WO2017190543A1 - 烯烃配位聚合催化剂及其制备方法与应用 - Google Patents

烯烃配位聚合催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2017190543A1
WO2017190543A1 PCT/CN2017/074498 CN2017074498W WO2017190543A1 WO 2017190543 A1 WO2017190543 A1 WO 2017190543A1 CN 2017074498 W CN2017074498 W CN 2017074498W WO 2017190543 A1 WO2017190543 A1 WO 2017190543A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
olefin
group
polymerization catalyst
catalyst
Prior art date
Application number
PCT/CN2017/074498
Other languages
English (en)
French (fr)
Inventor
张明革
李殿军
王硕
李红明
袁苑
义建军
孙天旭
毛静
门林
黄启谷
张润聪
王静
聂言培
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to DE112017002330.0T priority Critical patent/DE112017002330T5/de
Publication of WO2017190543A1 publication Critical patent/WO2017190543A1/zh
Priority to US16/161,894 priority patent/US11014994B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6495Catalysts containing a specific non-metal or metal-free compound organic containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6496Catalysts containing a specific non-metal or metal-free compound organic containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6497Catalysts containing a specific non-metal or metal-free compound organic containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/651Pretreating with non-metals or metal-free compounds

Definitions

  • the invention relates to a catalyst for homopolymerization or copolymerization of olefins and a preparation method and application thereof, and belongs to the technical field of olefin high-efficiency polymerization catalysts and olefin polymerization.
  • Olefin polymerization catalyst is the core of polyolefin polymerization technology. From the development of olefin polymerization catalyst, there are two main aspects: (1) development of polyolefin resin catalysts capable of preparing special properties or properties, such as metallocene catalysts. And non-post-expansion transition metal catalysts; (2) For the production of general-purpose polyolefin resins, on the basis of further improving the performance of the catalyst, simplifying the catalyst preparation process, reducing the catalyst cost, and developing environmentally friendly technologies to improve the efficiency ,Increase competitiveness. Before the 1980s, the focus of research on polyethylene catalysts was to pursue catalyst efficiency. After nearly 30 years of efforts, the catalytic efficiency of polyethylene catalysts was increased by orders of magnitude, which simplified the production process of polyolefins and reduced energy consumption and material consumption.
  • the Ziegler-Natta catalyst has been in existence for nearly 60 years. Although polyolefin catalysts such as metallocene and non-metallocene have appeared, there are many industrialization problems, such as expensive promoters and difficulties in the loading of the main catalyst. Therefore, in terms of current industrial production and market share, the traditional Z-N catalyst will remain the dominant player in the field of olefin polymerization for some time to come. In recent years, Z-N catalyst products at home and abroad have emerged in an endless stream, and catalyst stability and polymerization catalytic activity have also been continuously improved. However, there are still deficiencies in hydrogen sensitivity, control of catalyst particle regularity, and particle size distribution. At present, it is necessary to develop a spherical or spheroidal catalyst having a simple preparation process, a good hydrogen modulation sensitivity, and a uniform particle size distribution.
  • Patent 96106647.4 discloses an olefin polymerization catalyst and a process for the preparation thereof, wherein the carrier MgCl 2 is dissolved in a mixture of an alcohol and an alkane to form a liquid MgCl 2 alcohol adduct, and the liquid MgCl 2 alcohol adduct is contacted with TiCl 4 .
  • the olefin polymerization catalyst is obtained, but the hydrogen regulation property of the catalyst is poor, and the melt index MFR of the polyethylene can be adjusted only in the range of 0.1 g/10 min to 220 g/10 min.
  • Patent 200480008242.X discloses an olefin polymerization catalyst and a preparation method thereof.
  • the carrier MgCl 2 is directly dissolved in ethanol to prepare a solid MgCl 2 alcohol adduct, and then TiCl 4 is supported on a solid MgCl 2 alcohol adduct.
  • An olefin polymerization catalyst was obtained.
  • Patent 201110382706.5 discloses an olefin polymerization catalyst and a preparation method thereof.
  • the carrier MgCl 2 is dissolved in an organic solvent of isooctanol and ethanol to prepare a solid MgCl 2 alcoholate, and then TiCl 4 is supported on a solid MgCl 2 alcoholate.
  • An olefin polymerization catalyst is obtained on the material, and the catalyst has a good hydrogen modulation effect.
  • the catalyst activity is low and the main catalyst particles are easily adhered to the walls of the vessel.
  • Patent CN85100997A, CN200810227369.0, CN200810227371.8, CN200810223088.8 disclose an olefin polymerization catalyst and a preparation method thereof, which are obtained by dissolving MgCl 2 particles in an organic epoxy compound, an organic phosphorus compound and an inert organic solvent to obtain MgCl. The solution of 2 was further contacted with TiCl 4 to prepare a main catalyst for olefin polymerization. The organophosphorus compound acts as an essential component in the solvent system in which the MgCl 2 particles are dissolved.
  • Patent 201310598556.0 discloses the addition of an inert organic solvent, a monohydric alcohol having a carbon number of less than 5, and an alcohol having a carbon number of more than 5 during the preparation of the catalyst. After the MgCl 2 particles are dissolved, the organophosphorus compound, the organosilicon compound and the organic boron are further added. a compound, preparing a liquid MgCl 2 alcoholate, and then contacting TiCl 4 with the liquid MgCl 2 alcoholate, and then adding a polyhydroxy solid to obtain an olefin polymerization catalyst, which can improve the particle morphology of the solid procatalyst and the catalyst olefin Hydrogenation performance of polymerization, bulk density of polyolefin.
  • Patent 201310034134.0 discloses adding an inert organic solvent, an alcohol having a carbon number of less than 5, an alcohol having a carbon number of more than 5 during the preparation of the catalyst, and dissolving the MgCl 2 particles, then adding the organophosphorus compound and the organosilicon compound to prepare a liquid MgCl. 2 alcoholate, and then TiCl 4 is contacted with the liquid MgCl 2 alcoholate, and then the polyhydroxy solid matter is added to obtain an olefin high-efficiency polymerization catalyst, which can improve the particle morphology of the solid procatalyst and the hydrogen catalysis of the catalyst catalyzed olefin polymerization. performance.
  • Patent 201210436136.8 discloses the preparation of a liquid MgCl by adding an inert organic solvent, an alcohol having a carbon number of less than 5, an alcohol having a carbon number of more than 5 during the preparation of the catalyst, and dissolving the MgCl 2 particles, and then adding an organophosphorus compound and an organosilicon compound. 2 alcoholate, and then TiCl 4 is contacted with the liquid MgCl 2 alcoholate to obtain an olefin high-efficiency polymerization catalyst, which can improve the particle morphology of the solid procatalyst and the hydrogen modulating performance of the catalyst catalyzed olefin polymerization.
  • an object of the present invention is to provide an olefin coordination polymerization catalyst.
  • a further object of the present invention is to provide the use of the above olefin coordination polymerization catalyst for ethylene polymerization, propylene polymerization, copolymerization of ethylene with an ⁇ -olefin or copolymerization of propylene with an ⁇ -olefin.
  • the present invention provides an olefin coordination polymerization catalyst comprising a main catalyst and a cocatalyst mainly composed of a molar ratio of 1:1 to 40: 0.01 to 10: 0.001 to 10 a magnesium compound, a transition metal halide, a C 2 -C 15 alcohol, and an electron donor, wherein the cocatalyst is an organoaluminum compound;
  • the molar ratio of the transition metal halide to the cocatalyst is 1:10-500.
  • the main catalyst is a magnesium compound, a transition metal halide, a C 2 -C in a molar ratio of 1:1 to 40: 0.01 to 10: 0.001 to 10: 0.00005-1.
  • the silicon-containing material comprises tetraethoxysilane and/or silica gel.
  • the main catalyst is composed of a magnesium compound, a transition metal halide, a C 2 -C in a molar ratio of 1:1 to 40: 0.01 to 10: 0.001 to 10: 0.001.
  • the alcohol, electron donor and succinate of 15 were prepared.
  • the succinate used in the present invention is a conventional substance used in the art, and in a specific embodiment of the present invention, the succinate used is diethyl 2,3-diisopropylsuccinate.
  • the electron donor is a four-armed organoheteroether compound.
