JP2013014737A - バイオマスから高発熱燃料と高性能生物育成剤を得る方法 - Google Patents

バイオマスから高発熱燃料と高性能生物育成剤を得る方法 Download PDF

Info

Publication number
JP2013014737A
JP2013014737A JP2011162565A JP2011162565A JP2013014737A JP 2013014737 A JP2013014737 A JP 2013014737A JP 2011162565 A JP2011162565 A JP 2011162565A JP 2011162565 A JP2011162565 A JP 2011162565A JP 2013014737 A JP2013014737 A JP 2013014737A
Authority
JP
Japan
Prior art keywords
biomass
water
acid
temperature
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162565A
Other languages
English (en)
Inventor
Kenzo Inoue
賢三 井上
Hiromichi Ito
大道 伊藤
Akihiro Suzuoka
章黄 鈴岡
Kozo Yamamoto
耕三 山本
Toru Yamada
徹 山田
Toshio Nihei
敏雄 二瓶
Keiji Yamamoto
慶二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CAREER TECH CO Ltd
Shintec Co Ltd
Original Assignee
CAREER TECH CO Ltd
Shintec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CAREER TECH CO Ltd, Shintec Co Ltd filed Critical CAREER TECH CO Ltd
Priority to JP2011162565A priority Critical patent/JP2013014737A/ja
Publication of JP2013014737A publication Critical patent/JP2013014737A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fertilizers (AREA)

Abstract

【課題】バイオマスから石炭や石油並み以上の高発熱量を有する燃料と高性能の植物用肥料などの生物育成剤を製造する方法を提供する。
【解決手段】バイオマスを原料として、亜臨界水または超臨界水に浸漬した状態で400℃以下の温度、各温度における飽和水蒸気圧下で、時間5分から12時間で反応処理することにより、生成物である化石資源並み以上の高発熱量を示す固形物質、油性物質、および高性能の生物育成が可能となる水溶性物質、及び気体物質を得ることで、バイオマスを資源化する。酸性、アルカリ性、または塩触媒を添加すれば180℃近辺でも加水分解が進行し、所定の生成物が得られる。なお、ここでいうバイオマスとは、生命活動によって生み出された物質であり、木材や廃材、シダ類、麦わらやおがくずなどの木質系のバイオマスに限らず、動植物の遺骸や排泄物、廃棄物、またはそれらの混合物、いわゆる生ゴミであっても構わない。
【選択図】なし

