.
  • polyamide fibers are used as reinforcing fibers, good adhesion to the polyamide fibers is required even when adhering to the resin sheet or adhering using an adhesive.
  • Applications of such polyamide fibers are also used for reinforcing materials such as resin reinforcing belts and rubber hoses, and for side threads of guts for tennis and badminton.
  • the polyamide fiber of the present invention can exhibit a peel strength that is about 30% higher than that of a polyamide fiber not containing a polyalkylene oxide resin, for example.
  • Example 1 Polyethylene oxide having a weight average molecular weight of 200,000 (made by Meisei Chemical Co., Ltd., trade name: Alcox product number R-400) 5% by mass and polyamide 6 resin having a relative viscosity of 3.1 (trade name: A1030BRF, made by Unitika Ltd.) 95 masses % was melt-spun from a spinneret of 1.0 mm ⁇ ⁇ 4H at a polymer temperature of 260 ° C. After spinning the spun fiber in a 25 ° C. water bath, it is stretched in a 90 ° C. warm bath at a speed of 17 m / min without winding, and further wound in a 120 ° C. dry heat atmosphere without further winding. Was 4.8 times and wound up without oil. A monofilament yarn (polyamide fiber) having a fineness of 741 dtex, a strength of 5.2 cN / dtex, and an elongation of 26% was obtained.
  • Example 2 In Example 1, the fineness was the same as in Example 1 except that polyethylene oxide having a weight average molecular weight of 60,000 (made by Meisei Chemical Industry Co., Ltd., trade name: Alcox product number L-6) was used as the polyethylene oxide.
  • Example 3 In Example 1, the fineness was the same as in Example 1 except that polyethylene oxide having a weight average molecular weight of 110,000 (made by Meisei Chemical Industry Co., Ltd., trade name: Alcox product number L-11) was used as the polyethylene oxide. A monofilament yarn (polyamide fiber) having 726 dtex, a strength of 5.1 cN / dtex, and an elongation of 22% was obtained.
  • Comparative Example 1 As a constituent resin, only a polyamide 6 resin having a relative viscosity of 3.1 (product name: A1030BRF, manufactured by Unitika Ltd.) was used, and stretching in a dry heat atmosphere at 120 ° C. was set to a total stretching ratio of 5.0 times. Otherwise, a monofilament yarn (reference polyamide fiber) having a fineness of 739 dtex, a strength of 6.0 cN / dtex, and an elongation of 25% was obtained in the same manner as in Example 1.
  • a polyamide 6 resin having a relative viscosity of 3.1 product name: A1030BRF, manufactured by Unitika Ltd.
  • stretching in a dry heat atmosphere at 120 ° C. was set to a total stretching ratio of 5.0 times. Otherwise, a monofilament yarn (reference polyamide fiber) having a fineness of 739 dtex, a strength of 6.0 cN / dtex, and an elongation of 25% was obtained in the same
  • the polyamide fibers of the present invention of Examples 1 to 3 had mechanical properties sufficient for practical use, and the abrasion resistance was dramatically improved compared to the reference polyamide fiber.
  • Example 4 Polyethylene oxide having a weight average molecular weight of 200,000 (made by Meisei Chemical Industry Co., Ltd., trade name Alcox product number R-400) 2.5% by mass and a relative viscosity of 4.5 polyamide 6 / polyamide 66 copolymer polyamide resin (DSM) (Trade name Novamid 2030J) 97.5% by mass was mixed, and the polymer temperature was 300 ° C., and melt spinning was performed from a spinneret of 1.0 mm ⁇ ⁇ 4H. After spinning the spun fiber in a 25 ° C. water bath, it is stretched in a 90 ° C. warm bath at a speed of 17 m / min without winding, and further wound in a 120 ° C.
  • DSM polyamide 6 / polyamide 66 copolymer polyamide resin
  • a monofilament yarn (polyamide fiber) having a fineness of 1882 dtex, a strength of 4.4 cN / dtex, and an elongation of 22% was obtained.
  • Comparative Example 2 A monofilament yarn having a fineness of 1888 dtex, a strength of 4.5 cN / dtex, and an elongation of 22% (reference polyamide), except that only a polyamide 6 / polyamide 66 copolymer polyamide resin was used as a constituent resin. Fiber).
  • Example 4 About the obtained polyamide fiber of Example 4 and the reference polyamide fiber of Comparative Example 2, the above-described ⁇ Abrasion Resistance Evaluation 2 Metal Hexagonal Bar> and ⁇ Abrasion Resistance Evaluation 3 Ceramic Round Bar> were evaluated. The results are shown in Table 5. In the wear resistance evaluation using a ceramic round bar, the load was 0.4 g per decitex. As can be seen from Table 5, the polyamide fiber of the present invention of Example 4 has dramatically improved wear resistance as compared with the reference polyamide fiber of Comparative Example 2.
  • Example 5 a monofilament yarn (polyamide fiber) having a fineness of 579 dtex, a strength of 5.3 cN / dtex, and an elongation of 29% was obtained in the same manner as in Example 4 except that the discharge amount during melt spinning was changed. .
  • Comparative Example 3 In Comparative Example 2, a monofilament yarn (reference polyamide fiber) having a fineness of 575 dtex, a strength of 6.1 cN / dtex, and an elongation of 37% was obtained in the same manner as in Example 4 except that the discharge amount during melt spinning was changed. It was.
  • Example 5 About the obtained polyamide fiber of Example 5 and the reference polyamide fiber of Comparative Example 3, the above-described ⁇ Abrasion Resistance Evaluation 2 Metal Hexagonal Bar> and ⁇ Abrasion Resistance Evaluation 3 Ceramic Round Bar> were measured and evaluated. The results are shown in Table 6. In the wear resistance evaluation using a ceramic round bar, the load was 0.9 g per decitex. As can be seen from Table 6 below, the polyamide fiber of the present invention of Example 5 had dramatically improved wear resistance as compared with the reference polyamide fiber of Comparative Example 3.
  • Example 6 In Example 4, during melt spinning, the polymer temperature was 275 ° C., melt spinning from a 1.5 mm ⁇ ⁇ 13H spinneret, the spun fiber was cooled in a water bath at 12 ° C., and a speed of 20 m / min. A fineness of 759 dtex and a strength of 8.2 cN were the same as in Example 4 except that the film was stretched in a warm bath at 0 ° C. and stretched in a dry heat atmosphere at 190 ° C. so that the total draw ratio was 6.0 times. A monofilament yarn (polyamide fiber) having a / dtex and elongation of 21% was obtained.
  • Example 6 (Comparative Example 4)
  • a mixed resin added to a polyamide 6 / polyamide 66 copolymerized polyamide resin so that silicon is 0.35% by mass was used, in the same manner as in Example 6, A monofilament yarn (polyamide fiber containing silicon) having a fineness of 732 dtex, a strength of 8.4 cN / dtex, and an elongation of 24% was obtained.
  • Example 6 (Comparative Example 5) In Example 6, a monofilament yarn having a fineness of 735 dtex, a strength of 8.6 cN / dtex, and an elongation of 24% (reference), except that only a polyamide 6 / polyamide 66 copolymerized polyamide resin was used. Polyamide fiber) was obtained.
  • Example 6 For the obtained polyamide fiber of Example 6, the polyamide fiber with silicon of Comparative Example 4 and the reference polyamide fiber of Comparative Example 5, the above-mentioned ⁇ Abrasion Resistance Evaluation 3 Ceramic Round Bar> was measured and evaluated, and the result Are shown in Table 7. In the wear resistance evaluation using a ceramic round bar, the load was 0.7 g per decitex. As is clear from Table 7 below, the polyamide fiber of the present invention of Example 6 has dramatically improved wear resistance as compared with the polyamide fiber containing silicon of Comparative Example 4 and the reference polyamide fiber of Comparative Example 5. Was.
  • Example 7 Polymetaxylene dipamide resin (manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a weight average molecular weight of 200,000 and 2.5% by mass of polyethylene oxide (Madesei Chemical Industry Co., Ltd., trade name Alcox product number R-400) and a relative viscosity of 3.5 , Trade name: MX nylon 6121) 97.5% by mass, and melt spinning from a spinneret of 1.4 mm ⁇ ⁇ 2H at a polymer temperature of 270 ° C. The spun fiber is cooled in a water bath at 60 ° C., and then drawn in a warm bath at 90 ° C.
  • a monofilament yarn (polyamide fiber) having a fineness of 719 dtex, a strength of 5.7 cN / dtex, and an elongation of 10% was obtained.
  • Example 6 A monofilament yarn (reference polyamide fiber) having a fineness of 761 dtex, a strength of 6.2 cN / dtex, and an elongation of 8% was obtained in the same manner as in Example 7 except that only the polymetaxylylene dipamide resin was used as the constituent resin. It was.
  • Example 7 About the obtained polyamide fiber of Example 7 and the reference polyamide fiber of Comparative Example 6, the above-described ⁇ Abrasion Resistance Evaluation 1 Metal Round Bar> and ⁇ Abrasion Resistance Evaluation 3 Ceramic Round Bar> were evaluated. The results are shown in Table 8. In evaluating wear resistance of metal round bars and ceramic round bars, the load was 0.7 g per decitex. As can be seen from Table 8, the polyamide fiber of the present invention of Example 7 had significantly improved wear resistance as compared with the reference polyamide fiber of Comparative Example 6.
  • Example 8 20% by mass of polyethylene oxide having a weight average molecular weight of 200,000 (made by Meisei Chemical Industry Co., Ltd., trade name Alcox product number R-400) and 80% by mass of a modified polyethylene resin (product name: Admer HE810 made by Prime Polymer Co., Ltd.)
  • a master chip was prepared in advance. Using the master chip, 2.5% by mass of the master chip and a polyamide 6 resin having a relative viscosity of 3.5 (trade name BRT, manufactured by Unitika Ltd.) 97.5 so that the polyethylene oxide is 0.5% by mass.
  • the polymer was mixed with a mass% and melt-spun from a spinneret of 1.0 mm ⁇ ⁇ 4H at a polymer temperature of 280 ° C. After the prevented fiber is cooled in water at 25 ° C., it is stretched so that the total draw ratio is 5.0 times in a dry heat atmosphere at 120 ° C. A monofilament yarn (polyamide fiber) having 790 dtex, a strength of 5.2 cN / dtex, and an elongation of 18% was obtained.
  • Example 9 is the same as Example 8 except that the master chip is mixed with 5.0% by mass of master chip and polyamide 6 resin (product name: BRT, 95.0% by mass) so that the polyethylene oxide becomes 1.0% by mass.
  • a monofilament yarn polyamide fiber having a fineness of 780 dtex, a strength of 5.2 cN / dtex, and an elongation of 15% was obtained.
  • Example 7 Comparative Example 7 Except that only polyamide 6 resin (trade name BRT, manufactured by Unitika Ltd.) was used, melt spinning and winding were carried out in the same manner as in Example 8, fineness 790 dtex, strength 5.3 cN / dtex, elongation 21 % Monofilament yarn (reference polyamide fiber).
  • polyamide 6 resin trade name BRT, manufactured by Unitika Ltd.
  • Example 10 Polyethylene oxide having a weight average molecular weight of 200,000 (made by Meisei Chemical Industry Co., Ltd., trade name Alcox product number R-400) 2.5% by mass and N6 / N66 copolymerized polyamide resin having a relative viscosity of 4.5 (made by DSM, (Trade name Novamid 2030J) 97.5% by mass was mixed, and melt spinning was performed from a spinneret having a polymer temperature of 300 ° C. and 1.0 mm ⁇ ⁇ 4H. The spun fiber was cooled in a 25 ° C. water bath, and then wound in a 90 ° C. warm bath at a speed of 17 m / min without being wound, and further wound in a 120 ° C.
  • a monofilament yarn (polyamide fiber) having a fineness of 1882 dtex, a strength of 4.37 cN / dtex, and an elongation of 22% was obtained.
  • the obtained monofilament was subjected to a load of 0.4 g / dtex and evaluated for wear resistance (ceramic rod), it was 100,000 times or more.
  • Example 11 In Example 10, a monofilament yarn (polyamide fiber) having a fineness of 781 dtex, a strength of 5.0 cN / dtex, and an elongation of 31% was obtained in the same manner as in Example 10 except that the discharge amount during melt spinning was changed. .
  • the obtained monofilament was subjected to a load of 0.7 g / dtex and the wear resistance of a 6 mm diameter stainless steel rod was evaluated, it was 55467 times.
  • Example 8 A fineness of 1888 dtex, a strength of 4.53 cN / dtex, and a 22% monofilament in the same manner as in Example 10 except that only the N6 / N66 copolymer polyamide resin (manufactured by DSM, trade name Novamid 2030J) was used as the constituent resin. (Reference polyamide fiber) was obtained. When the obtained monofilament was subjected to a load of 0.4 g / dtex and the wear resistance was evaluated, it was 570 times.
  • Example 9 Only N6 / N66 copolymer polyamide-based resin (DSM, trade name Novamid 2030J) was used as the constituent resin, and the total stretching ratio was 5.0 times in a dry heat atmosphere at 120 ° C. Otherwise, a monofilament yarn (reference polyamide fiber) having a fineness of 775 dtex, a strength of 4.9 cN / dtex, and an elongation of 28% was obtained in the same manner as in Example 10. When the obtained monofilament was subjected to a load of 0.7 g / dtex and the wear resistance of a 6 mm diameter stainless steel rod was evaluated, it was 476 times.
  • DSM N6 / N66 copolymer polyamide-based resin
  • the static friction force and dynamic friction force of the ceramic rod were measured for the samples of Examples 10 and 11 and the samples of Comparative Examples 8 and 9, and the results are shown in Table 1.
  • the static friction force measurement load was 500 g
  • the static friction force of the polyamide fiber of Example 10 was 91.1% of the polyamide fiber of Comparative Example 8.
  • the static friction force measurement load was 750 g
  • the static friction force of the polyamide fiber of Example 10 was 98.1% of the polyamide fiber of Comparative Example 8.
  • the static friction force measurement load was 500 g
  • the static friction force of the polyamide fiber of Example 11 was 95.9% of the polyamide fiber of Comparative Example 9.
  • the polyamide fibers of Examples 10 and 11 had a static friction force of 80 to 98.5% of the reference polyamide fibers of Comparative Examples 8 and 9.
  • the peel strength of the polyamide fibers obtained in Examples 12 to 14 and Comparative Examples 10 to 13 below was measured by the following method.
  • Example 12 Polyethylene oxide having a weight average molecular weight of 200,000 (made by Meisei Chemical Industry Co., Ltd., trade name: Alcox product number R-400) 2.5% by mass and a relative viscosity of 3.1 (made by Unitika Ltd., trade name: A1030BRF) 97.5% by mass was mixed, and the polymer temperature was melt-spun from a spinneret of 1.0 mm ⁇ ⁇ 4H at 260 ° C. After spinning the spun fiber in a 25 ° C. water bath, it is stretched in a 90 ° C. warm bath at a speed of 20 m / min without winding, and further wound in a dry heat atmosphere at 120 ° C. without further winding.
  • a monofilament yarn (polyamide fiber) having a fineness of 742 dtex was obtained. Further, the bonding of the obtained monofilament yarn and the resin sheet will be described.
  • As the resin sheet a urethane sheet having a thickness of 0.32 mm was prepared. This resin sheet is set to a width of 3 cm and a length of 10 cm, and the obtained monofilament yarn is set in a hot press tester so as to overlap the middle of the width of the resin sheet, and pressed under conditions of 180 ° C., 20 seconds, and a pressure of 0.2 MPa. did.
  • Example 12 for a peel strength test was prepared by leaving a chuck grip portion in the length direction for the later-described peel strength measurement.
  • evaluation using a metal round bar ⁇ abrasion resistance evaluation 1 metal round bar> and evaluation using a sandpaper ⁇ abrasion resistance evaluation 4 sandpaper (dry wear)> were performed. Is shown in Table 12.
  • the load in ⁇ Abrasion resistance evaluation 4 sandpaper (dry wear)> was 70 g.
  • Example 13 In Example 12, a sample of Example 13 for peel strength test was produced in the same manner as Example 12 except that a polyvinyl chloride (PVC) sheet having a thickness of 0.49 mm was used as the resin sheet.
  • PVC polyvinyl chloride
  • Example 14 Eight strings with a wire diameter of 1.3 mm were produced from the monofilament yarn obtained in Example 12. Using the 8 cords, the urethane sheet used in Example 12 was hot-pressed under the hot press conditions used in Example 12 to prepare a sample of Example 14 for peel strength.
  • Example 10 Example except that only polyamide 6 resin (product name: A1030BRF, manufactured by Unitika Ltd.) was used as a constituent resin, and that the total stretching ratio was 5.0 times in a 120 ° C. dry heat atmosphere.
  • a monofilament yarn (reference polyamide fiber) having a fineness of 743 dtex was obtained.
  • the sample of the comparative example 10 for a peeling strength test was produced by carrying out the hot press on the urethane sheet on the same conditions similarly to Example 12.
  • Comparative Example 11 In Comparative Example 10, a sample of Comparative Example 11 for peel strength test was produced in the same manner as Comparative Example 10 except that the resin sheet was a polyvinyl chloride (PVC) sheet.
  • PVC polyvinyl chloride
  • Comparative Example 12 Eight cords having a width of 1.3 mm were produced from the monofilament yarn obtained in Comparative Example 10. Using the 8 cords, the urethane sheet used in Example 12 was hot-pressed under the hot press conditions used in Example 12 to prepare a sample of Comparative Example 12 for peel strength.
  • the peel strength was measured for each of the samples of Examples 12 to 14 and the samples of Comparative Examples 10 to 12, and the resulting average peel strength (N) is shown in Table 11.
  • the polyamide fiber of Example 12 is 157% of the polyamide fiber of Comparative Example 10
  • the polyamide fiber of Example 13 is 137% of the polyamide fiber of Comparative Example 11
  • the polyamide fiber of Example 14 is 143% of the polyamide fiber of Comparative Example 12.
  • a polyamide fiber having an average peel strength of 30% or more and excellent adhesiveness could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

