WO2017175427A1 - 周波数変調回路、fm-cwレーダおよび高速変調レーダ - Google Patents

周波数変調回路、fm-cwレーダおよび高速変調レーダ Download PDF

Info

Publication number
WO2017175427A1
WO2017175427A1 PCT/JP2016/088203 JP2016088203W WO2017175427A1 WO 2017175427 A1 WO2017175427 A1 WO 2017175427A1 JP 2016088203 W JP2016088203 W JP 2016088203W WO 2017175427 A1 WO2017175427 A1 WO 2017175427A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
converter
modulation
analog
Prior art date
Application number
PCT/JP2016/088203
Other languages
English (en)
French (fr)
Inventor
龍也 上村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018510228A priority Critical patent/JP6351910B2/ja
Priority to US16/078,390 priority patent/US10393861B2/en
Priority to CN202110623960.3A priority patent/CN113325409B/zh
Priority to CN201680084240.1A priority patent/CN109073745B/zh
Priority to EP16897979.7A priority patent/EP3422044B1/en
Publication of WO2017175427A1 publication Critical patent/WO2017175427A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing

Definitions

  • the present invention relates to a radar frequency modulation circuit that performs frequency modulation, an FM-CW radar, and a high-speed modulation radar.
  • a conventional FM-CW radar that employs an FM-CW (Frequency Modulated-Continuous Waves) system with a relatively simple circuit configuration uses the frequency of a beat signal between a frequency-modulated transmission signal and a reception signal reflected from a target. Measure and calculate the relative distance and relative speed with the target.
  • a conventional FM-CW radar that employs the FM-CW system is provided with a voltage controlled oscillator (VCO) that is a voltage-controlled oscillator.
  • VCO voltage controlled oscillator
  • the VCO outputs an oscillation frequency signal that is frequency-modulated according to the modulation control voltage, and this oscillation frequency signal requires high modulation linearity.
  • the VCO is a semiconductor device whose frequency is controlled by voltage, it exhibits nonlinear frequency characteristics with respect to voltage. Further, the frequency characteristics of the VCO fluctuate due to variations in individual differences or temperature characteristics. For this reason, it is essential to adjust the modulation linearity by measuring the oscillation frequency signal of the VCO in the shipping inspection process, which is an obstacle to reducing the inspection time during mass production.
  • the conventional FM-CW radar represented by Patent Document 1 corrects the oscillation frequency signal of the VCO with a modulation control voltage LUT (Look Up Table), or a frequency modulation circuit.
  • a modulation control voltage LUT Look Up Table
  • the characteristics of the VCO due to deterioration over time after shipment can be dealt with.
  • the conventional FM-CW radar represented by Patent Document 1 is an IF signal that is an intermediate frequency signal obtained by frequency-dividing the oscillation frequency signal of the VCO with a frequency divider DIV (Divider) and then down-converting the local signal.
  • the (Intermediate Frequency) signal is converted into a digital signal by an analog-to-digital converter (ADC) that is an analog-to-digital converter.
  • ADC analog-to-digital converter
  • the instantaneous frequency is measured by the microcomputer from the instantaneous phase information of the IF signal by the orthogonal demodulation method.
  • the microcomputer is referred to as a microcomputer.
  • the oscillation frequency of the VCO is calculated from the frequency of the local signal and the frequency division number, the time-frequency data measured by the orthogonal demodulation method is poor in measurement accuracy, and high frequency modulation linearity is obtained even by feedback control. There was a problem that I could not.
  • the present invention has been made in view of the above, and an object thereof is to obtain a frequency modulation circuit capable of obtaining high frequency modulation linearity.
  • a frequency modulation circuit of the present invention includes a digital-analog converter that outputs modulation control time voltage data, and a modulation control time voltage data output from the digital analog converter.
  • the frequency divider that divides and outputs the oscillation frequency signal of the voltage controlled oscillator, and the frequency conversion that down-converts the divided signal output from the frequency divider Converter, a single-phase differential converter that converts a single-phase intermediate frequency signal output from the frequency converter into a differential signal, and a differential signal that is output from the single-phase differential converter.
  • Frequency is measured based on the analog-digital converter that converts the signal into a digital signal and the differential signal of each analog-digital converter. And updates the modulation control time voltage data based on the frequency, characterized in that a signal processing circuit for correcting the time error of the oscillation frequency signal of the voltage controlled oscillator.
  • the figure which shows the frequency modulation circuit of FM-CW radar which concerns on embodiment of this invention The flowchart which shows the modulation correction operation in the microcomputer shown in FIG. Timing chart for explaining the modulation correction operation in the microcomputer shown in FIG.
  • the figure which shows the structure which measures a frequency from phase information by an orthogonal demodulation system using the IF signal input into the signal processing circuit shown in FIG. The figure for demonstrating the time calculation method in the signal processing circuit shown in FIG.
  • the figure which shows the comparative example with respect to FM-CW radar which concerns on embodiment of this invention The figure which shows the 1st modification of the FM-CW radar which concerns on embodiment of this invention
  • the figure which shows the 2nd modification of the FM-CW radar which concerns on embodiment of this invention The figure which shows the 3rd modification of the FM-CW radar which concerns on embodiment of this invention
  • the figure which shows the 4th modification of the FM-CW radar which concerns on embodiment of this invention The figure which shows the 5th modification of the FM-CW radar which concerns on embodiment of this invention
  • the figure which shows the high-speed modulation radar which concerns on embodiment of this invention The figure showing the frequency specification in FM-CW radar concerning an embodiment of the invention
  • FIG. 1 is a diagram showing a frequency modulation circuit of an FM-CW radar according to an embodiment of the present invention.
  • the FM-CW radar 100-1 shown in FIG. 1 includes a frequency modulation circuit 110-1, a transmission antenna 1 connected to the frequency modulation circuit 110-1, and a reception antenna 14 connected to the frequency modulation circuit 110-1. Is provided.
  • the frequency modulation circuit 110-1 generates a triangular wave voltage signal that is a modulation control voltage based on the modulation signal output from the high frequency circuit 2 connected to the transmission antenna 1 and the reception antenna 14 and the high frequency circuit 2 to generate the high frequency circuit 2 And a signal processing circuit 6 for outputting to the VCO 5.
  • the frequency modulation circuit 110-1 includes a single-phase differential converter 18, a baseband amplifier circuit 11, an LPF (Low Pass Filter) 24, an LPF 25, a control circuit 15, and an ambient temperature monitor 23.
  • the high frequency circuit 2 generates an oscillation frequency signal, which is a modulation signal frequency-modulated by the modulation control voltage transmitted from the signal processing circuit 6, and outputs most of the output of the VCO 5 to the amplifier 3, and the remaining output Is provided as a local signal to a MIX (Mixer) 12 that is a frequency converter.
  • the high frequency circuit 2 amplifies the output of the power distributor 4 and outputs the amplified signal to the transmission antenna 1, the low noise amplifier 13 that amplifies the reception signal received by the reception antenna 14, and the amplification by the low noise amplifier 13.
  • the MIX 12 is provided by down-converting the converted signal into an IF signal using a local signal.
  • the high frequency circuit 2 also divides and outputs the frequency signal of the oscillation frequency signal of the VCO 5, a reference frequency generator 21 that outputs a local signal, a frequency-divided signal output from the DIV 19, and an output from the reference frequency generator 21. And a MIX 20 that mixes with the local signal and down-converts the frequency-divided signal into an IF signal using the local signal.
  • the frequency of the IF signal corresponds to the difference frequency between the frequency of the divided signal and the frequency of the local signal.
  • Each element of the high-frequency circuit 2 is configured by MMIC (Microwave Monolithic IC).
  • the single-phase differential converter 18 converts a single-phase IF signal output from the MIX 20, that is, a single-ended signal, into a differential signal and outputs the differential signal.
  • the LPF 25 suppresses and outputs unnecessary waves and noise of the positive-phase differential signal output from the single-phase differential converter 18.
  • the LPF 24 suppresses unnecessary waves and noise of the negative-phase differential signal output from the single-phase differential converter 18 and outputs the result.
  • the baseband amplifier circuit 11 amplifies the output signal of the MIX 12 and outputs it as a received signal.
  • the output signal of the LPF 24 is input to the ADC 16 in the signal processing circuit 6, and the output signal of the LPF 25 is input to the ADC 17 in the signal processing circuit 6, and is used for updating the triangular wave voltage signal data in the LUT 22.
  • the signal processing circuit 6 includes a microcomputer 10 that is a main circuit unit that mainly performs transmission processing and measurement processing, and a digital analog that converts a triangular wave voltage signal transmitted from the microcomputer 10 into an analog signal and outputs the analog signal to the VCO 5 of the high-frequency circuit 2. It includes a DAC (Digital to Analog Converter) 7 that is a converter.
  • DAC Digital to Analog Converter
  • the signal processing circuit 6 also converts an ADC 16 that converts the output signal of the LPF 24 into a digital signal, an ADC 17 that converts the output signal of the LPF 25 into a digital signal, and a received signal output from the baseband amplifier circuit 11 into a digital signal.
  • ADC 9 for outputting to the microcomputer 10 is provided.
  • the microcomputer 10 includes a LUT 22 that stores data for a triangular wave voltage signal applied to the VCO 5 and a nonvolatile memory 8.
  • An ambient temperature monitor 23 that measures the ambient temperature of the microcomputer 10 is connected to the microcomputer 10.
  • the control circuit 15 controls various control voltages supplied to each MMIC in the high-frequency circuit 2 by the microcomputer 10. Specifically, since each MMIC in the high-frequency circuit 2 varies depending on the manufacturing lot, the control voltage value adjusted and determined for each MMIC is stored in the nonvolatile memory in the microcomputer 10 for actual operation. The microcomputer 10 sometimes reads the control voltage value from the nonvolatile memory 8 and supplies it to each MMIC in the high-frequency circuit 2 via the control circuit 15.
  • the VCO 5 is an FM-CW which is a high-frequency oscillation frequency signal composed of an ascending modulation signal whose frequency rises within a certain period and a descending modulation signal whose frequency falls within a certain period by a triangular wave voltage signal output from the signal processing circuit 6. Generate a signal.
  • the FM-CW signal is input to the power distributor 4, most of which is supplied to the transmission antenna 1, and millimeter wave radio waves are emitted from the transmission antenna 1 toward the target.
