WO2014038056A1 - インターリーブa/d変換器 - Google Patents

インターリーブa/d変換器 Download PDF

Info

Publication number
WO2014038056A1
WO2014038056A1 PCT/JP2012/072837 JP2012072837W WO2014038056A1 WO 2014038056 A1 WO2014038056 A1 WO 2014038056A1 JP 2012072837 W JP2012072837 W JP 2012072837W WO 2014038056 A1 WO2014038056 A1 WO 2014038056A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
digital converter
input
unit
adc
Prior art date
Application number
PCT/JP2012/072837
Other languages
English (en)
French (fr)
Inventor
中村 洋平
俊 大島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/072837 priority Critical patent/WO2014038056A1/ja
Priority to JP2014534119A priority patent/JP5836493B2/ja
Priority to US14/421,512 priority patent/US9337853B2/en
Publication of WO2014038056A1 publication Critical patent/WO2014038056A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0626Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by filtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0624Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • H03M1/1215Interleaved, i.e. using multiple converters or converter parts for one channel using time-division multiplexing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type

Definitions

  • the present invention relates to an interleaved A / D converter.
  • ADC analog-to-digital converter
  • ADCs used in measuring instruments such as inspection devices used in semiconductor manufacturing
  • miniaturization advances high-speed, high-resolution medical diagnostic devices for more accurate diagnosis
  • the rate at which a single ADC can sample while maintaining an effective resolution of 10 bits or more is considered to be limited to about 250 MHz because of the rate limiting derived from the frequency characteristics of the transistors constituting the ADC.
  • time interleaving that parallelizes a plurality of ADCs, sets a time difference between the respective sampling timings, and increases the conversion speed as a whole has attracted attention.
  • this technique also has a limited resolution that can be guaranteed due to mismatches such as DC offset, conversion gain variation, and sampling clock timing shift in each paralleled ADC.
  • Patent Documents 1 and 2 are disclosed in Patent Documents 1 and 2 and Non-Patent Documents 2 and 3 to solve this problem. Heading to
  • Non-Patent Document 1 shows one typical configuration example of an interleave ADC.
  • 80 ADCs of 250 MS / s and 8 bits are arranged in parallel to realize an ADC having a sampling rate of 20 GS / s.
  • the analog input signal conveyed to the ADC is received by a high-speed buffer and distributed to a parallel ADC sampling circuit (a circuit described as 80 T / H in Non-Patent Document 1) in the subsequent stage. .
  • each ADC sampling circuit releases charge to the input at the sampling clock edge, and other parallel ADCs sample signals disturbed by this charge, thereby limiting the effective resolution.
  • the problem that it will be done arises.
  • the important point here is that the digital correction method cannot be effective against irregular factors, and directly leads to a decrease in effective resolution.
  • the existing digital correction method cannot be applied because the charge released from the ADC input depends irregularly on the input signal. This problem will not be a problem if the effective resolution of 8 bits targeted in Non-Patent Document 1 is used, but it becomes a new problem that it becomes a barrier to realizing a resolution larger than this.
  • Each ADC sampling circuit arranged in parallel in the interleave ADC performs charge discharge depending on the input signal at the time of sampling, and the other ADC arranged in parallel samples the disturbed input signal, thereby reducing the resolution of the interleave ADC.
  • the problem to be solved is a problem to be solved by the invention.
  • a common differential sampling clock signal is input to one set of ADCs that are sampled with a ⁇ phase shift of each ADC paralleled in the interleave ADC, and a separate buffer is provided in front of the input sampling circuit,
  • the above problem can be improved by isolating the common analog input signal line and the ADC input terminal and digitally correcting characteristic deterioration due to buffer insertion.
  • the sampling timing of a pair of ADCs having the highest possibility of interference due to the symmetry of the differential signal is accurately engraved with a ⁇ phase difference by a common sampling clock, so that the ideal ADC sampling timing is obtained.
  • the interference between the ADC inputs due to an error from the value is suppressed, and further, the input signal is transmitted to the ADC sampling circuit of the subsequent stage by the buffer, but the charge discharged from the ADC sampling circuit is shielded by the buffer and not transmitted to the common analog input signal line.
  • Other parallel ADCs do not receive interference with each other, and characteristic deterioration due to buffer insertion is suppressed by digital correction, so that a reduction in resolution can be prevented.
  • FIG. 6 is a diagram illustrating Example 1;
  • FIG. 3 is a diagram illustrating an embodiment of a digital correction unit in Example 1.
  • FIG. 3 is a diagram illustrating an example of an embodiment of a delay device in Example 1.
  • FIG. 6 is a diagram illustrating a second embodiment.
  • FIG. 6 is a diagram illustrating an embodiment of a buffer unit in Example 2.
  • FIG. 6 is a diagram illustrating Example 3;
  • FIG. 6 is a diagram illustrating Example 4;
  • FIG. 10 is a diagram for explaining a clock phase relationship in the sixth embodiment.
  • FIG. 1 shows an embodiment of an interleave ADC according to the first embodiment.
  • the input terminal of the reference ADC 104 is connected to the common analog input signal line.
  • the ADC 101-k and the reference ADC 104 include an input sampling circuit.
  • the digital output of each ADC 101-k is connected to the digital correction unit 102, and a direct current offset, a conversion gain variation, and a sampling timing shift generated in each AD conversion path based on a comparison between the output of the ADC 104 and the output of each ADC 101-k.
  • the mismatch between each AD conversion path is corrected.
  • the ideal sampling timing refers to a timing at which the sampling intervals between adjacent ADCs 101-k are equal for all sampling timings.
  • FIG. 2 shows a specific configuration of the digital correction unit.
  • the AD conversion result output from each ADC 101-k is connected to a gain correction unit 201-k (k is an integer of 1 to N) to correct the gain mismatch, and the corrected output is supplied to the gain correction unit 201-k.
  • the offset is corrected by the connected offset correction unit 202-k, and the corrected output result is further corrected by the skew correction unit 203-k and output to the multiplexer 103.
  • the skew is a deviation from the ideal sampling timing of the sampling in each ADC 101-k.
  • the gain correction unit, the offset correction unit, and the skew correction unit make a difference between the results output from the reference ADC 104 and the skew correction unit by the subtractor 204-k, and reduce the difference value (hereinafter referred to as e (k)). Each correction value is determined.
  • e (k) the difference value
  • the AD conversion data (d0 (k, t)) output from each unit ADC 101-k is input to the gain correction unit 201-k.
  • the gain correction unit 201-k the difference e (k) from the ideal AD conversion result obtained by the subtractor 204-k is converted by the multiplier 205-k into the AD conversion result d0 (k, t), Multiply by the gain correction loop factor ⁇ G.
  • the output result of the multiplier 205-k is input to the adder 206-k, and is combined with the adder output one clock cycle before delayed by the delay unit 207-k.
  • the output value ⁇ G (k, t) of the delay unit 207-k is a value obtained by integrating the output of the multiplier 205-k from the start of digital correction.
  • the structure constituted by the adder 206-k and the delay unit 207-k is generally known as an integrator.
  • ⁇ G (k, t) corresponds to a gain error between the reference ADC 104 and the unit ADC 101-k, and ⁇ G (k, t) is multiplied by the AD conversion data d0 (k, t) by the multiplier 208-k to obtain a gain. It is output as the output d1 (k, t) of the correction unit 201-k.
  • the output result d1 (k, t) corrected by the gain correction unit 201-k is input to the offset correction unit 202-k.
  • the difference value e (k) from the ideal conversion result and the offset correction loop coefficient ⁇ OFS are multiplied by the multiplier 209-k.
  • the output result of the multiplier 209-k is input to the adder 210-k, and is combined with the adder output one clock cycle before delayed by the delayer 211-k.
  • the output value ⁇ V (k, t) of the delay unit 211-k is a value obtained by integrating the output of the multiplier 209-k from the start of digital correction.
  • ⁇ V (k, t) corresponds to an offset error between the reference ADC 104 and the unit ADC 101-k, and the input data d1 (k, t) is subtracted by ⁇ V (k, t) by the adder 212-k to correct the offset.
  • the output is output as d2 (k, t) of the unit 202-k.
  • the output result d2 (k, t) corrected by the offset correction unit 202-k is input to the skew correction unit 203-k. Further, a time differential value of d2 (k, t), d (d2 (k, t-XT)) / dt is also input to the skew correction unit 202-k.
  • XT [s] is a delay time necessary for calculating a differential value by an FIR filter or the like
  • T [s] is one clock cycle period.
  • d (d2 (k, t ⁇ XT)) / dt can be calculated by an FIR filter or the like, and a specific method thereof will be described later.
  • the difference e (k) from the ideal AD conversion result obtained by the subtractor 204-k is d (d2 (k, t-XT) by the multiplier 213-k. ) / Dt and the skew correction loop coefficient ⁇ SKEW.
  • the output result of the multiplier 213-k is input to the adder 214-k, and is combined with the adder output one clock cycle before delayed by the delay unit 215-k.
  • the output value ⁇ t (k, t) of the delay unit 215-k is a value obtained by integrating the output of the multiplier 214-k from the start of digital correction.
  • ⁇ t (k, t) corresponds to a sampling timing error between the reference ADC 104 and the unit ADC 101-k
  • ⁇ t (k, t) is obtained by the multiplier 216-k by d (d2 (k, t ⁇ XT)) / Multiply by dt.
  • the result, ⁇ t (k, t) ⁇ d (d2 (k, t ⁇ XT)) / dt corresponds to the error of the AD conversion result caused by the sampling timing error.
  • the input data d2 (k, t) is input to the delay unit 217-k, and the output d2 (k, t-XT) of the delay unit 217-k is the output of the multiplier 216-k in the adder 218-k.
  • a certain ⁇ t (k, t) ⁇ d (d2 (k, t ⁇ XT)) / dt is subtracted and output as an output d3 (k, t) of the skew correction unit 203-k.
  • FIG. 9A shows an example of an embodiment of an FIR filter for obtaining a differential value d (d2 (k, t ⁇ XT)) / dt.