耐摩耗性に優れたポリアミド繊維であって、実用的な強度を有するとともに、耐摩耗性と強度とのバランスの優れた繊維を提供する。 ポリアミド系樹脂により構成されたポリアミド繊維であって、 ポリアミド系樹脂中にポリアルキレンオキシド系樹脂が分散して存在している、ポリアミド繊維。

Description

耐摩耗性に優れるポリアミド繊維およびその製造方法
 本発明は、耐摩耗性を向上させたポリアミド繊維およびその製造方法に関するものである。
 ポリアミド繊維は、強度が高く、耐摩耗性に優れることが評価され、ロープやネット、抄紙用のスクリーン(網)、フィルター、釣糸等に用いられている。例えば、高所作業時に着用を義務付けされている安全帯に用いられるロープは、通常、ポリアミド繊維が採用されているが、強度、衝撃吸収性、耐候性、耐摩耗性、重量等において総合的に優れるためである。また、ポリエステル等の他の素材に比べて耐摩耗性に優れ、かつ柔軟性、強靱性、適度な伸びを有することから、海釣用の道糸、鮎釣用の水中糸、へら釣用の道糸、ルアーラインやハリスなど釣糸の素材としてもポリアミドが好ましく使用されている。
 しかしながら、長期的な使用においては、より優れた耐摩耗性が求められる。例えば、建設作業等の現場において使用される安全帯は、使用頻度が高い場合、様々な形での繰り返し屈曲の負荷が加わる使用環境の中にあって、自然劣化による老朽化に加えて、土、油等で汚れて耐摩耗性が大きく低下することもある。また、釣糸に関しては、浮きや仕掛けの移動時に釣り竿のガイド、リールのガイドおよびスプールなどの様々な箇所で繰り返し摩耗され、樹脂のフィブリル化が促進する。その結果、強度が極端に低下し、強度が低下した部分を基点に糸切れが発生しやすくなり、魚が食い付いた際に糸切れが発生し、魚を逃してしまうことがある。
 さらなる耐摩耗性向上の技術としては、例えば、合成繊維からなるモノフィラメントの表面を特定のシラン系コート剤で被覆する方法(特許文献1)、アミノ変性シリコーンオイルをポリアミド繊維表面に付与する方法(特許文献2)、ポリシラザン透明ハードコート層および紫外線硬化型ハードコート層を有するポリアミド繊維(特許文献3)などが公知である。しかしながら、これらの方法により得られる繊維は、耐摩耗性はある程度改善されるものの、未だ不十分であり、さらに製造工程が複雑になると共に、コストアップにつながる。
 また、ポリアミド樹脂に、他の樹脂を溶融混練したポリマーを用いて繊維を得ることにより耐摩耗性を向上させる技術が知られている。例えば、特許文献4には、柔軟性、ゴム弾性を示すエチレン・1-オクテン共重合体を混合すること、特許文献5には、無水マレイン酸改質ポリエチレン/ポリプロピレンゴムを混合すること、特許文献6には、特定のポリオレフィンを混合することが開示されている。しかしながら、これらの方法により得られる繊維も、耐摩耗性はある程度改善されるものの、異ポリマーを混練することにより強度が上がらない、耐摩耗性と強度のバランスが良くないという問題点がある。
 また、ポリアミド樹脂は吸水性を有するポリマーであり、吸水により可塑化し、フィブリル化が促進され、耐摩耗性が低下することが知られている。ポリアミド樹脂からなる釣糸も、水の介在する環境下で使用する以上、吸水による耐摩耗性の低下を抑える技術が求められている。
特開2005-273066号公報 特開2008-245535号公報 特開平04-214409号公報 特開2005-273025号公報 特開平09-209212号公報 特開平07-003526号公報
 本発明は上記のような問題を解決し、長期に亘り優れた耐摩耗性を維持でき、実用的な強度を有するとともに、耐摩耗性と強度とのバランスの優れたポリアミド繊維を提供することを技術的な課題とするものである。
 本発明者等は、上記課題を達成するために鋭意検討した結果、ポリアルキレンオキシド系樹脂をポリアミド系樹脂に混合させた混合樹脂を溶融紡糸したポリアミド繊維は、繰り返し屈曲や摩耗が生じる使用環境にあっても、長期に亘って耐摩耗性に優れることを見出し、本発明に到達した。
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. ポリアミド系樹脂により構成されたポリアミド繊維であって、
 ポリアミド系樹脂中にポリアルキレンオキシド系樹脂が分散して存在している、ポリアミド繊維。
項2. 前記ポリアミド繊維の表面には、繊維方向に伸びる微小孔が存在している、項1に記載のポリアミド繊維。
項3. 前記ポリアミド繊維は、前記ポリアミド系樹脂及び前記ポリアルキレンオキシド系樹脂により構成された部分と、ポリアルキレンオキシド系樹脂を含まない樹脂により構成された部分とを備える複合繊維であり、
 前記ポリアミド繊維の表面には、前記ポリアミド系樹脂が存在している、項1又は2に記載のポリアミド繊維。
項4. 前記ポリアミド系樹脂中における前記ポリアルキレンオキシド系樹脂の含有率が、0.5~15質量%である、項1~3のいずれか1項に記載のポリアミド繊維。
項5. 前記ポリアルキレンオキシド系樹脂の重量平均分子量が、5万~50万である、項1~4のいずれか1項に記載のポリアミド繊維。
項6. ポリアミド系樹脂により構成されたポリアミド繊維の製造方法であって、
 ポリアミド系樹脂とポリアルキレンオキシド系樹脂とを混合して得られた混合樹脂を溶融紡糸する工程を備える、ポリアミド繊維の製造方法。
項7. 前記混合樹脂中の前記ポリアルキレンオキシド系樹脂の割合を0.5~20質量%とする、項6に記載のポリアミド繊維の製造方法。
項8. 前記混合樹脂を溶融紡糸する工程の後、得られた繊維を水又は水蒸気に接触させる工程をさらに備える、項6又は7に記載のポリアミド繊維の製造方法。
項9. 前記混合樹脂を溶融紡糸する工程の後、得られた繊維を水浴中で延伸する工程をさらに備える、項6又は7に記載のポリアミド繊維の製造方法。
 本発明よれば、長期に亘り優れた耐摩耗性を維持でき、実用的な強度を有するとともに、耐摩耗性と強度とのバランスの優れたポリアミド繊維を提供することができる。当該ポリアミド繊維は、衣料用途や産業資材、土木用途等、繰り返しの屈曲が課せられる様々な分野において好適に使用することができる。また、本発明によれば、当該ポリアミド繊維の好適な製造方法を提供することもできる。
実施例1のポリアミド繊維の繊維表面の電子顕微鏡写真(30000倍)である。 実施例6のポリアミド繊維の繊維表面の電子顕微鏡写真(30000倍)である。 実施例6のポリアミド繊維の繊維表面の電子顕微鏡写真(3000倍)である。 熱可塑水溶性ポリエチレンオキシドを含有しないポリアミド系樹脂により構成される比較例1のポリアミド繊維(基準ポリアミド繊維)の繊維表面の電子顕微鏡写真(30000倍)である。 熱可塑水溶性ポリエチレンオキシドを含有しないポリアミド系樹脂により構成される比較例5のポリアミド繊維(基準ポリアミド繊維)の繊維表面の電子顕微鏡写真(30000倍)である。 熱可塑水溶性ポリエチレンオキシドを含有しないポリアミド系樹脂により構成される比較例5のポリアミド繊維(基準ポリアミド繊維)の繊維表面の電子顕微鏡写真(3000倍)である。
 本発明のポリアミド繊維は、ポリアミド系樹脂により構成されたポリアミド繊維であって、ポリアミド系樹脂中にポリアルキレンオキシド系樹脂が分散して存在していることを特徴としている。以下、本発明について、詳細に説明する。
 本発明のポリアミド繊維は、ポリアミド系樹脂により構成された繊維である。すなわち、本発明のポリアミド繊維は、ポリアミド系樹脂を主成分(例えば、80質量%以上)として含む繊維である。本発明におけるポリアミド系樹脂としては、分子内にアミド基を有するものであれば特に限定されるものではなく、例えばナイロン6,ナイロン66,ナイロン69、ナイロン46,ナイロン610,ナイロン1010、ナイロン11、ナイロン12、ナイロン6T、ナイロン9T、ポリメタキシレンアジパミドやこれら各成分を共重合したものやブレンドしたもの等が挙げられる。
 ポリアミド系樹脂の相対粘度としては、特に限定はされないが、その用途に適したものを選択することが好ましい。実用的な強伸度を得るためには、相対粘度が2.0以上、より好ましくは2.3以上であり、特に産業資材用途には、相対粘度が2.5以上、より好ましくは3.0以上である。ポリアミド系樹脂の相対粘度の上限値としては、例えば5.5以下が挙げられる。なお、ポリアミド系樹脂の相対粘度は、以下の測定方法により測定された値である。すなわち、96%硫酸を溶媒とし、濃度1g/dl、温度25℃で測定する。
 本発明のポリアミド繊維は、ポリアミド系樹脂にポリアルキレンオキシド系樹脂が分散して存在する混合樹脂により形成される。ポリアミド繊維において、ポリアミド系樹脂中に含まれるポリアルキレンオキシド系樹脂の含有量は、好ましくは0.5~15質量%程度、より好ましくは1~12質量%程度である。後述するが、溶融紡糸前の混合樹脂中に存在するポリアルキレンオキシド系樹脂は、良好にポリアミド系樹脂中に分散する。
 また、後述の通り、ポリアミド系樹脂と混合されるポリアルキレンオキシド系樹脂は、水に溶解するため、溶融紡糸後の工程で、繊維表面に存在するポリアルキレンオキシド系樹脂を水に溶出させることにより、ポリアミド繊維の表面に、繊維方向に伸びる微小孔を形成することができる。ポリアミド繊維の表面に当該微小孔を備えるポリアミド繊維は、優れた耐摩耗性を発揮する。ポリアミド系樹脂とポリアルキレンオキシド系樹脂との混合樹脂に、例えば0.5~20質量%程度のポリアルキレンオキシド系樹脂が含まれる場合、混合樹脂を溶融紡糸する工程の後、得られた繊維を水又は水蒸気に接触させることによって、繊維表面のポリアルキレンオキシド系樹脂が溶出(脱落)し、繊維中に含まれるポリアルキレンオキシド系樹脂の含有率が、例えば0.5~15質量%程度となる。なお、本発明のポリアミド繊維中に存在するポリアルキレンオキシド系樹脂の含有量が15質量%を超えると、ポリアルキレンオキシド系樹脂の相対的量が多いために、繊維の強伸度等の機械的特性の低下を招きやすい。
 繊維の母体となるポリアミド系樹脂への分散性を考慮し、ポリアミド系樹脂に分散させるポリアルキレンオキシド系樹脂としては、重量平均分子量が5万~50万程度、より好ましくは5万~40万程度、さらに好ましくは5万~35万程度のものを用いるとよい。重量平均分子量が5万~50万のポリアルキレンオキシド系樹脂は、溶融紡糸前の溶融押出機内で、ポリアミド系樹脂と良好に混合し、ポリアミド系樹脂中に良好に分散する。なお、特にポリアルキレンオキシド系樹脂の重量平均分子量が50万を超えると、ポリアミド系樹脂中に分散しにくくなる。ポリアミド系樹脂を溶融紡糸するにあたっては、通常、紡糸温度は300℃以下に設定するが、重量平均分子量が50万を超えるポリアルキレンオキシド系樹脂は、300℃の熱を付与してもポリアミド系樹脂中に良好に分散しうる状態にならず、ここに、300℃を超える過剰の熱量を付与すると、繊維製造工程中の紡糸、延伸、巻取り時に糸切れ等が発生し操業性が悪化するとともに、得られる繊維は、強度等の機械的特性が劣る傾向となる。
