WO2017209042A1 - ポリアミド樹脂製複合成形品およびその製造方法 - Google Patents

ポリアミド樹脂製複合成形品およびその製造方法 Download PDF

Info

Publication number
WO2017209042A1
WO2017209042A1 PCT/JP2017/019897 JP2017019897W WO2017209042A1 WO 2017209042 A1 WO2017209042 A1 WO 2017209042A1 JP 2017019897 W JP2017019897 W JP 2017019897W WO 2017209042 A1 WO2017209042 A1 WO 2017209042A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
polyamide
fiber
composite molded
molded article
Prior art date
Application number
PCT/JP2017/019897
Other languages
English (en)
French (fr)
Inventor
佳之 本田
公彦 服部
俊司 河野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/305,076 priority Critical patent/US20200282614A1/en
Priority to JP2017548238A priority patent/JP6962196B2/ja
Priority to EP17806597.5A priority patent/EP3466635A4/en
Priority to CN201780031825.1A priority patent/CN109311197B/zh
Publication of WO2017209042A1 publication Critical patent/WO2017209042A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14319Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles bonding by a fusion bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2677/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • the present invention relates to a polyamide resin composite molded article having a fiber reinforced polyamide resin base material and a polyamide resin molded article, and a method for producing the same.
  • Polyamide resins have excellent mechanical properties, heat resistance, and chemical resistance, and are therefore preferably used for automobiles and electrical / electronic component applications.
  • fiber reinforced polyamide resin reinforced with glass fiber, carbon fiber, or the like can greatly improve mechanical properties as compared with other thermoplastic resins, and development of metal substitute applications is being promoted.
  • application to structural members that greatly contribute to vehicle weight is also expected, and further improvement in mechanical properties is required.
  • thermoplastic resin molded products such as polyamide resin
  • a method of combining a fiber reinforced resin base material containing continuous reinforcing fibers and an injection molded product From the viewpoint of compositing, weldability between materials is an issue, and as a technique for improving the weldability, an integrally molded product made of polyamide resin using a polyamide resin composition containing polyamide 6 resin and polyamide 6/66 resin (for example, Patent Document 1) is known.
  • an injection welding material containing polyamide 66 resin, polyamide 12 resin, and polyamide 6/66 resin is known (for example, see Patent Document 2).
  • the polyamide resin monolithic molded article of Patent Document 1 does not contain continuous fibers in the primary molding material and has a low effect of improving rigidity.
  • the injection welding material of Patent Document 2 not only has a small improvement in rigidity due to the composite, but also has a problem of low weldability because it contains polyamide 66 resin.
  • the compounding ratio of the polyamide 66 resin is large, a large warp due to a difference in linear expansion has been a problem.
  • the present invention mainly has the following configuration.
  • a composite molded product in which a fiber reinforced polyamide resin base material obtained by impregnating a reinforcing fiber base material with an impregnating polyamide resin and a polyamide resin molded product made of a polyamide resin composition are joined at least in part,
  • the amount of heat required for melting the impregnating polyamide resin is 300 ⁇ Q ⁇ 425 (J / g), and the solubility parameter (SP value) of the impregnating polyamide resin calculated from the Fedors equation is 11 ⁇ ⁇ 13.2.
  • a composite molded article made of polyamide resin which is ((cal / cm 3 ) 1/2 ).
  • the polyamide resin composition contains 10 to 250 parts by weight of a filler with respect to 100 parts by weight of the polyamide resin.
  • the main component of the polyamide resin composition is a polyamide 6 resin.
  • a method for producing a composite molded article wherein the heat requirement for melting of the impregnating polyamide resin is 300 ⁇ Q ⁇ 425 (J / g), and the solubility parameter (SP) of the impregnating polyamide resin calculated from the Fedors equation Value) is 11 ⁇ ⁇ 13.2 ((cal / cm 3 ) 1/2 ), a method for producing a polyamide resin composite molded product.
  • SP solubility parameter
  • the composite molded product made of polyamide resin according to the embodiment of the present invention has a fiber-reinforced polyamide resin base material and a polyamide resin molded product.
  • the fiber-reinforced polyamide resin base material is obtained by impregnating a reinforcing fiber base material with a polyamide resin for impregnation.
  • the form of the reinforcing fiber base include a sheet-like material in which continuous reinforcing fibers are arranged, and a mat-like material in which discontinuous reinforcing fibers are dispersed.
  • the continuous reinforcing fiber means a fiber-reinforced polyamide resin base material in which the reinforcing fiber is not interrupted. Examples of the form and arrangement of the sheet-like material include those arranged in one direction, woven fabric (cross), knitted fabric, braided string, tow and the like.
  • the mat-like material can be obtained by any method such as a wet method in which discontinuous reinforcing fibers are dispersed in a solution and then manufactured into a sheet shape, or a dry method using a carding device or an airlaid device. It can.
  • a sheet-like material in which continuous reinforcing fibers are arranged in one direction is preferable from the viewpoint of efficiently increasing the rigidity in a specific direction.
  • the type of reinforcing fiber or discontinuous fiber used for the reinforcing fiber base is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.
  • carbon fibers examples include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers, pitch-based carbon fibers made from petroleum tar and petroleum pitch, cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof. Of these carbon fibers, PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers
  • pitch-based carbon fibers made from petroleum tar and petroleum pitch
  • cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof.
  • PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • metal fibers include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • aramid fiber examples include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
  • para-aramid fiber examples include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber.
  • meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
  • As the aramid fiber a para-aramid fiber having a higher elastic modulus than the meta-aramid fiber is preferably used.
  • the fiber which consists of inorganic materials such as glass, a basalt, a silicon carbide, silicon nitride, is mentioned, for example.
  • the glass fiber include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength, high elastic modulus).
  • Basalt fiber is a fiber made from basalt, a mineral, and is extremely heat-resistant. Basalt is generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to fiberize.
  • the fiber-reinforced polyamide resin base material of the embodiment of the present invention is often expected to play a role as a reinforcing material, it is desirable to exhibit high mechanical properties, and in order to exhibit high mechanical properties, reinforcing fibers Or it is preferable that a carbon fiber is included as a discontinuous fiber.
  • the reinforcing fiber or the discontinuous fiber used for the reinforcing fiber base is usually configured by arranging one or a plurality of reinforcing fiber bundles in which a large number of single fibers are bundled.
  • the total number of filaments (number of single fibers) of the reinforcing fiber base when one or a plurality of reinforcing fiber bundles are arranged is preferably 1,000 to 2,000,000.
  • the total number of filaments of the reinforcing fiber base is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000. 1,000 to 300,000 are particularly preferable.
  • One reinforcing fiber bundle is preferably formed by bundling 1,000 to 50,000 single fibers of reinforcing fibers having an average diameter of 5 to 10 ⁇ m.
  • the impregnating polyamide resin impregnated into the sheet-like or mat-like reinforcing fiber base material satisfies the requirements described later, and thus the polyamide resin composition having different main components is used. It can be made to weld well with the resulting polyamide resin molded product.
  • the polyamide resin for impregnation is a polyamide mainly composed of (i) amino acid, (ii) lactam or (iii) diamine and dicarboxylic acid.
  • Representative examples of the raw material for the impregnating polyamide resin include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ⁇ -caprolactam and ⁇ -laurolactam, tetra Methylenediamine, pentamethylenediamine, hexamethylenediamine, 2-methylpentamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexa Aliphatic diamines such as methylenediamine, 5-methylnonamethylenediamine, 2-methyloctamethylenediamine, aromatic diamine
  • impregnating polyamide resin examples include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polytetramethylene sebacamide (nylon) 410), polypentamethylene adipamide (nylon 56), polypentamethylene sebamide (nylon 510), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polydecamethylene azide Pamide (nylon 106), polydecane methylene sebamide (nylon 1010), polydecane methylene dodecane (nylon 1012), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polycaproamide / polyhexa Methylene adipami Copolymer (nylon 6/66), polycaproamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene a
  • the solubility parameter (SP value) ⁇ of the polyamide resin for impregnation is 11 ⁇ ⁇ 13.2 ((cal / cm 3 ) 1/2 ) from the viewpoint of improving the weldability with the polyamide resin molded product. It is important to be. Preferably 11.2 ⁇ ⁇ 13, more preferably 11.4 ⁇ ⁇ 12.8. If it is too low, the weldability will be reduced, and if it is too high, the melting point will be high and it will be difficult to produce a fiber-reinforced polyamide resin substrate.
  • Formula (1): ⁇ ( ⁇ e i ) 1/2 / ( ⁇ v t ) 1/2
  • ⁇ e i and ⁇ v t are the evaporation energy (cal / mol) and the molar volume (cm 3 / mol) of each atom or atomic group.
  • the SP value of the copolymer is calculated by the following formula (2).
  • ⁇ co 1 / (W1 / ⁇ 1 + W2 / ⁇ 2 +... + Wn / ⁇ n)
  • ⁇ co is the SP value of the copolymer
  • ⁇ 1, ⁇ 2,... ⁇ n are SP values calculated by the Fedors method of each monomer constituting the copolymer
  • W1, W2, is a weight fraction of each monomer constituting.
  • the heat required for melting the polyamide resin for impregnation is 300 ⁇ Q ⁇ 425 (J / g). Preferably 330 ⁇ Q ⁇ 390, more preferably 350 ⁇ Q ⁇ 380. If it is too low, the thermal stability is low and it is difficult to produce a fiber-reinforced polyamide resin substrate, and if it is too high, the weldability is lowered.
  • the required heat quantity Q for melting is calculated from the following formula (3).
  • polyamide 6/66 is particularly suitable.
  • Polyamide 6/66 having a copolymerization ratio of 30 to 90% by weight of polyamide 6 component and 70 to 10% by weight of polyamide 66 component is preferable in terms of productivity and welding of the polyamide resin base material, and more preferably 85% by weight of polyamide 6 component. %, More preferably, the polyamide 6 component is 40% by weight or more.
  • the polyamide resin molded article in the embodiment of the invention is made of a polyamide resin composition.
  • the polyamide resin composition contains at least a polyamide resin.
  • various polyamides can be selected in the same manner as the above-described impregnation polyamide resin.
  • the polyamide resin for impregnation and the polyamide resin composition are different.
  • the impregnating polyamide resin and the polyamide resin composition are different, sufficient rigidity, injection moldability and weldability as a composite molded body can be obtained.