  • the FIR filter receives the offset correction unit output d2 (k, t) of FIG. 2, and is connected to each delay unit 901-n (n is an integer of 1 to K) connected to the input and to the subsequent stage of the delay unit, and the weight A tap unit 902-n for applying a coefficient and an adder 903 for adding the outputs multiplied by the weighting coefficient.
  • different ADC outputs can be input. In this example, four ADCs are interleaved.
  • the output of ADC 101-k is input to delay block 901-n or tap section 902-n, respectively, and the output of delay block 901-n is input to 902-n and multiplied by a weighting factor.
  • the outputs multiplied by the respective weighting factors are added by an adder 903 and output.
  • the differential value d (d2 (k, t ⁇ XT)) / dt can be obtained from the adder 903 by setting the weighting coefficient in each tap unit 902-n to an appropriate value.
  • the AD conversion results of the ADCs 101-k corrected by the digital correction unit 102 are integrated by the multiplexer 103 and output as a series of time series data.
  • Each ADC 101-l (l is an odd number from 1 to N) has a pair of ADCs 101-m (m is an even number from 1 to N), and the positive input clock terminal of each ADC 101-l is a pair of ADCs 101-l.
  • the negative input clock terminal of each ADC 101-l is connected to the positive input clock terminal of the ADC 101-m paired with the negative input clock terminal of -m.
  • the differential clock signal line is connected to the differential input clock terminals of the ADCs 101-1 and 101-m connected to each other via the delay unit 105-k, and the sampling clock signal having the frequency fs is input.
  • the positive and negative two signal lines of the differential input signal line may be connected to either of the two signal lines connecting the clock terminals of the ADC 101-l and ADC 101-m, respectively.
  • the value of the analog input signal Vin AD-converted at the sampling rate fs is output as a digital signal from each ADC 101-k, and they are complementary to each other.
  • a digital output Dout obtained by AD conversion at an interval of t + 1 / (fs ⁇ N) is obtained from the multiplexer, and as a result, AD conversion is performed at a sampling rate of fs ⁇ N.
  • each ADC 101-l is connected to the negative input clock terminal of the pair of ADC 101-m, and the negative input clock terminal of each ADC 101-l is connected to the positive input clock terminal of the pair of ADC 101-m. It may be the point that has been done. With this connection, the ADC 101-l and ADC 101-m that are paired share one type of sampling clock signal, but their clock input terminals are connected to each other in the positive and negative directions.
  • the ADC 101-m operates assuming that sampling clocks having opposite phases are input to each other.
  • the paired ADCs 101-k sample the input signals with a time difference of 1 / (fs ⁇ 2) and perform AD conversion.
  • the ADC 101-k turns the switch on and off by an internal sampling mechanism at the rising and falling moments of the sampling clock input to the ADC 101-k (hereinafter referred to as clock edges).
  • a kickback phenomenon is observed in which the charge accumulated in the sampling capacitor and the charge accumulated in the transistor constituting the switch are released from the input terminal of the ADC 101-k, and the input signal is disturbed.
  • ADC 101-k samples the input at the falling edge of the sampling clock and shifts to the sampling period at the rising edge of the sampling clock.
  • An ADC 101-k is most strongly affected by the input disturbance that occurs immediately before it.
  • ADC 1 and ADC 2 connected in parallel to the common analog input terminal.
  • sampling clock signals generated by different paths are input to these ADCs and each has a phase difference of 1 / (fs ⁇ 2)
  • the sampling clock phase difference generation method and the influence of the wiring path Therefore, the timing of the clock edge is shifted between ADC 1 and ADC 2 and an event occurs in which ADC 2 disturbs the analog input signal at the clock edge input to ADC 2 just before ADC 1 samples.
  • the kickback component is about 3 mV. If the ADC 1 samples the input signal as it is before the kickback component converges, it becomes less than 8 bits in terms of effective resolution.
  • the sampling clock input to the ADC No. 2 is the same as the sampling clock input to the ADC No. 1 although the connection is different. Therefore, the clock edge timing is almost the same. Therefore, if the time for the disturbance of the input generated by the ADC 2 to reach the input of the ADC 1 through the signal line is taken into consideration, the input disturbance generated by the ADC 2 does not affect the sampling of the ADC 1. This is because if the time at which the ADC 1 generates a disturbance component with respect to the input signal line at the clock edge timing is t1, the ADC 2 samples at exactly the same time as t1.
  • ADC 2 is not affected by the disturbance caused by ADC 1. This is also the case when ADC part 2 samples, and so on between the other ADC 101-k pairs.
  • This embodiment avoids such a phenomenon that the input signal just disturbed due to the timing shift between the sampling clocks is sampled, and at least 1 / (fs is required for the disturbed input to converge. ⁇ The period of N) is secured. Further, this embodiment is characterized by further comprising a digital correction unit, and the reason and effect will be described below.
  • a pair of ADC 101-l and ADC 101-m share one type of sampling clock signal, and the clock input terminals are connected to each other in the positive and negative directions, so that between ADC 101-l and ADC 101-m.
  • the operation is performed when sampling clocks having inversion phases are input, and as a result, the paired ADCs 101-k sample the input signals with a time difference of 1 / (fs ⁇ 2) and perform AD conversion. As described above, this ensures that the sampling timing between the paired ADCs is exactly 1 / (fs ⁇ 2) time difference from the nature of the differential sampling clock signal.
  • this sampling timing error is corrected using the reference ADC 104 and the digital correction unit 102, thereby solving the above-described problem that the sampling timing between ADCs deviates from the ideal value.
  • an inductance element 300 and a capacitance element An LC filter delay device using 301 is shown in FIG.
  • filter types such as a Butterworth filter and a Chebyshev filter.
  • an LC filter called a Bessel filter with little change in delay characteristics in a wide frequency band will be described as an example.
  • 3B shows element constants of a fifth-order ⁇ -type Bessel filter normalized to a cutoff frequency of 1 ⁇ 2 ⁇ [Hz] and an impedance of 1 [ ⁇ ].
  • the impedance of the conversion destination is R [ ⁇ ]
  • K R / 1
  • K is applied to all inductance element values, and all capacitance element values are converted. Is divided by K.
  • M fc ⁇ 2 ⁇ .
  • the delay amount of the signal input to the filter depends on the frequency of the input signal, the cutoff frequency of the filter, and the order of the filter, an appropriate amount of delay occurs with respect to the sampling clock frequency fs using a circuit simulator or numerical calculation. What is necessary is just to calculate M and to design a filter.
  • the capacitance elements 301 to a variable capacitor 303, it is possible to provide an adjustable width of the delay amount.
  • FIG. 4 shows an embodiment of an interleave ADC according to the second embodiment.
  • This example is shown as an example of a solution for further improving the problem that the kickback component of the ADC in Example 1 disturbs the input signal.
  • the input terminal of the buffer unit 401-k is connected to the common analog input signal line.
  • the input terminal of the buffer unit 400 is connected to the common input signal line, and the input terminal of the reference ADC 104 is connected to the output terminal of the buffer unit 400.
  • the ADC 101-k and the reference ADC 104 include an input sampling circuit.
  • each ADC 101-k is connected to the digital correction unit 102, and in the same way as in the first embodiment, the comparison with the output of the ADC 104 causes a direct current offset, conversion gain variation, sampling timing shift, etc. A mismatch between AD conversion paths is corrected.
  • the AD conversion results of the ADCs 101-k corrected by the digital correction unit 102 are integrated by the multiplexer 103 and output as a series of time series data.
  • Each ADC 101-l (l is an odd number from 1 to N) has a pair of ADCs 101-m (m is an even number from 1 to N), and the positive input clock terminal of each ADC 101-l is a pair of ADCs 101-l.
  • the negative input clock terminal of each ADC 101-l is connected to the positive input clock terminal of the ADC 101-m paired with the negative input clock terminal of -m.
  • the differential clock signal line is connected to the differential input clock terminals of the ADCs 101-1 and 101-m connected to each other via the delay unit 105-k, and the sampling clock signal having the frequency fs is input.
  • the positive and negative two signal lines of the differential input signal line may be connected to either of the two signal lines connecting the clock terminals of the ADC 101-l and ADC 101-m, respectively.
  • a feature of this embodiment is a buffer unit 401-k provided between the ADC 101-k and the common analog input signal line.
  • FIG. 5A showing an embodiment of the buffer unit has a negative feedback configuration in which an analog signal input line is connected to the non-inverting input terminal of the operational amplifier 500 and the output terminal and the inverting input terminal of the operational amplifier 500 are connected.
  • the non-inverting input terminal of the operational amplifier 500 is grounded via the capacitor 501.
  • a differential operational amplifier 502 may be connected to the output of the operational amplifier 500 to differentiate the analog input signal as shown in FIG. 5B. It is possible, and it does not matter whether the analog input terminal of the unit ADC is single-ended or differential.
  • the first embodiment by using a common differential clock signal as a sampling clock between ADCs in a pair, it is possible to prevent sampling of a disturbed signal due to a shift in sampling timing between ADCs. However, no countermeasure can be taken in the case where the influence of the disturbance caused by another ADC not paired remains.
