WO2017179566A1 - 植物の育成方法 - Google Patents
植物の育成方法 Download PDFInfo
- Publication number
- WO2017179566A1 WO2017179566A1 PCT/JP2017/014790 JP2017014790W WO2017179566A1 WO 2017179566 A1 WO2017179566 A1 WO 2017179566A1 JP 2017014790 W JP2017014790 W JP 2017014790W WO 2017179566 A1 WO2017179566 A1 WO 2017179566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- mass
- degradation product
- lignin degradation
- lignin
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N35/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/02—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N35/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
- A01N35/04—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aldehyde or keto groups, or thio analogues thereof, directly attached to an aromatic ring system, e.g. acetophenone; Derivatives thereof, e.g. acetals
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
Definitions
- the present invention relates to a plant vital agent, a plant vital agent composition, and a plant growing method.
- Various nutrient elements are necessary for a plant to grow, and it is known that if some of these elements are insufficient, the growth of the plant is hindered.
- nitrogen is a component element of protein.
- Phosphorus plays an important role not only in the constituent elements of nucleic acids and phospholipids, but also in energy metabolism and synthesis and decomposition reactions of substances. There are physiological effects of substance metabolism and mass transfer. The lack of these major components generally leads to poor plant growth. Calcium is an important component that constitutes plants and cells, and also plays an important role in maintaining the balance of the metabolic system.
- various nutrients are necessary for plants such as Mg, Fe, S, B, Mn, Cu, Zn, Mo, Cl, Si, and Na.
- Plant growth regulators typified by gibberellins and auxins are used to control germination, rooting, elongation, flowering, fruit growth, and morphogenic reactions. And complex and has limited applications.
- JP 2013-505892 A discloses a fertilizer composition comprising a granular form in contact with a component such as lignin containing an agriculturally acceptable complex mixture of organic substances characterized by partially humated natural organic matter Things are listed.
- Japanese Patent Publication No. 2013-505964 discloses a method for improving stress response in a plant, wherein a seed or a part of a plant or a part thereof is dissolved in a dissolved organic substance characterized by a partially humated natural organic substance.
- a method is described that includes contacting with a composition comprising an agriculturally acceptable composite mixture.
- Japanese Patent Publication No. 2015-509001 discloses a method for providing at least one biological action in a plant, comprising (i) having a predetermined amount of total organic carbon and ensuring at least one biological action in the plant.
- An agronomically effective amount of a complex polymeric polyhydroxy acid that can be provided to (ii) (a) an agronomically acceptable ion source of an agronomically ineffective amount of one or more transition metal cations, And / or (b) providing an aqueous mixture with one or more of at least one salt of a plant harmful amount of an alkali (earth) metal cation, wherein the aqueous mixture comprises a plant , Methods suitable for contact with seeds or their vegetation sites are described.
- JP-A-5-874 humic substances extracted by alkaline treatment of lignin charcoal or lignin charcoal containing the humic substance and extracted by fermentation treatment or hydrolysis treatment of vegetable oil cakes are disclosed.
- a plant growth promoter comprising an extract or a vegetable oil cake subjected to fermentation treatment or hydrolysis treatment is described.
- low humicity coals such as grass charcoal, peat, and lignite are immersed in an alkaline solution of about 5 to about 10%, acid is added thereto, and then neutralized.
- a method for producing a soil conditioner for suspensions is described.
- a plant vital agent and a method for growing plants are desired that do not cause phytotoxicity to plants and exhibit excellent growth promoting effects on plants.
- the present invention relates to a plant vital agent containing as an active ingredient a lignin decomposition product having an aldehyde yield of 10% by mass or more by alkali nitrobenzene oxidation.
- the present invention relates to a plant vital agent composition containing a lignin degradation product having an aldehyde yield of 10% by mass or more by alkali nitrobenzene oxidation.
- the present invention relates to a plant growth method in which a lignin degradation product having an aldehyde yield of 10% by mass or more by alkali nitrobenzene oxidation is brought into contact with a plant.
- a plant vital agent a plant vital agent composition, and a method for growing a plant that show an excellent growth promoting effect on the plant without causing phytotoxicity to the plant.
- the plant vitality agent of the present invention contains, as an active ingredient, a lignin degradation product (hereinafter sometimes referred to as the lignin degradation product of the present invention) having an aldehyde yield of 10% by mass or more due to alkali nitrobenzene oxidation.
- the present invention includes a plant vitality agent comprising the lignin degradation product of the present invention.
- the aldehyde yield of the lignin degradation product of the present invention is 10% by mass or more.
- This aldehyde yield is preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and even more preferably 21% by mass, from the viewpoint of preventing reduction in production efficiency due to excessive treatment.
- the lignin degradation product of the present invention is obtained by degrading natural lignin obtained from plant biomass. Natural lignin mainly forms ⁇ -O-4 bonds to form giant polymers. Lignin undergoes degradation of ⁇ -O-4 bonds and various condensation reactions in the process of extraction from plant biomass, and the composition of the bonds in lignin changes. Alkaline nitrobenzene oxidation is a technique for decomposing ⁇ -O-4 bonds in lignin and quantifying the amount of ⁇ -O-4 bonds from the aldehyde monomer produced. That is, the aldehyde yield by alkaline nitrobenzene oxidation indicates the degree of lignin modification, and the higher the value, the lower the degree of modification.
- the alkali nitrobenzene oxidation method of the lignin degradation product can be referred to, for example, the alkali nitrobenzene oxidation method described in “Lignin Chemistry Research Method” (published by Uni Publishing Co., Ltd., July 10, 1994).
- the aldehyde yield measured under the following conditions is adopted as the aldehyde yield of the lignin degradation product.
- Concentrated hydrochloric acid is added to the remaining aqueous layer to adjust the pH to 1 to 3, and the mixture is further extracted 3 times with 5 to 15 ml of diethyl ether.
- the diethyl ether extract is distilled off under reduced pressure to obtain an oxidized mixture.
- Make up the oxidation mixture with 20 mL of dichloromethane. Of this, 2 ml was filtered through a Millipore HVHP membrane (Nippon Millipore Corporation, pore size 0.45 ⁇ m) and subjected to gas chromatography (GC).
- a GC apparatus (Agilent Technology Co., Ltd.) equipped with Agilent J & W GC column DB-5 (Agilent Technology Co., Ltd.) is used.
- the gas chromatography conditions are as follows: the sample volume is 1.0 ⁇ L, the helium flow rate is 10 ml / min, the inlet temperature is 200 ° C., and the split ratio is 10: 1.
- the temperature is raised from 60 to 250 ° C. at 5 ° C./min and held at 250 ° C. for 10 minutes.
- the quantification uses three aldehydes of vanillin, syringaldehyde, and parahydroxybenzaldehyde as reagents, creates a calibration curve with the peak area with respect to the content, and determines the yield of the three aldehydes in the lignin degradation product.
- the lignin degradation product of the present invention has a weight average molecular weight of preferably 1,000 or more and 100,000 or less.
- This weight average molecular weight is more preferably 3,000 or more, still more preferably 4,500 or more, still more preferably 8,000 or more, and more preferably from the viewpoint of easy inflow from the site of action into the plant. Is not more than 50,000, more preferably not more than 30,000, still more preferably not more than 26,000, and still more preferably not more than 20,000.
- the weight average molecular weight of the lignin degradation product is measured under the following conditions.
- Method for measuring weight average molecular weight of lignin degradation product The weight average molecular weight of the lignin degradation product is measured by gel permeation chromatography (GPC) under the following operations and conditions.
- GPC operation Measurement is performed by injecting 100 ⁇ L of a sample solution (1 mg / mL) containing a lignin degradation product. The molecular weight of the sample is calculated based on a previously prepared calibration.
- the lignin degradation product of the present invention can be obtained by degradation of plant biomass.
- a method for producing a plant vital agent containing the lignin degradation product of the present invention a method for producing a plant vital agent having the following step 1 and step 2a, or a plant vital agent having the following step 1 and step 2b. A method is mentioned.
- Step 1 Plant-based biomass is H with a basic compound of 8 to 70 parts by mass and water of 10 to 10,000 parts by mass with respect to 100 parts by mass of the solid content of the plant-based biomass.
- Step 2a A lignin degradation product is obtained as a water-soluble component from the plant biomass obtained through the step 1, and an acid is added to obtain a suspension containing the lignin degradation product.
- Step 2b A step of obtaining a lignin decomposition product as a water-soluble component from the plant-based biomass that has undergone the step 1, purifying by adding an organic solvent, and then adding an acid to obtain a suspension containing the lignin decomposition product.
- plant biomass includes herbaceous biomass and woody biomass. Among these, herbaceous biomass is preferable.
- Herbaceous biomass means plants other than trees growing on grassland or non-woody plant parts. Specific examples include plant materials of grasses, mallows, legumes, and non-woody materials of palms.
- grass plant materials include bagasse such as sugarcane bagasse and sorghum bagasse, switchgrass, elephant grass, corn stover, corn cob, inawara, wheat straw, barley, suki, turf, johnsongrass, eliansus, and napiergrass.
- Examples of the plant material of the mallow family include kenaf and cotton.
- legume plant materials include alfalfa.
- Examples of the non-woody raw material of the palm family plant include palm palm empty fruit bunch.
- it is preferably a plant material of the grass family, more preferably sugar cane bagasse, corn cob, or rice straw, and still more preferably sugar cane bagasse.
- woody biomass examples include various types of wood such as wood chips obtained from conifers such as larch and cedar, hardwood such as oil palm and cypress; wood pulp produced from these woods, and the like. These plant biomass may be used alone or in combination of two or more.
- Plant biomass can be used without being pulverized, but is preferably pulverized from the viewpoint of processing efficiency.
- a basic compound (hereinafter also referred to as “alkali”) is used.
- Basic compounds include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, alkalis such as sodium oxide and potassium oxide.
- Alkaline earth metal oxides such as metal oxides, magnesium oxide and calcium oxide, alkali metal sulfides such as sodium sulfide and potassium sulfide, alkaline earth metal sulfides such as magnesium sulfide and calcium sulfide, tetramethylammonium hydroxide, And quaternary ammonium hydroxide such as tetrabutylammonium hydroxide.
- an alkali metal hydroxide or an alkaline earth metal hydroxide preferably an alkali metal hydroxide, and still more preferably water.
- Sodium oxide preferably an alkali metal hydroxide or an alkaline earth metal hydroxide, more preferably an alkali metal hydroxide, and still more preferably water.
- the H-factor (hereinafter also referred to as HF) is conventionally used as a control index in the pulp cooking process, and uses the effects of temperature and time as one variable. Since the treatment in step 1 is accelerated and the reaction is simultaneously related to the temperature, the delignification reaction rate at 100 ° C. is set to 1, and the relative rate at other temperatures is obtained from the Arrhenius equation, and the time at that temperature is determined. It is calculated by HF which is a product of.
- HF is an index representing the total amount of heat given to the reaction system in the treatment using the biomass base compound, and is represented by the following formula (1). HF is calculated by integrating the time t during which the biomass and the basic compound aqueous solution are in contact.
- a treatment time of about 150 hours is required, and when heat treatment is performed at 85 ° C., a treatment time of about 20 hours is required.
- a treatment time of about 4.5 hours is required.
- HF is preferably 0.01 or more, more preferably 0.1 or more, still more preferably 1 or more, from the viewpoint of improving the recovery rate of the lignin degradation product of the present invention and economy.
- it is 2 or more, more preferably 3 or more, and preferably 3,000 or less, more preferably 1,500 or less, preferably 1,200 or less, more preferably 1,000 or less, still more preferably 400 or less, More preferably, it is 300 or less, More preferably, it is 100 or less, More preferably, it is 50 or less, More preferably, it is 30 or less.
- the lignin degradation product of the present invention is obtained by adding an acid to the water-soluble component after the treatment in step 1 to cause precipitation.
- the water-soluble component can be taken out, for example, by separating the liquid part of the alkali-treated biomass.
- the water-soluble component is preferably extracted by washing the lignin degradation product present in the solid portion of the separated alkali-treated biomass with water, dissolving it in water and extracting it.
- an acid is added to the obtained water-soluble component to adjust the pH to 1 to 5, and a lignin decomposition product is precipitated.
- the obtained lignin degradation product is centrifuged or filtered, further washed with water, and adjusted to pH 6-8 by adding a base. Further, the basic compound may be removed by a dialysis membrane or the like.
- the lignin degradation product thus obtained may be concentrated and mixed with water or other organic solvents to be used as a liquid, or the solvent can be evaporated and used as a solid.
- the lignin degradation product of the present invention is obtained by adding an organic solvent to the water-soluble component after the treatment in Step 1 and purifying it, and then adding an acid to precipitate it.
- the water-soluble component can be taken out, for example, by separating the liquid part of the alkali-treated biomass in step 1.
- the water-soluble component can be extracted by washing the lignin degradation product present in the solid part (solid phase) of the separated alkali-treated biomass with water, dissolving it in water, and extracting it. .
- At least one selected from an organic solvent is added to the aqueous phase recovered from the reaction liquid in step 1 and the aqueous phase recovered from the solid part of the alkali-treated biomass in step 1.
- the inventive lignin degradation product can be obtained.
- the obtained lignin degradation product may be removed from the acid or basic compound by a dialysis membrane or the like.
- the lignin decomposition product thus obtained may be in a state of being dispersed together with water or other solvent, or may be solidified by evaporating the solvent.
- Step 3 Step of heating the lignin decomposition product obtained in Step 2a or Step 2b Step 3 is preferably performed in the absence of a solvent.