  • the four-armed organoheteroether compound is at least one of the compounds conforming to Formula 1.
  • y is an integer from 0 to 15;
  • R 1 and R 2 are present at the same time or different, and R 1 and R 2 are the same or different, and are C 1 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic groups or C 6 -C 20 aromatic groups. Hydrocarbyl group;
  • R 3 and R 4 are present at the same time or different, and R 3 and R 4 are the same or different, and are C 1 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic groups or C 6 -C 20 aromatic groups. Hydrocarbyl group;
  • R 5 and R 6 are present at the same time or different, and R 5 and R 6 are the same or different, and are C 1 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic groups or C 6 -C 20 aromatic groups. Hydrocarbyl group;
  • R 7 and R 8 are present at the same time or different, and R 7 and R 8 are the same or different, and are C 1 -C 20 aliphatic hydrocarbon groups, C 3 -C 20 alicyclic groups or C 6 -C 20 aromatic groups. Hydrocarbyl group;
  • A is N, P, O or S
  • Z is N, P, O or S
  • L is N, P, O or S
  • A is N, P or S
  • Z is N, P or S
  • L is N, P or S.
  • the four-armed organoheteroether compound is selected from at least one of the following compounds:
  • the addition of a four-armed organoheteroether compound can significantly improve the catalytic activity, hydrogen sensitivity and copolymerization ability of the catalyst, and improve the morphology of the catalyst particles.
  • the magnesium compound is at least one selected from the group consisting of compounds of the formula MgR a X b ;
  • R is a C 1 -C 20 aliphatic hydrocarbon group, a C 1 -C 20 fatty alkoxy group, a C 3 -C 20 alicyclic group or a C 6 -C 20 aromatic hydrocarbon group;
  • the magnesium compound is selected from the group consisting of magnesium dichloride, magnesium dibromide, magnesium diiodide, magnesium oxychloride, ethoxy magnesium chloride, and propyl chloride.
  • magnesium dichloride magnesium dibromide, magnesium diiodide
  • magnesium oxychloride magnesium ethoxy magnesium chloride
  • propyl chloride magnesium oxychloride, magnesium phenoxide, magnesium ethoxylate, magnesium isopropoxide, magnesium butoxide, magnesium isopropoxide chloride, butyl magnesium chloride, diethoxy At least one of magnesium, dipropoxy magnesium, and dibutoxy magnesium;
  • the magnesium compound is selected from the group consisting of magnesium dichloride, diethoxy magnesium or dipropoxy magnesium.
  • the transition metal halide is at least one of compounds of the formula MR 1 4-m X m ; wherein M is Ti, Zr, Hf, Fe, Co or Ni; X is Cl, Br or F; m is an integer from 0 to 4; R 1 is a C 1 - C 20 aliphatic hydrocarbon group, a C 1 - C 20 fatty alkoxy group, a C 1 - C 20 ring a pentadienyl group and a derivative thereof, a C 1 -C 20 aromatic hydrocarbon group, COR' or COOR', wherein R' is a C 1 -C 10 aliphatic group or a C 1 -C 10 aromatic group.
  • the R' is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, isobutyl.
  • tert-butyl isopentyl, tert-amyl, 2-ethylhexyl, phenyl, naphthyl, o-methylphenyl, m-methylphenyl, p-methylphenyl, o-sulfonic acid At least one of a phenyl group, a formyl group, an acetyl group, and a benzoyl group.
  • the transition metal halide is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrabutoxide, titanium tetraethoxide, and monochloro 3 Ethoxytitanium, dichlorodiethoxytitanium, trichloromonoethoxytitanium, n-butyl titanate, isopropyl titanate, methoxytitanium trichloride, dibutoxytitanium dichloride, At least one of tributyloxytitanium chloride, tetraphenoxytitanium, monochlorotriphenoxytitanium, dichlorodiphenoxytitanium, and trichloromonophenoxytitanium; more preferably, the transition The metal halide is titanium tetrachloride.
  • the molar ratio of the transition metal halide to the magnesium compound is from 8 to 40:1.
  • the C 2 -C 15 alcohol is selected from the group consisting of ethanol, propanol, butanol, pentanol, heptanol, isooctanol, octanol, decyl alcohol, decyl alcohol, At least one of undecyl alcohol, dodecanol, tridecyl alcohol, tetradecanol, and pentadecyl alcohol;
  • the C 2 -C 15 alcohol is selected from the group consisting of ethanol or isooctanol.
  • the addition of a C 2 -C 15 alcohol can significantly improve the hydrogen modulating properties of the catalyst.
  • the organoaluminum compound is selected from the group consisting of triethyl aluminum, triisobutyl aluminum, tri-n-hexyl aluminum, monochlorodiethyl aluminum and methyl aluminoxane (MAO). At least one of them.
  • the present invention also provides a preparation method of the above olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • Step 1 Disperse the magnesium compound in an inert organic solvent, add C 2 -C 15 alcohol, and stir at 90 to 150 ° C for 1-5 h;
  • Step 2 The first step of the mixed system is cooled to 30-80 ° C, added to the electron donor, the reaction 1-5h;
  • Step 3 The step 2 mixing system is cooled to -20-30 ° C, the mixed system of step 2 is contacted with the transition metal halide, and reacted at -20-30 ° C for 0.5-5 h, and then the system is heated to 50- The reaction was carried out at 120 ° C for 0.5-5 h. After completion of the reaction, washing, filtration and vacuum drying gave a main catalyst.
  • the preparation method of the main catalyst includes the following steps:
  • Step 1 Disperse the magnesium compound in an inert organic solvent, add C 2 -C 15 alcohol, and stir at 90 to 150 ° C for 1-5 h;
  • Step 2 The step 1 mixing system is cooled to 30-80 ° C, the electron donor and the silicon-containing substance are added, and the reaction is 1-5 h;
  • Step 3 The step 2 mixing system is cooled to -20-30 ° C, the mixed system of step 2 is contacted with the transition metal halide, and reacted at -20-30 ° C for 0.5-5 h, and then the system is heated to 50- The reaction was carried out at 120 ° C for 0.5-5 h. After completion of the reaction, washing, filtration and vacuum drying gave a main catalyst.
  • the preparation method of the main catalyst comprises the following steps:
  • Step 1 Disperse the magnesium compound in an inert organic solvent, add C 2 -C 15 alcohol, and stir at 90 to 150 ° C for 1-5 h;
  • Step 2 The first step of the mixed system is cooled to 30-80 ° C, the electron donor and succinate are added, and the reaction is 1-5 h;
  • Step 3 The step 2 mixing system is cooled to -20-30 ° C, the mixed system of step 2 is contacted with the transition metal halide, and reacted at -20-30 ° C for 0.5-5 h, and then the system is heated to 50- The reaction was carried out at 120 ° C for 0.5-5 h. After completion of the reaction, washing, filtration and vacuum drying gave a main catalyst.
  • the C 2 -C 15 alcohol may be added in steps during the preparation of the main catalyst.
  • a part of the C 2 -C 15 alcohol may be added in the first step, and the step 2 is added.
  • Electron body four-armed organoheteroether compound, or addition of a silicon-containing substance or succinate followed by another portion of C 2 -C 15 alcohol, and the amount of C 2 -C 15 alcohol added in each step of the present invention Without specific requirements, it is sufficient to ensure that the total amount of C 2 -C 15 alcohol added is within the scope of the present application.
  • the inert organic solvent in the first step is at least one of a C 5 - C 15 saturated hydrocarbon, a C 5 - C 10 alicyclic hydrocarbon, and a C 6 - C 15 aromatic hydrocarbon.
  • the inert organic solvent is selected from the group consisting of decane, octane, dodecane, toluene, xylene, hexane, At least one of heptane and cyclohexane.
  • the washing is carried out in the third step, and the product is washed with toluene or n-hexane, and the unreacted material is removed by filtration, followed by vacuum drying.
  • the vacuum drying temperature in the third step is 40-90 ° C, and the vacuum drying time is 0.5-5 h.
  • the present invention also provides the use of the above olefin coordination polymerization catalyst for ethylene polymerization, propylene polymerization, copolymerization of ethylene with an ⁇ -olefin, or copolymerization of propylene with an ⁇ -olefin.
