WO2017199365A1 - 分布型増幅器及び多段増幅器 - Google Patents

分布型増幅器及び多段増幅器 Download PDF

Info

Publication number
WO2017199365A1
WO2017199365A1 PCT/JP2016/064722 JP2016064722W WO2017199365A1 WO 2017199365 A1 WO2017199365 A1 WO 2017199365A1 JP 2016064722 W JP2016064722 W JP 2016064722W WO 2017199365 A1 WO2017199365 A1 WO 2017199365A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
transistor
transmission line
distributed amplifier
amplifier
Prior art date
Application number
PCT/JP2016/064722
Other languages
English (en)
French (fr)
Inventor
英悟 桑田
山中 宏治
篤生 杉本
英寿 小山
裕太郎 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16902384.3A priority Critical patent/EP3447914A4/en
Priority to PCT/JP2016/064722 priority patent/WO2017199365A1/ja
Priority to JP2018517995A priority patent/JP6516928B2/ja
Publication of WO2017199365A1 publication Critical patent/WO2017199365A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/168Two amplifying stages are coupled by means of a filter circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/456A scaled replica of a transistor being present in an amplifier

Definitions

  • the present invention relates to a distributed amplifier in which a plurality of transistors are provided between an input transmission line and an output transmission line, and a multistage amplifier in which a plurality of distributed amplifiers are connected in multiple stages.
  • the output side circuit of the distributed amplifier disclosed in Non-Patent Document 1 constitutes an unbalanced tournament circuit. Since the output side circuit constitutes an unbalanced tournament type circuit, the bandwidth of the distributed amplifier is widened.
  • the wiring of the output side circuit cannot be provided with an impedance conversion function when it is necessary to realize a broadband frequency characteristic.
  • the output side circuit is an unbalanced tournament type circuit and does not have an impedance conversion function, when an optimum load resistance per unit gate width in each transistor and a condition for fixing a terminal impedance are given, Even if the number of transistors to be mounted and the gate width of each transistor are changed, the total gate width of the entire amplifier becomes constant. For this reason, the output power cannot be increased or decreased. Therefore, when the output power of the distributed amplifier becomes larger than the desired output power, there is a problem that wasteful power consumption occurs.
  • FIG. 18 to 21 are explanatory diagrams showing the total gate width Wgt (mm) of the entire amplifier when the optimum load resistance per unit gate width in the transistor is 120 ( ⁇ ⁇ mm) and the termination impedance is 50 ( ⁇ ). is there.
  • FIG. 18 shows a case where all transistors have the same gate width Wgt (mm) and the number of transistors is 10.
  • FIG. 19 shows a case where all transistors have the same gate width Wgt (mm) and the number of transistors is eight.
  • FIG. 20 shows a case where the gate widths Wgt (mm) of all the transistors are equal and the number of transistors is four.
  • FIG. 21 shows a case where the number of transistors is 10, and among the 10 transistors, the gate width of the transistor closest to the input terminal is wider than the gate widths of the other transistors, and the gate widths of the other transistors are equal. Is shown.
  • “FET number” is a number for identifying a transistor allocated in order from a transistor close to the input terminal
  • R opt is an optimum load resistance per unit gate width in each transistor
  • Zo1 to Zo10 are This is the combined impedance when the output terminal of each transistor is viewed from the outside
  • Zo of the transistor farthest from the input terminal is the combined impedance of the portion connected to the output terminal.
  • the total gate width Wgt (mm) of the entire amplifier is constant even if the number of mounted transistors or the gate width Wgt (mm) of each transistor changes. . For this reason, unlike the tournament type amplifier, the conventional distributed amplifier cannot increase or decrease the output power.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a distributed amplifier and a multistage amplifier capable of reducing output power and power consumption.
  • the distributed amplifier according to the present invention amplifies an input side transmission line for transmitting an input signal, an output side transmission line for transmitting an output signal, and an input signal transmitted by the input side transmission line, and an input after amplification
  • a plurality of transistors that output an output signal that is a signal, and a resonator that is connected between the output terminal of the transistor and the output transmission line, and that has a resonance frequency higher than the operating frequency of the transistor. is there.
  • the resonator having a resonance frequency higher than the operation frequency of the transistor is connected between the output terminal of the transistor and the output-side transmission line, output power and power consumption can be reduced. There is an effect that can.
  • 1 is a configuration diagram illustrating a distributed amplifier according to a first embodiment of the present invention.
  • 3 is a circuit diagram showing a parallel circuit in which an impedance Za at an output terminal 5a of a transistor 5 is replaced by an optimum load resistance 11 and a parasitic capacitance 12. Distribution when the optimum load resistance 11 per unit gate width of the transistor 5 is 120 ( ⁇ ⁇ mm), the termination impedance is 50 ( ⁇ ), the output power density is 3.75 W / mm, and the number of the transistors 5 is eight. It is explanatory drawing which shows the total gate width Wgt (mm) and output electric power (W) of a type
  • FIG. 3 is a circuit diagram showing impedances Za and Zb in a state where an LC resonator 6 is connected to an output terminal 5a of a transistor 5.
  • FIG. It is a circuit diagram which shows the parallel circuit which replaced the impedance Za and Zb by the parallel resistance 13 and the parallel capacitance 14.
  • FIG. The resistance Rb of the parallel resistor 13 and the capacitance of the parallel capacitance 14 when C opt is 0.15 (pF), R opt is 800 ( ⁇ ), C 1a is 0 (pF), and the frequency is 20 (GHz). is an explanatory view showing an L 1a dependence on the value C b.
  • FIG. 1 It is a block diagram which shows the other distributed amplifier by Embodiment 1 of this invention. It is a block diagram which shows the other distributed amplifier by Embodiment 1 of this invention.
  • FIG. 1 is a block diagram showing a distributed amplifier according to Embodiment 1 of the present invention.
  • an input terminal 1 is a terminal for inputting a high-frequency signal (input signal) that is a signal to be amplified.
  • the input terminal 1 is represented as “RFin”.
  • the high-frequency signal for example, a signal such as a microwave or a millimeter wave can be considered.
  • the input side transmission line 2 is a line for transmitting a high frequency signal input from the input terminal 1.
  • the output side transmission line 3 is a line for transmitting a high frequency signal (output signal) amplified by the transistor 5.
  • the output terminal 4 is connected to the output-side transmission line 3 and is a terminal that outputs a high-frequency signal transmitted through the output-side transmission line 3. In FIG. 1, the output terminal 4 is represented as “RFout”.
  • the transistor 5 amplifies the high frequency signal transmitted by the input side transmission line 2 and outputs the amplified high frequency signal from the output terminal 5a.
  • the LC resonator 6 is a resonator in which an inductor 7 and a capacitor 8 are connected in parallel, and is connected between the output terminal 5 a of the transistor 5 and the output-side transmission line 3.
  • the resonance frequency of the LC resonator 6 is higher than the operating frequency of the transistor 5.
