WO2021205705A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2021205705A1
WO2021205705A1 PCT/JP2021/001708 JP2021001708W WO2021205705A1 WO 2021205705 A1 WO2021205705 A1 WO 2021205705A1 JP 2021001708 W JP2021001708 W JP 2021001708W WO 2021205705 A1 WO2021205705 A1 WO 2021205705A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
receiving
multiplexer
mode
output signal
Prior art date
Application number
PCT/JP2021/001708
Other languages
English (en)
French (fr)
Inventor
龍也 上村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21784512.2A priority Critical patent/EP4134704A4/en
Priority to JP2022514312A priority patent/JP7337261B2/ja
Priority to US17/915,556 priority patent/US20230138631A1/en
Publication of WO2021205705A1 publication Critical patent/WO2021205705A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/42Diversity systems specially adapted for radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • This disclosure relates to a radar device that detects a target.
  • Patent Document 1 discloses a frequency modulation technique applicable to a fast chirp modulation (FCM) radar.
  • the FCM radar is characterized in that it is easy to configure and the frequency band of the transmission / reception beat signal to be processed in the baseband is relatively low, so that it is easy to handle. Due to this feature, FCM radar has become widespread as an automobile collision prevention millimeter-wave radar, and is expected to be used as one of sensors for automatic driving in the future.
  • the FCM radar described in Patent Document 1 has a configuration in which an analog-to-digital converter (ADC) is connected to each receiving channel. Therefore, as the number of receiving channels of the FCM radar increases, the number of ADCs also increases, and there is a problem that the size, manufacturing cost, and power consumption of the FCM radar increase.
  • ADC analog-to-digital converter
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a radar device capable of suppressing an increase in size, manufacturing cost, and power consumption even if the number of receiving channels increases.
  • the radar device receives an antenna unit that radiates a radar wave into space and a reflected wave from a target of the radar wave via the antenna unit. It is provided with a high-frequency circuit for converting a high-frequency circuit and a baseband circuit for converting a received signal output from the high-frequency circuit into a digital value baseband signal.
  • the radar device has a first mode for detecting a relatively long-distance target and a second mode for detecting a relatively short-distance target.
  • Four or more reception channels are configured in the antenna unit, the high frequency circuit, and the baseband circuit.
  • the number of receiving channels which is the number of receiving channels that perform conversion processing to the baseband signal, is smaller in the second mode than in the first mode, and the conversion processing speed is higher than that in the first mode. Mode is faster.
  • the radar device even if the number of receiving channels increases, it is possible to suppress an increase in size, manufacturing cost, and power consumption.
  • Block diagram showing a configuration example of a radar device A block diagram showing an example of a hardware configuration that realizes the functions of an MCU (MicroControl Unit) in the embodiment.
  • the first figure which provides the operation description in the short-distance mode and the long-distance mode of an embodiment.
  • the second figure which provides the operation description in the short-distance mode and the long-distance mode of an embodiment.
  • FIG. 3 for explaining the operation in the short-distance mode and the long-distance mode of the embodiment.
  • the radar device according to the embodiment of the present disclosure will be described in detail with reference to the attached drawings below.
  • the FCM radar will be described as an example, but it is not intended to exclude the application to radar devices other than the FCM radar.
  • the electrical connection and the physical connection will be described simply as "connection” without any particular distinction.
  • FIG. 1 is a block diagram showing a configuration example of the radar device 100 according to the embodiment.
  • the radar device 100 includes an antenna unit 16, a reference signal source 21 that generates a reference signal REF (REFERence signal), a high frequency circuit 17, a baseband circuit 18, and an MCU 19. And.
  • the high frequency circuit 17, the baseband circuit 18, and the reference signal source 21 constitute a “transmission / reception unit”, and the MCU 19 constitutes a “signal processing unit”.
  • the antenna unit 16 includes a receiving array 16a and a transmitting array 16b.