  • the ⁇ - olefin is a C 3 -C 20 a-olefin
  • the ⁇ -olefin is selected from the group consisting of propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, cyclopentene, 4-methyl At least one of keto-1-pentene, 1,3-butadiene, isoprene, styrene, and methyl styrene.
  • the electron donor four-armed organic heteroether compound
  • the catalytic activity of the catalyst can be obviously improved, the static electricity of the solid procatalyst particles can be eliminated, and the main catalyst particles are not adhered.
  • an inert organic solvent, an alcohol having 2 to 15 carbon atoms, a magnesium oxide carrier, and an electron donor are added to prepare a magnesium alkoxide, and then a transition metal halide (TiCl 4 ) is added.
  • the olefin polymerization catalyst provided by the invention has good particle shape and uniform particle size distribution; the catalyst has excellent hydrogen adjustment performance, and the melt index MFR of the polyethylene can be adjusted within 0.01 g/10 min - 550 g/10 min; the catalyst loading is high, the catalyst The activity is high, the solid procatalyst particles do not adhere to the container wall; the polymer particles have good morphology, high bulk density and less fine powder; and are suitable for slurry polymerization process, loop polymerization process, gas phase polymerization process or combined polymerization process; The preparation process of the catalyst is simple, the equipment requirements are low, the energy consumption is small, and the environmental pollution is small.
  • the object of the present invention is to provide a olefin copolymerization catalyst which has a good particle shape and a spherical shape, and the catalyst particles do not adhere to the wall of the vessel; the hydrogenation property of the catalyst is excellent, and the melt index MFR of the polyethylene can be from 0.01 g/10 min to 550 g. Adjusted within /10min; high catalyst activity; suitable for slurry process, gas phase polymerization process or combined polymerization process; simple preparation method, low requirements on equipment and low environmental pollution.
  • the mass percentage of Ti in the main catalyst was determined by ICP.
  • the measurement conditions of the melt index of the polyethylene and polyethylene copolymer were as follows: a test load of 5 kg and a temperature of 190 °C.
  • the measurement conditions of the melt index of the isotactic polypropylene were as follows: a test load of 2.16 kg and a temperature of 230 °C.
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the system was cooled to 25 ° C, and added dropwise to 25 mL of titanium tetrachloride at -15 ° C, reacted at -5 ° C for 1 h, and heated to 100 ° C for 4 h for another 2 h. Stirring was stopped, allowed to stand, layered, filtered, washed four times with hexane (30 ml each time), and dried under vacuum at 50 ° C for 3 hours to obtain a powder with good fluidity, uniform particle size distribution, non-sticky container wall and spherical shape. Solid catalyst.
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation of the main catalyst
  • the preparation method includes the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the system was lowered to -15 ° C, 15 mL of titanium tetrachloride was added dropwise, the reaction was carried out for 1 h, the temperature was raised to 90 ° C and then reacted for 2 h, and dried under vacuum at 60 ° C for 2 hours to obtain a good fluidity, uniform particle size distribution, and non-stick wall.
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present embodiment provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present comparative example provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the present comparative example provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the stirring was stopped, allowed to stand, layered, filtered, and washed twice with hexane (30 ml each time), and dried under vacuum at 60 ° C for 2 hours to obtain a powdery solid catalyst, and the main catalyst particles were easily adhered to the vessel wall.
  • the present comparative example provides a preparation method of an olefin coordination polymerization catalyst, wherein the preparation method of the main catalyst comprises the following steps:
  • the stirring was stopped, allowed to stand, layered, filtered, and washed twice with hexane (30 ml each time), and dried under vacuum at 60 ° C for 2 hours to obtain a powdery solid catalyst, and the main catalyst particles were easily adhered to the vessel wall.
  • Ethylene polymerization After fully replacing the 2 liter stainless steel autoclave with nitrogen, 10 mg of the main catalyst component, 1000 mL of dehydrated hexane, and 1.17 mL (2 mmol/mL) of the cocatalyst AlEt 3 solution were added to the autoclave, and the temperature was raised to 75 ° C. Hydrogen was introduced into 0.28 MPa, and then charged with ethylene to 0.73 MPa, and reacted at a constant pressure for 2 hours.