Description

バイオマスから石炭や石油並み以上の高発熱量を有する燃料と高性能の植物用肥料などの生物育成剤を製造する分野に関するものであり、バイオマスの加水分解法に関する。
エネルギー問題や資源問題を解決するために、化石資源に頼らずにバイオマスを利用しようという試みがなされている。特に、食糧問題と競合しない木質系バイオマスは近年注目を集めているが、化学的にも生化学的にも反応性が低いため、生産性に乏しいという短所がある。また、例えばエタノールなどの特定の化学物質を製造することを目的にしており、燃料としての観点からみると、石炭や石油と言った化石燃料に比べ低発熱量であり、利用するには改質をする必要がある。
バイオマスを改質する方法として超臨界水や亜臨界水などを利用する水熱法が知られている。バイオマスを高温高圧の水で処理することで加水分解を進行させ、得られる固形成分は石炭代替物として、ガスはメタン代替物として、それぞれ燃料として使用することができる。
木質系バイオマスを原料とした上記方法の具体的な条件として、250から380℃において水の飽和水蒸気圧以上で5から120分浸漬すれば27kJ/kg以上の発熱量を示す固形物が得られることが特許文献1に開示されている。なお、副生成物として得られる水溶性化合物の水溶液の成分は木酢液と同様であることが特許文献2に報告されている。
木質系バイオマス以外には、屎尿や浄化槽汚泥、生ゴミ等からなりプラスチック等の夾雑物が混入した有機性廃棄物を、190から220℃、1から3MPaで30から90分、もしくは、酸素濃度を21から75vol%として160から180℃、0.6から1MPaで30から90分かけて高圧水蒸気処理した後に、コンポストやメタン発光槽内におけるさらなる処理を経た後、堆肥や燃料等として用いる方法が特許文献3に開示されている。
特許第4334857号公報 特開第2004−300419号公報 特許第3963124号公報
エネルギー収支を考慮すると、燃料としての改質バイオマスを得るために費やすエネルギーは少ないほど好ましく、低温ほど有利である。しかし、これまでのところ木質系バイオマスの加水分解には250℃以上の温度が必要であり、250℃よりも低温で加水分解を進行させる方法がなかった。どうしても250℃以下で反応させるためには、酸素雰囲気下で高圧水蒸気処理を行わなければならなかった。
超臨界水や亜臨界水を用いてバイオマスを改質すると、固形物質、気体物質、水溶性物質とが得られることは公知であるが、油状物質に関する詳細な記述がないのが現状である。これは油状物質の収率が他の物質に比べて圧倒的に少ないことが原因であると考えられる。
上記文献に示されている方法ではいずれも多段階から成る操作が必要で煩雑であるためにエネルギー消費も大きくなり、コスト高となってしまう。
本発明者は、バイオマスを水に分散させ高温高圧下で処理して改質バイオマスを得るための条件として、特許文献1にある250℃以上のみならず、触媒を添加すれば250℃以下でも加水分解が進行することを見いだし、得られる固形物の発熱量は特許文献1の方法で得られるものと遜色ない値を示すことを明らかにした。なお、ここでいうバイオマスとは、生命活動によって生み出された物質であり、木材や廃材、シダ類、麦わらやおがくずなどの木質系のバイオマスに限らず、動植物の遺骸や排泄物、廃棄物、またはそれらの混合物、いわゆる生ゴミであっても構わない。
また、飽和水蒸気圧下の超臨界水もしくは亜臨界水でバイオマスを処理することで、固形物質、水溶性化合物、気体物質の他に得られる油状物質について、処理温度と収率の関係、およびその発熱量を詳細に検討したところ、処理温度が高いほど油状物質の収率が下がること、さらに添加する触媒を選ぶことで比較的高収率で得られることがわかった。生成した油状物質の発熱量は25MJ/kg以上(実施例においては37MJ/kg)である。
本発明の処理によって得られる気体物質にはメタンなどの可燃性物質が含まれること、さらに水溶性化合物には植物の生育を促進するはたらきがあることを本発明により確認している。したがって、本発明による操作で得られる固形、油溶性液体、水溶性液体を含む水溶液、気体の各物質や混合物は、すべて使用することが可能であり、残渣は発生しない。
本発明で用いるのは耐圧密閉容器とそれを加熱する装置のみであり、改質バイオマスを得るのに複雑な装置を必要としない。
本発明による方法で、一段の操作で簡便に改質バイオマスを得ることが可能になった。
また、触媒を用いることで250℃以下でも実施できることから、加水分解法によるバイオマスの改質処理に適用できる温度範囲が広がり、より実用化が可能となった。
固体や気体よりも利便性が高く発熱量も高い油状の改質バイオマスが、処理条件を選ぶことで、高収率で生成物を入手できるようになった。
さらに、生成物に含まれる水溶性化合物の水溶液には植物の生育を促進させる効果のあることがわかった。
なお、本発明は、従来のバイオマス燃料と異なり、高発熱量を示すバイオマス燃料を製造する技術に関するものであり、化石燃料に頼らない再生可能な資源をエネルギー源とする社会の実現に貢献するものである。
従来のバイオマスの高効率転換技術はNEDOプロジェクト「バイオマスエネルギー高効率転換技術開発」や電力中研「木質バイオマス発電」、SONY「木質バイオマス発電」などで推進されており、本発明はこれらの行政や業界が目指す方向とも合致している。
本発明のバイオマス改質方法において使用されるバイオマス原料は生命活動によって生み出された物質であり、木材や廃材、シダ類、麦わらやおがくずなどのセルロース系バイオマスに限らず、動植物の遺骸や排泄物、廃棄物、またはそれらの混合物であっても構わない。
これらのバイオマス原料のうち、木材や廃材などの塊は、処理工程に入る前に細分化されて、たとえば10mm以下、好ましくは5mm以下のペレット状もしくはおがくず状になっていることが好ましいが、特許文献4にあるように、処理の最後の段階で短時間内に脱圧させて液相の水の一部を気化させることで爆砕してもよい。
特開第2010−162498号公報
本発明の亜臨界水または超臨界水による操作は、超臨界水用の耐圧密閉容器を用いるべきである。実験室スケールにおいては、たとえばオーエムラボテック社製ミニオートクレーブMA型などが挙げられる。以下実験室スケールでの形態について記述する。
まず、容器にバイオマスと水をいれる。目的に応じて触媒を入れる。触媒は予め水と混合してから導入してもよいし、容器の中で混合してもよい。