  • the LC resonator 6 is connected between the output terminals 5 a of all the transistors 5 and the output transmission line 3, but the output terminals 5 a of one or more transistors 5 and the output transmission What is necessary is just to be connected between the tracks 3.
  • the LC resonator 6 in which the inductor 7 and the capacitor 8 are connected in parallel is connected between the output terminal 5a of the transistor 5 and the output transmission line 3
  • the resonator is not limited to the LC resonator, for example, an RC resonator in which a resistor and a capacitor are connected in parallel is connected between the output terminal 5a of the transistor 5 and the output-side transmission line 3. Also good.
  • the impedance Za at the output terminal 5a of the transistor 5 can be replaced with a parallel circuit of an optimum load resistance 11 and a parasitic capacitance 12, as shown in FIG.
  • FIG. 2 is a circuit diagram showing a parallel circuit in which the impedance Za at the output terminal 5a of the transistor 5 is replaced by the optimum load resistance 11 and the parasitic capacitance 12.
  • R opt represents the resistance value of the optimum load resistance 11
  • C opt represents the capacitance value of the parasitic capacitance 12.
  • FIG. 3 shows that the optimum load resistance 11 per unit gate width of the transistor 5 is 120 ( ⁇ ⁇ mm), the termination impedance is 50 ( ⁇ ), the output power density is 3.75 W / mm, and the number of the transistors 5 is eight. It is explanatory drawing which shows the total gate width Wgt (mm) and output electric power (W) of the distributed amplifier in the case.
  • “FET number” is a number for identifying the transistors 5 allocated in order from the transistor 5 close to the input terminal 1, and Zo1 to Zo8 are combined impedances when the output terminal 5a of each transistor 5 is viewed from the outside. Yes, Zo of the transistor 5 farthest from the input terminal 1 is the combined impedance of the portion connected to the output terminal 4.
  • the total gate width Wgt (mm) indicates the total sum of the gate widths Wgt of all the transistors 5 included in the distributed amplifier, and the output power (W) indicates the output power of the entire distributed amplifier.
  • the output power (W) of the transistor 5 and the optimum load resistance 11 are parameters determined by the gate width Wgt of the transistor 5. In other words, when the optimum load resistance 11 per unit gate width in the transistor 5 is determined, the output power (W) of the transistor 5 is uniquely determined. Therefore, if the relationship between the optimum load resistance 11 per unit gate width in the transistor 5 and the output power (W) can be changed, the output power of the distributed amplifier can be reduced.
  • FIG. 4 is a circuit diagram showing impedances Za and Zb in a state where the LC resonator 6 is connected to the output terminal 5 a of the transistor 5.
  • L 1a is the inductance of the inductor 7 in the LC resonator 6
  • C 1a is the capacitance value of the capacitor 8 in the LC resonator 6.
  • the impedance Zb is an impedance when the transistor 5 side is viewed from the connection point between the LC resonator 6 and the output-side transmission line 3, and is represented by the following equation (1).
  • is an angular frequency.
  • FIG. 5 is a circuit diagram showing a parallel circuit in which the impedances Za and Zb are replaced with a parallel resistor 13 and a parallel capacitance 14.
  • R b represents the resistance value of the parallel resistor 13
  • C b represents the capacitance value of the parallel capacitance 14.
  • Resistance R b of the parallel resistor 13 is expressed by equation (2) below
  • the capacitance value C b of the parallel capacitance 14 is expressed by the following equation (3).
  • FIG. 6 shows the resistance Rb and parallel capacitance of the parallel resistor 13 when C opt is 0.15 (pF), R opt is 800 ( ⁇ ), C 1a is 0 (pF), and the frequency is 20 (GHz).
  • 14 is an explanatory diagram showing an L 1a dependence of capacitance value C b of. As can be seen from FIG. 6, as the inductance L 1 a of the inductor 7 in the LC resonator 6 increases, the resistance value R b of the parallel resistor 13 decreases and the capacitance value C b of the parallel capacitance 14 increases.
  • FIG. 7 is an explanatory diagram showing an inductance L 1a in which the resistance value R b of the parallel resistor 13 is 400 ( ⁇ ) with the capacitance value C 1a of the capacitor 8 in the LC resonator 6 as a variable parameter.
  • the capacitance value C 1a of the capacitor 8 in the LC resonator 6 is increased, the inductance L 1a of the inductor 7 necessary for realizing the same resistance value R b can be reduced.
  • the desired parallel resistance 13 can be realized with the small inductor 7.
  • the resonance frequency of the inductor 7 and the capacitor 8 needs to be higher than the operating frequency of the transistor 5.
  • the gate width Wgt of the eight transistors 5 is set to 0.15 (mm) so that the output power becomes 4.5 (W) which is half of the output power in the conventional distributed amplifier.
  • the performance of the distributed amplifier is as shown in FIG. .
  • FIG. 8 is an explanatory diagram showing the performance of the distributed amplifier according to the first embodiment of the present invention. In the distributed amplifier according to the first embodiment, as described above, the output power is 4.5 (W).
  • the LC resonators 6 are connected to all the output terminals 5a of the eight transistors 5. However, the LC resonators 6 are connected only to the output terminals 5a of some of the transistors 5. Even if it is connected, the output power can be changed.
  • FIG. 9 is an explanatory diagram showing the performance of the distributed amplifier when the LC resonator 6 is connected to the output terminals 5a of the four transistors 5 out of the eight transistors 5. The output power is 6.75. (W). The output power of 6.75 (W) is reduced to 75% compared to the output power of the conventional distributed amplifier.
  • the LC resonator 6 having a resonance frequency higher than the operating frequency of the transistor 5 is connected between the output terminal 5a of the transistor 5 and the output transmission line 3.
  • the output power can be reduced. Since all circuit elements applied to the distributed amplifier according to the first embodiment are reactive components, they are lossless. That is, the operating efficiency of the distributed amplifier does not vary regardless of the presence or absence of the application circuit. For this reason, it is possible to obtain an effect of reducing the power consumption by the amount that the output power of the distributed amplifier is reduced. Further, since the size of an arbitrary number of transistors 5 can be changed, the distributed amplifier can be freely designed according to the required output power.
  • the LC resonator 6 in which the inductor 7 and the capacitor 8 are connected in parallel is provided.
  • the capacitor 8 of the LC resonator 6 is as shown in FIG. A capacitor 8a formed by coupling between wirings may be used.
  • the inductor 7 of the LC resonator 6 is configured by a loop-shaped wiring, and the inter-wiring capacitance 8b at the intersection of the loop-shaped wiring is used as the capacitor 8 of the LC resonator 6. May be.
  • an MIM (Metal Insulator Metal) capacitor in which a dielectric is sandwiched between the wirings may be used as the capacitor 8 of the LC resonator 6.
  • FIG. 12 is a block diagram showing a distributed amplifier according to Embodiment 2 of the present invention.
  • the terminating resistor 20 includes a resistor 21, a DC cut capacitor 22, and a via hole 23, and one end thereof is connected to the output side transmission line 3.
  • the resistor 21 is a resistor having one end connected to the output side transmission line 3.
  • the capacitor 22 is a capacitor having one end connected to the other end of the resistor 21 in order to cut a direct current component.
  • the via hole 23 is connected to a ground (not shown) and terminates the resistor 21 via the capacitor 22.