 なお、本発明において、樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
 本発明におけるポリアルキレンオキシド系樹脂としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ブチレンオキシド、または、エチレン、プロピレン、及びブチレンのうち少なくとも2種以上の共重合体が挙げられる。共重合体の場合、ランダム共重合でもブロック共重合体でもよい。共重合体の中では、エチレンオキシドとプロピレンオキシドとがランダム共重合してなるエチレンオキシド・プロピレンオキシドランダム共重合体が好ましい。ポリアルキレンオキシド系樹脂の中でも、ポリエチレンオキシドが好ましい。
 本発明のポリアミド繊維においては、ポリアルキレンオキシド系樹脂が、共存物の影響を受けにくい非イオン性ポリマーであるため、ポリアミド系樹脂との相溶性に優れ良好に分散する。また、繊維表面に存在したポリアルキレンオキシド系樹脂については、水に溶出させて特異な繊維表面形態を形成することができ、繊維の耐摩耗性(耐屈曲摩耗性)をさらに向上させることができる。また、ポリアミド系樹脂中にポリアルキレンオキシド系樹脂を15質量%程度の高濃度に含有させても、ポリアミド繊維の強度低下が生じにくく、耐摩耗性(耐屈曲摩耗性)と強度とのバランスの優れた繊維となる。
 本発明におけるポリアミド繊維においては、ポリアルキレンオキシド系樹脂に加えて、さらに他の樹脂をポリアミド系樹脂中に含んでいてもよい。他の樹脂としては、長期に亘り優れた耐摩耗性を維持でき、実用的な強度を有するとともに、耐摩耗性と強度とのバランスの優れたポリアミド繊維とする観点から、好ましくはポリオレフィン系樹脂が挙げられる。ポリオレフィン系樹脂としては、低密度ポリエチレン、直鎖型低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどの汎用のポリオレフィンや、変性ポリオレフィン系樹脂が挙げられ、変性ポリオレフィン系樹脂が好ましい。
 変性ポリオレフィン系樹脂としては、不飽和カルボン酸、その無水物または誘導体がグラフト共重合した酸変性ポリオレフィン系樹脂が挙げられる。変性されるポリオレフィンとしては、例えば、ポリプロピレンまたはポリエチレンを挙げることができる。
 ポリオレフィンの変性に使用される不飽和カルボン酸、その無水物またはそれらの誘導体は、1分子内にエチレン性不飽和結合とカルボキシル基、酸無水物基または誘導体基とを有する化合物である。不飽和カルボン酸類の具体例としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、エンドシス-ビシクロ[2.2.1]ヘプト-2,3-ジカルボン酸、メチル-エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸等の不飽和カルボン酸;これらの不飽和カルボン酸の無水物;不飽和カルボン酸ハライド、不飽和カルボン酸アミド、および不飽和カルボン酸イミドの誘導体などが挙げられる。より具体的には、塩化マレニル、マレイミド、N-フェニルマレイミド、無水マレイン酸、無水イタコン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエートなどを挙げることができる。これらの中では、アクリル酸、メタクリル酸、マレイン酸、ナジック酸、無水マレイン酸、無水イタコン酸、無水ナジック酸が好ましく、無水マレイン酸がより好ましい。このような不飽和カルボン酸やその誘導体は1種であっても、2種以上の併用であってもよい。
 本発明におけるポリアミド繊維においては、ポリアルキレンオキシド系樹脂に加えて、さらに他の樹脂をポリアミド系樹脂中に含んでいる場合、ポリアミド系樹脂中に含まれる他の樹脂の含有量としては、好ましくは0.5~10質量%程度、より好ましくは1~5質量%が挙げられる。
 ポリアミド繊維の繊維構造としては、ポリアルキレンオキシド系樹脂、さらには必要に応じて前記他の樹脂(例えばポリオレフィン系樹脂など)を含有したポリアミド系樹脂のみから構成される単相繊維や、前記単相繊維に中空部を有する中空繊維が挙げられる。また、ポリアミド繊維は、ポリアミド系樹脂及びポリアルキレンオキシド系樹脂(さらには、必要応じて他の樹脂)により構成された部分と、ポリアルキレンオキシド系樹脂を含まない樹脂により構成された部分とを備える複合繊維であってもよい。
 ポリアミド繊維を複合繊維とした場合、ポリアルキレンオキシド系樹脂、さらには必要に応じて他の樹脂を含有したポリアミド系樹脂は、複合繊維の表面に配置させる。例えば、前記ポリアルキレンオキシド系樹脂等を含有するポリアミド系樹脂を鞘成分とし、ポリアルキレンオキシド系樹脂を含有しない樹脂を芯成分とした芯鞘型複合繊維;前記ポリアルキレンオキシド系樹脂等を含有するポリアミド系樹脂と、前記ポリアルキレンオキシド系樹脂を含有しない樹脂とを貼り合せたサイドバイサイド型複合繊維;前記ポリアルキレンオキシド系樹脂、さらには必要に応じて他の樹脂を含有するポリアミド系樹脂を海部に配し、前記ポリアルキレンオキシド系樹脂を含有しない樹脂を島部に配した海島型複合繊維;また、前記ポリアルキレンオキシド系樹脂、さらには必要に応じて他の樹脂を含有するポリアミド系樹脂と、前記ポリアルキレンオキシド系樹脂を含有しない樹脂とを並列状や放射状等に配した多層型複合繊維、放射型複合繊維、分割型複合繊維、多葉型複合繊維等の複合型断面や他の異形断面複合繊維など、適宜選択することができる。なお、このような複合型の繊維を紡糸するにあたっては、通常の手法にて行えばよい。
 複合繊維とする場合、ポリアルキレンオキシド系樹脂を含有しない樹脂としては、熱可塑性樹脂であれば特に限定するものではないが、ポリアルキレンオキシド系樹脂を含有しないポリアミド系樹脂や、芳香族ポリエステル系樹脂、ポリ乳酸樹脂等が挙げられる。例えば、ポリアミド系樹脂としては上述したものを用いればよく、芳香族ポリエステル系樹脂としては、ポリエチレンテレフタレートあるいはエチレンテレフタレートを主たる繰り返し単位とする樹脂を好ましく用い、エチレンテレフタレートを繰り返し単位とし、共重合成分としてイソフタル酸、5-ナトリウムスルホイソフタル酸、無水フタル酸、アジピン酸、セバシン酸のようなジカルボン酸成分、さらに1,6-ヘキサジオール、シクロヘキサンジメタノールのようなジオール成分を含んでもよい。
 本発明のポリアミド繊維の表面には、繊維方向に伸びる微小孔が存在していることが好ましい。当該微小孔は、ポリアミド繊維の表面に多数存在している。換言すると、本発明のポリアミド繊維の表面は、繊維方向に伸びる微小多孔構造を備えていることが好ましい。
 図1に、後述する実施例1で得られたポリアミド繊維の繊維表面を30000倍に拡大した電子顕微鏡写真を示す。このポリアミド繊維の繊維表面には、繊維方向に伸びる微小孔(空隙)が多数存在しており、微小孔の長径が繊維軸方向(写真の縦方向)となるように位置している。この繊維表面の空隙の形状は、楕円形状の空隙ともいえる。また、微小孔の大きさは種々であり、図1によれば、長径(繊維の長手方向の径)が約0.16μm~約1.6μm、短径(繊維の短手方向の径)が約0.03μm~約0.23μmの楕円形状の微小孔が存在している。
 また、図2には、後述する実施例6で得られたポリアミド繊維の繊維表面を30000倍に拡大した電子顕微鏡写真を示す。このポリアミド繊維の繊維表面にも、繊維方向に伸びる微小孔(空隙)が多数存在している。この繊維表面の空隙の形状は、長径が短径よりも非常に大きく、線形状の空隙ともいえる。この空隙(微小孔)も、長径(繊維の長手方向の径)が繊維軸方向(写真の縦方向)となるように位置している。空隙(微小孔)の大きさは種々であり、図2によれば、長径(繊維の長手方向の径)が約0.3μm~約2.8μm、短径(繊維の短手方向の径)が約0.1μm~約0.3μmの長径の比率が大きな微小孔(空隙)が存在している。また、図3は、図2と同様の実施例6で得られた本発明のポリアミド繊維であり、繊維表面を3000倍に拡大した電子顕微鏡写真である。
 図4は、ポリアルキレンオキシド系樹脂を含有しないポリアミド系樹脂により構成されたポリアミド繊維の表面の電子顕微鏡写真(30000倍)であるが、微細な凹凸は観察されるものの微小孔(空隙)は観察されない。図4の繊維は、後述する比較例1で得られた基準ポリアミド繊維である。
 また、図5および6は、ポリアルキレンオキシド系樹脂を含有しないポリアミド系樹脂により構成されたポリアミド繊維の表面の電子顕微鏡写真(図5:30000倍、図6:3000倍)である。図5,6では、微細な凹凸は観察されるものの微小孔(空隙)は観察されない。図5および6の繊維は、後述する比較例5で得られた基準ポリアミド繊維である。
 本発明のポリアミド繊維の表面において、各微小孔の大きさは特に制限されないが、各微小孔の長径(繊維の長手方向の径)としては、例えば、0.1~6μm程度が挙げられ、短径(繊維の短手方向の径)としては、例えば、0.02~0.3μm程度が挙げられる。また、各微小孔のアスペクト比としては、例えば、2~20程度が挙げられる。
 また、繊維表面に存在する微小孔の数は、特に制限されないが、例えば、ポリアミド繊維を30000倍に拡大した電子顕微鏡写真の2μm×2μmの視野内に、当該微小孔が2箇所以上、さらには5箇所以上観察されることが好ましい。なお、本発明のポリアミド繊維の表面の微小孔は、ポリアミド繊維の全面に形成されている必要は無く、一部分のみに形成されていてもよいし、また、部分的に形成されている領域と形成されていない領域とが混在しているものでもよい。
 ポリアミド繊維の表面の微小孔は、例えば、ポリアミド系樹脂とポリアルキレンオキシド系樹脂とを含む繊維の表面に存在するポリアルキレンオキシド系樹脂を溶出することにより形成することができる。より具体的には、例えば、ポリアミド繊維の製造過程において、ポリアミド系樹脂とポリアルキレンオキシド系樹脂とを混合して得られた混合樹脂を溶融紡糸する工程の後、得られた繊維を水又は水蒸気に接触させることにより、水に溶解しやすいポリアルキレンオキシド系樹脂を、繊維の表面から選択的に溶出させることにより、ポリアミド繊維の表面の微小孔を形成することができる。なお、微小孔は、通常、繊維軸方向に伸びる形状を有しているが、これは、繊維を溶融紡糸する際に、ポリアミド系樹脂中に分散したポリアルキレンオキシド系樹脂が繊維方向に引き伸ばされて、長径が繊維軸方向に伸びる形状(楕円形状、線形状など)となっており、これが溶出することにより、微細孔の形状もこれに対応する形状になっていると考えられる。
 本発明のポリアミド繊維において、耐摩耗性が優れる理由については、限定的な解釈を望むものではないが、次のように考えることができる。すなわち、ポリアミド繊維が摩耗する環境において、繊維表面のポリアルキレンオキシド系樹脂が皮膜を形成することにより、耐摩耗性が向上していると考えることができる。また、繊維表面に多数の微小孔が存在することにより、耐摩耗性が向上する理由については、次のように考えることができる。すなわち、繊維表面に多数の微小孔が存在する場合、繊維表面がいわゆる平滑な状態ではなく、多数の微小孔(空隙)の存在による凹凸が形成されており、これにより耐摩耗性が向上していると推察される。
