WO2017204364A1 - 撮像レンズ系及び撮像装置 - Google Patents

撮像レンズ系及び撮像装置 Download PDF

Info

Publication number
WO2017204364A1
WO2017204364A1 PCT/JP2017/019912 JP2017019912W WO2017204364A1 WO 2017204364 A1 WO2017204364 A1 WO 2017204364A1 JP 2017019912 W JP2017019912 W JP 2017019912W WO 2017204364 A1 WO2017204364 A1 WO 2017204364A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
object side
meniscus
image side
Prior art date
Application number
PCT/JP2017/019912
Other languages
English (en)
French (fr)
Inventor
由多可 牧野
隆 杉山
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2017204364A1 publication Critical patent/WO2017204364A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an imaging lens system and an imaging apparatus.
  • An optical system for monitoring is required to be a bright optical system having a very wide field of view, high resolution, and an F number of 2.0 or less.
  • an imaging lens system for a vehicle-mounted camera is also required to be compact.
  • Patent Document 1 includes a front group having three sheets and a rear group having two sheets, and one of the groups has negative power, and the front group has negative power from the object side.
  • the first and second lenses are separated from each other, and the fourth lens and the fifth lens in the rear group are separated from each other.
  • a teleconversion lens that is miniaturized by using a cemented lens to satisfactorily correct various aberrations and suppress ghosting.
  • Patent Document 2 in order from the entrance pupil EP side, a negative first lens, a negative cemented lens group obtained by cementing a negative second lens and a positive third lens), and a concave surface on the entrance pupil side are disclosed.
  • the fourth lens having a positive meniscus is arranged on the optical axis, so that an f ⁇ lens that generates less coma even when used with an F number of 60 or less and a full field angle of 50 ° or more. Is described.
  • Patent Document 1 realizes a compact teleconversion lens that corrects various aberrations satisfactorily and suppresses the generation of ghosts. Further, Patent Document 2 realizes an f ⁇ lens that generates less coma even when used with an F number of 60 or less and a full angle of view of 50 ° or more.
  • Patent Documents 1 and 2 describe a meniscus cemented lens cemented with a concave surface and a convex surface corresponding to a wide field angle, and a wide field angle imaging lens system having good imaging performance, telecentricity, and temperature characteristics. The configuration for realizing is not described.
  • the present invention provides an imaging lens having a wide angle of view of a half angle of view of 85 ° or more, 90 ° or more, or 95 ° or more by using a meniscus cemented lens having a specific negative power.
  • An object is to provide an imaging lens system and an imaging apparatus having excellent performance. Further, by adjusting the sign of the temperature coefficient of the refractive index of the lens material of the negative power cemented lens and the lens group having a positive power arranged on the image side from the cemented lens, positive or negative can be used.
  • An object of the present invention is to provide a photographic lens system having as little aberration as possible under any temperature environment of 105 ° C.
  • the cemented lens of the present invention includes a first meniscus lens that is convex on the object side made of the first lens material and a second meniscus lens that is convex on the object side made of the second lens material from the object side to the image side.
  • a negative power meniscus cemented lens in which the concave surface of the first meniscus lens and the convex surface of the second meniscus lens are bonded to each other by an adhesive layer, the first meniscus lens and the first meniscus lens
  • the power signs of the two meniscus lens are opposite to each other, and the concave surface of the first meniscus lens and the convex surface of the second meniscus lens are both aspherical.
  • the imaging lens system of the present invention is an imaging lens system comprising, in order from the object side to the image side, an object side lens group having a positive power, a stop, and an image side lens group having a positive power.
  • the image side lens group is composed of a cemented lens having negative power and a lens group having positive power.
  • the first lens having a negative power whose image side is concave
  • the second lens having a negative power whose image side is concave
  • the object side having a convex shape
  • a third lens having positive power, an aperture, a concave lens on the image side, a fourth lens having negative power, a convex lens on the object side, a fifth lens having positive power, and a convex shape on the image side
  • a sixth lens having a positive power, wherein the image side lens surface of the fourth lens and the object side lens surface of the fifth lens are cemented, and the fourth lens
  • the composite power of the fifth lens is a negative power.
  • an image of the chief ray is obtained by setting the incident power of the chief ray to the sixth lens at an arbitrary angle of view from the effective diameter end by making the combined power of the fourth lens and the fifth lens negative. It is possible to provide an imaging lens system that can make the incident angle to the surface close to a right angle and ensure telecentricity.
  • an imaging lens system capable of realizing a cemented lens corresponding to a wide angle of view and ensuring telecentricity.
  • FIG. 2 is a cross-sectional view of the imaging lens system according to Embodiment 1.
  • FIG. It is sectional drawing of the imaging lens system of a comparative example.
  • 1 is a cross-sectional view of an imaging lens system according to Example 1.
  • FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • FIG. 4 is an aberration diagram of the imaging lens system according to Example 1.
  • 6 is a cross-sectional view of an imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 2.
  • FIG. 6 is a cross-sectional view of an imaging lens system according to Example 3.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 3.
  • FIG. 6 is an aberration diagram of the imaging lens system according to Example 3.
  • 6 is a cross-sectional view of an imaging lens system according to Example 4.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 4.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 4.
  • 6 is a cross-sectional view of an imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • FIG. 10 is an aberration diagram of the imaging lens system according to Example 5.
  • 6 is a cross-sectional view of an imaging apparatus according to Embodiment 2.
  • FIG. 1 is a cross-sectional view of the imaging lens system according to the first embodiment.
  • an imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having a negative power, a second lens L2 having a negative power, a third lens L3 having a positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the imaging lens system of Embodiment 1 is characterized in that the combined power of the cemented lens (fourth lens group G4) arranged on the image side from the stop is negative.
  • the effect of ensuring telecentricity by this configuration will be described using a comparative example.
  • FIG. 2 is a cross-sectional view of a comparative imaging lens system.
  • the combined power of the fourth lens group G4 is positive power.
  • the position where the principal ray CR2 is incident on the sixth lens L6 is closer to the image axis IMG than the position where the principal ray CR2 is incident on the imaging plane IMG.
  • the principal ray CR2 is incident on the imaging plane IMG at an angle with respect to the optical axis Z.
  • the imaging lens system 11 in FIG. 1 since the imaging lens system 11 in FIG. 1 has the fourth lens group G4 having a negative combined power, the chief ray CR1 is incident on the sixth lens L6 through a path closer to the effective diameter end side than the chief ray CR2.
  • the angle of incidence on the image plane IMG is closer to the vertical than the principal ray CR2.
  • the incident angle of CR1 with respect to the optical axis Z is smaller than the incident angle of principal ray CR2 with respect to the optical axis Z.
  • the first lens having a negative power in which the image side has a concave shape and the negative power in which the image side has a concave shape in order from the object side to the image side.
  • a second lens having a convex shape on the object side, a third lens having a positive power, a stop, a fourth lens having a negative power on the image side, and a positive power having a convex shape on the object side
  • An imaging lens system including a sixth lens having a positive power and a convex shape on the image side, and an image side lens surface of the fourth lens and an object side of the fifth lens The lens surface is cemented so that the combined power of the fourth lens and the fifth lens is a negative power.
  • an image of the chief ray is obtained by setting the incident power of the chief ray to the sixth lens at an arbitrary angle of view from the effective diameter end by making the combined power of the fourth lens and the fifth lens negative. It is possible to provide an imaging lens system that can make the incident angle to the surface close to a right angle and ensure telecentricity.
  • the image side of the fifth lens may be concave. According to this configuration, the angle at which the chief ray is incident on the imaging plane can be made closer to the vertical.
  • the imaging lens system of Embodiment 1 satisfies the following conditional expression (1) when the combined focal length of the fourth lens and the fourth lens is defined as f4 and the focal length of the entire lens system is defined as f. May be. -110 ⁇ f45 / f ⁇ -4.6 (1) According to this configuration, the angle at which the chief ray is incident on the imaging surface can be made closer to the vertical, and a sufficient amount of chromatic aberration correction can be ensured. When the lower limit condition is not satisfied, the effect of reducing the chief ray incident angle is small. When the upper limit condition is not satisfied, the chromatic aberration correction amount is small.
  • any one of the fourth lens, the fifth lens, and the sixth lens may be an aspheric lens. According to this configuration, spherical aberration can be corrected.
  • the imaging lens system of Embodiment 1 may satisfy the following conditional expression (2) when the focal length of the sixth lens is defined as f6 and the focal length of the entire lens system is defined as f. 1.7 ⁇ f6 / f ⁇ 2.4 (2)
  • the spherical aberration can be reduced by satisfying the upper limit of the conditional expression, and the angle at which the chief ray is incident on the imaging surface can be made closer to vertical. If the lower limit condition is not satisfied, the spherical aberration becomes large. When the upper limit condition is not satisfied, the effect of reducing the chief ray incident angle is small.
  • the imaging lens system of Embodiment 1 may satisfy the following conditional expression (3) when the focal length of the fourth lens is defined as f4 and the focal length of the fifth lens is defined as f5. -1.2 ⁇ f4 / f5 ⁇ -0.6 (3) According to this configuration, the chromatic aberration can be appropriately corrected by satisfying the conditional expression. If the lower limit condition is not satisfied, the power of the fourth lens is reduced and the chromatic aberration is insufficiently corrected. If the upper limit condition is not satisfied, the power of the fourth lens is increased and chromatic aberration is overcorrected.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3
  • the focal length of the entire lens system is f.
  • the fourth lens, the fifth lens, and the sixth lens are all made of a material having a negative refractive index temperature coefficient, or all have a refractive index temperature coefficient. It may be composed of a material that is positive.
  • the fourth lens and the fifth lens are made of materials having a negative refractive index temperature coefficient
  • the sixth lens is made of a material having a negative refractive index temperature coefficient.
  • the temperature change of the sixth lens having positive power cancel each other out of the focus position fluctuation amount due to the temperature change, so that the focus position fluctuation amount with temperature in the entire imaging lens system can be reduced. If the signs of the refractive index temperature coefficients of the fourth lens, the fifth lens, and the sixth lens are different, the focal position variation directions due to temperature changes are the same and overlapped.
  • the fourth lens and the fifth lens may be plastic lenses, and the sixth lens may be a glass lens. According to this configuration, it is possible to further reduce the focal position variation due to the temperature change.
  • the image pickup apparatus may include any one of the image pickup lens systems described above and an image pickup element arranged at a focal position of the image pickup lens system.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the imaging lens system of Example 1.
  • the imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having negative power, a second lens L2 having negative power, a third lens L3 having positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the first lens L1 is a lens having negative power.
  • the object-side lens surface S1 of the first lens L1 has a spherical shape having a positive curvature.
  • the image side lens surface S2 of the first lens L1 has a spherical shape having a positive curvature.
  • the object side lens surface S1 has a convex surface facing the object side, and the image side lens surface S2 has a concave curved surface portion on the image side.
  • the second lens L2 is an aspheric lens having negative power.
  • the object side lens surface S3 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 has a concave curved surface portion on the image side.
  • the third lens L3 is an aspheric lens having a positive power.
  • the object side lens surface S5 of the third lens L3 has an aspheric shape having a positive curvature.
  • the image side lens surface S6 of the third lens L3 has an aspheric shape having a negative curvature.
  • the object side lens surface S5 has a convex surface facing the object side, and the image side lens surface S6 has a convex surface facing the image surface side.
  • the stop STOP is a stop that determines the F value (Fno) of the lens system.
  • the stop STOP is disposed between the third lens L3 and the fourth lens group G4.
  • the fourth lens group G4 is a cemented lens including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the fourth lens group G4 is a cemented lens in which the image side lens surface S10 of the fourth lens L4 and the object side lens surface S11 of the fifth lens L5 are cemented.