  • the remaining FM-CW signals are supplied to the MIX 12 as local signals.
  • the reflected wave reflected by the target is captured by the receiving antenna 14 and input to the MIX 12 as a received signal.
  • the MIX 12 mixes the received signal from the receiving antenna 14 and the local signal from the power distributor 4 and outputs a beat signal having a frequency corresponding to the frequency difference between the two signals. This beat signal is amplified to an appropriate level by the baseband amplifier circuit 11 and input to the microcomputer 10 via the ADC 9.
  • the microcomputer 10 obtains the distance to the target object and the relative speed from the frequency in the rising modulation period and the frequency in the falling modulation period in the input beat signal, and calculates the relative distance information to the target object and the target object.
  • a signal processing unit 10-1 for outputting relative speed information is provided.
  • the information output from the signal processing unit 10-1 is transmitted to the vehicle control unit 200 provided in the vehicle on which the FM-CW radar 100-1 is mounted.
  • the vehicle control unit 200 has a function of comprehensively controlling the operation of the vehicle on which the FM-CW radar 100-1 is mounted.
  • the vehicle control unit 200 performs processes such as clutter removal and target identification based on these pieces of information.
  • the FM-CW signal of VCO 5 is dropped to a frequency of 1 / integer by DIV 19 and input to MIX 20.
  • MIX 20 the frequency-divided signal output from DIV 19 and the local signal output from reference frequency generator 21 are mixed and an IF signal is output.
  • the IF signal is converted into a differential signal by the single-phase differential converter 18, and the differential signal is input to the microcomputer 10 via the ADC 16 and ADC 17 after unnecessary waves and noise are removed by the LPF 24 and LPF 25.
  • the microcomputer 10 measures the frequency from the phase information of the IF signal by the quadrature demodulation method, performs correction processing using the measurement result, and obtains a voltage table necessary for ensuring the modulation linearity of the frequency of the oscillation frequency signal. Calculate and update the control voltage LUT 22. As a result, the data for the triangular wave voltage signal output in the next cycle with respect to the VCO 5 is updated. The updated triangular wave voltage signal data is converted by the DAC 7 into an analog signal which is modulation control time voltage data and input to the VCO 5.
  • the initial value of the modulation control data is stored in the microcomputer 10 as a predetermined default chirp data, and a measure is taken such that it is not output until the LUT 22 is updated after the frequency is measured.
  • FIG. 2 is a flowchart showing the modulation correction operation in the microcomputer shown in FIG.
  • FIG. 3 is a timing chart for explaining the modulation correction operation in the microcomputer shown in FIG.
  • the waveform of the modulation control voltage is shown on the upper side of FIG. 3.
  • a modulation frequency characteristic is shown on the lower side of FIG.
  • Reference numerals (1) to (8) shown in FIG. 3 correspond to the numbers S1 to S8 shown in FIG.
  • the VCO 5 When the microcomputer 10 outputs the modulation control voltage of the default chirp, the VCO 5 outputs a modulation signal of the default chirp corresponding to this modulation control voltage (S1), and the microcomputer 10 measures the frequency of the first VCO frequency division signal. (S2).
  • the voltage-frequency data for the default chirp data is approximated by an nth-order polynomial (n is an integer of 2 or more), for example, a cubic function, and a voltage table necessary for ensuring linearity is calculated from the result. In this calculation, modulation correction is performed by inverse function correction (S3).
  • the VCO 5 When the microcomputer 10 outputs the modulation control voltage after the inverse function correction, the VCO 5 outputs a modulation signal corresponding to the modulation control voltage (S4), and the microcomputer 10 measures the frequency of the VCO frequency division signal for the second and subsequent times. (S5).
  • the microcomputer 10 approximates the time-frequency data by n-order polynomial approximation, for example, cubic function approximation, calculates the time error with respect to the ideal frequency line at the second and subsequent updates of the LUT 22, and corrects each time data. This calculation is modulation correction by time error correction (S6).
  • the VCO 5 By outputting the modulation control voltage after the time error correction, the VCO 5 outputs a modulation signal corresponding to this modulation control voltage (S7), and the modulation correction is completed (S8).
  • the modulation frequency is corrected to the waveform shown in (8) of FIG.
  • FIG. 4 is a diagram showing a configuration for measuring the frequency from the phase information by the orthogonal demodulation method using the IF signal inputted to the signal processing circuit shown in FIG.
  • the ADC 16 and the ADC 17 correspond to the ADC 16 and the ADC 17 shown in FIG. 1, and after the IF signal is digitized, the microcomputer 10 calculates V ′ by performing differential arithmetic processing.
  • the microcomputer 10 includes an LPF 10-2, a MIX 10-3, a frequency generation unit 10-4, a MIX 10-5, an LPF 10-6, an LPF 10-7, an instantaneous phase difference calculation unit 10-8, an instantaneous frequency calculation unit 10-9, and a multiplication Part 10-10.
  • Quadrature demodulation processing is performed by the MIX 10-3, the frequency generator 10-4, the MIX 10-5, and the multiplier 10-10.
  • the data sampled by the ADC 16 is separated into two signals of an I (In-phase) component and a Q (Quadrature) component by quadrature detection.
  • the digital IF signal harmonics and unwanted wave components are suppressed.
  • the quadrature detection by the multiplier 10-10 separates the IF signal into two signals, an I (In-phase) signal and a Q (Quadrature) signal, and then the second-stage LPFs 10-6 and 10-7
  • the sum frequency component (f IF + f Lo ) at the time of multiplication processing is suppressed, and only the difference frequency component (f IF ⁇ f Lo ) is passed.
  • Tan ⁇ 1 (Q / I) of the IF signal is calculated from the I signal and the Q signal by the instantaneous phase difference calculation unit 10-8
  • the instantaneous frequency of the IF signal is calculated by the instantaneous frequency calculation unit 10-9.
  • f ⁇ / ⁇ t is measured.
  • ⁇ t is a time step.
  • FIG. 5 is a diagram for explaining a time calculation method in the signal processing circuit shown in FIG.
  • FIG. 6 is a diagram for explaining an ideal frequency curve calculation method in the signal processing circuit shown in FIG. 5 and 6, the horizontal axis represents time, and the vertical axis represents frequency.
  • Time-frequency data f DETECT1 (t) is approximated by an nth order polynomial in the relationship between time and frequency. Equation (1) below shows frequency measurement data f DETECT1, A (t) after polynomial approximation. Further, when the following formula (1) is expanded to the i-th discrete data, the following formula (2) is obtained. a n , a n ⁇ 1 ,... a 0 (n is a natural number) are coefficients, and ⁇ t is a time step.
  • Time error ⁇ t (t) is calculated from the following equation (3). Further, when the following equation (3) is expanded to the i-th discrete data, ⁇ t (i) as the following equation (4) is obtained.
  • ⁇ ′ (t) is a modulation gradient, and is calculated by differentiating f DETECT1, A once.
  • the following equation (5) shows the modulation gradient ⁇ ′ (t). Further, when the above equation (4) is expanded to the i-th discrete data, ⁇ ′ (i) as in the following equation (6) is obtained.
  • F IDEAL (t) in the above equation (3) is an ideal frequency curve, as shown in the following equation (7).
  • equation (8) is obtained.
  • is a modulation slope theoretical value.
  • f IDEAL at point A (T1 + T / 2) shown in FIG. 6 is obtained by the following equation (9).
  • the relationship of the following equation (10) is established under the condition that f DETECT1, A and f IDEAL are equal at the point A (T1 + T / 2).
  • ⁇ shown in the following equation (11) is calculated from the following equation (10).
  • the microcomputer 10 calculates an arbitrary i-th time error ⁇ t (i) from the above equations (2), (8), and (11), and uses the calculated time error ⁇ t (i).
  • ⁇ t (i) i-th time error from the above equations (2), (8), and (11)
  • FIG. 7 is a diagram showing a comparative example for the FM-CW radar according to the embodiment of the present invention.
  • the FM-CW radar 100 shown in FIG. 7 differs from the FM-CW radar 100-1 of the embodiment in the following points.
  • (1) In the frequency modulation circuit 110 of the FM-CW radar 100, a single-phase IF signal output from the MIX 20 is input to the LPF 26.
  • (2) The output signal of the LPF 26 is input to the ADC 16 in the signal processing circuit 6 and converted into a digital signal.
  • the instantaneous frequency is measured from the instantaneous phase information of the IF signal by the quadrature demodulation method using the signal converted into the digital signal by the ADC 16.
  • the oscillation frequency of the VCO 5 is calculated from the frequency of the local signal source and the frequency division number.
  • the time-frequency data measured by this orthogonal demodulation method has poor measurement accuracy and cannot be feedback-controlled to obtain high frequency modulation linearity.
  • the signal processing circuit 6 performs differential arithmetic processing on the IF signal by the differential arithmetic processing program of the microcomputer 10 by the orthogonal demodulation method
  • the frequency is measured from the phase information obtained by the program execution process, and the n-th order polynomial (n is an integer of 2 or more) for the time-frequency data of the IF signal output by the modulation control voltage of the chirp after the inverse function correction Approximation is performed, and modulation correction is performed to correct the time error.
  • Frequency measurement method By converting the IF signal of the divided output of the VCO into a differential output and performing a differential calculation process with the differential calculation processing program of the microcomputer 10, a DC offset, even harmonics included in the signal, and Common mode noise can be suppressed, and measurement errors during frequency measurement in the orthogonal demodulation method can be improved.
  • the differential ADC is used for the ADC 16 shown in FIG. 7, not only the component cost increases but also the area occupied by the modules constituting the differential ADC increases.
  • the FM-CW radar 100- 1 can use ADCs 16 and 17 corresponding to only a single end, and the frequency of components can be measured with high accuracy while suppressing the component cost. Further, by performing this highly accurate frequency measurement, the modulation correction accuracy is improved.
  • the modulation linearity is improved, and the distance to the target object and the relative speed can be obtained with higher accuracy.
  • the modulation band of the VCO 5 is wide, and even after down-converting to an IF signal, especially in the low band of the modulation band, the second harmonic component is applied to the modulation band and is difficult to suppress by the LPF 26 configured by hardware.
  • the differential calculation process it is possible to suppress the second harmonic component in the low band of the modulation band.
  • the microcomputer 10 measures the instantaneous frequency f of the IF signal based on the single-phase IF signal output from the MIX 20.
  • the instantaneous frequency f of the IF signal is a frequency measured by the above-described instantaneous frequency calculation unit 10-9.
  • the microcomputer 10 performs the modulation correction described with reference to FIGS. 2 and 3 on the frequency-time waveform of the frequency in the rising modulation period of the IF signal and the frequency in the falling modulation period of the IF signal.