 本発明のポリアミド繊維は、例えば、ポリアミド系樹脂とポリアルキレンオキシド系樹脂とを混合して得られた混合樹脂を溶融紡糸する工程を備える方法により製造することができる。
 より具体的には、例えば、ポリアミド繊維が単相繊維の場合、ポリアルキレンオキシド系樹脂の含有量が所定の範囲(ポリアミド系樹脂中に、例えば0.5~20質量%)となるように、ポリアルキレンオキシド系樹脂とポリアミド系樹脂(例えばチップ形状)とを適正に混合(ブレンド)し、溶融混合した後、溶融紡糸する。なお、前述の通り、必要に応じて、ポリアルキレンオキシド系樹脂に加えて、さらに他の樹脂(ポリオレフィン系樹脂など)をポリアミド系樹脂中に混合してもよい。一方、他の樹脂と複合化する複合繊維の場合、ポリアルキレンオキシド系樹脂の含有量が所定の範囲(ポリアミド系樹脂中に、例えば0.5~20質量%程度)となるように、ポリアルキレンオキシド系樹脂とポリアミド系樹脂とを適正に混合(ブレンド)して溶融混合し、一方、複合する他の樹脂も準備のうえ別途溶融させて、通常の複合紡糸装置を用いて、溶融紡糸する。
 ポリアルキレンオキシド系樹脂とポリアミド系樹脂とを混合する方法としては、特に制限されず、例えば、ポリアミド系樹脂の溶融時にポリアルキレンオキシド系樹脂を直接添加する手法や、予めポリアルキレンオキシド系樹脂を高濃度で含むマスターバッチを作製しておき、これをポリアミド系樹脂の溶融時に添加する手法などが挙げられる。混合方法としては、ポリアミド系樹脂に、ポリアルキレンオキシド系樹脂を直接添加する手法が好ましい。ただし、ポリアルキレンオキシド系樹脂の融点は一般に低いため、ポリアミド系樹脂を溶融押出機に供給する際、ポリアミド系樹脂チップ同士が、溶融したポリアルキレンオキシド系樹脂を介して塊状となり、ポリマー供給部でブロッキング現象を起こし、ポリマーの供給が停止する可能性がある。このため、連続生産性を考慮する場合には、予めポリアルキレンオキシド系樹脂を高濃度で含むマスターバッチを作製しておき、これをポリアミド系樹脂の溶融時に添加することが好ましい。
 ポリアルキレンオキシド系樹脂を高濃度で含むマスターバッチを作製する際の樹脂としては、ポリアミド系樹脂が好ましい。マスターバッチに用いられるポリアミド系樹脂としては、例えばナイロン6,ナイロン66,ナイロン69、ナイロン46,ナイロン610,ナイロン1010、ナイロン11、ナイロン12、ナイロン6T、ナイロン9T、ポリメタキシレンアジパミドやこれら各成分を共重合したものやブレンドしたもの等が挙げられる。
 また、例えばポリオレフィン系樹脂は、ポリアミド系樹脂の化学的性質を阻害することなく、融点がポリアミド系樹脂より低くポリアルキレンオキシド系樹脂と融点が近く、溶融混合しやすく加工性に優れる。このため、ポリオレフィン系樹脂もマスターバッチを作製する際の樹脂として使用できる。但し、ポリオレフィン系樹脂は、ポリアミド系樹脂とは異なる樹脂であるため、ポリアミド繊維の機能を阻害しない程度の含有量とすることが好ましく、ポリアミド繊維中のポリオレフィン系樹脂の含有量としては、約10質量%未満、さらには約5質量%未満が挙げられる。ポリオレフィン系樹脂としては、低密度ポリエチレン、直鎖型低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどの汎用のポリオレフィンや、前述の変性ポリオレフィン系樹脂などが挙げられる。
 ここで、本発明のポリアミド繊維は、本発明の効果を損なわない範囲であれば、必要に応じて例えば熱安定剤、結晶核剤、艶消し剤、顔料、耐光剤、耐候剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、表面改質剤、各種無機及び有機電解質、微粉体、難燃剤等の各種添加剤を含んでいてもよい。また、得られる繊維の結節強度を高めるために、脂肪酸アミド類、例えばメタキシリレンビスステアリルアミド、メタキシリレンビスオレイルアミド、キシレンビスステアリン酸アミド、エチレンビスステアリルアミド、エチレンビスステアリン酸アミド等を含んでいてもよい。
 次いで、溶融紡糸により得られた糸条を冷却し、油剤を付与し、あるいは付与せず、一旦未延伸糸として巻き取った後あるいは一旦捲き取ることなく、引き続いて延伸を施す。溶融紡糸後の糸条の冷却は、室温での冷却、冷却風の吹付けによる冷却、水浴中に通すことにより冷却が挙げられる。延伸にあたっての延伸倍率は2~8倍とし、熱延伸を施す。熱延伸の加熱手段としては、温水バス中で熱延伸するか、加熱ローラを用いて熱延伸する。熱延伸後は、巻取り操作を連続して行い、目的とする繊維を得る。
 ポリアミド繊維の製造方法において、前記混合樹脂を溶融紡糸する工程の後(溶融紡糸後の工程もしくは繊維を得た後工程)、得られた繊維を水もしくは水蒸気に接触させる工程を備えていることにより、繊維表面に分散して存在するポリアルキレンオキシド系樹脂を溶出させて、繊維表面に多数の前記微小孔(空隙)を形成させることができる。溶融紡糸後の工程としては、上記したように、溶融紡糸後の糸条の冷却工程において糸条を水浴中に通すこと、その後の延伸工程において、糸条を水浴(または温浴)中に通して延伸すること、また、繊維を得た後に、水蒸気に接触させる方法、水浴中に浸す方法等が挙げられる。溶融紡糸前に混合した樹脂中に存在するポリアルキレンオキシド系樹脂は、良好にポリアミド系樹脂中に分散しているため、繊維表面に存在するポリアルキレンオキシド系樹脂が水に溶出するが、繊維中に存在するポリアルキレンオキシド系樹脂に対して、最大で約20質量%のポリアルキレンオキシド系樹脂が繊維表面より溶出する。なお、この最大溶出量は、得られる繊維の表面積や繊径によっても多少変化する。また、溶出させるために水と接触させる時間を適宜設定することにより、溶出量を制御することもできる。
 ポリアミド繊維の製造方法において、ポリアルキレンオキシド系樹脂が繊維表面から溶出するために、繊維を水もしくは水蒸気に接触させる際の水又は水蒸気の温度や時間としては、ポリアルキレンオキシド系樹脂が繊維表面から溶出すれば特に制限されない。例えば、水の場合は、温度は10~100℃程度、接触させる時間は1秒以上が好ましく、時間の上限は20秒程度であれば繊維表面からポリアルキレンオキシド系樹脂を十分に溶出できる。
 本発明のポリアミド繊維は、ポリアミド繊維1本から構成されるモノフィラメント糸の形態であっても、ポリアミド繊維が複数本からなるマルチフィラメント糸の形態であってもよい。モノフィラメント糸とする場合は、繊維を得る工程として、溶融紡糸した後、水浴中で冷却し、その後、温浴中で延伸することにより、冷却工程および延伸工程にて水と接触させて、繊維表面に存在するポリアルキレンオキシド系樹脂を溶出させるとよい。マルチフィラメント糸とする場合は、溶融紡糸後、冷却~延伸工程では、水を接触させずにマルチフィラメント糸を得、マルチフィラメント糸を得た後に、水浴中に通すもしくは水蒸気中に通す等により、繊維表面に存在するポリアルキレンオキシド系樹脂を溶出させるとよい。また、水と接触させずにマルチフィラメント糸を得た後に、所望の組織による製編織等を行って布帛とした後に、水浴中に浸すもしくは水蒸気雰囲気下におく等により、繊維表面に存在するポリアルキレンオキシド系樹脂を溶出させるとよい。
 なお、本発明のポリアミド繊維をマルチフィラメント糸の形態とする場合、マルチフィラメント糸を構成するポリアミド繊維の単繊維繊度は1~200dtex程度、総繊度は20~5000dtex程度が好ましく、中でも総繊度は40~3000dtex程度がより好ましい。モノフィラメント糸の形態とする場合、モノフィラメント糸の繊度は150~5000dtex程度が好ましい。また、本発明のポリアミド繊維は、連続してなる長繊維であっても、特定の繊維長を有する短繊維として用いてもよく、繊維形態としては特に限定されない。
 本発明のポリアミド繊維は、耐摩耗性における摩耗の回数比で、基準ポリアミド繊維(ポリアルキレンオキシド系樹脂を混合しないポリアミド系樹脂を用いたこと以外は、凡そ同様の製造条件で得られた繊維)との対比で、2倍以上の耐摩耗性を発揮する。また、本発明のポリアミド繊維は、水に浸漬させた後の湿潤状態での耐摩耗性については、基準ポリアミド繊維の摩耗回数と対比で2倍以上の耐摩耗性を発揮する。なお、本発明のポリアミド繊維の形態に起因して耐摩耗性効果を奏することを確認するために、耐摩耗性評価にあたっては、繊維表面に油剤を付与していないものを評価する。耐摩耗性評価は以下の評価方法により行う。
<耐摩耗性評価1 金属丸棒>
 試料となるポリアミド繊維に、デシテックス当たり0.6gの荷重をかけ、直径6mmのステンレス丸棒に対し、90度の角度で接触させ、ストローク幅120mm、ストローク速度35±1回/分で往復摩擦させ、ポリアミド繊維が破断に至るまでの回数を計測する。試料3点を測定し、いずれも最も低い摩耗回数のものを対比する。すなわち、本発明のポリアミド繊維3点中の最低摩耗回数を、基準ポリアミド繊維3点中の最低摩耗回数で除した値を求める。この対比値が2以上であれば合格とし、好ましくは5以上、より好ましくは8以上とする。試料であるポリアミド繊維を、室温で耐摩耗性を評価したものは「乾摩耗」、一方、試料であるポリアミド繊維を一定時間水道水中に浸漬した後、取り出して耐摩耗性を評価したものを「湿摩耗」とする。また、上記したように繊維表面に油剤は付与しないものを評価するため、製造工程において、繊維表面に油剤が付着している場合は、洗浄により油剤を落としてから評価する。
<耐摩耗性評価2 金属六角棒>
 上記した金属丸棒を用いた耐摩耗性評価1において、ステンレス丸棒に代えて、ステンレス六角棒(横断面が正六角形であり1辺の長さが7mm)を用いること、荷重をデシテックス当たり0.27gとすること以外は、上記載の耐摩耗性評価1と同様にして評価する。
<耐摩耗性評価3 セラミックス丸棒>
 上記した金属丸棒を用いた耐摩耗性評価1において、ステンレス丸棒に代えて、直径10mmのセラミックス製丸棒を用いること、ストローク幅300mm、ストローク速度30回±1/分で往復摩擦させること以外は、上記載の耐摩耗性評価1と同様に評価する。なお、試料となるポリアミド繊維の単糸繊度を考慮して、単糸繊度に応じて荷重は変え、試料数は2点の測定とし、2点のうち低い方の摩耗回数を対比する。
<耐摩耗性評価4 サンドペーパー(乾摩耗)>
 上記した金属丸棒を用いた耐摩耗性評価1において、#1500のサンドペーパーを直径20mmの丸棒に巻き付けて用いること、荷重をデシテックス当たり0.09gとすること以外は、上記載の耐摩耗性評価1と同様にして評価する。
 本発明のポリアミド繊維は、上記したように優れた耐摩耗性を有するものであり、従来からポリアミド繊維が用いられている分野やそれ以外の種々の分野や用途において良好に使用しうるものである。例えば、下記の用途において良好に使用できる。
 本発明のポリアミド繊維は、海や河川において、網物やロープ等の形態で用いられる水産資材として好適に用いられる。例えば、漁網、養殖用資材、テグス、釣糸等が挙げられる。