  • a fiber-reinforced polyamide resin base material containing relatively long fibers compared to short fibers used in injection molding materials has a low coefficient of linear expansion. Therefore, a dimensional change such as warping may occur in a composite molded product obtained by joining a fiber reinforced polyamide resin base material and a polyamide resin molded product. Therefore, in order to improve the dimensional stability of the polyamide resin composite molded article, it is effective to reduce the difference in linear expansion coefficient between the polyamide resin molded article and the fiber-reinforced polyamide resin base material. It is preferable to contain a filler. As the filler, either an organic filler or an inorganic filler may be used, and either a fibrous filler or a non-fibrous filler may be used.
  • the fibrous filler examples include glass fiber, PAN (polyacrylonitrile) -based or pitch-based carbon fiber, stainless steel fiber, metal fiber such as aluminum fiber and brass fiber, organic fiber such as aromatic polyamide fiber, gypsum fiber, Ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker And fibrous or whisker-like fillers.
  • glass fiber is particularly preferable.
  • the kind of glass fiber is not particularly limited as long as it is generally used for reinforcing a resin, and can be selected from, for example, long fiber type, short fiber type chopped strand, milled fiber, and the like. Further, the glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin. Furthermore, the cross-section of the glass fiber is not limited to a circular, flat gourd, eyebrows, oval, ellipse, rectangle, or similar products.
  • the cross section of the glass fiber is preferably a flat fiber having a major axis / minor axis ratio of 1.5 or more, more preferably 2 or more, and preferably 10 or less. 6 or less are more preferable.
  • the ratio of major axis / minor axis is less than 1.5, the effect of flattening the cross section is small.
  • Non-fibrous fillers include, for example, non-swelling silicates such as talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate, calcium silicate, and Li-type fluorine.
  • non-swelling silicates such as talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate, calcium silicate, and Li-type fluorine.
  • exchangeable cations existing between layers may be exchanged with organic onium ions, and examples of the organic onium ions include ammonium ions, phosphonium ions, and sulfonium ions. Moreover, you may contain 2 or more types of these fillers.
  • the surface of the non-fibrous filler may be treated with a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.). Characteristics and surface appearance can be further improved.
  • a method in which a filler is surface-treated with a coupling agent in accordance with a conventional method and then melt-kneaded with a polyamide resin is preferably used, but the filler and the polyamide resin are melt-kneaded without performing a surface treatment of the filler in advance.
  • an integral blend method in which a coupling agent is added may be used.
  • the treatment amount of the coupling agent is preferably 0.05 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the filler.
  • the treatment amount of the coupling agent is preferably 10 parts by weight or less, and more preferably 3 parts by weight or less with respect to 100 parts by weight of the filler.
  • the filler content is preferably 10 to 250 parts by weight with respect to 100 parts by weight of the polyamide resin. If content of a filler is 10 weight part or more, the dimensional stability of a molded article can be improved more.
  • the content of the filler is more preferably 20 parts by weight or more, and further preferably 30 parts by weight or more. On the other hand, when the content of the filler is 250 parts by weight or less, the dimensional stability of the molded product is improved while maintaining the weldability.
  • the content of the filler is more preferably 150 parts by weight or less, and even more preferably 100 parts by weight or less.
  • polyamide 6 resin is suitable as the main component of the polyamide resin composition because it has a small linear expansion coefficient and accordingly has high dimensional stability, excellent moldability, and high mechanical strength.
  • the polyamide resin composition according to the embodiment of the present invention can contain various additives depending on the resin other than the polyamide resin and the purpose within a range not impairing the effects of the present invention.
  • the preferable range of the amount of the filler is a ratio to the composition including a resin other than the polyamide resin and various additives.
  • resins other than polyamide resins include polyester resins, polyolefin resins, modified polyphenylene ether resins, polysulfone resins, polyketone resins, polyetherimide resins, polyarylate resins, polyether sulfone resins, polyether ketone resins, polythioethers.
  • examples thereof include ketone resins, polyether ether ketone resins, polyimide resins, polyamideimide resins, and tetrafluoropolyethylene resins.
  • the content thereof is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, based on 100 parts by weight of the (A) polyamide resin in order to fully utilize the characteristics of the polyamide resin.
  • additives include heat stabilizers other than copper compounds, isocyanate compounds, organic silane compounds, organic titanate compounds, organic borane compounds, epoxy compounds and other coupling agents, polyalkylene oxide oligomers.
  • Compounds, plasticizers such as thioether compounds and ester compounds, crystal nucleating agents such as polyether ether ketone, metal soaps such as montanic acid wax, lithium stearate, aluminum stearate, ethylenediamine, stearic acid, sebacic acid heavy Examples include mold release agents such as condensates and silicone compounds, lubricants, UV inhibitors, colorants, flame retardants, impact resistance improvers, and foaming agents.
  • the content thereof is preferably 10 parts by weight or less, more preferably 1 part by weight or less, based on 100 parts by weight of the (A) polyamide resin in order to fully utilize the characteristics of the polyamide resin.
  • heat stabilizers other than copper compounds include phenolic compounds, sulfur compounds, and amine compounds. Two or more of these may be used as a heat stabilizer other than the copper compound.
  • phenolic compound a hindered phenolic compound is preferably used, and N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamide), tetrakis [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane and the like are preferably used.
  • sulfur compounds include organic thioacid compounds, mercaptobenzimidazole compounds, dithiocarbamic acid compounds, and thiourea compounds.
  • sulfur compounds include organic thioacid compounds, mercaptobenzimidazole compounds, dithiocarbamic acid compounds, and thiourea compounds.
  • mercaptobenzimidazole compounds and organic thioacid compounds are preferable.
  • a thioether compound having a thioether structure can be suitably used as a heat stabilizer because it receives oxygen from an oxidized substance and reduces it.
  • the thioether compound examples include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, ditetradecylthiodipropionate, dioctadecylthiodipropionate, pentaerythritol tetrakis (3-dodecylthiopropionate). ), Pentaerythritol tetrakis (3-laurylthiopropionate) is preferred, and pentaerythritol tetrakis (3-dodecylthiopropionate) and pentaerythritol tetrakis (3-laurylthiopropionate) are more preferred.
  • the molecular weight of the sulfur compound is usually 200 or more, preferably 500 or more, and the upper limit is usually 3,000.
  • a compound having a diphenylamine skeleton, a compound having a phenylnaphthylamine skeleton, and a compound having a dinaphthylamine skeleton are preferable, and a compound having a diphenylamine skeleton and a compound having a phenylnaphthylamine skeleton are more preferable.
  • amine compounds 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine and N, N′-diphenyl-p-phenylenediamine are used. More preferred are N, N′-di-2-naphthyl-p-phenylenediamine and 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine.
  • a combination of the sulfur compound or the amine compound a combination of pentaerythritol tetrakis (3-laurylthiopropionate) and 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine is more preferable.
  • the method for producing the polyamide resin composition in the embodiment of the present invention is not particularly limited, but production in a molten state, production in a solution state, etc. can be used, and production in a molten state from the viewpoint of improving reactivity. Can be preferably used.
  • melt kneading using an extruder melt kneading using a kneader, or the like can be used. From the viewpoint of productivity, melt kneading using an extruder that can be continuously produced is preferable.
  • one or more extruders such as a single screw extruder, a twin screw extruder, a multi screw extruder such as a four screw extruder, and a twin screw single screw compound extruder can be used.
  • a multi-screw extruder such as a twin-screw extruder or a four-screw extruder is preferable, and a method by melt kneading using a twin-screw extruder is most preferable.
  • the fiber reinforced polyamide resin base material impregnated with the impregnating polyamide resin as a method of impregnating the continuous reinforcing fiber base material with the impregnating polyamide resin, for example, a film-like impregnating polyamide resin is melted and pressed.
  • Combing method for impregnating the impregnating polyamide resin after dispersing the powdery impregnating polyamide resin in the gaps of the fibers in the reinforcing fiber bundle, the powdered impregnating polyamide resin is melted and pressurized to form a reinforcing fiber bundle
  • Drawing method of impregnating a impregnating polyamide resin into a bundle can be mentioned. The drawing method is preferable because various types of fiber reinforced polyamide resin base materials such as various thicknesses and fiber volume contents can be produced.
  • the thickness of the fiber-reinforced polyamide resin base material in the embodiment of the present invention is preferably 0.1 to 1.5 mm. If thickness is 0.1 mm or more, the intensity
  • the fiber reinforced polyamide resin base material of the embodiment of the present invention contains 10% by volume or more and 70% by volume or less of reinforcing fiber in 100% by volume of the entire fiber reinforced polyamide resin base material.
  • 10% by volume or more of reinforcing fibers the strength of a molded product obtained using the fiber-reinforced polyamide resin substrate can be improved. 20 volume% or more is more preferable and 30 volume% or more is further more preferable.
  • 70% by volume or less of reinforcing fibers it is easier to impregnate the reinforcing fibers with the polyamide resin composition. 65 volume% or less is more preferable, and 60 volume% or less is further more preferable.
  • the fiber reinforced polyamide resin base material can be selected for a desired impregnation property according to its usage and purpose. For example, prepregs with higher impregnation properties, semi-impregnated semi-pregs, and fabrics with low impregnation properties may be used. In general, a fiber-reinforced polyamide resin base material having a high impregnation property is preferable because of excellent mechanical properties.
  • the composite molded product made of polyamide resin according to the embodiment of the present invention can be obtained by molding the above-mentioned polyamide resin composition by any molding method used for thermoplastic resins.
  • the molding method include injection molding, injection compression molding, extrusion molding, compression molding, blow molding, and press molding. From the viewpoint of productivity and easy molding of a molded product having a complicated shape, injection molding is preferable.
  • a shape of a resin molded product a sheet
  • the composite molded product of the embodiment of the present invention has a fiber reinforced polyamide resin base material and a polyamide resin molded product, and can be obtained by joining and integrating the fiber reinforced polyamide resin base material and the polyamide resin molded product.
  • the method for joining and integrating the fiber reinforced polyamide resin base material and the polyamide resin molded product include various welding methods such as laser welding, vibration welding, ultrasonic welding, and injection welding, and adhesion with an adhesive. .
  • injection welding is particularly preferable.
  • Injection welding is a process in which a polyamide resin for impregnation in a fiber reinforced polyamide resin substrate previously placed in a mold is melted by heat of the injection molded polyamide resin composition and then re-solidified in the process of re-solidification. This is a method of joining a material and a polyamide resin molded product, and can improve the productivity of the composite molded product.