  • Ethylene copolymerization After fully replacing the 2 liter stainless steel autoclave with nitrogen, 10 mg of the main catalyst component, 1000 mL of dehydrated hexane, 1.17 mL (2 mmol/mL) of AlEt 3 solution, and 30 mL of 1-hexene were added to the kettle. After heating to 75 ° C, it was charged with 0.28 MPa of hydrogen, then charged with ethylene to 0.73 MPa, and reacted at constant pressure for 2 h.
  • the carrier is dispersed in an inert solvent, and an alcohol having 2 to 15 carbon atoms is added, and the solution of the dissolved magnesium halide does not include an organic epoxy compound or an organic phosphorus compound.
  • organic epoxy compounds and organophosphorus compounds can affect the morphology and precipitation rate of the precipitated titanium in the late magnesium halide, which has a significant effect on the morphology of the catalyst and the amount of titanium supported, thus affecting the performance of the entire catalyst.
  • the invention does not add an organic epoxy compound and an organic phosphorus compound when the carrier is dispersed, and effectively avoids the above adverse effects.
  • the preparation process is small in complexity, which makes the process simple and the cost is reduced.
  • the catalyst of the invention has good particle shape, spherical shape, uniform particle size distribution, and the catalyst particles do not adhere to the container wall; the catalyst has high activity and good hydrogen regulation performance, and the melt index MFR of the polyethylene can be 0.01 g/10 min - 550 g / It is suitable for slurry polymerization, loop polymerization, gas phase polymerization or combined polymerization. It is considered that the addition of four-arm organic heteroether compounds can significantly improve the catalytic activity, hydrogen sensitivity and copolymerization of the catalyst.
  • the ability to improve the particle morphology of the catalyst eliminates static electricity from the solid catalyst particles and the host catalyst particles do not adhere to the walls of the vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及一种烯烃配位聚合催化剂及其制备方法与应用,该烯烃聚合催化剂由主催化剂和助催化剂组成,所述主催化剂主要由摩尔比为1:1-40:0.01-10:0.001-10的镁化物、过渡金属卤化物、C2-C15的醇和给电子体制备得到,所述助催化剂为有机铝化合物;且过渡金属卤化物与助催化剂的摩尔比为1:10-500。本发明催化剂的颗粒形态良好,呈球形,催化剂颗粒不粘附在容器壁上;催化剂活性高,氢调性能良好,聚乙烯的熔融指数MFR可在0.01g/10min-550g/10min内调节,适用于淤浆法聚合工艺、环管聚合工艺、气相法聚合工艺或组合聚合工艺。

Description

烯烃配位聚合催化剂及其制备方法与应用 技术领域
本发明涉及一种用于烯烃均聚合或共聚合催化剂及其制备方法与应用,属于烯烃高效聚合催化剂及烯烃聚合技术领域。
背景技术
烯烃聚合催化剂是聚烯烃聚合技术的核心,从烯烃聚合催化剂的发展来看,概括起来主要有两个方面:(1)开发能够制备特殊性能或性能更优异的聚烯烃树脂催化剂,如茂金属催化剂及非茂后过渡金属催化剂等;(2)对于通用聚烯烃树脂的生产而言,在进一步改善催化剂性能的基础上,简化催化剂制备工艺,降低催化剂成本,开发对环境友好的技术,以提高效益,增强竞争力。20世纪80年代以前,聚乙烯催化剂研究的重点是追求催化剂效率,经过近30年的努力,聚乙烯催化剂的催化效率呈数量级提高,从而简化了聚烯烃的生产工艺,降低了能耗和物耗。
Ziegler-Natta催化剂问世至今已有近60年历史,期间尽管出现了如茂金属与非茂金属等聚烯烃催化剂,但其工业化问题较多,如助催化剂昂贵,主催化剂负载还存在困难等。因此,就目前工业生产与市场占有率来看,传统的Z-N催化剂仍将是未来一段时间内烯烃聚合领域的主导者。近年来,国内外的Z-N催化剂产品层出不穷,催化剂稳定性与聚合催化活性也不断提高。但是,在氢调敏感性、控制催化剂颗粒规整性及粒径分布方面仍有不足。目前生产中需开发出制备工艺简单、氢调敏感性好、粒径分布均匀的球形或类球形催化剂。
专利96106647.4公开了一种烯烃聚合催化剂及其制备方法,将载体MgCl2溶于一种醇和烷烃的混合物中,形成液体MgCl2醇加合物,这种液体MgCl2醇加合物与TiCl4接触,得到烯烃聚合催化剂,但是该催化剂的氢调性能差,聚乙烯的熔融指数MFR只能在0.1g/10min–220g/10min内调节。
专利200480008242.X公开了一种烯烃聚合催化剂及其制备方法,将载体MgCl2直接溶于乙醇,制备得到了固体MgCl2醇加合物,再将TiCl4负载在固体MgCl2醇加合物上得到了烯烃聚合催化剂。
专利201110382706.5公开了一种烯烃聚合催化剂及其制备方法,将载体MgCl2溶于异辛醇和乙醇的有机溶剂中,制备得到了固体MgCl2醇合物,再将TiCl4负载在 固体MgCl2醇合物上得到了烯烃聚合催化剂,该催化剂具有良好的氢调效果。但是催化剂活性偏低,主催化剂颗粒容易粘附在容器壁上。
专利CN85100997A、CN200810227369.0、CN200810227371.8、CN200810223088.8公开了一种烯烃聚合催化剂及其制备方法,将MgCl2颗粒溶于有机环氧化合物、有机磷化合物和惰性有机溶剂的体系中,得到MgCl2溶液,再与TiCl4接触,制备了烯烃聚合的主催化剂。所述的有机磷化合物的作用是使MgCl2颗粒溶解的溶剂体系中的一个必要组分。
专利201310598556.0公开了在催化剂制备过程中,加入惰性有机溶剂、碳原子数小于5的一元醇、碳原子数大于5的醇,MgCl2颗粒溶解后,再加入有机磷化合物、有机硅化合物和有机硼化合物,制备液体MgCl2醇合物,再将TiCl4与这种液体MgCl2醇合物接触,之后再加入多羟基固态物,得到烯烃聚合催化剂,可以改善固体主催化剂的颗粒形态、催化剂催化烯烃聚合的氢调性能、聚烯烃的堆积密度。
专利201310034134.0公开了在催化剂制备过程中,加入惰性有机溶剂、碳原子数小于5的醇、碳原子数大于5的醇,MgCl2颗粒溶解后,再加入有机磷化合物和有机硅化合物,制备液体MgCl2醇合物,再将TiCl4与这种液体MgCl2醇合物接触,之后再加入多羟基固态物,得到烯烃高效聚合催化剂,可以改善固体主催化剂的颗粒形态、催化剂催化烯烃聚合的氢调性能。
专利201210436136.8公开了在催化剂制备过程中,加入惰性有机溶剂、碳原子数小于5的醇、碳原子数大于5的醇,MgCl2颗粒溶解后,再加入有机磷化合物和有机硅化合物,制备液体MgCl2醇合物,再将TiCl4与这种液体MgCl2醇合物接触,得到烯烃高效聚合催化剂,可以改善固体主催化剂的颗粒形态、催化剂催化烯烃聚合的氢调性能。
发明内容
为解决上述技术问题,本发明的目的在于提供一种烯烃配位聚合催化剂。
本发明的目的还在于提供上述烯烃配位聚合催化剂的制备方法。
本发明的目的又在于提供上述烯烃配位聚合催化剂在乙烯聚合、丙烯聚合、乙烯与α-烯烃的共聚合或丙烯与α-烯烃的共聚合中的应用。
为实现上述目的,本发明提供一种烯烃配位聚合催化剂,所述催化剂由主催化剂和助催化剂组成,所述主催化剂主要由摩尔比为1:1-40:0.01-10:0.001-10的镁化物、过渡金属卤化物、C2-C15的醇和给电子体制备得到,所述助催化剂为有机铝化合物;
且过渡金属卤化物与助催化剂的摩尔比为1:10-500。
在上述烯烃配位聚合催化剂中,优选地,所述主催化剂由摩尔比为1:1-40:0.01-10:0.001-10:0.00005-1的镁化物、过渡金属卤化物、C2-C15的醇、给电子体和含硅物质制备得到;
更优选地,所述含硅物质包括四乙氧基硅烷和/或硅胶。
在上述烯烃配位聚合催化剂中,优选地,所述主催化剂由摩尔比为1:1-40:0.01-10:0.001-10:0.001-1的镁化物、过渡金属卤化物、C2-C15的醇、给电子体和琥珀酸酯制备得到。其中,本发明所用琥珀酸酯为本领域使用的一类常规物质,在本发明具体实施方式中,所用琥珀酸酯为2,3-二异丙基琥珀酸二乙酯。
在上述烯烃配位聚合催化剂中,优选地,所述给电子体为四臂有机杂醚化合物。
在上述烯烃配位聚合催化剂中,优选地,所述四臂有机杂醚化合物为符合通式1的化合物中的至少一种,
Figure PCTCN2017074498-appb-000001
式1中:y为0-15的整数;
R1和R2同时存在或不同时存在,且R1和R2相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
R3和R4同时存在或不同时存在,且R3和R4相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
R5和R6同时存在或不同时存在,且R5和R6相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
R7和R8同时存在或不同时存在,且R7和R8相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
当y为0、2-15的整数时,A为N、P、O或S,Z为N、P、O或S,L为N、P、O或S;
当y为1时,A为N、P或S,Z为N、P或S,L为N、P或S。