  • the receiving array 16a includes receiving antennas 1 1 to 18 .
  • Transmit array 16b comprises a transmitting antenna 2 1, 2 2. If the radar device 100 is used as an anti-millimeter-wave radar car crash, the receiving antennas 1 1 to 1 8 and the transmission antenna 2 1, 2 2, the horizontal direction and are arranged in the direction and perpendicular to the traveling direction of the automobile.
  • the receiving antennas 1 1 to 18 may be referred to as "first receiving antenna” to "eighth receiving antenna", respectively.
  • Receive antennas 1 1 to 1 8 and the transmission antenna 2 1, 2 2 each subscript in the channel: are given in order to identify the (channel ch).
  • the subscript is omitted and the term “reception antenna 1” is used, and the transmitting antennas 2 1 and 2 2 are individually distinguished.
  • the subscript is omitted and the term "transmitting antenna 2" is used. This notation also applies to the other components described below that are identified with a subscript.
  • the channel is a group of processing units including the components of the transmission / reception unit and the signal processing unit processed by one receiving antenna 1 or one transmitting antenna 2.
  • the channel of the receiving antenna 1 is referred to as a “reception channel”
  • the channel of the transmitting antenna 2 is referred to as a “transmission channel”.
  • the number of receiving channels which is the number of receiving channels
  • the number of transmitting channels which is the number of transmitting channels
  • the reception channel connected to the reception antenna 1 1 is referred to as "reception 1ch”.
  • the number of channels shown in FIG. 1 is an example, and is not limited to these examples.
  • the high-frequency circuit 17 includes a voltage-controlled oscillator (Voltage Control Oscillator: VCO) 7, a loop filter (Loop Filter: LF) 8, a phase-locked loop (PLL) 9, and a chirp signal (Chirp Signal). It includes a chirp signal generator 10 which is a generator.
  • VCO Voltage Control Oscillator
  • LF Loop Filter
  • PLL phase-locked loop
  • chirp signal generator 10 which is a generator.
  • VCO Voltage Control Oscillator
  • LF loop filter
  • PLL phase-locked loop
  • PLL phase-locked loop
  • the high frequency circuit 17 a power amplifier (Power Amplifier: PA) 6 1 , 6 2, a low noise amplifier (Low Noise Amplifier: LNA) 3 1-3 8, a mixer (Mixer: MIX) 4 1 ⁇ 4 8
  • the intermediate frequency amplifier intermediate frequency amplifier: IFA
  • the "power amplifier” is described as “PA”
  • the "low noise amplifier” is described as “LNA”
  • the “mixer” is described as "MIX”
  • IFA intermediate frequency amplifier
  • the FIR filter is an example of a digital filter.
  • the "baseband amplifier” will be described as "BBA”
  • the “bandpass filter” will be described as "BPF”
  • the "multiplexer” will be described as "MUX”.
  • FIR filter is abbreviated as "FIR”.
  • the MUX 20 1 ⁇ 20 4 there is a case where each referred to as a "first multiplexer” - "fourth multiplexer”.
  • FFT Fast Fourier transform
  • the reference signal REF and the chirp signal generated by the chirp signal generator 10 are input to the PLL 9.
  • the PLL 9 frequency-modulates the reference signal REF with a modulation pattern by the chirp signal.
  • the frequency-modulated signal by PLL9 is band-limited by LF8 and input to VCO7.
  • the VCO 7 cooperates with the PLL 9 to output a frequency-modulated high-frequency signal.
  • the high frequency signal output from the VCO 7 includes a sawtooth wave up chirp signal or a sawtooth wave down chirp signal.
  • An up-chirp signal is a signal whose frequency increases with the passage of time.
  • a down chirp signal is a signal whose frequency decreases with the passage of time.
  • PA6 amplifies the high frequency signal to a desired power and outputs the amplified high frequency signal to the transmitting antenna 2.