  • the composite molded article made of polyamide resin according to the embodiment of the present invention is utilized for various applications such as aircraft parts, automobile parts, electrical / electronic parts, building members, various containers, daily necessities, daily life goods and hygiene goods, taking advantage of its excellent characteristics. can do.
  • the polyamide resin composite molded article according to the embodiment of the present invention is required to have, inter alia, weldability, rigidity, and dimensional stability, aircraft parts, automobile body parts, automobile underhood parts, automobile gear parts, automobile interior parts, It is particularly preferably used for automotive exterior parts, automotive electrical parts, and electrical / electronic parts.
  • the composite molded product made of polyamide resin of the embodiment of the present invention includes landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, ribs and other aircraft related parts, front bodies, under bodies, Various pillars, various members, various frames, various beams, various supports, various rails, various hinges, etc., car body parts, cooling fans, radiator tank tops and bases, cylinder head covers, oil pans, brake piping, fuel piping tubes, Automotive underhood parts such as waste gas system parts, automobile gear parts such as gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering locks Car interior parts such as racket, key cylinder, door inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument panel, console box, glove box, steering wheel, trim, front fender, rear fender, fuel lid, door panel, Automotive exterior parts such as cylinder head cover, door mirror stay, tailgate panel, license garnish, roof rail, engine mount bracket, rear garnish
  • Terminal housing and internal parts IC and LED compatible housings, capacitor seats, fuse holders, various gears, various cases, cabinets and other electrical components, connectors, SMT compatible connectors, card connectors, jacks, coils, coil bobbins, Sensors, LED lamps, sockets, resistors, relays, relay cases, reflectors, small switches, power supply components, coil bobbins, capacitors, variable capacitor cases, optical pickup chassis, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners , Speakers, microphones, headphones, small motors, magnetic head bases, power modules, Si power modules and SiC power modules, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, transformer members, parabolic antennas, computer-related parts, etc. It is preferably used for electronic parts.
  • SP value of polyamide resin for impregnation For the polyamide resin for impregnation, the SP values ⁇ and ⁇ co were calculated using the equations (1) and (2).
  • the polyamide resin composition shown in the table was vacuum-dried at 80 ° C. for 12 hours, and cylinder temperature: melting point of the polyamide resin composition + 35 ° C. (Example) using an injection molding machine (J110AD-110H manufactured by Nippon Steel) 7 is 260 ° C.), and the mold temperature is 60 ° C.
  • the fiber reinforced polyamide resin base material shown in the table cut to an appropriate size for a mold capable of producing a test piece having a shape as shown in FIG.
  • the composite molded product made of polyamide resin in which both ends of the fiber reinforced polyamide resin base material and the polyamide resin molded product were joined was obtained by injection welding.
  • the molded product as a whole had a shape of ISO Type-A standard.
  • a tensile test was performed according to ISO 527-1 and -2, except that the area of the weld surface on one side for evaluating the weldability was 40 mm 2 and the tensile speed was 1 mm / min. The measurement was performed three times, and the average value of the maximum load until fracture was evaluated as the welding force. In addition, x was described about the thing which peeled at the time of shaping
  • the polyamide resin composition shown in the table was vacuum-dried at 80 ° C. for 12 hours, and the conditions of cylinder temperature: 300 ° C. and mold temperature: 120 ° C. using an injection molding machine (J110AD-110H manufactured by Nippon Steel)
  • the fiber reinforced polyamide resin base material shown in the table cut to an appropriate size is placed on both sides of a flat plate mold 150mm long x 50mm wide x 3mm thick, and fiber reinforced on both sides of the polyamide resin molded product by injection welding
  • a polyamide composite molded article having a sandwich structure having a polyamide resin substrate was obtained.
  • the fiber reinforced polyamide resin base material was disposed so that the reinforcing fiber axis direction was substantially parallel to the longitudinal direction of the polyamide resin composite molded product.
  • the composite molded product made of polyamide resin was cut to 150 mm ⁇ 10 mm with the reinforcing fiber axis direction of the fiber-reinforced polyamide resin base as the long side, and a bending test piece was prepared.
  • the test piece was subjected to a bending test according to JIS K7171-2008 using an “Instron” (registered trademark) universal testing machine type 5566 (manufactured by Instron) at a crosshead speed of 2 mm / min. The measurement was performed three times, and the average value was calculated as the flexural modulus.
  • a test piece of a composite molded product made of polyamide resin having a length of 150 mm ⁇ 50 mm width ⁇ 3 mm was obtained in the same manner as the bending elastic modulus except that the fiber reinforced polyamide resin base material was arranged on one side.
  • this polyamide resin composite molded product the distance between the point at which the curvature of the warp was maximum and the straight line connecting the ends was evaluated as the amount of warp according to the following criteria.
  • the fiber reinforced polyamide resin substrate was produced by the following method. Sixteen bobbins around which the reinforcing fiber bundles were wound were prepared, and the reinforcing fiber bundles were continuously fed from the bobbins through the yarn path guide. The reinforcing fiber bundle continuously fed out was impregnated with the impregnation polyamide resin quantitatively supplied from the feeder filled with the impregnation polyamide resin in the impregnation die.
  • a carbon fiber bundle (“Torayca” (registered trademark) T700S-12K manufactured by Toray Industries, Inc.) was used as the reinforcing fiber, and the polyamide resin for impregnation described in Tables 1 and 2 was used.
  • the reinforcing fiber impregnated with the impregnating polyamide resin in the impregnation die was continuously drawn out from the nozzle of the impregnation die using a take-up roll.
  • the drawn reinforcing fiber bundle was passed through a cooling roll, the impregnating polyamide resin was cooled and solidified, and wound on a winder as a fiber reinforced polyamide resin base material.
  • the thickness of the obtained fiber reinforced polyamide resin base material was 0.3 mm, and the reinforcing fiber direction was arranged in one direction.
  • the content of reinforcing fibers in the fiber-reinforced polyamide resin substrate was 50% by volume.
  • the polyamide resin composition was produced by the following method.
  • the base resin (main component) described in Tables 1 and 2 is supplied from the first supply port of the twin screw extruder ZSK57 manufactured by Werner-Pfleidere, and glass fiber is used as a filler from the second supply port.
  • the mixture was supplied so that the content described in No. 2 was obtained, and melted and kneaded at a barrel temperature of a melting point + 25 ° C., a discharge rate of 60 kg / hr, and a screw rotation speed of 200 rpm, to obtain polyamide resin composition pellets.
  • Example 2 A polyamide resin composite molded article was produced in the same manner as in Example 1 except that glass fiber was used as the reinforcing fiber, and various properties were evaluated.
  • Example 3 A fiber-reinforced polyamide resin base material was produced by the following method using the reinforcing fibers listed in Table 1 and the polyamide resin for impregnation.
  • the impregnating polyamide resin was put into an extruder, melted and kneaded, and then extruded into a film form from a film die to obtain a resin film.
  • carbon fiber used as a reinforcing fiber (“Torayca” (registered trademark) T700S-12K manufactured by Toray Industries, Inc.) is cut into a fiber length of 15 mm, put into an air laid apparatus, and a mat-like shape having a basis weight of 100 g / m 2 .
  • a reinforcing fiber substrate was obtained.
  • the mold temperature is charged to the melting point of the impregnating polyamide resin + 30 ° C. and put into a mold. did. Subsequently, after heating and pressing at a pressure of 3 MPa for 10 minutes, a cooling press was performed at a pressure of 3 MPa to obtain a fiber-reinforced polyamide resin base material.
  • the thickness of the obtained fiber-reinforced polyamide resin base material was 0.3 mm, and the arrangement of the reinforcing fibers was isotropic (random).
  • Example 7 Using the polyamide resin composition prepared in the same manner as in Example 1 except that the polyamide composition in Table 1 and the polyamide resin for impregnation were used, and that the barrel temperature was set to 300 ° C. in the production method of the polyamide resin composition. Thus, a composite molded product made of polyamide resin was prepared and various characteristics were evaluated.
  • Example 7 A polyamide resin composite molded article was produced in the same manner as in Example 1 except that a fiber-reinforced polyamide resin base material that was thermally annealed under the conditions of a treatment temperature of 180 ° C. and a treatment time of 30 minutes was used, and various properties were evaluated. .
  • Example 8 A polyamide resin composite molded article was prepared in the same manner as in Example 1 except that the polyamide resin for impregnation was a mixture of polyamide 6 and 25% by weight of Reference Example 1 below, respectively. evaluated.
  • Polyamide 6/66 85/15
  • Polyamide 6/66 salt 80% aqueous solution of equimolar salt of ⁇ -caprolactam / hexamethylenediamine-adipic acid
  • benzoic acid polyamide 6/66 salt
  • the polymer was polymerized for 3 hours while maintaining an internal temperature of 250 ° C. and an internal pressure of 1.5 to 2.0 MPa. Thereafter, the internal pressure was returned to normal pressure while gradually releasing the pressure, the internal temperature was raised to 270 to 280 ° C., and polymerization was performed for another hour.
  • polyamide 6/66 resin was extracted with a strand from the lower part of the autoclave, pelletized, and then vacuum dried at 80 ° C. for 24 hours.
  • Polyamide 6/66 obtained had a relative viscosity ⁇ r of 2.35 and a melting point of 194 ° C.
  • Polyamide 6/66 90/10
  • Polyamide 6/66 was obtained in the same manner as in Reference Example 1 except that the polyamide 6/66 salt was changed to 90/10 parts by weight.
  • the obtained polyamide 6/66 resin had a relative viscosity ⁇ r of 2.35 and a melting point of 199 ° C.
  • Polyamide 6/66 40/60
  • Polyamide 6/66 was obtained in the same manner as in Reference Example 1 except that the polyamide 6/66 salt was changed to 40/60 parts by weight.
  • the obtained polyamide 6/66 resin had a relative viscosity ⁇ r of 2.35 and a melting point of 170 ° C.
  • Polyamide 6/66 30/70
  • Polyamide 6/66 was obtained in the same manner as in Reference Example 1 except that the polyamide 6/66 salt was changed to 30/70 parts by weight.
  • the obtained polyamide 6/66 resin had a relative viscosity ⁇ r of 2.35 and a melting point of 182 ° C.
  • Polyamide 6/66 95/5)
  • Polyamide 6/66 was obtained in the same manner as in Reference Example 1 except that the polyamide 6/66 salt was changed to 95/5 parts by weight.
  • the obtained polyamide 6/66 resin had a relative viscosity ⁇ r of 2.35 and a melting point of 254 ° C.
  • Polyamide 6/66 5/95
  • Polyamide 6/66 was obtained in the same manner as in Reference Example 1 except that the polyamide 6/66 salt was changed to 5/95 parts by weight.
  • the obtained polyamide 6/66 resin had a relative viscosity ⁇ r of 2.35 and a melting point of 212 ° C.
  • Tables 1 and 2 show the evaluation results of each example and comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