- the heating temperature in step 3 is preferably 60 ° C. or higher, more preferably 120 ° C. or higher, and preferably 170 ° C. or lower, more preferably 140 ° C. or lower.
- the heating time in step 3 is preferably 1 minute or longer, more preferably 3 minutes or longer, and preferably 30 minutes or shorter, more preferably 10 minutes or shorter.
- the molecular weight of the obtained lignin degradation product can be adjusted by fractionation as necessary.
- the form of the plant vital agent of the present invention may be either solid or liquid, but solid is preferred.
- the solid is preferably a powder.
- the powder may have an average particle size of 3 ⁇ m or more and 30 ⁇ m or less.
- the lignin decomposition product of the present invention is preferably a powder, and more preferably a powder having the average particle diameter.
- Plants to which the plant vitality agent of the present invention can be applied include cucurbitaceae, solanaceae, capsicum, rose, mallow, legume, gramineous, cruciferous, leeks, antaceae, chrysanthemum, amaranthaceae, seri Family, ginger family, perilla family, taro family, convolvulaceae family, yam family, lotus family and the like.
- fruit vegetables include cucumber, pumpkin, watermelon, melon, tomato, eggplant, bell pepper, strawberry, okra, sweet bean, broad bean, pea, green soybean, corn and the like.
- Root vegetables include radish, turnip, burdock, carrot, potato, taro, sweet potato, yam, ginger, lotus root and the like.
- the present invention can be preferably applied to grains such as beans such as soybeans and green beans that tend to be cultivated on a large scale.
- the plant vitality composition of the present invention contains a lignin degradation product having an aldehyde yield of 10% by mass or more due to alkali nitrobenzene oxidation, that is, the lignin degradation product of the present invention.
- the preferable aspect of the lignin degradation product used for the plant vitality composition of this invention is the same as the plant vitality agent of this invention.
- the plant vital agent composition of the present invention is preferably 5% by mass or more, more preferably 15% by mass or more, and still more preferably from the viewpoint of ease of preparation of the lignin degradation product of the present invention into a form upon treatment. 30% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass or less.
- the plant vital agent composition of the present invention can contain components other than the lignin degradation product of the present invention.
- the plant vitality composition of the present invention can contain a surfactant from the viewpoint of adhesion of the lignin degradation product to the site of action and increase in the amount of penetration.
- a surfactant include one or more surfactants selected from nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
- a nonionic surfactant is preferable.
- Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyalkylene aryl ether, polyoxyethylene alkenyl ether. And polyoxyalkylene alkyl polyglycosides.
- Anionic surfactants include sodium mono- and di-alkylnaphthalene sulfonate, sodium alpha-olefin sulfonate, sodium alkane sulfonate, alkyl sulfosuccinate, alkyl sulfate, polyoxyalkylene alkyl ether sulfate, polyoxy Alkylene alkyl aryl ether sulfates, mono- and di-alkyl benzene sulfonates, alkyl naphthalene sulfonates, mono and dialkyl phosphates, polyoxyalkylene mono and dialkyl phosphates, fatty acid salts, linear and branched alkyl polyoxy Examples include alkylene ether acetic acid or a salt thereof, fatty acid N-methyltaurine and the like. Examples of the salt include metal salts (Na, K, Ca, Mg, Zn, etc.), ammonium salts, alkanolamine salts
- Examples of the cationic surfactant include polyoxyethylene alkylamine salts, polyoxypropylene alkylamine salts, polyoxyethylene tallow amine salts, polyoxyethylene oleylamine salts, and dialkylamine salt derivatives. It is done.
- Examples of the dialkylamine derivative include dialkylmonomethylhydroxyethylammonium propionate, dialkylmonomethylbenzalkonium chloride, dialkylmonomethylethylammonium ethyl sulfate, and the like.
- Amphoteric surfactants include amino acids such as alkylaminopropionates, amine oxides such as alkylamidopropylbetaines, imidazolines, alkylhydroxysulfobetaines, alkyldimethylamine oxides, alkyldiethanolamine oxides, and alkylamidopropylamine oxides. System.
- the surfactant is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and still more preferably with respect to 100 parts by mass of the lignin degradation product of the present invention. Is contained in an amount of 50 parts by mass or more, preferably 1,900 parts by mass or less, more preferably 600 parts by mass or less, and still more preferably 300 parts by mass or less.
- the plant vital agent composition of the present invention can contain a water-soluble polymer from the viewpoint of increasing the amount of lignin degradation product attached to the site of action.
- water-soluble for the water-soluble polymer means that 1 g or more is dissolved in 100 g of water at 20 ° C.
- any of natural, semi-synthetic and synthetic polymers can be used, and among them, a polysaccharide-based water-soluble polymer is preferable.
- Specific examples of the polysaccharide-based water-soluble polymer include guar gum, xanthan gum, starch, cellulose, tara gum, roast bean gum, carrageenan, and derivatives thereof.
- Examples of the guar gum derivative include hydroxypropyl guar gum, carboxymethylhydroxypropyl guar gum, and cationized guar gum.
- Examples of the xanthan gum derivative include hydroxypropyl xanthan gum and the like.
- Examples of the starch derivative include carboxymethylated starch, hydroxyalkylated starch, hydroxypropyl cross-linked starch, kraft starch, and acetic acid starch.
- Examples of the cellulose derivative include hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, carboxymethyl cellulose and the like.
- As the polysaccharide water-soluble polymer hydroxypropylmethylcellulose is more preferable.
- the water-soluble polymer is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and still more preferably with respect to 100 parts by mass of the lignin degradation product of the present invention. Is contained in an amount of 50 parts by mass or more, preferably 1,900 parts by mass or less, more preferably 600 parts by mass or less, and still more preferably 300 parts by mass or less.
- fertilizer components and the like can be contained in the plant vitality composition of the present invention.
- fertilizer components available under trade names such as Hyponika (Kyowa Co., Ltd.) and Hyponex can be contained in an amount of 1 part by mass or more and 1,900 parts by mass or less with respect to 100 parts by mass of the lignin degradation product.
- the form of the plant vitality composition of the present invention may be any of liquid, flowable, paste, wettable powder, granule, powder, tablet and the like.
- a lignin degradation product having an aldehyde yield of 10% by mass or more by oxidation of alkali nitrobenzene that is, a lignin degradation product of the present invention is brought into contact with the plant.
- the preferred embodiment of the lignin degradation product used in the plant growing method of the present invention is the same as the plant vitality agent of the present invention.
- the plant to which the plant growing method of the present invention can be applied is also the same as the plant vitality agent of the present invention.
- Various methods can be used for the method of bringing the lignin degradation product of the present invention into contact with a plant.
- the method of fertilizing directly the powder agent and granule containing the lignin degradation product of this invention like a fertilizer is mentioned.
- the method of spraying the process liquid containing the lignin degradation product of this invention directly to a plant, such as a leaf surface, a stem, and a fruit is mentioned.
- medical solution containing this into soil is mentioned.
- the method of using the culture solution containing the lignin degradation product of this invention by hydroponics for example, the culture using hydroponic culture or rock wool, is mentioned.
- the treatment liquid containing the lignin degradation product of the present invention and water can be brought into contact with the underground part or the above-ground part of the plant.
- the treatment liquid may contain components other than the lignin degradation product described in the plant vitality agent, such as a surfactant, a water-soluble polymer, and a fertilizer component.
- the present invention provides a method for growing a plant, in which a treatment liquid containing the lignin degradation product of the present invention and water is sprayed on the leaves to bring the lignin degradation product into contact with the plant.
- rooting of a plant can be promoted, and a method for promoting plant rooting can be obtained.
- the underground weight can be increased.
- branching expression number can be increased, and a branching expression increasing method of the plant can be obtained.
- the number of flowering can be increased, and a method for increasing the number of flowering plants can be obtained.
- the treatment liquid containing the lignin degradation product of the present invention and water is sprayed on the leaves, and the lignin degradation product of the present invention is contacted with the plant, for example, contacted temporarily or for a long time.
- the process can be made to have. Moreover, you may mix with the water at the time of watering, and you may make it contact a root.
- the content of the lignin degradation product of the present invention in the treatment liquid is preferably 1 ppm or more, more preferably 8 ppm or more, still more preferably 20 ppm or more, still more preferably 40 ppm or more, as the lignin degradation product, And it is preferably 5,000 ppm or less, more preferably 1,000 ppm or less, still more preferably 500 ppm or less, and even more preferably 300 ppm or less.
- the present invention provides a method for growing a plant, wherein the lignin degradation product is brought into contact with a plant by using it as a culture solution for hydroponics.
- rooting of a plant can be promoted, and a method for promoting plant rooting can be obtained.
- the underground weight can be increased.
- the treatment liquid containing the lignin degradation product of the present invention and water is brought into contact with the underground part of the plant as a culture solution for hydroponics, for example, a step of contacting temporarily or for a long time Can have.
- the content of the lignin degradation product of the present invention in the culture medium is preferably 1 ppm or more, more preferably 4 ppm or more, still more preferably 8 ppm or more, still more preferably 20 ppm or more, and preferably 3, as the lignin degradation product.
- the treatment liquid can be directly sprayed on the leaf surface, stem, fruit or the like as a mist or foam.
- a method of spraying the treatment liquid on the above-ground part of a plant specifically, a leaf surface, a stem, a fruit or the like is preferable.
- the time of spraying is not limited, but it is sprayed during the cotyledon development period, the primary leaf development period, the main leaf development period, the flower bud differentiation period, the flowering period, the flowering period, the flowering period, the fruiting period, the grain and fruit enlargement period, etc. Is preferred.
- Any means such as a sprayer, an aircraft such as a Cessna or radio controlled helicopter equipped with a sprayer, a tractor, or a center pivot system can be used as the spraying means for the treatment liquid.
- the spray amount is preferably 3L / 10a. Or more, more preferably 5L / 10a or more, still more preferably 20L / 10a or more, still more preferably 30L / 10a or more, still more preferably 40L / 10a or more, still more preferably 50L / 10a or more, and preferably 1 1,000 L / 10a or less, more preferably 500 L / 10a or less, still more preferably 300 L / 10a or less, still more preferably 100 L / 10a or less.
- the spraying amount is within the above range, an excellent growth promoting effect can be obtained even when spraying under a high water amount condition such as a center pivot system.
- the spraying time and the number of spraying of the treatment liquid are not particularly limited. What is necessary is just to perform suitably according to the degree of the growth of a plant in any period from cultivation start, such as sowing and planting, to completion of cultivation, such as harvesting.
- a method for promoting plant rooting wherein a lignin degradation product having an aldehyde yield of 10% by mass or more due to alkali nitrobenzene oxidation is brought into contact with a plant.
- it is preferable to contact the plant with the lignin degradation product preferably using a treatment solution containing the lignin degradation product and water as a leaf surface spray or a culture solution for hydroponics.
- the present invention also provides a method for increasing the branching expression of a plant, wherein a lignin degradation product having an aldehyde yield of 10% by mass or more by oxidation with alkali nitrobenzene is brought into contact with the plant.
- the treatment liquid containing the lignin degradation product and water is preferably sprayed on the foliage or used as a culture solution for hydroponics, more preferably foliar spraying, and the lignin degradation product is It is preferable to contact the plant.
- a method for increasing the number of flowering plants in which a lignin degradation product having an aldehyde yield by alkali nitrobenzene oxidation of 10% by mass or more is brought into contact with the plant.
- the treatment liquid containing the lignin degradation product and water is preferably sprayed on the foliage or used as a culture solution for hydroponics, more preferably foliar spraying, and the lignin degradation product is It is preferable to contact the plant.
- the matters described in the plant vital agent, the plant vital agent composition, and the plant growing method of the present invention can be appropriately applied to these methods.
- the present invention relates to the use of a lignin degradation product having an aldehyde yield of 10% by mass or more by oxidation of alkali nitrobenzene as a plant vital agent.
- the present invention also relates to the use of a composition containing a lignin degradation product having an aldehyde yield of 10% by mass or more as a result of alkaline nitrobenzene oxidation as a plant vital agent composition.
- the present invention relates to a lignin degradation product that is used as a plant vitality agent and has an aldehyde yield of 10% by mass or more due to alkali nitrobenzene oxidation.
- this invention relates to the composition containing the lignin degradation product which is used as a plant vitality composition and the aldehyde yield by alkali nitrobenzene oxidation is 10 mass% or more.
- the lignin degradation product used in these is the lignin degradation product of the present invention, and the preferred embodiment thereof is the same as the plant vitality agent and the plant vitality composition of the present invention.
- a plant vital agent comprising as an active ingredient a lignin degradation product having an aldehyde yield of 10% by mass or more by alkali nitrobenzene oxidation.
- the aldehyde yield of the lignin degradation product is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 21% by mass or more, and even more preferably. Is 22% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less, and still more preferably 30% by mass or less.
- the weight average molecular weight of the lignin degradation product is preferably 1,000 or more, more preferably 3,000 or more, still more preferably 4,500 or more, still more preferably 8,000 or more, and preferably 100,000 or less. More preferably 50,000 or less, still more preferably 30,000 or less, even more preferably 26,000 or less, and even more preferably 20,000 or less, the plant vitality according to ⁇ 1> or ⁇ 2> above Agent.
- the aldehyde yield by alkali nitrobenzene oxidation is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 21% by mass or more, and even more preferably 22%.