  • the transmitting antenna 2 converts a high-frequency signal into a radar wave which is a radio wave, and radiates the converted radar wave into space.
  • the high frequency circuit 17 has a function of receiving the reflected wave from the target of the transmitted radar wave via the reception array 16a of the antenna unit 16 and transmitting the received signal to the baseband circuit 18 in the subsequent stage.
  • LNA3 amplifies the received signal.
  • the MIX 4 down-converts the signal output from the LNA 3 using the local signal output from the local unit 17a.
  • IFA5 amplifies the down-converted signal to the desired signal strength.
  • the local signal is linearly modulated.
  • the signal output from the MIX 4 generally becomes a sine wave signal.
  • the signal output from the high frequency circuit 17 is referred to as a “received signal”.
  • the baseband circuit 18 has a function of converting a received signal output from the high frequency circuit 17 into a digital value baseband signal.
  • the BBA 11 amplifies the received signal output from the high frequency circuit 17.
  • the BPF 12 limits the band of the signal amplified by the BBA 11.
  • the band-limited signal by the BPF 12 is transmitted to the ADC 13 via the MUX 20. Details of the configuration and operation of the MUX 20 will be described later.
  • the ADC 13 converts the analog signal output from the MUX 20 into a digital value.
  • the FIR 14 performs band limiting and decimation processing on the digital value signal converted by the ADC 13.
  • the band-limited and decimation-processed digital value baseband signal is transmitted to the MCU 19.
  • the MCU 19 uses the baseband signal output from the baseband circuit 18 to perform arithmetic processing for obtaining radar information such as the distance to the target, the relative speed of the target, and the direction of the target. This arithmetic processing is performed by FFT15.
  • the radar device 100 has a long-distance mode and a short-distance mode.
  • the long-distance mode is a mode for detecting a relatively long-distance target.
  • the short-distance mode is a mode for detecting a relatively short-distance target.
  • the long-distance mode may be described as the "first mode”
  • the short-distance mode may be described as the "second mode”.
  • the target detection process in the first mode may be described as "first detection process”
  • the target detection process in the second mode may be described as "second detection process”.
  • the ADC 13 operates at a relatively low speed in the long-distance mode
  • the ADC 13 operates at a relatively high speed in the short-distance mode.
  • MUX 20 1 shows, four MUX 20 1 ⁇ 20 4 are shown. That is, the number of MUX 20 is 1/2 of the number of receiving channels.
  • LNA3, MIX4, IFA5, BBA11, BPF12, FIR14 and FFT15 are provided in a one-to-one correspondence with each receiving antenna 1 in the receiving array 16a. That is, the number of each part of LNA3, MIX4, IFA5, BBA11, BPF12, FIR14 and FFT15 is the same as the number of receiving channels.
  • Each MUX 20 includes two input terminals 20a and 20b and one output terminal 20c.
  • the arrangement of the input terminals 20a and 20b in each MUX 20 corresponds to the arrangement of the receiving antennas 1 in the receiving array 16a on a one-to-one basis.
  • the input terminal 20a of the MUX 20 1 is connected to the output terminal of the BPF 12 1 , and the input terminal 20 b of the MUX 20 1 is connected to the output terminal of the BPF 12 3.
  • MUX 20 2 input terminal 20a is connected to the BPF 12 2 output terminal, the input terminal 20b of the MUX 20 2 is connected to the output terminal of BPF 12 4.
  • MUX 20 3 input terminal 20a is connected to the output terminal of the BPF 12 5
  • the input terminal 20b of the MUX 20 3 is connected to the output terminal of BPF 12 7.
  • MUX 20 4 of the input terminal 20a is connected to the output terminal of the BPF 12 6
  • the input terminal 20b of the MUX 20 4 is connected to the output terminal of BPF 12 8.
  • the input terminal 20b and the MUX 20 2 input terminal 20a of the MUX 20 1 the signal output from the BPF 12 2 and BPF 12 3 is input to the cross-contrary to the arrangement of components.