  • the combined power of the fourth lens L4 and the fifth lens L5 is a negative power.
  • the fourth lens L4 is an aspheric lens having negative power.
  • the object side lens surface S9 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the image side lens surface S10 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the object side lens surface S9 has a convex surface facing the object side, and the image side lens surface S10 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspheric lens having a positive power.
  • the object side lens surface S11 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the image side lens surface S12 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the object side lens surface S11 has a convex surface facing the object side, and the image side lens surface S12 has a concave surface facing the image surface side.
  • the sixth lens L6 is an aspheric lens having positive power.
  • the object side lens surface S13 of the sixth lens L6 has an aspheric shape having a positive curvature.
  • the image side lens surface S14 of the sixth lens L6 has an aspheric shape having a negative curvature.
  • the object side lens surface S13 has a convex surface facing the object side, and the image side lens surface S14 has a convex surface facing the image surface side.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the cover glass 13 is a glass plate for protecting the image sensor.
  • the IR cut filter 12 and the cover glass 13 are handled as an integral part of the imaging lens system 11 when the imaging lens system 11 is designed. However, the IR cut filter 12 and the cover glass 13 are not essential components of the imaging lens system 11.
  • Table 1 shows lens data of each lens surface of the imaging lens system 11.
  • the curvature radius, the surface interval, the refractive index, and the Abbe number of each surface are presented.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is 4th, 6th, 8th, 10th, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conical coefficient, and r is the height of the light beam from the optical axis Z.
  • 12th and 14th aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12 and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 2 shows the aspheric coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 11 of Example 1.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • FIGS. 4A to 4C show longitudinal aberration diagrams, field curvature diagrams, and distortion diagrams in the imaging lens system of Example 1.
  • FIG. 4A shows a longitudinal aberration diagram
  • FIG. 4B shows a field curvature diagram
  • FIG. 4C shows a distortion diagram.
  • the half angle of view ⁇ is 95.1 °
  • the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle).
  • Sag indicates the field curvature in the sagittal plane
  • Tan indicates the field curvature in the tangential plane.
  • the horizontal axis represents the amount of distortion (%) of the image
  • the vertical axis represents the image height (field angle). 4A to 4C show simulation results using light beams having wavelengths of 486 nm, 587 nm, and 656 nm.
  • Table 3 shows the result of calculating the characteristic value of the imaging lens system 11 of Example 1.
  • the focal length of the entire lens system is f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 of the fourth lens group G4 is f4
  • the focal length of the fifth lens L5 of the fourth lens group G4 is f5
  • the focal length of the sixth lens L6 is f6, and the fourth lens of the fourth lens group G4.
  • FIG. 5 is a cross-sectional view illustrating the configuration of the imaging lens system of Example 2.
  • the imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having negative power, a second lens L2 having negative power, a third lens L3 having positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the first lens L1 is a lens having negative power.
  • the object-side lens surface S1 of the first lens L1 has a spherical shape having a positive curvature.
  • the image side lens surface S2 of the first lens L1 has a spherical shape having a positive curvature.
  • the object side lens surface S1 has a convex surface facing the object side, and the image side lens surface S2 has a concave curved surface portion on the image side.
  • the second lens L2 is an aspheric lens having negative power.
  • the object side lens surface S3 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 has a concave curved surface portion on the image side.
  • the third lens L3 is an aspheric lens having a positive power.
  • the object side lens surface S5 of the third lens L3 has an aspheric shape having a positive curvature.
  • the image side lens surface S6 of the third lens L3 has an aspheric shape having a negative curvature.
  • the object side lens surface S5 has a convex surface facing the object side, and the image side lens surface S6 has a convex surface facing the image surface side.
  • the stop STOP is a stop that determines the F value (Fno) of the lens system.
  • the stop STOP is disposed between the third lens L3 and the fourth lens group G4.
  • the fourth lens group G4 is a cemented lens including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the fourth lens group G4 is a cemented lens in which the image side lens surface S10 of the fourth lens L4 and the object side lens surface S11 of the fifth lens L5 are cemented.
  • the combined power of the fourth lens L4 and the fifth lens L5 is a negative power.
  • the fourth lens L4 is an aspheric lens having negative power.
  • the object side lens surface S9 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the image side lens surface S10 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the object side lens surface S9 has a convex surface facing the object side, and the image side lens surface S10 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspheric lens having a positive power.
  • the object side lens surface S11 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the image side lens surface S12 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the object side lens surface S11 has a convex surface facing the object side, and the image side lens surface S12 has a concave surface facing the image surface side.
  • the sixth lens L6 is an aspheric lens having positive power.
  • the object side lens surface S13 of the sixth lens L6 has an aspheric shape having a positive curvature.
  • the image side lens surface S14 of the sixth lens L6 has an aspheric shape having a negative curvature.
  • the object side lens surface S13 has a convex surface facing the object side, and the image side lens surface S14 has a convex surface facing the image surface side.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the cover glass 13 is a glass plate for protecting the image sensor.
  • the IR cut filter 12 and the cover glass 13 are handled as an integral part of the imaging lens system 11 when the imaging lens system 11 is designed. However, the IR cut filter 12 and the cover glass 13 are not essential components of the imaging lens system 11.
  • Table 4 shows lens data of each lens surface of the imaging lens system 11.
  • the curvature radius, the surface interval, the refractive index, and the Abbe number of each surface are presented.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is 4th, 6th, 8th, 10th, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conical coefficient, and r is the height of the light beam from the optical axis Z.
  • 12th and 14th aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12 and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 5 shows the aspheric coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 11 of Example 2.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • FIG. 6A to 6C show longitudinal aberration diagrams, field curvature diagrams, and distortion diagrams in the imaging lens system of Example 2.
  • FIG. 6A shows a longitudinal aberration diagram
  • FIG. 6B shows a field curvature diagram
  • FIG. 6C shows a distortion diagram.
  • the half angle of view ⁇ is 85 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle).
  • Sag indicates the field curvature in the sagittal plane
  • Tan indicates the field curvature in the tangential plane.
  • the horizontal axis represents the amount of distortion (%) of the image
  • the vertical axis represents the image height (field angle).
  • Table 6 shows the result of calculating the characteristic value of the imaging lens system 11 of Example 2.
  • the focal length of the entire lens system is f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 of the fourth lens group G4 is f4
  • the focal length of the fifth lens L5 of the fourth lens group G4 is f5
  • the focal length of the sixth lens L6 is f6, and the fourth lens of the fourth lens group G4.
  • the temperature coefficient of the refractive index is described by omitting ( ⁇ 10 ⁇ 5 / ° C.).
  • Various focal lengths were calculated using light rays with a wavelength of 546 nm.
  • FIG. 7 is a cross-sectional view illustrating the configuration of the imaging lens system of Example 3.
  • the imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having a negative power, a second lens L2 having a negative power, a third lens L3 having a positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the first lens L1 is a lens having negative power.
  • the object-side lens surface S1 of the first lens L1 has a spherical shape having a positive curvature.
  • the image side lens surface S2 of the first lens L1 has a spherical shape having a positive curvature.
  • the object side lens surface S1 has a convex surface facing the object side, and the image side lens surface S2 has a concave curved surface portion on the image side.
  • the second lens L2 is an aspheric lens having negative power.
  • the object side lens surface S3 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 has a concave curved surface portion on the image side.
  • the third lens L3 is an aspheric lens having a positive power.
  • the object side lens surface S5 of the third lens L3 has an aspheric shape having a positive curvature.
  • the image side lens surface S6 of the third lens L3 has an aspheric shape having a negative curvature.
  • the object side lens surface S5 has a convex surface facing the object side, and the image side lens surface S6 has a convex surface facing the image surface side.
  • the stop STOP is a stop that determines the F value (Fno) of the lens system.
  • the stop STOP is disposed between the third lens L3 and the fourth lens group G4.
  • the fourth lens group G4 is a cemented lens including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the fourth lens group G4 is a cemented lens in which the image side lens surface S10 of the fourth lens L4 and the object side lens surface S11 of the fifth lens L5 are cemented.
  • the combined power of the fourth lens L4 and the fifth lens L5 is a negative power.
  • the fourth lens L4 is an aspheric lens having negative power.
  • the object side lens surface S9 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the image side lens surface S10 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the object side lens surface S9 has a convex surface facing the object side, and the image side lens surface S10 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspheric lens having a positive power.
  • the object side lens surface S11 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the image side lens surface S12 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the object side lens surface S11 has a convex surface facing the object side, and the image side lens surface S12 has a concave surface facing the image surface side.
  • the sixth lens L6 is an aspheric lens having positive power.
  • the object side lens surface S13 of the sixth lens L6 has an aspheric shape having a positive curvature.
  • the image side lens surface S14 of the sixth lens L6 has an aspheric shape having a negative curvature.
  • the object side lens surface S13 has a convex surface facing the object side, and the image side lens surface S14 has a convex surface facing the image surface side.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the cover glass 13 is a glass plate for protecting the image sensor.
  • the IR cut filter 12 and the cover glass 13 are handled as an integral part of the imaging lens system 11 when the imaging lens system 11 is designed. However, the IR cut filter 12 and the cover glass 13 are not essential components of the imaging lens system 11.
  • Table 7 shows lens data of each lens surface of the imaging lens system 11.
  • Table 7 presents the radius of curvature, surface spacing, refractive index, and Abbe number of each surface as lens data.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is 4th, 6th, 8th, 10th, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conical coefficient, and r is the height of the light beam from the optical axis Z.
  • 12th and 14th aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12 and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 8 shows aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 11 of Example 3.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • FIG. 8A to 8C show longitudinal aberration diagrams, field curvature diagrams, and distortion diagrams in the imaging lens system of Example 3.
  • FIG. 8A shows a longitudinal aberration diagram
  • FIG. 8B shows a field curvature diagram
  • FIG. 8C shows a distortion diagram.
  • the half field angle ⁇ is 96.3 °
  • the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle).
  • Sag indicates the field curvature in the sagittal plane
  • Tan indicates the field curvature in the tangential plane.
  • the horizontal axis represents the amount of distortion (%) of the image
  • the vertical axis represents the image height (angle of view).
  • FIG. 8A to FIG. 8C show simulation results using light beams having wavelengths of 486 nm, 587 nm, and 656 nm.
  • Table 9 shows the results of calculating the characteristic values of the imaging lens system 11 of Example 3.
  • the focal length of the entire lens system is f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 of the fourth lens group G4 is f4
  • the focal length of the fifth lens L5 of the fourth lens group G4 is f5
  • the focal length of the sixth lens L6 is f6, and the fourth lens of the fourth lens group G4.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the imaging lens system of Example 4.
  • the imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having a negative power, a second lens L2 having a negative power, a third lens L3 having a positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the first lens L1 is a lens having negative power.
  • the object-side lens surface S1 of the first lens L1 has a spherical shape having a positive curvature.
  • the image side lens surface S2 of the first lens L1 has a spherical shape having a positive curvature.
  • the object side lens surface S1 has a convex surface facing the object side, and the image side lens surface S2 has a concave curved surface portion on the image side.