溶着性、剛性および寸法安定性に優れた繊維強化複合成形品を提供することであり、強化繊維基材に含浸用ポリアミド樹脂を含浸させた繊維強化ポリアミド樹脂基材と、ポリアミド樹脂組成物からなるポリアミド樹脂成形品とが、少なくとも一部で接合した複合成形品であって、前記含浸用ポリアミド樹脂の溶融必要熱量が300<Q<425(J/g)であり、Fedorsの式から算出される前記含浸用ポリアミド樹脂のSP値が11<σ<13.2((cal/cm1/2)であるポリアミド樹脂製複合成形品で達成される。

Description

ポリアミド樹脂製複合成形品およびその製造方法
 本発明は、繊維強化ポリアミド樹脂基材とポリアミド樹脂成形品とを有するポリアミド樹脂製複合成形品およびその製造方法に関する。
 ポリアミド樹脂は、優れた機械特性、耐熱性、耐薬品性を有するため、自動車や電気・電子部品用途へ好ましく用いられている。特に、ガラス繊維や炭素繊維などで強化した繊維強化ポリアミド樹脂は、他の熱可塑性樹脂と比較して機械特性の大幅な改良が可能であり金属代替用途の開発が進められている。更に、近年では車重への寄与が大きい構造部材への適用も期待されており、更なる機械特性の向上が求められている。
 ポリアミド樹脂を始めとする熱可塑性樹脂成形品の機械特性を更に向上させる技術として、連続の強化繊維を含有する繊維強化樹脂基材と射出成形品とを複合化する方法がある。複合化の観点では材料間の溶着性が課題であり、溶着性を向上させる技術として、ポリアミド6樹脂とポリアミド6/66樹脂とを含むポリアミド樹脂組成物を用いたポリアミド樹脂製一体成形品(例えば、特許文献1参照)が知られている。また、ポリアミド66樹脂、ポリアミド12樹脂、ポリアミド6/66樹脂とを含む射出溶着用材料(例えば、特許文献2参照)が知られている。
特開平11-348067号公報 特許第3191638号公報
 しかしながら、前記特許文献1のポリアミド樹脂製一体成形品は、一次成形材料に連続繊維を含まず剛性向上の効果が低いことに加え、ポリアミド6樹脂を含むため低温あるいは大型成形品の成形における溶着性は十分ではなかった。また、前記特許文献2の射出溶着用材料も、複合化による剛性向上が小さいだけでなく、ポリアミド66樹脂を含むため溶着性の低さが課題であった。さらに、ポリアミド66樹脂の配合比が大きい場合には線膨張差に伴う大きな反りも課題であった。本発明は、これら従来技術の課題に鑑み、溶着性、剛性および低反り性に優れるポリアミド樹脂製複合成形およびその製造方法を提供することを課題とする。
 上記課題を解決するため、本発明は、主として以下の構成を有する。
[1]強化繊維基材に含浸用ポリアミド樹脂を含浸させた繊維強化ポリアミド樹脂基材と、ポリアミド樹脂組成物からなるポリアミド樹脂成形品とが、少なくとも一部で接合した複合成形品であって、前記含浸用ポリアミド樹脂の溶融必要熱量が300<Q<425(J/g)であり、Fedorsの式から算出される前記含浸用ポリアミド樹脂の溶解度パラメータ(SP値)が11<σ<13.2((cal/cm1/2)であるポリアミド樹脂製複合成形品。
[2]前記含浸用ポリアミド樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む[1]に記載のポリアミド樹脂製複合成形品。
[3]前記ポリアミド樹脂組成物がポリアミド樹脂100重量部に対し、充填材10~250重量部を含む[1]または[2]のいずれかに記載のポリアミド樹脂製複合成形品。
[4]前記ポリアミド樹脂組成物の主成分がポリアミド6樹脂である[1]~[3]のいずれかに記載のポリアミド樹脂製複合成形品。
[5]前記強化繊維基材が一方向に配列した連続の強化繊維からなる[1]~[4]のいずれかに記載のポリアミド樹脂製複合成形品。
[6]前記強化繊維が炭素繊維であり、前記繊維強化ポリアミド樹脂基材中の繊維含有量が10~70体積%である[5]に記載のポリアミド樹脂製複合成形品。
[7]強化繊維基材に含浸用ポリアミド樹脂を含浸させた繊維強化ポリアミド樹脂基材を予め金型内に配置し、該金型にポリアミド樹脂組成物を射出成形して溶融接合するポリアミド樹脂製複合成形品の製造方法であって、前記含浸用ポリアミド樹脂の溶融必要熱量が300<Q<425(J/g)であり、Fedorsの式から算出される前記含浸用ポリアミド樹脂の溶解度パラメータ(SP値)が11<σ<13.2((cal/cm1/2)であるポリアミド樹脂製複合成形品の製造方法。
[8]前記含浸用ポリアミド樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む[7]に記載のポリアミド樹脂製複合成形品の製造方法。
[9]前記ポリアミド樹脂組成物が、ポリアミド樹脂100重量部に対し、充填材10~250重量部を含む[7]または[8]に記載のポリアミド樹脂製複合成形品の製造方法。
[10]前記ポリアミド樹脂組成物の主成分がポリアミド6樹脂である請求項[7]~[9]のいずれかに記載のポリアミド樹脂製複合成形品の製造方法。
[11]前記強化繊維基材が一方向に配列した連続の強化繊維からなる請求項[7]~[10]のいずれかに記載のポリアミド樹脂製複合成形品の製造方法。
[12]前記強化繊維が炭素繊維であり、前記繊維強化ポリアミド樹脂基材中の繊維含有量が10~70体積%である[11]に記載のポリアミド樹脂製複合成形品の製造方法。
 本発明により、溶着性、剛性および低反り性(寸法安定性)に優れた繊維強化複合成形品を提供することができる。
溶着力評価用試験片の形状。
 以下、本発明の実施形態を詳細に説明する。
 本発明の実施形態のポリアミド樹脂製複合成形品は、繊維強化ポリアミド樹脂基材と、ポリアミド樹脂成形品とを有する。
 繊維強化ポリアミド樹脂基材は、強化繊維基材に含浸用ポリアミド樹脂を含浸させてなるものである。強化繊維基材の形態としては、連続した強化繊維が配列したシート状物、不連続な強化繊維が分散したマット状物などが挙げられる。連続した強化繊維とは、繊維強化ポリアミド樹脂基材中で強化繊維が途切れのないものをいう。シート状物の形態および配列としては、例えば、一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。また、マット状物は、不連続な強化繊維を溶液中に分散させた後、シート状に製造する湿式法や、カーディング装置やエアレイド装置を用いた乾式法などの任意の方法により得ることができる。これらの中でも、特定方向の剛性を効率よく高められる点から、連続した強化繊維を一方向に配列したシート状物が好ましい。
 強化繊維基材に用いられる強化繊維または不連続繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。
 炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
 金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
 有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
 無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9~25重量%、チタンの化合物であるTiOまたはTiOを1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
 本発明の実施形態の繊維強化ポリアミド樹脂基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維または不連続繊維として炭素繊維を含むことが好ましい。
 繊維強化ポリアミド樹脂基材において、強化繊維基材に用いられる強化繊維または不連続繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維基材の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。生産性と分散性や取り扱い性とのバランスを考慮して、強化繊維基材の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。
 1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
 本発明に係る繊維強化ポリアミド樹脂基材において、シート状物またはマット状物の強化繊維基材に含浸させる含浸用ポリアミド樹脂は、後述する要件を満たすことで、主成分が異なるポリアミド樹脂組成物からなるポリアミド樹脂成形品と良好に溶着させることができるものである。
 含浸用ポリアミド樹脂とは、(i)アミノ酸、(ii)ラクタムあるいは(iii)ジアミンとジカルボン酸を主たる原料とするポリアミドである。含浸用ポリアミド樹脂の原料の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、2-メチルオクタメチレンジアミンなどの脂肪族ジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂環族ジアミン、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、2,6-ナフタレンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸などの脂環族ジカルボン酸などが挙げられる。本発明の実施形態において、含浸用ポリアミド樹脂の原料として、これらの原料から誘導されるポリアミドホモポリマーまたはポリアミドコポリマーを2種以上配合してもよい。