在上述烯烃配位聚合催化剂中,优选地,所述四臂有机杂醚化合物选自以下化合物中的至少一种:
Figure PCTCN2017074498-appb-000002
Figure PCTCN2017074498-appb-000003
Figure PCTCN2017074498-appb-000004
加入四臂有机杂醚化合物可以明显提高催化剂的催化活性、氢调敏感性以及共聚能力,改善催化剂颗粒形貌。
在上述烯烃配位聚合催化剂中,优选地,所述镁化物选自通式为MgRaXb的化合物中的至少一种;
式中,R为C1-C20的脂肪烃基、C1-C20的脂肪烷氧基、C3-C20的脂环基或C6-C20的芳香烃基;X为卤素;a=0、1或2;b=0、1或2,且a+b=2。
在上述烯烃配位聚合催化剂中,优选地,所述镁化物选自二氯化镁、二溴化镁、二碘化镁、氯化甲氧基镁、氯化乙氧基镁、氯化丙氧基镁、氯化丁氧基镁、氯化苯氧基镁、乙氧基镁、异丙氧基镁、丁氧基镁、氯化异丙氧基镁、氯化丁基镁、二乙氧基镁、二丙氧基镁和二丁氧基镁中的至少一种;
更优选地,所述镁化物选自二氯化镁、二乙氧基镁或二丙氧基镁。
在上述烯烃配位聚合催化剂中,优选地,所述过渡金属卤化物为通式为MR1 4-mXm的化合物中的至少一种;式中,M为Ti、Zr、Hf、Fe、Co或Ni;X为Cl、Br或F;m为0到4的整数;R1为C1-C20的脂肪烃基、C1-C20的脂肪烷氧基、C1-C20的环戊二烯基及其衍生物、C1-C20的芳香烃基、COR`或COOR`,其中,R`为C1-C10的脂肪族基或C1-C10的芳香基。
在上述烯烃配位聚合催化剂中,优选地,所述R`选自甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、异丁基、叔丁基、异戊基、叔戊基、2-乙基己基、苯基、萘基、邻-甲基苯基、间-甲基苯基、对-甲基苯基、邻-磺酸基苯基、甲酰基、乙酰基和苯甲酰基中的至少一种。
在上述烯烃配位聚合催化剂中,优选地,所述过渡金属卤化物选自四氯化钛、四溴化钛、四碘化钛、四丁氧基钛、四乙氧基钛、一氯三乙氧基钛、二氯二乙氧基钛、三氯一乙氧基钛、钛酸正丁酯、钛酸异丙酯、甲氧基三氯化钛、二丁氧基二氯化钛、三丁氧基氯化钛、四苯氧基钛、一氯三苯氧基钛、二氯二苯氧基钛和三氯一苯氧基钛中的至少一种;更优选地,所述过渡金属卤化物为四氯化钛。
在上述烯烃配位聚合催化剂中,优选地,所述过渡金属卤化物与镁化物的摩尔比为8-40:1。
在上述烯烃配位聚合催化剂中,优选地,所述C2-C15的醇选自乙醇、丙醇、丁醇、戊醇、庚醇、异辛醇、辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇和十五醇中的至少一种;
更优选地,所述C2-C15的醇选自乙醇或异辛醇。加入C2-C15的醇(碳原子数为2至15的醇)可以明显提高催化剂的氢调性能。
在上述烯烃配位聚合催化剂中,优选地,所述有机铝化合物选自三乙基铝、三异丁基铝、三正己基铝、一氯二乙基铝和甲基铝氧烷(MAO)中的至少一种。
本发明还提供了上述烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下 搅拌1-5h;
步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体,反应1-5h;
步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h,反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
根据本发明具体的实施方案,当主催化剂由镁化物、过渡金属卤化物、C2-C15的醇、给电子体和含硅物质制备得到时,主催化剂的制备方法包括以下步骤:
步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下搅拌1-5h;
步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体及含硅物质,反应1-5h;
步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h,反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
根据本发明具体的实施方案,当主催化剂由镁化物、过渡金属卤化物、C2-C15的醇、给电子体和琥珀酸酯制备得到时,主催化剂的制备方法包括以下步骤:
步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下搅拌1-5h;
步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体及琥珀酸酯,反应1-5h;
步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h,反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
根据本发明具体的实施方案,在主催化剂的制备过程中,C2-C15的醇可以分步加入,例如,可以在步骤一中加入一部分C2-C15的醇,在步骤二加入给电子体(四臂有机杂醚化合物,或者加入含硅物质或琥珀酸酯后再加入另一部分C2-C15的醇,且本发明对每一步骤中C2-C15的醇的加入量不作具体要求,只要保证C2-C15的醇的总加入量在本申请要求保护的范围内即可。
在主催化剂的制备过程中,优选地,步骤一中的惰性有机溶剂为C5-C15的饱和烃、C5-C10的脂环烃和C6-C15的芳香烃中的至少一种;
更优选地,所述惰性有机溶剂选自癸烷、辛烷、十二烷、甲苯、二甲苯、己烷、 庚烷和环己烷中的至少一种。
在主催化剂的制备过程中,步骤三中所述洗涤、过滤为以甲苯或正己烷洗涤产物,过滤除去未反应物后进行真空干燥。
在主催化剂的制备过程中,优选地,步骤三中所述真空干燥温度为40-90℃,真空干燥时间为0.5-5h。
本发明还提供了上述烯烃配位聚合催化剂在乙烯聚合、丙烯聚合、乙烯与α-烯烃的共聚合或丙烯与α-烯烃的共聚合中的应用。
根据本发明具体实施方案,在该应用中,优选地,所述α-烯烃为C3-C20的烯烃;
更优选地,所述α-烯烃选自丙烯、1-丁烯、1-己烯、1-辛烯、1-癸烯、3-甲基-1-丁烯、环戊烯、4-甲基-1-戊烯、1,3-丁二烯、异戊二烯、苯乙烯和甲基苯乙烯中的至少一种。
本发明所提供的烯烃聚合催化剂具有以下有益效果:
在催化剂制备过程中,在卤化镁载体溶解后,再加入给电子体(四臂有机杂醚化合物),可以明显提高催化剂的催化活性、可以消除固体主催化剂颗粒的静电,主催化剂颗粒不粘附在容器壁上;加入惰性有机溶剂、碳原子数为2至15的醇,镁化物载体,再加入给电子体,制备镁化物醇合物,再将过渡金属卤化物(TiCl4)与这种镁化物醇合物接触,得到烯烃高效聚合催化剂,可以改善固体主催化剂的颗粒形态、催化剂催化烯烃聚合的氢调性能;且加入给电子体可以明显提高催化剂的催化活性、改善催化剂颗粒形貌、可以消除固体主催化剂颗粒的静电,主催化剂颗粒不粘附在容器壁上。本发明所提供的烯烃聚合催化剂的颗粒形态良好,且粒径分布均匀;催化剂氢调性能优异,聚乙烯的熔融指数MFR可在0.01g/10min–550g/10min内调节;催化剂负载量高,催化剂活性高,固体主催化剂颗粒不粘附在容器壁上;聚合物颗粒形态好,堆积密度高,细粉少;适用于淤浆聚合工艺、环管聚合工艺、气相聚合工艺或组合聚合工艺;主催化剂的制备工艺简单,对设备要求低,能耗小,环境污染小。
本发明的目的是提供的烯烃共聚合催化剂的颗粒形态良好,呈球形,催化剂颗粒不粘附在容器壁上;催化剂的氢调性能优异,聚乙烯的熔融指数MFR可在0.01g/10min–550g/10min内调节;催化剂活性高;适用于淤浆法、气相聚合工艺或组合聚合工艺;制备方法简单,对设备要求低,对环境污染小。
采用ICP测定主催化剂中Ti的质量百分含量。
聚乙烯和聚乙烯共聚物的熔融指数的测定条件:测试负荷为5kg、温度为190℃。
等规聚丙烯的熔融指数的测定条件:测试负荷为2.16kg、温度为230℃。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,以下将通过具体的实施例详细地说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,但是不作为对本案可实施范围的限定。
实施例1
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,乙醇0.2mL,异辛醇6.5mL,搅拌升温至120℃,反应2h。降温至50℃下,依次加入2.5g符合通式的四臂有机杂醚化合物1,保持温度为50℃反应2h。将体系降至-15℃下,滴加30mL四氯化钛,反应1h,升温至110℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于70℃真空干燥2小时,得到流动性好、不粘容器壁、粒径分布均匀、呈球形的粉末状固体主催化剂。
实施例2
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷30mL,乙醇0.25mL,异辛醇7mL,搅拌升温至120℃,反应2h。降温至60℃下,依次加入1.5g符合通式的四臂有机杂醚化合物2,保持温度为60℃反应2h。将体系降至-10℃下,滴加40ml四氯化钛,反应1h,升温至100℃再反应3h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于60℃真空干燥3小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例3
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,乙醇0.2mL,异辛醇8mL,搅拌升温至100℃,反应2h。降温至50℃下,依次加入13g符合通式的四臂有机杂醚化合物3,升温至80℃反应2h。将体系降至-15℃下,滴加35mL四氯化钛,反应1h,升温至65℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于50℃真空干燥4小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例4
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,乙醇2mL,异辛醇7mL,搅拌升温至110℃,反应4h。降温至50℃下,依次加入0.5g符合通式的四臂有机杂醚化合物4,升温至100℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至120℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于80℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例5
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,乙醇0.1mL,异辛醇4mL,搅拌升温至100℃,反应5h。降温至40℃下,依次加入5g符合通式的四臂有机杂醚化合物5,保持温度为40℃反应2h。将体系降至-15℃下,滴加25mL四氯化钛,反应3h,升温至110℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于90℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例6