  • the second lens L2 is an aspheric lens having negative power.
  • the object side lens surface S3 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 has a concave curved surface portion on the image side.
  • the third lens L3 is an aspheric lens having a positive power.
  • the object side lens surface S5 of the third lens L3 has an aspheric shape having a positive curvature.
  • the image side lens surface S6 of the third lens L3 has an aspheric shape having a negative curvature.
  • the object side lens surface S5 has a convex surface facing the object side, and the image side lens surface S6 has a convex surface facing the image surface side.
  • the stop STOP is a stop that determines the F value (Fno) of the lens system.
  • the stop STOP is disposed between the third lens L3 and the fourth lens group G4.
  • the fourth lens group G4 is a cemented lens including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the fourth lens group G4 is a cemented lens in which the image side lens surface S10 of the fourth lens L4 and the object side lens surface S11 of the fifth lens L5 are cemented.
  • the combined power of the fourth lens L4 and the fifth lens L5 is a negative power.
  • the fourth lens L4 is an aspheric lens having negative power.
  • the object side lens surface S9 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the image side lens surface S10 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the object side lens surface S9 has a convex surface facing the object side, and the image side lens surface S10 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspheric lens having a positive power.
  • the object side lens surface S11 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the image side lens surface S12 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the object side lens surface S11 has a convex surface facing the object side, and the image side lens surface S12 has a concave surface facing the image surface side.
  • the sixth lens L6 is an aspheric lens having positive power.
  • the object side lens surface S13 of the sixth lens L6 has an aspheric shape having a positive curvature.
  • the image side lens surface S14 of the sixth lens L6 has an aspheric shape having a negative curvature.
  • the object side lens surface S13 has a convex surface facing the object side, and the image side lens surface S14 has a convex surface facing the image surface side.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the cover glass 13 is a glass plate for protecting the image sensor.
  • the IR cut filter 12 and the cover glass 13 are handled as an integral part of the imaging lens system 11 when the imaging lens system 11 is designed. However, the IR cut filter 12 and the cover glass 13 are not essential components of the imaging lens system 11.
  • Table 10 shows lens data of each lens surface of the imaging lens system 11.
  • the radius of curvature, the surface interval, the refractive index, and the Abbe number of each surface are presented as lens data.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is 4th, 6th, 8th, 10th, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the conical coefficient, and r is the height of the light beam from the optical axis Z.
  • 12th and 14th aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12 and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 11 shows aspherical coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 11 of Example 4.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • FIGS. 10A to 10C show longitudinal aberration diagrams, field curvature diagrams, and distortion diagrams in the imaging lens system of Example 4.
  • FIG. 10A shows a longitudinal aberration diagram
  • FIG. 10B shows a field curvature diagram
  • FIG. 10C shows a distortion diagram.
  • the half angle of view ⁇ is 97.5 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle).
  • Sag indicates the field curvature in the sagittal plane
  • Tan indicates the field curvature in the tangential plane.
  • the horizontal axis represents the amount of distortion (%) of the image
  • the vertical axis represents the image height (field angle).
  • 10A to 10C show simulation results using light beams having wavelengths of 486 nm, 587 nm, and 656 nm.
  • Table 12 shows the result of calculating the characteristic value of the imaging lens system 11 of Example 4.
  • the focal length of the entire lens system is f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 of the fourth lens group G4 is f4
  • the focal length of the fifth lens L5 of the fourth lens group G4 is f5
  • the focal length of the sixth lens L6 is f6, and the fourth lens of the fourth lens group G4.
  • the temperature coefficient of the refractive index is described by omitting ( ⁇ 10 ⁇ 5 / ° C.).
  • Various focal lengths were calculated using light rays with a wavelength of 546 nm.
  • FIG. 11 is a cross-sectional view illustrating the configuration of the imaging lens system of Example 5.
  • the imaging lens system 11 includes, in order from the object side to the image side, a first lens L1 having negative power, a second lens L2 having negative power, a third lens L3 having positive power, It includes a stop STOP, a fourth lens group G4 including a cemented lens, and a sixth lens L6 having a positive power.
  • the fourth lens group G4 includes a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging plane of the imaging lens system 11 is indicated by IMG.
  • the imaging lens system 11 includes an IR cut filter 12 and a cover glass 13.
  • the first lens L1 is a lens having negative power.
  • the object-side lens surface S1 of the first lens L1 has a spherical shape having a positive curvature.
  • the image side lens surface S2 of the first lens L1 has a spherical shape having a positive curvature.
  • the object side lens surface S1 has a convex surface facing the object side, and the image side lens surface S2 has a concave curved surface portion on the image side.
  • the second lens L2 is an aspheric lens having negative power.
  • the object side lens surface S3 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 of the second lens L2 has an aspheric shape having a positive curvature.
  • the image side lens surface S4 has a concave curved surface portion on the image side.
  • the third lens L3 is an aspheric lens having a positive power.
  • the object side lens surface S5 of the third lens L3 has an aspheric shape having a positive curvature.
  • the image side lens surface S6 of the third lens L3 has an aspheric shape having a negative curvature.
  • the object side lens surface S5 has a convex surface facing the object side, and the image side lens surface S6 has a convex surface facing the image surface side.
  • the stop STOP is a stop that determines the F value (Fno) of the lens system.
  • the stop STOP is disposed between the third lens L3 and the fourth lens group G4.
  • the fourth lens group G4 is a cemented lens including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the fourth lens group G4 is a cemented lens in which the image side lens surface S10 of the fourth lens L4 and the object side lens surface S11 of the fifth lens L5 are cemented.
  • the combined power of the fourth lens L4 and the fifth lens L5 is a negative power.
  • the fourth lens L4 is an aspheric lens having negative power.
  • the object side lens surface S9 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the image side lens surface S10 of the fourth lens L4 has an aspheric shape having a positive curvature.
  • the object side lens surface S9 has a convex surface facing the object side, and the image side lens surface S10 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspheric lens having a positive power.
  • the object side lens surface S11 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the image side lens surface S12 of the fifth lens L5 has an aspheric shape having a positive curvature.
  • the object side lens surface S11 has a convex surface facing the object side, and the image side lens surface S12 has a concave surface facing the image surface side.
  • the sixth lens L6 is an aspheric lens having positive power.
  • the object side lens surface S13 of the sixth lens L6 has an aspheric shape having a positive curvature.
  • the image side lens surface S14 of the sixth lens L6 has an aspheric shape having a negative curvature.
  • the object side lens surface S13 has a convex surface facing the object side, and the image side lens surface S14 has a convex surface facing the image surface side.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the cover glass 13 is a glass plate for protecting the image sensor.
  • the IR cut filter 12 and the cover glass 13 are handled as an integral part of the imaging lens system 11 when the imaging lens system 11 is designed. However, the IR cut filter 12 and the cover glass 13 are not essential components of the imaging lens system 11.
  • Table 13 shows lens data of each lens surface of the imaging lens system 11.
  • Table 13 presents the radius of curvature, surface spacing, refractive index, and Abbe number of each surface as lens data.
  • a surface marked with “*” indicates an aspherical surface.
  • the aspherical shape adopted for the lens surface is 4th, 6th, 8th, 10th, where z is the sag amount, c is the reciprocal of the radius of curvature, k is the cone coefficient, and r is the height of the light beam from the optical axis Z
  • 12th and 14th aspherical coefficients are ⁇ 4, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12 and ⁇ 14, respectively, they are expressed by the following equations.
  • Table 14 shows the aspheric coefficients for defining the aspherical shape of the aspherical lens surface in the imaging lens system 11 of Example 5.
  • “ ⁇ 6.522528E-03” means “ ⁇ 6.522528 ⁇ 10 ⁇ 3 ”.
  • FIGS. 12A to 12C show longitudinal aberration diagrams, field curvature diagrams, and distortion diagrams in the imaging lens system of Example 5.
  • FIG. 12A shows a longitudinal aberration diagram
  • FIG. 12B shows a field curvature diagram
  • FIG. 12C shows a distortion diagram.
  • the half angle of view ⁇ is 85 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light beam intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • the horizontal axis indicates the distance in the optical axis Z direction, and the vertical axis indicates the image height (field angle).
  • Sag indicates the field curvature in the sagittal plane
  • Tan indicates the field curvature in the tangential plane.
  • the horizontal axis indicates the amount of image distortion (%), and the vertical axis indicates the image height (angle of view). 12A to 12C show simulation results using light beams having wavelengths of 486 nm, 587 nm, and 656 nm.
  • Table 15 shows the result of calculating the characteristic value of the imaging lens system 11 of Example 5.
  • the focal length of the entire lens system is f
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 of the fourth lens group G4 is f4
  • the focal length of the fifth lens L5 of the fourth lens group G4 is f5
  • the focal length of the sixth lens L6 is f6, and the fourth lens of the fourth lens group G4.
  • the temperature coefficient of the refractive index is described by omitting ( ⁇ 10 ⁇ 5 / ° C.).
  • Various focal lengths were calculated using light rays with a wavelength of 546 nm.
  • FIG. 13 is a cross-sectional view of the imaging apparatus according to the second embodiment.
  • the imaging device 20 includes an imaging lens system 11 and an imaging element 21.
  • the imaging lens system 11 and the imaging element 21 are accommodated in a housing (not shown).
  • the imaging element 21 is an element that converts received light into an electrical signal, and for example, a CCD image sensor or a CMOS image sensor is used.
  • the imaging element 21 is disposed at the imaging position of the imaging lens system 11.
  • the horizontal angle of view is an angle of view corresponding to the horizontal direction of the image sensor 21.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
  • the use of the imaging lens system of the present invention is not limited to an in-vehicle camera or a surveillance camera, and can be used for other uses such as mounting in a small electronic device such as a mobile phone.
  • the cemented lens of the first embodiment has a first meniscus lens convex from the object side made of the first lens material and an object side made of the second lens material from the object side to the image side.
  • the first meniscus lens and the second meniscus lens have opposite signs of power, and the concave surface of the first meniscus lens and the convex surface of the second meniscus lens are both aspherical.
  • the cemented lens according to the first embodiment may be configured such that the concave surface of the first meniscus lens and the convex surface of the second meniscus lens are different aspheric surfaces.
  • both the object side surface of the first meniscus lens and the image side surface of the second meniscus lens may be aspherical.
  • the temperature coefficient of the refractive index of the first lens material and the temperature coefficient of the refractive index of the second lens material are both positive or negative. May be.
  • conditional expression ⁇ 1.2 ⁇ f1 / f2 ⁇ 0.6 (7) where the focal length of the first meniscus lens is f1 and the focal length of the second meniscus lens is f2. ) Is desirable.
  • the first meniscus lens has a negative power and the second meniscus lens has a positive power.
  • the cemented lens of Embodiment 1 satisfies the conditional expression ⁇ 2 ⁇ 1 ⁇ 20 (8-1), where the Abbe number of the first meniscus lens is ⁇ 1 and the Abbe number of the second meniscus lens is ⁇ 2. Furthermore, it is more desirable to satisfy the conditional expression ⁇ 2- ⁇ 1 ⁇ 25 (8-2) or the conditional expression ⁇ 2- ⁇ 1 ⁇ 30 (8-3).
  • the imaging lens system according to Embodiment 1 is an imaging lens system including an object side lens group having a positive power, an aperture, and an image side lens group having a positive power in order from the object side to the image side.
  • the image side lens group includes a cemented lens having a negative power and a lens group having a positive power.
  • the object side lens group has a first lens having negative power, a second lens having negative power, and a convex shape on the object side, the image side having a concave shape. You may make it consist of the 3rd lens which has positive power.
  • the cemented lens includes a first meniscus lens convex toward the object side and a second meniscus lens convex toward the object side in this order from the object side to the image side.
  • a negative power cemented lens wherein the concave surface of the first meniscus lens and the convex surface of the second meniscus lens are joined to each other by an adhesive layer, the first meniscus lens and the second meniscus lens
  • the lenses may have power signs opposite to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