  • the buffer unit 401-k in the second embodiment has a low output impedance as a characteristic peculiar to the buffer element, and the non-inverting input terminal and the inverting input terminal of the operational amplifier 500 constituting the buffer unit are insulated. Only parasitic capacitance exists. Therefore, the signal disturbance generated on the output side of the buffer unit 401-k is hardly transmitted to the input side of the buffer unit, and the disturbance component transmitted through the parasitic capacitance is also a parasitic capacitance between the capacitance of the capacitor 501 and the input terminal of the operational amplifier 500. Since the voltage is divided according to the ratio of the magnitudes, the signal disturbance component transmitted to the input signal side is very small. As described above, in the present embodiment, by providing the buffer unit 401-k, it is possible to prevent the kickback component from being transmitted to the other ADC 101-k. It is possible to solve the back problem and secure an effective resolution.
  • FIG. 5 shows an embodiment of an interleave ADC according to the third embodiment.
  • the characteristics of the buffer section are digitally corrected in order to prevent the deterioration of the characteristics due to the provision of the buffer section disclosed in the second embodiment.
  • N ADCs 101-k 1 to N natural numbers
  • buffer units 401-k connected to the analog input terminals of the ADCs 101-k
  • the ADCs 101-k are connected. It comprises a multiplexer 103 connected to the output of the digital correction unit 102, a buffer unit 400 whose input terminal is connected to the common input signal line, and a reference ADC 104 whose input terminal is connected to the output terminal of the buffer unit 400.
  • the ADC 101-k and the reference ADC 104 include an input sampling circuit.
  • Each buffer unit 401-k receives an analog signal Vin, and ADC 101-k receives a sampling clock signal having a frequency fs.
  • the digital output of each ADC 101-k is connected to the digital correction unit 102, and a mismatch between the AD conversion paths such as a DC offset, conversion gain variation, and sampling timing shift generated in the AD conversion path from comparison with the output of the ADC 104 Correct.
  • This correction can be performed in the same manner as described in the first embodiment.
  • the digital correction unit 102 further corrects the voltage offset, voltage gain, and signal band variation of the buffer unit 401-k and the buffer unit 400.
  • the AD conversion results of the respective ADCs 101-k corrected by the digital correction unit 102 are integrated by the multiplexer 103 and output as a series of time series data.
  • the sampling clock signals input to each ADC 101-k have a phase difference with each other, and those having the closest phases have a phase difference of approximately 1 / (fs ⁇ N).
  • the feature of this embodiment is that the digital correction unit 102 simultaneously corrects characteristic variations caused by the buffer unit 401-k, particularly signal band variations.
  • the analog signal passes through a different buffer unit for each AD conversion path of the interleaved ADC, it is affected by variations in the signal band of the operational amplifier constituting the buffer unit 401-k.
  • Such a signal band variation of the buffer unit causes a reduction in the resolution of the AD conversion result synthesized by the multiplexer 103 as well as other variations.
  • the digital correction unit 102 periodically specifies the amount of mismatch between these paths by comparing the sampling of each ADC 101-k, the AD conversion result of the ADC 104, and the AD conversion result of each ADC 101-k, The digital output value of each ADC 101-k is recalculated so as to cancel these mismatches, and is output to the multiplexer.
  • the configuration of the digital correction unit is the same as the configuration of FIG. 2, and the correction parameter of the signal band is reduced to the same parameter as the correction parameter of the sampling timing described in the first embodiment, thereby preventing a reduction in resolution due to mismatch between paths. be able to. The reason is as follows.
  • the frequency characteristic of the buffer unit 401-k can be generally expressed as a transfer function of Formula 1.
  • Equation 2 can be approximated in the form of Equation 2 in a frequency band lower than the frequency band of the buffer unit 401-k.
  • the AD conversion result affected by ⁇ t can be expressed by a transfer function as shown in Equation 3.
  • a component of ⁇ t ⁇ s + ( ⁇ t 2 ) / 2 ⁇ s 2 is an error caused by ⁇ t.
  • the digital correction of the sampling timing described above in Example 1 Delta] t is the coefficient of the s, seeking a Delta] t 2/2 is the coefficient of s 2, performing a process of subtracting from the AD conversion result to calculate the error term ing.
  • the influence due to the sampling timing error and the influence caused by the frequency characteristic of the buffer occur simultaneously, it can be expressed as a transfer function as shown in Expressions 2 and 3 to 4.
  • Equation 4 it can be seen that the influence of the sampling timing error and the frequency characteristic error between the buffer units can be corrected by obtaining the s coefficient and the s 2 coefficient. It can be seen that it can be corrected by the method. In this embodiment, by obtaining this coefficient, the sampling timing mismatch and the frequency characteristic mismatch between the buffer units are corrected simultaneously. Further, the gain correction and the offset correction of the buffer unit can be performed with the configuration of FIG. 2 similarly to the first embodiment, and it is possible to further prevent the effective resolution from being lowered.
  • FIG. 7 shows an embodiment of an interleave ADC according to the fourth embodiment.
  • the simultaneous correction structure of the characteristic mismatch between the buffers and the sampling timing described in the third embodiment, and the delay device 700 capable of adjusting the phase of the clock input to the reference ADC 104. Is provided.
  • each ADC 101 -k is connected to the multiplexer 103.
  • Each ADC 101-l (l is an odd number from 1 to N) has a pair of ADCs 101-m (m is an even number from 1 to N), and the positive input clock terminal of each ADC 101-l is a pair of ADCs 101-m
  • the negative input clock terminal of each ADC 101-l is connected to the positive input clock terminal of the ADC 101-m that forms a pair.
  • a differential clock signal line is connected to the differential input clock terminals of the ADCs 101-1 and 101-m connected to each other, and a sampling clock signal having a frequency fs is input.
  • the sampling clock signal input to each differential clock signal line is k / (fs ⁇ N) (k) generated by the delay unit 105-k from the reference differential clock signal (clk +, clk ⁇ ).
  • N / 2 types of clocks having a phase of 0 to N / 2-1 (natural number).
  • the differential clock signal (clk +, clk ⁇ ) may use a balanced-unbalanced converter or other elements that convert a single-ended signal into a differential signal.
  • a differential signal directly from the clock generator. May be generated.
  • the positive and negative two signal lines of the differential input signal line may be connected to either of the two signal lines connecting the clock terminals of the ADC 101-l and ADC 101-m, respectively.
  • the reference ADC 104 connected in parallel to the analog input signal line, and the digital correction unit for correcting the output result of the ADC 101-k based on the output comparison result of the ADC 104 and each ADC 101-k. It has.
  • the buffer units 401-k and 400 are further connected between the analog input terminals of the respective ADCs 101-k and the reference ADC 104 and the common input signal line. From the comparison value between the output of the ADC 104 and the output of the ADC 101-k, the digital correction unit simultaneously determines the delay error generated between the delay devices 105-k and the characteristic variation such as the input frequency band generated between the input buffers 401-k. The calculated output value of the ADC 101-k is obtained based on the calculation.
  • a delay device 700 capable of adjusting the delay amount is provided on the clock signal line input to the reference ADC 104.
  • phase relationship between the clocks input to the reference ADC 104 and each ADC 101-k is shown in FIG. clk1 and clk2 indicate arbitrary two types of sampling clock signals having the smallest phase difference among the sampling clock signals input to any of the ADCs 101-k.
  • t1 and t2 indicate clock falling times of clk1 and clk2, respectively.
  • ref_clk is a sampling clock input to the reference ADC 104, and is a reference clock for correcting the sampling timing of the ADC 101-k.
  • Tref indicates the clock fall time of ref_clk, and t1 and t2 have a time difference of approximately 1 / (fs ⁇ N). This interval determines the sampling interval of the interleave ADC.
  • the digital correction unit compares the value AD-converted by the ADC 101-k at time t1 with the value AD-converted by the reference ADC 104 at time tref, and calculates the correction value, thereby correcting the influence due to the shift in t1. If the time between tref and t1 is too far, a correct correction value cannot be calculated.
  • clk2 since it is necessary to bring t1 closer to tref, it is necessary to increase the delay amount of clk1. However, since t1 and t2 need to be maintained at approximately 1 / (fs ⁇ N), clk2 must also increase the delay amount. In this way, all the clk delay amounts must be increased in a chained manner. However, when the delay amount is generally increased in the delay unit, the delay circuit is increased, which is not desirable in terms of mounting.
  • the delay amount adjustment width of the delay device and the delay adjustment accuracy are generally in a trade-off, it is desirable to reduce the adjustment range of the delay amount.
  • the ref_clk itself is delayed by the delay device 700 provided on the path of the ref_clk input to the reference ADC 104.
  • tref and t2 can be brought closer by delaying tref.
  • the phase relationship between the sampling clock signals input to each ADC 101-k is maintained at approximately 1 / (fs ⁇ N), and the falling edge of ref_clk is input to any one ADC 101-k at any timing. If it coincides with the falling edge of the sampling clock signal, the other falling edges of the ADC can be periodically synchronized with any falling edge of ref_clk.
  • any falling edge of ref_clk can be periodically synchronized with the falling edge of the clock input of all ADCs 101-k.
  • ADC 102 Digital correction unit 103: Multiplexer 104: ADC for reference 105-1 to 105-N: delay units 201-1 to 201-N: gain correction units 202-1 to 202-N: offset correction units 203-1 to 203-N: skew correction units 204-1 to 204-N : Subtracters 205-1 to 205-N: multipliers 206-1 to 206-N: adders 207-1 to 207-N: delay units 208-1 to 208-N: multipliers 209-1 to 209-N : Multipliers 210-1 to 210-N: adders 211-1 to 211-N: delay units 212-1 to 212-N: adders 213-1 to 213-N: multipliers 214-1 to 214-N : Adders 215-1 to 215-N: delay units 216-1 to 216-N: multipliers 217-1 to 217-N: delay units 218-1 to 218-N: adder 300: resistor 301: capacitor 302