- the weight average molecular weight of the lignin degradation product is preferably 1,000 or more, more preferably 3,000 or more, still more preferably 4,500 or more, still more preferably 8,000 or more, and preferably 100,000 or less. More preferably, it is 50,000 or less, More preferably, it is 30,000 or less, More preferably, it is 26,000 or less, More preferably, it is 20,000 or less,
- the lignin degradation product is preferably 5% by mass or more, more preferably 15% by mass or more, further preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, and still more preferably 70% by mass.
- ⁇ 7> The plant vital agent composition according to any one of ⁇ 4> to ⁇ 6>, which contains a surfactant.
- the surfactant is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 50 parts by mass or more, and preferably 1,900 parts by mass or less, more preferably 100 parts by mass with respect to 100 parts by mass of the lignin degradation product. Is 600 parts by mass or less, more preferably 300 parts by mass or less, and the plant vital agent composition according to ⁇ 7> or ⁇ 8>.
- the water-soluble polymer is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 50 parts by mass or more, and preferably 1,900 parts by mass or less, more preferably 100 parts by mass of the lignin degradation product. Is 600 parts by mass or less, more preferably 300 parts by mass or less, and the plant vital agent composition according to ⁇ 10> or ⁇ 11>.
- the aldehyde yield by alkali nitrobenzene oxidation is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 21% by mass or more, and even more preferably 22%.
- a method for growing a plant comprising bringing a lignin degradation product into contact with a plant in an amount of at least mass%, preferably at most 40 mass%, more preferably at most 35 mass%, still more preferably at most 30 mass%.
- the treatment liquid is obtained by mixing the plant vital agent according to any one of ⁇ 1> to ⁇ 3> or the plant vital agent composition according to any one of ⁇ 4> to ⁇ 12> and water.
- the content of the lignin degradation product in the treatment liquid is 1 ppm or more, more preferably 8 ppm or more, still more preferably 20 ppm or more, still more preferably 40 ppm or more, and preferably 5,000 ppm or less, more preferably 1,000 ppm.
- the plant growing method according to ⁇ 14> or ⁇ 15> further preferably 500 ppm or less, and still more preferably 300 ppm or less.
- ⁇ 17> The method for growing a plant according to any one of ⁇ 14> to ⁇ 16>, wherein the treatment liquid is brought into contact with an underground portion or an above-ground portion of the plant.
- ⁇ 18> The plant growth method according to any one of ⁇ 14> to ⁇ 17>, wherein the treatment solution is used as a culture solution for hydroponics, and the lignin degradation product is contacted with the plant.
- ⁇ 19> The method for growing a plant according to any one of ⁇ 14> to ⁇ 18>, wherein the treatment solution is brought into contact with an underground portion of the plant as a culture solution for hydroponics.
- the content of the lignin degradation product in the treatment liquid is preferably 1 ppm or more, more preferably 4 ppm or more, still more preferably 8 ppm or more, still more preferably 20 ppm or more, and preferably 3,000 ppm or less, more preferably
- the plant growing method according to the above ⁇ 18> or ⁇ 19> which is 1,000 ppm or less, more preferably 100 ppm or less, and still more preferably 80 ppm or less.
- ⁇ 21> The method for growing a plant according to any one of ⁇ 14> to ⁇ 17>, wherein the treatment liquid is sprayed on a leaf surface to bring the lignin degradation product into contact with the plant.
- the dispersion amount of the treatment liquid is preferably 3L / 10a or more, more preferably 5L / 10a or more, still more preferably 20L / 10a or more, still more preferably 30L / 10a or more, still more preferably 40L / 10a or more, more More preferably 50L / 10a or more, and preferably 1,000L / 10a or less, more preferably 500L / 10a or less, still more preferably 300L / 10a or less, still more preferably 100L / 10a or less, ⁇ 21>
- ⁇ 23> The plant growing method according to any one of ⁇ 14> to ⁇ 22>, wherein the treatment liquid contains one or more components selected from a surfactant and a water-soluble polymer.
- ⁇ 24> The method for growing a plant according to any one of ⁇ 13> to ⁇ 23>, wherein the plant is at least one selected from fruit vegetables, leaf vegetables, root vegetables, flower buds, and beans, preferably beans.
- Step 1 Plant-based biomass is H with a basic compound of 8 to 70 parts by mass and water of 10 to 10,000 parts by mass with respect to 100 parts by mass of the solid content of the plant-based biomass.
- Step 2a A lignin degradation product is obtained as a water-soluble component from the plant biomass obtained through the step 1, and an acid is added to obtain a suspension containing the lignin degradation product.
- Step 1 Plant-based biomass is H with a basic compound of 8 to 70 parts by mass and water of 10 to 10,000 parts by mass with respect to 100 parts by mass of the solid content of the plant-based biomass.
- Step 2b in which the factor is 3,000 or less:
- Step 2b A lignin degradation product is obtained as a water-soluble component from the plant-based biomass that has undergone Step 1, purified by adding an organic solvent, and then added with an acid to add lignin A step of obtaining a suspension containing the decomposition product.
- ⁇ 28> The method for producing a plant vitality agent according to ⁇ 26> or ⁇ 27>, wherein the organic solvent is a solvent containing at least one selected from alcohols having 1 to 3 carbon atoms.
- Step 3 A step of heating the lignin degradation product obtained in Step 2a or Step 2b
- ⁇ 30> The method for producing a plant vital agent according to any one of ⁇ 25> to ⁇ 29>, wherein the plant-based biomass in step 1 is a herbaceous biomass.
- ⁇ 31> The method for producing a plant vital agent according to any one of ⁇ 25> to ⁇ 30>, which is a method for producing the plant vital agent according to any one of ⁇ 1> to ⁇ 3>.
- the aldehyde yield by alkali nitrobenzene oxidation is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 21% by mass or more, and even more preferably 22%.
- the aldehyde yield by alkali nitrobenzene oxidation is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, still more preferably 21% by mass or more, and even more preferably 22%.
- the aldehyde yield by alkali nitrobenzene oxidation used as a plant vital agent is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and still more preferably 21% by mass. % Or more, still more preferably 22% by mass or more, and preferably 40% by mass or less, more preferably 35% by mass or less, and still more preferably 30% by mass or less.
- the aldehyde yield by alkali nitrobenzene oxidation used as a plant vital agent composition is 10% by mass or more, preferably 12% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and still more preferably.
- a lignin degradation product having an aldehyde yield by alkali nitrobenzene oxidation of 10% by mass or more is contacted with a plant, preferably a treatment solution containing the lignin degradation product and water is contacted with a plant, more preferably the treatment solution is A method for promoting rooting of a plant, wherein the lignin degradation product is brought into contact with a plant by foliar application or as a culture solution for hydroponics.
- a lignin degradation product having an aldehyde yield by alkali nitrobenzene oxidation of 10% by mass or more is contacted with a plant, preferably a treatment solution containing the lignin degradation product and water is contacted with a plant, more preferably the treatment solution is The lignin degradation product is contacted with a plant by foliar spraying or used as a culture solution for hydroponics, more preferably, the treatment solution is foliarly sprayed to contact the plant with the lignin degradation product. Branch expression increasing method.
- a lignin degradation product having an aldehyde yield by alkali nitrobenzene oxidation of 10% by mass or more is contacted with a plant, preferably a treatment solution containing the lignin degradation product and water is contacted with a plant, more preferably the treatment solution is Application of the plant to which the lignin degradation product is brought into contact with a plant by foliar application or as a culture solution for hydroponics, and more preferably, the treatment solution is foliated to bring the lignin degradation product into contact with a plant. How to increase the number of flowers.
- the diethyl ether extract is distilled off under reduced pressure to obtain an oxidized mixture.
- Make up the oxidation mixture with 20 mL of dichloromethane.
- 2 ml was filtered through a Millipore HVHP membrane (Nippon Millipore Corporation, pore size 0.45 ⁇ m) and subjected to gas chromatography (GC).
- GC gas chromatography
- a GC apparatus (Agilent Technology Co., Ltd.) equipped with Agilent J & W GC column DB-5 (Agilent Technology Co., Ltd.) is used.
- the gas chromatography conditions are as follows: the sample volume is 1.0 ⁇ L, the helium flow rate is 10 ml / min, the inlet temperature is 200 ° C., and the split ratio is 10: 1.
- the temperature is raised from 60 to 250 ° C. at 5 ° C./min and held at 250 ° C. for 10 minutes.
- the quantification uses three aldehydes of vanillin, syringaldehyde, and parahydroxybenzaldehyde as reagents, creates a calibration curve with the peak area with respect to the content, and determines the yield of the three aldehydes in the lignin degradation product.
- the lignin degradation product 1 used as a plant vitality agent was manufactured by the following processes 1 and 2a.
- Process 1 As herbaceous biomass, sugarcane bagasse was put in a 30 g glass bottle as a dry mass, and a 1.6 mass% sodium hydroxide aqueous solution was added so that the solid content was 10 mass%. The glass bottle was heated at 95 ° C. for 6 hours at normal pressure using an autoclave (Tomy Seiko Co., Ltd., LSX-700) to obtain a reaction product. The HF in step 1 was 3.5.
- Step 2a The reaction product obtained in Step 1 was filtered under reduced pressure using a 400 mesh SUS mesh and Nutsche. The residue was washed with 300 mL of ion exchange water at 90 ° C. The filtrate and washings were collected, and the pH was adjusted to 4 with 1.0 M hydrochloric acid to obtain a suspension containing lignin degradation products.
- step 2a The suspension obtained in step 2a was centrifuged. Centrifugation was performed under the conditions of 10,000 rpm for 20 minutes using “himac CR 20G III” manufactured by Hitachi Koki Co., Ltd. After centrifugation, the supernatant was removed, 300 mL of ion-exchanged water was added and stirred, and then centrifuged again under the same conditions as described above for washing. Washing was carried out twice, and 1.0 M sodium hydroxide aqueous solution was added to the resulting precipitate to adjust the pH to 7. Subsequently, dialysis was performed to remove neutralized salts, and the resulting aqueous solution was lyophilized to obtain a powdered lignin degradation product 1.
- the lignin degradation product 1 had an aldehyde yield of 24.6% by mass and a weight average molecular weight of 12,700 as a result of alkaline nitrobenzene oxidation. Moreover, the effective content rate in the lignin decomposition product 1 was 83 mass%. The effective amount was determined by the Klarson lignin method. That is, according to the TAPPI formula analysis method T222om-83, the total lignin content was calculated as the sum of the acid-insoluble lignin ratio and the acid-soluble lignin ratio.
- Step 2a As in Production Example 1, however, the step 2a was changed to the following step 2b to produce a lignin degradation product 2 serving as a plant vitality agent.
- Step 2b The reaction product obtained in Step 1 was filtered under reduced pressure using a 400 mesh SUS mesh and Nutsche. The residue was washed with 300 mL of ion exchange water at 90 ° C. The filtrate and the washing solution were collected, and 2.4 L of methanol (Wako Pure Chemical Industries, Ltd., special grade) was added. The precipitate was filtered under reduced pressure (Toyo Filter Paper Co., Ltd., filter paper No. 2), methanol was distilled off from the filtrate under reduced pressure, and the pH was adjusted to 4 with 1.0 M hydrochloric acid to obtain a suspension containing a lignin decomposition product.
- step 2b The suspension obtained in step 2b was centrifuged. Centrifugation was performed under the conditions of 10,000 rpm for 20 minutes using “himac CR 20G III” manufactured by Hitachi Koki Co., Ltd. After centrifugation, the supernatant was removed, 300 mL of ion-exchanged water was added and stirred, and then centrifuged again under the same conditions as above and washed with water. Washing with water was performed twice, and the resulting precipitate was freeze-dried to obtain a powdered lignin decomposition product 2.
- the lignin degradation product 2 had an aldehyde yield of 22.5% by mass and a weight average molecular weight of 9,065 by alkali nitrobenzene oxidation.
- the effective content in the lignin degradation product 2 was 78% by mass.
- Decomposition product 3 was produced.
- the HF in step 1 was 12.8.
- the effective content rate in the lignin decomposition product 3 was measured similarly to manufacture example 1, it was 54 mass%.
- the lignin degradation product 3 had an aldehyde yield of 12.9% by mass and a weight average molecular weight of 8,125 as a result of alkaline nitrobenzene oxidation. These physical property values were measured in the same manner as the lignin degradation product 1.
- the decomposition product 4 was produced.
- the HF in Step 1 was 64.4.
- the effective content rate in the lignin decomposition product 4 was measured similarly to manufacture example 1, it was 53 mass%.
- the lignin decomposition product 4 had an aldehyde yield of 13.4% by mass and an average molecular weight of 4,559 due to alkali nitrobenzene oxidation. These physical property values were measured in the same manner as the lignin degradation product 1.
- the HF in step 1 was 0.0.
- the effective content rate in the lignin decomposition product 5 was measured similarly to manufacture example 1, it was 41.7 mass%.
- the lignin degradation product 5 had an aldehyde yield of 26.0% by mass and a weight average molecular weight of 9,994 as a result of alkaline nitrobenzene oxidation. These physical property values were measured in the same manner as the lignin degradation product 1.
- the lignin degradation product 6 When the effective content in the lignin degradation product 6 was measured in the same manner as in Production Example 1, it was 66.9% by mass.
- the lignin degradation product 6 had an aldehyde yield of 15.4 mass% and a weight average molecular weight of 18,289 by oxidation with alkali nitrobenzene. These physical property values were measured in the same manner as the lignin degradation product 1.
- the effective content in the lignin decomposition product 7 was measured in the same manner as in Production Example 1, it was 69.8% by mass.