  • FIG. 13 is an explanatory diagram showing the performance of the distributed amplifier according to the second embodiment of the present invention.
  • the output power (W) of the entire distributed amplifier is reduced by reducing the number of transistors 5.
  • the number of transistors 5 can be reduced without changing the gate width Wgt of the transistor 5.
  • the following effects can also be obtained by connecting the termination resistor 20.
  • the first effect is improvement of frequency characteristics in the distributed amplifier.
  • the parasitic capacitance 12 of the transistor 5, the inductor 7 of the LC resonator 6, and the capacitor 8 of the LC resonator 6 have frequency characteristics because they are reactive components. Therefore, the frequency characteristic of the distributed amplifier has a ripple component.
  • the resistor 21 acts as a damping resistor. Therefore, the resistor 21 can cancel the ripple component and improve the frequency characteristics of the distributed amplifier.
  • the second effect is diversion to a power supply bias circuit. For example, in a distributed amplifier with a small output power, the power supply current is extremely small, so the resistance on the power supply path is not a problem. Therefore, for example, by applying power from the connection point between the resistor 21 and the capacitor 22, the power supply and the distributed amplifier can be cut off at the microwave frequency.
  • the DC cut capacitor 22 in the termination resistor 20 may be constituted by an MIM capacitor, a coupling capacitance between wirings, or a chip capacitor.
  • the via hole 23 is provided.
  • the DC cut capacitor 22 may be connected to the ground arranged on the surface of the substrate.
  • the termination resistor 20 is applied to the distributed amplifier of FIG. 1 in the second embodiment.
  • the present invention is not limited to this.
  • the termination resistor 20 is replaced with the distributed resistor of FIGS. It may be applied to an amplifier.
  • the gate width Wgt of the first transistor included in the plurality of transistors 5 is narrower than the gate width Wgt of the second transistor included in the plurality of transistors 5.
  • a distributed amplifier in which the distance to the first transistor is shorter than the distance from the output terminal 4 to the second transistor will be described.
  • the first transistor is the transistor 5 having the shortest distance from the output terminal 4 among the plurality of transistors 5.
  • the second transistor may be any transistor 5 other than the first transistor, and is, for example, the transistor 5 having the longest distance from the output terminal 4.
  • FIG. 14 is an equivalent circuit showing the input terminal side and the output terminal side in the transistor 5 of the distributed amplifier according to Embodiment 3 of the present invention.
  • the input terminal side of the transistor 5 is represented by a parasitic resistance 31 and an input capacitance 32
  • the output terminal side of the transistor 5 is represented by a parasitic resistance 33 and an output capacitance 34.
  • 15 is a block diagram showing a distributed amplifier according to Embodiment 3 of the present invention.
  • the LC resonator 6 is connected to only one transistor 5, but the LC resonator 6 may be connected to all the transistors 5 as in the first and second embodiments. .
  • the termination resistor 20 may be connected to the output-side transmission line 3.
  • FIG. 16 is an explanatory diagram showing the calculation result of the net loss amount when passing through the input terminal when the gate width Wgt of the transistor 5 is 0.3 (mm) and 0.15 (mm).
  • the calculation formula of the net loss amount when passing through the input terminal of the transistor 5 is expressed by the following formula (4).
  • S 11 and S 21 are S parameters.
  • the gate width Wgt of the transistor 5 in which the reached power is reduced due to the net loss in the input circuit that is, the transistor 5 having the shortest distance from the output terminal 4 is set.
  • the gain of the transistor 5 can be increased so as to compensate for the net loss, and the gain of the entire distributed amplifier can be increased.
  • the LC resonator 6 in which the inductor 7 and the capacitor 8 are connected in parallel is provided.
  • the capacitor 8 of the LC resonator 6 is as shown in FIG. A capacitor 8a formed by coupling between wirings may be used.
  • the inductor 7 of the LC resonator 6 is configured by a loop-shaped wiring, and the inter-wiring capacitance 8b at the intersection of the loop-shaped wiring is used as the capacitor 8 of the LC resonator 6. May be.
  • an MIM capacitor having a dielectric between the wirings may be used as the capacitor 8 of the LC resonator 6.
  • FIG. 17 is a block diagram showing a multistage amplifier according to Embodiment 4 of the present invention.
  • the driver stage (previous stage) distributed amplifier is realized by the distributed amplifier shown in the first embodiment, and the output stage distributed amplifier.
  • An example is shown in which the amplifier is realized by a conventional distributed amplifier.
  • the conventional distributed amplifier is a distributed amplifier in which the LC resonator 6 is not connected to the output terminal 5 a of the transistor 5.
  • FIG. 17 shows an example in which the driver stage distributed amplifier is realized by the distributed amplifier shown in the first embodiment, but the distributed amplifier shown in the second and third embodiments. It may be realized by.
  • the driver stage distributed amplifier is realized by the distributed amplifier shown in the first embodiment, and the output stage distributed amplifier is realized by a conventional distributed amplifier. And the power consumption of the entire multistage amplifier can be reduced.
  • the operating efficiency of the conventional distributed amplifier and the operating efficiency of the distributed amplifier shown in the first embodiment are both 50%.
  • the performance of the conventional distributed amplifier is the performance shown in FIG. 3
  • the performance of the distributed amplifier shown in the first embodiment is the performance shown in FIG.
  • the driver stage and the output stage The power consumption P 1 when the distributed amplifier is realized by a conventional distributed amplifier is expressed as the following equation (5). Further, a distributed amplifier of the driver stage is realized by it are distributed amplifier shown in the first embodiment, the distributed amplifier in the output stage, the power consumption when being implemented in a conventional distributed amplifier P 2 Is represented by the following equation (6).
  • the driver stage distributed amplifier is realized by the distributed amplifier shown in the first embodiment, and the output stage distributed amplifier is realized by the conventional distributed amplifier.
  • the distributed amplifier of the driver stage is realized by a conventional distributed amplifier. If the distributed amplifier in the output stage is realized by the distributed amplifier shown in the first to third embodiments, high power resistance and low power consumption can be realized.
  • a multistage amplifier in which two distributed amplifiers are connected in multiple stages is shown. However, three or more distributed amplifiers are connected in multiple stages, and one or more distributed amplifiers are connected.
  • the amplifier may be a multistage amplifier realized by the distributed amplifier shown in the first to third embodiments.
  • the present invention is suitable for a distributed amplifier in which a plurality of transistors are provided between an input side transmission line and an output side transmission line.
  • the present invention is suitable for a multistage amplifier in which a plurality of distributed amplifiers are connected in multiple stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