撮像レンズ系(11)は、物体側から像側に向かって順に、像側が凹形状である、負のパワーを有する第1レンズ(L1)、像側が凹形状である、負のパワーを有する第2レンズ(L2)、物体側が凸形状である、正のパワーを有する第3レンズ(L3)、絞りSTOP、像側が凹形状である、負のパワーを有する第4レンズ(L4)、物体側が凸形状である、正のパワーを有する第5レンズ(L5)、像側が凸形状である、正のパワーを有する第6レンズ(L6)、とからなる撮像レンズ系であって、第4レンズ(L4)の像側レンズ面(S10)と、第5レンズ(L5)の物体側レンズ面(S11)とを接合され、第4レンズ(L4)と第5レンズ(L5)の合成パワーが負のパワーである。

Description

撮像レンズ系及び撮像装置
 本発明は、撮像レンズ系及び撮像装置に関する。
 監視用途の光学系として、屋内外の安全性を確保する監視カメラ用レンズ系、車外及び車内監視用の車載カメラ用レンズ系などがある。監視用途の光学系には、視界が極めて広く、かつ、高い解像力を有するとともに、さらに、Fナンバが2.0以下の明るい光学系であることが求められる。また、特に、車載カメラ用の撮像レンズ系では、コンパクトさも求められる。
 例えば、特許文献1には、3枚構成の前群と2枚構成の後群とで構成し、そのいずれか一方の群が負のパワーを有し、前群は、物体側から負のパワーを持つ第1レンズと正のパワーを持つ第2レンズ及び負のパワーの第3レンズからなり、第1,第2レンズは互いに分離しており、後群の第4レンズと第5レンズとを接合レンズとすることにより、諸収差を良好に補正しゴーストの発生を抑えて小形化したテレコンバージョンレンズが記載されている。
 また、特許文献2には、入射瞳EP側より順に、負の第1レンズと、負の第2レンズ及び正の第3レンズを接合した負の接合レンズ群)と、入射瞳側に凹面をもつ正メニスカスの第4レンズとが、光軸上に配列されることにより、Fナンバが60以下で、しかも全画角が50゜以上の状態で使用してもコマ収差の発生が少ないfθレンズが記載されている。
特開平11-52234号公報 特開平7-110441号公報
 しかしながら、特許文献1は、諸収差を良好に補正しゴーストの発生を抑えて小形化したテレコンバージョンレンズを実現するものである。また、特許文献2は、Fナンバが60以下で、しかも全画角が50゜以上の状態で使用してもコマ収差の発生が少ないfθレンズを実現するものである。
 このように、特許文献1、2には、広画角に対応した凹面と凸面で接合されたメニスカス接合レンズ、および良好な結像性能、テレセントリック性及び温度特性を有する広画角の撮像レンズ系を実現する構成は記載されていない。
 本発明は、特定の負のパワーのメニスカス接合レンズを用いることにより、半画角85°以上、または90°以上、あるいは95°以上の広画角の撮像レンズにあって、テレセントリック性、結像性能に優れた撮像レンズ系及び撮像装置を提供することを目的とする。また、当該負のパワーの接合レンズ及び当該接合レンズより像側に配置した正のパワーを有するレンズ群のレンズ材料の屈折率の温度係数の符号を正または負に揃えることにより、-40℃~105℃の何れの温度環境下でも収差が極力少ない撮影レンズ系を提供することを目的とする。
 本発明の接合レンズは、物体側から像側に向けて、第1のレンズ材料からなる物体側に凸の第1メニスカスレンズと、第2のレンズ材料からなる物体側に凸の第2メニスカスレンズとが、この順に配置され、第1メニスカスレンズの凹面と第2メニスカスレンズの凸面とが接着剤層により互いに接合された負のパワーのメニスカス接合レンズであって、前記第1メニスカスレンズと前記第2メニスカスレンズとはパワーの符号が互いに逆であり、前記第1メニスカスレンズの凹面および前記第2メニスカスレンズの凸面がともに非球面からなるものである。
また、本発明の撮像レンズ系は、物体側から像側に向かって順に、正のパワーを有する物体側レンズ群、絞り、正のパワーを有する像側レンズ群、よりなる撮像レンズ系であって、前記像側レンズ群は、負のパワーを有する接合レンズと、正のパワーを有するレンズ群、とからなるものである。また、物体側から像側に向かって順に、像側が凹形状である、負のパワーを有する第1レンズ、像側が凹形状である、負のパワーを有する第2レンズ、物体側が凸形状である、正のパワーを有する第3レンズ、絞り、像側が凹形状である、負のパワーを有する第4レンズ、物体側が凸形状である、正のパワーを有する第5レンズ、像側が凸形状である、正のパワーを有する第6レンズ、とからなる撮像レンズ系であって、前記第4レンズの像側レンズ面と、前記第5レンズの物体側レンズ面とを接合され、前記第4レンズと前記第5レンズの合成パワーが負のパワーであるようにした。
 この構成によれば、第4レンズと第5レンズの合成パワーを負にして、任意の画角における主光線の第6レンズへの入射位置を有効径端よりとすることにより、主光線の像面への入射角度を直角に近くすることができ、テレセントリック性を確保することができる撮像レンズ系を提供することができる。
 本発明によれば、広画角に対応した接合レンズが実現でき、テレセントリック性を確保することができる撮像レンズ系を提供することができる。
実施の形態1に係る撮像レンズ系の断面図である。 比較例の撮像レンズ系の断面図である。 実施例1に係る撮像レンズ系の断面図である。 実施例1に係る撮像レンズ系の収差図である。 実施例1に係る撮像レンズ系の収差図である。 実施例1に係る撮像レンズ系の収差図である。 実施例2に係る撮像レンズ系の断面図である。 実施例2に係る撮像レンズ系の収差図である。 実施例2に係る撮像レンズ系の収差図である。 実施例2に係る撮像レンズ系の収差図である。 実施例3に係る撮像レンズ系の断面図である。 実施例3に係る撮像レンズ系の収差図である。 実施例3に係る撮像レンズ系の収差図である。 実施例3に係る撮像レンズ系の収差図である。 実施例4に係る撮像レンズ系の断面図である。 実施例4に係る撮像レンズ系の収差図である。 実施例4に係る撮像レンズ系の収差図である。 実施例4に係る撮像レンズ系の収差図である。 実施例5に係る撮像レンズ系の断面図である。 実施例5に係る撮像レンズ系の収差図である。 実施例5に係る撮像レンズ系の収差図である。 実施例5に係る撮像レンズ系の収差図である。 実施の形態2に係る撮像装置の断面図である。
 以下、本実施の形態に係る撮像レンズ系及び撮像装置を説明する。
 (実施の形態1:撮像レンズ系)
 図1は、実施の形態1に係る撮像レンズ系の断面図である。図1において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 実施の形態1の撮像レンズ系は、絞りより像側に配置された接合レンズ(第4レンズ群G4)の合成パワーが負であることを特徴とする。この構成によりテレセントリック性を確保することができる効果について比較例を用いて説明する。
 図2は、比較例の撮像レンズ系の断面図である。図2の撮像レンズ系では、第4レンズ群G4の合成パワーが正のパワーである。
 図2の撮像レンズ系では、主光線CR2が第6レンズL6に入射する位置が結像面IMGに入射する位置と比べて、光軸Zよりであるので、第6レンズL6より像側でさらに有効径端側を経路とするために、主光線CR2は、光軸Zに対して角度を有して結像面IMGに入射することになる。
 一方、図1の撮像レンズ系11は合成パワーが負である第4レンズ群G4により、主光線CR1は、主光線CR2より有効径端側の経路で第6レンズL6に入射しているので、結像面IMGに入射する角度が、主光線CR2よりも垂直に近い。言い換えれば、CR1の光軸Zに対する入射角度は、主光線CR2の光軸Zに対する入射角度よりも小さい。
 このように、実施の形態1の撮像レンズ系は、物体側から像側に向かって順に、像側が凹形状である、負のパワーを有する第1レンズ、像側が凹形状である、負のパワーを有する第2レンズ、物体側が凸形状である、正のパワーを有する第3レンズ、絞り、像側が凹形状である、負のパワーを有する第4レンズ、物体側が凸形状である、正のパワーを有する第5レンズ、像側が凸形状である、正のパワーを有する第6レンズ、とからなる撮像レンズ系であって、前記第4レンズの像側レンズ面と、前記第5レンズの物体側レンズ面とを接合され、前記第4レンズと前記第5レンズの合成パワーが負のパワーであるようにした。
 この構成によれば、第4レンズと第5レンズの合成パワーを負にして、任意の画角における主光線の第6レンズへの入射位置を有効径端よりとすることにより、主光線の像面への入射角度を直角に近くすることができ、テレセントリック性を確保することができる撮像レンズ系を提供することができる。
 上記実施の形態1の撮像レンズ系は、前記第5レンズの像側が凹形状としてもよい。
 この構成によれば、主光線が結像面に入射する角度を垂直に近づけることができる。
 上記実施の形態1の撮像レンズ系は、前記第4レンズと前記第4レンズの合成焦点距離をf4、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(1)を満たしてもよい。
 -110<f45/f<-4.6   (1)
 この構成によれば、主光線が結像面に入射する角度を垂直に近づけることができ、十分な色収差補正量を確保できる。下限の条件を満たさない場合、主光線入射角度を小さくする効果が少ない。上限の条件を満たさない場合、色収差補正量が小さい。
 上記実施の形態1の撮像レンズ系は、前記第4レンズ、前記第5レンズ及び前記第6レンズのいずれかが、非球面レンズであってもよい。
 この構成によれば、球面収差を補正することができる。
 上記実施の形態1の撮像レンズ系は、前記第6レンズの焦点距離をf6、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(2)を満たしてもよい。
 1.7<f6/f<2.4   (2)
 この構成によれば、上記条件式の上限を満たすことにより、球面収差を小さくすることができ、主光線が結像面に入射する角度を垂直に近づけることができる。下限の条件を満たさない場合、球面収差が大きくなってしまう。上限の条件を満たさない場合、主光線入射角度を小さくする効果が少ない。
 上記実施の形態1の撮像レンズ系は、前記第4レンズの焦点距離をf4、前記第5レンズの焦点距離をf5と定義したときに、下記の条件式(3)を満たしてもよい。
 -1.2<f4/f5<-0.6   (3)
 この構成によれば、上記条件式を満たすことにより、色収差を適切に補正でききる。下限の条件を満たさない場合、第4レンズのパワーが小さくなり色収差が補正不足となる。上限の条件を満たさない場合、第4レンズのパワーが大きくなり色収差が補正過剰となる。
 上記実施の形態1の撮像レンズ系は、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第3レンズの焦点距離をf3、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(4)、(5)及び(6)の全てを満たすことが望ましい。
 -13<f1/f<-5      (4)
 -2.1<f2/f<-1.4   (5)
 2.5<f3/f<3.0     (6)
 この構成によれば、上記条件式の上限を満たすことにより、球面収差、像面湾曲、歪曲を小さくすることができる。
 上記実施の形態1の撮像レンズ系は、前記第4レンズ、前記第5レンズ及び前記第6レンズが、全て屈折率温度係数が負である材料で構成されている、または全て屈折率温度係数が正である材料で構成されてもよい。
 この構成によれば、
第4レンズ及び第5レンズを屈折率温度係数がマイナスの材料として、第6レンズの屈折率温度係数もマイナスの材料を用いることにより、負のパワーを持つ第4レンズ及び第5レンズの温度変化と正のパワーを持つ第6レンズの温度変化とで、温度変化によるピント位置の変動量を打ち消し合うので、撮像レンズ系全体での温度に伴うピント位置の変動量を小さくすることができる。第4レンズ、第5レンズ及び第6レンズの屈折率温度係数の符号が異なると温度変化による焦点位置変動方向が同じで重畳してしまう。
 上記実施の形態1の撮像レンズ系は、前記第4レンズ及び前記第5レンズは、プラスチックレンズであり、前記第6レンズは、ガラスレンズであってもよい。
 この構成によれば、温度変化による焦点位置変動をさらに小さくすることができる。
 本実施の形態の撮像装置は、上記いずれかに記載の撮像レンズ系と、撮像レンズ系の焦点位置に配置された撮像素子と、を備えるようにしてもよい。
 次に、実施の形態1の撮像レンズ系に対応する実施例について、図面を参照して説明する。
 (実施例1)
 図3は、実施例1の撮像レンズ系の構成を示す断面図である。図3において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 第1レンズL1は、負のパワーを有するレンズである。第1レンズL1の物体側レンズ面S1は、正の曲率を有する球面形状である。また、第1レンズL1の像側レンズ面S2は、正の曲率を有する球面形状である。また、物体側レンズ面S1は、物体側に凸面を向けており、像側レンズ面S2は、像側に凹面形状の曲面部分を有している。
 第2レンズL2は、負のパワーを有する非球面レンズである。第2レンズL2の物体側レンズ面S3は、正の曲率を有する非球面形状である。また、第2レンズL2の像側レンズ面S4は、正の曲率を有する非球面形状である。また、像側レンズ面S4は、像側に凹面形状の曲面部分を有している。
 第3レンズL3は、正のパワーを有する非球面レンズである。第3レンズL3の物体側レンズ面S5は、正の曲率を有する非球面形状である。また、第3レンズL3の像側レンズ面S6は、負の曲率を有する非球面形状である。また、物体側レンズ面S5は、物体側に凸面を向けており、像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズ群G4との間に配置される。
 第4レンズ群G4は、負のパワーを備える第4レンズL4と正のパワーを備える第5レンズL5からなる接合レンズである。第4レンズ群G4は、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11とを接合した接合レンズである。そして、第4レンズ群G4は、第4レンズL4と第5レンズL5の合成パワーが負のパワーである。
 第4レンズL4は、負のパワーを有する非球面レンズである。第4レンズL4の物体側レンズ面S9は、正の曲率を有する非球面形状である。また、第4レンズL4の像側レンズ面S10は、正の曲率を有する非球面形状である。物体側レンズ面S9は、物体側に凸面を向けており、像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面レンズである。第5レンズL5の物体側レンズ面S11は、正の曲率を有する非球面形状である。また、第5レンズL5の像側レンズ面S12は、正の曲率を有する非球面形状である。物体側レンズ面S11は、物体側に凸面を向けており、像側レンズ面S12は、像面側に凹面を向けている。
 第6レンズL6は、正のパワーを有する非球面レンズである。第6レンズL6の物体側レンズ面S13は、正の曲率を有する非球面形状である。また、第6レンズL6の像側レンズ面S14は、負の曲率を有する非球面形状である。物体側レンズ面S13は、物体側に凸面を向けており、像側レンズ面S14は、像面側に凸面を向けている。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。カバーガラス13は、撮像素子を保護するためのガラス板である。IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の必須の構成要素ではない。
 表1に、撮像レンズ系11の各レンズ面のレンズデータを示す。表1では、レンズデータとして、各面の曲率半径、面間隔、屈折率、及びアッベ数を提示している。「*印」がついた面は、非球面であることを示している。
Figure JPOXMLDOC01-appb-T000001
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、4次、6次、8次、10次、12次、14次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000002
 表2に、実施例1の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表2において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。
Figure JPOXMLDOC01-appb-T000003
 図4A~図4Cは、実施例1の撮像レンズ系における縦収差図、像面湾曲図、歪曲収差図を示す。図4Aは縦収差図を示し、図4Bは像面湾曲図を示し、そして図4Cは歪曲収差図を示す。図4A~2Cに示すように、実施例1の撮像レンズ系11では、半画角ωが95.1°、Fナンバが2.0である。図4Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図4Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図4Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図4Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図4A~図4Cでは、波長486nm、587nm及び656nmの光線によるシミュレーション結果を示している。