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 インターリーブADCにおいて並列された各ADCサンプリング回路が、サンプリング時に入力信号依存の電荷放出を行い、並列された他のADCがそれにより擾乱された入力信号をサンプリングすることでインターリーブADCの分解能が低下することが課題である。 タイムインターリーブ型ADCにおいて並列された各々のADCのπ位相ずれてサンプリングされる2つで1組のADCに対して共通の差動サンプリングクロック信号を入力し、さらに入力サンプリング回路前段に個別のバッファを設け、共通アナログ入力信号線とADC入力端子を隔離し、バッファ挿入による特性劣化をデジタル補正することにより、上記課題を改善する。

Description

インターリーブA/D変換器
 本発明は、インターリーブA/D変換器に関する。
 センサによってアナログの電気信号に変換された物理情報をデジタル信号で動作する計算機が処理するためには、アナログデジタル変換器(以下ADCという)が必要である。
 微細化が進展する半導体の製造に使用される検査装置、より正確な診断をするための高速、高解像度医療診断装置など、測定機器の性能向上要求に伴い、測定器に使用されるADCに対しては常により高い性能が求められている。
 しかしながら、ADCを構成するトランジスタの周波数特性に由来する律速から、単体のADCが10bit以上の有効分解能を保ちつつサンプリングできる速度は250MHz程度に限界があると見られている。
 そこで、複数のADCを並列化し、それぞれのサンプリングタイミングに時間差を設け、全体として変換速度の高速化をはかるタイムインターリーブという技術が注目されてきた。
 たとえば、8[bit]、250[MS/s]([S/s]は1[s]にサンプリングする回数を表す単位である。サンプリングの間隔をTとするとT=1/250[MS/s]=4[ns])の単位ADC4個を同じアナログ信号線に対して並列に接続し、そのサンプリングタイミングを1[ns]の幅でシフトしてサンプリングすることにより、全体として1/1[ns]=1[GS/s]でサンプリングすることができる。この技術を用いることにより、CMOSトランジスタの性能限界を超えるような速度のサンプリングレートをもつADCがこれまでにもいくつか開発されてきた。
 一方、この技術も並列された各々のADCに直流オフセット、変換利得のばらつき、サンプリングクロックタイミングのずれなどのミスマッチが生じることにより、保証出来る分解能に限界があった。
 しかし、近年はこの課題に対しても、ADC間のミスマッチをAD変換後のデジタル信号領域で補正する方式が特許文献1、2や非特許文献2,3に開示されており、ミスマッチ問題は解決に向かっている。
 ところが、ミスマッチ問題が解決され、インターリーブADCの高速性を維持しつつさらなる有効分解能の向上に糸口がついてきたところで、さらに新たな課題が生じてきた。
 ここで、非特許文献1はインターリーブADCの典型的な一つの構成例を示すものである。非特許文献1では250MS/s、8bitのADCを80個並列にし、20GS/sのサンプリングレートをもつADCを実現している。
 ADCに搬送されてきたアナログ入力信号は高速なバッファで受けられて、後段の並列されたADCサンプリング回路(非特許文献1では80T/Hと記載の回路)に分配されるという形をとっている。
 しかしながら、各々のADCサンプリング回路はサンプリングクロックエッジにおいて、入力に対して電荷を放出してしまい、他の並列されたADCがこの電荷によって乱された信号をサンプリングしてしまうことにより、有効分解能が制限されてしまうという課題が生じる。ここで重要なのはデジタル補正方式は不規則な要因に対して効果を発揮することはできず、直接、有効分解能の低下につながるという点である。
 ADCの入力から放出される電荷は入力信号に不規則に依存してしまうため、既存のデジタル補正方式が適用できない。この問題は非特許文献1において目標としている8bitの有効分解能であれば問題にならないが、これより大きなの分解能を実現する上では障壁となることが新たな課題として発生している。
WO2010/095232号公報 特開2002-217732号公報
Ken Poulton, Robert Neff, Brian Setterberg, Bernd Wuppermann, Tom, Kopley, Robert Jewett, Jorge Pe nillo, Cha le Tan, Allen Montijo, "A 20GS/ 8b ADC with a 1MB Memory in 0.18um CMOS", ISSCC Digest of Technical Papers, pp. 318?319, Feb. 2003. Takashi Oshima, Tomomi Takahashi and Taizo Yamawaki, "LMS calibration of sampling timing for time-interleaved A/D converters," Electronics Letters, Vol. 45, pp. 615-617, June 2009. T.Oshima, T.Takahashi and T.Yamawaki,"LMS calibration of sampling timing fortime-interleaved A/D converters,"Electronics Letters, Vol. 45, pp.615-617, June 2009
 インターリーブADCにおいて並列された各ADCサンプリング回路が、サンプリング時に入力信号依存の電荷放出を行い、並列された他のADCがそれにより擾乱された入力信号をサンプリングしてしまうことでインターリーブADCの分解能が低下する問題が、発明が解決しようとする課題である。
 インターリーブADCにおいて並列された各々のADCのπ位相ずれてサンプリングされる2つで1組のADCに対して共通の差動サンプリングクロック信号を入力し、さらに入力サンプリング回路前段に個別のバッファを設け、共通アナログ入力信号線とADC入力端子を隔離し、バッファ挿入による特性劣化をデジタル補正することにより、上記課題は改善可能である。
 本発明によれば、差動信号の対称性から最も干渉の可能性が高い,対になったADCのサンプリングタイミングを共通のサンプリングクロックによりπ位相差で正確に刻むことで、ADCサンプリングタイミングの理想値からの誤差によるADC入力間の干渉を抑え、さらに入力信号はバッファにより後段のADCサンプリング回路に伝わるが、ADCサンプリング回路から放出された電荷はバッファにより遮蔽され共通アナログ入力信号線に伝わらず、他の並列されたADCは互いに干渉を受けなくなり、バッファ挿入による特性劣化もデジタル補正により抑えられるため分解能の低下を防ぐことができる。
実施例1を説明する図。 実施例1におけるデジタル補正部の実施形態を説明する図。 実施例1における遅延器の実施形態の一例を説明する図。 実施例2を説明する図。 実施例2におけるバッファ部の実施形態を説明する図。 実施例3を説明する図。 実施例4を説明する図。 実施例6におけるクロックの位相関係を説明する図。 微分値d(d2(k,t―XT))/dtを求めるためのFIRフィルタの実施形態等を示す図。
 図1に第1の実施例にかかるインターリーブADCの実施形態を示す。
 本実施例の場合、差動入力クロック端子をもつN個のADC101-k(k=1~Nの整数であり、Nは2の倍数)のアナログ入力端子が共通アナログ入力信号線に接続されている。これに加えて、共通アナログ入力信号線には参照用ADC104の入力端子が接続されている。
 ここでADC101-kおよび参照用ADC104は入力サンプリング回路を含む。各々のADC101-kのデジタル出力はデジタル補正部102に接続され、ADC104の出力と各々のADC101-kの出力との比較からそれぞれのAD変換経路に生じる直流オフセット、変換利得ばらつき、サンプリングタイミングのずれなど、各々のAD変換経路間のミスマッチを補正する。以下、各ADC101-kにとって、ずれがなく、理想的なサンプリングタイミングとは、全てのサンプリングタイミングが隣り合うADC101-k間のサンプリング間隔が等しくなるようなタイミングのことをいう。図2はデジタル補正部の具体的な構成を示したものである。各ADC101-kから出力されたAD変換結果はそれぞれ利得補正部201-k(kは1~Nの整数)に接続されて利得ミスマッチが補正され、補正された出力は利得補正部201-kに接続されたオフセット補正部202-kでオフセットが補正され、補正された出力結果はさらにスキュー補正部203-kによってスキューが補正され、マルチプレクサ103へ出力される。ここでスキューとは各ADC101-kにおけるサンプリングの理想的なサンプリングタイミングからのずれである。利得補正部、オフセット補正部、スキュー補正部は参照ADC104とスキュー補正部から出力された結果を減算器204-kによって差分し、その差分値(以下e(k)とする)を小さくするように各補正値を決定する。以下では、デジタル補正部のより具体的な実施形態について記述する。また、このデジタル補正の仕組みの詳細は非特許文献2、3に開示されている。
 各単位ADC101-kから出力されたAD変換データ(d0(k,t))は利得補正部201-kに入力される。利得補正部201-kでは、前記減算器204-kによって得られた、理想的なAD変換結果との差分e(k)は乗算器205-kにより、AD変換結果d0(k,t)、利得補正ループ係数μGと掛けられる。乗算器205-kの出力結果は加算器206-kに入力され、遅延器207-kによって遅延された1クロックサイクル前の加算器出力と合成される。この構成により、遅延器207-kの出力値ΔG(k,t)は乗算器205-kの出力をデジタル補正開始時から積分した値となる。ここで、加算器206-k、遅延器207-kによって構成される前記構造は一般的に積分器として知られているものである。ΔG(k,t)は参照用ADC104と単位ADC101-kとの利得誤差に相当し、ΔG(k,t)は乗算器208-kによってAD変換データd0(k,t)と掛け合わされ、利得補正部201-kの出力d1(k,t)として出力される。
 利得補正部201-kによって補正された出力結果d1(k,t)はオフセット補正部202-kに入力される。オフセット補正部202-kでは前記理想変換結果との差分値e(k)と、オフセット補正ループ係数μOFSが乗算器209-kによって掛け合わされる。乗算器209-kの出力結果は加算器210-kに入力され、遅延器211-kによって遅延された1クロックサイクル前の加算器出力と合成される。この構成により、遅延器211-kの出力値ΔV(k,t)は乗算器209-kの出力をデジタル補正開始時から積分した値となる。ΔV(k,t)は参照用ADC104と単位ADC101-kとのオフセット誤差に相当し、入力データd1(k,t)は加算器212-kによりΔV(k,t)が差し引かれ、オフセット補正部202-kの出力d2(k,t)として出力される。
 オフセット補正部202-kによって補正された出力結果d2(k,t)はスキュー補正部203-kに入力される。スキュー補正部202-kにはさらにd2(k,t)の時間微分値、d(d2(k,t-XT))/dtも入力される。ここで、XT[s]はFIRフィルタ等によって微分値を計算するために必要な遅延時間であり、T[s]は1クロックサイクル周期である。d(d2(k,t―XT))/dtはFIRフィルタ等によって計算することができるが、その具体的な方式は後述する。
 スキュー補正部203-kでは、前記減算器204-kによって得られた、理想的なAD変換結果との差分e(k)は乗算器213-kにより、d(d2(k,t―XT))/dt、スキュー補正ループ係数μSKEWと掛けられる。乗算器213-kの出力結果は加算器214-kに入力され、遅延器215-kによって遅延された1クロックサイクル前の加算器出力と合成される。この構成により、遅延器215-kの出力値Δt(k,t)は乗算器214-kの出力をデジタル補正開始時から積分した値となる。Δt(k,t)は参照用ADC104と単位ADC101-kとのサンプリングタイミング誤差に相当し、Δt(k,t)は乗算器216-kにより、d(d2(k,t―XT))/dtと掛け合わされる。その結果であるΔt(k,t)×d(d2(k,t―XT))/dtはサンプリングタイミング誤差によって生じたAD変換結果の誤差に相当する。入力データd2(k,t)は遅延器217-kに入力され、遅延器217-kの出力d2(k,t-XT)は、加算器218-kにおいて、乗算器216-kの出力であるΔt(k,t)×d(d2(k,t―XT))/dtを差し引かれ、スキュー補正部203-kの出力d3(k,t)として出力される。