 含浸用ポリアミド樹脂の具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリテトラメチレンセバカミド(ナイロン410)、ポリペンタメチレンアジパミド(ナイロン56)、ポリペンタメチレンセバカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリデカメチレンドデカミド(ナイロン1012)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリウンデカンアミドコポリマー(ナイロン6T/11)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)、ポリキシリレンセバカミド(ナイロンXD10)、ポリヘキサメチレンテレフタルアミド/ポリペンタメチレンテレフタルアミドコポリマー(ナイロン6T/5T)、ポリヘキサメチレンテレフタルアミド/ポリ-2-メチルペンタメチレンテレフタルアミドコポリマー(ナイロン6T/M5T)、ポリペンタメチレンテレフタルアミド/ポリデカメチレンテレフタルアミドコポリマー(ナイロン5T/10T)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)などが挙げられる。また、含浸用ポリアミド樹脂の具体例としては、これらの混合物や共重合体なども挙げられる。ここで、「/」は共重合体を示す。以下、同様とする。
 本発明において、含浸用ポリアミド樹脂の溶解度パラメータ(SP値)σは、ポリアミド樹脂成形品との溶着性向上の観点から、11<σ<13.2((cal/cm1/2)であることが重要である。好ましくは11.2<σ<13、より好ましくは11.4<σ<12.8である。低すぎると溶着性が低下し、高すぎると融点が高くなり繊維強化ポリアミド樹脂基材の製造が困難となる。
 ここで、Fedors法で求められるSP値の具体的な計算方法は、Polym.Eng.Sci.,14,147(1974)に記載があるように、下記式(1)から、SP値δが算出される。
 式(1):δ=(ΣΔe1/2/(ΣΔv1/2
 ここで、Δe、Δvは各々の原子又は原子団の蒸発エネルギー(cal/mol)、及びモル体積(cm/mol)である。
 また、共重合体のSP値は以下の式(2)により算出される。
 式(2):δco=1/(W1/δ1+W2/δ2+・・・+Wn/δn)
 ここで、δcoは共重合体のSP値、δ1、δ2・・・δnは共重合体を構成する各モノマーのFedors法により算出されるSP値、W1、W2・・・Wnは共重合体を構成する各モノマーの重量分率である。
 含浸用ポリアミド樹脂の溶融必要熱量は300<Q<425(J/g)であることが重要である。好ましくは330<Q<390、より好ましくは350<Q<380である。低すぎると熱安定性が低く繊維強化ポリアミド樹脂基材の製造が困難であり、高すぎると溶着性が低下する。 溶融必要熱量Qは下記式(3)から算出される。
 式(3):Q=Cp×(Tm-60)+ΔH
また、融点を示さないナイロン樹脂(例えば非晶性ナイロン樹脂)の溶融必要熱量Qamは下記式(4)から算出される。
 式(4):Qam=Cp×(Tg+60)
 ここで、Cpは比熱容量(J/℃・g)、Tmは融点(℃)、Tgはガラス転移点(℃)、ΔHは溶融熱(J/g)である。また、CpはJIS K 7123-1987(2006年)に準じて測定した値、Tm、TgはJIS K 7121-1987(2006年)に準じて測定した値、ΔHはJIS K 7122-1987(2006年)に準じて測定した値である。いずれも示差走査熱量測定(DSC)で測定する。
 上記要件を満たす含浸用ポリアミド樹脂として、特にポリアミド6/66が好適である。共重合比がポリアミド6成分30~90重量%、ポリアミド66成分70~10重量%のポリアミド6/66がポリアミド樹脂基材の生産性および溶着の点で好ましく、より好ましくはポリアミド6成分が85重量%以下、さらに好ましくはポリアミド6成分が40重量%以上である。
 発明の実施形態におけるポリアミド樹脂成形品は、ポリアミド樹脂組成物からなるものである。
 ポリアミド樹脂組成物は少なくともポリアミド樹脂を含有する。ポリアミド樹脂としては、前述した含浸用ポリアミド樹脂同様、種々のポリアミドを選択することができる。
 なお、含浸用ポリアミド樹脂とポリアミド樹脂組成物は異なることが好ましい。含浸用ポリアミド樹脂とポリアミド樹脂組成物が異なることで、複合成形体としての十分な剛性、射出成形性および溶着性を得られる。
 一般に、射出成形材料で用いる短繊維に比べて比較的長い繊維を含む繊維強化ポリアミド樹脂基材は低い線膨張係数を有する。そのため、繊維強化ポリアミド樹脂基材とポリアミド樹脂成形品を接合した複合成形品は反り等の寸法変化が生じることがある。したがって、ポリアミド樹脂製複合成形品の寸法安定性を向上させるためには、ポリアミド樹脂成形品と繊維強化ポリアミド樹脂基材との線膨張係数差を小さくすることが効果的であり、ポリアミド樹脂組成物としては充填材を含むことが好ましい。充填材としては有機充填材、無機充填材のいずれを用いてもよく、繊維状充填材、非繊維状充填材のいずれを用いてもよい。
 繊維状充填材としては、例えば、ガラス繊維、PAN(ポリアクリロニトリル)系またはピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化珪素繊維、ロックウール、チタン酸カリウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミウィスカー、窒化珪素ウィスカーなどの繊維状またはウィスカー状充填材が挙げられる。繊維状充填材としては、ガラス繊維が特に好ましい。
 ガラス繊維の種類は、一般に樹脂の強化用に用いるものであれば特に限定はなく、例えば、長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、ガラス繊維は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂により被膜あるいは集束されていてもよい。さらに、ガラス繊維の断面は、円形、扁平状のひょうたん型、まゆ型、長円型、楕円型、矩形またはこれらの類似品など限定されるものではない。成形品の特有の反りを低減する観点から、ガラス繊維の断面は長径/短径の比が1.5以上の扁平状の繊維が好ましく、2以上のものがさらに好ましく、10以下のものが好ましく、6以下のものがさらに好ましい。長径/短径の比が1.5未満では断面を扁平状にした効果が少ない。
 非繊維状充填材としては、例えば、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケート、珪酸カルシウムなどの非膨潤性珪酸塩、Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型四珪素フッ素雲母の膨潤性雲母に代表される膨潤性層状珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、シリカ、珪藻土、酸化ジルコニウム、酸化チタン、酸化鉄、酸化亜鉛、酸化カルシウム、酸化スズ、酸化アンチモンなどの金属酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドロマイト、ハイドロタルサイトなどの金属炭酸塩、硫酸カルシウム、硫酸バリウムなどの金属硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、塩基性炭酸マグネシウムなどの金属水酸化物、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、カネマイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウムなどの各種粘土鉱物、ガラスビーズ、ガラスフレーク、セラミックビーズ、窒化ホウ素、窒化アルミニウム、炭化珪素、燐酸カルシウム、カーボンブラック、黒鉛などが挙げられる。上記の膨潤性層状珪酸塩は、層間に存在する交換性陽イオンが有機オニウムイオンで交換されていてもよく、有機オニウムイオンとしては、例えば、アンモニウムイオンやホスホニウムイオン、スルホニウムイオンなどが挙げられる。また、これら充填材を2種以上含有してもよい。
 なお、非繊維状の充填材は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)などにより処理されていてもよく、この場合、成形品の機械特性や表面外観をより向上させることができる。例えば、常法に従って予め充填材をカップリング剤により表面処理し、ついでポリアミド樹脂と溶融混練する方法が好ましく用いられるが、予め充填材の表面処理を行わずに、充填材とポリアミド樹脂を溶融混練する際に、カップリング剤を添加するインテグラブルブレンド法を用いてもよい。カップリング剤の処理量は、充填材100重量部に対して0.05重量部以上が好ましく、0.5重量部以上がより好ましい。一方、カップリング剤の処理量は、充填材100重量部に対して10重量部以下が好ましく、3重量部以下がより好ましい。
 本発明の実施形態におけるポリアミド樹脂組成物において、充填材の含有量は、ポリアミド樹脂100重量部に対して10~250重量部が好ましい。充填材の含有量が10重量部以上であれば、成形品の寸法安定性をより向上させることができる。充填材の含有量は、20重量部以上がより好ましく、30重量部以上がさらに好ましい。一方、充填材の含有量が250重量部以下であれば、溶着性を保持しつつ、成形品の寸法安定性が向上する。充填材の含有量は、150重量部以下がより好ましく、100重量部以下がさらに好ましい。
 さらに、線膨張係数が小さく、それに伴い寸法安定性が高く、成形性に優れ、機械強度が高いことから、ポリアミド樹脂組成物の主成分はポリアミド6樹脂が好適である。
 本発明の実施形態におけるポリアミド樹脂組成物は、本発明の効果を損なわない範囲において、ポリアミド樹脂以外の樹脂や目的に応じて各種添加剤を含有することが可能である。この際、上記充填材量の好ましい範囲はポリアミド樹脂以外の樹脂や各種添加剤を含めた組成物に対する割合とする。