 表3に、実施例1の撮像レンズ系11の特性値を計算した結果を示す。表3では、撮像レンズ系11における、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第4レンズ群G4の第4レンズL4の焦点距離をf4、第4レンズ群G4の第5レンズL5の焦点距離をf5、第6レンズL6の焦点距離をf6、第4レンズ群G4の第4レンズL4と第5レンズL5の合成焦点距離をf45、第1レンズL1と第2レンズL2と第3レンズL3の合成焦点距離をf123、としたときの各特性値、最大半画角95.1°のときの結像面IMGへの主光線入射角度(CRA:Chief Ray Angle)、第4レンズ群G4の第4レンズL4の屈折率温度係数、第4レンズ群G4の第5レンズL5の屈折率温度係数、及び第6レンズL6の屈折率温度係数を示している。屈折率の温度係数は(×10-5/℃)を省略して記載している。各種の焦点距離は、546nmの波長の光線を用いて計算した。
Figure JPOXMLDOC01-appb-T000004
 (実施例2)
 図5は、実施例2の撮像レンズ系の構成を示す断面図である。図5において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 第1レンズL1は、負のパワーを有するレンズである。第1レンズL1の物体側レンズ面S1は、正の曲率を有する球面形状である。また、第1レンズL1の像側レンズ面S2は、正の曲率を有する球面形状である。また、物体側レンズ面S1は、物体側に凸面を向けており、像側レンズ面S2は、像側に凹面形状の曲面部分を有している。
 第2レンズL2は、負のパワーを有する非球面レンズである。第2レンズL2の物体側レンズ面S3は、正の曲率を有する非球面形状である。また、第2レンズL2の像側レンズ面S4は、正の曲率を有する非球面形状である。また、像側レンズ面S4は、像側に凹面形状の曲面部分を有している。
 第3レンズL3は、正のパワーを有する非球面レンズである。第3レンズL3の物体側レンズ面S5は、正の曲率を有する非球面形状である。また、第3レンズL3の像側レンズ面S6は、負の曲率を有する非球面形状である。また、物体側レンズ面S5は、物体側に凸面を向けており、像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズ群G4との間に配置される。
 第4レンズ群G4は、負のパワーを備える第4レンズL4と正のパワーを備える第5レンズL5からなる接合レンズである。第4レンズ群G4は、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11とを接合した接合レンズである。そして、第4レンズ群G4は、第4レンズL4と第5レンズL5の合成パワーが負のパワーである。
 第4レンズL4は、負のパワーを有する非球面レンズである。第4レンズL4の物体側レンズ面S9は、正の曲率を有する非球面形状である。また、第4レンズL4の像側レンズ面S10は、正の曲率を有する非球面形状である。物体側レンズ面S9は、物体側に凸面を向けており、像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面レンズである。第5レンズL5の物体側レンズ面S11は、正の曲率を有する非球面形状である。また、第5レンズL5の像側レンズ面S12は、正の曲率を有する非球面形状である。物体側レンズ面S11は、物体側に凸面を向けており、像側レンズ面S12は、像面側に凹面を向けている。
 第6レンズL6は、正のパワーを有する非球面レンズである。第6レンズL6の物体側レンズ面S13は、正の曲率を有する非球面形状である。また、第6レンズL6の像側レンズ面S14は、負の曲率を有する非球面形状である。物体側レンズ面S13は、物体側に凸面を向けており、像側レンズ面S14は、像面側に凸面を向けている。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。カバーガラス13は、撮像素子を保護するためのガラス板である。IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の必須の構成要素ではない。
 表4に、撮像レンズ系11の各レンズ面のレンズデータを示す。表4では、レンズデータとして、各面の曲率半径、面間隔、屈折率、及びアッベ数を提示している。「*印」がついた面は、非球面であることを示している。
Figure JPOXMLDOC01-appb-T000005
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、4次、6次、8次、10次、12次、14次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000006
 表5に、実施例2の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表5において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。
Figure JPOXMLDOC01-appb-T000007
 図6A~図6Cは、実施例2の撮像レンズ系における縦収差図、像面湾曲図、歪曲収差図を示す。図6Aは縦収差図を示し、図6Bは像面湾曲図を示し、そして図6Cは歪曲収差図を示す。図6A~2Cに示すように、実施例2の撮像レンズ系11では、半画角ωが85°、Fナンバが2.0である。図6Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図6Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図6Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図6Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図6A~図6Cでは、波長486nm、587nm及び656nmの光線によるシミュレーション結果を示している。
 表6に、実施例2の撮像レンズ系11の特性値を計算した結果を示す。表6では、撮像レンズ系11における、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第4レンズ群G4の第4レンズL4の焦点距離をf4、第4レンズ群G4の第5レンズL5の焦点距離をf5、第6レンズL6の焦点距離をf6、第4レンズ群G4の第4レンズL4と第5レンズL5の合成焦点距離をf45、第1レンズL1と第2レンズL2と第3レンズL3の合成焦点距離をf123、としたときの各特性値、最大半画角85°のときの結像面IMGへの主光線入射角度(CRA:Chief Ray Angle)、第4レンズ群G4の第4レンズL4の屈折率温度係数、第4レンズ群G4の第5レンズL5の屈折率温度係数、及び第6レンズL6の屈折率温度係数を示している。屈折率の温度係数は(×10-5/℃)を省略して記載している。各種の焦点距離は、546nmの波長の光線を用いて計算した。
Figure JPOXMLDOC01-appb-T000008
 (実施例3)
 図7は、実施例3の撮像レンズ系の構成を示す断面図である。図7において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 第1レンズL1は、負のパワーを有するレンズである。第1レンズL1の物体側レンズ面S1は、正の曲率を有する球面形状である。また、第1レンズL1の像側レンズ面S2は、正の曲率を有する球面形状である。また、物体側レンズ面S1は、物体側に凸面を向けており、像側レンズ面S2は、像側に凹面形状の曲面部分を有している。
 第2レンズL2は、負のパワーを有する非球面レンズである。第2レンズL2の物体側レンズ面S3は、正の曲率を有する非球面形状である。また、第2レンズL2の像側レンズ面S4は、正の曲率を有する非球面形状である。また、像側レンズ面S4は、像側に凹面形状の曲面部分を有している。
 第3レンズL3は、正のパワーを有する非球面レンズである。第3レンズL3の物体側レンズ面S5は、正の曲率を有する非球面形状である。また、第3レンズL3の像側レンズ面S6は、負の曲率を有する非球面形状である。また、物体側レンズ面S5は、物体側に凸面を向けており、像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズ群G4との間に配置される。
 第4レンズ群G4は、負のパワーを備える第4レンズL4と正のパワーを備える第5レンズL5からなる接合レンズである。第4レンズ群G4は、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11とを接合した接合レンズである。そして、第4レンズ群G4は、第4レンズL4と第5レンズL5の合成パワーが負のパワーである。
 第4レンズL4は、負のパワーを有する非球面レンズである。第4レンズL4の物体側レンズ面S9は、正の曲率を有する非球面形状である。また、第4レンズL4の像側レンズ面S10は、正の曲率を有する非球面形状である。物体側レンズ面S9は、物体側に凸面を向けており、像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面レンズである。第5レンズL5の物体側レンズ面S11は、正の曲率を有する非球面形状である。また、第5レンズL5の像側レンズ面S12は、正の曲率を有する非球面形状である。物体側レンズ面S11は、物体側に凸面を向けており、像側レンズ面S12は、像面側に凹面を向けている。
 第6レンズL6は、正のパワーを有する非球面レンズである。第6レンズL6の物体側レンズ面S13は、正の曲率を有する非球面形状である。また、第6レンズL6の像側レンズ面S14は、負の曲率を有する非球面形状である。物体側レンズ面S13は、物体側に凸面を向けており、像側レンズ面S14は、像面側に凸面を向けている。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。カバーガラス13は、撮像素子を保護するためのガラス板である。IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の必須の構成要素ではない。
 表7に、撮像レンズ系11の各レンズ面のレンズデータを示す。表7では、レンズデータとして、各面の曲率半径、面間隔、屈折率、及びアッベ数を提示している。「*印」がついた面は、非球面であることを示している。
Figure JPOXMLDOC01-appb-T000009
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、4次、6次、8次、10次、12次、14次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000010
 表8に、実施例3の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表8において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。
Figure JPOXMLDOC01-appb-T000011
 図8A~図8Cは、実施例3の撮像レンズ系における縦収差図、像面湾曲図、歪曲収差図を示す。図8Aは縦収差図を示し、図8Bは像面湾曲図を示し、そして図8Cは歪曲収差図を示す。図8A~図8Cに示すように、実施例3の撮像レンズ系11では、半画角ωが96.3°、Fナンバが2.0である。図8Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図8Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図8Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図8Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図8A~図8Cでは、波長486nm、587nm及び656nmの光線によるシミュレーション結果を示している。
 表9に、実施例3の撮像レンズ系11の特性値を計算した結果を示す。表9では、撮像レンズ系11における、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第4レンズ群G4の第4レンズL4の焦点距離をf4、第4レンズ群G4の第5レンズL5の焦点距離をf5、第6レンズL6の焦点距離をf6、第4レンズ群G4の第4レンズL4と第5レンズL5の合成焦点距離をf45、第1レンズL1と第2レンズL2と第3レンズL3の合成焦点距離をf123、としたときの各特性値、最大半画角96.3°のときの結像面IMGへの主光線入射角度(CRA:Chief Ray Angle)、第4レンズ群G4の第4レンズL4の屈折率温度係数、第4レンズ群G4の第5レンズL5の屈折率温度係数、及び第6レンズL6の屈折率温度係数を示している。屈折率の温度係数は(×10-5/℃)を省略して記載している。各種の焦点距離は、546nmの波長の光線を用いて計算した。
Figure JPOXMLDOC01-appb-T000012
 (実施例4)
 図9は、実施例4の撮像レンズ系の構成を示す断面図である。図9において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 第1レンズL1は、負のパワーを有するレンズである。第1レンズL1の物体側レンズ面S1は、正の曲率を有する球面形状である。また、第1レンズL1の像側レンズ面S2は、正の曲率を有する球面形状である。また、物体側レンズ面S1は、物体側に凸面を向けており、像側レンズ面S2は、像側に凹面形状の曲面部分を有している。
 第2レンズL2は、負のパワーを有する非球面レンズである。第2レンズL2の物体側レンズ面S3は、正の曲率を有する非球面形状である。また、第2レンズL2の像側レンズ面S4は、正の曲率を有する非球面形状である。また、像側レンズ面S4は、像側に凹面形状の曲面部分を有している。
 第3レンズL3は、正のパワーを有する非球面レンズである。第3レンズL3の物体側レンズ面S5は、正の曲率を有する非球面形状である。また、第3レンズL3の像側レンズ面S6は、負の曲率を有する非球面形状である。また、物体側レンズ面S5は、物体側に凸面を向けており、像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズ群G4との間に配置される。
 第4レンズ群G4は、負のパワーを備える第4レンズL4と正のパワーを備える第5レンズL5からなる接合レンズである。第4レンズ群G4は、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11とを接合した接合レンズである。そして、第4レンズ群G4は、第4レンズL4と第5レンズL5の合成パワーが負のパワーである。
 第4レンズL4は、負のパワーを有する非球面レンズである。第4レンズL4の物体側レンズ面S9は、正の曲率を有する非球面形状である。また、第4レンズL4の像側レンズ面S10は、正の曲率を有する非球面形状である。物体側レンズ面S9は、物体側に凸面を向けており、像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面レンズである。第5レンズL5の物体側レンズ面S11は、正の曲率を有する非球面形状である。また、第5レンズL5の像側レンズ面S12は、正の曲率を有する非球面形状である。物体側レンズ面S11は、物体側に凸面を向けており、像側レンズ面S12は、像面側に凹面を向けている。
 第6レンズL6は、正のパワーを有する非球面レンズである。第6レンズL6の物体側レンズ面S13は、正の曲率を有する非球面形状である。また、第6レンズL6の像側レンズ面S14は、負の曲率を有する非球面形状である。物体側レンズ面S13は、物体側に凸面を向けており、像側レンズ面S14は、像面側に凸面を向けている。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。カバーガラス13は、撮像素子を保護するためのガラス板である。IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の必須の構成要素ではない。
 表10に、撮像レンズ系11の各レンズ面のレンズデータを示す。表10では、レンズデータとして、各面の曲率半径、面間隔、屈折率、及びアッベ数を提示している。「*印」がついた面は、非球面であることを示している。
Figure JPOXMLDOC01-appb-T000013
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、4次、6次、8次、10次、12次、14次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000014
 表11に、実施例4の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表11において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。
Figure JPOXMLDOC01-appb-T000015