 図9(a)は微分値d(d2(k,t―XT))/dtを求めるためのFIRフィルタの実施形態の一例を示すものである。FIRフィルタは図2のオフセット補正部出力d2(k、t)が入力され、入力に接続された各遅延器901-n(nは1~Kの整数)、遅延器の後段に接続され、重み係数をかけるタップ部902-n、重み係数をかけられた出力を足し合わせる加算器903からなる。また、図9(b)のように、互いに異なるADC出力を入力とすることも可能である。ここでは4個のADCをインターリーブ動作させている例をとっている。ADC101-kの出力はそれぞれ遅延ブロック901-nまたはタップ部902-nに入力され、遅延ブロック901-nの出力は902-nに入力されそれぞれ重み係数を掛け合わされる。それぞれの重み係数を掛け合わされた出力は加算器903で足し合わされ、出力される。このとき、各タップ部902-nにおける重み係数を適切な値にすることで加算器903からは微分値d(d2(k、t-XT))/dtを得ることができる。
 デジタル補正部102によって補正された各ADC101-kのAD変換結果はマルチプレクサ103によって統合され、一連の時系列データとして出力される。
 また、各々のADC101-l(lは1~Nの奇数)は対になるADC101-m(mは1~Nの偶数)をもち、各々のADC101-lの正入力クロック端子は対になるADC101-mの負入力クロック端子に、各々のADC101-lの負入力クロック端子は対になるADC101-mの正入力クロック端子に接続されている。
 互いに接続されたADC101-lとADC101-mの差動入力クロック端子には遅延器105-kを介して差動クロック信号線が接続され周波数fsのサンプリングクロック信号が入力される。
 このとき、それぞれのADC101-lに直結している差動クロック信号線に入力されるサンプリングクロック信号はある一つの周波数fsのサンプリングクロック信号の位相を基準に取ったとき、k/(fs・N)の位相差をもつN/2種類のサンプリングクロックを振り分けたものとする。
 また、差動入力信号線の正負2本の信号線はそれぞれADC101-lおよびADC101-mのクロック端子間を接続している2本の信号線のどちらに接続しても良い。
 以下では、本構成によって得られる効果について述べる。
本構成では各々のADC101-kからはサンプリングレートfsでAD変換されたアナログ入力信号Vinの値がデジタル信号として出力され、それらは互いに補完関係にある。
 すなわち、あるADC101-kが入力をAD変換した時刻をtとすると同じADC101-kが次にAD変換するのは時刻t+1/fsであるが、前述のサンプリングクロック位相関係により、時刻t+1/(fs・N)にサンプリングするADC101-l(lはkとは異なる1~Nのいずれかの自然数)が存在する。
 すると、マルチプレクサからはVinをt+1/(fs・N)の間隔でAD変換したデジタル出力Doutが得られ、結果としてfs・NのサンプリングレートでAD変換をしたことになる。
 このように、並列された各々のADCが互いにサンプリング間隔を補完しあうことによってサンプリング速度を向上させる仕組みのインターリーブADCは一般的に良く知られたものであるが、本実施例において特徴となるのは、各々のADC101-lの正入力クロック端子は対になるADC101-mの負入力クロック端子に、各々のADC101-lの負入力クロック端子は対になるADC101-mの正入力クロック端子に接続されている点であうる。このような接続により、対になったADC101-lとADC101-m間では1種類のサンプリングクロック信号を共有しているが、互いにクロック入力端子は正負逆に接続されているため、ADC101-lとADC101-mの間では互いに反転位相のサンプリングクロックが入力されたとして動作する。
 その結果、対になったADC101-kは互いに1/(fs・2)の時刻差をもって入力信号をサンプリングし、AD変換する。
 ここで本実施例の効果を説明するために、本実施例が解決しようとする課題について述べる。一般的に、ADC101-kはADC101-kに入力されるサンプリングクロックの立ち上がりおよび立下りの瞬間(以下クロックエッジという)に、内部のサンプリング機構でスイッチのON、OFFを行うが、その際にそれぞれサンプリング容量に蓄積されていた電荷および、スイッチを構成するトランジスタに蓄積されていた電荷がADC101-kの入力端子から放出されるキックバック現象が観測され、入力信号が擾乱される。
 ここで、仮にADC101-kはサンプリングクロックのたち下がりで入力をサンプリングし、サンプリングクロックの立ち上がりでサンプリング期間に移行するものとする。あるADC101-kが最も強く影響を受けるのはその直前に生じた入力の擾乱である。ここで共通アナログ入力端子に対して並列に接続されたある2つのADC101-k(ADCその1、ADCその2とする)を考える。
 仮にこれらのADCに対して互いに別々の経路により生成されたサンプリングクロック信号が入力され、それぞれが1/(fs・2)の位相差を持つ場合、サンプリングクロックの位相差生成方法および配線経路の影響でクロックエッジのタイミングはADCその1とADCその2でずれてしまい、ADCその1がサンプリングする直前にADCその2がADCその2に入力されるクロックエッジにおいてアナログ入力信号を擾乱するという事象が発生する。例えば500MHz程度の入力信号周波数帯域を有するADCに振幅400mV、周波数50MHzの信号を入力した場合、キックバック成分はおよそ3mV程度になる。このキックバック成分が収束する前にADCその1がそのまま入力信号をサンプリングしてしまった場合、有効分解能に換算して8ビット弱となる。
 しかしながら、本実施例においてはADCその2に入力されるサンプリングクロックはADCその1に入力されるサンプリングクロックと接続は異なるが同じものであるので、そのクロックエッジタイミングはほぼ同時である。そのため、ADCその2によって発生する入力の擾乱が信号線を伝わってADCその1の入力に到達する時間を考慮すれば、ADCその2によって生じる入力擾乱はADCその1のサンプリングに影響を及ぼさない。なぜならば、ADCその1がクロックエッジタイミングにおいて入力信号線に対して擾乱成分を発生する時刻をt1とすれば、ADCその2はt1と全く同時刻にサンプリングをする。そしてADC1が発生した擾乱成分が信号線を伝わってADCその2に届くまでには信号線の線長による遅延(Δtとする)があるため、ADCその2の入力にADCその1が発生した擾乱成分が届くのはt1+Δtであり、ADCその2のサンプリングタイミングであるt1より後である。
 よってADCその2のサンプリングはADCその1による擾乱の影響を受けない。これはADCその2がサンプリングするときもまた同様であり、他のADC101-k対の間でも同様である。本実施形態はこのようなサンプリングクロック間のタイミングずれによって擾乱されたばかりの入力信号をサンプリングしてしまうという現象を回避するものであり、擾乱された入力が収束されるのに最低、1/(fs・N)の期間を確保しているものである。また、本実施例ではさらにデジタル補正部をそなえていることを特徴としており、以下ではその理由と効果について述べる。
 本実施例では対になったADC101-lとADC101-m間で1種類のサンプリングクロック信号を共有し、互いにクロック入力端子は正負逆に接続されているため、ADC101-lとADC101-mの間では互いに反転位相のサンプリングクロックが入力されたとして動作するということと、その結果、対になったADC101-kは互いに1/(fs・2)の時刻差をもって入力信号をサンプリングし、AD変換するということを前述したが、これにより対になったADC間のサンプリングタイミングは正確に1/(fs・2)の時刻差であることが差動サンプリングクロック信号の性質より保証される。しかしながら、対になっていない他のADCとは、サンプリングクロックの生成時に、位相関係を正確に1/(fs・N)刻みにすることが難しく、ADCサンプリング回路間のサンプリングタイミング誤差によってADCの分解能が低下するという課題が生じる。本実施例では、このサンプリングタイミング誤差を参照用ADC104とデジタル補正部102を用いて補正することにより、前述したADC間のサンプリングタイミングが理想値からずれる課題を解決している。
 ここで、前述したk/(fs・N)の位相をもつN/2種類のクロックを基準となる差動クロック信号(clk+、clk-)から生成するための一例として、インダクタンス素子300とキャパシタンス素子301を用いたLCフィルタ遅延器を図3(a)に示す。LCフィルタはその特性により、バターワースフィルタ、チェビシェフフィルタ等、名前が付けられて一般的に知られているフィルタの型が存在する。ここでは、仮に広い周波数帯域において遅延特性の変化が少ないベッセルフィルタと呼ばれるLCフィルタを例に説明する。遮断周波数1/2π [Hz]、インピーダンス1[Ω]に規格化された5次のπ型ベッセルフィルタの各素子定数を図3(b)に示す。フィルタの特性を維持したままインピーダンスを変換するためには、変換先のインピーダンスをR[Ω]とすれば、K=R/1として、全てのインダクタンス素子値にKをかけ、全てのキャパシタンス素子値をKで割ればよい。また、遮断各周波数を変換するためには変換先の遮断各周波数をfc[Hz]とすれば、M=fc×2πとして全てのインダクタンス素子値、キャパシタンス素子値をMで割ればよい。フィルタに入力された信号の遅延量は入力信号の周波数とフィルタの遮断周波数、フィルタの次数に依存するので回路シミュレータや数値計算を用いて、サンプリングクロック周波数fsに対して適切な量の遅延が生じるようなMを求め、フィルタを設計すればよい。また、図3(c)に示すように、キャパシタンス素子301のいずれかを可変容量コンデンサ303に変更することで、遅延量の調整可能幅を設けることも可能である。
 図4に第2の実施例にかかるインターリーブADCの実施形態を示す。
 本実施例は実施例1におけるADCのキックバック成分が入力信号を擾乱する課題をより改善するための解決策の一例として示されるものである。
 本実施例の場合、差動入力クロック端子をもつN個のADC101-k(k=1~Nの整数であり、Nは2の倍数)のアナログ入力端子がバッファ部401-kの出力端子に接続されており、バッファ部401-kの入力端子は共通アナログ入力信号線に接続されている。これに加えて、共通入力信号線にバッファ部400の入力端子が接続されバッファ部400の出力端子に参照用ADC104の入力端子が接続されている。 ここでADC101-kおよび参照用ADC104は入力サンプリング回路を含む。各々のADC101-kのデジタル出力はデジタル補正部102に接続され、実施例1と同様にADC104の出力との比較からそれぞれのAD変換経路に生じる直流オフセット、変換利得ばらつき、サンプリングタイミングのずれなど、AD変換経路間のミスマッチを補正する。
 デジタル補正部102によって補正された各ADC101-kのAD変換結果はマルチプレクサ103によって統合され、一連の時系列データとして出力される。
 また、各々のADC101-l(lは1~Nの奇数)は対になるADC101-m(mは1~Nの偶数)をもち、各々のADC101-lの正入力クロック端子は対になるADC101-mの負入力クロック端子に、各々のADC101-lの負入力クロック端子は対になるADC101-mの正入力クロック端子に接続されている。
 互いに接続されたADC101-lとADC101-mの差動入力クロック端子には遅延器105-kを介して差動クロック信号線が接続され周波数fsのサンプリングクロック信号が入力される。
 このとき、それぞれのADC101-lに直結している差動クロック信号線に入力されるサンプリングクロック信号はある一つの周波数fsのサンプリングクロック信号の位相を基準に取ったとき、k/(fs・N)の位相差をもつN/2種類のサンプリングクロックを振り分けたものとする。
 また、差動入力信号線の正負2本の信号線はそれぞれADC101-lおよびADC101-mのクロック端子間を接続している2本の信号線のどちらに接続しても良い。
 本実施例において特徴となるのはADC101-kと共通アナログ入力信号線の間に設けられたバッファ部401-kである。
 バッファ部の実施形態例として示す図5(a)はオペアンプ500の非反転入力端子にアナログ信号入力線が接続され、同オペアンプ500の出力端子と反転入力端子が接続される負帰還構成をとっており、オペアンプ500の非反転入力端子はキャパシタ501を介して接地されている。
 また、ADC101-kのアナログ入力端子が差動入力を要求する場合は、図5(b)のようにオペアンプ500の出力に差動オペアンプ502を接続し、アナログ入力信号を差動化することも可能であり、単位ADCのアナログ入力端子がシングルエンドであるか、差動であるかということは問わない。
 以下では実施例1に前述した、クロックエッジにおけるADCの入力線に対するキックバックが入力信号の擾乱を引き起こす課題に対して、この構成によって得られる効果について述べる。