入力信号を伝送する入力側伝送線路(2)と、出力信号を伝送する出力側伝送線路(3)と、入力側伝送線路(2)により伝送された入力信号を増幅して、増幅後の入力信号である出力信号を出力する複数のトランジスタ(5)と、トランジスタ(5)の出力端子(5a)と出力側伝送線路(3)の間に、共振周波数がトランジスタ(5)の動作周波数より高いLC共振器(6)が接続されているように構成する。これにより、出力電力及び消費電力を低減することができる。

Description

分布型増幅器及び多段増幅器
 この発明は、入力側伝送線路と出力側伝送線路の間に複数のトランジスタが設けられている分布型増幅器と、複数の分布型増幅器が多段に接続されている多段増幅器とに関するものである。
 非特許文献1に開示されている分布型増幅器の出力側回路は、不平衡なトーナメント形回路を構成している。
 出力側回路が不平衡なトーナメント形回路を構成していることで、分布型増幅器の広帯域化が図られている。
C. Campbell, L. Taehun, V. Williams, K. Ming-Yih, T. Hua-Quen, P. Saunier, "A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology," 2008 CSICS, Oct. 2008.
 従来の分布型増幅器は以上のように構成されているので、広帯域な周波数特性を実現する必要がある場合には、出力側回路の配線にインピーダンス変換機能を持たせることができない。出力側回路が、不平衡なトーナメント形回路で、かつ、インピーダンス変換機能を持っていない場合、各々のトランジスタにおける単位ゲート幅当りの最適負荷レジスタンスと、終端インピーダンスを固定する条件とが与えられると、実装するトランジスタの個数や、各トランジスタのゲート幅を変えても、増幅器全体の総ゲート幅が一定になる。このため、出力電力を増やすことも減らすこともできない。したがって、分布型増幅器の出力電力が所望の出力電力より大きくなってしまうような場合、無駄な電力の消費が発生してしまうという課題があった。
 具体的には、以下の通りである。
 図18~図21はトランジスタにおける単位ゲート幅当りの最適負荷レジスタンスが120(Ω・mm)、終端インピーダンスが50(Ω)である場合の増幅器全体の総ゲート幅Wgt(mm)を示す説明図である。
 図18は全てのトランジスタのゲート幅Wgt(mm)が等しく、トランジスタの個数が10個である場合を示し、図19は全てのトランジスタのゲート幅Wgt(mm)が等しく、トランジスタの個数が8個である場合を示し、図20は全てのトランジスタのゲート幅Wgt(mm)が等しく、トランジスタの個数が4個である場合を示している。
 また、図21はトランジスタの個数が10個であり、10個のトランジスタのうち、入力端子に最も近いトランジスタのゲート幅が、他のトランジスタのゲート幅より広く、他のトランジスタのゲート幅が等しい場合を示している。
 図18~図21において、「FET number」は入力端子に近いトランジスタから順番に割り振られたトランジスタを識別する番号、「Ropt」は各トランジスタにおける単位ゲート幅当りの最適負荷レジスタンス、Zo1~Zo10は外部から各トランジスタの出力端子を見たときの合成インピーダンスであり、最も入力端子から遠いトランジスタのZoは出力端子に接続される部分の合成インピーダンスである。
 増幅器全体の総ゲート幅Wgt(mm)は、図18~図21に示すように、実装しているトランジスタの個数や、各トランジスタのゲート幅Wgt(mm)が変わっても、一定になっている。このため、従来の分布型増幅器では、トーナメント型増幅器と異なり、出力電力を増やすことも減らすこともできない。
 この発明は上記のような課題を解決するためになされたもので、出力電力及び消費電力を低減することが可能な分布型増幅器及び多段増幅器を得ることを目的とする。
 この発明に係る分布型増幅器は、入力信号を伝送する入力側伝送線路と、出力信号を伝送する出力側伝送線路と、入力側伝送線路により伝送された入力信号を増幅して、増幅後の入力信号である出力信号を出力する複数のトランジスタと、トランジスタの出力端子と出力側伝送線路との間に接続されており、共振周波数がトランジスタの動作周波数より高い共振器とを備えるようにしたものである。
 この発明によれば、トランジスタの出力端子と出力側伝送線路の間に、共振周波数がトランジスタの動作周波数より高い共振器が接続されているように構成したので、出力電力及び消費電力を低減することができる効果がある。
この発明の実施の形態1による分布型増幅器を示す構成図である。 トランジスタ5の出力端子5aにおけるインピーダンスZaを最適負荷レジスタンス11と寄生キャパシタンス12の置き換えた並列回路を示す回路図である。 トランジスタ5の単位ゲート幅当りの最適負荷レジスタンス11が120(Ω・mm)、終端インピーダンスが50(Ω)、出力電力密度が3.75W/mm、トランジスタ5の個数が8個である場合の分布型増幅器の総ゲート幅Wgt(mm)と出力電力(W)を示す説明図である。 LC共振器6がトランジスタ5の出力端子5aに接続されている状態でのインピーダンスZa,Zbを示す回路図である。 インピーダンスZa,Zbを並列抵抗13と並列キャパシタンス14に置き換えた並列回路を示す回路図である。 optが0.15(pF)、Roptが800(Ω)、C1aが0(pF)、周波数が20(GHz)である場合の並列抵抗13の抵抗値R及び並列キャパシタンス14の容量値CについてのL1a依存性を示す説明図である。 LC共振器6におけるキャパシタ8の容量値C1aを可変パラメータとして、並列抵抗13の抵抗値Rが400(Ω)になるようなインダクタンスL1aを示す説明図である。 この発明の実施の形態1による分布型増幅器の性能を示す説明図である。 8個のトランジスタ5のうち、4個のトランジスタ5の出力端子5aにLC共振器6が接続されている場合の分布型増幅器の性能を示す説明図である。 この発明の実施の形態1による他の分布型増幅器を示す構成図である。 この発明の実施の形態1による他の分布型増幅器を示す構成図である。 この発明の実施の形態2による分布型増幅器を示す構成図である。 この発明の実施の形態2による分布型増幅器の性能を示す説明図である。 この発明の実施の形態3による分布型増幅器のトランジスタ5における入力端子側及び出力端子側を示す等価回路である。 この発明の実施の形態3による分布型増幅器を示す構成図である。 トランジスタ5のゲート幅Wgtが0.3(mm)である場合と0.15(mm)である場合の入力端子を通過する際の純損失量の計算結果を示す説明図である。 この発明の実施の形態4による多段増幅器を示す構成図である。 トランジスタにおける単位ゲート幅当りの最適負荷レジスタンスが120(Ω・mm)、終端インピーダンスが50(Ω)である場合の増幅器全体の総ゲート幅Wgt(mm)を示す説明図である。 トランジスタにおける単位ゲート幅当りの最適負荷レジスタンスが120(Ω・mm)、終端インピーダンスが50(Ω)である場合の増幅器全体の総ゲート幅Wgt(mm)を示す説明図である。 トランジスタにおける単位ゲート幅当りの最適負荷レジスタンスが120(Ω・mm)、終端インピーダンスが50(Ω)である場合の増幅器全体の総ゲート幅Wgt(mm)を示す説明図である。 トランジスタにおける単位ゲート幅当りの最適負荷レジスタンスが120(Ω・mm)、終端インピーダンスが50(Ω)である場合の増幅器全体の総ゲート幅Wgt(mm)を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1はこの発明の実施の形態1による分布型増幅器を示す構成図である。