導入する水の量が多すぎて空間容積をほぼ占めるようになると、加熱による体積膨張のために容器を破壊する恐れがある。たとえば水の比容積は4℃では1.00、250℃では1.25、超臨界温度に近い370℃では2.21、超臨界温度である374℃では3.16である。逆に、少なすぎると水相が消失してしまい加水分解反応が進みにくくなる。したがってこれらを考慮して適切な量の水、たとえば空間容積の10%から90%、望ましくは30%から70%の水量を用いるのが望ましい。
触媒として用いることのできるものは酸、塩基、塩などであり、無機物でも有機物でも有機金属化合物でもよく、水と混合することで均一系になるものでも不均一系になるものでも構わない。ただし、不均一系になるものを用いる場合には、後処理の際に容易に分離できるか、分離の必要がないものであることが好ましい。酸、塩基、塩として使用できるものは、塩酸、硫酸、硝酸、弗酸、トルエンスルホン酸、リン酸、酢酸、水酸化カリウム、水酸化ナトリウム、炭酸カルシウム、炭酸ナトリウム、酢酸ナトリウム、リン酸カリウムなどが挙げられるが、目的に応じて使い分けるのが望ましい。
例えば硫酸を用いれば、反応後にアンモニアで中和させることで、硫安をも生成させ肥料とすることもできる。
次いで、容器を密閉し、加熱器に導入して加熱する。加熱器は予め加熱しておいてもいいし、容器を導入してから加熱をはじめてもよい。容器の加熱にはオイルバス、サンドバス、チューブオーブン、ハイテンプオーブンなどが使用できるが、水熱処理後の操作の利便性を考慮すると、チューブオーブンやハイテンプオーブンの使用が好ましい。
大気圧下で水を導入して密閉した容器を加熱すると、容器内の圧力は水の飽和蒸気圧に保たれる。したがって本発明において概バイオマスが処理される圧力は、各温度における水の飽和蒸気圧と同じであって、それ以上でもそれ以下でもない。
水の超臨界温度である374℃以下では、容器内は水相と気相に分かれるが、概バイオマスは気相ではなく水相に存在するほうがより効果的である。そのため、概バイオマスを水相に浸漬するための工夫を加えてもよい。その方法は特に限定されないが、容器を立てる、内容物を導入する際に落としぶたをするなどが挙げられる。
触媒を用いずに処理を行うときは250℃以上の温度が必要だが、酸触媒を添加することで処理温度を下げることができる。無触媒で処理を行うと、処理後の水溶液のpHは2−4程度であり、反応は酸性条件下で進行していることがわかる。したがって酸触媒を添加することで反応が促進される。
本発明による処理によって有害物質が発生する恐れのある酸触媒を使用する場合には、処理温度に特に留意すべきである。たとえば、塩酸は塩素を含むため、高温ではダイオキシンを発生させる恐れがある。しかし200℃以下であればダイオキシンが発生しないという指摘がたとえば特許文献5にある。また、硫酸を使用した場合には高温ほど二硫化酸素などの有害なガスが高温ほど発生しやすい。一方で、温度が低いと反応速度が遅くなり、概バイオマスの転化が進行しにくい。したがって、有害物質が発生する恐れのある酸触媒を使用する場合の処理温度は、好ましくは180℃から200℃、さらに好ましくは200℃付近がよい。
特開第2001−137806号
塩基性触媒を用いた場合、処理温度を250℃よりも低くすることはできないが、処理後の固形分が減少し、かわりに油状物質が比較的高収率で得られるという特徴がある。
固形物質と油状物質の収率は塩基性触媒の濃度には大きく依存しないが、濃度を上げると固形物質の発熱量が低下する。したがって塩基性触媒の濃度は、好ましくは5%程度である。
所定温度で所定の時間置いた容器を開栓して内容物を取り出すにあたって、安全性の面から、室温に戻して内圧を大気圧にまで下げてから開栓するのが好ましいが、特許文献4にあるように加熱状態のまま瞬時に脱圧することもできる。なお、冷却の方法は限定されず、空冷でも冷媒を使用してもよく、徐冷でも急冷でも構わない。
生成した内容物は気体物質、固形分、油状液体、水溶液からなるが、これらの取り出し方も分離方法も特に限定されない。水溶液をまず分離し、残渣を燃料として使用するならば、固形分と油状液体を分離しなくてもよいし、分離してもよい。
取り出した改質バイオマスは、目的に応じて、そのまま使用することもできるし、希釈したり、pHの調整を行ってから使用してもよい。
5mm角程度のペレット状に粉砕した松の樹木5gと水10gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブを予め280℃に加熱しておいたアズワン社製ハイテンプオーブンHTO−450Sに入れ、30分置き、その後、室温に戻して開栓した。気体成分と水溶液の他に、固形分と油状液体がそれぞれ40%と10%の収率で得られ、それぞれ30MJ/kg、35MJ/kgの発熱量を示した。原料であるチップの発熱量が15MJ/kg程度であるのに比べると発熱量がかなり向上しており、さらに同時比較した火力発電用の石炭の発熱量が26MJ/kg(実機における発熱量は28.7MJであり、使用した熱量計は低めの値を示している)であることと比べても、得られた固形分と油状液体は非常に高い発熱量を有していることがわかる。固形分のSEM写真を図1に示す。石炭と同様に細孔が見られ、そのサイズは1から10μm程度のオーダーであった。気体成分と油状液体をガスクロマトグラフィーにかけたところ、気体成分からはエチレン、エタン、プロペン、プロパン、イソブテン、ブタノンなどに相当するシグナルが検出され、油状液体からは3−イソプロピルトルエン、2−ヒドロキシアニソール、フェニルリン酸、イソバニリンなどの芳香族に帰属されるシグナルと、アジピン酸ビス(2−エチルヘキシル)などの脂肪族に帰属されるシグナルが検出された。
松、シダ、鯛、プランクトン、アオコ、スギ間伐材をそれぞれ実施例1と同様に、ただし温度と時間を変化させて処理を行った。結果を表1に示す。いずれも気体成分と水溶液の他に、固形分と油状液体が得られ、固形分は30MJ/kg、油状液体は30から38MJ/kgの発熱量を示した。
スギの間伐材5gと5wt%硫酸20gをオーエムラボテック社製ミニオートクレーブMA型容器に入れて密閉した。予め180℃に加熱しておいたアズワン社製ハイテンプオーブンHTO−450Sにこの容器を入れ、15、30、60分それぞれ置いた。
また、200℃でも同様に30分と60分それぞれ置いた。固形分と油状液体の収量は表2に示した。いずれも、気体成分と水溶液の他に、黒色の固形分と油状液体とが得られており、反応が進行したことを確認した。180℃においたものは200℃に置いたものよりも反応の進行が遅く、60分でもまだ反応が進行中であるとみられる。したがって反応の進行には180℃よりも200℃のほうが有効であると言える。なお、5wt%硫酸の代わりに5wt%パラトルエンスルホン酸もしくは5wt%塩酸を用いたところ、同様の結果を得た。