  • the FM-CW radar 100-1 transmits the FM-CW signal generated based on the LUT 22 after the modulation correction, receives the reflected wave from the target object, and then receives the received beat signal down-converted by the MIX 12 by the ADC 9.
  • the received beat signal converted into the digital signal is subjected to FFT (Fast Fourier Transform) processing and signal processing, and the distance to the target object and the relative speed are calculated.
  • FFT Fast Fourier Transform
  • the modulation correction accuracy is improved, the modulation linearity becomes a favorable characteristic, and the calculation accuracy of the distance to the target object and the relative speed by the FM-CW radar 100-1 is improved.
  • the measurement error at the time of frequency measurement can be absorbed by approximating with an nth order polynomial as in (1) above. Absorption of measurement errors enables highly accurate modulation correction.
  • the frequency measurement error that occurs instantaneously can be absorbed by the n-th order polynomial approximation.
  • the VCO 5 has a certain error in frequency measurement due to temperature drift due to the physical properties of the semiconductor. Therefore, if the intercept ⁇ in the above equation (7) and equation (8) of the ideal frequency curve is fixed at a theoretical value such as the slope ⁇ , the correction amount becomes excessive, and accurate modulation correction may not be performed. Therefore, in the present embodiment, by using the above equation (11), it is possible to prevent the correction amount from becoming excessive, and it is possible to perform stable modulation correction.
  • FIG. 8 is a diagram showing a first modification of the FM-CW radar according to the embodiment of the present invention.
  • the reference frequency generator 21 and the MIX 20 shown in FIG. 1 are omitted.
  • the frequency modulation circuit 110-2 includes a DIV 19 that frequency-divides and outputs the oscillation frequency signal of the VCO 5, and a single-phase differential converter 18 that converts the frequency-divided signal output from the DIV 19 into a differential signal and outputs the differential signal. .
  • One of the differential signals is input to the LPF 24, and the other differential signal is input to the LPF 25.
  • the microcomputer 10 of the signal processing circuit 6 shown in FIG. 8 measures the frequency from the phase information of the differential signal by the orthogonal demodulation method, and the nth order polynomial (for the differential signal output by the modulation control voltage of the default chirp. n is an approximation of 2 or more), and modulation correction is performed to correct the time error of the differential signal.
  • the reference frequency generator 21 and the MIX 20 shown in FIG. 1 are unnecessary, the configuration of the frequency modulation circuit 110-2 is simplified, the manufacturing cost can be reduced, and the reliability is improved. .
  • FIG. 9 is a diagram showing a second modification of the FM-CW radar according to the embodiment of the present invention.
  • the single-phase differential converter 18 shown in FIG. 1 is omitted.
  • the frequency modulation circuit 110-3 includes a DIV 19 and a MIX 20 that down-converts the frequency-divided signal output from the DIV 19, converts a single-phase IF signal into a differential signal, and outputs the differential signal.
  • One of the differential signals is input to the LPF 24, and the other differential signal is input to the LPF 25.
  • the microcomputer 10 of the signal processing circuit 6 shown in FIG. 9 measures the frequency from the phase information of the IF signal by the quadrature demodulation method, and the nth-order polynomial (n is Approximation of an integer of 2 or more) and modulation correction for correcting the time error of the IF signal is performed.
  • the single-phase differential converter 18 shown in FIG. 1 is unnecessary, the configuration of the frequency modulation circuit 110-3 is simplified, the manufacturing cost can be reduced, and the reliability is improved.
  • FIG. 10 is a diagram showing a third modification of the FM-CW radar according to the embodiment of the present invention.
  • the MIX 20 and the reference frequency generator 21 shown in FIG. 1 are omitted.
  • the frequency modulation circuit 110-4 includes a Balun (Balanced unbalanced) 27, which is a balanced / unbalanced converter, instead of the single-phase differential converter 18 shown in FIG.
  • the Balun 27 converts the single-end frequency-divided signal output from the DIV 19 into a differential type differential signal and outputs it.
  • One of the differential signals is input to the LPF 24, and the other differential signal is input to the LPF 25.
  • the microcomputer 10 of the signal processing circuit 6 shown in FIG. 10 measures the frequency from the phase information of the differential signal by the orthogonal demodulation method, and the nth order polynomial (for the differential signal output by the modulation control voltage of the default chirp. n is an approximation of 2 or more), and modulation correction is performed to correct the time error of the differential signal.
  • the reference frequency generator 21 and the MIX 20 shown in FIG. 1 are unnecessary, the configuration of the frequency modulation circuit 110-2 is simplified, the manufacturing cost can be reduced, and the reliability is improved. .
  • FIG. 11 is a diagram showing a fourth modification of the FM-CW radar according to the embodiment of the present invention.
  • the MIX 20, the reference frequency generator 21, and the single-phase differential converter 18 shown in FIG. 1 are omitted.
  • the DIV 19 of the frequency modulation circuit 110-5 frequency-divides the oscillation frequency signal of the VCO 5, converts the divided signal into a differential signal, and outputs it.
  • One of the differential signals is input to the LPF 24, and the other differential signal is input to the LPF 25.
  • the microcomputer 10 of the signal processing circuit 6 shown in FIG. 11 measures the frequency from the phase information of the differential signal by the orthogonal demodulation method, and the nth order polynomial (for the differential signal output by the modulation control voltage of the default chirp. n is an integer of 2 or more) to correct the time error of the differential signal.
  • the MIX 20, the reference frequency generator 21, and the single-phase differential converter 18 shown in FIG. 1 are unnecessary, the configuration of the frequency modulation circuit 110-5 is simplified, and the manufacturing cost is reduced. And reliability is improved.
  • FIG. 12 is a diagram showing a fifth modification of the FM-CW radar according to the embodiment of the present invention.
  • a frequency modulation circuit 110-6 of the FM-CW radar 100-6 shown in FIG. 12 includes a Balun 27 instead of the single-phase differential converter 18 shown in FIG.
  • Balun 27 converts the single-phase IF signal output from MIX 20 into a differential signal and outputs the differential signal.
  • One of the differential signals is input to the LPF 24, and the other differential signal is input to the LPF 25.
  • the microcomputer 10 of the signal processing circuit 6 shown in FIG. 12 measures the frequency from the phase information of the IF signal by the orthogonal demodulation method, and the nth order polynomial (n Is an integer of 2 or more), and modulation correction is performed to correct the time error of the IF signal.
  • the frequency modulation circuit 110-6 similarly to the frequency modulation circuit 110-1 in FIG. 1, it is not necessary to use a differential ADC, and an increase in the occupied area can be suppressed.
  • the frequency modulation circuit according to the present embodiment is provided in the FM-CW radar, which is an example of a radar that performs frequency modulation, has been described.
  • the frequency modulation circuit according to the present embodiment is applied to a high-speed modulation radar. It may be provided. Both the FM-CW radar and the high-speed modulation radar are radars that perform frequency modulation, but the FM-CW radar is a radar that performs frequency modulation in a broad sense, and the high-speed modulation radar is a radar that performs frequency modulation in a narrow sense.
  • FIG. 13 is a diagram showing a high-speed modulation radar according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing frequency specification in the FM-CW radar according to the embodiment of the present invention.
  • FIG. 15 is a diagram showing frequency identification in the high-speed modulation radar according to the embodiment of the present invention.
  • the difference between the FM-CW radar 100-1 shown in FIG. 1 and the high-speed modulation radar 100-7 shown in FIG. 13 is that the contents of the arithmetic processing in the signal processing unit 10-1 are different.
  • the high-speed modulation radar 100-7 shown in FIG. 13 includes the frequency modulation circuit 110-1 shown in FIG. 1, but any one of the frequency modulation circuits 110-2 to 110-6 is used instead of the frequency modulation circuit 110-1. By providing any one of these frequency modulation circuits 110-2 to 110-6, the same effects as those of the FM-CW radars 100-2 to 100-6 can be obtained.
  • the contents of the arithmetic processing in the signal processing unit 10-1 provided in each of the FM-CW radars 100-1 to 100-6 and the high-speed modulation radar 100-7 will be described.
  • the vertical axis represents frequency
  • the horizontal axis represents time.
  • the signal processing unit 10-1 of the frequency modulation circuit provided in the FM-CW radars 100-1 to 100-6 is a combination of the up frequency f UP and the down frequency f DN shown in the following equations (12) and (13).
  • the simultaneous equations are solved to calculate the relative distance and relative speed to the target object.
  • C represents a high speed
  • B represents a modulation bandwidth
  • T represents a modulation time
  • represents a wavelength
  • R represents a relative distance
  • v represents a relative velocity.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • the signal processing unit 10-1 of the frequency modulation circuit provided in the high-speed modulation radar 100-7 calculates the relative distance R according to the following (14). Since the high-speed modulation radar 100-7 has a higher chirp speed than the FM-CW radars 100-1 to 100-6, the relative speed v item can be ignored compared to the relative distance R. Therefore, 2v / ⁇ can be regarded as 0. Then, after collecting data for each distance bin, the signal processing unit 10-1 calculates the relative velocity v by performing Doppler processing.
  • the high-speed modulation radar 100-7 has a modulation time T different from that of the FM-CW radars 100-1 to 100-6, and the modulation time T of the high-speed modulation radar 100-7 is from the FM-CW radar 100-1. Examples of the time are 1/100 or 1/100 or less of the modulation time T of 100-6. Therefore, the FM-CW radars 100-1 to 100-6 can lower the sampling frequency in the ADCs 16 and 17 compared with the high-speed modulation radar 100-7, thereby reducing power consumption.
  • the high-speed modulation radar 100-7 has a higher modulation speed than the FM-CW radars 100-1 to 100-6, and can increase the processing speed such as clutter removal and target identification in the vehicle control unit 200.
  • the FM-CW radars 100-1 to 100-6 according to this embodiment have high frequency modulation linearity, the relative distance and relative speed to the target object can be obtained with higher accuracy. Further, since the high-speed modulation radar 100-7 according to this embodiment has high frequency modulation linearity, the relative distance and relative speed to the target object can be obtained with higher accuracy. Furthermore, the high-speed modulation radar 100-7 according to this embodiment has higher discrimination than the FM-CW radars 100-1 to 100-6, and can determine the true distance to the target object. .
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