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,乙醇2.5mL,异辛醇3mL,搅拌升温至110℃,反应2h。降温至50℃下,依次加入3g符合通式的四臂有机杂醚化合物6和四乙氧基硅烷8mL,保持温度为50℃反应3h。将体系降至-15℃下,滴加40mL四氯化钛,反应1h,升温至70℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于100℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例7
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经氮气充分置换过的反应器中,加入1g二乙氧基镁,正庚烷30mL,和乙醇 0.2mL,搅拌升温至110℃,反应4h。降温至50℃下,加入6g符合通式的四臂有机杂醚化合物7和乙醇0.2mL,保持温度为50℃反应4h。将体系降至-15℃下,滴加35mL四氯化钛,反应1h,升温至95℃再反应4h。停止搅拌,静置,分层,过滤,甲苯洗涤两次(每次30毫升),己烷洗涤四次(每次30毫升),于60℃真空干燥3小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例8
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,十二烷20mL,乙醇0.3mL,癸醇6mL,搅拌升温至110℃,反应2h。降温至50℃下,依次加入6g符合通式的四臂有机杂醚化合物8,保持温度为50℃反应3h。将体系降至-10℃下,滴加30mL四氯化钛,反应1h,升温至80℃再反应3h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于60℃真空干燥4小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例9
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二丙氧基镁,甲苯30mL,丙醇0.5mL,搅拌升温至110℃,反应5h。降温至50℃下,加入6g符合通式的四臂有机杂醚化合物9,保持温度为50℃反应2h。将体系降至0℃下,滴加15mL四氯化钛,反应1h,升温至90℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于110℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例10
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正辛烷30mL,丁醇4mL,异辛醇6.5mL,搅拌升温至110℃,反应2h。降温至50℃下,加入2g符合通式的四臂有机杂醚化合物10,保持温度为50℃反应2h。将体系降至-5℃下,滴加45mL四氯化钛,反应1h,升温至90℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于120℃真空干燥2小时,得到流动性好、粒径分布均匀、 不粘容器壁、呈球形的粉末状固体主催化剂。
实施例11
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷15mL,乙醇5mL,搅拌升温至110℃,反应2h。降温至50℃下,加入4g符合通式的四臂有机杂醚化合物11,保持温度为50℃反应2h。将体系降温至25℃,再滴加入处于-10℃的25mL四氯化钛中,在0℃反应1h,在4小时内升温至110℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于50℃真空干燥3小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例12
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷40mL,乙醇1.5mL,搅拌升温至120℃,反应2h。降温至60℃下,加入3g符合通式的四臂有机杂醚化合物12和四乙氧基硅烷6mL,保持温度为60℃反应2h。将体系降温至25℃,再滴加入处于-15℃的25mL四氯化钛中,在-5℃反应1h,在4小时内升温至100℃再反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于50℃真空干燥3小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例13
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二乙氧基镁,正癸烷20mL,异辛醇3mL,搅拌升温至110℃,反应3h。降温至50℃下,加入1g符合通式的四臂有机杂醚化合物13,在50℃温度下反应2h。将体系降至0℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于50℃真空干燥4小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例14
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制 备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,甲苯10mL,乙醇1mL,异辛醇6.5mL,搅拌升温至100℃,反应4h。降温至40℃下,加入3g符合通式的四臂有机杂醚化合物14和硅胶0.15g,升温至70℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例15
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二乙氧基镁,正癸烷20mL,异辛醇6.5mL,搅拌升温至120℃,反应0.5h。降温至50℃下,加入8g符合通式的四臂有机杂醚化合物15和琥珀酸酯(2,3-二异丙基琥珀酸二乙酯)10mL,保持温度为50℃反应3h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃再反应2h,于60℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例16
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,甲苯10mL,乙醇1mL,异辛醇6.5mL,搅拌升温至100℃,反应4h。降温至40℃下,加入6g符合通式的四臂有机杂醚化合物16,升温至70℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例17
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,正癸烷20mL,甲苯10mL,乙醇1mL,异辛醇6.5mL,搅拌升温至100℃,反应4h。降温至40℃下,加入5g符合通式的四臂有机杂醚化合物17和四乙氧基硅烷0.25mL,升温至70℃ 反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
实施例18
本实施例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二乙氧基镁,正己烷30mL,乙醇0.2mL,搅拌升温至100℃,反应4h。降温至40℃下,加入3g符合通式的四臂有机杂醚化合物18,升温至70℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到流动性好、粒径分布均匀、不粘容器壁、呈球形的粉末状固体主催化剂。
对比例1
本对比例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二乙氧基镁,癸烷20mL,异辛醇16mL,乙醇0.4mL,搅拌升温至110℃,反应2h。降温至50℃下,加入四乙氧基硅烷3mL,保持温度为50℃反应2h。将体系降至-15℃下,滴加35mL四氯化钛,反应1h,升温至100℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤四次(每次30毫升),于80℃真空干燥2小时,得到流动性好、粒径分布均匀、呈球形的粉末状固体主催化剂,主催化剂颗粒容易粘附于容器壁上。
对比例2
本对比例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,癸烷20mL,异辛醇16mL,乙醇0.4mL,搅拌升温至120℃,反应3h。降温至50℃下,加入磷酸三丁酯3mL及四乙氧基硅烷3mL,保持温度为50℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到粉末状固体主催化剂,主催化剂颗粒容易粘附于容器壁上。
对比例3
本对比例提供了一种烯烃配位聚合催化剂的制备方法,其中,所述主催化剂的制备方法包括以下步骤:
在经过氮气充分置换过的反应器中,加入1g二氯化镁,癸烷20mL,异辛醇16mL,乙醇0.4mL,搅拌升温至120℃,反应3h。降温至50℃下,加入磷酸三丁酯3mL,保持温度为50℃反应2h。将体系降至-15℃下,滴加15mL四氯化钛,反应1h,升温至90℃反应2h。停止搅拌,静置,分层,过滤,己烷洗涤两次(每次30毫升),于60℃真空干燥2小时,得到粉末状固体主催化剂,主催化剂颗粒容易粘附于容器壁上。
应用例1
乙烯聚合:将2升不锈钢高压釜经氮气充分置换后,依次向釜中加入主催化剂组分10mg,脱水己烷1000mL,助催化剂AlEt3溶液1.17mL(2mmol/mL),升温至75℃后充入氢气0.28MPa,再充入乙烯至0.73MPa,恒压恒温反应2h。
应用例2
乙烯共聚合:将2升不锈钢高压釜经氮气充分置换后,依次向釜中加入主催化剂组分10mg,脱水己烷1000mL,AlEt3溶液1.17mL(2mmol/mL),加入30mL 1-己烯。升温至75℃后,充入氢气0.28MPa,再充入乙烯至0.73MPa,恒压恒温反应2h。
应用例3
丙烯聚合:将2升不锈钢高压釜经氮气充分置换后,依次向釜中加入主催化剂组分10mg,脱水己烷1000mL,AlEt3溶液1.17mL(2mmol/mL),加入外给电子体三乙氧基环戊氧基硅烷4mL(0.18M己烷溶液),升温至80℃后,充入氢气0.1MPa,再充入丙烯至3MPa,恒压恒温反应2h。应用例1-3中烯烃聚合结果见表1。
表1烯烃聚合结果
Figure PCTCN2017074498-appb-000005
Figure PCTCN2017074498-appb-000006
本发明的效果:
从本发明实施例和对比例1-3可以看出,不加入四臂有机杂醚化合物时,催化剂的活性较低,堆密度也降低,说明四臂有机杂醚化合物的加入改善了催化剂的形态,使得催化剂颗粒更为致密,从而提高了其堆密度。不加入四臂有机杂醚化合物时,聚合物的熔融指数与加入后相比降低了50%,说明四臂有机杂醚化合物的加入提高了催化剂的氢调敏感性。
本发明催化剂的制备过程中,将载体分散在惰性溶剂中,加入碳原子数为2至15的醇,溶解卤化镁的溶液中并不包括有机环氧化合物、有机磷化合物。有机环氧化合物和有机磷化合物的加入,可以影响卤化镁后期滴钛析出的微晶形态和析出速率,对催化剂的形态和载钛量影响显著,从而影响整个催化剂的性能。本发明在载体分散时没有加入有机环氧化合物和有机磷化合物,有效的避免了上述不利影响。此外,由于不需要加入助析剂,制备工艺复杂性小,使得工艺简单,成本缩减。