- the lignin degradation product 7 had an aldehyde yield of 14.4% by mass and a weight average molecular weight of 25,663 by oxidation with alkali nitrobenzene. These physical property values were measured in the same manner as the lignin degradation product 1.
- Process 4 When the lignin degradation product 2 is a 0.2% suspension with respect to ion-exchanged water, no. Filtration was performed using 2 filter paper (manufactured by ADVANTEC) to obtain a filtrate. The obtained filtrate was subjected to fractionation using a pencil type module (manufactured by Asahi KASEI, model; SIP-0013 (UF)).
- the lignin decomposition product 8 When the effective content in the lignin decomposition product 8 was measured in the same manner as in Production Example 1, it was 78.7% by mass.
- the lignin decomposition product 8 had an aldehyde yield of 12.6% by mass and a weight average molecular weight of 14,491 as a result of alkaline nitrobenzene oxidation. These physical property values were measured in the same manner as the lignin degradation product 1.
- ⁇ Production Example 9> As in Production Example 2, except that the autoclave conditions in Step 1 were set at 135 ° C. for 7 hours to produce a powdered lignin degradation product 9.
- the HF in Step 1 was 64.4.
- the effective content rate in the lignin decomposition product 9 was measured similarly to manufacture example 1, it was 66 mass%.
- the lignin degradation product 9 had an aldehyde yield of 9.0% by mass and a weight average molecular weight of 5,121 as a result of alkaline nitrobenzene oxidation. These physical property values were measured in the same manner as the lignin degradation product 1.
- Example 1 The growth promotion effect of soybean was evaluated when the lignin degradation product of the present invention was used as a plant vital agent added to a culture solution in hydroponics.
- soybean cultivar "Fukuyutaka” pre-cultivation (seeding and cultivation on artificial soil vermiculite) was conducted until the 2nd to 3rd leaf development stage, seedlings with uniform growth were selected and the roots were washed to remove the soil . Subsequently, all the side roots of soybean were cut and removed, and hydroponics was carried out with tap water for acclimation of seedlings for 1 day.
- the initial raw mass of each acclimated seedling was measured, the seedlings were arranged in order from the seedling with the lowest initial raw mass, and the seedlings were distributed so that the mass average value of each test section was constant.
- the raw mass is a mass measured by removing water adhering to the surface of the measurement object.
- Plastic (high-density polyethylene) bottle container J bottle made by Nikko Hansen Co., Ltd. containing 250 ml of the culture solution containing the lignin degradation product 1 as a plant vitality agent with the content shown in Table 1 (the balance is water) (Hiroguchi Natural, 250ml product) Soybean seedlings were inserted so that the cotyledons caught on the edge of the container, and hydroponics were started. Hydroponics was carried out in a greenhouse with adjustable temperature, humidity, and light intensity. The temperature and humidity are based on the outside environment, and the temperature is automatically adjusted when the temperature is outside the range of 15-30 ° C.
- the basic conditions of the sunshine conditions are the same as the outside environment, but the auxiliary lighting is set to be turned on from 16:00 to 20:00 regardless of the illuminance and the sunset time.
- Ten days after the start of cultivation soybean seedlings were taken out and the dry mass of the underground part was measured. The number of pots (number of repetitions) per culture broth was 7, and the average value was determined. Each average value is shown in Table 1 as a relative value with the dry mass of the control as 100. Controls were performed without the addition of plant vitality agents.
- dry mass is the mass measured after drying a measuring object at 80 degreeC for 1 day, and returning to room temperature.
- Example 2a and Comparative Example 2a The growth promotion effect of soybean was evaluated when the lignin degradation product of the present invention was used by foliar application as a plant vital agent.
- a soybean seedling was prepared in the same manner as in Example 1. Soybean seedlings were provided using a plastic (high-density polyethylene) bottle container containing 250 ml of a fertilizer solution (trade name Hyponica, manufactured by Kyowa Co., Ltd., used at 500-fold dilution). 6 bottle containers each containing seedlings were arranged with a test area (0.5 m 2 ) having a length of 1.0 m and a width of 0.5 m as viewed from the plane.
- Example 2 Immediately after the placement, as a first spraying, 25 ml of the treatment liquid having the composition shown in Table 2 (the balance is water) was sprayed uniformly from above the seedlings per test area. After spraying, hydroponics was performed. Then, after one week, the second spraying was performed in the same manner as the first spraying. In addition, spraying 25 ml with respect to the test area 0.5 m 2 corresponds to spraying 50 L / 10a. Moreover, the total application amount in this example was 100 L / 10a. After the second spraying treatment, cultivation was continued for one week, and the test was terminated (finished in two weeks from the first spraying). The used container and hydroponics were performed under the same conditions as in Example 1.
- the dry mass of the soybean seedling was measured in the same manner as in Example 1. The results are shown in Table 2a as relative values with the dry mass of the control as 100.
- the number of pots (repetition number) was 6 per one type of treatment liquid, and the average value was obtained.
- Nonionic surfactant 1 Polyoxysorbitan monooleate (average added mole number of ethylene oxide 20), Rheodor TW-O120, manufactured by Kao Corporation HPMC 1: Hydroxypropyl methylcellulose, METOLOSE 60SH10000, Shin-Etsu Chemical Co., Ltd., Water-soluble polymer
- Example 2b and Comparative Example 2b The effect of increasing the number of root roots of soybean when the lignin degradation product of the present invention was sprayed on the leaves as a plant vital agent was evaluated.
- soybean seedlings, fertilizer solutions, and containers were prepared and hydroponics were started.
- the treatment liquid having the composition shown in Table 2b (the balance being water) was sprayed in the same processing amount and processing method as the spraying of Example 2a and Comparative Example 2a.
- the spraying process was performed once, and after the spraying process, cultivation was continued for 5 days, and the test was terminated. At the end of cultivation, the number of lateral roots newly generated from soybean main roots was measured.
- Table 2b The results are shown in Table 2b as relative values with a control rooting number of 100. In this example, the number of pots (the number of repetitions) was 5 per one type of treatment liquid, and the average value was obtained.
- Example 2c and Comparative Example 2c The effect of increasing the number of branching expression of soybean was evaluated when the lignin degradation product of the present invention was sprayed on leaves as a plant vital agent.
- a soybean seedling was prepared in the same manner as in Example 1. The soybean seedlings were planted in a polyethylene seedling pot (diameter 9 cm) filled with cultivation soil (trade name Takii nursery culture soil, manufactured by Takii Seed Co., Ltd.), and cultivation was continued. Thereafter, at the start of branching expression (4th to 6th true leaf development period), as one test plot, seedlings (polyethylene pot 5 in cultivation) per 1.0 m vertical (1.0 m 2 ) plane (test area (1.0 m 2 )).
- the treatment liquid having the composition shown in Table 2c (with the balance being water) was treated in the same manner as in Example 2a and Comparative Example 2a, except that the treatment amount was 100 ml. was uniformly sprayed than 10 ⁇ 15cm above the seedlings. then, after one week, the second spraying was performed in the same manner as the first spray. Note that application of 100ml whereas test area 1.0 m 2 100L / In addition, the total application amount in this example was 200 L / 10a. After the second spraying treatment, cultivation was continued for one week, and the test was terminated. At the end of cultivation, the total number of branches expressed from soybean seedlings was measured. The results are shown in Table 2c in terms of relative values with the control branching expression number being 100. In this example, the number of pots (the number of repetitions) was 5 per one type of treatment liquid, and the average value was obtained.
- Example 2d and Comparative Example 2d The effect of increasing the number of flowering soybeans was evaluated when the lignin degradation product of the present invention was sprayed on the leaves as a plant vital agent.
- a soybean seedling was prepared in the same manner as in Example 1. Soybean seedlings were planted in a polyethylene pot for seedlings filled with cultivated soil (trade name Takii Nursery Culture, manufactured by Takii Seed Co., Ltd.). Thereafter, cultivation in the pot was continued, and further, the pot was changed to 1 / 5,000a Wagner pot, NF-5 type (manufactured by ASONE Co., Ltd.) with the lapse of one month after the pot was planted.
- the leaf state corresponds to the 6-9th leaf development period and the early flowering period.
- seedlings (Wagner being cultivated) per 1.0 m vertical and horizontal plane (test area (1.0 m 2 )). (4-4 pots) were placed evenly, immediately after the placement, the treatment liquid having the composition shown in Table 2d (the balance being water) was treated in the same manner as in Example 2a and Comparative Example 2a, except for the amount of treatment.
- the treatment liquid having the composition shown in Table 2d the balance being water
- the second spraying was carried out in the same manner as the first spraying. After the second spraying treatment, cultivation was continued and the number of flowering was measured for each leaf age.
- the measurement results of the number of flowers at the age of the leaves at the time of the first treatment are shown in Table 2d as relative values with the number of control flowers as 100.
- the measurement time is the start of arrival (after 2 to 6 weeks have passed since spraying).
- the number of pots (number of repetitions) was 4 to 5 per one type of processing solution, and the average value was obtained.
- Example 3 The growth promoting effect of tomato was evaluated when the lignin degradation product of the present invention was used as a plant vital agent added to a culture solution in hydroponics.
- pre-cultivation seeding and cultivation on artificial soil vermiculite
- seedlings that had grown were selected and the roots were washed to remove the soil.
- all the side roots of tomato were cut and removed, and hydroponics was carried out with tap water for acclimation of seedlings for 1 day.
- the initial raw mass of each acclimated seedling was measured, and the seedlings were distributed in order from the seedling with the lowest initial raw mass in order, and the mass average value of each test section was constant.
- the used container and hydroponics were performed under the same conditions as in Example 1. Seven days after the start of cultivation, the tomato seedlings were taken out and the dry mass of the basement was measured. The number of pots (number of repetitions) per culture broth was 7, and the average value was determined.
- Each average value is shown in Table 3 as a relative value with the dry mass of the control as 100. Controls were performed without the addition of plant vitality agents. Here, the underground part about tomatoes was obtained by cutting and collecting all side roots of tomatoes. Moreover, dry mass is the mass measured after drying a measuring object at 80 degreeC for 1 day, and returning to room temperature.
- Example 4 The growth promoting effect of tomato was evaluated when the lignin degradation product of the present invention was used as a plant vital agent by foliar application.
- Tomato seedlings were prepared in the same manner as in Example 3. Tomato seedlings were subjected to a plastic (high density polyethylene) bottle container containing 250 ml of a fertilizer solution (trade name Hyponica, manufactured by Kyowa Co., Ltd., used at 500-fold dilution). 25 ml of the treatment liquid having the composition shown in Table 4 (the balance being water) was sprayed on the foliage under the same conditions as in Example 2. The used container and hydroponics were performed under the same conditions as in Example 1.
- the dry mass of the underground part of the tomato seedling was measured in the same manner as in Example 3. The results are shown in Table 4 as relative values with the dry mass of the control as 100.