 実施例1では対になるADC間のサンプリングクロックとして共通の差動クロック信号を使用することで、ADC間のサンプリングタイミングがずれることによる擾乱された信号をサンプリングすることを防ぐものであった。しかし、対になっていない他のADCが引き起こした擾乱の影響が残ったままである場合に関しては対策することができない。
 そこで、実施例2におけるバッファ部401-kはバッファ素子固有の特性として出力インピーダンスが低く、またバッファ部を構成するオペアンプ500の非反転入力端子と反転入力端子の間は絶縁されており、微小な寄生容量のみが存在する。そのため、バッファ部401-kの出力側に発生した信号擾乱はほとんどバッファ部の入力側に伝わらず、寄生容量を介して伝わる擾乱成分もコンデンサ501の容量とオペアンプ500の入力端子間の寄生容量の大きさの比に応じて分圧されるため、入力信号側に伝わる信号擾乱成分は非常に小さなものとなる。このように、本実施例では、バッファ部401-kを設けたことにより、キックバック成分が他のADC101-kに伝達することを抑制することができ、対になっていないADC間においてもキックバック問題を解決し、有効分解能を確保することが可能になる。
 図5に第3の実施例にかかるインターリーブADCの実施形態を示す。
 本実施例は実施例2で開示した、バッファ部を設けたことによる特性の劣化を防ぐために、バッファ部の特性をデジタル補正するものである。
 本実施例の場合、N個のADC101-k(k=1~Nの自然数)と、ADC101-kのアナログ入力端子にそれぞれ接続されたバッファ部401-kと各々のADC101-kに接続されたデジタル補正部102の出力に接続されたマルチプレクサ103と、共通入力信号線に入力端子が接続されたバッファ部400とバッファ部400の出力端子に入力端子が接続された参照用ADC104からなる。
 ここでADC101-kおよび参照用ADC104は入力サンプリング回路を含む。各々のバッファ部401-kにはアナログ信号Vinが入力され、ADC101-kには周波数fsのサンプリングクロック信号が入力される。各々のADC101-kのデジタル出力はデジタル補正部102に接続され、ADC104の出力との比較からAD変換経路に生じる直流オフセット、変換利得ばらつき、サンプリングタイミングのずれなど、各々のAD変換経路間のミスマッチを補正する。この補正は実施例1に前述した方法と同様に実施することができる。本実施例ではさらに、デジタル補正部102がバッファ部401-k、バッファ部400の電圧オフセット、電圧利得、信号帯域ばらつきを補正する。デジタル補正部102によって補正された各ADC101-kのAD変換結果はマルチプレクサ103によって統合され、一連の時系列データとして出力される。また、各ADC101-kに入力される各々のサンプリングクロック信号は互いに位相差があり、互いに最も位相が近いもの同士ではおよそ1/(fs・N)の位相差をもつ。
 以下に本構成の効果について説明する。
 本実施例で特徴となるのはデジタル補正部102がバッファ部401-kによって生じる特性のばらつき、特に信号帯域ばらつきを同時に補正する点である。
 アナログ信号はインターリーブADCのAD変換経路ごとに異なるバッファ部を経由するため、バッファ部401-kを構成するオペアンプの信号帯域ばらつきの影響を受ける。このようなバッファ部の信号帯域ばらつきも他のばらつきと同様マルチプレクサ103によって合成したAD変換結果の分解能を低下させる要因となる。
 ここで、デジタル補正部102は定期的に各ADC101-kのサンプリングとADC104のAD変換結果と各ADC101-kのAD変換結果とを比較することにより、これらの経路間のミスマッチ量を特定し、それらのミスマッチを打ち消すように各ADC101-kのデジタル出力値を再計算し、マルチプレクサに出力する。デジタル補正部の構成は図2の構成と同様であり、信号帯域の補正パラメータは実施例1に前述したサンプリングタイミングの補正パラメータと同一のパラメータに帰着され、経路間のミスマッチによる分解能の低下を防ぐことができる。その理由を以下に示す。
 バッファ部401-kの周波数特性は一般的に数1の伝達関数として表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、jを虚数単位、ωを入力信号の角周波数としたときs=j×ωであり、a、bはそれぞれバッファ部401-kのもつ周波数特性に依存する定数である。上記の式はバッファ部401-kのもつ周波数帯域よりも低い周波数帯域においては数2のような形に近似を行うことができる。
Figure JPOXMLDOC01-appb-M000002
 一方、サンプリングタイミングの理想値からのずれをΔtとすれば、Δtの影響を受けたAD変換結果を数3のような伝達関数で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、Δt×s+(Δt)/2×sの成分がΔtによって生じる誤差である。実施例1で前述したサンプリングタイミングのデジタル補正では、このsの係数であるΔt、sの係数であるΔt/2をを求め、誤差項を計算してAD変換結果から引くという処理を行っている。ここで、サンプリングタイミングの誤差による影響とバッファの周波数特性によって生じる影響が同時に起こった場合、数2、数3から数4のような伝達関数として表すことができる。
Figure JPOXMLDOC01-appb-M000004
 数4より、サンプリングタイミングの誤差とバッファ部間における周波数特性の誤差の影響はsの係数、sの係数を求めることにより補正することができることがわかるので実施例1で述べたものと同様の方法で補正できることが分かる。本実施例ではこの係数を求めることにより、サンプリングタイミングのミスマッチとバッファ部間の周波数特性ミスマッチを同時に補正している。また、バッファ部の利得補正、オフセット補正も実施例1と同様に図2の構成で行うことができ、有効分解能の低下をさらに防ぐことを可能にしているものである。
 図7に第4の実施例にかかるインターリーブADCの実施形態を示す。
 本実施例では実施例2の形態に加えて、実施例3で前述したバッファ間の特性ミスマッチとサンプリングタイミングの同時補正構造、さらに、参照用ADC104に入力するクロックの位相を調整可能な遅延器700を備えるものである。
 本実施例の場合、差動入力クロック端子をもつN個のADC101-k(k=1~Nの整数であり、Nは2の倍数)のアナログ入力端子が共通のアナログ入力信号線に接続されている。
 また、各々のADC101-kの出力はマルチプレクサ103に接続されている。各々のADC101-l(lは1~Nの奇数)は対になるADC101-m(mは1~Nの偶数)をもち、各々のADC101-lの正入力クロック端子は対になるADC101-mの負入力クロック端子に、各々のADC101-lの負入力クロック端子は対になるADC101-mの正入力クロック端子に接続されている。
 互いに接続されたADC101-lとADC101-mの差動入力クロック端子には差動クロック信号線が接続され周波数fsのサンプリングクロック信号が入力される。このとき、それぞれの差動クロック信号線に入力されるサンプリングクロック信号は基準となる差動クロック信号(clk+、clk-)から遅延器105-kによって生成されたk/(fs・N)(kは0~N/2-1の自然数)の位相をもつN/2種類のクロック振り分けたものとする。
 ここで、差動クロック信号(clk+、clk-)は平衡‐不平衡変換器や、その他のシングルエンド信号を差動信号に変換する素子を用いても良く、クロック発生器から直接差動信号として生成されても良い。
 また、差動入力信号線の正負2本の信号線はそれぞれADC101-lおよびADC101-mのクロック端子間を接続している2本の信号線のどちらに接続しても良い。
 また、本実施例においてはアナログ入力信号線に並列に接続された参照用のADC104と、ADC104と各々のADC101-kの出力比較結果をもとにADC101-kの出力結果を補正するデジタル補正部を備えている。
 実施例では、さらに、各々のADC101-kおよび参照用ADC104のアナログ入力端子と共通入力信号線の間にバッファ部401-k、400が接続されている。デジタル補正部はADC104の出力とADC101-kの出力との比較値から、各々の遅延器105-k間に生じる遅延誤差及び、入力バッファ401-k間に生じる入力周波数帯域等の特性ばらつきを同時に計算し、それをもとに補正されたADC101-kの出力値を得る。
 これにより、各々のADC101-kがそれに入力されたサンプリングクロック信号のエッジタイミングで発生する入力信号の擾乱に対して整定する期間を確保し、さらに直接共通の入力信号に対して擾乱成分の流出を防ぎつつ、それぞれの遅延器精度、バッファ部の特性ばらつきによる有効分解能低下を防いでいる。
 本実施例では、これに加えて、参照用ADC104に入力されるクロック信号線上に遅延量を調整可能な遅延器700を備える。
 以下では本実施例の効果について記述する。
 ここで、参照用ADC104と各ADC101-kに入力されるクロックの位相関係を図8に示す。clk1およびclk2はADC101-kのいずれかに入力されるサンプリングクロック信号のうち最も位相差が少ない任意の2種類のサンプリングクロック信号を示している。
 ここで、t1とt2はそれぞれclk1とclk2のクロック立下り時刻を示している。また、ref_clkは参照用ADC104に入力されるサンプリングクロックであり、ADC101-kのサンプリングタイミングを補正する際の基準となるクロックである。
 trefはref_clkのクロック立下り時刻を示しており、t1とt2はおよそ1/(fs・N)の時間差がある。この間隔がインターリーブADCのサンプリング間隔を決定する。デジタル補正部は時刻t1にADC101-kがAD変換した値と時刻trefに参照用ADC104がAD変換した値を比較し、補正値を算出することで、t1のずれによる影響を補正する。trefとt1の時刻が離れすぎていると正しい補正値を算出することができない。
 そこで、t1をtrefに近づける必要があるので、clk1の遅延量をより大きくする必要がある。しかし、t1とt2はおよそ1/(fs・N)に保たれている必要があるため、clk2もまた遅延量を増やさなければならない。このようにして、連鎖的に全てのclk遅延量を増やさなければならなくなってしまうが、一般的に遅延器において遅延量を増加させる際には遅延回路の増大を招くため、実装上望ましくない。
 また、一般的に遅延器の遅延量調整幅と遅延調整精度とはトレードオフにあるので、遅延量の調整範囲を小さくすることが望ましい。
 そこで本構成では参照用ADC104に入力するref_clkの経路上に設けられた遅延器700によってref_clkそのものを遅延させる。
 これにより、trefを遅延させることでtrefとt2を近づけることができる。各々のADC101-kに入力されるサンプリングクロック信号間の位相関係がおよそ1/(fs・N)に保たれ、ref_clkの立ち下がりエッジがいずれかのタイミングで、いずれか一つのADC101-kに入力されるサンプリングクロック信号の立ち下がりエッジに一致していれば、それ以外のADCの立下りエッジも定期的にref_clkのいずれかの立ち下がりエッジと同期できる。
 ゆえに、結果的にすべてのADC101-kのクロック入力の立下りエッジにref_clkのいずれかの立下りエッジを周期的に同期させることができる。
 以上の仕組みにより、ADC101-k用の遅延器105-kの遅延調整精度の低下および回路規模の増大を防ぎつつ、デジタル補正可能な範囲にref_clkのタイミングを合わせることが可能になるという効果が得られる。
101-1~101-N:ADC
102:デジタル補正部
103:マルチプレクサ
104:参照用ADC
105-1~105-N:遅延器
201-1~201-N:利得補正部
202-1~202-N:オフセット補正部
203-1~203-N:スキュー補正部
204-1~204-N:減算器
205-1~205-N:乗算器
206-1~206-N:加算器
207-1~207-N:遅延器
208-1~208-N:乗算器
209-1~209-N:乗算器
210-1~210-N:加算器
211-1~211-N:遅延器
212-1~212-N:加算器
213-1~213-N:乗算器
214-1~214-N:加算器
215-1~215-N:遅延器
216-1~216-N:乗算器
217-1~217-N:遅延器
218-1~218-N:加算器
300:抵抗
301:コンデンサ
302:インダクタンス
303:可変容量コンデンサ
400:バッファ部
401-1~401-N:バッファ部
500:オペアンプ
501:コンデンサ
502:差動出力オペアンプ
700:遅延器
901-1~901-K:遅延器
902-1~902-K:タップ部
903:加算器