比較例1
スギの間伐材5gと水10gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブをアズワン社製ハイテンプオーブンHTO−450Sに入れ、200℃に60分置いたところ、何も変化が見られなかった。したがって実施例3で示したように、酸を添加することが処理温度の低下を可能にしていることがわかる。
比較例2
5wt%硫酸を用いた実施例3と水を用いた比較例1と同様の操作を250℃で行ったところ、いずれも黒色の固形物と油状液体が得られ、反応の進行を確認したが、固形分、油状液体の収量に顕著な差は確認できなかった。5wt%塩酸を用いたときも水で処理を行ったものとの差は見られなかった。したがって、250℃では触媒の効果が現れないことがわかった。また、この温度では二酸化硫黄と考えられる異臭が発生していた。したがって、250℃ではこれら酸触媒の添加によるメリットよりもデメリットの方が大きい。
スギの間伐材5gと5%水酸化ナトリウム水溶液20gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブをアズワン社製ハイテンプオーブンHTO−450Sに入れ、所定温度に60分置いたところ、200℃では反応は進行しなかったが、250℃では進行した。無触媒もしくは酸性触媒を用いたときと比べると、固形分の収量が減少し、かわりに油状物質が増加していた。固形物質の発熱量は24MJ/kgあった。つぎに、水酸化ナトリウムの濃度を10%に増加させると、固形物質と油状物質の収量に顕著な変化は見られないが、固形物質の発熱量が20MJ/kgであり、処理前のスギと同程度まで低下していた。さらに水溶液のpHはいずれも無触媒のときと比べて高かった。これらの結果から、酸性条件下で進行する反応が抑制され、固形物質のうち発熱量の高い成分が油状物質に転化して収率が向上したと考えられる。表3に示すように、弱塩基である酢酸ナトリウムや酢酸カリウム、炭酸ナトリウム、リン酸カリウムでも同様の結果を得た。
実施例1において松の処理をした際に得られた水溶液を1000倍に希釈したA液を準備した。なお、pHは、水溶液の原液で3、10倍希釈で4、1000倍に希釈したA液で6から7の値を示した。次に、3号黒色ポリポットに赤玉土を入れ、サルビアを植えたところに、腐葉土を赤玉土に対して半分加える(1)、1に肥料としてハイポネックスを1000倍に希釈したものを加える(2)、2にA液を週1回(3)、週2回(4)、週7回(5)与えた。それぞれ3鉢ずつ、合計15鉢を使用して、それぞれを平均してプロットしたものを図2に示す。1と2よりも3、4、5のほうが成長が著しく、A液の添加回数が多い5のほうが3よりも成長が著しいことがわかる。したがって、実施例1の処理で得られた水溶性成分にはサルビアの育成を3〜6倍に促進させるはたらきがあることがわかる。
Figure 2013014737
Figure 2013014737
Figure 2013014737
バイオマスから石炭や石油並み以上の高発熱量を有する燃料と高性能の植物用肥料などの生物育成剤を製造する分野に関するものであり、バイオマスの加水分解法に関する。
エネルギー問題や資源問題を解決するために、化石資源に頼らずにバイオマスを利用しようという試みがなされている。特に、食糧問題と競合しない木質系バイオマスは近年注目を集めているが、化学的にも生化学的にも反応性が低いため、生産性に乏しいという短所がある。また、例えばエタノールなどの特定の化学物質を製造することを目的にしており、燃料としての観点からみると、石炭や石油と言った化石燃料に比べ低発熱量であり、利用するには改質をする必要がある。
バイオマスを改質する方法として超臨界水や亜臨界水などを利用する水熱法が知られている。バイオマスを高温高圧の水で処理することで加水分解を進行させ、得られる固形成分は石炭代替物として、ガスはメタン代替物として、それぞれ燃料として使用することができる。
木質系バイオマスを原料とした上記方法の具体的な条件として、250から380℃において水の飽和水蒸気圧以上で5から120分浸漬すれば27kJ/kg以上の発熱量を示す固形物が得られることが特許文献1に開示されている。なお、副生成物として得られる水溶性化合物の水溶液の成分は木酢液と同様であることが特許文献2に報告されている。
木質系バイオマス以外には、屎尿や浄化槽汚泥、生ゴミ等からなりプラスチック等の夾雑物が混入した有機性廃棄物を、190から220℃、1から3MPaで30から90分、もしくは、酸素濃度を21から75vol%として160から180℃、0.6から1MPaで30から90分かけて高圧水蒸気処理した後に、コンポストやメタン発光槽内におけるさらなる処理を経た後、堆肥や燃料等として用いる方法が特許文献3に開示されている。
特許第4334857号公報 特開第2004−300419号公報 特許第3963124号公報
エネルギー収支を考慮すると、燃料としての改質バイオマスを得るために費やすエネルギーは少ないほど好ましく、低温ほど有利である。しかし、これまでのところ木質系バイオマスの加水分解には250℃以上の温度が必要であり、250℃よりも低温で加水分解を進行させる方法がなかった。どうしても250℃以下で反応させるためには、酸素雰囲気下で高圧水蒸気処理を行わなければならなかった。
超臨界水や亜臨界水を用いてバイオマスを改質すると、固形物質、気体物質、水溶性物質とが得られることは公知であるが、油状物質に関する詳細な記述がないのが現状である。これは油状物質の収率が他の物質に比べて圧倒的に少ないことが原因であると考えられる。
上記文献に示されている方法ではいずれも多段階から成る操作が必要で煩雑であるためにエネルギー消費も大きくなり、コスト高となってしまう。
本発明者は、バイオマスを水に分散させ高温高圧下で処理して改質バイオマスを得るための条件として、特許文献1にある250℃以上のみならず、触媒を添加すれば250℃以下でも加水分解が進行することを見いだし、得られる固形物の発熱量は特許文献1の方法で得られるものと遜色ない値を示すことを明らかにした。なお、ここでいうバイオマスとは、生命活動によって生み出された物質であり、木材や廃材、シダ類、麦わらやおがくずなどの木質系のバイオマスに限らず、動植物の遺骸や排泄物、廃棄物、またはそれらの混合物、いわゆる生ゴミであっても構わない。