- the number of pots was 6 per one type of treatment liquid, and the average value was obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Zoology (AREA)
- Agronomy & Crop Science (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Toxicology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Compounds Of Unknown Constitution (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
植物が生長するには種々の栄養要素が必要であるが、そのいくつかの要素が不足すると植物の生育に支障を来すことが知られている。例えば、肥料三大要素として窒素は蛋白質の成分元素であり、リンは核酸やリン脂質の構成元素だけでなくエネルギー代謝や物質の合成・分解反応にも重要な役割を果たしており、また、カリウムは物質代謝や物質移動の生理作用がある。これら主要成分の不足により全般的に植物の生育は貧弱になる。カルシウムは、植物体及び細胞を構成する重要な成分であり、また代謝系のバランスを維持する為にも重要な働きをしているため、カルシウムが欠乏すると生理障害をおこす。その他にもMg、Fe、S、B、Mn、Cu、Zn、Mo、Cl、Si、Na等、植物には種々の栄養素が必要である。
特表2013-505892号公報には、部分的に腐植化された天然有機物によって特徴付けられる有機物質の農学的に許容される複合混合物を含むリグニン等の成分と接触した粒状形態物を含む肥料組成物が記載されている。
作物増収を目的に土壌中に多量の肥料が施肥された結果、土壌中の種々の要素が過剰になって肥料の吸収のバランスが悪くなる、植物の生長停滞等が発生して目的の増収を達成できなくなる、糖度(Brix.値)等の品質が上がらなくなる等の問題が生じる。また、根にも養分吸収の限界があるため、必要肥料元素の水溶液又は水性懸濁液を散布して直接葉面や果実から吸収させる試みもあるが、単なる必要元素の水溶液を葉面散布しても吸収効率という面からは問題があり、過剰の肥料成分を散布することが、逆に植物に対しストレスを与え薬害が生ずる結果となる。
<植物活力剤>
本発明の植物活力剤は、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物(以下、本発明のリグニン分解物という場合もある)を有効成分とする。本発明は、本発明のリグニン分解物からなる植物活力剤を包含する。
天然のリグニンはβ-O-4結合を主に、巨大高分子を形成している。リグニンは、植物系バイオマスから抽出される過程でβ-O-4結合の分解と、様々な縮合反応が進行し、リグニン中の結合の組成が変化する。アルカリニトロベンゼン酸化はリグニン中のβ-O-4結合を分解し、生成するアルデヒドモノマーからβ-O-4結合の量を定量する手法である。つまり、アルカリニトロベンゼン酸化によるアルデヒド収率は、リグニン変性の程度を示し、その値が高ければ高いほど変性の程度が低いことを示す。リグニンは低変性であるほど、脂肪族OH基やフェノール性OH基の含有量が高く、反応性が高い。本発明では、低変性のリグニンを植物に用いることで、植物に対する生長促進効果を向上できるものと推測される。
本発明では、具体的には、以下の条件で測定したアルデヒド収率を、リグニン分解物のアルデヒド収率として採用する。
〔リグニン分解物のアルデヒド収率の測定方法〕
測定対象のリグニン分解物50~200mg、2M 水酸化ナトリウム水溶液6~10ml、ニトロベンゼン0.4mlを20mlのバイアルに入れ、900rpmで撹拌しながら170℃で2.5時間加熱する。加熱終了後冷却し、5~15mlのジエチルエーテルで3回抽出し、ニトロベンゼン還元物と余分なニトロベンゼンを除去する。残った水層側に濃塩酸を加えてpH1~3に調整し、さらに5~15mlのジエチルエーテルで3回抽出する。このジエチルエーテル抽出液を減圧下で留去し、酸化混合物を得る。この酸化混合物をジクロロメタン20mLでメスアップする。そのうち2mlをミリポアHVHP膜(日本ミリポア株式会社製、孔径0.45μm)でろ過し、ガスクロマトグラフィ(GC)に供する。
ガスクロマトグラフィは、AgilentJ&W GCカラム DB-5(アジレント・テクノロジー株式会社製)を装着したGC装置(アジレント・テクノロジー株式会社製)を用いる。ガスクロマトグラフィの条件は、試料量は1.0μL、ヘリウム流速は10ml/分、抽入口温度200℃、スプリット比10:1とする。温度条件は、60℃で1分間保持した後、60~250℃まで5℃/分で昇温し、250℃で10分保持する。定量は、バニリン、シリンガアルデヒド、パラヒドロキシベンズアルデヒドの3つのアルデヒドを試薬として用い、含有量に対するピーク面積で検量線を作成し、リグニン分解物中の前記3つのアルデヒド収量をそれぞれ求める。次式でアルデヒド収率(%)を算出する。アルデヒド収率(%)=(3つのアルデヒド量を合算したアルデヒド収量/リグニン分解物質量)×100
〔リグニン分解物の重量平均分子量の測定方法〕
リグニン分解物の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記操作及び条件で測定する。
〔GPC操作〕
リグニン分解物を含有する試料溶液(1mg/mL)を100μL注入して測定を行う。試料の分子量は、あらかじめ作成した検線に基づき算出する。
〔GPC条件〕
機種:HLC-8120GPC(東ソー株式会社)
検出器:RI検出器
分離カラム:TSK-GEL α-M 2本(東ソー株式会社)
ガードカラム:TSKgel guardcolumn α(東ソー株式会社)
カラム温度:40℃
溶離液:60mmol/LのH3PO4と50mmol/LのLiBrを添加したN,N-ジメチルホルムアミド溶液
溶離液流量:1mL/min
標準試料:単分散ポリスチレン混合溶液〔東ソー株式会社製のA-500(分子量5.0×102)、F-10(分子量9.64×104)、F-850(分子量8.42×106)、Pressure Chemical社製(分子量4.0×103、3.0×104、9.29×105)
本発明のリグニン分解物を含有する植物活力剤を製造する方法として、下記工程1、及び工程2aを有する植物活力剤の製造方法、又は、下記工程1、及び工程2bを有する植物活力剤の製造方法が挙げられる。
工程1:植物系バイオマスを、該植物系バイオマスの固形分100質量部に対し、8質量部以上70質量部以下の塩基性化合物、及び10質量部以上10,000質量部以下の水により、H-ファクターが3,000以下の条件で処理する工程
工程2a:前記工程1を経た植物系バイオマスから、水溶性成分としてリグニン分解物を得、酸を加えてリグニン分解物を含む懸濁液を得る工程。
工程2b:前記工程1を経た植物系バイオマスから、水溶性成分としてリグニン分解物を得、有機溶媒を加えて精製した後、酸を加えてリグニン分解物を含む懸濁液を得る工程。
植物系バイオマスとしては、草本系バイオマス、木質系バイオマスが挙げられる。これらの中でも、好ましくは草本系バイオマスである。
イネ科の植物原料としては、例えばサトウキビバガス、ソルガムバガス等のバガス、スイッチグラス、エレファントグラス、コーンストーバー、コーンコブ、イナワラ、ムギワラ、オオムギ、ススキ、芝、ジョンソングラス、エリアンサス、ネピアグラスが挙げられる。アオイ科の植物原料としては、例えばケナフ、ワタが挙げられる。マメ科の植物原料としては、例えばアルファルファが挙げられる。ヤシ科の植物の非木質原料としては、例えばパームヤシ空果房が挙げられる。
これらの中でも、生産性及び取扱い性の観点から、好ましくはイネ科の植物原料であり、より好ましくはサトウキビバガス、コーンコブ、又はイナワラであり、更に好ましくはサトウキビバガスである。
これらの植物系バイオマスは、1種単独でも、又は2種以上を組み合わせて用いてもよい。
工程1の処理は温度が高いと反応が促進されるとともに時間も同時に関係するため、100℃の脱リグニン反応速度を1として、他の温度における相対速度をArrheniusの式より求め、その温度における時間との積であるHFによって算出される。
本発明においては、HFはバイオマスの塩基化合物を用いた処理で反応系に与えられた熱の総量を表す指標であり、下記式(1)により表される。HFはバイオマスと塩基化合物水溶液が接触している時間tを積分することで算出する。
当該水溶性成分は、例えば、アルカリ処理バイオマスの液部を分離することで取り出すことができる。当該水溶性成分は、前記分離に加えて、分離したアルカリ処理バイオマスの固形部中に存在するリグニン分解物を水で洗浄し、水中に溶解させて抽出し、取り出すことが好ましい。更に、得られた水溶性成分に酸を加え、pH1~5に調整し、リグニン分解物を析出させる。得られたリグニン分解物は、遠心分離やろ過して、更に水洗し、塩基物を加えてpH6~8に調整する。更に、透析膜等により塩基性化合物を除いてもよい。このようにして得られたリグニン分解物は、濃縮され、水やその他の有機溶剤と混合して液状として使用しても良く、溶媒を蒸発させ、固体として使用することができる。
当該水溶性成分は、例えば、工程1のアルカリ処理バイオマスの液部を分離することで取り出すことができる。
当該水溶性成分は、前記分離に加えて、分離したアルカリ処理バイオマスの固形部中(固体相中)に存在するリグニン分解物を水で洗浄し、水中に溶解させて抽出し、取り出すことができる。
更には、工程1の反応液から回収した水相及び工程1のアルカリ処理バイオマスの固形部から回収した水相に、有機溶媒、好ましくは炭素数1以上3以下のアルコールから選ばれる少なくとも1種を含む有機溶媒を混合し、該混合物中で不純物を析出させる工程、析出した不純物を取り除く工程、及び、前記混合物から有機溶媒を取り除く工程、酸の添加によりリグニン分解物を析出させる工程、により、本発明のリグニン分解物を得ることができる。更に、得られたリグニン分解物は、透析膜等により酸又は塩基性化合物を除いてもよい。このようにして得られたリグニン分解物は、水やその他の溶剤と共に分散された状態でも良く、また、溶媒を蒸発させて、固体としても良い。
工程3:工程2a又は工程2bで得られたリグニン分解物を加熱する工程
工程3は、無溶媒下で行うことが好ましい。
工程3での加熱温度は、好ましくは60℃以上、より好ましくは120℃以上、そして、好ましくは170℃以下、より好ましくは140℃以下である。
また、工程3での加熱時間は、好ましくは1分以上、より好ましくは3分以上、そして、好ましくは30分以下、より好ましくは10分以下である。
本発明の植物活力剤組成物は、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物、すなわち本発明のリグニン分解物を含有する。本発明の植物活力剤組成物に用いるリグニン分解物の好ましい態様は、本発明の植物活力剤と同じである。
界面活性剤としては、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤及び両性界面活性剤から選ばれる1種以上の界面活性剤が挙げられる。界面活性剤としては、非イオン界面活性剤が好ましい。
水溶性ポリマーとしては、天然、半合成及び合成ポリマーが何れも使用でき、その中でも多糖類系水溶性ポリマーが好ましい。多糖類系水溶性ポリマーの具体例としては、グアーガム、キサンタンガム、でんぷん、セルロース、タラガム、ローストビーンガム、カラギーナン、及びこれらの誘導体が挙げられる。グアーガム誘導体としては、例えば、ヒドロキシプロピルグアーガム、カルボキシメチルヒドロキシプロピルグアーガム、カチオン化グアーガム等が挙げられる。キサンタンガム誘導体としては、例えば、ヒドロキシプロピルキサンタンガム等が挙げられる。でんぷん誘導体としては、例えば、カルボキシメチル化でんぷん、ヒドロキシアルキル化でんぷん、ヒドロキシプロピル架橋でんぷん、クラフト化でんぷん、酢酸でんぷん等が挙げられる。セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等が挙げられる。多糖類系水溶性ポリマーとしては、ヒドキシプロピルメチルセルロースがより好ましい。
本発明の植物活力剤組成物が水溶性ポリマーを含有する場合、本発明のリグニン分解物100質量部に対し、水溶性ポリマーを好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは50質量部以上、そして、好ましくは1,900質量部以下、より好ましくは600質量部以下、更に好ましくは300質量部以下含有する。
本発明の植物の育成方法では、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物、すなわち本発明のリグニン分解物を植物に接触させる。本発明の植物の育成方法に用いるリグニン分解物の好ましい態様は、本発明の植物活力剤と同じである。本発明の植物の育成方法を適用できる植物も、本発明の植物活力剤と同じである。
本発明の植物の育成方法では、本発明のリグニン分解物と水とを含有する処理液を、植物の地下部又は地上部に接触させることができる。
前記処理液は、植物活力剤で述べたリグニン分解物以外の成分、例えば、界面活性剤、水溶性ポリマー、肥料成分などを含有することができる。
また、本発明により、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、植物の分枝発現増加方法が提供される。この方法では、前記リグニン分解物と水とを含有する処理液を、好ましくは葉面散布して又は養液栽培の培養液として用いて、より好ましくは葉面散布して、前記リグニン分解物を植物に接触させることが好ましい。
また、本発明により、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、植物の着花数増加方法が提供される。この方法では、前記リグニン分解物と水とを含有する処理液を、好ましくは葉面散布して又は養液栽培の培養液として用いて、より好ましくは葉面散布して、前記リグニン分解物を植物に接触させることが好ましい。
これらの方法には、本発明の植物活力剤、植物活力剤組成物、及び植物の育成方法で述べた事項を適宜適用することができる。
本発明は、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物の、植物活力剤としての使用に関する。
また、本発明は、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を含有する組成物の、植物活力剤組成物としての使用に関する。
本発明は、植物活力剤として使用される、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物に関する。
また、本発明は、植物活力剤組成物として使用される、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を含有する組成物に関する。
これらで用いるリグニン分解物は、本発明のリグニン分解物であり、その好ましい態様は、本発明の植物活力剤や植物活力剤組成物と同じである。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を有効成分とする植物活力剤。
前記リグニン分解物のアルデヒド収率が、10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下である、前記<1>に記載の植物活力剤。
前記リグニン分解物の重量平均分子量が、好ましくは1,000以上、より好ましくは3,000以上、更に好ましくは4,500以上、より更に好ましくは8,000以上、そして、好ましくは100,000以下、より好ましくは50,000以下、更に好ましくは30,000以下、より更に好ましくは26,000以下、より更に好ましくは20,000以下である、前記<1>又は<2>に記載の植物活力剤。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物を含有する植物活力剤組成物。
前記リグニン分解物の重量平均分子量が、好ましくは1,000以上、より好ましくは3,000以上、更に好ましくは4,500以上、より更に好ましくは8,000以上、そして、好ましくは100,000以下、より好ましくは50,000以下、更に好ましくは30,000以下、より更に好ましくは26,000以下、より更に好ましくは20,000以下である、前記<4>に記載の植物活力剤組成物。
前記リグニン分解物を、好ましくは5質量%以上、より好ましくは15質量%以上、更に好ましくは30質量%以上、そして、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下含有する、前記<4>又は<5>に記載の植物活力剤組成物。
界面活性剤を含有する、前記<4>~<6>の何れかに記載の植物活力剤組成物。