 図1において、入力端子1は増幅対象の信号である高周波信号(入力信号)を入力する端子である。図1では、入力端子1が「RFin」のように表記している。高周波信号としては、例えば、マイクロ波やミリ波などの信号が考えられる。
 入力側伝送線路2は入力端子1から入力された高周波信号を伝送する線路である。
 出力側伝送線路3はトランジスタ5により増幅された高周波信号(出力信号)を伝送する線路である。
 出力端子4は出力側伝送線路3と接続されており、出力側伝送線路3により伝送された高周波信号を出力する端子である。図1では、出力端子4が「RFout」のように表記している。
 トランジスタ5は入力側伝送線路2により伝送された高周波信号を増幅して、出力端子5aから増幅後の高周波信号を出力する。
 LC共振器6はインダクタ7とキャパシタ8が並列に接続されている共振器であり、トランジスタ5の出力端子5aと出力側伝送線路3の間に接続されている。
 LC共振器6の共振周波数は、トランジスタ5の動作周波数より高い周波数である。
 図1の例では、LC共振器6が、全てのトランジスタ5の出力端子5aと出力側伝送線路3との間に接続されているが、1つ以上のトランジスタ5の出力端子5aと出力側伝送線路3との間に接続されていればよい。
 この実施の形態1では、インダクタ7とキャパシタ8が並列に接続されているLC共振器6をトランジスタ5の出力端子5aと出力側伝送線路3の間に接続している例を説明するが、共振器はLC共振器に限るものではなく、例えば、抵抗とキャパシタが並列に接続されているRC共振器をトランジスタ5の出力端子5aと出力側伝送線路3の間に接続しているものであってもよい。
 次に動作について説明する。
 トランジスタ5の出力端子5aにおけるインピーダンスZaについては、図2に示すように、最適負荷レジスタンス11と寄生キャパシタンス12との並列回路に置き換えることができる。
 図2はトランジスタ5の出力端子5aにおけるインピーダンスZaを最適負荷レジスタンス11と寄生キャパシタンス12の置き換えた並列回路を示す回路図である。
 図2において、Roptは最適負荷レジスタンス11のレジスタンス値を示し、Coptは寄生キャパシタンス12の容量値を示している。
 LC共振器6がトランジスタ5の出力端子5aに接続されていない従来の分布型増幅器と、LC共振器6がトランジスタ5の出力端子5aに接続されている実施の形態1の分布型増幅器とを比較するため、各種のパラメータを定義して、従来の分布型増幅器の出力電力を計算すると、従来の分布型増幅器の出力電力は図3のようになる。
 図3はトランジスタ5の単位ゲート幅当りの最適負荷レジスタンス11が120(Ω・mm)、終端インピーダンスが50(Ω)、出力電力密度が3.75W/mm、トランジスタ5の個数が8個である場合の分布型増幅器の総ゲート幅Wgt(mm)と出力電力(W)を示す説明図である。
 図3において、「FET number」は入力端子1に近いトランジスタ5から順番に割り振られたトランジスタ5を識別する番号、Zo1~Zo8は外部から各トランジスタ5の出力端子5aを見たときの合成インピーダンスであり、最も入力端子1から遠いトランジスタ5のZoは出力端子4に接続される部分の合成インピーダンスである。
 総ゲート幅Wgt(mm)は分布型増幅器が有する全てのトランジスタ5のゲート幅Wgtの総和を示し、出力電力(W)は分布型増幅器全体の出力電力を示している。
 トランジスタ5の出力電力(W)及び最適負荷レジスタンス11は、トランジスタ5のゲート幅Wgtにより決まるパラメータである。換言すると、トランジスタ5における単位ゲート幅当りの最適負荷レジスタンス11が決まると、トランジスタ5の出力電力(W)が一意に決まる。
 したがって、トランジスタ5における単位ゲート幅当りの最適負荷レジスタンス11と出力電力(W)の関係を変えることができれば、分布型増幅器の出力電力を低減することが可能になる。
 図4はLC共振器6がトランジスタ5の出力端子5aに接続されている状態でのインピーダンスZa,Zbを示す回路図である。
 図4において、L1aはLC共振器6におけるインダクタ7のインダクタンス、C1aはLC共振器6におけるキャパシタ8の容量値である。
 インピーダンスZbは、LC共振器6と出力側伝送線路3の接続点からトランジスタ5側を見たインピーダンスであり、下記の式(1)のように表される。
Figure JPOXMLDOC01-appb-I000001
 式(1)において、ωは角周波数である。
 図4のインピーダンスZa,Zbについては、図5に示すように、並列抵抗13と並列キャパシタンス14との並列回路に置き換えることができる。
 図5はインピーダンスZa,Zbを並列抵抗13と並列キャパシタンス14に置き換えた並列回路を示す回路図である。
 図5において、Rは並列抵抗13の抵抗値を示し、Cは並列キャパシタンス14の容量値を示している。
 並列抵抗13の抵抗値Rは、下記の式(2)のように表され、並列キャパシタンス14の容量値Cは、下記の式(3)のように表される。
Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003
 式(2)において、real()はカッコ内の実部を抽出する演算記号、式(3)において、imaginary()はカッコ内の虚部を抽出する演算記号である。
 図6はCoptが0.15(pF)、Roptが800(Ω)、C1aが0(pF)、周波数が20(GHz)である場合の並列抵抗13の抵抗値R及び並列キャパシタンス14の容量値CについてのL1a依存性を示す説明図である。
 図6から明らかなように、LC共振器6におけるインダクタ7のインダクタンスL1aが大きくなるほど、並列抵抗13の抵抗値Rが小さくなり、並列キャパシタンス14の容量値Cが大きくなることが分かる。
 図7はLC共振器6におけるキャパシタ8の容量値C1aを可変パラメータとして、並列抵抗13の抵抗値Rが400(Ω)になるようなインダクタンスL1aを示す説明図である。
 図7から明らかなように、LC共振器6におけるキャパシタ8の容量値C1aを大きくすると、同じ抵抗値Rが実現するために必要なインダクタ7のインダクタンスL1aを小さくすることができる。換言すると、小型のインダクタ7で、所望の並列抵抗13を実現することができる。
 ただし、インダクタ7とキャパシタ8の共振周波数が分布型増幅器の動作帯域と重なる場合、LC共振器6をトランジスタ5の出力端子5aと直列に接続すると、トランジスタ5の出力端子5aから出力された高周波信号がLC共振器6を通過することができなくなるため、トランジスタ5の出力端子5aから出力された高周波信号が出力端子4に到達しなくなる。
 よって、インダクタ7とキャパシタ8の共振周波数は、トランジスタ5の動作周波数よりも高い周波数である必要がある。
 各種のパラメータを定義して、LC共振器6がトランジスタ5の出力端子5aに接続されていない従来の分布型増幅器と、LC共振器6がトランジスタ5の出力端子5aに接続されている実施の形態1の分布型増幅器とを比較する。
 従来の分布型増幅器の性能は、トランジスタ5の単位ゲート幅当りの最適負荷レジスタンス11が120(Ω・mm)、トランジスタ5の単位ゲート幅当りの寄生容量が1pF/mm、終端インピーダンスが50(Ω)、分布型増幅器の高域端周波数が20(GHz)、トランジスタ5の個数が8個である場合、図3に示すように、出力電力が9(W)になる。