また、飽和水蒸気圧下の超臨界水もしくは亜臨界水でバイオマスを処理することで、固形物質、水溶性化合物、気体物質の他に得られる油状物質について、処理温度と収率の関係、およびその発熱量を詳細に検討したところ、処理温度が高いほど油状物質の収率が下がること、さらに添加する触媒を選ぶことで比較的高収率で得られることがわかった。生成した油状物質の発熱量は25MJ/kg以上(実施例においては37MJ/kg)である。
本発明の処理によって得られる気体物質にはメタンなどの可燃性物質が含まれること、さらに水溶性化合物には植物の生育を促進するはたらきがあることを本発明により確認している。したがって、本発明による操作で得られる固形、油溶性液体、水溶性液体を含む水溶液、気体の各物質や混合物は、すべて使用することが可能であり、残渣は発生しない。
本発明で用いるのは耐圧密閉容器とそれを加熱する装置のみであり、改質バイオマスを得るのに複雑な装置を必要としない。
本発明による方法で、一段の操作で簡便に改質バイオマスを得ることが可能になった。また、触媒を用いることで250℃以下でも実施できることから、加水分解法によるバイオマスの改質処理に適用できる温度範囲が広がり、より実用化が可能となった。
固体や気体よりも利便性が高く発熱量も高い油状の改質バイオマスが、処理条件を選ぶことで、高収率で生成物を入手できるようになった。
さらに、生成物に含まれる水溶性化合物の水溶液には植物の生育を促進させる効果のあることがわかった。
なお、本発明は、従来のバイオマス燃料と異なり、高発熱量を示すバイオマス燃料を製造する技術に関するものであり、化石燃料に頼らない再生可能な資源をエネルギー源とする社会の実現に貢献するものである。
従来のバイオマスの高効率転換技術はNEDOプロジェクト「バイオマスエネルギー高効率転換技術開発」や電力中研「木質バイオマス発電」、SONY「木質バイオマス発電」などで推進されており、本発明はこれらの行政や業界が目指す方向とも合致している。
本発明のバイオマス改質方法において使用されるバイオマス原料は生命活動によって生み出された物質であり、木材や廃材、シダ類、麦わらやおがくずなどのセルロース系バイオマスに限らず、動植物の遺骸や排泄物、廃棄物、またはそれらの混合物であっても構わない。
これらのバイオマス原料のうち、木材や廃材などの塊は、処理工程に入る前に細分化されて、たとえば10mm以下、好ましくは5mm以下のペレット状もしくはおがくず状になっていることが好ましいが、特許文献4にあるように、処理の最後の段階で短時間内に脱圧させて液相の水の一部を気化させることで爆砕してもよい。
特開第2010−162498号公報
本発明の亜臨界水または超臨界水による操作は、超臨界水用の耐圧密閉容器を用いるべきである。実験室スケールにおいては、たとえばオーエムラボテック社製ミニオートクレーブMA型などが挙げられる。以下実験室スケールでの形態について記述する。
まず、容器にバイオマスと水をいれる。目的に応じて触媒を入れる。触媒は予め水と混合してから導入してもよいし、容器の中で混合してもよい。
導入する水の量が多すぎて空間容積をほぼ占めるようになると、加熱による体積膨張のために容器を破壊する恐れがある。たとえば水の比容積は4℃では1.00、250℃では1.25、超臨界温度に近い370℃では2.21、超臨界温度である374℃では3.16である。逆に、少なすぎると水相が消失してしまい加水分解反応が進みにくくなる。したがってこれらを考慮して適切な量の水、たとえば空間容積の10%から90%、望ましくは30%から70%の水量を用いるのが望ましい。
触媒として用いることのできるものは酸、塩基、塩などであり、無機物でも有機物でも有機金属化合物でもよく、水と混合することで均一系になるものでも不均一系になるものでも構わない。ただし、不均一系になるものを用いる場合には、後処理の際に容易に分離できるか、分離の必要がないものであることが好ましい。酸、塩基、塩として使用できるものは、塩酸、硫酸、硝酸、弗酸、トルエンスルホン酸、リン酸、酢酸、水酸化カリウム、水酸化ナトリウム、炭酸カルシウム、炭酸ナトリウム、酢酸ナトリウム、リン酸カリウムなどが挙げられるが、目的に応じて使い分けるのが望ましい。
例えば硫酸を用いれば、反応後にアンモニアで中和させることで、硫安をも生成させ肥料とすることもできる。
次いで、容器を密閉し、加熱器に導入して加熱する。加熱器は予め加熱しておいてもいいし、容器を導入してから加熱をはじめてもよい。容器の加熱にはオイルバス、サンドバス、チューブオーブン、ハイテンプオーブンなどが使用できるが、水熱処理後の操作の利便性を考慮すると、チューブオーブンやハイテンプオーブンの使用が好ましい。
大気圧下で水を導入して密閉した容器を加熱すると、容器内の圧力は水の飽和蒸気圧に保たれる。したがって本発明において概バイオマスが処理される圧力は、各温度における水の飽和蒸気圧と同じであって、それ以上でもそれ以下でもない。
水の超臨界温度である374℃以下では、容器内は水相と気相に分かれるが、概バイオマスは気相ではなく水相に存在するほうがより効果的である。そのため、概バイオマスを水相に浸漬するための工夫を加えてもよい。その方法は特に限定されないが、容器を立てる、内容物を導入する際に落としぶたをするなどが挙げられる。
触媒を用いずに処理を行うときは250℃以上の温度が必要だが、酸触媒を添加することで処理温度を下げることができる。無触媒で処理を行うと、処理後の水溶液のpHは2−4程度であり、反応は酸性条件下で進行していることがわかる。したがって酸触媒を添加することで反応が促進される。
本発明による処理によって有害物質が発生する恐れのある酸触媒を使用する場合には、処理温度に特に留意すべきである。たとえば、塩酸は塩素を含むため、高温ではダイオキシンを発生させる恐れがある。しかし200℃以下であればダイオキシンが発生しないという指摘がたとえば特許文献5にある。また、硫酸を使用した場合には高温ほど二硫化酸素などの有害なガスが高温ほど発生しやすい。一方で、温度が低いと反応速度が遅くなり、概バイオマスの転化が進行しにくい。したがって、有害物質が発生する恐れのある酸触媒を使用する場合の処理温度は、好ましくは180℃から200℃、さらに好ましくは200℃付近がよい。
特開第2001−137806号
塩基性触媒を用いた場合、処理温度を250℃よりも低くすることはできないが、処理後の固形分が減少し、かわりに油状物質が比較的高収率で得られるという特徴がある。固形物質と油状物質の収率は塩基性触媒の濃度には大きく依存しないが、濃度を上げると固形物質の発熱量が低下する。したがって塩基性触媒の濃度は、好ましくは5%程度である。