周波数変調回路110-1は、VCO5と、DIV19と、MIX20と、単相差動変換器18と、信号処理回路6とを備える。信号処理回路6は、直交復調方式により中間周波数信号をマイコンのプログラムで差動演算処理後に、位相情報から周波数を計測し、逆関数補正後チャープの変調制御電圧により出力されたIF信号の時間―周波数データに対してn次多項式(nは2以上の整数)の近似を行い、時間誤差を補正する変調補正を行う。

Description

周波数変調回路、FM-CWレーダおよび高速変調レーダ
 本発明は、周波数変調を行うレーダの周波数変調回路、FM-CWレーダおよび高速変調レーダに関する。
 回路構成が比較的簡素であるFM-CW(Frequency Modulated-Continuous Waves)方式を採用する従来のFM-CWレーダは、周波数変調した送信信号と目標物から反射した受信信号とのビート信号の周波数を計測し、目標物との相対距離および相対速度を算出する。またFM-CW方式を採用する従来のFM-CWレーダには電圧制御発振器であるVCO(Voltage Controlled Oscillator)が設けられる。
 VCOは変調制御電圧に従い周波数変調された発振周波数信号を出力するが、この発振周波数信号には高い変調直線性が要求される。ところがVCOは、電圧で周波数を制御する半導体デバイスであるため、電圧に対して非線形な周波数特性を示す。またVCOは、個体差のばらつきまたは温度特性により周波数特性が変動する。そのため、出荷検査工程においてVCOの発振周波数信号を計測して変調直線性に対する調整作業が必須であり、量産時の検査時間削減の足枷となっている。
 特許文献1に代表される従来のFM-CWレーダは、VCOの変調直線性を得るために、変調制御電圧用のLUT(Look Up Table)によりVCOの発振周波数信号を補正し、または周波数変調回路上にVCOの発振周波数信号を計測する機構を設けてフィードバック制御を行うことにより、出荷後の経年劣化によるVCOの特性変動に対応している。
特開2007-298317号公報
 特許文献1に代表される従来のFM-CWレーダは、VCOの発振周波数信号を周波数分周器であるDIV(Divider)で周波数分周後、ローカル信号でダウンコンバートした中間周波数の信号であるIF(Intermediate Frequency)信号を、アナログディジタル変換器であるADC(Analog to Digital Converter)でディジタル信号に変換する。その後、直交復調方式によりIF信号の瞬時位相情報から瞬時周波数をマイクロコンピュータで計測する。以下ではマイクロコンピュータをマイコンと称する。
 VCOの発振周波数はローカル信号の周波数と分周数から算出されるが、直交復調方式で計測された時間-周波数データは、計測精度として乏しく、フィードバック制御しても高い周波数変調の直線性を得ることができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、高い周波数変調の直線性を得ることができる周波数変調回路を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の周波数変調回路は、変調制御時間電圧データを出力するディジタルアナログ変換器と、ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、周波数分周器から出力される分周信号をダウンコンバートする周波数変換器と、周波数変換器から出力される単相の中間周波数信号を差動信号に変換して出力する単相差動変換器と、単相差動変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて変調制御時間電圧データを更新し、電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路とを備えたことを特徴とする。
 本発明によれば、高い周波数変調の直線性を得ることができるという効果を奏する。
本発明の実施の形態に係るFM-CWレーダの周波数変調回路を示す図 図1に示すマイコンにおける変調補正動作を示すフローチャート 図2に示すマイコンにおける変調補正動作を説明するためのタイミングチャート 図1に示す信号処理回路に入力されるIF信号を用いて直交復調方式により位相情報から周波数を計測する構成を示す図 図1に示す信号処理回路における時間算出方法を説明するための図 図1に示す信号処理回路における理想周波数曲線算出方法を説明するための図 本発明の実施の形態に係るFM-CWレーダに対する比較例を示す図 本発明の実施の形態に係るFM-CWレーダの第1の変形例を示す図 本発明の実施の形態に係るFM-CWレーダの第2の変形例を示す図 本発明の実施の形態に係るFM-CWレーダの第3の変形例を示す図 本発明の実施の形態に係るFM-CWレーダの第4の変形例を示す図 本発明の実施の形態に係るFM-CWレーダの第5の変形例を示す図 本発明の実施の形態に係る高速変調レーダを示す図 本発明の実施の形態に係るFM-CWレーダにおける周波数特定を表す図 本発明の実施の形態に係る高速変調レーダにおける周波数特定を表す図
 以下に、周波数変調回路、FM-CWレーダおよび高速変調レーダを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は本発明の実施の形態に係るFM-CWレーダの周波数変調回路を示す図である。図1に示すFM-CWレーダ100-1は、周波数変調回路110-1と、周波数変調回路110-1に接続される送信アンテナ1と、周波数変調回路110-1に接続される受信アンテナ14とを備える。
 周波数変調回路110-1は、送信アンテナ1および受信アンテナ14に接続される高周波回路2と、高周波回路2から出力される変調信号に基づく変調制御電圧である三角波電圧信号を生成して高周波回路2のVCO5へ出力する信号処理回路6とを備える。また周波数変調回路110-1は、単相差動変換器18、ベースバンドアンプ回路11、LPF(Low Pass Filter)24、LPF25、制御回路15および周囲温度モニタ23を備える。
 高周波回路2は、信号処理回路6から送信される変調制御電圧により周波数変調された変調信号である発振周波数信号を発生するVCO5と、VCO5の出力の大部分を増幅器3に出力し、残りの出力をローカル信号として周波数変換器であるMIX(Mixer)12に出力する電力分配器4とを備える。
 また高周波回路2は、電力分配器4の出力を増幅して送信アンテナ1へ出力する増幅器3と、受信アンテナ14で受信された受信信号を増幅する低雑音増幅器13と、低雑音増幅器13で増幅された信号をローカル信号によってIF信号へダウンコンバートしてMIX12とを備える。
 また高周波回路2は、VCO5の発振周波数信号を周波数分周して出力するDIV19と、ローカル信号を出力する基準周波数発生器21と、DIV19から出力される分周信号と基準周波数発生器21から出力されるローカル信号とをミキシングし、分周信号をローカル信号によってIF信号へダウンコンバートして出力するMIX20とを備える。IF信号の周波数は、分周信号の周波数とローカル信号の周波数との差分の周波数に相当する。
 高周波回路2の各要素はMMIC(Microwave Monolithic IC)で構成されている。
 単相差動変換器18は、MIX20から出力される単相のIF信号、すなわちシングルエンド信号を差動信号に変換して出力する。LPF25は、単相差動変換器18から出力される正相側差動信号の不要波およびノイズを抑圧して出力する。LPF24は、単相差動変換器18から出力される逆相側差動信号の不要波およびノイズを抑圧して出力する。ベースバンドアンプ回路11は、MIX12の出力信号を増幅し、受信信号として出力する。
 LPF24の出力信号は信号処理回路6内のADC16に入力され、LPF25の出力信号は信号処理回路6内のADC17に入力され、LUT22内の三角波電圧信号用データの更新に利用される。
 信号処理回路6は、主に送信処理および計測処理を行う主回路部であるマイコン10と、マイコン10から送信される三角波電圧信号をアナログ信号に変換して高周波回路2のVCO5に出力するディジタルアナログ変換器であるDAC(Digital to Analog Converter)7とを備える。
 また信号処理回路6は、LPF24の出力信号をディジタル信号に変換するADC16と、LPF25の出力信号をディジタル信号に変換するADC17と、ベースバンドアンプ回路11から出力された受信信号をディジタル信号に変換しマイコン10に出力するADC9とを備える。
 マイコン10は、VCO5に与える三角波電圧信号用のデータを格納するLUT22と、不揮発性メモリ8とを備える。マイコン10には、マイコン10の周囲温度を計測する周囲温度モニタ23が接続される。
 制御回路15は、マイコン10により、高周波回路2内の各MMICに供給する各種の制御電圧を制御する。具体的には、高周波回路2内の各MMICは、製造ロットによってバラツキがあるため、MMIC毎に調整して決定した制御電圧値をマイコン10内の不揮発性メモリに格納しておき、実際の運用時にマイコン10は、制御電圧値を不揮発性メモリ8から読み出し、制御回路15を介して高周波回路2内の各MMICに供給する。
 以下、FM-CWレーダ100-1の動作を説明する。
 VCO5は、信号処理回路6から出力される三角波電圧信号により、周波数が一定期間内に上昇する上昇変調信号と一定期間内に下降する下降変調信号とからなる高周波の発振周波数信号であるFM-CW信号を発生する。
 このFM-CW信号は電力分配器4に入力され、その大部分が送信アンテナ1に供給され、送信アンテナ1からミリ波電波が目標物に向けて照射される。また残りのFM-CW信号はローカル信号としてMIX12に供給される。
 目標物で反射した反射波は受信アンテナ14に捕捉され、受信信号としてMIX12に入力される。MIX12は、受信アンテナ14からの受信信号と電力分配器4からのローカル信号とをミキシングし、双方の信号の周波数差に相当する周波数のビート信号を出力する。このビート信号は、ベースバンドアンプ回路11で適切なレベルに増幅され、ADC9を介してマイコン10に入力される。
 マイコン10は、入力したビート信号における上昇変調期間での周波数と下降変調期間での周波数とから、目標物体までの距離と相対速度とを求め、目標物体までの相対距離情報と、目標物体との相対速度情報とを出力する信号処理部10-1を備える。なお信号処理部10-1から出力されたこれらの情報は、FM-CWレーダ100-1を搭載する車両内に設けられた車両制御部200に送信される。車両制御部200はFM-CWレーダ100-1を搭載する車両の動作を統括的に制御する機能を備え、車両制御部200ではこれらの情報に基づきクラッタ除去、目標識別といった処理を行う。
 一方、VCO5のFM-CW信号はDIV19により整数分の1の周波数に落とされ、MIX20に入力される。
 MIX20では、DIV19から出力される分周信号と基準周波数発生器21から出力されるローカル信号とがミキシングされ、IF信号が出力される。