  • the MUX 20 has a function of sequentially switching and multiplexing two signals that have passed through the BPF 12 and outputting them to the ADC 13.
  • the input terminal 20a and 20b of the MUX20 one of the receiving antennas 1 to 18 and one of the receiving antennas corresponding to one-to-one corresponding to each other is adjacent to the receiving antenna by the switching operation of the MUX20.
  • the output signal from the receiving antenna of is input.
  • the number of ADCs 13 may be the same as that of the MUX 20, which is 1/2 of the number of receiving channels.
  • the input terminal 20a may be described as a "first input terminal”
  • the input terminal 20b may be described as a "second input terminal".
  • the number of receiving channels is set to 8 in FIG. 1, the number of receiving channels may be set to 4. Further, in order to maximize the effect of the present embodiment, it is ideal that the number of receiving channels is a natural number multiple of 4, but it does not have to be a natural number multiple of 4. For example, the number of receiving channels may be 6. When the number of receiving channels is 6, the BPF 12 and the ADC 13 belonging to the two receiving channels can be connected without using the MUX 20. Even with this configuration, the four receiving channels can enjoy the effects of the present embodiment.
  • FIG. 2 is a block diagram showing an example of a hardware configuration that realizes the functions of the MCU 19 in the embodiment.
  • a CPU Central Processing Unit
  • a computer 80 including a RAM (Random Access Memory) 84 including a program storage area and a data storage area and a ROM (Read Only Memory) 85 as a non-volatile memory can be used.
  • the CPU 82 may be a microprocessor, a microcomputer, a processor, or a calculation means such as a DSP (Digital Signal Processor).
  • DSP Digital Signal Processor
  • the ROM 85 stores programs for various processes and a database referenced in various processes.
  • the program and database may be recorded on a readable and writable recording medium other than the ROM 85.
  • the recording medium may be a hard disk device, a portable recording medium such as a CD-ROM, a DVD disc, a USB memory, or a semiconductor memory such as a flash memory.
  • the program is loaded into RAM 84.
  • the CPU 82 develops a program in a program storage area in the RAM 84, and executes various processes by exchanging and exchanging necessary information via the input / output unit 83.
  • the data storage area in the RAM 84 is used as a work area for executing various processes.
  • the functions of the MCU 19 described above and the functions of the MCU 19 described later are realized by using the CPU 82.
  • FIG. 3 is a first diagram provided for explaining the operation in the short-distance mode and the long-distance mode of the embodiment.
  • FIG. 4 is a second diagram provided for explaining the operation in the short-distance mode and the long-distance mode of the embodiment.
  • FIG. 5 is a third diagram provided for explaining the operation in the short-distance mode and the long-distance mode of the embodiment.
  • the radar device 100 shown in FIG. 1 has a total of 8 channels of receiving channels.
  • the short-distance mode from the viewpoint of widening the horizontal beam to a wide angle and improving the resolution in the distance direction, not all of the reception 1ch to 8ch are used, but only the reception 3ch to 6ch are used.
  • the long-distance mode all of the reception 1ch to 8ch are used in order to narrow the horizontal beam.
  • the resolution in the distance direction is not required as much as in the short-distance mode, so that the resolution in the distance direction can be made smaller than that in the short-distance mode.
  • the number of receiving antennas contributing to the first detection process in the long-distance mode is larger than the number of receiving antennas contributing to the second detection process in the short-distance mode. Further, while all the receiving antennas 1 belonging to the receiving array 16a contribute to the first detection processing, some receiving antennas 1 belonging to the receiving array 16a contribute to the second detection processing. Further, the receiving antennas 1 that contribute to the second detection process are adjacent to each other in the receiving array 16a.
  • FIG. 3 shows the modulated signals used in the short-distance mode and the long-distance mode.
  • the modulated signal is a local signal generated by the local unit 17a.
  • NN serrated modulation signals used in the short-range mode are shown.