界面活性剤が、非イオン界面活性剤である、前記<7>に記載の植物活力剤組成物。
前記リグニン分解物100質量部に対し、界面活性剤を好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは50質量部以上、そして、好ましくは1,900質量部以下、より好ましくは600質量部以下、更に好ましくは300質量部以下含有する、前記<7>又は<8>に記載の植物活力剤組成物。
水溶性ポリマーを含有する、前記<4>~<9>の何れかに記載の植物活力剤組成物。
水溶性ポリマーが、多糖類系水溶性ポリマーである、前記<10>に記載の植物活力剤組成物。
前記リグニン分解物100質量部に対し、水溶性ポリマーを好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは50質量部以上、そして、好ましくは1,900質量部以下、より好ましくは600質量部以下、更に好ましくは300質量部以下含有する、前記<10>又は<11>に記載の植物活力剤組成物。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物を植物に接触させる、植物の育成方法。
前記リグニン分解物と水とを含有する処理液を植物に接触させる、前記<13>に記載の植物の育成方法。
前記処理液が、前記<1>~<3>の何れかに記載の植物活力剤又は前記<4>~<12>の何れかに記載の植物活力剤組成物と水とを混合して得られた処理液である、前記<14>に記載の植物の育成方法。
前記処理液中の前記リグニン分解物の含有量が1ppm以上、より好ましくは8ppm以上、更に好ましくは20ppm以上、更により好ましくは40ppm以上、そして、好ましくは5,000ppm以下、より好ましくは1,000ppm以下、更に好ましくは500ppm以下、更により好ましくは300ppm以下である、前記<14>又は<15>に記載の植物の育成方法。
前記処理液を、植物の地下部又は地上部に接触させる、前記<14>~<16>の何れかに記載の植物の育成方法。
前記処理液を、養液栽培の培養液として用いて、前記リグニン分解物を植物に接触させる、前記<14>~<17>の何れかに記載の植物の育成方法。
前記処理液を、養液栽培の培養液として植物の地下部に接触させる、前記<14>~<18>の何れかに記載の植物の育成方法。
前記処理液中の前記リグニン分解物の含有量が、好ましくは1ppm以上、より好ましくは4ppm以上、更に好ましくは8ppm以上、より更に好ましくは20ppm以上、そして、好ましくは3,000ppm以下、より好ましくは1,000ppm以下、更に好ましくは100ppm以下、より更に好ましくは80ppm以下である、前記<18>又は<19>に記載の植物の育成方法。
前記処理液を、葉面散布して前記リグニン分解物を植物に接触させる、前記<14>~<17>の何れかに記載の植物の育成方法。
前記処理液の散布量が、好ましくは3L/10a以上、より好ましくは5L/10a以上、更に好ましくは20L/10a以上、より更に好ましくは30L/10a以上、より更に好ましくは40L/10a以上、より更に好ましくは50L/10a以上、そして、好ましくは1,000L/10a以下、より好ましくは500L/10a以下、更に好ましくは300L/10a以下、より更に好ましくは100L/10a以下である、前記<21>に記載の植物の育成方法。
前記処理液が、界面活性剤及び水溶性ポリマーから選ばれる1種以上の成分を含有する、前記<14>~<22>の何れかに記載の植物の育成方法。
植物が、果菜類、葉菜類、根菜類、花卉類、及び豆類から選ばれる1種以上である、好ましくは豆類である、前記<13>~<23>の何れかに記載の植物の育成方法。
下記工程1、及び工程2aを有する植物活力剤の製造方法。
工程1:植物系バイオマスを、該植物系バイオマスの固形分100質量部に対し、8質量部以上70質量部以下の塩基性化合物、及び10質量部以上10,000質量部以下の水により、H-ファクターが3,000以下の条件で処理する工程
工程2a:前記工程1を経た植物系バイオマスから、水溶性成分としてリグニン分解物を得、酸を加えてリグニン分解物を含む懸濁液を得る工程。
下記工程1、及び工程2bを有する植物活力剤の製造方法。
工程1:植物系バイオマスを、該植物系バイオマスの固形分100質量部に対し、8質量部以上70質量部以下の塩基性化合物、及び10質量部以上10,000質量部以下の水により、H-ファクターが3,000以下の条件で処理する工程
工程2b:前記工程1を経た植物系バイオマスから、水溶性成分としてリグニン分解物を得、有機溶媒を加えて精製した後、酸を加えてリグニン分解物を含む懸濁液を得る工程。
工程2bでリグニン分解物を無溶媒下で加熱する、前記<26>記載の植物活力剤の製造方法。
有機溶媒が炭素数1以上3以下のアルコールから選ばれる少なくとも1種を含む溶媒である、前記<26>又は<27>に記載の植物活力剤の製造方法。
工程2a又は工程2bの後に、以下の工程3を行う、前記<25>~<28>の何れかに記載の植物活力剤の製造方法。
工程3:工程2a又は工程2bで得られたリグニン分解物を加熱する工程
工程1の植物系バイオマスが草本系バイオマスである、前記<25>~<29>の何れかに記載の植物活力剤の製造方法。
前記<1>~<3>の何れかに記載の植物活力剤の製造方法である、前記<25>~<30>の何れかに記載の植物活力剤の製造方法。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物の、植物活力剤としての使用。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物を含有する組成物の、植物活力剤組成物としての使用。
植物活力剤として使用される、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物。
植物活力剤組成物として使用される、アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上、好ましくは12質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、更により好ましくは21質量%以上、更により好ましくは22質量%以上、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下であるリグニン分解物を含有する組成物。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、好ましくは前記リグニン分解物と水とを含有する処理液を植物に接触させる、より好ましくは前記処理液を葉面散布して又は養液栽培の培養液として用いて前記リグニン分解物を植物に接触させる、植物の発根促進方法。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、好ましくは前記リグニン分解物と水とを含有する処理液を植物に接触させる、より好ましくは前記処理液を葉面散布して又は養液栽培の培養液として用いて前記リグニン分解物を植物に接触させる、更に好ましくは前記処理液を葉面散布して前記リグニン分解物を植物に接触させる、植物の分枝発現増加方法。
アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、好ましくは前記リグニン分解物と水とを含有する処理液を植物に接触させる、より好ましくは前記処理液を葉面散布して又は養液栽培の培養液として用いて前記リグニン分解物を植物に接触させる、更に好ましくは前記処理液を葉面散布して前記リグニン分解物を植物に接触させる、植物の着花数増加方法。
〔リグニンのアルデヒド収率の測定方法〕
測定対象のリグニン分解物50mg、2M 水酸化ナトリウム水溶液7ml、ニトロベ
ンゼン0.4mlを20mlのバイアルに入れ、900rpmで撹拌しながら170℃で2.5時間加熱する。加熱終了後冷却し、10mlのジエチルエーテルで3回抽出し、ニトロベンゼン還元物と余分なニトロベンゼンを除去する。残った水層側に濃塩酸を加えてpH1に調整し、さらに10mlのジエチルエーテルで3回抽出する。このジエチルエーテル抽出液を減圧下で留去し、酸化混合物を得る。この酸化混合物をジクロロメタン20mLでメスアップする。そのうち2mlをミリポアHVHP膜(日本ミリポア株式会社製、孔径0.45μm)でろ過し、ガスクロマトグラフィ(GC)に供する。
ガスクロマトグラフィは、AgilentJ&W GCカラム DB-5(アジレント・テクノロジー株式会社製)を装着したGC装置(アジレント・テクノロジー株式会社製)を用いる。ガスクロマトグラフィの条件は、試料量は1.0μL、ヘリウム流速は10ml/分、抽入口温度200℃、スプリット比10:1とする。温度条件は、60℃で1分間保持した後、60~250℃まで5℃/分で昇温し、250℃で10分保持する。定量は、バニリン、シリンガアルデヒド、パラヒドロキシベンズアルデヒドの3つのアルデヒドを試薬として用い、含有量に対するピーク面積で検量線を作成し、リグニン分解物中の前記3つのアルデヒド収量をそれぞれ求める。次式でアルデヒド収率(%)を算出する。アルデヒド収率(%)=(3つのアルデヒド量を合算したアルデヒド収量/リグニン分解物質量)×100
下記工程1、2aにより、植物活力剤となるリグニン分解物1を製造した。
(工程1)
草本系バイオマスとして、サトウキビバガスを、乾燥質量として30gガラス瓶に入れ、固形分含有量が10質量%になるように、1.6質量%水酸化ナトリウム水溶液を加えた。ガラス瓶を、オートクレーブ(株式会社トミー精工、LSX-700)を用いて、95℃、6時間、常圧にて加熱し、反応物を得た。工程1でのHFは3.5であった。
工程1で得られた反応物を、400メッシュのSUSメッシュとヌッチェを用いて減圧濾過した。残渣を、90℃のイオン交換水300mLで洗浄した。ろ液と洗浄液を集め、1.0M 塩酸にてpH4にしてリグニン分解物を含む懸濁液を得た。
遠心分離は、日立工機株式会社製「himac CR 20G III」を用いて、10,000rpm、20分の条件で行った。
遠心分離後、上澄みを除き、イオン交換水300mLを加え、撹拌した後、再度、前記と同じ条件で遠心分離し、洗浄を行った。洗浄処理を2回行い、得られた沈殿物に対し1.0M水酸化ナトリウム水溶液を加え、pH7とした。続いて透析処理を行い中和塩を除去し、得られた水溶液を凍結乾燥し、粉体状のリグニン分解物1を得た。透析処理にはSpectrum Laboratories Inc.社製のSpectra/Por6標準RC湿潤処理済透析チューブ(MWCO;1kD)を用いた。
リグニン分解物1は、アルカリニトロベンゼン酸化によるアルデヒド収率が24.6質量%、重量平均分子量が12,700であった。
また、リグニン分解物1中の有効分含有率は83質量%であった。該有効分は、クラーソン・リグニン法によって求めた。すなわち、TAPPI公式分析法T222om-83に従って、酸不溶性リグニン率と酸可溶性リグニン率の和で全体のリグニン含有率を算出した。
製造例1と同様に、ただし、工程2aを下記工程2bに変更し、植物活力剤となるリグニン分解物2を製造した。
(工程2b)
工程1で得られた反応物を、400メッシュのSUSメッシュとヌッチェを用いて減圧濾過した。残渣を、90℃のイオン交換水300mLで洗浄した。ろ液と洗浄液を集め、メタノール(和光純薬工業株式会社、特級)2.4Lを加えた。析出物を減圧濾過し(東洋濾紙株式会社製、ろ紙No.2)、ろ液からメタノールを減圧留去し、1.0M 塩酸にてpH4にしてリグニン分解物を含む懸濁液を得た。
遠心分離は、日立工機株式会社製「himac CR 20G III」を用いて、10,000rpm、20分の条件で行った。
遠心分離後、上澄みを除き、イオン交換水300mLを加え、撹拌した後、再度、前記と同じ条件で遠心分離し、水洗を行った。水洗を2回行い、得られた沈殿物を凍結乾燥し、粉体状のリグニン分解物2を得た。
製造例2と同様に、ただし、工程1における、オートクレーブの条件を120℃、1時間、処理時の水酸化ナトリウム水溶液の濃度を5.0質量%として、植物活力剤となる粉体状のリグニン分解物3を製造した。工程1でのHFは12.8であった。また、製造例1と同様にリグニン分解物3中の有効分含有率を測定したところ、54質量%であった。
リグニン分解物3は、アルカリニトロベンゼン酸化によるアルデヒド収率が12.9質量%、重量平均分子量が8,125であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例2と同様に、ただし、工程1における、オートクレーブの条件を135℃、7時間、処理時の水酸化ナトリウム水溶液の濃度を5.0質量%として、植物活力剤となる粉体状のリグニン分解物4を製造した。工程1でのHFは64.4であった。また、製造例1と同様にリグニン分解物4中の有効分含有率を測定したところ、53質量%であった。
リグニン分解物4は、アルカリニトロベンゼン酸化によるアルデヒド収率が13.4質量%、重量平均分子量が4,559であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例2と同様に、ただし、工程1における、オートクレーブの条件を25℃、2時間として、植物活力剤となる粉体状のリグニン分解物5を製造した。工程1でのHFは0.0であった。また、製造例1と同様にリグニン分解物5中の有効分含有率を測定したところ、41.7質量%であった。
リグニン分解物5は、アルカリニトロベンゼン酸化によるアルデヒド収率が26.0質量%、重量平均分子量が9,994であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例2で得たリグニン分解物2に対して、下記工程3の処理を行い、植物活力剤となる粉体状のリグニン分解物6を製造した。
(工程3)
ハロゲン水分計HG63(メトラー・トレド株式会社製)を用いて、無溶媒中、120℃、5分間の加熱処理を行った。加熱処理時間は120℃に到達してからの時間とし、昇温は機器内部温度が120℃に到達するまでの時間とし、降温は加熱処理終了後、素早く室温に晒し、成り行きで行った。
製造例1と同様にリグニン分解物6中の有効分含有率を測定したところ、66.9質量%であった。
リグニン分解物6は、アルカリニトロベンゼン酸化によるアルデヒド収率が15.4質量%、重量平均分子量が18,289であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例6と同様に、ただし、工程3における、加熱処理の条件を140℃、5分間として、植物活力剤となる粉体状のリグニン分解物7を製造した。製造例1と同様にリグニン分解物7中の有効分含有率を測定したところ、69.8質量%であった。
リグニン分解物7は、アルカリニトロベンゼン酸化によるアルデヒド収率が14.4質量%、重量平均分子量が25,663であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例2で得たリグニン分解物2に対して、下記工程4の処理を行い、植物活力剤となる粉体状のリグニン分解物8を製造した。
(工程4)
リグニン分解物2をイオン交換水に対して、0.2%の懸濁液として、No.2濾紙(ADVANTEC社製)を用いて、濾過を行い、濾液を得た。得られた濾液に対しペンシル型モジュール(AsahiKASEI社製、型式;SIP-0013(UF))を用いて分画処理を行った。
製造例1と同様にリグニン分解物8中の有効分含有率を測定したところ、78.7質量%であった。
リグニン分解物8は、アルカリニトロベンゼン酸化によるアルデヒド収率が12.6質量%、重量平均分子量が14,491であった。これらの物性値は、リグニン分解物1と同様に測定した。
製造例2と同様に、ただし、工程1における、オートクレーブの条件を135℃、7時間として、粉体状のリグニン分解物9を製造した。工程1でのHFは64.4であった。また、製造例1と同様にリグニン分解物9中の有効分含有率を測定したところ、66質量%であった。
リグニン分解物9は、アルカリニトロベンゼン酸化によるアルデヒド収率が9.0質量%、重量平均分子量が5,121であった。これらの物性値は、リグニン分解物1と同様に測定した。
本発明のリグニン分解物を植物活力剤として水耕栽培における培養液に添加して用いた場合の、大豆の生長促進効果を評価した。
大豆品種『フクユタカ』を用い、第2~3本葉展開期まで予備栽培(人工土壌であるバーミキュライトに播種、栽培)を行い、生育が揃った苗を選抜して根を洗って土壌を除去した。続いて大豆の側根を全て切断除去し、1日間、苗の馴化のために水道水にて水耕栽培を実施した。馴化した各苗の初期生質量を測定し、初期生質量が軽い苗から順に並べ、各試験区の質量平均値が一定となる様に苗を分配した。生質量は、測定対象物の表面に付着した水気を除去して測定した質量である。
表1に示す含有量(残部は水)で植物活力剤であるリグニン分解物1を含有する培養液250mlを入れたプラスチック(高密度ポリエチレン)製ボトル容器(ニッコー・ハンセン社製のJボトル 丸型 広口 ナチュラル、容量250ml品)に、大豆の苗を子葉が容器の縁に引っかかる様に挿し、水耕栽培を開始した。