本发明催化剂的颗粒形态良好,呈球形,粒径分布均匀,催化剂颗粒不粘附在容器壁上;催化剂活性高,氢调性能良好,聚乙烯的熔融指数MFR可在0.01g/10min–550g/10min内调节,适用于淤浆法聚合工艺、环管聚合工艺、气相法聚合工艺或组合聚合工艺,本发明认为加入四臂有机杂醚化合物可以明显提高催化剂的催化活性、氢调敏感性以及共聚能力,改善催化剂的颗粒形貌、可以消除固体主催化剂颗粒的静电,主催化剂颗粒不粘附在容器壁上。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (20)

  1. 一种烯烃配位聚合催化剂,其特征在于,所述催化剂由主催化剂和助催化剂组成,所述主催化剂主要由摩尔比为1:1-40:0.01-10:0.001-10的镁化物、过渡金属卤化物、C2-C15的醇和给电子体制备得到,所述助催化剂为有机铝化合物;
    且过渡金属卤化物与助催化剂的摩尔比为1:10-500。
  2. 根据权利要求1所述的烯烃配位聚合催化剂,其特征在于,所述主催化剂由摩尔比为1:1-40:0.01-10:0.001-10:0.00005-1的镁化物、过渡金属卤化物、C2-C15的醇、给电子体和含硅物质制备得到;
    优选地,所述含硅物质包括四乙氧基硅烷和/或硅胶。
  3. 根据权利要求1所述的烯烃配位聚合催化剂,其特征在于,所述主催化剂由摩尔比为1:1-40:0.01-10:0.001-10:0.001-1的镁化物、过渡金属卤化物、C2-C15的醇、给电子体和琥珀酸酯制备得到。
  4. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述给电子体为四臂有机杂醚化合物。
  5. 根据权利要求4所述的烯烃配位聚合催化剂,其特征在于,所述四臂有机杂醚化合物为符合通式1的化合物中的至少一种,
    Figure PCTCN2017074498-appb-100001
    式1中:y为0-15的整数;
    R1和R2同时存在或不同时存在,且R1和R2相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
    R3和R4同时存在或不同时存在,且R3和R4相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
    R5和R6同时存在或不同时存在,且R5和R6相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
    R7和R8同时存在或不同时存在,且R7和R8相同或不相同的为C1-C20的脂肪烃基、C3-C20的脂环基或C6-C20的芳香烃基;
    当y为0、2-15的整数时,A为N、P、O或S,Z为N、P、O或S,L为N、P、O或S;
    当y为1时,A为N、P或S,Z为N、P或S,L为N、P或S。
  6. 根据权利要求5所述的烯烃配位聚合催化剂,其特征在于,所述四臂有机杂醚化合物选自以下化合物中的至少一种:
    Figure PCTCN2017074498-appb-100002
    Figure PCTCN2017074498-appb-100003
    Figure PCTCN2017074498-appb-100004
  7. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述镁化物选自通式为MgRaXb的化合物中的至少一种;式中,R为C1-C20的脂肪烃基、C1-C20的脂肪烷氧基、C3-C20的脂环基或C6-C20的芳香烃基;X为卤素;a=0、1或2;b=0、1或2,且a+b=2。
  8. 根据权利要求7所述的烯烃配位聚合催化剂,其特征在于,所述镁化物选自二氯化镁、二溴化镁、二碘化镁、氯化甲氧基镁、氯化乙氧基镁、氯化丙氧基镁、氯 化丁氧基镁、氯化苯氧基镁、乙氧基镁、异丙氧基镁、丁氧基镁、氯化异丙氧基镁、氯化丁基镁、二乙氧基镁、二丙氧基镁和二丁氧基镁中的至少一种;
    优选地,所述镁化物选自二氯化镁、二乙氧基镁或二丙氧基镁。
  9. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述过渡金属卤化物选自通式为MR1 4-mXm的化合物中的至少一种;式中,M为Ti、Zr、Hf、Fe、Co或Ni;X为Cl、Br或F;m为0到4的整数;R1为C1-C20的脂肪烃基、C1-C20的脂肪烷氧基、C1-C20的环戊二烯基及其衍生物、C1-C20的芳香烃基、COR`或COOR`,其中,R`为C1-C10的脂肪族基或C1-C10的芳香基;
    优选地,所述R`选自甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、异丁基、叔丁基、异戊基、叔戊基、2-乙基己基、苯基、萘基、邻-甲基苯基、间-甲基苯基、对-甲基苯基、邻-磺酸基苯基、甲酰基、乙酰基和苯甲酰基中的至少一种。
  10. 根据权利要求9所述的烯烃配位聚合催化剂,其特征在于,所述过渡金属卤化物选自四氯化钛、四溴化钛、四碘化钛、四丁氧基钛、四乙氧基钛、一氯三乙氧基钛、二氯二乙氧基钛、三氯一乙氧基钛、钛酸正丁酯、钛酸异丙酯、甲氧基三氯化钛、二丁氧基二氯化钛、三丁氧基氯化钛、四苯氧基钛、一氯三苯氧基钛、二氯二苯氧基钛和三氯一苯氧基钛中的至少一种;
    优选地,所述过渡金属卤化物为四氯化钛。
  11. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述过渡金属卤化物与镁化物的摩尔比为8-40:1。
  12. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述C2-C15的醇选自乙醇、丙醇、丁醇、戊醇、庚醇、异辛醇、辛醇、壬醇、癸醇、十一醇、十二醇、十三醇、十四醇和十五醇中的至少一种;
    优选地,所述C2-C15的醇选自乙醇或异辛醇。
  13. 根据权利要求1-3任一项所述的烯烃配位聚合催化剂,其特征在于,所述有机铝化合物选自三乙基铝、三异丁基铝、三正己基铝、一氯二乙基铝和甲基铝氧烷中的至少一种。
  14. 权利要求1-13任一项所述的烯烃配位聚合催化剂的制备方法,其特征在于,所述主催化剂的制备方法包括以下步骤:
    步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下搅拌1-5h;
    步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体,反应1-5h;
    步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h, 反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
  15. 根据权利要求14所述的烯烃配位聚合催化剂的制备方法,其特征在于,当主催化剂由镁化物、过渡金属卤化物、C2-C15的醇、给电子体和含硅物质制备得到时,主催化剂的制备方法包括以下步骤:
    步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下搅拌1-5h;
    步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体及含硅物质,反应1-5h;
    步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h,反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
  16. 根据权利要求14所述的烯烃配位聚合催化剂的制备方法,其特征在于,当主催化剂由镁化物、过渡金属卤化物、C2-C15的醇、给电子体和琥珀酸酯制备得到时,主催化剂的制备方法包括以下步骤:
    步骤一:将镁化物分散于惰性有机溶剂中,加入C2-C15的醇,于90至150℃下搅拌1-5h;
    步骤二:将步骤一的混合体系降温至30-80℃,加入给电子体及琥珀酸酯,反应1-5h;
    步骤三:将步骤二的混合体系降温至-20-30℃,将步骤二的混合体系与过渡金属卤化物接触,并在-20-30℃下反应0.5-5h,再将体系升温至50-120℃,反应0.5-5h,反应结束后,经洗涤、过滤、真空干燥,得到主催化剂。
  17. 根据权利要求14-16任一项所述的烯烃配位聚合催化剂的制备方法,其特征在于,步骤一中所述惰性有机溶剂为C5-C15的饱和烃、C5-C10的脂环烃和C6-C15的芳香烃中的至少一种;
    优选地,所述惰性有机溶剂选自癸烷、辛烷、十二烷、甲苯、二甲苯、己烷、庚烷和环己烷中的至少一种。
  18. 根据权利要求14-16任一项所述的烯烃配位聚合催化剂的制备方法,其特征在于,步骤三中所述真空干燥温度为40-90℃,真空干燥时间为0.5-5h。
  19. 权利要求1-13任一项所述的烯烃配位聚合催化剂在乙烯聚合、丙烯聚合、乙烯与α-烯烃的共聚合或丙烯与α-烯烃的共聚合中的应用。
  20. 根据权利要求19所述的应用,其特征在于,所述α-烯烃为C3-C20的烯烃;
    优选地,所述α-烯烃选自丙烯、1-丁烯、1-己烯、1-辛烯、1-癸烯、3-甲基-1-丁烯、环戊烯、4-甲基-1-戊烯、1,3-丁二烯、异戊二烯、苯乙烯和甲基苯乙烯中的至少一种。
PCT/CN2017/074498 2016-05-04 2017-02-23 烯烃配位聚合催化剂及其制备方法与应用 WO2017190543A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017002330.0T DE112017002330T5 (de) 2016-05-04 2017-02-23 Olefin-Polymerisations-Katalysator und Herstellungsverfahren und Verwendung davon
US16/161,894 US11014994B2 (en) 2016-05-04 2018-10-16 Olefin coordination polymerization catalyst, and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610289266.1A CN107344974B (zh) 2016-05-04 2016-05-04 烯烃配位聚合催化剂及制备方法与应用
CN201610289266.1 2016-05-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/161,894 Continuation US11014994B2 (en) 2016-05-04 2018-10-16 Olefin coordination polymerization catalyst, and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2017190543A1 true WO2017190543A1 (zh) 2017-11-09

Family

ID=60202760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074498 WO2017190543A1 (zh) 2016-05-04 2017-02-23 烯烃配位聚合催化剂及其制备方法与应用

Country Status (4)

Country Link
US (1) US11014994B2 (zh)
CN (1) CN107344974B (zh)
DE (1) DE112017002330T5 (zh)
WO (1) WO2017190543A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344974B (zh) 2016-05-04 2020-06-09 中国石油天然气股份有限公司 烯烃配位聚合催化剂及制备方法与应用