  • N F-number of sawtooth-modulated signals used in long distance mode is shown.
  • the modulated signal used in the short-distance mode has a larger frequency deviation per unit time than the modulated signal used in the long-distance mode.
  • the period indicated by hatching is the ADC data acquisition section.
  • the acquisition section is the operating period of the ADC 13 in one cycle of the modulated signal.
  • the ADC data refers to the digital value converted by the ADC 13.
  • FIG. 4 shows the operation of the MUX 20 in the short-distance mode and the long-distance mode in a table format.
  • the input signal to the MUX 20 1 is always fixed to the receiving 3ch
  • input signals to the MUX 20 2 is always fixed to the receiving 4ch
  • the input signal to the MUX 20 1 is fixed at all times to receive 6ch.
  • the input terminal 20a of the MUX 20 1, 20 2 becomes open terminal
  • the input terminal 20b of the MUX 20 3, 20 4 becomes open terminal.
  • the open terminal may be paraphrased as a through terminal.
  • FIG. 1 shows these connection states.
  • the output of the BPF 12 3 belonging to the receiving 3ch is input
  • the output of ADC 13 1 is input to FIR14 3 belonging to the same reception 3ch.
  • the output of the ADC 13 2 is inputted to FIR14 4 belonging to the receiving 4ch
  • the output of ADC 13 3 is input to FIR14 5 belonging to the receiving 5ch
  • the output of the ADC 13 4 is inputted to FIR14 6 belonging to receive 6ch NS.
  • MUX 20 1 switches a receiving 1ch and reception 3ch.
  • the MUX 20 2 switches between reception 2ch and reception 4ch
  • the MUX 20 3 switches between reception 5ch and reception 7ch
  • the MUX 20 4 switches between reception 6ch and reception 8ch.
  • switching between the two receiving channels is performed at the same speed as the sampling frequency of the ADC 13. That is, in the MUX 20, the terminals through which the signal input is passed are alternately switched at a sampling cycle which is the reciprocal of the sampling frequency.
  • FIG. 5 shows the total number of received channels in the short-distance mode and the long-distance mode, and the sampling rate of the ADC output.
  • fs is the sampling frequency.
  • the sampling rate of the ADC output can be rephrased as the FIR output rate per channel.
  • the total number of receiving channels is as described above, and the long-distance mode is twice as large as the short-distance mode.
  • the sampling rate of the ADC output in the short-distance mode is twice that in the long-distance mode.
  • the ADC 13 always samples at the same sampling frequency fs regardless of whether it is in the short-distance mode or the long-distance mode.
  • the data sampled by the ADC 13 is transferred to the FIR 14 corresponding to the acquired channel number. If the data of the received 3ch, data obtained by ADC 13 1 is transferred to FIR14 3. The same applies to others.
  • the signal input to the MUX 20 is switched in the sampling cycle, and the received data is multiplexed by the MUX 20 and then sampled by the ADC 13.
  • the data sampled by the ADC 13 is distributed to the FIR 14 corresponding to the channel number.
  • data reception 1ch and reception 3ch after being acquired by the ADC 13 1, data is distributed to the FIR14 1 and FIR14 3.
  • the design was not made in consideration of the properties of the short-distance mode and the long-distance mode, an ADC was provided for each receiving channel.
  • the design is made in consideration of the difference between the short-distance mode and the long-distance mode. Therefore, as shown in FIG. 1, the number of ADCs can be reduced to 1/2. As a result, even if the number of receiving channels increases, it is possible to suppress an increase in the size, manufacturing cost, and power consumption of the radar device.
  • FIG. 6 is a time chart showing the sampling timing of the ADC 13 in the short-distance mode and the long-distance mode of the embodiment.
  • FIG. 7 is a diagram showing a data flow in the short-distance mode and the long-distance mode of the embodiment.