 また、本発明のポリアミド繊維は、工業用資材としても好適に用いられ、具体的には、陸上等の各種ロープ、陸上ネットや防球ネット、防護ネット、補強用ネット、抄紙用ネット、フェルト補強ネット、フィルター用ネット、スリングベルト、ハーネス、工業用ブラシの毛材等が挙げられる。特に抄紙用ネットにおいては、工程内でセラミック板と接触する箇所があり、この接触によってネットが削れることがあるが、本発明のポリアミド繊維を、ネットを構成する線材として適用すれば、耐摩耗性に優れることから、ネットを長期に亘って使用することができる。
 各種の土木資材としても好適に用いられ、例えば、網状袋体、蛇篭、ふとん篭等の素材として用いられることが挙げられる。
 生活資材としても好適に用いられ、例えば、服地、カバン地、椅子カバー地、ブラシの毛材、リード紐等の各種ペット用品等が挙げられる。
 スポーツ用途にも好適に用いられ、例えば、バドミントンやテニス等のラケットガットが挙げられる。
 また、テグスや漁網用途では、耐摩耗性に優れることとともに、滑り性は滑り過ぎず糸解除性は持ち合せていて、且つ表面の油剤等が水や海水で落ちても耐摩耗性が変わらないことが要求される。テグスや漁網における耐久性、耐摩耗性に優れるということは、引張始めに生じる静止摩擦力が低いことが要求され、繰り返し引っ張ることでその部分に負担が大きくかかり、その部分が破断することになるからである。
 これに対して、ポリアルキレンオキシド系樹脂を含む本発明のポリアミド繊維は、低い静止摩擦力を発揮することができる。具体的には、本発明のポリアミド繊維は、ポリアルキレンオキシド系樹脂を含まないポリアミド繊維と比較して、静止摩擦力が80~98.5%程度のものとすることができる。
 また、ポリアミド繊維は、高強力および耐久性に優れているため、各種産業用途に適用されていて、補強用繊維としても広く用いられている。ポリアミド繊維が補強用繊維として用いられる場合、樹脂シートとの接着性や接着剤を用いて接着する場合でもポリアミド繊維との接着性の良好さが求められている。このようなポリアミド繊維の用途としては樹脂補強用ベルト、ゴムホースなどの補強材、テニスやバドミントン用のガットの側糸にもなどにも使用されている。
 本発明のポリアミド繊維は、例えば、ポリアルキレンオキシド系樹脂を含まないポリアミド繊維と比較して、30%程度以上高い剥離強力を発揮し得る。
 次に、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。
(実施例1)
 重量平均分子量20万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番R-400)5質量%と相対粘度3.1のポリアミド6樹脂(ユニチカ株式会社製、商品名 A1030BRF)95質量%を混合し、ポリマー温度を260℃で1.0mmφ×4Hの紡糸口金から溶融紡糸した。紡糸した繊維を25℃の水浴中で冷却した後、巻き取ることなく、速度17m/分で90℃の温浴中で延伸し、さらに巻き取ることなく、120℃の乾熱雰囲気中で総延伸倍率が4.8倍となるように延伸し、油剤を付けずに巻き取った。繊度741dtex、強度5.2cN/dtex、伸度26%のモノフィラメント糸(ポリアミド繊維)を得た。
(実施例2)
 実施例1において、ポリエチレンオキシドとして、重量平均分子量6万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番L-6)を用いたこと以外は、実施例1と同様にして、繊度743dtex、強度5.3cN/dtex、伸度27%のモノフィラメント糸(ポリアミド繊維)を得た。
(実施例3)
 実施例1において、ポリエチレンオキシドとして、重量平均分子量11万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番L-11)を用いたこと以外は、実施例1と同様にして、繊度726dtex、強度5.1cN/dtex、伸度22%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例1)
 構成樹脂として、相対粘度3.1のポリアミド6樹脂(ユニチカ株式会社製、商品名 A1030BRF)のみを使用したこと、120℃の乾熱雰囲気中での延伸を総延伸倍率5.0倍としたこと以外は、実施例1と同様にして、繊度739dtex、強度6.0cN/dtex、伸度25%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例1~3のポリアミド繊維と、比較例1の基準ポリアミド繊維について、下記の物性を測定し、表1に示した。また、表2~4には、耐摩耗性を測定したそれぞれの試料3点についての測定結果を示した。
(1)耐摩耗性(回)
 前記した<耐摩耗性評価1 金属丸棒>の方法により測定した。なお、湿摩耗については、試料であるポリアミド繊維を、1時間水道水に浸漬した後に取り出して測定したものを「湿摩耗(1時間)」、24時間水道水に浸漬した後取り出して測定したものを「湿摩耗(24時間)」とした。
(2)強度(cN/dtex)および伸度(%)
 JIS L 1013 に準じて、定速伸長形引張試験機(島津製作所製オートグラフDSS-500)を用い、つかみ間隔25cm、引張速度30cm/分で測定した。
なお、基準ポリアミド繊維と比較した強度比(試料の強度/基準ポリアミド繊維の強度)を求め、0.6以上であれば合格とし、より好ましくは0.7以上、さらに好ましくは0.8以上とする。
 実施例1~3の本発明のポリアミド繊維は、実用十分な機械的物性を有しており、また、耐摩耗性については、基準ポリアミド繊維を比較し、飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例4)
 重量平均分子量20万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番R-400)2.5質量%と相対粘度4.5のポリアミド6/ポリアミド66共重合ポリアミド系樹脂(DSM社製、商品名ノバミッド 2030J)97.5質量%を混合し、ポリマー温度を300℃で1.0mmφ×4Hの紡糸口金から溶融紡糸した。紡糸した繊維を25℃の水浴中で冷却した後、巻き取ることなく、速度17m/分で90℃の温浴中で延伸し、さらに巻き取ることなく、120℃の乾熱雰囲気中で総延伸倍率が4.8倍となるように延伸し、油剤を付けずに巻き取った。繊度1882dtex、強度4.4cN/dtex、伸度22%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例2)
 構成樹脂として、ポリアミド6/ポリアミド66共重合ポリアミド系樹脂のみを使用したこと以外は、実施例4と同様にして、繊度1888dtex、強度4.5cN/dtex、伸度22%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例4のポリアミド繊維と、比較例2の基準ポリアミド繊維について、上記した<耐摩耗性評価2 金属六角棒>および<耐摩耗性評価3 セラミックス丸棒>について、評価を行い、その結果を表5に示した。セラミックス丸棒を用いた耐摩耗性評価にあたっては、荷重をデシテックス当たり0.4gとした。表5から明らかなように、実施例4の本発明のポリアミド繊維は、比較例2の基準ポリアミド繊維と比較して耐摩耗性が飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000005
(実施例5)
 実施例4において、溶融紡糸時の吐出量を変えたこと以外は、実施例4と同様にして、繊度579dtex、強度5.3cN/dtex、伸度29%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例3)
 比較例2において、溶融紡糸時の吐出量を変えたこと以外は、実施例4と同様にして、繊度575dtex、強度6.1cN/dtex、伸度37%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例5のポリアミド繊維と、比較例3の基準ポリアミド繊維について、上記した<耐摩耗性評価2 金属六角棒>および<耐摩耗性評価3 セラミックス丸棒>について、測定評価を行い、その結果を表6に示した。セラミックス丸棒を用いた耐摩耗性評価にあたっては、荷重をデシテックス当たり0.9gとした。下表6から明らかなように、実施例5の本発明のポリアミド繊維は、比較例3の基準ポリアミド繊維と比較して耐摩耗性が飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000006
(実施例6)
 実施例4において、溶融紡糸の際にポリマー温度を275℃、1.5mmφ×13Hの紡糸口金から溶融紡糸したこと、紡糸した繊維を12℃の水浴中で冷却したこと、速度20m/分で90℃の温浴中で延伸したこと、190℃の乾熱雰囲気中で総延伸倍率が6.0倍となるように延伸したこと以外は、実施例4と同様にして、繊度759dtex、強度8.2cN/dtex、伸度21%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例4)
 実施例6において、構成樹脂として、ポリアミド6/ポリアミド66共重合ポリアミド系樹脂にシリコンが0.35質量%となるように添加した混合樹脂を用いたこと以外は、実施例6と同様にして、繊度732dtex、強度8.4cN/dtex、伸度24%のモノフィラメント糸(シリコン入りのポリアミド繊維)を得た。
(比較例5)
 実施例6において、ポリアミド6/ポリアミド66共重合ポリアミド系樹脂のみを使用したこと以外は、実施例6と同様にして、繊度735dtex、強度8.6cN/dtex、伸度24%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例6のポリアミド繊維と、比較例4のシリコン入りポリアミド繊維および比較例5の基準ポリアミド繊維について、上記した<耐摩耗性評価3 セラミックス丸棒>について、測定評価を行い、その結果を表7に示した。セラミックス丸棒を用いた耐摩耗性評価にあたっては、荷重をデシテックス当たり0.7gとした。下表7から明らかなように、実施例6の本発明のポリアミド繊維は、比較例4のシリコン入りのポリアミド繊維及び比較例5の基準ポリアミド繊維と比較して、耐摩耗性が飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000007
(実施例7)
 重量平均分子量20万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番R-400)2.5質量%と相対粘度3.5のポリメタキシレアジパミド樹脂(三菱ガス化学株式会社製、商品名 MXナイロン 6121)97.5質量%とを混合し、ポリマー温度を270℃で1.4mmφ×2Hの紡糸口金から溶融紡糸した。紡糸した繊維を60℃の水浴中で冷却した後、巻き取ることなく、速度20m/分で90℃の温浴中で延伸し、さらに巻き取ることなく、250℃の乾熱雰囲気中で総延伸倍率が5.3倍となるように延伸し、油剤を付けずに巻き取った。繊度719dtex、強度5.7cN/dtex、伸度10%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例6)