 図10A~図10Cは、実施例4の撮像レンズ系における縦収差図、像面湾曲図、歪曲収差図を示す。図10Aは縦収差図を示し、図10Bは像面湾曲図を示し、そして図10Cは歪曲収差図を示す。図10A~図10Cに示すように、実施例4の撮像レンズ系11では、半画角ωが97.5°、Fナンバが2.0である。図10Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図10Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図10Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図10Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図10A~図10Cでは、波長486nm、587nm及び656nmの光線によるシミュレーション結果を示している。
 表12に、実施例4の撮像レンズ系11の特性値を計算した結果を示す。表12では、撮像レンズ系11における、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第4レンズ群G4の第4レンズL4の焦点距離をf4、第4レンズ群G4の第5レンズL5の焦点距離をf5、第6レンズL6の焦点距離をf6、第4レンズ群G4の第4レンズL4と第5レンズL5の合成焦点距離をf45、第1レンズL1と第2レンズL2と第3レンズL3の合成焦点距離をf123、としたときの各特性値、最大半画角97.5°のときの結像面IMGへの主光線入射角度(CRA:Chief Ray Angle)、第4レンズ群G4の第4レンズL4の屈折率温度係数、第4レンズ群G4の第5レンズL5の屈折率温度係数、及び第6レンズL6の屈折率温度係数を示している。屈折率の温度係数は(×10-5/℃)を省略して記載している。各種の焦点距離は、546nmの波長の光線を用いて計算した。
Figure JPOXMLDOC01-appb-T000016
 (実施例5)
 図11は、実施例5の撮像レンズ系の構成を示す断面図である。図11において、撮像レンズ系11は、物体側から像側に向かって順に、負のパワーを有する第1レンズL1、負のパワーを有する第2レンズL2、正のパワーを有する第3レンズL3、絞りSTOP、接合レンズからなる第4レンズ群G4、正のパワーを有する第6レンズL6とからなる。第4レンズ群G4は、負のパワーを有する第4レンズL4と正のパワーを有する第5レンズL5とからなる。撮像レンズ系11の結像面はIMGで示されている。また、撮像レンズ系11は、IRカットフィルタ12及びカバーガラス13を備える。
 第1レンズL1は、負のパワーを有するレンズである。第1レンズL1の物体側レンズ面S1は、正の曲率を有する球面形状である。また、第1レンズL1の像側レンズ面S2は、正の曲率を有する球面形状である。また、物体側レンズ面S1は、物体側に凸面を向けており、像側レンズ面S2は、像側に凹面形状の曲面部分を有している。
 第2レンズL2は、負のパワーを有する非球面レンズである。第2レンズL2の物体側レンズ面S3は、正の曲率を有する非球面形状である。また、第2レンズL2の像側レンズ面S4は、正の曲率を有する非球面形状である。また、像側レンズ面S4は、像側に凹面形状の曲面部分を有している。
 第3レンズL3は、正のパワーを有する非球面レンズである。第3レンズL3の物体側レンズ面S5は、正の曲率を有する非球面形状である。また、第3レンズL3の像側レンズ面S6は、負の曲率を有する非球面形状である。また、物体側レンズ面S5は、物体側に凸面を向けており、像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズ群G4との間に配置される。
 第4レンズ群G4は、負のパワーを備える第4レンズL4と正のパワーを備える第5レンズL5からなる接合レンズである。第4レンズ群G4は、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11とを接合した接合レンズである。そして、第4レンズ群G4は、第4レンズL4と第5レンズL5の合成パワーが負のパワーである。
 第4レンズL4は、負のパワーを有する非球面レンズである。第4レンズL4の物体側レンズ面S9は、正の曲率を有する非球面形状である。また、第4レンズL4の像側レンズ面S10は、正の曲率を有する非球面形状である。物体側レンズ面S9は、物体側に凸面を向けており、像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面レンズである。第5レンズL5の物体側レンズ面S11は、正の曲率を有する非球面形状である。また、第5レンズL5の像側レンズ面S12は、正の曲率を有する非球面形状である。物体側レンズ面S11は、物体側に凸面を向けており、像側レンズ面S12は、像面側に凹面を向けている。
 第6レンズL6は、正のパワーを有する非球面レンズである。第6レンズL6の物体側レンズ面S13は、正の曲率を有する非球面形状である。また、第6レンズL6の像側レンズ面S14は、負の曲率を有する非球面形状である。物体側レンズ面S13は、物体側に凸面を向けており、像側レンズ面S14は、像面側に凸面を向けている。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。カバーガラス13は、撮像素子を保護するためのガラス板である。IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12及びカバーガラス13は、撮像レンズ系11の必須の構成要素ではない。
 表13に、撮像レンズ系11の各レンズ面のレンズデータを示す。表13では、レンズデータとして、各面の曲率半径、面間隔、屈折率、及びアッベ数を提示している。「*印」がついた面は、非球面であることを示している。
Figure JPOXMLDOC01-appb-T000017
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、4次、6次、8次、10次、12次、14次の非球面係数をそれぞれα4、α6、α8、α10、α12、α14としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000018
 表14に、実施例5の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表14において、例えば「-6.522528E-03」は、「-6.522528×10-3」を意味する。
Figure JPOXMLDOC01-appb-T000019
 図12A~図12Cは、実施例5の撮像レンズ系における縦収差図、像面湾曲図、歪曲収差図を示す。図12Aは縦収差図を示し、図12Bは像面湾曲図を示し、そして図12Cは歪曲収差図を示す。図12A~図12Cに示すように、実施例5の撮像レンズ系11では、半画角ωが85°、Fナンバが2.0である。図12Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。図12Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。図12Bにおいて、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。図12Cの歪曲収差図では、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。図12A~図12Cでは、波長486nm、587nm及び656nmの光線によるシミュレーション結果を示している。
 表15に、実施例5の撮像レンズ系11の特性値を計算した結果を示す。表15では、撮像レンズ系11における、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第4レンズ群G4の第4レンズL4の焦点距離をf4、第4レンズ群G4の第5レンズL5の焦点距離をf5、第6レンズL6の焦点距離をf6、第4レンズ群G4の第4レンズL4と第5レンズL5の合成焦点距離をf45、第1レンズL1と第2レンズL2と第3レンズL3の合成焦点距離をf123、としたときの各特性値、最大半画角85°のときの結像面IMGへの主光線入射角度(CRA:Chief Ray Angle)、第4レンズ群G4の第4レンズL4の屈折率温度係数、第4レンズ群G4の第5レンズL5の屈折率温度係数、及び第6レンズL6の屈折率温度係数を示している。屈折率の温度係数は(×10-5/℃)を省略して記載している。各種の焦点距離は、546nmの波長の光線を用いて計算した。
Figure JPOXMLDOC01-appb-T000020
 (実施の形態2:撮像装置への適用例)
 図13は、実施の形態2に係る撮像装置の断面図である。撮像装置20は、撮像レンズ系11と、撮像素子21と、を備える。撮像レンズ系11と、撮像素子21と、は筐体(不図示)に収容されている。
 撮像素子21は、受光した光を電気信号に変換する素子であり、例えば、CCDイメージセンサやCMOSイメージセンサが用いられる。撮像素子21は、撮像レンズ系11の結像位置に配置されている。なお、水平画角とは、撮像素子21の水平方向に対応する画角である。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本発明の撮像レンズ系の用途は、車載カメラや監視カメラに限定されるものではなく、携帯電話等の小型電子機器に搭載する等の他の用途にも用いることができる。
 また例えば、上記実施の形態1の接合レンズは、物体側から像側に向けて、第1のレンズ材料からなる物体側に凸の第1メニスカスレンズと、第2のレンズ材料からなる物体側に凸の第2メニスカスレンズとが、この順に配置され、前記第1メニスカスレンズの凹面と、前記第2メニスカスレンズの凸面とが、接着剤層により互いに接合された、負のパワーのメニスカス接合レンズであって、前記第1メニスカスレンズと前記第2メニスカスレンズとはパワーの符号が互いに逆であり、前記第1メニスカスレンズの凹面および前記第2メニスカスレンズの凸面がともに非球面からなるようにした。
 上記実施の形態1の接合レンズは、前記第1メニスカスレンズの凹面および、前記第2メニスカスレンズの凸面が互いに異なる非球面からなるようにしてもよい。
 上記実施の形態1の接合レンズは、前記第1メニスカスレンズの物体側面と前記第2メニスカスレンズの像側面とがともに非球面からなるようにしてもよい。
 上記実施の形態1の接合レンズは、前記第1のレンズ材料の屈折率の温度係数と、前記第2のレンズ材料の屈折率の温度係数とが、ともに正または負の同符号であるようにしてもよい。
 上記実施の形態1の接合レンズは、前記第1メニスカスレンズの焦点距離をf1、前記第2メニスカスレンズの焦点距離をf2として、条件式 -1.2<f1/f2<-0.6 (7)を満たすことが望ましい。
 上記実施の形態1の接合レンズは、前記第1メニスカスレンズが負のパワーを有し、前記第2メニスカスレンズが正のパワーを有することが望ましい。
 上記実施の形態1の接合レンズは、前記第1メニスカスレンズのアッベ数をν1、前記第2メニスカスレンズのアッベ数をν2としたとき、条件式 ν2-ν1≧20 (8-1)を満たすこと、さらには、条件式 ν2-ν1≧25 (8-2)、あるいは条件式 ν2-ν1≧30 (8-3)を満たすことがより望ましい。
 上記実施の形態1の撮像レンズ系は、物体側から像側に向かって順に、正のパワーを有する物体側レンズ群、絞り、正のパワーを有する像側レンズ群、よりなる撮像レンズ系であって、前記像側レンズ群は、負のパワーを有する接合レンズと、正のパワーを有するレンズ群、とからなる。
 上記実施の形態1の撮像レンズ系は、前記物体側レンズ群が、像側が凹形状である、負のパワーを有する第1レンズ、負のパワーを有する第2レンズ、物体側が凸形状である、正のパワーを有する第3レンズ、からなるようにしてもよい。
 上記実施の形態1の撮像レンズ系は、前記接合レンズが、物体側から像側に向けて、物体側に凸の第1メニスカスレンズと、物体側に凸の第2メニスカスレンズとが、この順に配置され、前記第1メニスカスレンズの凹面と、前記第2メニスカスレンズの凸面とが、接着剤層により互いに接合された負のパワーの接合レンズであって、前記第1メニスカスレンズと前記第2メニスカスレンズとはパワーの符号が互いに逆であるようにしてもよい。
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
G4 第4レンズ群
STOP 絞り
IMG 結像面
11 撮像レンズ系
12 IRカットフィルタ
13 カバーガラス
20 撮像装置
21 撮像素子