 IF信号は単相差動変換器18により差動信号に変換し、差動信号はLPF24およびLPF25により不要波およびノイズが除かれた後、ADC16およびADC17を介してマイコン10に入力される。
 マイコン10は、直交復調方式により、IF信号の位相情報から周波数を計測し、計測結果を利用して補正処理を行い、発振周波数信号の周波数の変調直線性を確保するために必要な電圧テーブルを計算し、制御電圧用のLUT22を更新する。これにより、VCO5に対して次周期に出力される三角波電圧信号用のデータが更新される。更新された三角波電圧信号用のデータはDAC7により、変調制御時間電圧データであるアナログ信号に変換されてVCO5に入力される。
 なお変調制御データの初期値は、予め決められたデフォルトチャープデータをマイコン10に格納しておき、周波数が計測されてからLUT22が更新されるまでは出力しないといった処置を施しておく。
 次にVCO5の変調直線性を得るための補正処理に関して説明する。
 図2は図1に示すマイコンにおける変調補正動作を示すフローチャートである。図3は図2に示すマイコンにおける変調補正動作を説明するためのタイミングチャートである。図3の上側には変調制御電圧の波形が示される。図3の下側には変調周波数特性が示される。図3に示される(1)から(8)までの符号は図2に示すS1からS8の番号に対応する。
 マイコン10がデフォルトチャープの変調制御電圧を出力することによりVCO5はこの変調制御電圧に対応したデフォルトチャープの変調信号を出力し(S1)、マイコン10は1回目のVCO分周信号の周波数を計測する(S2)。LUT22の更新時は、デフォルトチャープデータに対する電圧-周波数データをn次多項式近似(nは2以上の整数)、例えば3次関数近似し、その結果からリニアリティ確保に必要な電圧テーブルを計算する。この計算は逆関数補正により変調補正する(S3)。
 マイコン10が逆関数補正後の変調制御電圧を出力することによりVCO5はこの変調制御電圧に対応した変調信号を出力し(S4)、マイコン10は2回目以降のVCO分周信号の周波数を計測する(S5)。マイコン10は、時間-周波数データをn次多項式近似、例えば3次関数近似し、2回目以降のLUT22の更新時は理想周波数直線に対する時間誤差を算出し、各時間データの補正を行う。この計算は時間誤差補正により変調補正する(S6)。時間誤差補正後の変調制御電圧を出力することによりVCO5はこの変調制御電圧に対応した変調信号を出力し(S7)、変調補正が完了する(S8)。S1からS8の動作により変調周波数は図3の(8)に示す波形に補正される。
 図2のS5からS8における誤差時間の算出方法に関して詳しく説明する。図4は図1に示す信号処理回路に入力されるIF信号を用いて直交復調方式により位相情報から周波数を計測する構成を示す図である。ADC16およびADC17は、図1に示されるADC16およびADC17に相当し、IF信号がディジタル化された後、マイコン10は差動演算処理をすることでV’を算出する。マイコン10は、LPF10-2、MIX10-3、周波数発生部10-4、MIX10-5、LPF10-6、LPF10-7、瞬時位相差演算部10-8、瞬時周波数演算部10-9、および乗算部10-10を備える。MIX10-3、周波数発生部10-4、MIX10-5および乗算部10-10により直交復調処理が行われる。具体的には、ADC16にてサンプリングしたデータを、直交検波によりI(In-phase、同相)成分およびQ(Quadrature、直交)成分という2つの信号に分離する。1段目のLPF10-2では、ディジタル化したIF信号の高調波および不要波成分の抑圧処理が行われる。乗算部10-10が直交検波することにより、IF信号をI(In-phase)信号とQ(Quadrature)信号との2つの信号に分離した後、2段目のLPF10-6,10-7が乗算処理時の和周波数成分(fIF+fLo)を抑圧して、差周波数成分(fIF-fLo)のみを通過させる。瞬時位相差演算部10-8によってI信号およびQ信号からIF信号の瞬時位相差Δθ=Tan-1(Q/I)が算出された後、瞬時周波数演算部10-9によってIF信号の瞬時周波数f=Δθ/Δtが計測される。Δtは時間ステップである。
 図5は図1に示す信号処理回路における時間算出方法を説明するための図である。図6は図1に示す信号処理回路における理想周波数曲線算出方法を説明するための図である。図5および図6のそれぞれの横軸は時間であり縦軸は周波数である。
 (1)周波数計測
 図4に示すように単相差動変換器18から出力される逆相側差動信号VがADC16に入力され、正相側差動信号VがADC17に入力され、それぞれがディジタル化される。その後マイコン10のプログラムで差分演算処理をしてから、直交復調方式により、位相情報からIF信号の周波数を計測する。なおS2においても同様の周波数計測が行われる。S5で計測した時間-周波数データをfDETECT1(t)とする。
 fDETECT1(t)から理想周波数に対する時間誤差の算出方法は以下に説明する。
 (2)時間誤差算出
 時間-周波数データfDETECT1(t)を、時間と周波数の関係においてn次多項式近似する。下記(1)式に多項式近似後の周波数計測データfDETECT1,A(t)を示す。また下記(1)式をi番目の離散的なデータに拡張した場合、下記(2)式のようになる。a,an-1,・・・a(nは自然数)は係数であり、Δtは時間ステップである。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 時間誤差∂t(t)は下記(3)式から算出する。また下記(3)式をi番目の離散的なデータに拡張した場合は下記(4)式のような∂t(i)になる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 上記(3)式のα(t)は変調傾きであり、fDETECT1,Aを1回微分することで算出する。下記(5)式に変調傾きα(t)を示す。また上記(4)式をi番目の離散的なデータに拡張した場合、下記(6)式のようなα(i)になる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記(3)式のfIDEAL(t)は理想周波数曲線であり、下記(7)式に示す通りである。また下記(7)式をi番目の離散的なデータに拡張した場合、下記(8)式のようになる。下記(7)式および下記(8)式のαは変調傾き理論値である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 上記(7)式および上記(8)式のβの算出方法を以下に示す。周波数計測結果、fDETECT1,Aの変調中心点T+T/2からt=0にfIDEAL(t)を戻すことによりβを算出する。具体的には、図6に示すA点(T1+T/2)におけるfIDEALが下記(9)式により求められる。またA点(T1+T/2)においてfDETECT1,AとfIDEALが等しくなる条件より、下記(10)式の関係が成り立つ。下記(10)式より、下記(11)式に示すβが算出される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 マイコン10は、上記(2)式、上記(8)式および上記(11)式より任意のi番目の時間誤差∂t(i)を算出し、算出した時間誤差∂t(i)を使用して、逆関数補正後のLUT22を追加補正することで図3の(7)に示すように高い変調直線性を得る。
 図7は本発明の実施の形態に係るFM-CWレーダに対する比較例を示す図である。図7に示すFM-CWレーダ100は実施の形態のFM-CWレーダ100-1と比較して以下の点が異なる。
 (1)FM-CWレーダ100の周波数変調回路110では、MIX20から出力される単相のIF信号がLPF26に入力されること。
 (2)LPF26の出力信号は信号処理回路6内のADC16に入力されディジタル信号に変換されること。
 図7に示すマイコン10では、ADC16でディジタル信号に変換された信号を用いて直交復調方式によりIF信号の瞬時位相情報から瞬時周波数を計測する。そしてVCO5の発振周波数はローカル信号源の周波数と分周数から算出する。この直交復調方式で計測した時間-周波数データは、計測精度として乏しく、フィードバック制御して、高い周波数変調の直線性を得ることができない。
 本発明の実施の形態に係るFM-CWレーダ100-1は、信号処理回路6が直交復調方式により、IF信号をマイコン10の差動演算処理プログラムで差動演算処理をした後、マイコン10のプログラム実行処理により得られた位相情報から周波数を計測し、逆関数補正後チャープの変調制御電圧により出力されたIF信号の時間-周波数データに対してn次多項式(nは2以上の整数)の近似を行い、時間誤差を補正する変調補正を行う。これにより以下のような効果を得ることができる。
 (1)周波数計測方法
 VCOの分周出力のIF信号を差動出力化して、マイコン10の差動演算処理プログラムで差動演算処理をすることで信号に含まれるDCオフセット、偶数次高調波およびコモンモードノイズを抑圧することができ、直交復調方式における周波数計測時の計測誤差を向上することができる。また図7に示すADC16に差動ADCを使用した場合、部品コストが増加するだけでなく差動ADCを構成するモジュールの占有面積が増加するが、本実施の形態に係るFM-CWレーダ100-1ではシングルエンドのみに対応したADC16,17を用いることができ、部品コストを抑えて、高精度な周波数計測が可能である。また、この高精度な周波数計測を行うことにより、変調補正精度が向上する。その結果、変調直線性が向上して、目標物体までの距離と相対速度とをより高精度に求めることができる。またVCO5の変調帯域は広く、IF信号にダウンコンバートした後も、変調帯域の低域においては、特に2次高調波成分が変調帯域にかかり、ハードウェアで構成されるLPF26で抑圧することは難しいが、差動演算処理をすることで、変調帯域の低域における2次高調波成分も抑圧することができる。
 マイコン10では、MIX20から出力される単相のIF信号に基づき、IF信号の瞬時周波数fが計測される。IF信号の瞬時周波数fは前述した瞬時周波数演算部10-9によって計測された周波数である。マイコン10は、IF信号の上昇変調期間での周波数およびIF信号の下降変調期間での周波数の周波数-時間波形について、図2および図3で説明した変調補正を行う。FM-CWレーダ100-1は、変調補正後のLUT22に基づいて生成したFM-CW信号を送信し、目標物体からの反射波を受信した後、MIX12でダウンコンバートした受信ビート信号は、ADC9でディジタル信号に変換される。ディジタル信号に変換された受信ビート信号は、FFT(Fast Fourier Transform)処理および信号処理され、目標物体までの距離と相対速度が算出される。VCO5の高精度な周波数計測の結果、変調補正精度は向上し、変調直線性は良好な特性となり、FM-CWレーダ100-1による目標物体までの距離と相対速度の算出精度は向上する。
 (2)時間誤差算出方法