 ポリアミド樹脂以外の樹脂の具体例としては、ポリエステル樹脂、ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、ポリサルフォン樹脂、ポリケトン樹脂、ポリエーテルイミド樹脂、ポリアリレート樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、四フッ化ポリエチレン樹脂などが挙げられる。これら樹脂を配合する場合、その含有量は、ポリアミド樹脂の特徴を十分に活かすため、(A)ポリアミド樹脂100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましい。
 また、各種添加剤の具体例としては、銅化合物以外の熱安定剤、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物などの可塑剤、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、滑剤、紫外線防止剤、着色剤、難燃剤、耐衝撃改良剤、発泡剤などを挙げることができる。これら添加剤を含有する場合、その含有量は、ポリアミド樹脂の特徴を十分に活かすため、(A)ポリアミド樹脂100重量部に対して10重量部以下が好ましく、1重量部以下がより好ましい。
 銅化合物以外の熱安定剤としては、フェノール系化合物、硫黄系化合物、アミン系化合物などが挙げられる。銅化合物以外の熱安定剤としては、これらを2種以上用いてもよい。
 フェノール系化合物としては、ヒンダードフェノール系化合物が好ましく用いられ、N、N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナミド)、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンなどが好ましく用いられる。
 硫黄系化合物としては、有機チオ酸系化合物、メルカプトベンゾイミダゾール系化合物、ジチオカルバミン酸系化合物、チオウレア系化合物等が挙げられる。これら硫黄系化合物の中でも、メルカプトベンゾイミダゾール系化合物および有機チオ酸系化合物が好ましい。特に、チオエーテル構造を有するチオエーテル系化合物は、酸化された物質から酸素を受け取って還元するため、熱安定剤として好適に使用することができる。チオエーテル系化合物としては、具体的には、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)が好ましく、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)がより好ましい。硫黄系化合物の分子量は、通常200以上、好ましくは500以上であり、その上限は通常3,000である。
 アミン系化合物としては、ジフェニルアミン骨格を有する化合物、フェニルナフチルアミン骨格を有する化合物およびジナフチルアミン骨格を有する化合物が好ましく、ジフェニルアミン骨格を有する化合物、フェニルナフチルアミン骨格を有する化合物がさらに好ましい。これらアミン系化合物の中でも4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミンおよびN,N’-ジフェニル-p-フェニレンジアミンがより好ましく、N,N’-ジ-2-ナフチル-p-フェニレンジアミンおよび4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンが特に好ましい。
 硫黄系化合物またはアミン系化合物の組み合わせとしては、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)と4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンの組み合わせがより好ましい。
 本発明の実施形態におけるポリアミド樹脂組成物の製造方法としては、特に制限はないが、溶融状態での製造や溶液状態での製造等が使用でき、反応性向上の点から、溶融状態での製造が好ましく使用できる。溶融状態での製造については、押出機による溶融混練やニーダーによる溶融混練等が使用できるが、生産性の点から、連続的に製造可能な押出機による溶融混練が好ましい。押出機による溶融混練については、単軸押出機、二軸押出機、四軸押出機等の多軸押出機、二軸単軸複合押出機等の押出機を1台以上使用できるが、混練性、反応性、生産性の向上の点から、二軸押出機、四軸押出機等の多軸押出機が好ましく、二軸押出機を用いた溶融混練による方法が最も好ましい。
 含浸用ポリアミド樹脂を含浸した繊維強化ポリアミド樹脂基材において、連続した強化繊維基材への含浸用ポリアミド樹脂の含浸方法としては、例えば、フィルム状の含浸用ポリアミド樹脂を溶融し、加圧することで強化繊維束に含浸用ポリアミド樹脂を含浸させるフィルム法、繊維状の含浸用ポリアミド樹脂と強化繊維束とを混紡した後、繊維状の含浸用ポリアミド樹脂を溶融し、加圧することで強化繊維束に含浸用ポリアミド樹脂を含浸させるコミングル法、粉末状の含浸用ポリアミド樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の含浸用ポリアミド樹脂を溶融し、加圧することで強化繊維束に含浸用ポリアミド樹脂を含浸させる粉末法、溶融した含浸用ポリアミド樹脂中に強化繊維束を浸し、加圧することで強化繊維束に含浸用ポリアミド樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化ポリアミド樹脂基材を作製できることから、引き抜き法が好ましい。
 本発明の実施形態における繊維強化ポリアミド樹脂基材の厚さは、0.1~1.5mmが好ましい。厚さが0.1mm以上であれば、繊維強化ポリアミド樹脂基材の強度を向上させることができる。0.2mm以上がより好ましい。一方、厚さが1.5mm以下であれば、強化繊維に含浸用ポリアミド樹脂をより含浸させやすい。1mm以下がより好ましく、0.7mm以下がさらに好ましく、0.6mm以下がさらに好ましい。
 また、本発明の実施形態の繊維強化ポリアミド樹脂基材は、繊維強化ポリアミド樹脂基材全体100体積%中、強化繊維を10体積%以上70体積%以下含有することが好ましい。強化繊維を10体積%以上含有することにより、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度を向上させることができる。20体積%以上がより好ましく、30体積%以上がさらに好ましい。一方、強化繊維を70体積%以下含有することにより、強化繊維にポリアミド樹脂組成物をより含浸させやすい。65体積%以下がより好ましく、60体積%以下がさらに好ましい。
 また、繊維強化ポリアミド樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。例えば、より含浸性を高めたプリプレグや、半含浸のセミプレグ、含浸性の低いファブリックなどが挙げられる。一般的に、含浸性の高い繊維強化ポリアミド樹脂基材ほど、機械特性に優れるため好ましい。
 本発明の実施形態のポリアミド樹脂製複合成形品は、前述のポリアミド樹脂組成物を、熱可塑性樹脂に用いられる任意の成形方法により成形することにより得ることができる。成形方法としては、例えば、射出成形、射出圧縮成形、押出成形、圧縮成形、ブロー成形、プレス成形などが挙げられる。生産性や複雑形状の成形品を容易に成形できる観点から、射出成形が好ましい。また、樹脂成形品の形状としては、例えば、シート、フィルム、繊維などが挙げられ、特に限定されない。
 本発明の実施形態の複合成形品は、繊維強化ポリアミド樹脂基材およびポリアミド樹脂成形品を有し、繊維強化ポリアミド樹脂基材およびポリアミド樹脂成形品を接合一体化することにより得ることができる。繊維強化ポリアミド樹脂基材およびポリアミド樹脂成形品を接合一体化する方法としては、例えば、レーザー溶着、振動溶着、超音波溶着、射出溶着などの種々の溶着工法や、接着剤による接着などが挙げられる。その中でも、射出溶着が特に好ましい。射出溶着は、予め金型内に配置した繊維強化ポリアミド樹脂基材中の含浸用ポリアミド樹脂を、射出成形したポリアミド樹脂組成物の熱により溶融させた後、再固化する過程で繊維強化ポリアミド樹脂基材およびポリアミド樹脂成形品を接合する方法であり、複合成形品の生産性を向上させることができる。
 本発明の実施形態のポリアミド樹脂製複合成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明の実施形態のポリアミド樹脂製複合成形品は、とりわけ、溶着性、剛性、寸法安定性が要求される、航空機用部品、自動車ボディー部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。具体的には、本発明の実施形態のポリアミド樹脂製複合成形品は、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、廃ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、他極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤー、各種ケース、キャビネットなどの電気部品、コネクター、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクター、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。
 以下に実施例を示し、本発明を更に具体的に説明するが、下記実施例は本発明を何ら制約するものではなく、本発明の主旨を逸脱しない範囲で変更することは、本発明の技術範囲である。本発明特性評価は下記の方法に従って行った。
 [含浸用ポリアミド樹脂の溶融必要熱量]
 含浸用ポリアミド樹脂について、式(3)および式(4)を用い、溶融必要熱量QおよびQamを算出した。比熱容量については、降温速度10℃でJIS K 7123-1987(2006年)に準じて測定し、融点Tmおよびガラス転移点Tgについては、昇温速度20℃で、JIS K 7121―1987(2006年)に準じて測定し、溶融熱については、昇温速度20℃で、JIS K 7122―1987(2006年)に準じて測定を行った。いずれの測定も(株)パーキンエルマー製結晶化温度測定機Diamond-DSCを用いた。