水耕栽培は、温度、湿度、光量が調整可能な温室内で行った。温度、湿度は、外環境を基準とし、気温が15~30℃の範囲を外れた場合は、自動的に温度が調整されるようにした。また日照条件においても基本は外環境に準じるが、照度や日の入り時刻に関わらず、16時より20時までは補助照明が点灯する設定とした。
栽培開始から10日後、大豆苗を取り出し、地下部の乾燥質量を測定した。1種類の培養液当たり、ポット数(反復数)は7個とし、その平均値を求めた。各平均値を、対照の乾燥質量を100とする相対値で表1に示した。対照は、植物活力剤を添加せずに実施した。ここで、大豆についての地下部は、子葉節にて大豆苗を切断し、下部に相当する部分を地下部とした。また、乾燥質量は、測定対象物を80℃にて1日間乾燥させ、室温に戻した後、測定した質量である。
〔実施例2a及び比較例2a〕
本発明のリグニン分解物などを植物活力剤として葉面散布して用いた場合の、大豆の生長促進効果を評価した。
実施例1と同様に大豆の苗を用意した。
大豆の苗を、肥料溶液(商品名ハイポニカ、協和株式会社製、500倍希釈にて使用)250mlを入れたプラスチック(高密度ポリエチレン)製ボトル容器を用いて供した。
平面からみて長さ1.0m×幅0.5mの領域を試験領域(0.5m2)として、苗を入れたボトル容器を6個ずつ配置した。
配置後、直ちに、1回目の散布として、試験領域あたり、表2の組成の処理液(残部は水)25mlを均一に苗の上方から散布した。散布後、水耕栽培を行った。次いで、1週間後に、2回目の散布を、1回目の散布と同様に行った。なお、試験領域0.5m2に対し25mlの散布は50L/10aの散布に相当する。また、本例での合計散布量は、100L/10aであった。
2回目の散布処理の後、1週間栽培を継続し、試験終了(1回目の散布より2週間で終了)とした。
使用した容器及び水耕栽培は、実施例1と同様の条件で行った。
栽培の終了後、実施例1と同様に大豆苗の地下部の乾燥質量を測定した。結果を、対照の乾燥質量を100とする相対値で表2aに示した。なお、本例では、1種類の処理液当たり、ポット数(反復数)は6個とし、その平均値を求めた。
・リグニンスルホン酸Na塩:試薬、Sigma Aldrich社製
・黒液リグニン:アルカリニトロベンゼン酸化によるアルデヒド収率が9.9質量%、重量平均分子量が5,300
・非イオン界面活性剤1:モノオレイン酸ポリオキシソルビタン(エチレンオキシド平均付加モル数20)、レオドールTW-O120、花王株式会社製
・HPMC1:ヒドキシプロピルメチルセルロース、METOLOSE 60SH10000、信越化学工業株式会社製、水溶性ポリマー
本発明のリグニン分解物などを植物活力剤として葉面散布した場合の、大豆の側根発根数増加効果を評価した。
実施例2と同様に大豆の苗、肥料溶液、および容器を用意し水耕栽培を開始した。配置後、直ちに、表2bに示す組成の処理液(残部は水)を、実施例2a及び比較例2aの散布と同様の処理量、処理方法にて散布した。ただし、散布処理は1回とし、散布処理の後、5日間栽培を継続し、試験終了とした。
栽培の終了時、大豆主根から新規に発生した側根発根数を測定した。結果を、対照の発根数を100とする相対値で表2bに示した。なお、本例では、1種類の処理液当たり、ポット数(反復数)は5個とし、その平均値を求めた。
本発明のリグニン分解物などを植物活力剤として葉面散布した場合の、大豆の分枝発現数増加効果を評価した。
実施例1と同様に大豆の苗を用意した。
大豆の苗を、栽培土壌(商品名タキイ育苗培土、タキイ種苗株式会社製)で満たした育苗用ポリエチレン製ポット(直径9cm)に定植し栽培を続けた。その後、分枝発現開始時期(第4~6本葉展開期)に、1試験区として、縦横1.0mの平面(試験領域(1.0m2)当たりに苗(栽培中のポリエチレン製ポット5個)を均等に配置した。配置後、直ちに、表2cに示す組成の処理液(残部は水)を、実施例2a及び比較例2aと同様の処理方法にて、ただし処理量は100mlとして、苗の10~15cm上方より均一に散布した。次いで、1週間後に、2回目の散布を、1回目の散布と同様に行った。なお、試験領域1.0m2に対し100mlの散布は100L/10aの散布に相当する。また、本例での合計散布量は、200L/10aであった。
2回目の散布処理の後、1週間栽培を継続し、試験終了とした。栽培の終了時、大豆苗から発現している分枝の総数を測定した。結果を、対照の分岐発現数を100とする相対値で表2cに示した。なお、本例では、1種類の処理液当たり、ポット数(反復数)は5個とし、その平均値を求めた。
本発明のリグニン分解物などを植物活力剤として葉面散布した場合の、大豆の着花数増加効果を評価した。
実施例1と同様に大豆の苗を用意した。大豆の苗を、栽培土壌(商品名タキイ育苗培土、タキイ種苗株式会社製)で満たした育苗用ポリエチレン製ポットに定植した。その後ポットでの栽培を続け、更に、ポット定植後1ヶ月経過を目途に1/5,000aワグネルポット、NF-5型(アズワン株式会社製)に鉢替えを行った。
その後、葉の状態は第6~9本葉展開期で開花初期時期に相当し、1試験区として、縦横1.0mの平面(試験領域(1.0m2)当たりに苗(栽培中のワグネルポット4~5個)を均等に配置した。配置後、直ちに、表2dに示す組成の処理液(残部は水)を、実施例2a及び比較例2aと同様の処理方法にて、ただし処理量は100mlとして、苗の10~15cm上方より均一に散布した。次いで、1週間後に、2回目の散布を、1回目の散布と同様に行った。
2回目の散布処理の後、栽培を継続し、着花数を葉齢位ごとに測定した。1回目処理時の葉齢位における着花数の測定結果を、対照の着花数を100とする相対値で表2dに示した。なお、測定時期は、着莢開始時期(散布後2~6週間経過後)である。なお、本例では、1種類の処理液当たり、ポット数(反復数)は4~5個とし、その平均値を求めた。
本発明のリグニン分解物を植物活力剤として水耕栽培における培養液に添加して用いた場合の、トマトの生長促進効果を評価した。
トマト品種『桃太郎』を用い、第2~3本葉展開期まで予備栽培(人工土壌であるバーミキュライトに播種、栽培)を行い、生育が揃った苗を選抜して根を洗って土壌を除去した。続いてトマトの側根を全て切断除去し、1日間、苗の馴化のために水道水にて水耕栽培を実施した。馴化した各苗の初期生質量を測定、初期生質量が軽い苗から順に並べ、各試験区の質量平均値が一定となる様に苗を分配した。
表3に示す含有量(残部は水)で植物活力剤であるリグニン分解物1を含有する培養液250mlを入れたプラスチック(高密度ポリエチレン)製ボトル容器にトマトの苗を挿し、水耕栽培を開始した。使用した容器及び水耕栽培は実施例1と同様の条件で行った。
栽培開始から7日後、トマト苗を取り出し、地下部の乾燥質量を測定した。1種類の培養液当たり、ポット数(反復数)は7個とし、その平均値を求めた。各平均値を、対照の乾燥質量を100とする相対値で表3に示した。対照は、植物活力剤を添加せずに実施した。ここで、トマトについての地下部は、トマトの側根を全て切断し集めたものを地下部とした。また、乾燥質量は、測定対象物を80℃にて1日間乾燥させ、室温に戻した後、測定した質量である。
本発明のリグニン分解物を植物活力剤として葉面散布して用いた場合の、トマトの生長促進効果を評価した。
実施例3と同様にトマトの苗を用意した。
トマトの苗を、肥料溶液(商品名ハイポニカ、協和株式会社製、500倍希釈にて使用)250mlを入れたプラスチック(高密度ポリエチレン)製ボトル容器に供した。
表4の組成の処理液(残部は水)25mlを、実施例2と同様の条件で葉面散布した。使用した容器及び水耕栽培は実施例1と同様の条件にて行った。
栽培の終了後、実施例3と同様にトマト苗の地下部の乾燥質量を測定した。結果を、対照の乾燥質量を100とする相対値で表4に示した。なお、本例では、1種類の処理液当たり、ポット数(反復数)は6個とし、その平均値を求めた。
Claims (16)
- アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を植物に接触させる、植物の育成方法。
- 前記リグニン分解物と水とを含有する処理液を植物に接触させる、請求項1に記載の植物の育成方法。
- 前記処理液が、界面活性剤及び水溶性ポリマーから選ばれる1種以上の成分を含有する、請求項2に記載の植物の育成方法。
- 前記処理液中の前記リグニン分解物の含有量が1ppm以上5,000ppm以下である、請求項2又は3に記載の植物の育成方法。
- 前記処理液を、養液栽培の培養液として用いて、前記リグニン分解物を植物に接触させる、請求項2~4の何れか1項に記載の植物の育成方法。
- 前記処理液を、葉面散布して前記リグニン分解物を植物に接触させる、請求項2~4の何れか1項に記載の植物の育成方法。
- アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を有効成分とする植物活力剤。
- 前記リグニン分解物の重量平均分子量が、1,000以上100,000以下である、請求項7に記載の植物活力剤。
- アルカリニトロベンゼン酸化によるアルデヒド収率が10質量%以上であるリグニン分解物を含有する植物活力剤組成物。
- 前記リグニン分解物の重量平均分子量が、1,000以上100,000以下である、請求項9に記載の植物活力剤組成物。
- 界面活性剤を含有する、請求項9又は10に記載の植物活力剤組成物。
- 界面活性剤が、非イオン界面活性剤である、請求項11に記載の植物活力剤組成物。
- 前記リグニン分解物100質量部に対し、界面活性剤を1質量部以上1,900重量部以下含有する、請求項11又は12に記載の植物活力剤組成物。
- 水溶性ポリマーを含有する、請求項9~13の何れか1項に記載の植物活力剤組成物。
- 水溶性ポリマーが、多糖類系水溶性ポリマーである、請求項14に記載の植物活力剤組成物。
- 前記リグニン分解物100質量部に対し、水溶性ポリマーを1質量部以上1,900重量部以下含有する、請求項14又は15に記載の植物活力剤組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018068079-6A BR112018068079B1 (pt) | 2016-04-11 | 2017-04-11 | Método para cultivar uma planta |
US16/080,917 US11134679B2 (en) | 2016-04-11 | 2017-04-11 | Method for growing plant |
CN201780014315.3A CN108712862B (zh) | 2016-04-11 | 2017-04-11 | 植物的培育方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-079001 | 2016-04-11 | ||
JP2016079001 | 2016-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017179566A1 true WO2017179566A1 (ja) | 2017-10-19 |
Family
ID=60042602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014790 WO2017179566A1 (ja) | 2016-04-11 | 2017-04-11 | 植物の育成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11134679B2 (ja) |
JP (1) | JP6920093B2 (ja) |
CN (1) | CN108712862B (ja) |
BR (1) | BR112018068079B1 (ja) |
WO (1) | WO2017179566A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019181748A1 (ja) * | 2018-03-23 | 2019-09-26 | アサヒグループホールディングス株式会社 | 敷料、堆肥及び堆肥の製造方法 |
JP2020125262A (ja) * | 2019-02-05 | 2020-08-20 | 国立大学法人東海国立大学機構 | 植物成長調整剤 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112018068079B1 (pt) | 2016-04-11 | 2023-04-25 | Kao Corporation | Método para cultivar uma planta |
CN108699440A (zh) * | 2016-04-11 | 2018-10-23 | 花王株式会社 | 土壤改良方法 |
JP6974988B2 (ja) * | 2017-09-05 | 2021-12-01 | 花王株式会社 | 植物収量向上剤 |
KR102252207B1 (ko) * | 2018-08-08 | 2021-05-14 | 경상국립대학교산학협력단 | 용해도가 증진된 크라프트 리그닌 또는 크라프트 리그닌의 펜톤 반응 산화물을 유효성분으로 함유하는 식물의 생장 촉진용 조성물 및 이의 용도 |
JP2020033331A (ja) * | 2018-08-31 | 2020-03-05 | 花王株式会社 | マメ科植物生育促進剤 |
KR102250261B1 (ko) * | 2018-10-15 | 2021-05-10 | 경상국립대학교산학협력단 | 리그닌 변환체를 유효성분으로 함유하는 식물체의 생장 촉진용 조성물 |
IT201800020869A1 (it) * | 2018-12-21 | 2020-06-21 | Green Innovation Gmbh | A plant growth promoter composition, processes for preparing the same and uses thereof / composizione promotrice di crescita vegetale, processi per la sua preparazione e suoi usi |
IT202100028904A1 (it) * | 2021-11-15 | 2023-05-15 | Upm Kymmene Corp | Biostimolante in granuli quale promotore di crescita vegetale, processi per la sua preparazione e suoi usi/ a granular biostimulant as plant growth promoter, processes for preparing the same and uses thereof |
CN115349436A (zh) * | 2022-09-02 | 2022-11-18 | 徐道永 | 脱除人参中农药残留的方法 |
CN116420621A (zh) * | 2023-04-24 | 2023-07-14 | 玉林师范学院 | 一种促进墨兰根状茎芽分化方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6092219A (ja) * | 1983-10-24 | 1985-05-23 | Nissin Food Prod Co Ltd | 養液栽培による薬用物質の製造法 |
JPH05117125A (ja) * | 1991-10-22 | 1993-05-14 | Dainichiseika Color & Chem Mfg Co Ltd | 芝生生育保持剤 |
JPH0812479A (ja) * | 1994-06-29 | 1996-01-16 | Meiji Seika Kaisha Ltd | 肥効促進材及びそれを用いて肥効率を向上させる方法 |
JPH09509417A (ja) * | 1994-02-17 | 1997-09-22 | アボツト・ラボラトリーズ | 農薬補助剤 |
JPH10273472A (ja) * | 1997-03-28 | 1998-10-13 | Dainichiseika Color & Chem Mfg Co Ltd | リグニン分解物質のシクロデキストリン包接化合物及びその用途 |
JPH11292671A (ja) * | 1998-04-09 | 1999-10-26 | Gun Ei Chem Ind Co Ltd | 作物栄養補助剤及び該作物栄養補助剤を用いた作物栽培方法 |
JPH11513988A (ja) * | 1995-10-25 | 1999-11-30 | アボツト・ラボラトリーズ | 紫外線保護性農薬組成物 |
JP2001316207A (ja) * | 2000-04-28 | 2001-11-13 | Kao Corp | 植物活力剤 |
JP2013241391A (ja) * | 2011-12-20 | 2013-12-05 | Kao Corp | リグニン分解物の製造方法 |