  • FIGS. 6 and 7 the data in the reception 1ch and the reception 3ch are shown as an example. Specifically, the waveform of the received signal in the short-distance mode is shown on the left side of FIG. 6, and the waveform of the received signal in the long-distance mode is shown on the right side of FIG. Further, the upper part of FIG. 7 shows the data flow in the short-distance mode, and the lower part of FIG. 7 shows the data flow in the long-distance mode.
  • ⁇ t is the data output interval in each receiving channel.
  • the through terminals of the MUX 20 are alternately switched at the sampling cycle of the ADC 13.
  • the FIR output rate per channel in the short-distance mode is “fs”
  • the FIR output rate per channel in the long-distance mode is “fs / 2”.
  • the data acquisition timing of the ADC 13 is deviated by the sampling cycle between the multiplexed reception channels as shown in the waveform on the right side of FIG.
  • the timing shift for the sampling period becomes a phase error of the received signal between the multiplexed reception channels.
  • the target detection accuracy of the radar device 100 is affected.
  • the receiving antenna 1 is arranged on the array in the horizontal direction, the angle measurement accuracy of the target in the horizontal direction may deteriorate. Therefore, it is a desirable embodiment to correct the timing deviation for the sampling cycle.
  • two examples of timing deviation correction processing will be shown separately for (1) and (2).
  • (1) MCU correction at the time of radar signal processing Arithmetic processing for obtaining radar information such as the distance to the target, the relative speed of the target, and the direction of the target is performed by FFT15.
  • FFT15 In the far-mode, as described above, by the switching operation of the MUX 20, in between the FFT 15 1 and FFT 15 3, the timing offset of the sampling cycle occurs. The same applies between FFT15 2 and FFT15 4 , FFT15 5 and FFT15 7 , and between FFT15 6 and FFT15 8.
  • the phase difference due to this timing shift is called “received phase difference" and is represented by " ⁇ fs".
  • the FFT 15 performs a correction process for back-calculating the reception phase difference ⁇ fs generated between the multiplexed reception channels. This correction process can be performed on the result after the FFT process. Since the MUX 20 is not switched in the short-distance mode, it is not necessary to correct the reception phase difference ⁇ fs.
  • reception phase difference ⁇ fs due to the switching operation of the MUX 20 occurs.
  • the reception phase difference [Delta] [theta] fs also occurs between FIR14 1 and FIR14 3, FIR14 2 and FIR14 4, FIR14 5 and FIR14 7, and FIR14 6 and FIR14 8.
  • the FIR 14 has a property that the signal phase is shifted by half a cycle of the FIR output rate when the number of taps is an odd number and an even number.
  • the reception phase difference ⁇ fs can be canceled by individually setting the number of taps between the multiplexed reception channels to an odd number and an even number.
  • the number of taps is individually set to an odd number and an even number between FIR14 1 and FIR14 3.
  • the difference between the odd number and the even number referred to here is 1.
  • FIR14 2 and FIR14 4 FIR14 5 and FIR14 7, and FIR14 relationship between 6 and FIR14 8 is similar.
  • the number of taps of all FIR14s is made common so that they are the same. If it is set in this way, the correction of the reception phase difference ⁇ fs is not performed.
  • the radar device has a first mode for detecting a relatively long-distance target and a second mode for detecting a relatively short-distance target. ..
  • the antenna section, the high-frequency circuit, and the baseband circuit are configured with four natural reception channels.
  • the number of receiving channels which is the number of receiving channels that perform conversion processing to the baseband signal, is smaller in the second mode than in the first mode, and the conversion processing speed is second than that in the first mode. Mode is faster.