 この実施の形態1では、出力電力が従来の分布型増幅器における出力電力の半分の4.5(W)になるように、8個のトランジスタ5のゲート幅Wgtを0.15(mm)とし、並列抵抗13の抵抗値Rが400(Ω)となるように、インダクタ7のインダクタンスL1aとキャパシタ8の容量値C1aとを設定すると、分布型増幅器の性能は、図8のようになる。
 図8はこの発明の実施の形態1による分布型増幅器の性能を示す説明図である。
 この実施の形態1の分布型増幅器では、上述したように、出力電力が4.5(W)になっている。
 この実施の形態1では、8個のトランジスタ5の出力端子5aの全てにLC共振器6が接続されているものを示したが、一部のトランジスタ5の出力端子5aだけにLC共振器6が接続されているものであっても、出力電力を変化させることができる。
 図9は8個のトランジスタ5のうち、4個のトランジスタ5の出力端子5aにLC共振器6が接続されている場合の分布型増幅器の性能を示す説明図であり、出力電力が6.75(W)になっている。6.75(W)の出力電力は、従来の分布型増幅器の出力電力と比較して、75%に低減されている。
 以上で明らかなように、この実施の形態1によれば、トランジスタ5の出力端子5aと出力側伝送線路3の間に、共振周波数がトランジスタ5の動作周波数より高いLC共振器6が接続されているように構成したので、出力電力を低減することができる効果を奏する。
 この実施の形態1の分布型増幅器に適用している回路要素は、全てリアクティブ部品であるため、無損失である。つまり、適用回路の有無に関わらず、分布型増幅器の動作効率が変動しない。このため、分布型増幅器の出力電力が低減した分だけ、消費電力も低減する効果が得られる。
 また、任意の数のトランジスタ5のサイズを変えることができるため、必要な出力電力に応じて、分布型増幅器を自在に設計することが可能である。
 この実施の形態1では、インダクタ7とキャパシタ8が並列に接続されているLC共振器6を設けているものを示したが、LC共振器6のキャパシタ8については、図10に示すように、配線間の結合によるキャパシタ8aを用いるものであってもよい。
 また、図11に示すように、LC共振器6のインダクタ7をループ状の配線で構成し、そのループ状の配線における交差点での配線間容量8bをLC共振器6のキャパシタ8として用いるようにしてもよい。また、その配線間に誘電体を挟んでいるMIM(Metal Insulator Metal)キャパシタをLC共振器6のキャパシタ8として用いるようにしてもよい。
実施の形態2.
 上記実施の形態1では、出力側伝送線路3に終端抵抗が接続されていない例を示したが、この実施の形態2では、出力側伝送線路3に終端抵抗が接続されている例を説明する。
 図12はこの発明の実施の形態2による分布型増幅器を示す構成図であり、図12において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 終端抵抗20は抵抗器21、DCカット用のコンデンサ22及びビアホール23を備えており、一端が出力側伝送線路3に接続されている。
 抵抗器21は一端が出力側伝送線路3に接続されている抵抗である。
 コンデンサ22は直流成分をカットするために、一端が抵抗器21の他端と接続されている容量である。
 ビアホール23は図示せぬグランドと接続されており、コンデンサ22を介して、抵抗器21を終端している。
 この実施の形態2では、終端抵抗20を出力側伝送線路3に接続する代わりに、分布型増幅器を構成しているトランジスタ5の個数を減らす態様について説明する。
 上記実施の形態1では、8個のトランジスタ5を実装している場合の分布型増幅器の性能を図8に示している。
 この実施の形態2では、上記実施の形態1における分布型増幅器を構成しているトランジスタ5と同じサイズのトランジスタ5を7個実装し、かつ、終端抵抗20を出力側伝送線路3に接続したときの分布型増幅器の性能を図13に示している。
 図13はこの発明の実施の形態2による分布型増幅器の性能を示す説明図である。
 図8と図13を比較すると明らかなように、トランジスタ5の個数を減らすことで、分布型増幅器全体の出力電力(W)が減少している。
 終端抵抗20を接続することで、トランジスタ5のゲート幅Wgtを変えずに、トランジスタ5の個数を減らすことができている。
 終端抵抗20を接続することによる効果として、次のような効果も得られる。
 1つ目の効果として、分布型増幅器における周波数特性の改善が挙げられる。
 トランジスタ5の寄生キャパシタンス12、LC共振器6のインダクタ7及びLC共振器6のキャパシタ8は、リアクティブな部品であるために周波数特性を有している。そのため、分布型増幅器の周波数特性はリップル成分を有している。
 分布型増幅器の中に、リアクティブ成分を有していない抵抗器21を装荷することで、その抵抗器21がダンピング抵抗として作用する。そのため、その抵抗器21がリップル成分を打ち消して、分布型増幅器の周波数特性を改善することができる。
 2つ目の効果として、電源バイアス回路への転用が挙げられる。
 例えば、小出力電力の分布型増幅器では、電源電流が極めて小さいため、電源経路上の抵抗は問題にならない。そのため、例えば、抵抗器21とコンデンサ22の接続点から電源を印加することで、電源と分布型増幅器を、マイクロ波周波数で遮断することができる。
 終端抵抗20におけるDCカット用のコンデンサ22については、MIMキャパシタ、配線間の結合容量、あるいは、チップコンデンサで構成するものであってもよい。
 この実施の形態2では、ビアホール23を設けているが、バランなどを用いて、同じトランジスタ5が平衡して動作している場合、各々のトランジスタ5におけるDCカット用のコンデンサ22の他端を繋ぐことで、バーチャルショートが構成されるため、ビアホール23が不要になる。
 また、分布型増幅器を構成している基板の表面にグランドが配線されている場合、DCカット用のコンデンサ22を基板の表面に配置されているグランドに接続するようにしてもよい。
 この実施の形態2では、終端抵抗20を図1の分布型増幅器に適用している例を示しているが、これに限るものではなく、例えば、終端抵抗20を図10や図11の分布型増幅器に適用しているものであってもよい。
実施の形態3.
 この実施の形態3では、複数のトランジスタ5に含まれている第1のトランジスタのゲート幅Wgtが、複数のトランジスタ5に含まれている第2のトランジスタのゲート幅Wgtより狭く、出力端子4から第1のトランジスタまでの距離が、出力端子4から第2のトランジスタまでの距離より短い分布型増幅器について説明する。
 この実施の形態3では、説明の便宜上、第1のトランジスタが、複数のトランジスタ5の中で、出力端子4からの距離が最も短いトランジスタ5であるものとする。また、第2のトランジスタは、第1のトランジスタ以外のトランジスタ5であればよく、例えば、出力端子4からの距離が最も長いトランジスタ5であるものとする。
 トランジスタ5は、ミラー効果によって、入力端子側の等価回路と出力端子側の等価回路とに分けて考えることができる。
 図14はこの発明の実施の形態3による分布型増幅器のトランジスタ5における入力端子側及び出力端子側を示す等価回路である。
 トランジスタ5の入力端子側は、寄生抵抗31と入力容量32で表され、トランジスタ5の出力端子側は、寄生抵抗33と出力容量34で表される。
 例えば、トランジスタ5における単位ゲート幅当りの入力容量32を2(pF/mm)、寄生抵抗31を1(Ω・mm)と仮定する。