 構成樹脂として、ポリメタキシレアジパミド樹脂のみを使用したこと以外は、実施例7と同様にして、繊度761dtex、強度6.2cN/dtex、伸度8%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例7のポリアミド繊維と、比較例6の基準ポリアミド繊維について、上記した<耐摩耗性評価1 金属丸棒>および<耐摩耗性評価3 セラミックス丸棒>について、評価を行い、その結果を表8に示した。金属丸棒およびセラミックス丸棒の耐摩耗性評価にあたっては、いずれも荷重をデシテックス当たり0.7gとした。表8から明らかなように、実施例7の本発明のポリアミド繊維は、比較例6の基準ポリアミド繊維と比較して耐摩耗性が飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000008
(実施例8)
 重量平均分子量20万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番R-400)20質量%と変性ポリエチレン樹脂(プライムポリマー株式会社製、商品名 アドマー HE810)80質量%を混合し、予めマスターチップを作製した。そのマスターチップを用い、ポリエチレンオキシドが0.5質量%となるように、マスターチップ2.5質量%と、相対粘度3.5のポリアミド6樹脂(ユニチカ株式会社製、商品名 BRT)97.5質量%と混合し、ポリマー温度を280℃で1.0mmφ×4Hの紡糸口金から溶融紡糸した。防止した繊維を25℃の水中で冷却した後、巻き取ることなく、120℃の乾熱雰囲気中で総延伸倍率が5.0倍となるように延伸し、油剤を付けずに巻き取り、繊度790dtex、強度5.2cN/dtex、伸度18%のモノフィラメント糸(ポリアミド繊維)を得た。
(実施例9)
 ポリエチレンオキシドが1.0質量%となるように、マスターチップ5.0%とポリアミド6樹脂(ユニチカ株式会社製、商品名 BRT)95.0質量%と混合したこと以外は、実施例8と同様にして、繊度780dtex、強度5.2cN/dtex、伸度15%のモノフィラメント糸(ポリアミド繊維)を得た。
(比較例7)
 ポリアミド6樹脂(ユニチカ株式会社製、商品名 BRT)のみを用いたこと以外は、実施例8と同様にして、溶融紡糸、巻き取りを行い、繊度790dtex、強度5.3cN/dtex、伸度21%のモノフィラメント糸(基準ポリアミド繊維)を得た。
 得られた実施例8,9のポリアミド繊維と、比較例7の基準ポリアミド繊維について、上記した<耐摩耗性評価4 サンドペーパー(乾摩耗)>について、評価を行い、その結果を表9に示した。表9から明らかなように、実施例8,9の本発明のポリアミド繊維は、基準ポリアミド繊維と比較して耐摩耗性が飛躍的に向上したものであった。
Figure JPOXMLDOC01-appb-T000009
 以下の実施例10,11及び比較例8,9で得られたポリアミド繊維について、次の方法により、(a)静止摩擦力及び動摩擦力、(b)強度及び伸度を測定した。また、前記した<耐摩耗性評価3 セラミックス棒>の方法により耐摩耗性を測定した。
(a)静止摩擦力と動摩擦力
 島津製作所製オートグラフAG1000Dを用い、チャックには平チャックを使用した。上部チャックに試料となる糸をはさみ、その垂らした糸と垂直に交わるように地面と水平に摩擦体となるセラミック棒(直径φ10mm)を設置し、糸を棒に一重に巻き、糸の先に任意の荷重をつけ、引張速度1000mm/minで引っ張り、その引っ張り始めのピーク値を静止摩擦力(kgf)とし、引っ張り始めて長さ方向に1秒~10秒引っ張った強力の平均値を動摩擦力(kgf)とした。
(b)強度及び伸度
 島津製作所製オートグラフ DSS-500を用い、試料長25cm、引張速度30cm/分で測定した。
(実施例10)
 重量平均分子量20万のポリエチレンオキシド(明星化学工業株式会社製、商品名 アルコックス 品番R-400)2.5質量%と相対粘度4.5のN6/N66共重合ポリアミド系樹脂(DSM社製、商品名ノバミッド2030J)97.5質量%を混合し、ポリマー温度を300℃、1.0mmφ×4Hの紡糸口金から溶融紡糸した。紡糸した繊維を25℃の水浴中で冷却した後、巻き取ることなく、速度17m/minで90℃の温浴中で延伸し、さらに巻き取ることなく、120℃の雰囲気中で総延伸倍率が4.8倍となるように延伸し、油剤を付けずに巻き取った。繊度1882dtex、強度4.37cN/dtex、伸度22%のモノフィラメント糸(ポリアミド繊維)を得た。得られたモノフィラメントで0.4g/dtexの荷重をかけて耐摩耗性(セラミックス棒)を評価すると、100,000回以上であった。
(実施例11)
 実施例10において、溶融紡糸時の吐出量を変えたこと以外は、実施例10と同様にして、繊度781dtex、強度5.0cN/dtex、伸度31%のモノフィラメント糸(ポリアミド繊維)を得た。得られたモノフィラメントで0.7g/dtexの荷重をかけて直径6mmのステンレス棒に対し耐摩耗性を評価すると、55467回であった。
(比較例8)
 構成樹脂として、N6/N66共重合ポリアミド系樹脂(DSM社製、商品名ノバミッド2030J)のみとしたこと以外は、実施例10と同様にして、繊度1888dtex、強度4.53cN/dtex、22%モノフィラメント(基準ポリアミド繊維)を得た。得られたモノフィラメントで0.4g/dtexの荷重をかけて耐摩耗性を評価すると、570回であった。
(比較例9)
 構成樹脂として、N6/N66共重合ポリアミド系樹脂(DSM社製、商品名ノバミッド2030J)のみを使用したこと、120℃の乾熱雰囲気中での延伸を総延伸倍率が5.0倍としたこと以外は、実施例10と同様にして、繊度775dtex、強度4.9cN/dtex、伸度28%、のモノフィラメント糸(基準ポリアミド繊維)を得た。得られたモノフィラメントで0.7g/dtexの荷重をかけて直径6mmのステンレス棒に対し耐摩耗性を評価すると、476回であった。
 実施例10,11の試料と比較例8,9の試料について、セラミック棒の静止摩擦力、動摩擦力を測定し、結果を表1に示した。静止摩擦力測定の荷重が500gの時、実施例10のポリアミド繊維の静止摩擦力は、比較例8のポリアミド繊維の91.1%であった。静止摩擦力測定の荷重が750gの時、実施例10のポリアミド繊維の静止摩擦力は、比較例8のポリアミド繊維の98.1%であった。静止摩擦力測定の荷重が500gの時、実施例11のポリアミド繊維の静止摩擦力は、比較例9のポリアミド繊維の95.9%であった。このように、実施例10,11のポリアミド繊維は、比較例8,9の基準ポリアミド繊維の80~98.5%の静止摩擦力を有していた。
Figure JPOXMLDOC01-appb-T000010
 以下の実施例12~14及び比較例10~13で得られたポリアミド繊維について、次の方法により、剥離強力を測定した。
(剥離強力)
 島津製作所製オートグラフAG50kNIを用い、チャックには平チャックを使用した。上下チャックに接着させた糸又は製紐と樹脂シートのつかみ部分を其々はさみ、引張速度100mm/minで引張り、糸又は製紐と樹脂シートを剥離するために必要な強力を測定した。長さ方向に5cm剥がれた際の強力の平均値を平均剥離強力(N)とした。
(実施例12)
 重量平均分子量20万のポリエチレンオキシド(明成化学工業株式会社製、商品名 アルコックス 品番R-400)2.5質量%と相対粘度3.1のポリアミド6樹脂(ユニチカ株式会社製、商品名 A1030BRF)97.5質量%を混合し、ポリマー温度を260℃で1.0mmφ×4Hの紡糸口金から溶融紡糸した。紡糸した繊維を25℃の水浴中で冷却した後、巻き取ることなく、速度20m/分で90℃の温浴中で延伸し、さらに巻き取ることなく、120℃の乾熱雰囲気中で総延伸倍率が4.8倍となるように延伸し、油剤を付けずに巻き取った。繊度742dtexのモノフィラメント糸(ポリアミド繊維)を得た。また得られたモノフィラメント糸と樹脂シートとの貼り合せについて説明する。樹脂シートは厚さ0.32mmのウレタンシートを準備した。この樹脂シートを幅3cm、長さ10cmに、得られたモノフィラメント糸を樹脂シートの幅の真ん中に重なるように熱プレス試験機にセットし、180℃、20秒、圧力0.2MPaの条件でプレスした。この際、後述する剥離強力測定用として長さ方向にチャックつかみ部分を残し剥離強力試験用の実施例12の試料を作製した。一方、耐摩耗性について、金属丸棒を用いた評価<耐摩耗性評価1 金属丸棒>および、サンドペーパーを用いた評価<耐摩耗性評価4 サンドペーパー(乾摩耗)>を行い、その結果を表12に示す。なお、<耐摩耗性評価4 サンドペーパー(乾摩耗)>における荷重は70gとした。
(実施例13)
 実施例12において、樹脂シートが厚さ0.49mmのポリ塩化ビニル(PVC)シートを用いたこと以外は実施例12と同様にして、剥離強力試験用の実施例13の試料を作製した。
(実施例14)
 実施例12において得られたモノフィラメント糸で線径1.3mmの8本製紐を作製した。この8本製紐を用いて、実施例12で用いたウレタンシートに、実施例12で行った熱プレス条件で熱プレスを行い剥離強力用の実施例14の試料を作製した。
(比較例10)
 構成樹脂として、ポリアミド6樹脂(ユニチカ株式会社製、商品名 A1030BRF)のみを使用したこと、120℃の乾熱雰囲気中での延伸を総延伸倍率が5.0倍としたこと以外は、実施例12と同様にして、繊度743dtexのモノフィラメント糸(基準ポリアミド繊維)を得た。また実施例12と同様にウレタンシートに同条件で熱プレスを行い、剥離強力試験用の比較例10の試料を作製した。
(比較例11)
 比較例10において、樹脂シートがポリ塩化ビニル(PVC)シートを用いたこと以外は、比較例10と同様にして、剥離強力試験用の比較例11の試料を作製した。
(比較例12)
 比較例10において得られたモノフィラメント糸で巾1.3mmの8本製紐を作製した。この8本製紐を用いて、実施例12で用いたウレタンシートに、実施例12で行った熱プレス条件で熱プレスを行い剥離強力用の比較例12の試料を作製した。
 実施例12~14の試料と比較例10~12の試料でそれぞれ剥離強力を測定し、結果の平均剥離強力(N)を表11に示した。実施例12のポリアミド繊維は比較例10のポリアミド繊維の157%、実施例13のポリアミド繊維は比較例11のポリアミド繊維の137%、実施例14のポリアミド繊維は比較例12のポリアミド繊維の143%の平均剥離強力を有しており、30%以上の接着性に優れたポリアミド繊維を得ることができた。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (9)