Claims (22)

  1.  物体側から像側に向けて、
     第1のレンズ材料からなる物体側に凸の第1メニスカスレンズと、
     第2のレンズ材料からなる物体側に凸の第2メニスカスレンズとが、この順に配置され、
     前記第1メニスカスレンズの凹面と、前記第2メニスカスレンズの凸面とが、接着剤層により互いに接合された、負のパワーのメニスカス接合レンズであって、
     前記第1メニスカスレンズと前記第2メニスカスレンズとはパワーの符号が互いに逆であり、
     前記第1メニスカスレンズの凹面および前記第2メニスカスレンズの凸面がともに非球面からなる接合レンズ。
  2.  前記第1メニスカスレンズの凹面および、前記第2メニスカスレンズの凸面が互いに異なる非球面からなる請求項1に記載の接合レンズ。
  3.  前記第1メニスカスレンズの物体側面と前記第2メニスカスレンズの像側面とがともに非球面からなる請求項1記載の接合レンズ。
  4.  前記第1のレンズ材料の屈折率の温度係数と、前記第2のレンズ材料の屈折率の温度係数とが、ともに正または負の同符号である請求項1記載の接合レンズ。
  5.  前記第1メニスカスレンズの焦点距離をf1、前記第2メニスカスレンズの焦点距離をf2と定義したとき、下記条件式(7)を満たす請求項1記載の接合レンズ。
     -1.2<f1/f2<-0.6 (7)
  6.  前記第1メニスカスレンズが負のパワーを有し、前記第2メニスカスレンズが正のパワーを有する請求項1記載の接合レンズ。
  7.  前記第1メニスカスレンズのアッベ数をν1、前記第2メニスカスレンズのアッベ数をν2と定義したとき、下記条件式(8)を満たす請求項1記載の接合レンズ。
     ν2-ν1≧20 (8)
  8.  物体側から像側に向かって順に、
     正のパワーを有する物体側レンズ群、
     絞り、
     正のパワーを有する像側レンズ群、
     よりなる撮像レンズ系であって、
     前記像側レンズ群は、
     負のパワーを有する接合レンズと、
     正のパワーを有するレンズ群、
     とからなる、撮像レンズ系。
  9.  前記物体側レンズ群が、
     像側が凹形状である、負のパワーを有する第1レンズ、
     負のパワーを有する第2レンズ、
     物体側が凸形状である、正のパワーを有する第3レンズ、
     からなる請求項8記載の撮像レンズ系。
  10.  前記接合レンズが、
     物体側から像側に向けて、
     物体側に凸の第1メニスカスレンズと、
     物体側に凸の第2メニスカスレンズとが、
     この順に配置され、
     前記第1メニスカスレンズの凹面と、
     前記第2メニスカスレンズの凸面とが、
     接着剤層により互いに接合された負のパワーの接合レンズであって、
     前記第1メニスカスレンズと前記第2メニスカスレンズとはパワーの符号が互いに逆である請求項8記載の撮像レンズ系。
  11.  半画角が85°以上の請求項8記載の撮像レンズ系。
  12.  Fナンバが2.0以下の請求項8記載の撮像レンズ系。
  13.  物体側から像側に向かって順に、
     像側が凹形状である、負のパワーを有する第1レンズ、
     像側が凹形状である、負のパワーを有する第2レンズ、
     物体側が凸形状である、正のパワーを有する第3レンズ、
     絞り、
     像側が凹形状である、負のパワーを有する第4レンズ、
     物体側が凸形状である、正のパワーを有する第5レンズ、
     像側が凸形状である、正のパワーを有する第6レンズ、とからなる撮像レンズ系であって、
     前記第4レンズの像側レンズ面と、前記第5レンズの物体側レンズ面とを接合され、
     前記第4レンズと前記第5レンズの合成パワーが負のパワーである撮像レンズ系。
  14.  前記第5レンズの像側が凹形状である、請求項13に記載の撮像レンズ系。
  15.  前記第4レンズと前記第4レンズの合成焦点距離をf4、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(1)を満たす請求項13に記載の撮像レンズ系。
     -110<f45/f<-4.6   (1)
  16.  前記第4レンズ、前記第5レンズ及び前記第6レンズのいずれかが、非球面レンズである請求項13に記載の撮像レンズ系。
  17.  前記第6レンズの焦点距離をf6、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(2)を満たす請求項13に記載の撮像レンズ系。
     1.7<f6/f<2.4   (2)
  18.  前記第4レンズの焦点距離をf4、前記第5レンズの焦点距離をf5と定義したときに、下記の条件式(3)を満たす請求項13に記載の撮像レンズ系。
     -1.2<f4/f5<-0.6   (3)
  19.  前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第3レンズの焦点距離をf3、レンズ系全体の焦点距離をfと定義したときに、下記の条件式(4)、(5)及び(6)の全てを満たす請求項13に記載の撮像レンズ系。
     -13<f1/f<-5      (4)
     -2.1<f2/f<-1.4   (5)
     2.5<f3/f<3.0     (6)
  20.  前記第4レンズ、前記第5レンズ及び前記第6レンズが、全て屈折率温度係数が負である材料で構成されている、または全て屈折率温度係数が正である材料で構成されている請求項14に記載の撮像レンズ系。
  21.  前記第4レンズ及び前記第5レンズは、プラスチックレンズであり、前記第6レンズは、ガラスレンズである請求項15に記載の撮像レンズ系。
  22.  請求項8から21のいずれかの撮像レンズ系と、前記撮像レンズ系の焦点位置に配置された撮像素子と、を備える撮像装置。
PCT/JP2017/019912 2016-05-27 2017-05-29 撮像レンズ系及び撮像装置 WO2017204364A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-106019 2016-05-27
JP2016106019A JP2017211575A (ja) 2016-05-27 2016-05-27 撮像レンズ系及び撮像装置