所定温度で所定の時間置いた容器を開栓して内容物を取り出すにあたって、安全性の面から、室温に戻して内圧を大気圧にまで下げてから開栓するのが好ましいが、特許文献4にあるように加熱状態のまま瞬時に脱圧することもできる。なお、冷却の方法は限定されず、空冷でも冷媒を使用してもよく、徐冷でも急冷でも構わない。
生成した内容物は気体物質、固形分、油状液体、水溶液からなるが、これらの取り出し方も分離方法も特に限定されない。水溶液をまず分離し、残渣を燃料として使用するならば、固形分と油状液体を分離しなくてもよいし、分離してもよい。
取り出した改質バイオマスは、目的に応じて、そのまま使用することもできるし、希釈したり、pHの調整を行ってから使用してもよい。
5mm角程度のペレット状に粉砕した松の樹木5gと水10gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブを予め280℃に加熱しておいたアズワン社製ハイテンプオーブンHTO−450Sに入れ、30分置き、その後、室温に戻して開栓した。気体成分と水溶液の他に、固形分と油状液体がそれぞれ40%と10%の収率で得られ、それぞれ30MJ/kg、35MJ/kgの発熱量を示した。原料であるチップの発熱量が15MJ/kg程度であるのに比べると発熱量がかなり向上しており、さらに同時比較した火力発電用の石炭の発熱量が26MJ/kg(実機における発熱量は28.7MJであり、使用した熱量計は低めの値を示している)であることと比べても、得られた固形分と油状液体は非常に高い発熱量を有していることがわかる。固形分のSEM写真を図1に示す。石炭と同様に細孔が見られ、そのサイズは1から10μm程度のオーダーであった。気体成分と油状液体をガスクロマトグラフィーにかけたところ、気体成分からはエチレン、エタン、プロペン、プロパン、イソブテン、ブタノンなどに相当するシグナルが検出され、油状液体からは3−イソプロピルトルエン、2−ヒドロキシアニソール、フェニルリン酸、イソバニリンなどの芳香族に帰属されるシグナルと、アジピン酸ビス(2−エチルヘキシル)などの脂肪族に帰属されるシグナルが検出された。
松、シダ、鯛、プランクトン、アオコ、スギ間伐材をそれぞれ実施例1と同様に、ただし温度と時間を変化させて処理を行った。結果を表1に示す。いずれも気体成分と水溶液の他に、固形分と油状液体が得られ、固形分は30MJ/kg、油状液体は30から38MJ/kgの発熱量を示した。
Figure 2013014737
スギの間伐材5gと5wt%硫酸20gをオーエムラボテック社製ミニオートクレーブMA型容器に入れて密閉した。予め180℃に加熱しておいたアズワン社製ハイテンプオーブンHTO−450Sにこの容器を入れ、15、30、60分それぞれ置いた。また、200℃でも同様に30分と60分それぞれ置いた。固形分と油状液体の収量は表2に示した。いずれも、気体成分と水溶液の他に、黒色の固形分と油状液体とが得られており、反応が進行したことを確認した。180℃においたものは200℃に置いたものよりも反応の進行が遅く、60分でもまだ反応が進行中であるとみられる。したがって反応の進行には180℃よりも200℃のほうが有効であると言える。なお、5wt%硫酸の代わりに5wt%パラトルエンスルホン酸もしくは5wt%塩酸を用いたところ、同様の結果を得た。
Figure 2013014737
(比較例1) スギの間伐材5gと水10gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブをアズワン社製ハイテンプオーブンHTO−450Sに入れ、200℃に60分置いたところ、何も変化が見られなかった。したがって実施例3で示したように、酸を添加することが処理温度の低下を可能にしていることがわかる。
(比較例2) 5wt%硫酸を用いた実施例3と水を用いた比較例1と同様の操作を250℃で行ったところ、いずれも黒色の固形物と油状液体が得られ、反応の進行を確認したが、固形分、油状液体の収量に顕著な差は確認できなかった。5wt%塩酸を用いたときも水で処理を行ったものとの差は見られなかった。したがって、250℃では触媒の効果が現れないことがわかった。また、この温度では二酸化硫黄と考えられる異臭が発生していた。したがって、250℃ではこれら酸触媒の添加によるメリットよりもデメリットの方が大きい。
スギの間伐材5gと5%水酸化ナトリウム水溶液20gをオーエムラボテック社製ミニオートクレーブMA型に入れて密閉した。このオートクレーブをアズワン社製ハイテンプオーブンHTO−450Sに入れ、所定温度に60分置いたところ、200℃では反応は進行しなかったが、250℃では進行した。無触媒もしくは酸性触媒を用いたときと比べると、固形分の収量が減少し、かわりに油状物質が増加していた。固形物質の発熱量は24MJ/kgあった。つぎに、水酸化ナトリウムの濃度を10%に増加させると、固形物質と油状物質の収量に顕著な変化は見られないが、固形物質の発熱量が20MJ/kgであり、処理前のスギと同程度まで低下していた。さらに水溶液のpHはいずれも無触媒のときと比べて高かった。これらの結果から、酸性条件下で進行する反応が抑制され、固形物質のうち発熱量の高い成分が油状物質に転化して収率が向上したと考えられる。表3に示すように、弱塩基である酢酸ナトリウムや酢酸カリウム、炭酸ナトリウム、リン酸カリウムでも同様の結果を得た。
Figure 2013014737
実施例1において松の処理をした際に得られた水溶液を1000倍に希釈したA液を準備した。なお、pHは、水溶液の原液で3、10倍希釈で4、1000倍に希釈したA液で6から7の値を示した。次に、3号黒色ポリポットに赤玉土を入れ、サルビアを植えたところに、腐葉土を赤玉土に対して半分加える(1)、1に肥料としてハイポネックスを1000倍に希釈したものを加える(2)、2にA液を週1回(3)、週2回(4)、週7回(5)与えた。それぞれ3鉢ずつ、合計15鉢を使用して、それぞれを平均してプロットしたものを図2に示す。1と2よりも3、4、5のほうが成長が著しく、A液の添加回数が多い5のほうが3よりも成長が著しいことがわかる。したがって、実施例1の処理で得られた水溶性成分にはサルビアの育成を3〜6倍に促進させるはたらきがあることがわかる。
松を300℃で90分処理したものの電子顕微鏡写真 サルビアの成長に対する水溶液添加の効果を示したグラフ