  1.  ポリアミド系樹脂により構成されたポリアミド繊維であって、
     ポリアミド系樹脂中にポリアルキレンオキシド系樹脂が分散して存在している、ポリアミド繊維。
  2.  前記ポリアミド繊維の表面には、繊維方向に伸びる微小孔が存在している、請求項1に記載のポリアミド繊維。
  3.  前記ポリアミド繊維は、前記ポリアミド系樹脂及び前記ポリアルキレンオキシド系樹脂により構成された部分と、ポリアルキレンオキシド系樹脂を含まない樹脂により構成された部分とを備える複合繊維であり、
     前記ポリアミド繊維の表面には、前記ポリアミド系樹脂が存在している、請求項1又は2に記載のポリアミド繊維。
  4.  前記ポリアミド系樹脂中における前記ポリアルキレンオキシド系樹脂の含有率が、0.5~15質量%である、請求項1~3のいずれか1項に記載のポリアミド繊維。
  5.  前記ポリアルキレンオキシド系樹脂の重量平均分子量が、5万~50万である、請求項1~4のいずれか1項に記載のポリアミド繊維。
  6.  ポリアミド系樹脂により構成されたポリアミド繊維の製造方法であって、
     ポリアミド系樹脂とポリアルキレンオキシド系樹脂とを混合して得られた混合樹脂を溶融紡糸する工程を備える、ポリアミド繊維の製造方法。
  7.  前記混合樹脂中の前記ポリアルキレンオキシド系樹脂の割合を0.5~20質量%とする、請求項6に記載のポリアミド繊維の製造方法。
  8.  前記混合樹脂を溶融紡糸する工程の後、得られた繊維を水又は水蒸気に接触させる工程をさらに備える、請求項6又は7に記載のポリアミド繊維の製造方法。
  9.  前記混合樹脂を溶融紡糸する工程の後、得られた繊維を水浴中で延伸する工程をさらに備える、請求項6又は7に記載のポリアミド繊維の製造方法。
PCT/JP2017/020546 2016-06-03 2017-06-02 耐摩耗性に優れるポリアミド繊維およびその製造方法 WO2017209268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018521008A JP6967784B2 (ja) 2016-06-03 2017-06-02 耐摩耗性に優れるポリアミド繊維およびその製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016111915 2016-06-03
JP2016-111915 2016-06-03
JP2016-162826 2016-08-23
JP2016162826 2016-08-23
JP2017-021343 2017-02-08
JP2017021343 2017-02-08
JP2017053631 2017-03-17
JP2017-053631 2017-03-17