  • the configuration shown in the above embodiment is an example, and can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

レーダ装置(100)は、レーダ波を空間に放射するアンテナ部(16)と、レーダ波の物標からの反射波を、アンテナ部(16)を介して受信する高周波回路(17)と、高周波回路(17)から出力される受信信号をデジタル値のベースバンド信号に変換するベースバンド回路(18)とを備える。レーダ装置(100)は、相対的に遠距離の物標を検出する第1のモードと、相対的に近距離の物標を検出する第2のモードとを有する。アンテナ部(16)、高周波回路(17)及びベースバンド回路(18)には、4以上の受信チャネルが構成され、ベースバンド信号への変換処理を行う受信チャネルの数である受信チャネル数は第1のモードよりも第2のモードの方が少なく、変換処理の速度は第1のモードよりも第2のモードの方が速い。

Description

レーダ装置
 本開示は、物標の検出を行うレーダ装置に関する。
 下記特許文献1には、高速変調(Fast Chirp Modulation:FCM)レーダに適用可能な周波数変調技術が開示されている。FCMレーダは、構成の容易さ、ベースバンド処理する送受信のビート信号の周波数帯域が比較的低周波数となり、取り扱いが容易であるといった特徴を有している。この特徴により、FCMレーダは、自動車衝突防止ミリ波レーダとして普及してきており、将来的には自動運転用のセンサの1つとしての利用が期待されている。
特許第6351910号公報
 しかしながら、上記特許文献1に記載のFCMレーダは、受信チャネル毎にアナログデジタル変換器(Analog to Digital Converter:ADC)が接続される構成である。このため、FCMレーダの受信チャネル数が増加すると、ADCの数も増加し、FCMレーダのサイズ、製造コスト及び消費電力が増大するという課題がある。
 本開示は、上記に鑑みてなされたものであって、受信チャネル数が増加しても、サイズ、製造コスト及び消費電力の増大を抑制できるレーダ装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るレーダ装置は、レーダ波を空間に放射するアンテナ部と、レーダ波の物標からの反射波を、アンテナ部を介して受信する高周波回路と、高周波回路から出力される受信信号をデジタル値のベースバンド信号に変換するベースバンド回路とを備える。レーダ装置は、相対的に遠距離の物標を検出する第1のモードと、相対的に近距離の物標を検出する第2のモードとを有する。アンテナ部、高周波回路及びベースバンド回路には、4以上の受信チャネルが構成される。ベースバンド信号への変換処理を行う受信チャネルの数である受信チャネル数は、第1のモードよりも前記第2のモードの方が少なく、変換処理の速度は、第1のモードよりも第2のモードの方が速い。
 本開示に係るレーダ装置によれば、受信チャネル数が増加しても、サイズ、製造コスト及び消費電力の増大を抑制できるという効果を奏する。
実施の形態に係るレーダ装置の構成例を示すブロック図 実施の形態におけるMCU(Micro Control Unit)の機能を実現するハードウェア構成の一例を示すブロック図 実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第1の図 実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第2の図 実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第3の図 実施の形態の近距離モード及び遠距離モードにおけるADCのサンプリングタイミングを示すタイムチャート 実施の形態の近距離モード及び遠距離モードにおけるデータフローを示す図
 以下に添付図面を参照し、本開示の実施の形態に係るレーダ装置について詳細に説明する。なお、以下の実施の形態では、FCMレーダを例示して説明するが、FCMレーダ以外の他のレーダ装置への適用を除外する趣旨ではない。また、以下では、電気的な接続と物理的な接続とを特に区別せずに、単に「接続」と称して説明する。
実施の形態.