Claims (7)

  1. バイオマスを原料として、亜臨界水または超臨界水に浸漬した状態で400℃以下の温度、各温度における飽和水蒸気圧下で、時間5分から12時間で反応処理することにより、生成物である固形物質、油性物質、水溶性物質及び気体物質を得ることで、バイオマスを資源化する方法。
  2. 酸、アルカリ、塩をいずれか一つまたは複数を触媒として使用する請求項1記載の方法。
  3. 請求項2記載の酸、アルカリ、塩が、塩酸、硫酸、硝酸、弗酸、トルエンスルホン酸、リン酸、酢酸、KOH、NaOH、炭酸カルシウム、炭酸ナトリウム、酢酸ナトリウム、塩化ナトリウムなどの塩化合物である請求項1記載のバイオマスの資源化方法。
  4. 生命活動によって生み出されたバイオマスであり、木材、廃材、シダ類、農業による生産物とその廃棄物、動物、魚類、貝類、藻類、都市ごみ、動物の排泄物、水生植物、プランクトンなどの植物性、動物性のバイオマス材料並びにこれらの混合物をバイオマス原料とする請求項1記載のバイオマスの資源化方法。
  5. 発熱量が20MJ/kg以上である請求項1記載の固形物質。
  6. 発熱量が25MJ/kg以上であることを特徴とする請求項1または4記載の油状物質。
  7. 水溶性物質が野菜、花卉、植物、プランクトンなどの生物育成効果を有する物質である請求項1もしくは4記載のバイオマスの資源化方法。
JP2011162565A 2011-07-05 2011-07-05 バイオマスから高発熱燃料と高性能生物育成剤を得る方法 Withdrawn JP2013014737A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162565A JP2013014737A (ja) 2011-07-05 2011-07-05 バイオマスから高発熱燃料と高性能生物育成剤を得る方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162565A JP2013014737A (ja) 2011-07-05 2011-07-05 バイオマスから高発熱燃料と高性能生物育成剤を得る方法