JP2015006998A (ja) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | リグニン分解物の製造方法 |
JP2015006997A (ja) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | 紫外線吸収剤 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018591A (en) | 1967-12-15 | 1977-04-19 | Prodotti Gianni S.R.L. | Product for activating and potentiating vegetable metabolism and for conditioning agricultural soil and method for the preparation thereof |
DE2401878A1 (de) | 1973-01-18 | 1974-07-25 | Fertilizers Inc | Verfahren zur umwandlung von lignocellulosem material in duengemittel |
JPS61100505A (ja) * | 1984-10-20 | 1986-05-19 | Kinki Univ | まつたけ菌糸の成長促進剤 |
JPH0419876Y2 (ja) | 1985-10-08 | 1992-05-07 | ||
JPH02289481A (ja) | 1988-09-02 | 1990-11-29 | Hitoyoshi Nama Concrete Kk | 杉・桧樹皮等の爆砕処理方法及び処理物 |
JPH05874A (ja) | 1991-02-01 | 1993-01-08 | Nippon Hiryo Kk | 植物生育促進剤とその製造方法および植物生育促進剤を含有する肥料 |
JPH0665016A (ja) | 1992-08-20 | 1994-03-08 | Sumitomo Ringyo Kk | 芝の根成長促進剤 |
US5391542A (en) * | 1993-06-10 | 1995-02-21 | Browning; Henry A. | Method of enhancing the growth of plants using alkyloxypolyethyleneoxyethanols |
JPH07273472A (ja) | 1994-03-31 | 1995-10-20 | Sony Corp | 線材保持具 |
DE4415049A1 (de) | 1994-04-29 | 1995-11-02 | Hoechst Schering Agrevo Gmbh | Acylierte Aminophenylsulfonylharnstoffe, Verfahren zu deren Herstellung und Verwendung als Herbizide und Wachstumsregulatoren |
JP2978080B2 (ja) | 1995-03-22 | 1999-11-15 | 大日精化工業株式会社 | セントポーリア用開花促進剤 |
NL1001620C2 (en) | 1995-06-22 | 1996-12-24 | Instituut Voor Agrobiologisch | Improvement in activity of plant growth regulators |
JP3138418B2 (ja) | 1995-12-04 | 2001-02-26 | 大日精化工業株式会社 | 植物用鮮度保持剤及び植物の鮮度保持方法 |
JP3715119B2 (ja) | 1998-11-02 | 2005-11-09 | 日本原子力研究所 | 繊維物質の分解抽出物による植物の障害抑制・生育促進剤 |
JP2000264809A (ja) | 1999-03-17 | 2000-09-26 | Research Institute Of Innovative Technology For The Earth | 植物の生長調節用組成物 |
DE60111676T2 (de) | 2000-04-28 | 2006-05-18 | Kao Corp. | Pflanzenaktivierungsmittel |
CN1330057A (zh) | 2000-06-20 | 2002-01-09 | 张美华 | 用造纸黑液提取物生产多元有机肥 |
US6730223B1 (en) | 2002-11-01 | 2004-05-04 | Comprehensive Resources, Recovery & Reuse, Inc. | Apparatus, system and method for treating waste material |
JP2004224893A (ja) | 2003-01-22 | 2004-08-12 | Maeda Seikan Kk | 土壌用資材の製造方法 |
JP2004300419A (ja) | 2003-03-19 | 2004-10-28 | Jgc Corp | 改質ろ液の製造方法および該製造方法で得られる改質ろ液 |
CN1537830A (zh) * | 2003-04-19 | 2004-10-20 | 顾小平 | 利用氢氧化钾碱法造纸制浆黑液生产肥料的方法 |
JP2006213900A (ja) | 2005-02-01 | 2006-08-17 | Kono Shinsozai Kaihatsu Kk | 土壌改良剤 |
CN101497794B (zh) | 2009-03-10 | 2011-08-24 | 中国农业科学院农业资源与农业区划研究所 | 一种复合土壤调理剂及其制备方法 |
WO2011038389A2 (en) | 2009-09-28 | 2011-03-31 | Floratine Biosciences, Inc. | Methods of reducing plant stress |
WO2011038388A2 (en) | 2009-09-28 | 2011-03-31 | Florantine Biosciences, Inc. | Fertilizer compositions and methods |
JP2012017459A (ja) | 2010-06-07 | 2012-01-26 | Honda Motor Co Ltd | 土壌改良材の製造方法 |
AT510346A1 (de) | 2010-09-02 | 2012-03-15 | Annikki Gmbh | Ligningewinnung |
CN102181506A (zh) | 2011-02-28 | 2011-09-14 | 陕西科技大学 | 一种生物质预处理的方法 |
JP2013014737A (ja) | 2011-07-05 | 2013-01-24 | Career Tech Co Ltd | バイオマスから高発熱燃料と高性能生物育成剤を得る方法 |
EP3763200A1 (en) | 2012-01-12 | 2021-01-13 | FBSciences Holdings, Inc. | Modulation of plant biology |
CN103183541A (zh) | 2013-04-12 | 2013-07-03 | 路德环境科技股份有限公司 | 有机废弃物制造生态有机肥方法 |
CN103288553A (zh) | 2013-06-27 | 2013-09-11 | 苏州禾润农业科技有限公司 | 一种生姜多元复合微生物肥及其制备方法 |
JP2015024365A (ja) | 2013-07-25 | 2015-02-05 | 住友ベークライト株式会社 | 土壌の浄化方法、及びそれに用いる吸着部材 |
GB201313803D0 (en) * | 2013-08-01 | 2013-09-18 | Omex Agriculture Ltd | Fungicidal composition and method |
BR112018068079B1 (pt) | 2016-04-11 | 2023-04-25 | Kao Corporation | Método para cultivar uma planta |
-
2017
- 2017-04-11 BR BR112018068079-6A patent/BR112018068079B1/pt active IP Right Grant
- 2017-04-11 WO PCT/JP2017/014790 patent/WO2017179566A1/ja active Application Filing
- 2017-04-11 US US16/080,917 patent/US11134679B2/en active Active
- 2017-04-11 CN CN201780014315.3A patent/CN108712862B/zh active Active
- 2017-04-11 JP JP2017078027A patent/JP6920093B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6092219A (ja) * | 1983-10-24 | 1985-05-23 | Nissin Food Prod Co Ltd | 養液栽培による薬用物質の製造法 |
JPH05117125A (ja) * | 1991-10-22 | 1993-05-14 | Dainichiseika Color & Chem Mfg Co Ltd | 芝生生育保持剤 |
JPH09509417A (ja) * | 1994-02-17 | 1997-09-22 | アボツト・ラボラトリーズ | 農薬補助剤 |
JPH0812479A (ja) * | 1994-06-29 | 1996-01-16 | Meiji Seika Kaisha Ltd | 肥効促進材及びそれを用いて肥効率を向上させる方法 |
JPH11513988A (ja) * | 1995-10-25 | 1999-11-30 | アボツト・ラボラトリーズ | 紫外線保護性農薬組成物 |
JPH10273472A (ja) * | 1997-03-28 | 1998-10-13 | Dainichiseika Color & Chem Mfg Co Ltd | リグニン分解物質のシクロデキストリン包接化合物及びその用途 |
JPH11292671A (ja) * | 1998-04-09 | 1999-10-26 | Gun Ei Chem Ind Co Ltd | 作物栄養補助剤及び該作物栄養補助剤を用いた作物栽培方法 |
JP2001316207A (ja) * | 2000-04-28 | 2001-11-13 | Kao Corp | 植物活力剤 |
JP2013241391A (ja) * | 2011-12-20 | 2013-12-05 | Kao Corp | リグニン分解物の製造方法 |
JP2015006998A (ja) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | リグニン分解物の製造方法 |
JP2015006997A (ja) * | 2013-06-24 | 2015-01-15 | 花王株式会社 | 紫外線吸収剤 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019181748A1 (ja) * | 2018-03-23 | 2019-09-26 | アサヒグループホールディングス株式会社 | 敷料、堆肥及び堆肥の製造方法 |
JPWO2019181748A1 (ja) * | 2018-03-23 | 2021-03-18 | アサヒグループホールディングス株式会社 | 敷料、堆肥及び堆肥の製造方法 |
JP2020125262A (ja) * | 2019-02-05 | 2020-08-20 | 国立大学法人東海国立大学機構 | 植物成長調整剤 |
JP7291374B2 (ja) | 2019-02-05 | 2023-06-15 | 国立大学法人東海国立大学機構 | 植物成長調整剤 |
Also Published As
Publication number | Publication date |
---|---|
JP2017190331A (ja) | 2017-10-19 |
CN108712862A (zh) | 2018-10-26 |
US20190037842A1 (en) | 2019-02-07 |
JP6920093B2 (ja) | 2021-08-18 |
BR112018068079A2 (pt) | 2019-01-08 |
CN108712862B (zh) | 2021-12-07 |
US11134679B2 (en) | 2021-10-05 |
BR112018068079B1 (pt) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6920093B2 (ja) | 植物活力剤 | |
CN102487686B (zh) | 一种用茳芒决明种子规模化育苗方法 | |
Dkhil et al. | Foliar Potassium Fertilization and its Effect on Grovvth, Yield and Quality of Potato Grown under Loann-sandy Soil and Semi-arid | |
CN113133455B (zh) | 花粉多糖提取液及其在促进植物生长中的应用 | |
Powell | Spread of mycorrhizal fungi through soil | |
Nascente et al. | Brachiaria ruziziensis and herbicide on the yield of upland rice | |
JP2005192534A (ja) | 植物のストレス緩和剤および生長促進剤 | |
JP5254281B2 (ja) | 植物のストレス緩和剤および生長促進剤 | |
CN115484813A (zh) | 用种衣促进植物生长及提高植物产量的方法 | |
CN104303640A (zh) | 一种木薯的育苗繁殖方法 | |
US11632960B2 (en) | Plant growth promoter | |
CA2849585C (en) | Compounds, compositions and methods for crop enhancement | |
CN107509513B (zh) | 一种利用大麦浸提液在连作条件下培育辣椒壮苗的方法 | |
CN102884937A (zh) | 一种中度盐碱地蓖麻育苗移栽种植方法 | |
Ray et al. | Guayule: culture, breeding and rubber production. | |
CN107616068A (zh) | 一种高效低成本马铃薯脱毒苗及原种生产技术 | |
CN112552117A (zh) | 一种植物过冬营养调节剂及其应用 | |
CN103340201B (zh) | 壳寡糖水溶液用于促进植物分蘖的用途 | |
JP6974988B2 (ja) | 植物収量向上剤 | |
CN107853173A (zh) | 株高叶长、滞尘抗烟的大叶女贞苗木育种方法 | |
CN104488536B (zh) | 一种提高湿栽水芹种子产量的方法 | |
CN107027475A (zh) | 亚热带地区木薯红蜘蛛病的综合防治方法 | |
Księżak | The influence of different doses of hydrogel on the quality of seeds and the yield of faba beans | |
CN106613102A (zh) | 野生白及的驯化方法 | |
JP2004242505A (ja) | 環境ストレス抵抗性を増強した植物の作出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018068079 Country of ref document: BR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782379 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112018068079 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180906 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17782379 Country of ref document: EP Kind code of ref document: A1 |