Claims (17)

  1.  複数の単位アナログデジタル変換器によって構成される、タイムインターリーブ型アナログデジタル変換器において、2本で1組の差動クロック信号線の片側の第1のクロック信号線が、前記タイムインターリーブ型アナログデジタル変換器を構成する、第1の単位アナログデジタル変換器の正入力クロック端子と、第1の単位アナログデジタル変換器とひと組になってタイムインターリーブ型アナログデジタル変換器を構成する第2の単位アナログデジタル変換器の負入力クロック端子に入力され、前記差動クロック信号線対のうち、前記第1のクロック信号線とは異なる側のクロック信号線である第2のクロック信号線が、前記第1のアナログデジタル変換器の負入力クロック端子と、前記第2のアナログデジタル変換器の正入力クロック端子に入力されることを特徴とするタイムインターリーブ型アナログデジタル変換器。
  2.  各単位アナログデジタル変換器に入力される各サンプリングクロックの理想的なサンプリングタイミングからのずれを、各単位アナログデジタル変換器後に設けた各デジタル補正部において各単位アナログデジタル変換器出力の微分値に相当する値と理想的なサンプリングタイミングからのタイミング誤差に相当する値を乗算した値を各単位アナログデジタル変換器出力から差し引くことで補正することを特徴とする請求項1記載のタイムインターリーブ型アナログデジタル変換器。
  3.  各単位アナログデジタル変換器と共通のアナログ入力電圧をサンプリングする参照用アナログデジタル変換器の変換結果を用いてデジタル補正を行うことを特徴とする請求項2記載のタイムインターリーブ型アナログデジタル変換器。
  4.  共通アナログ入力信号線の後段に複数のアナログ入力バッファが接続され、前記各入力バッファの後段に前記単位アナログデジタル変換器が接続されることを特徴とする請求項1記載のタイムインターリーブ型アナログデジタル変換器。
  5.  共通アナログ入力信号線の後段に複数のアナログ入力バッファが接続され、前記各入力バッファの後段に前記単位アナログデジタル変換器が接続されることを特徴とする請求項2記載のタイムインターリーブ型アナログデジタル変換器。
  6.  共通アナログ入力信号線の後段に複数のアナログ入力バッファが接続され、前記各入力バッファの後段に前記単位アナログデジタル変換器が接続されることを特徴とする請求項3記載のタイムインターリーブ型アナログデジタル変換器。
  7.  複数の単位アナログデジタル変換器によって構成される、タイムインターリーブ型アナログデジタル変換器において、共通アナログ入力信号線の後段に複数のアナログ入力バッファが接続され、前記入力バッファの後段に前記単位アナログデジタル変換器が接続され、各単位アナログデジタル変換器直後に設けたデジタル補正部において、理想的なバッファ部利得に相当する値を各単位アナログデジタル変換器出力に乗算することによるバッファ利得の補正、または、理想的な直流オフセット電圧値に相当する値を各単位アナログデジタル変換器出力から差し引くことによる直流オフセットの補正、または、各単位アナログデジタル変換器出力の微分値に相当する値と理想的なバッファ周波数帯域からの誤差に相当する値を乗算した値を各単位アナログデジタル変換器出力から差し引くことによるバッファ間の信号帯域補正のいずれかひとつを実施することを特徴としたタイムインターリーブ型アナログデジタル変換器。
  8.  共通のアナログ入力電圧をサンプリングする参照用アナログデジタル変換器の変換結果を用いて、デジタル補正を行うことを特徴とする請求項7記載のタイムインターリーブ型アナログデジタル変換器。
  9.  サンプリングクロックの理想時間からのずれを、各単位アナログデジタル変換器後に設けたデジタル補正部で補正することを特徴とする請求項8記載のタイムインターリーブ型アナログデジタル変換器。
  10.  共通アナログ入力信号線の後段に複数のアナログ入力バッファが接続され、前記入力バッファの後段に前記単位アナログデジタル変換器が接続され、各単位アナログデジタル変換器直後に設けたデジタル補正部において、理想的なバッファ部利得に相当する値を各単位アナログデジタル変換器出力に乗算することによるバッファ利得の補正、または、理想的な直流オフセット電圧値に相当する値を各単位アナログデジタル変換器出力から差し引くことによる直流オフセットの補正、または、各単位アナログデジタル変換器出力の微分値に相当する値と理想的なバッファ周波数帯域からの誤差に相当する値を乗算した値を各単位アナログデジタル変換器出力から差し引くことによるバッファ間の信号帯域補正のいずれかひとつを実施することを特徴とする請求項1記載のタイムインターリーブ型アナログデジタル変換器。
  11.  サンプリングクロックの理想時間からのずれを、前記各単位アナログデジタル変換器後に設けたデジタル補正部で補正することを特徴とする請求項10記載のタイムインターリーブ型アナログデジタル変換器。
  12.  共通のアナログ入力電圧をサンプリングする参照用アナログデジタル変換器の変換結果を用いて、デジタル補正を行うことを特徴とする請求項10記載のタイムインターリーブ型アナログデジタル変換器。
  13.  サンプリングクロックの理想時間からのずれを、前記各単位アナログデジタル変換器後に設けたデジタル補正部で補正することを特徴とする請求項12記載のタイムインターリーブ型アナログデジタル変換器。
  14.  前記参照用アナログデジタル変換器に入力するサンプリングクロック信号の位相を調整可能な位相遅延回路を持つことを特徴としたタイムインターリーブ型アナログデジタル変換器。
  15.  請求項13に記載のアナログデジタル変換器において、前記参照用アナログデジタル変換器に入力するサンプリングクロック信号の位相を調整可能な位相遅延回路を持つことを特徴とする請求項13記載のタイムインターリーブ型アナログデジタル変換器。
  16.  サンプリングクロックの位相差をLCフィルタにより作り出すことを特徴とする請求項1記載のタイムインターリーブ型アナログデジタル変換器。
  17.  ナログデジタル変換器に入力されるサンプリングクロックの少なくとも1つの遅延をLCフィルタにより作り出すことを特徴とする請求項15記載のタイムインターリーブ型アナログデジタル変換器。
PCT/JP2012/072837 2012-09-07 2012-09-07 インターリーブa/d変換器 WO2014038056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/072837 WO2014038056A1 (ja) 2012-09-07 2012-09-07 インターリーブa/d変換器
JP2014534119A JP5836493B2 (ja) 2012-09-07 2012-09-07 インターリーブa/d変換器
US14/421,512 US9337853B2 (en) 2012-09-07 2012-09-07 Interleaved A/D converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072837 WO2014038056A1 (ja) 2012-09-07 2012-09-07 インターリーブa/d変換器