 図15はこの発明の実施の形態3による分布型増幅器を示す構成図であり、図15において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 図15では、説明の便宜上、複数のトランジスタ5の中の1つのトランジスタ5の入力端子側の等価回路を示している。
 また、図15では、1つのトランジスタ5だけにLC共振器6が接続されているが、上記実施の形態1,2と同様に、全てのトランジスタ5にLC共振器6が接続されていてもよい。また、上記実施の形態2と同様に、終端抵抗20が出力側伝送線路3に接続されていてもよい。
 図16はトランジスタ5のゲート幅Wgtが0.3(mm)である場合と0.15(mm)である場合の入力端子を通過する際の純損失量の計算結果を示す説明図である。
 トランジスタ5の入力端子を通過する際の純損失量の計算式は、下記の式(4)で表される。
Figure JPOXMLDOC01-appb-I000004
 式(4)において、S11,S21はSパラメータである。
 図16より、分布型増幅器の入力端子1から入力された高周波信号の電力がトランジスタ5を通過する際、高周波信号の電力が寄生抵抗31で熱に変化することと、トランジスタ5のゲート幅Wgtが狭くなるほど損失量が小さくなることが分かる。また、入力端子1から遠いほど到達電力が小さくなる。
 また、トランジスタ5におけるソース電極のビアホール数は変わらないため、トランジスタサイズが小さくなると、単位ゲート幅当りのソースインダクタが小さくなり、利得が高くなる。
 そこで、この実施の形態3では、複数のトランジスタ5の中で、入力回路での純損失によって到達電力が小さくなるトランジスタ5、即ち、出力端子4からの距離が最も短いトランジスタ5のゲート幅Wgtを一番狭くしている。
 これにより、純損失分を補償するようにトランジスタ5の利得を上げて、分布型増幅器全体の利得を上げることができる。
 この実施の形態3では、インダクタ7とキャパシタ8が並列に接続されているLC共振器6を設けているものを示したが、LC共振器6のキャパシタ8については、図10に示すように、配線間の結合によるキャパシタ8aを用いるものであってもよい。
 また、図11に示すように、LC共振器6のインダクタ7をループ状の配線で構成し、そのループ状の配線における交差点での配線間容量8bをLC共振器6のキャパシタ8として用いるようにしてもよい。また、その配線間に誘電体を挟んでいるMIMキャパシタをLC共振器6のキャパシタ8として用いるようにしてもよい。
実施の形態4.
 この実施の形態4では、複数の分布型増幅器が多段に接続されている多段増幅器について説明する。
 図17はこの発明の実施の形態4による多段増幅器を示す構成図であり、図17において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 図17では、2段の多段増幅器の例を示しており、ドライバ段(前段)の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現されており、出力段の分布型増幅器が、従来の分布型増幅器で実現されている例を示している。従来の分布型増幅器とは、LC共振器6がトランジスタ5の出力端子5aに接続されていない分布型増幅器のことである。
 図17では、ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現されている例を示しているが、上記実施の形態2,3で示している分布型増幅器で実現されているものであってもよい。
 ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現され、出力段の分布型増幅器が、従来の分布型増幅器で実現されることで、ドライバ段での消費電力を低減して、多段増幅器全体の消費電力を低減することができる。
 以下、ドライバ段及び出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合の消費電力と、ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現され、出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合の消費電力とを比較する。
 ただし、ここでは説明の便宜上、従来の分布型増幅器の動作効率と、上記実施の形態1で示している分布型増幅器の動作効率は、共に50%であると仮定する。
 また、ここでは、従来の分布型増幅器の性能が図3で示される性能であり、上記実施の形態1で示している分布型増幅器の性能が図8で示される性能であるものとする。
 この場合、従来の分布型増幅器の出力電力が9(W)で、上記実施の形態1で示している分布型増幅器の出力電力が4.5(W)であるため、ドライバ段及び出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合の消費電力Pは、下記の式(5)のように表される。
Figure JPOXMLDOC01-appb-I000005
 また、ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現され、出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合の消費電力Pは、下記の式(6)のように表される。
Figure JPOXMLDOC01-appb-I000006
 したがって、ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現され、出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合、ドライバ段及び出力段の分布型増幅器が、従来の分布型増幅器で実現されている場合と比べて、消費電力を75%(=(6.75/9)×100%)に低減することができる。
 この実施の形態4では、ドライバ段の分布型増幅器が、上記実施の形態1で示している分布型増幅器で実現され、出力段の分布型増幅器が、従来の分布型増幅器で実現されている2段の多段増幅器の例を示しているが、例えば、ドライバ段に高耐電力が必要なLNA(Low Noise Amplifier)などの増幅器では、ドライバ段の分布型増幅器が、従来の分布型増幅器で実現され、出力段の分布型増幅器が、上記実施の形態1~3で示している分布型増幅器で実現されていれば、高耐電力と低消費電力を実現することができる。
 また、この実施の形態4では、2つの分布型増幅器が多段に接続されている多段増幅器について示しているが、3つ以上の分布型増幅器が多段に接続されており、1つ以上の分布型増幅器が、上記実施の形態1~3で示している分布型増幅器で実現されている多段増幅器であってもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、入力側伝送線路と出力側伝送線路の間に複数のトランジスタが設けられている分布型増幅器に適している。
 また、この発明は、複数の分布型増幅器が多段に接続されている多段増幅器に適している。
 1 入力端子、2 入力側伝送線路、3 出力側伝送線路、4 出力端子、5 トランジスタ、5a 出力端子、6 LC共振器、7 インダクタ、8 キャパシタ、8a キャパシタ、8b 配線間容量、11 最適負荷レジスタンス、12 寄生キャパシタンス、13 並列抵抗、14 並列キャパシタンス、20 終端抵抗、21 抵抗器、22 コンデンサ、23 ビアホール、31 寄生抵抗、32 入力容量、33 寄生抵抗、34 出力容量。