 直交復調方式による周波数計測時には、IF信号に含まれる雑音、DCオフセットおよび高調波成分により、周波数計測時の計測誤差が発生する。そのため、計測誤差を含んだ時間-周波数データを元に時間誤差を算出して時間誤差補正をすると、高精度な変調補正により高い変調直線性を得ることは難しい。本実施の形態によれば上記(1)のようにn次多項式で近似することにより周波数計測時の計測誤差を吸収することできる。計測誤差の吸収により、高精度な変調補正が可能となる。また一般的なFM-CWレーダのモジュールでは、外乱である振動、騒音および電磁ノイズの発生により、瞬時的に周波数の計測誤差が生じることを予想できるが、当該周波数の計測誤差を吸収することはできない。本実施の形態によればn次多項式近似により、瞬時的に発生する周波数の計測誤差を吸収できる。
 一方、VCO5は半導体の物性により温度ドリフトで周波数計測にある一定の誤差が生じる。従って理想周波数曲線の上記(7)式および上記(8)式における切片βを傾きαのように理論値で固定すると補正量が過剰になり、正確な変調補正ができない場合がある。そこで本実施の形態では上記(11)式を用いることで、補正量が過剰になることを防ぐことができ、安定的な変調補正が可能となる。
 図8は本発明の実施の形態に係るFM-CWレーダの第1の変形例を示す図である。図8に示すFM-CWレーダ100-2の周波数変調回路110-2では、図1に示す基準周波数発生器21およびMIX20が省かれている。
 周波数変調回路110-2は、VCO5の発振周波数信号を周波数分周して出力するDIV19と、DIV19から出力される分周信号を差動信号に変換して出力する単相差動変換器18を備える。差動信号の一方はLPF24に入力され、差動信号の他方はLPF25に入力される。
 また図8に示す信号処理回路6のマイコン10は、直交復調方式により差動信号の位相情報から周波数を計測し、デフォルトチャープの変調制御電圧により出力された差動信号に対してn次多項式(nは2以上の整数)の近似を行い、差動信号の時間誤差を補正する変調補正を行う。
 周波数変調回路110-2によれば、図1に示す基準周波数発生器21およびMIX20が不要であり、周波数変調回路110-2の構成が簡素化され、製造コストを低減でき、信頼性が向上する。
 図9は本発明の実施の形態に係るFM-CWレーダの第2の変形例を示す図である。図9に示すFM-CWレーダ100-3の周波数変調回路110-3では、図1に示す単相差動変換器18が省かれている。
 周波数変調回路110-3は、DIV19と、DIV19から出力される分周信号をダウンコンバートし、単相のIF信号を差動信号に変換して出力するMIX20とを備える。差動信号の一方はLPF24に入力され、差動信号の他方はLPF25に入力される。
 また図9に示す信号処理回路6のマイコン10は、直交復調方式によりIF信号の位相情報から周波数を計測し、デフォルトチャープの変調制御電圧により出力されたIF信号に対してn次多項式(nは2以上の整数)の近似を行い、IF信号の時間誤差を補正する変調補正を行う。
 周波数変調回路110-3によれば、図1に示す単相差動変換器18が不要であり、周波数変調回路110-3の構成が簡素化され、製造コストを低減でき、信頼性が向上する。
 図10は本発明の実施の形態に係るFM-CWレーダの第3の変形例を示す図である。図10に示すFM-CWレーダ100-4の周波数変調回路110-4では、図1に示すMIX20および基準周波数発生器21が省かれている。
 また周波数変調回路110-4は、図1に示す単相差動変換器18の代わりに平衡不平衡変換器であるBalun(Balanced unbalanced)27を備える。Balun27は、DIV19から出力されるシングルエンドの分周信号を差動型の差動信号に変換して出力する。差動信号の一方はLPF24に入力され、差動信号の他方はLPF25に入力される。
 また図10に示す信号処理回路6のマイコン10は、直交復調方式により差動信号の位相情報から周波数を計測し、デフォルトチャープの変調制御電圧により出力された差動信号に対してn次多項式(nは2以上の整数)の近似を行い、差動信号の時間誤差を補正する変調補正を行う。
 周波数変調回路110-4によれば、図1に示す基準周波数発生器21およびMIX20が不要であり、周波数変調回路110-2の構成が簡素化され、製造コストを低減でき、信頼性が向上する。
 図11は本発明の実施の形態に係るFM-CWレーダの第4の変形例を示す図である。図11に示すFM-CWレーダ100-5の周波数変調回路110-5では、図1に示すMIX20、基準周波数発生器21および単相差動変換器18が省かれている。
 周波数変調回路110-5のDIV19は、VCO5の発振周波数信号を周波数分周し、分周信号を差動信号に変換して出力する。差動信号の一方はLPF24に入力され、差動信号の他方はLPF25に入力される。
 また図11に示す信号処理回路6のマイコン10は、直交復調方式により差動信号の位相情報から周波数を計測し、デフォルトチャープの変調制御電圧により出力された差動信号に対してn次多項式(nは2以上の整数)の近似を行い、差動信号の時間誤差を補正する。
 周波数変調回路110-5によれば、図1に示すMIX20、基準周波数発生器21および単相差動変換器18が不要であり、周波数変調回路110-5の構成が簡素化され、製造コストを低減でき、信頼性が向上する。
 図12は本発明の実施の形態に係るFM-CWレーダの第5の変形例を示す図である。図12に示すFM-CWレーダ100-6の周波数変調回路110-6は、図1に示す単相差動変換器18の代わりにBalun27を備える。
 Balun27は、MIX20から出力される単相のIF信号を差動信号に変換して出力する。差動信号の一方はLPF24に入力され、差動信号の他方はLPF25に入力される。
 また図12に示す信号処理回路6のマイコン10は、直交復調方式によりIF信号の位相情報から周波数を計測し、デフォルトチャープの変調制御電圧により出力された差動信号に対してn次多項式(nは2以上の整数)の近似を行い、IF信号の時間誤差を補正する変調補正を行う。
 周波数変調回路110-6によれば、図1の周波数変調回路110-1と同様に差動ADCを使用する必要がなく占有面積の増加を抑制できる。
 ここまでは本実施の形態に係る周波数変調回路を、周波数変調を行うレーダの一例であるFM-CWレーダに設けた例を説明したが、本実施の形態に係る周波数変調回路は高速変調レーダに設けてもよい。FM-CWレーダおよび高速変調レーダは何れも周波数変調を行うレーダであるが、FM-CWレーダは広義の周波数変調を行うレーダであり、高速変調レーダは狭義の周波数変調を行うレーダである。図13は本発明の実施の形態に係る高速変調レーダを示す図である。図14は本発明の実施の形態に係るFM-CWレーダにおける周波数特定を表す図である。図15は本発明の実施の形態に係る高速変調レーダにおける周波数特定を表す図である。
 図1に示すFM-CWレーダ100-1と図13に示す高速変調レーダ100-7との相違点は、信号処理部10-1における演算処理の内容が異なる点である。図13に示す高速変調レーダ100-7は、図1に示す周波数変調回路110-1を備えるが、周波数変調回路110-1の代わりに、周波数変調回路110-2から110-6の何れか1つを備えるものでもよく、これらの周波数変調回路110-2から110-6の何れか1つを備えることにより、FM-CWレーダ100-2から100-6と同様の効果を得ることができる。以下ではFM-CWレーダ100-1から100-6および高速変調レーダ100-7のそれぞれに設けられる信号処理部10-1における演算処理の内容を説明する。
 図14の縦軸は周波数を表し、横軸は時間を表す。FM-CWレーダ100-1から100-6に設けられる周波数変調回路の信号処理部10-1は、下記(12)式および(13)式に示すアップ周波数fUPとダウン周波数fDNとの組合せを選定後、連立方程式を解いて目標物体までの相対距離および相対速度を算出する。なお下記(12)式および(13)式のCは高速、Bは変調帯域幅、Tは変調時間、λは波長、Rは相対距離、vは相対速度を表す。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 図15の縦軸は周波数を表し、横軸は時間を表す。高速変調レーダ100-7に設けられる周波数変調回路の信号処理部10-1は、下記(14)により相対距離Rを算出する。高速変調レーダ100-7ではFM-CWレーダ100-1から100-6に比べてチャープの速度が高いため、相対距離Rに比べて相対速度vの項目は無視できる。そのため2v/λは0と見なすことができる。そして信号処理部10-1は、距離ビン毎のデータを収集後、ドップラ処理を行うことで相対速度vを算出する。
Figure JPOXMLDOC01-appb-M000014
 高速変調レーダ100-7は、FM-CWレーダ100-1から100-6に比べて、変調時間Tが異なり、高速変調レーダ100-7の変調時間Tとしては、FM-CWレーダ100-1から100-6の変調時間Tの1/100または1/100以下の時間を例示できる。従って、FM-CWレーダ100-1から100-6は、高速変調レーダ100-7に比べてADC16,17におけるサンプリング周波数を低下させることができ、これにより消費電力を低減することができる。高速変調レーダ100-7は、FM-CWレーダ100-1から100-6に比べて変調速度が速く、車両制御部200におけるクラッタ除去、目標識別といった処理速度を高めることができる。
 この実施の形態によるFM-CWレーダ100-1から100-6は、周波数変調の直線性が高いため、目標物体までの相対距離および相対速度をより高精度に求めることができる。また、この実施の形態による高速変調レーダ100-7は、周波数変調の直線性が高いため、目標物体までの相対距離および相対速度をより高精度に求めることができる。さらに、この実施の形態による高速変調レーダ100-7は、FM-CWレーダ100-1から100-6に比べて、より高い識別性を有し、目標物体までの真の距離を求めることができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 送信アンテナ、2 高周波回路、3 増幅器、4 電力分配器、5 VCO、6 信号処理回路、7 DAC、8 不揮発性メモリ、9,16,17 ADC、10 マイコン、10-1 信号処理部、10-2,10-6,10-7 LPF、10-3,10-5,12,20 MIX、10-4 周波数発生部、10-8 瞬時位相差演算部、10-9 瞬時周波数演算部、10-10 乗算部、11 ベースバンドアンプ回路、13 低雑音増幅器、14 受信アンテナ、15 制御回路、18 単相差動変換器、19 DIV、21 基準周波数発生器、22 LUT、23 周囲温度モニタ、24,25,26 LPF、27 Balun、100,100-1,100-2,100-3,100-4,100-5,100-6 FM-CWレーダ、110,110-1,110-2,110-3,110-4,110-5,110-6 周波数変調回路、100-7 高速変調レーダ、200 車両制御部。