Publications (1)

Publication Number Publication Date
WO2017204364A1 true WO2017204364A1 (ja) 2017-11-30

Family

ID=60412478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019912 WO2017204364A1 (ja) 2016-05-27 2017-05-29 撮像レンズ系及び撮像装置

Country Status (2)

Country Link
JP (1) JP2017211575A (ja)
WO (1) WO2017204364A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018066641A1 (ja) * 2016-10-05 2019-08-08 マクセル株式会社 撮像レンズ系及び撮像装置
CN110109233A (zh) * 2019-05-28 2019-08-09 广东弘景光电科技股份有限公司 大光圈光学系统及其应用的摄像模组
CN110320646A (zh) * 2019-07-25 2019-10-11 广东弘景光电科技股份有限公司 大光圈广角光学系统及其应用的摄像模组
CN108363163B (zh) * 2018-01-15 2020-03-24 玉晶光电(厦门)有限公司 光学成像镜头
US20200254941A1 (en) * 2018-12-12 2020-08-13 Jiangxi Lianchuang Electronic Co., Ltd. Wide-angle lens, camera module and vehicle camera
CN112014943A (zh) * 2019-05-30 2020-12-01 三营超精密光电(晋城)有限公司 广角镜头、取像装置及交通工具

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116516B (zh) * 2018-09-28 2024-07-23 广东弘景光电科技股份有限公司 大光圈光学系统及其应用的摄像模组
CN111323888B (zh) * 2018-12-13 2021-09-03 宁波舜宇车载光学技术有限公司 光学镜头及成像设备
CN110646922A (zh) * 2019-09-30 2020-01-03 江西特莱斯光学有限公司 一种小入射角大出射角镜头及摄像设备
WO2021184214A1 (zh) * 2020-03-17 2021-09-23 天津欧菲光电有限公司 广角镜头、成像模组、电子装置及驾驶装置
KR102339432B1 (ko) * 2020-06-05 2021-12-15 (주)코아시아옵틱스 소형 망원 광학계

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271514A (ja) * 1998-03-23 1999-10-08 Minolta Co Ltd 回折光学素子及び光学系
JP2000227546A (ja) * 1999-02-04 2000-08-15 Asahi Optical Co Ltd 中望遠レンズ
JP2000352665A (ja) * 1999-06-09 2000-12-19 Olympus Optical Co Ltd 広角レンズ
JP2001021805A (ja) * 1999-07-08 2001-01-26 Olympus Optical Co Ltd 撮像装置及び撮像光学系
JP2004012505A (ja) * 2002-06-03 2004-01-15 Canon Inc ズームレンズ及びそれを有する光学機器
JP2004252219A (ja) * 2003-02-20 2004-09-09 Nikon Corp フィルターアタッチメント及びこのフィルターアタッチメントを有する撮影装置
JP2005221920A (ja) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc 超広角光学系
JP2005274662A (ja) * 2004-03-23 2005-10-06 Fujinon Corp 接合レンズを有するズームレンズ
JP2008040033A (ja) * 2006-08-04 2008-02-21 Sigma Corp 広角レンズ
JP2008216591A (ja) * 2007-03-02 2008-09-18 Tamron Co Ltd ズームレンズ
JP2008257179A (ja) * 2007-03-12 2008-10-23 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009151078A (ja) * 2007-12-20 2009-07-09 Samsung Electronics Co Ltd 投影光学系および画像投影装置
JP2009169082A (ja) * 2008-01-16 2009-07-30 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009205064A (ja) * 2008-02-29 2009-09-10 Sony Corp レンズ鏡筒および撮像装置
JP2010134416A (ja) * 2008-11-04 2010-06-17 Hoya Corp リアフォーカス広角レンズ系及びそれを用いた電子撮像装置
JP2011095488A (ja) * 2009-10-29 2011-05-12 Olympus Imaging Corp レンズ成分、結像光学系、及びそれを有する電子撮像装置
JP2013040992A (ja) * 2011-08-11 2013-02-28 Pentax Ricoh Imaging Co Ltd 超広角レンズ系

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074529B (zh) * 2013-02-28 2017-05-10 富士胶片株式会社 摄像透镜及摄像装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271514A (ja) * 1998-03-23 1999-10-08 Minolta Co Ltd 回折光学素子及び光学系
JP2000227546A (ja) * 1999-02-04 2000-08-15 Asahi Optical Co Ltd 中望遠レンズ
JP2000352665A (ja) * 1999-06-09 2000-12-19 Olympus Optical Co Ltd 広角レンズ
JP2001021805A (ja) * 1999-07-08 2001-01-26 Olympus Optical Co Ltd 撮像装置及び撮像光学系
JP2004012505A (ja) * 2002-06-03 2004-01-15 Canon Inc ズームレンズ及びそれを有する光学機器
JP2004252219A (ja) * 2003-02-20 2004-09-09 Nikon Corp フィルターアタッチメント及びこのフィルターアタッチメントを有する撮影装置
JP2005221920A (ja) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc 超広角光学系
JP2005274662A (ja) * 2004-03-23 2005-10-06 Fujinon Corp 接合レンズを有するズームレンズ
JP2008040033A (ja) * 2006-08-04 2008-02-21 Sigma Corp 広角レンズ
JP2008216591A (ja) * 2007-03-02 2008-09-18 Tamron Co Ltd ズームレンズ
JP2008257179A (ja) * 2007-03-12 2008-10-23 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009151078A (ja) * 2007-12-20 2009-07-09 Samsung Electronics Co Ltd 投影光学系および画像投影装置
JP2009169082A (ja) * 2008-01-16 2009-07-30 Olympus Imaging Corp 結像光学系及びそれを有する電子撮像装置
JP2009205064A (ja) * 2008-02-29 2009-09-10 Sony Corp レンズ鏡筒および撮像装置
JP2010134416A (ja) * 2008-11-04 2010-06-17 Hoya Corp リアフォーカス広角レンズ系及びそれを用いた電子撮像装置
JP2011095488A (ja) * 2009-10-29 2011-05-12 Olympus Imaging Corp レンズ成分、結像光学系、及びそれを有する電子撮像装置
JP2013040992A (ja) * 2011-08-11 2013-02-28 Pentax Ricoh Imaging Co Ltd 超広角レンズ系

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018066641A1 (ja) * 2016-10-05 2019-08-08 マクセル株式会社 撮像レンズ系及び撮像装置
CN108363163B (zh) * 2018-01-15 2020-03-24 玉晶光电(厦门)有限公司 光学成像镜头
US20200254941A1 (en) * 2018-12-12 2020-08-13 Jiangxi Lianchuang Electronic Co., Ltd. Wide-angle lens, camera module and vehicle camera
US12054104B2 (en) * 2018-12-12 2024-08-06 Jiangxi Lianchuang Electronic Co., Ltd. Wide-angle lens, camera module and vehicle camera
CN110109233A (zh) * 2019-05-28 2019-08-09 广东弘景光电科技股份有限公司 大光圈光学系统及其应用的摄像模组
CN112014943A (zh) * 2019-05-30 2020-12-01 三营超精密光电(晋城)有限公司 广角镜头、取像装置及交通工具
CN112014943B (zh) * 2019-05-30 2022-04-22 三营超精密光电(晋城)有限公司 广角镜头、取像装置及交通工具
CN110320646A (zh) * 2019-07-25 2019-10-11 广东弘景光电科技股份有限公司 大光圈广角光学系统及其应用的摄像模组

Also Published As

Publication number Publication date
JP2017211575A (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2017204364A1 (ja) 撮像レンズ系及び撮像装置
JP7155361B2 (ja) 撮像レンズ系及び撮像装置
JP5620607B2 (ja) 撮像レンズおよびこれを備えた撮像装置
JP5330202B2 (ja) 撮像レンズおよび撮像装置
JP5252842B2 (ja) 撮像レンズ
JP6952830B2 (ja) 撮像レンズ系
JP2020030273A (ja) 撮像レンズ
JP5450023B2 (ja) 撮像レンズおよびこの撮像レンズを用いた撮像装置
US20110299178A1 (en) Image pickup lens and image pickup apparatus
US10079964B2 (en) Lens system, interchangeable lens apparatus, and camera system
CN111796393A (zh) 摄像镜头
JP2017167339A (ja) 広角レンズ系及び撮像装置
WO2022239661A1 (ja) 撮像レンズ系及び撮像装置
JP2017167253A (ja) 撮像レンズ系及び撮像装置
JP2016188893A (ja) 撮像レンズ系及び撮像装置
JP7193362B2 (ja) 撮像レンズ及び撮像装置
WO2016017065A1 (ja) 撮像レンズ系及び撮像装置
KR101758734B1 (ko) 광각 렌즈 및 이를 구비한 촬상 장치
JP6818832B2 (ja) 撮像レンズ系及び撮像装置
WO2022071011A1 (ja) 結像レンズ系及び撮像装置
JP7531659B2 (ja) 撮像レンズ系及び撮像装置
CN112444953B (zh) 摄像镜头
JP7498569B2 (ja) 撮像レンズ系及び撮像装置
JP4541729B2 (ja) 撮像レンズ
JP2022110290A (ja) 撮像レンズ系及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802950

Country of ref document: EP

Kind code of ref document: A1