Publications (1)

Publication Number Publication Date
JP2013014737A true JP2013014737A (ja) 2013-01-24

Family

ID=47687704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162565A Withdrawn JP2013014737A (ja) 2011-07-05 2011-07-05 バイオマスから高発熱燃料と高性能生物育成剤を得る方法

Country Status (1)

Country Link
JP (1) JP2013014737A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171515A (ja) * 2016-03-22 2017-09-28 株式会社日立製作所 バイオマス改質システムおよび方法
GB2549334A (en) * 2016-04-15 2017-10-18 Ind Chemicals Group Ltd Combustible product
JP2017190448A (ja) * 2016-04-11 2017-10-19 花王株式会社 土壌改良剤
JP2018525539A (ja) * 2015-06-11 2018-09-06 タイトン バイオサイエンシズ,エルエルシー 植物性材料およびリサイクルされた材料から、パルプ、エネルギーおよびバイオ派生物を製造するための、方法およびシステム
JP2020099891A (ja) * 2018-12-25 2020-07-02 Autorem株式会社 有機性廃棄物の処理方法及び処理装置
EP3753999A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Semi-continous hydrothermal reaction system
EP3753630A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Method and system for recovering fibers from fibrous products
US11134679B2 (en) 2016-04-11 2021-10-05 Kao Corporation Method for growing plant
CN115669994A (zh) * 2022-10-26 2023-02-03 河南农业大学 一种有机催化剂改良近临界水提取烟叶生物质的方法
CN115669993A (zh) * 2022-10-26 2023-02-03 河南农业大学 一种无机催化剂改良近临界水提取烟叶生物质的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525539A (ja) * 2015-06-11 2018-09-06 タイトン バイオサイエンシズ,エルエルシー 植物性材料およびリサイクルされた材料から、パルプ、エネルギーおよびバイオ派生物を製造するための、方法およびシステム
JP7022588B2 (ja) 2015-06-11 2022-02-18 サーク,エルエルシー 植物性材料およびリサイクルされた材料から、パルプ、エネルギーおよびバイオ派生物を製造するための、方法およびシステム
WO2017163873A1 (ja) * 2016-03-22 2017-09-28 株式会社日立製作所 バイオマス改質システムおよび方法
JP2017171515A (ja) * 2016-03-22 2017-09-28 株式会社日立製作所 バイオマス改質システムおよび方法
JP2017190448A (ja) * 2016-04-11 2017-10-19 花王株式会社 土壌改良剤
WO2017179351A1 (ja) * 2016-04-11 2017-10-19 花王株式会社 土壌改良方法
US11134679B2 (en) 2016-04-11 2021-10-05 Kao Corporation Method for growing plant
US11279877B2 (en) 2016-04-11 2022-03-22 Kao Corporation Method for improving soil
GB2549334B (en) * 2016-04-15 2018-04-04 Industrial Chemicals Group Ltd Combustible product
GB2549334A (en) * 2016-04-15 2017-10-18 Ind Chemicals Group Ltd Combustible product
JP2020099891A (ja) * 2018-12-25 2020-07-02 Autorem株式会社 有機性廃棄物の処理方法及び処理装置
EP3753999A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Semi-continous hydrothermal reaction system
EP3753630A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Method and system for recovering fibers from fibrous products
CN115669994A (zh) * 2022-10-26 2023-02-03 河南农业大学 一种有机催化剂改良近临界水提取烟叶生物质的方法
CN115669993A (zh) * 2022-10-26 2023-02-03 河南农业大学 一种无机催化剂改良近临界水提取烟叶生物质的方法

Similar Documents

Publication Publication Date Title
JP2013014737A (ja) バイオマスから高発熱燃料と高性能生物育成剤を得る方法
Seow et al. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications
Alagumalai et al. Environmentally benign solid catalysts for sustainable biodiesel production: A critical review
Ekpo et al. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate
Ekpo et al. Influence of pH on hydrothermal treatment of swine manure: impact on extraction of nitrogen and phosphorus in process water
CN107971324B (zh) 一种餐厨垃圾厌氧发酵沼渣减量化资源化的方法及其装置
WO2017000444A1 (zh) 生物化学—热化学多点交联处理生物质废物的方法及系统
Li et al. Kinetics and mechanism for hydrothermal conversion of polyhydroxybutyrate (PHB) for wastewater valorization
CN105331376A (zh) 基于微波水热碳化的新鲜生物质高值化处理装置及方法
Sheikh et al. Nanotechnology based technological development in biofuel production: current status and future prospects
JP2007111673A (ja) 生ゴミ又は食品残渣のメタン発酵処理方法
JP2011205934A (ja) 有機酸の製造方法、有機酸、生分解性プラスチック、融雪剤、及び再利用システム
Daniel et al. Recovering biogas and nutrients via novel anaerobic co-digestion of pre-treated water hyacinth for the enhanced biogas production
CN106753504B (zh) 一种生物质液化生产液体燃料的方法
CN110038488A (zh) 一种利用有机固体废弃物产氢的方法
CN103333716A (zh) 一种以污泥为原料制备富氢燃气的方法和产品
RU2013129237A (ru) Извлечение фосфора из гидротермической обработки биомассы
JP2004352756A (ja) 燃料ガスの製造方法
Liu et al. Waste biorefinery development toward circular bioeconomy with a focus on life-cycle assessment
Ajayi et al. Methanol production from cow dung
GB2476090A (en) Method of combining hydrogen with carbon dioxide to make methane and other compounds
JP2006198601A (ja) 梅酢液並びにカキ殻を高機能性資源に再生する方法
US9968904B2 (en) Hydrothermal conversion process with inertial cavitation
Kowalski et al. Conversion of sewage sludge into biofuels via different pathways and their use in agriculture: a comprehensive review
Lentz et al. Thermochemical conversion: A prospective swine manure solution for North Carolina

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007