Claims (5)

  1.  入力信号を伝送する入力側伝送線路と、
     出力信号を伝送する出力側伝送線路と、
     前記入力側伝送線路により伝送された入力信号を増幅して、増幅後の入力信号である出力信号を出力する複数のトランジスタと
     前記トランジスタの出力端子と前記出力側伝送線路との間に接続されており、共振周波数が前記トランジスタの動作周波数より高い共振器と
     を備えた分布型増幅器。
  2.  前記出力側伝送線路に終端抵抗が接続されていることを特徴とする請求項1記載の分布型増幅器。
  3.  前記複数のトランジスタに含まれている第1のトランジスタのゲート幅が、前記複数のトランジスタに含まれている第2のトランジスタのゲート幅より狭く、前記出力側伝送線路に接続されている出力端子から前記第1のトランジスタまでの距離が、前記出力端子から前記第2のトランジスタまでの距離より短いことを特徴とする請求項1記載の分布型増幅器。
  4.  入力信号を伝送する入力側伝送線路と、
     出力信号を伝送する出力側伝送線路と、
     前記入力側伝送線路と前記出力側伝送線路の間に設けられ、前記入力側伝送線路により伝送された入力信号を増幅して、増幅後の入力信号である出力信号を前記出力側伝送線路に出力する複数のトランジスタとを備えた分布型増幅器が多段に接続されており、
     多段に接続されている複数の分布型増幅器の中で、1つ以上の分布型増幅器に含まれている前記トランジスタの出力端子と前記出力側伝送線路の間に、共振周波数が前記トランジスタの動作周波数より高い共振器が接続されていることを特徴とする多段増幅器。
  5.  2つの分布型増幅器が多段に接続されており、
     前段の分布型増幅器に含まれている前記トランジスタの出力端子と前記出力側伝送線路の間に、共振周波数が前記トランジスタの動作周波数より高い共振器が接続されていることを特徴とする請求項4記載の多段増幅器。
PCT/JP2016/064722 2016-05-18 2016-05-18 分布型増幅器及び多段増幅器 WO2017199365A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16902384.3A EP3447914A4 (en) 2016-05-18 2016-05-18 DISTRIBUTION AMPLIFIERS AND MULTI-STAGE AMPLIFIERS
PCT/JP2016/064722 WO2017199365A1 (ja) 2016-05-18 2016-05-18 分布型増幅器及び多段増幅器
JP2018517995A JP6516928B2 (ja) 2016-05-18 2016-05-18 分布型増幅器及び多段増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064722 WO2017199365A1 (ja) 2016-05-18 2016-05-18 分布型増幅器及び多段増幅器

Publications (1)

Publication Number Publication Date
WO2017199365A1 true WO2017199365A1 (ja) 2017-11-23

Family

ID=60326444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064722 WO2017199365A1 (ja) 2016-05-18 2016-05-18 分布型増幅器及び多段増幅器

Country Status (3)

Country Link
EP (1) EP3447914A4 (ja)
JP (1) JP6516928B2 (ja)
WO (1) WO2017199365A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231392A (ja) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp 分布形増幅器
WO2014178261A1 (ja) * 2013-04-30 2014-11-06 三菱電機株式会社 分布型増幅器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788511A (en) * 1987-11-30 1988-11-29 Raytheon Company Distributed power amplifier
JP2002033628A (ja) * 2000-07-14 2002-01-31 Hitachi Ltd 高周波電力増幅器
JP5200541B2 (ja) * 2005-10-24 2013-06-05 日本電気株式会社 分布型増幅器、集積回路および送受信器
JP2009094921A (ja) * 2007-10-11 2009-04-30 Mitsubishi Electric Corp 高周波電力増幅器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231392A (ja) * 2011-04-27 2012-11-22 Mitsubishi Electric Corp 分布形増幅器
WO2014178261A1 (ja) * 2013-04-30 2014-11-06 三菱電機株式会社 分布型増幅器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. CAMPBELL; L. TAEHUN; V. WILLIAMS; K. MING-YIH; T. HUA-QUEN; P. SAUNIER: "A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology", 2008 CSICS, October 2008 (2008-10-01)
See also references of EP3447914A4 *

Also Published As

Publication number Publication date
EP3447914A1 (en) 2019-02-27
JPWO2017199365A1 (ja) 2018-10-18
JP6516928B2 (ja) 2019-05-22
EP3447914A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
US8581665B2 (en) Doherty amplifier
US7567128B2 (en) Power amplifier suppressing radiation of second harmonic over wide frequency band
WO2012160755A1 (ja) 高周波増幅回路
KR20030081318A (ko) 분산형 순환 구조 전력 증폭기 아키덱처
WO2013001711A1 (ja) 高周波電力増幅器
KR100474567B1 (ko) 초고주파 전력 증폭기
TWI655843B (zh) 多路射頻功率放大裝置
WO2017141453A1 (ja) 電力増幅器
JP4744615B2 (ja) マイクロ波、ミリ波帯増幅回路及びそれを用いたミリ波無線機
US11515850B2 (en) Distributed amplifier
JP6308920B2 (ja) 広帯域増幅器
JPH1155047A (ja) 低雑音増幅器
WO2017199365A1 (ja) 分布型増幅器及び多段増幅器
WO2014087886A1 (ja) 広帯域増幅器
JP5913442B2 (ja) ドハティ増幅器
JP2005101871A (ja) 分布型増幅器
JP5349119B2 (ja) 高周波増幅器
JP2008236354A (ja) 増幅器
JP6532618B2 (ja) 高周波回路及び高周波電力増幅器
KR100799590B1 (ko) 리액티브 피드백을 이용한 광대역 능동 벌룬 및 밸런스드믹서
WO2020059270A1 (ja) ブランチライン方向性結合器および電力増幅装置
WO2014178261A1 (ja) 分布型増幅器
JP5484206B2 (ja) 差動増幅回路
CN112737520A (zh) 一种使用片外传输线路的cmos射频功率放大器
WO2022249380A1 (ja) ドハティ増幅器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016902384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016902384

Country of ref document: EP

Effective date: 20181120

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902384

Country of ref document: EP

Kind code of ref document: A1