 比較例7に関してはアニール処理後の繊維強化ポリアミド樹脂基材から溶融必要熱量を算出した。
 [含浸用ポリアミド樹脂のSP値]
 含浸用ポリアミド樹脂について、式(1)および式(2)を用い、SP値δおよびδcoを算出した。
 [溶着力]
 表に示すポリアミド樹脂組成物を80℃で12時間真空乾燥し、射出成形機((株)日本製鋼所製J110AD-110H)を用いて、シリンダー温度:ポリアミド樹脂組成物の融点+35℃(実施例7は260℃)、金型温度:60℃の条件で、図1に示したような形状の試験片を作製できる金型に適切な大きさに切削した表に示す繊維強化ポリアミド樹脂基材を配置し、射出溶着により、繊維強化ポリアミド樹脂基材の両端とポリアミド樹脂成形品が接合されたポリアミド樹脂製複合成形品を得た。この成形品は、全体としてISO Type-A規格の形状であった。溶着性を評価する片側の溶着面の面積を40mmとし、引張速度を1mm/分にすること以外はISO527-1、-2に従い、引張試験を行った。3回測定を行い、破断までの最大荷重の平均値を溶着力として評価した。なお、溶着力が低く、成形時や評価前に剥離したものについては×を記載した。
 [曲げ弾性率]
 表に示すポリアミド樹脂組成物を80℃で12時間真空乾燥し、射出成形機((株)日本製鋼所製J110AD-110H)を用いて、シリンダー温度:300℃、金型温度:120℃の条件で、150mm長×50mm幅×3mm厚の平板金型の両面に適切な大きさに切削した表に示す繊維強化ポリアミド樹脂基材を配置し、射出溶着により、ポリアミド樹脂成形品の両側に繊維強化ポリアミド樹脂基材を有するサンドイッチ構造のポリアミド製複合成形品を得た。前記繊維強化ポリアミド樹脂基材は、強化繊維軸方向がポリアミド樹脂製複合成形品の長手方向と略並行となるように配置した。
 このポリアミド樹脂製複合成形品を、繊維強化ポリアミド樹脂基材の強化繊維軸方向を長辺として150mm×10mmに切削し、曲げ試験片を作製した。この試験片について、JIS K7171-2008に従って、“インストロン”(登録商標)万能試験機5566型(インストロン社製)により、クロスヘッド速度2mm/分で曲げ試験を行なった。3回測定を行い、その平均値を曲げ弾性率として算出した。
 [反り量]
 繊維強化ポリアミド樹脂基材を片側に配置すること以外は上記曲げ弾性率と同様の方法で150mm長×50mm幅×3mm厚のポリアミド樹脂製複合成形品の試験片を得た。
 このポリアミド樹脂製複合成形品について、反りの曲率が最大になる点と端部を結んだ直線との距離を反り量として次の基準により評価した。
A:5mm未満。
B:5mm以上10mm未満。
C:10mm以上。
 (実施例1、実施例4~実施例6、実施例8~実施例13、比較例1~比較例6)
 繊維強化ポリアミド樹脂基材は以下の方法で製造した。強化繊維束が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて強化繊維束を送り出した。連続的に送り出された強化繊維束に、含浸ダイ内において、含浸用ポリアミド樹脂を充填したフィーダーから定量供給された含浸用ポリアミド樹脂を含浸させた。強化繊維には、炭素繊維束(東レ(株)製“トレカ”(登録商標)T700S-12K)を用い、含浸用ポリアミド樹脂には表1、2に記載のものを用いた。含浸ダイ内で含浸用ポリアミド樹脂を含浸した強化繊維を、引取ロールを用いて含浸ダイのノズルから連続的に引き抜いた。引き抜かれた強化繊維束は、冷却ロールを通過して含浸用ポリアミド樹脂が冷却固化され、繊維強化ポリアミド樹脂基材として巻取機に巻き取られた。得られた繊維強化ポリアミド樹脂基材の厚さは0.3mmであり、強化繊維方向は一方向に配列していた。また、繊維強化ポリアミド樹脂基材中の強化繊維の含有量は50体積%であった。
 次に、ポリアミド樹脂組成物は以下の方法で製造した。表1,2に記載のベース樹脂(主成分)を、Werner-Pfleidere社製2軸押出機ZSK57の第1の供給口から供給し、第2の供給口から充填材としてガラス繊維を表1、2に記載の含有量となるように供給し、バレル温度を融点+25℃、吐出量60kg/hr、スクリュー回転数200rpmで溶融混練してポリアミド樹脂組成物のペレットを得た。
 上記、繊維強化ポリアミド樹脂基材およびポリアミド樹脂組成物を用いて、ポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (実施例2)
 強化繊維としてガラス繊維を用いること以外は実施例1と同様の方法でポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (実施例3)
 表1に記載の強化繊維、含浸用ポリアミド樹脂を用いて繊維強化ポリアミド樹脂基材を以下の方法で作製した。
 含浸用ポリアミド樹脂を押出機に投入し、溶融混練した後フィルムダイから膜状に押し出して樹脂フィルムを得た。また、強化繊維として用いた炭素繊維(東レ(株)製“トレカ”(登録商標)T700S-12K)を繊維長15mmにカットして、エアレイド装置に投入し、目付け100g/mのマット状の強化繊維基材を得た。
 前記強化繊維基材と樹脂フィルムを炭素繊維の含有量が40重量%(30体積%)となるように積層した後に、型温度が含浸用ポリアミド樹脂の融点+30℃に加熱された成形型に投入した。続いて、圧力3MPaで10分間加熱加圧プレスした後、圧力3MPaで冷却プレスを行い、繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材の厚さは0.3mmであり、強化繊維の配列は等方的(ランダム)であった。
 上記繊維強化ポリアミド樹脂基材および実施例1と同様の方法で作製したポリアミド樹脂組成物を用いて、ポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (実施例7)
 表1中のポリアミド組成物および含浸用ポリアミド樹脂を用いること、ポリアミド樹脂組成物の製造方法においてバレル温度を300℃にすること以外は実施例1と同様の方法で作製したポリアミド樹脂組成物を用いて、ポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (比較例7)
 処理温度180℃、処理時間30分の条件で熱アニール処理した繊維強化ポリアミド樹脂基材を用いること以外は実施例1と同様の方法でポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (比較例8)
 含浸用ポリアミド樹脂が、ポリアミド6および下記参考例1をそれぞれ25重量%、75重量%混合したものということ以外は実施例1と同様の方法でポリアミド樹脂製複合成形品を作製し、各種特性を評価した。
 (強化繊維)
 炭素繊維:東レ(株)製“トレカ”(登録商標)T700S-12K
 (充填材)
 ガラス繊維:日本電気硝子(株)製T-275H、円形断面、断面直径10.5μm、表面処理シラン系カップリング剤、繊維長3mm
 (ポリアミド樹脂)
 ポリアミド6:東レ(株)製CM1001、ηr=2.35
 ポリアミド66:東レ(株)製E3000F、ηr=2.48
 ポリアミド610:東レ(株)製CM2001、ηr=2.70
 ポリアミド12:EMS製Grilamid L 20、中粘度グレード
 ポリアミド6I/6T:EMS製Grivory G 21、ηr=2.00  。
 (参考例1:ポリアミド6/66=85/15)
 30Lのステンレス製オートクレーブに、ポリアミド6/66塩(ε-カプロラクタム/ヘキサメチレンジアミン-アジピン酸の等モル塩の80%水溶液)を85/15重量部で配合し、安息香酸(ポリアミド6/66塩10kgに対して1.86g)を投入して、内温250℃、内圧1.5~2.0MPaに保って3時間重合した。その後徐々に放圧しながら内圧を常圧に戻し、内温を270~280℃に上げ、更に1時間重合させた。得られたポリアミド6/66樹脂をオートクレーブの下部からストランドで抜き出し、ペレタイズした後、80℃で24時間真空乾燥した。得られたポリアミド6/66の相対粘度ηrは2.35、融点は194℃であった。
 (参考例2:ポリアミド6/66=90/10)
 ポリアミド6/66塩を90/10重量部にすること以外は参考例1と同様の方法でポリアミド6/66を得た。得られたポリアミド6/66樹脂の相対粘度ηrは2.35、融点は199℃であった。
 (参考例3:ポリアミド6/66=40/60)
 ポリアミド6/66塩を40/60重量部にすること以外は参考例1と同様の方法でポリアミド6/66を得た。得られたポリアミド6/66樹脂の相対粘度ηrは2.35、融点は170℃であった。
 (参考例4:ポリアミド6/66=30/70)
 ポリアミド6/66塩を30/70重量部にすること以外は参考例1と同様の方法でポリアミド6/66を得た。得られたポリアミド6/66樹脂の相対粘度ηrは2.35、融点は182℃であった。
 (参考例5:ポリアミド6/66=95/5)
 ポリアミド6/66塩を95/5重量部にすること以外は参考例1と同様の方法でポリアミド6/66を得た。得られたポリアミド6/66樹脂の相対粘度ηrは2.35、融点は254℃であった。
 (参考例6:ポリアミド6/66=5/95)
 ポリアミド6/66塩を5/95重量部にすること以外は参考例1と同様の方法でポリアミド6/66を得た。得られたポリアミド6/66樹脂の相対粘度ηrは2.35、融点は212℃であった。
 各実施例および比較例の評価結果を表1~2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 繊維強化ポリアミド樹脂基材
2 ポリアミド樹脂成形品
3 溶着面