Publications (1)

Publication Number Publication Date
WO2017209268A1 true WO2017209268A1 (ja) 2017-12-07

Family

ID=60478636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020546 WO2017209268A1 (ja) 2016-06-03 2017-06-02 耐摩耗性に優れるポリアミド繊維およびその製造方法

Country Status (2)

Country Link
JP (1) JP6967784B2 (ja)
WO (1) WO2017209268A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200557A (ja) * 2019-06-12 2020-12-17 ユニチカ株式会社 人工芝生パイル用ポリアミド繊維

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192716A (ja) * 1983-04-14 1984-11-01 Toyobo Co Ltd 制電性繊維の製造方法
JPH02191713A (ja) * 1989-01-17 1990-07-27 Toray Ind Inc 改質ポリアミド繊維の製造方法及び絹様光沢トリコット編地の製造方法
JPH08158250A (ja) * 1994-12-02 1996-06-18 Unitika Ltd 表面改質繊維の製造法
JPH08157650A (ja) * 1994-12-07 1996-06-18 Kanebo Ltd ポリオレフィン樹脂組成物およびそれを用いた不織布
JP2004141018A (ja) * 2002-10-22 2004-05-20 Unitica Fibers Ltd 海藻類養殖網用ポリアミド繊維
JP2013534549A (ja) * 2010-06-15 2013-09-05 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076088B2 (ja) * 1985-02-25 1995-01-25 東レ・モノフィラメント株式会社 ポリアミドモノフィラメントおよびその製造方法
JPS61194215A (ja) * 1985-02-25 1986-08-28 Toray Monofilament Co Ltd ポリアミドモノフイラメントの製造方法
JPH08158151A (ja) * 1994-11-30 1996-06-18 Toray Ind Inc 高強度ポリアミドモノフィラメント及びその製造方法
JP5641809B2 (ja) * 2010-08-05 2014-12-17 ユニチカ株式会社 ポリアミド繊維

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192716A (ja) * 1983-04-14 1984-11-01 Toyobo Co Ltd 制電性繊維の製造方法
JPH02191713A (ja) * 1989-01-17 1990-07-27 Toray Ind Inc 改質ポリアミド繊維の製造方法及び絹様光沢トリコット編地の製造方法
JPH08158250A (ja) * 1994-12-02 1996-06-18 Unitika Ltd 表面改質繊維の製造法
JPH08157650A (ja) * 1994-12-07 1996-06-18 Kanebo Ltd ポリオレフィン樹脂組成物およびそれを用いた不織布
JP2004141018A (ja) * 2002-10-22 2004-05-20 Unitica Fibers Ltd 海藻類養殖網用ポリアミド繊維
JP2013534549A (ja) * 2010-06-15 2013-09-05 ビーエーエスエフ ソシエタス・ヨーロピア 耐熱老化性ポリアミド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200557A (ja) * 2019-06-12 2020-12-17 ユニチカ株式会社 人工芝生パイル用ポリアミド繊維

Also Published As

Publication number Publication date
JP6967784B2 (ja) 2021-11-17
JPWO2017209268A1 (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
JP4834859B2 (ja) モノフィラメント様製品の製造方法
KR100900134B1 (ko) 비중 조정이 가능한 저신도 내마모성 사조
TWI691625B (zh) 經編織伸長主體及其製造方法
KR101576509B1 (ko) 단섬유를 포함하는 심초구조의 낚시줄
JP4054736B2 (ja) 自己融着糸条の製造方法
JP5107454B2 (ja) テーパー状マルチフィラメント糸条
JP6392598B2 (ja) 優れた耐屈曲疲労性を有する芯鞘複合ポリアミドモノフィラメント
JP2024009966A (ja) 切断抵抗性である充填された長尺体
WO2017209268A1 (ja) 耐摩耗性に優れるポリアミド繊維およびその製造方法
JP4695291B2 (ja) 低伸度糸
JP4463844B2 (ja) 自己融着糸条
JP4851486B2 (ja) 糸条と該糸条からなる釣糸
JP2004084148A (ja) 比重調整可能な低伸度耐磨耗性糸条
JP7473946B2 (ja) 水産資材用複合モノフィラメントおよびその製造方法
JP7122734B2 (ja) 耐摩耗性に優れるポリエステル繊維とその製造方法
JP2022034119A (ja) 水産資材用複合モノフィラメント
JP2007330264A (ja) 比重調整可能な低伸度耐磨耗性糸条
JP4468565B2 (ja) 釣糸
US12071715B2 (en) Yarn and method of producing the same
JP5553568B2 (ja) 漁具
EP4303347A1 (en) Core-sheath composite fiber, production method therefor, and fiber structure
JP2002339184A (ja) テーパー状マルチフィラメント糸条およびその製造方法
JP2020070536A (ja) 耐摩耗性に優れた熱可塑性繊維およびその製造方法
JP2020200557A (ja) 人工芝生パイル用ポリアミド繊維
JP2024072962A (ja) 研磨用モノフィラメント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018521008

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806818

Country of ref document: EP

Kind code of ref document: A1