CN108467442B (zh) 2018-02-11 2021-06-01 中国石油天然气股份有限公司 一种烯烃配位聚合催化剂及其应用
CN112646064B (zh) * 2019-10-11 2023-01-03 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及其制备方法与催化剂和应用
CN114292356B (zh) * 2021-12-28 2023-07-07 中国石油天然气股份有限公司 大中空容器吹塑聚乙烯专用料、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082740A1 (en) * 1997-01-28 2004-04-29 Fina Technology, Inc. Ziegler-natta catalyst for tuning MWD of polyolefin, method of making, method of using, and polyolefins made therewith
CN1803864A (zh) * 2005-01-13 2006-07-19 中国石油化工股份有限公司 用于丙烯聚合的催化剂组分及其催化剂
CN101215344A (zh) * 2008-01-14 2008-07-09 中国石油天然气股份有限公司大庆化工研究中心 烯烃聚合催化剂组合物及其制备方法
JP2013095768A (ja) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd トリエーテル、オレフィン重合用触媒およびオレフィン重合体の製造方法
CN104211844A (zh) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种气相流化床法lldpe催化剂及其制备和应用
CN104710549A (zh) * 2013-12-13 2015-06-17 陈伟 一种乳化法制备球形乙烯聚合固体钛催化剂及其应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1006071B (zh) 1985-04-01 1989-12-13 中国石油化工总公司 用于烯烃聚合和共聚合的催化剂体系
DE69600154T2 (de) 1995-05-22 1998-06-10 Mitsui Petrochemical Ind Festes Titan enthaltender Katalysatorbestandteil, diesen enthaltender Katalysator für die Ethylenpolymerisation und Ethylenpolymerisationverfahren
EP1108728A1 (en) * 1999-12-17 2001-06-20 BP Chemicals S.N.C. High activity polyethylene catalysts prepared with alkoxycarbon reagents
RU2330863C2 (ru) 2003-03-27 2008-08-10 Базелль Полиолефин Италия С.Р.Л. Аддукты дихлорид магния-спирт и компоненты катализатора, полученные из них
ES2386634T3 (es) 2003-03-27 2012-08-24 Basell Poliolefine Italia S.R.L. Aductos de dicloruro de magnesio-alcohol y componentes catalizadores obtenidos a partir de éstos
CN101125897A (zh) 2006-08-18 2008-02-20 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂
CN101353385A (zh) 2008-09-27 2009-01-28 北京化工大学 乙烯聚合或共聚合的催化剂及其制备方法
CN101407561B (zh) 2008-11-28 2011-01-05 北京化工大学 烯烃聚合催化剂
CN101456924B (zh) 2008-11-28 2010-08-11 北京化工大学 用于烯烃聚合的催化剂组分及其催化剂
CN101891849B (zh) 2010-06-25 2013-03-27 中国石油天然气股份有限公司 一种聚烯烃催化剂及其制备和应用
CN101906180B (zh) 2010-07-28 2012-11-14 中国石油天然气股份有限公司 一种烯烃聚合催化剂及其制备方法
CN102492061B (zh) 2011-11-26 2014-08-20 北京化工大学 烯烃聚合催化剂及制备方法和应用
CN102558404B (zh) 2011-12-15 2014-08-06 中国石油天然气股份有限公司 一种多元醇醚聚烯烃催化剂及其制备和应用
CN102911299B (zh) 2012-11-05 2015-03-04 北京化工大学 烯烃高效聚合催化剂及制备方法和应用
CN103073662B (zh) 2013-01-29 2015-04-29 北京化工大学 烯烃聚合催化剂及其制备方法和应用
CN103613690A (zh) 2013-11-25 2014-03-05 北京化工大学 一种烯烃聚合催化剂及其制备方法和应用
CN105384854B (zh) * 2014-09-04 2018-11-02 中国石油化工股份有限公司 一种用于乙烯聚合的催化剂组分、催化剂及其制备方法
CN105622799B (zh) 2014-11-06 2018-03-13 中国石油天然气股份有限公司 一种用于生产高熔体流动速率聚烯烃的含杂环类化合物的烯烃聚合反应催化剂体系
CN104829758B (zh) * 2015-05-17 2017-03-08 北京化工大学 烯烃聚合催化剂及制备方法与应用
CN106519084B (zh) 2015-09-15 2019-02-15 中国石油天然气股份有限公司 烯烃聚合催化剂用主催化剂及其制备方法与烯烃聚合催化剂
CN107344974B (zh) 2016-05-04 2020-06-09 中国石油天然气股份有限公司 烯烃配位聚合催化剂及制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082740A1 (en) * 1997-01-28 2004-04-29 Fina Technology, Inc. Ziegler-natta catalyst for tuning MWD of polyolefin, method of making, method of using, and polyolefins made therewith
CN1803864A (zh) * 2005-01-13 2006-07-19 中国石油化工股份有限公司 用于丙烯聚合的催化剂组分及其催化剂
CN101215344A (zh) * 2008-01-14 2008-07-09 中国石油天然气股份有限公司大庆化工研究中心 烯烃聚合催化剂组合物及其制备方法
JP2013095768A (ja) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd トリエーテル、オレフィン重合用触媒およびオレフィン重合体の製造方法
CN104211844A (zh) * 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种气相流化床法lldpe催化剂及其制备和应用
CN104710549A (zh) * 2013-12-13 2015-06-17 陈伟 一种乳化法制备球形乙烯聚合固体钛催化剂及其应用

Also Published As

Publication number Publication date
CN107344974A (zh) 2017-11-14
DE112017002330T5 (de) 2019-02-21
US20190048106A1 (en) 2019-02-14
CN107344974B (zh) 2020-06-09
US11014994B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
US7348383B2 (en) Spray-dried, mixed metal ziegler catalyst compositions
US11014994B2 (en) Olefin coordination polymerization catalyst, and preparation method and application thereof
US20090318643A1 (en) Catalyst Component for Ethylene Polymerization, Preparation Thereof and Catalyst Comprising the Same
WO2013075643A1 (zh) 烯烃聚合催化剂及制备方法和应用
US9695257B2 (en) Olefin polymerization catalyst and preparation and application thereof
JP2011511135A (ja) 混合チーグラー−ナッタ触媒系を使用して調製されるポリエチレン物質
WO2014139062A1 (zh) 一种烯烃聚合催化剂及制备方法
DE112013006537B4 (de) Katalysator für Polyolefin, und seine Herstellung und Anwendung
US8609571B2 (en) Preparation method of solid catalyst for polymerization of polypropylene and solid catalyst using the same
CN108467442B (zh) 一种烯烃配位聚合催化剂及其应用
WO2014134761A1 (zh) 一种负载型聚烯烃催化剂及其制备和应用
CN111019023B (zh) 烯烃聚合用催化剂及其制备方法、烯烃聚合用催化剂组合物及其应用
CN108690153B (zh) 烯烃聚合催化剂及其制备方法与应用
CN102260360B (zh) 一种乙烯聚合催化剂及其制备和应用
KR102156075B1 (ko) 지글러-나타 전촉매 조성물 및 올레핀 중합방법
CN112279950B (zh) 用于乙烯气相聚合工艺的催化剂、催化剂组分及制备方法
WO2017054398A1 (zh) 一种球形负载型过渡金属催化剂
CN111234072A (zh) 用于烯烃聚合的催化剂组分、催化剂体系和预聚合催化剂及其应用以及烯烃聚合方法
CN116375912A (zh) 一种基于烷氧基镁载体用于乙烯聚合的催化剂组分、制备方法及其应用
CN117264097A (zh) 一种双金属中心非均相催化剂组合物及其制备方法和应用
CN111234073A (zh) 用于烯烃聚合的催化剂组分、催化剂体系和预聚合催化剂及其应用以及烯烃聚合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792372

Country of ref document: EP

Kind code of ref document: A1