Claims (12)

  1.  強化繊維基材に含浸用ポリアミド樹脂を含浸させた繊維強化ポリアミド樹脂基材と、ポリアミド樹脂組成物からなるポリアミド樹脂成形品とが、少なくとも一部で接合した複合成形品であって、前記含浸用ポリアミド樹脂の溶融必要熱量が300<Q<425(J/g)であり、Fedorsの式から算出される前記含浸用ポリアミド樹脂の溶解度パラメータ(SP値)が11<σ<13.2((cal/cm1/2)であるポリアミド樹脂製複合成形品。
  2.  前記含浸用ポリアミド樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む請求項1に記載のポリアミド樹脂製複合成形品。
  3.  前記ポリアミド樹脂組成物がポリアミド樹脂100重量部に対し、充填材10~250重量部を含む請求項1または2に記載のポリアミド樹脂製複合成形品。
  4.  前記ポリアミド樹脂組成物の主成分がポリアミド6樹脂である請求項1~3のいずれかに記載のポリアミド樹脂製複合成形品。
  5.  前記強化繊維基材が一方向に配列した連続の強化繊維からなる請求項1~4のいずれかに記載のポリアミド樹脂製複合成形品。
  6.  前記強化繊維が炭素繊維であり、前記繊維強化ポリアミド樹脂基材中の繊維含有量が10~70体積%である請求項5に記載のポリアミド樹脂製複合成形品。
  7.  強化繊維基材に含浸用ポリアミド樹脂を含浸させた繊維強化ポリアミド樹脂基材を予め金型内に配置し、該金型にポリアミド樹脂組成物を射出成形して溶融接合するポリアミド樹脂製複合成形品の製造方法であって、前記含浸用ポリアミド樹脂の溶融必要熱量が300<Q<425(J/g)であり、Fedorsの式から算出される前記含浸用ポリアミド樹脂の溶解度パラメータ(SP値)が11<σ<13.2((cal/cm1/2)であるポリアミド樹脂製複合成形品の製造方法。
  8.  前記含浸用ポリアミド樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む請求項7に記載のポリアミド樹脂製複合成形品の製造方法。
  9.  前記ポリアミド樹脂組成物が、ポリアミド樹脂100重量部に対し、充填材10~250重量部を含む請求項7または8に記載のポリアミド樹脂製複合成形品の製造方法。
  10.  前記ポリアミド樹脂組成物の主成分がポリアミド6樹脂である請求項7~9のいずれかに記載のポリアミド樹脂製複合成形品の製造方法。
  11.  前記強化繊維基材が一方向に配列した連続の強化繊維からなる請求項7~10のいずれかに記載のポリアミド樹脂製複合成形品の製造方法。
  12.  前記強化繊維が炭素繊維であり、前記繊維強化ポリアミド樹脂基材中の繊維含有量が10~70体積%である請求項11に記載のポリアミド樹脂製複合成形品の製造方法。
PCT/JP2017/019897 2016-05-30 2017-05-29 ポリアミド樹脂製複合成形品およびその製造方法 WO2017209042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/305,076 US20200282614A1 (en) 2016-05-30 2017-05-29 Composite molded article formed from polyamide resin and method of producing same
JP2017548238A JP6962196B2 (ja) 2016-05-30 2017-05-29 ポリアミド樹脂製複合成形品およびその製造方法
EP17806597.5A EP3466635A4 (en) 2016-05-30 2017-05-29 COMPOSITE MOLDED ARTICLE FORMED FROM POLYAMIDE RESIN AND PROCESS FOR PRODUCING THE SAME
CN201780031825.1A CN109311197B (zh) 2016-05-30 2017-05-29 聚酰胺树脂制复合成型品及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016107122 2016-05-30
JP2016-107122 2016-05-30

Publications (1)

Publication Number Publication Date
WO2017209042A1 true WO2017209042A1 (ja) 2017-12-07

Family

ID=60477459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019897 WO2017209042A1 (ja) 2016-05-30 2017-05-29 ポリアミド樹脂製複合成形品およびその製造方法

Country Status (5)

Country Link
US (1) US20200282614A1 (ja)
EP (1) EP3466635A4 (ja)
JP (1) JP6962196B2 (ja)
CN (1) CN109311197B (ja)
WO (1) WO2017209042A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651804A (zh) * 2018-11-23 2019-04-19 中广核俊尔新材料有限公司 一种连续玻璃纤维增强尼龙复合板材及其制备方法和在制备汽车制动踏板中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM613967U (zh) * 2021-02-05 2021-07-01 耐特科技材料股份有限公司 射出成型之多層抗延燒防火結構件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912877A (ja) * 1995-06-23 1997-01-14 Ube Ind Ltd 摩擦溶着用材料
JPH11348067A (ja) 1998-06-05 1999-12-21 Mitsubishi Eng Plast Corp ポリアミド樹脂製一体成形品
JP3191638B2 (ja) 1995-08-25 2001-07-23 宇部興産株式会社 射出溶着用材料
JP2016203401A (ja) * 2015-04-16 2016-12-08 東レ株式会社 繊維強化複合成形品およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044259A (ja) * 2004-07-07 2006-02-16 Toray Ind Inc 一体化成形品およびその製造方法
JP2006205436A (ja) * 2005-01-26 2006-08-10 Toray Ind Inc 繊維強化複合材料板およびそれを用いた成形品
JP5336351B2 (ja) * 2006-03-24 2013-11-06 オクシリウム インターナショナル ホールディングス,インコーポレイティド ホットメルト押出しラミネートの調製方法
EP2057205B1 (en) * 2006-08-25 2017-02-08 Dow Global Technologies LLC Production of meta-block copolymers by polymer segment interchange
JP5458529B2 (ja) * 2008-08-22 2014-04-02 東レ株式会社 接合方法および一体化成形品
CN101899220B (zh) * 2009-12-25 2012-08-15 北京中拓机械有限责任公司 含纤维的树脂薄壁制品及其生产方法
FR3010090B1 (fr) * 2013-09-05 2016-09-02 Arkema France Raccords pour tubes bases sur une composition de polyamide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912877A (ja) * 1995-06-23 1997-01-14 Ube Ind Ltd 摩擦溶着用材料
JP3191638B2 (ja) 1995-08-25 2001-07-23 宇部興産株式会社 射出溶着用材料
JPH11348067A (ja) 1998-06-05 1999-12-21 Mitsubishi Eng Plast Corp ポリアミド樹脂製一体成形品
JP2016203401A (ja) * 2015-04-16 2016-12-08 東レ株式会社 繊維強化複合成形品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466635A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109651804A (zh) * 2018-11-23 2019-04-19 中广核俊尔新材料有限公司 一种连续玻璃纤维增强尼龙复合板材及其制备方法和在制备汽车制动踏板中的应用
CN109651804B (zh) * 2018-11-23 2021-03-23 中广核俊尔新材料有限公司 一种连续玻璃纤维增强尼龙复合板材及其制备方法和在制备汽车制动踏板中的应用

Also Published As

Publication number Publication date
EP3466635A4 (en) 2020-01-01
JP6962196B2 (ja) 2021-11-05
CN109311197B (zh) 2020-11-27
JPWO2017209042A1 (ja) 2019-03-28
US20200282614A1 (en) 2020-09-10
EP3466635A1 (en) 2019-04-10
CN109311197A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
KR102412262B1 (ko) 섬유 강화 열가소성 수지 기재 및 그것을 사용한 성형품
JP6841221B2 (ja) 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品
JP6137300B2 (ja) 繊維強化多層ペレット、それを成形してなる成形品、および繊維強化多層ペレットの製造方法
KR20120029420A (ko) 폴리아미드 복합 구조체 및 그 제조 방법
JP7196464B2 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
WO2020017392A1 (ja) 繊維強化ポリマーアロイ基材およびそれを用いた成形品
WO2017209042A1 (ja) ポリアミド樹脂製複合成形品およびその製造方法
JP5971049B2 (ja) ポリアミド樹脂組成物
JP2021133639A (ja) 複合成形品およびその製造方法
JP7268467B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP4535772B2 (ja) 長繊維強化ポリアミド樹脂製自動車車体前部構造体
KR20130118856A (ko) 내크립성 복합 구조체 및 이의 제조 방법
JP2016203401A (ja) 繊維強化複合成形品およびその製造方法
JP6451444B2 (ja) 繊維強化ポリアミド樹脂基材およびそれを成形してなる成形品
JP7087716B2 (ja) ポリアミド樹脂製複合成形品およびその製造方法
CN115243880A (zh) 层叠体及使用其的熔接体
JP2017186496A (ja) 炭素繊維強化ポリアミド樹脂組成物およびそれからなる成形品
JP2019099603A (ja) 連続繊維強化ポリアミド樹脂基材およびその成形品
JP2006008952A (ja) ポリアミド樹脂発泡成形品
US20110306256A1 (en) Creep-resistant composite structures and processes for their preparation
JP2016102194A (ja) 複合構造体
JP2022098043A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2022151712A (ja) 複合成形体およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548238

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806597

Country of ref document: EP

Effective date: 20190102