Publications (1)

Publication Number Publication Date
WO2014038056A1 true WO2014038056A1 (ja) 2014-03-13

Family

ID=50236705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072837 WO2014038056A1 (ja) 2012-09-07 2012-09-07 インターリーブa/d変換器

Country Status (3)

Country Link
US (1) US9337853B2 (ja)
JP (1) JP5836493B2 (ja)
WO (1) WO2014038056A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047110A (ja) * 2015-09-04 2017-03-09 キヤノン株式会社 撮像装置
CN110445481A (zh) * 2019-08-06 2019-11-12 中国科学院近代物理研究所 一种采样间隔不均匀性修正电路及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481307B2 (ja) * 2014-09-24 2019-03-13 株式会社ソシオネクスト アナログデジタル変換器、半導体集積回路、及びアナログデジタル変換方法
CN107636971B (zh) * 2015-05-29 2022-03-01 瑞典爱立信有限公司 模拟到数字转换器系统
US9503115B1 (en) * 2016-02-19 2016-11-22 Xilinx, Inc. Circuit for and method of implementing a time-interleaved analog-to-digital converter
WO2017175427A1 (ja) * 2016-04-05 2017-10-12 三菱電機株式会社 周波数変調回路、fm-cwレーダおよび高速変調レーダ
CN111193959B (zh) * 2018-11-15 2022-01-07 西安诺瓦星云科技股份有限公司 模拟视频信号处理方法和模拟视频处理装置
CN113037283A (zh) * 2019-12-09 2021-06-25 中兴通讯股份有限公司 时间交织逐次逼近型模数转换器及其校准方法
CN111277267A (zh) * 2020-03-05 2020-06-12 中国人民解放军国防科技大学 双通道tiadc的时延失配补偿方法、装置及电子设备
CN112067868B (zh) * 2020-09-07 2023-04-21 中电科思仪科技股份有限公司 一种具有自动校准功能的数字示波器多路adc交叉采样电路及其校准方法
JP2022146460A (ja) 2021-03-22 2022-10-05 キオクシア株式会社 半導体回路、受信装置及びメモリシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159534A (ja) * 2007-12-27 2009-07-16 Advantest Corp アナログデジタル変換装置、アナログデジタル変換方法、制御装置及びプログラム
JP2009272915A (ja) * 2008-05-08 2009-11-19 Semiconductor Technology Academic Research Center サンプルホールド回路及びa/d変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745962B2 (ja) 2001-01-24 2006-02-15 株式会社アドバンテスト インターリーブad変換方式波形ディジタイザ装置、及び試験装置
US7541950B2 (en) * 2006-07-20 2009-06-02 Samplify Systems, Inc. Enhanced time-interleaved A/D conversion using compression
WO2009090514A1 (en) * 2008-01-14 2009-07-23 Nxp B.V. Time interleaved analog-to-digital-converter
US8102289B2 (en) 2009-02-19 2012-01-24 Hitachi, Ltd. Analog/digital converter and semiconductor integrated circuit device
US8581634B2 (en) * 2010-02-24 2013-11-12 Texas Instruments Incorporated Source follower input buffer
US9041570B2 (en) * 2011-09-30 2015-05-26 Nec Corporation Analog-to-digital converter and analog-to-digital conversion method
US8487895B1 (en) * 2012-06-26 2013-07-16 Google Inc. Systems and methods for enhancing touch event processing performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159534A (ja) * 2007-12-27 2009-07-16 Advantest Corp アナログデジタル変換装置、アナログデジタル変換方法、制御装置及びプログラム
JP2009272915A (ja) * 2008-05-08 2009-11-19 Semiconductor Technology Academic Research Center サンプルホールド回路及びa/d変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047110A (ja) * 2015-09-04 2017-03-09 キヤノン株式会社 撮像装置
US10537242B2 (en) 2015-09-04 2020-01-21 Canon Kabushiki Kaisha Imaging apparatus
CN110445481A (zh) * 2019-08-06 2019-11-12 中国科学院近代物理研究所 一种采样间隔不均匀性修正电路及方法

Also Published As

Publication number Publication date
US20150341044A1 (en) 2015-11-26
US9337853B2 (en) 2016-05-10
JP5836493B2 (ja) 2015-12-24
JPWO2014038056A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5836493B2 (ja) インターリーブa/d変換器
JP5095007B2 (ja) アナログデジタル変換器および半導体集積回路装置
US9608652B2 (en) Methods and apparatus for reducing timing-skew errors in time-interleaved analog-to-digital converters
Matsuno et al. All-digital background calibration technique for time-interleaved ADC using pseudo aliasing signal
CN106685424B (zh) 用于模数转换器的微处理器辅助校准
TWI539756B (zh) 類比至數位轉換器裝置、用於校準類比至數位轉換器的方法、及用於儲存執行該方法之指令的電腦可讀取媒體
US8890739B2 (en) Time interleaving analog-to-digital converter
US7301486B2 (en) Time-interleaved analog-to-digital converter having timing calibration
JP5288003B2 (ja) A/d変換装置とその補正制御方法
US8564462B2 (en) Digital correction techniques for data converters
JP5142342B2 (ja) Ad変換回路
US20140152478A1 (en) Randomized time-interleaved sample-and-hold system
JP2016213826A (ja) タイムインターリーブ型ad変換器
JP2008011189A (ja) タイム・インターリーブa/d変換装置
US7808407B2 (en) Sub-channel distortion mitigation in parallel digital systems
EP2041873A1 (en) Time- interleaved analog-to-digital converter system
JP5286420B2 (ja) アナログデジタル変換器およびそれを用いた半導体集積回路装置
KR101691367B1 (ko) M채널 TI-ADCs에서 미스매치에 대한 디지털 후면 교정 방법 및 그 장치
Nam et al. A 12.8-Gbaud ADC-based NRZ/PAM4 receiver with embedded tunable IIR equalization filter achieving 2.43-pJ/b in 65nm CMOS
Huiqing et al. Adaptive digital calibration of timing mismatch for TIADCs using correlation
EP2503696B1 (en) Time-interleaved analog-to-digital converter system
Pillai et al. Efficient signal reconstruction scheme for M-channel time-interleaved ADCs
US20240007120A1 (en) Time-Interleaved ADC
Liu et al. Efficient real-time blind calibration for frequency response mismatches in two-channel TI-ADCs
Ghosh et al. Enabling high-speed, high-resolution ADCs using signal conditioning algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14421512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884043

Country of ref document: EP

Kind code of ref document: A1