Claims (11)

  1.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、
     前記周波数分周器から出力される分周信号をダウンコンバートする周波数変換器と、
     前記周波数変換器から出力される単相の中間周波数信号を差動信号に変換して出力する単相差動変換器と、
     前記単相差動変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  2.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、
     前記周波数分周器から出力される単相の分周信号を差動信号に変換して出力する単相差動変換器と、
     前記単相差動変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  3.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、
     前記周波数分周器から出力される分周信号をダウンコンバートし、単相の中間周波数信号を差動信号に変換して出力する周波数変換器と、
     前記周波数変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  4.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、
     前記周波数分周器から出力される分周信号を差動信号に変換して出力する平衡不平衡変換器と、
     前記平衡不平衡変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  5.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周し、分周信号を差動信号に変換して出力する周波数分周器と、
     前記周波数分周器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  6.  変調制御時間電圧データを出力するディジタルアナログ変換器と、
     前記ディジタルアナログ変換器から出力される変調制御時間電圧データに基づき発振周波数信号を発振する電圧制御発振器と、
     前記電圧制御発振器の発振周波数信号を周波数分周して出力する周波数分周器と、
     前記周波数分周器から出力される分周信号をダウンコンバートして中間周波数信号に変換する周波数変換器と、
     前記周波数変換器から出力される単相の前記中間周波数信号を差動信号に変換して出力する平衡不平衡変換器と、
     前記平衡不平衡変換器から出力される差動信号について、それぞれのアナログ信号をディジタル信号に変換するアナログディジタル変換器と、
     前記アナログディジタル変換器のそれぞれの差動信号に基づき周波数計測し、計測した周波数に基づいて前記変調制御時間電圧データを更新し、前記電圧制御発振器の発振周波数信号の時間誤差を補正する信号処理回路と
     を備えたことを特徴とする周波数変調回路。
  7.  前記差動信号をそれぞれフィルタリングするローパスフィルタを備えたことを特徴とする請求項1から6の何れか1項に記載の周波数変調回路。
  8.  前記信号処理回路は、直交復調方式による差動演算処理プログラムを格納するマイコンと前記変調制御時間電圧データを格納するメモリから構成され、
     前記信号処理回路は、前記アナログディジタル変換器からのそれぞれの差動信号に基づき前記マイコンのプログラム実行処理により得られた位相情報から、前記中間周波数信号の時間周波数データを計測し、予めメモリに格納した変調制御時間電圧データに基づいて前記周波数変換器にてダウンコンバートした中間周波数信号の時間周波数データをn次多項式(nは2以上の整数)で近似し、前記n次多項式で近似した時間周波数データから算出した時間誤差に基づき、前記メモリに格納した変調制御時間電圧データとの差分から、時間誤差を補正した変調制御時間電圧データを補正し、前記メモリの変調制御時間電圧データを更新するとともに、前記電圧制御発振器から出力する発振周波数信号の時間誤差を補正することを特徴とする請求項1、3、6の何れか1項に記載の周波数変調回路。
  9.  前記信号処理回路は、直交復調方式による差動演算処理プログラムを格納するマイコンと前記変調制御時間電圧データを格納するメモリから構成され、
     前記信号処理回路は、前記アナログディジタル変換器からのそれぞれの差動信号に基づき前記マイコンのプログラム実行処理により得られた位相情報から、前記分周信号の時間周波数データを計測し、予めメモリに格納した変調制御時間電圧データに基づいて前記周波数分周器にて分周した分周信号の時間周波数データをn次多項式(nは2以上の整数)で近似し、前記n次多項式で近似した時間周波数データから算出した時間誤差に基づき、前記メモリに格納した変調制御時間電圧データとの差分から、時間誤差を補正した変調制御時間電圧データを補正し、前記メモリの変調制御時間電圧データを更新するとともに、前記電圧制御発振器から出力する発振周波数信号の時間誤差を補正することを特徴とする請求項2、4、5の何れか1項に記載の周波数変調回路。
  10.  請求項1から請求項9の何れか1項に記載の周波数変調回路を備えたことを特徴とするFM-CWレーダ。
  11.  請求項1から請求項9の何れか1項に記載の周波数変調回路を備えたことを特徴とする高速変調レーダ。
PCT/JP2016/088203 2016-04-05 2016-12-21 周波数変調回路、fm-cwレーダおよび高速変調レーダ WO2017175427A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018510228A JP6351910B2 (ja) 2016-04-05 2016-12-21 周波数変調回路、fm−cwレーダおよび高速変調レーダ
US16/078,390 US10393861B2 (en) 2016-04-05 2016-12-21 Frequency modulation circuit, FM-CW radar, and high-speed modulation radar
CN202110623960.3A CN113325409B (zh) 2016-04-05 2016-12-21 频率调制电路、fm-cw雷达及高速调制雷达
CN201680084240.1A CN109073745B (zh) 2016-04-05 2016-12-21 频率调制电路、fm-cw雷达及高速调制雷达
EP16897979.7A EP3422044B1 (en) 2016-04-05 2016-12-21 Frequency modulation circuit, fm-cw radar, and high-speed modulation radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-076029 2016-04-05
JP2016076029 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175427A1 true WO2017175427A1 (ja) 2017-10-12

Family

ID=60000334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088203 WO2017175427A1 (ja) 2016-04-05 2016-12-21 周波数変調回路、fm-cwレーダおよび高速変調レーダ

Country Status (5)

Country Link
US (1) US10393861B2 (ja)
EP (1) EP3422044B1 (ja)
JP (1) JP6351910B2 (ja)
CN (2) CN113325409B (ja)
WO (1) WO2017175427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797334B1 (ja) * 2020-02-21 2020-12-09 三菱電機株式会社 レーダ装置、観測対象検出方法および車載装置
US20220082677A1 (en) * 2019-03-25 2022-03-17 Mitsubishi Electric Corporation Radar device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717254B2 (ja) * 2017-04-19 2020-07-01 株式会社デンソー レーダ信号処理器及びレーダシステム
JP7150068B2 (ja) 2019-01-31 2022-10-07 三菱電機株式会社 アンテナ装置及びレーダ装置
US20230138631A1 (en) 2020-04-10 2023-05-04 Mitsubishi Electric Corporation Radar device
US11070214B1 (en) * 2020-10-14 2021-07-20 Mellanox Technologies Denmark Aps Test circuit for a digital phase-locked loop

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529747A (ja) * 1998-11-11 2002-09-10 シーメンス アクチエンゲゼルシヤフト 高周波電圧制御発振器の非線形性の検出および補正方法
JP2007298317A (ja) 2006-04-28 2007-11-15 Fujitsu Ltd 周波数変調回路及びfm−cwレーダ装置並びに通信統合レーダ装置
JP2008131298A (ja) * 2006-11-20 2008-06-05 Fyuutorekku:Kk アナログ/ディジタル変換装置及びアナログ/ディジタル変換補正方法
JP2011127923A (ja) * 2009-12-15 2011-06-30 Hitachi Kokusai Electric Inc レーダシステム
JP2013047617A (ja) * 2011-08-29 2013-03-07 Toshiba Corp 信号生成回路、発振器、レーダー装置
WO2016132520A1 (ja) * 2015-02-19 2016-08-25 三菱電機株式会社 Fm-cwレーダおよびfm-cw信号の生成方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837556A (en) * 1985-04-15 1989-06-06 Kabushiki Kaisha Nihon Denzai Kogyo Kenkyusho Signal transmission device
JP3323773B2 (ja) * 1997-03-10 2002-09-09 株式会社日立製作所 Vtr用信号処理回路
JP4041323B2 (ja) * 2002-03-12 2008-01-30 松下電器産業株式会社 周波数変調装置、周波数変調方法、および、無線回路装置
JP2003270335A (ja) * 2002-03-13 2003-09-25 Toyota Central Res & Dev Lab Inc レーダ装置
US6941116B2 (en) 2002-11-27 2005-09-06 Broadcom Corp. Linearization technique for phase locked loops employing differential charge pump circuitry
JP2007088657A (ja) * 2005-09-21 2007-04-05 Neuro Solution Corp Fmトランスミッタ
WO2008010298A1 (fr) * 2006-07-21 2008-01-24 Mitsubishi Electric Corporation circuit de génération de signal de modulation, module de transmission/réception et dispositif de radar
JP4407769B2 (ja) 2006-12-11 2010-02-03 株式会社村田製作所 レーダ装置
JP2008256568A (ja) * 2007-04-05 2008-10-23 Nec Corp パルス圧縮レーダ装置及びパルス圧縮レーダ装置の位相変調方法
US7737885B2 (en) 2007-08-01 2010-06-15 Infineon Technologies Ag Ramp linearization for FMCW radar using digital down-conversion of a sampled VCO signal
US7545306B2 (en) 2007-08-06 2009-06-09 Sirit Technologies Inc. Directly sampling radio frequency signals
JP4591592B2 (ja) * 2008-11-19 2010-12-01 三菱電機株式会社 変調信号発生回路、送受信モジュール、およびレーダ装置
US8554159B2 (en) * 2010-04-09 2013-10-08 Intel Mobile Communications GmbH Direct FM/PM modulation
JP5234088B2 (ja) * 2010-10-19 2013-07-10 株式会社Jvcケンウッド 無線通信機
TWI441461B (zh) * 2011-05-20 2014-06-11 Sunplus Technology Co Ltd 具可適應性濾波器的通用接收裝置
EP2743721B1 (en) * 2011-08-12 2019-10-02 Panasonic Corporation Radar apparatus
JP5836493B2 (ja) * 2012-09-07 2015-12-24 株式会社日立製作所 インターリーブa/d変換器
CN105143912A (zh) * 2013-11-13 2015-12-09 姆萨西诺机器株式会社 雷达装置
CN203840287U (zh) * 2014-05-14 2014-09-17 成都雷电微力科技有限公司 一种高频脉冲调制电路
CN114978161A (zh) * 2014-10-03 2022-08-30 三菱电机株式会社 信号生成电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529747A (ja) * 1998-11-11 2002-09-10 シーメンス アクチエンゲゼルシヤフト 高周波電圧制御発振器の非線形性の検出および補正方法
JP2007298317A (ja) 2006-04-28 2007-11-15 Fujitsu Ltd 周波数変調回路及びfm−cwレーダ装置並びに通信統合レーダ装置
JP2008131298A (ja) * 2006-11-20 2008-06-05 Fyuutorekku:Kk アナログ/ディジタル変換装置及びアナログ/ディジタル変換補正方法
JP2011127923A (ja) * 2009-12-15 2011-06-30 Hitachi Kokusai Electric Inc レーダシステム
JP2013047617A (ja) * 2011-08-29 2013-03-07 Toshiba Corp 信号生成回路、発振器、レーダー装置
WO2016132520A1 (ja) * 2015-02-19 2016-08-25 三菱電機株式会社 Fm-cwレーダおよびfm-cw信号の生成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220082677A1 (en) * 2019-03-25 2022-03-17 Mitsubishi Electric Corporation Radar device
JP6797334B1 (ja) * 2020-02-21 2020-12-09 三菱電機株式会社 レーダ装置、観測対象検出方法および車載装置

Also Published As

Publication number Publication date
CN109073745A (zh) 2018-12-21
EP3422044A4 (en) 2019-05-08
JP6351910B2 (ja) 2018-07-04
US10393861B2 (en) 2019-08-27
CN113325409A (zh) 2021-08-31
EP3422044B1 (en) 2021-06-02
CN113325409B (zh) 2023-10-20
EP3422044A1 (en) 2019-01-02
JPWO2017175427A1 (ja) 2018-08-16
US20190049557A1 (en) 2019-02-14
CN109073745B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP6351910B2 (ja) 周波数変調回路、fm−cwレーダおよび高速変調レーダ
US8937572B2 (en) Signal generator, oscillator, and radar device
US10520596B2 (en) FM-CW radar and method of generating FM-CW signal
US11029389B2 (en) FM-CW radar and method of generating FM-CW signal
US7737885B2 (en) Ramp linearization for FMCW radar using digital down-conversion of a sampled VCO signal
JP5606400B2 (ja) 信号生成回路、レーダー装置
WO2016031108A1 (ja) Fmcwレーダー
US20180267159A1 (en) Signal generator
JP5727978B2 (ja) Fmcw信号発生器
EP3203260A1 (en) Signal-generating circuit
US11630185B2 (en) Cascaded radar system calibration of baseband imbalances
US7466141B2 (en) Phase measurement device, method, program, and recording medium
RU2347235C2 (ru) Способ формирования когерентного частотно-модулированного сигнала для рлс с периодической чм модуляцией и устройство, реализующее способ
JP2020101366A (ja) 周波数変調回路、周波数変調連続波レーダおよび高速変調レーダ
JPH0693025B2 (ja) Fm―cw測距方法
US11448742B2 (en) Radar device
US20080122427A1 (en) Device and Method for Measuring a Phase Deviation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016897979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016897979

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897979

Country of ref document: EP

Kind code of ref document: A1