 図1は、実施の形態に係るレーダ装置100の構成例を示すブロック図である。実施の形態に係るレーダ装置100は、図1に示すように、アンテナ部16と、参照信号REF(REFerence signal)を発生する参照信号源21と、高周波回路17と、ベースバンド回路18と、MCU19とを具備する。高周波回路17、ベースバンド回路18及び参照信号源21は「送受信部」を構成し、MCU19は「信号処理部」を構成する。
 アンテナ部16は、受信アレイ16aと、送信アレイ16bとを具備する。受信アレイ16aは、受信アンテナ1~1を具備する。送信アレイ16bは、送信アンテナ2,2を具備する。レーダ装置100が自動車衝突防止ミリ波レーダとして用いられる場合、受信アンテナ1~1及び送信アンテナ2,2は、水平方向、且つ自動車の進行方向に直交する方向に配列される。なお、以下において、受信アンテナ1~1を、それぞれ「第1の受信アンテナ」~「第8の受信アンテナ」と記載する場合がある。
 受信アンテナ1~1及び送信アンテナ2,2におけるそれぞれの下付き文字は、チャネル(channel:ch)を識別するために付されている。なお、以下の記載において、受信アンテナ1~1のそれぞれを個々に区別しない場合は、添字を省略して「受信アンテナ1」と表記し、送信アンテナ2,2のそれぞれを個々に区別しない場合は、添字を省略して「送信アンテナ2」と表記する。この表記は、添字を付して識別する下述の他の構成部にも適用する。
 また、チャネルとは、1つの受信アンテナ1又は1つの送信アンテナ2によって処理される送受信部及び信号処理部の構成要素を含めた一纏まりの処理単位である。以下、受信アンテナ1のチャネルを「受信チャネル」と呼び、送信アンテナ2のチャネルを「送信チャネル」と呼ぶ。図1において、受信チャネルの数である受信チャネル数は8であり、送信チャネルの数である送信チャネル数は2である。以下、受信アンテナ1に接続される受信チャネルを「受信1ch」と表記する。受信アンテナ1~1に接続される受信チャネル、及び送信アンテナ2,2に接続される送信チャネルについても同様に表記する。なお、図1に示す各チャネル数は一例であり、これらの例に限定されない。
 高周波回路17は、電圧制御発振器(Voltage Controlled Oscillator:VCO)7と、ループフィルタ(Loop Filter:LF)8と、位相同期制御回路(Phase Locked Loop:PLL)9と、チャープ信号(Chirp Signal)の生成器であるチャープ信号生成器10とを具備する。以下、「電圧制御発振器」を「VCO」と記載し、「ループフィルタ」を「LF」と記載し、「位相同期制御回路」を「PLL」と記載する。VCO7、LF8、PLL9及びチャープ信号生成器10は、ローカル部17aを構成する。
 また、高周波回路17は、パワーアンプ(Power Amplifier:PA)6,6と、低雑音増幅器(Low Noise Amplifier:LNA)3~3と、ミキサ(Mixer:MIX)4~4と、中間周波増幅器(Intermediate Frequency Amplifier:IFA)5~5とを具備する。以下、「パワーアンプ」を「PA」と記載し、「低雑音増幅器」を「LNA」と記載し、「ミキサ」を「MIX」と記載し、「中間周波増幅器」を「IFA」と記載する。
 ベースバンド回路18は、ベースバンド増幅器(Base Band Amplifier:BBA)11~11と、バンドパスフィルタ(Band Pass Filter:BPF)12~12と、マルチプレクサ(MUltipleXer:MUX)20~20と、ADC13~13と、FIRフィルタ(Finite Impluse Response Filter)14~14とを具備する。FIRフィルタは、デジタルフィルタの一例である。以下、「ベースバンド増幅器」を「BBA」と記載し、「バンドパスフィルタ」を「BPF」と記載し、「マルチプレクサ」を「MUX」と記載する。また、「FIRフィルタ」を「FIR」と略す。また、以下において、MUX20~20を、それぞれ「第1のマルチプレクサ」~「第4のマルチプレクサ」と記載する場合がある。
 MCU19は、フーリエ変換(Fourier Transform)処理として高速フーリエ変換(Fast Fourier Transform:FFT)を行うFFT処理部15~15を具備する。以下、「FFT処理部」を「FFT」と略す。
 次に、レーダ装置100の基本的な動作について説明する。
 PLL9には、参照信号REFと、チャープ信号生成器10によって生成されるチャープ信号とが入力される。PLL9は、チャープ信号による変調パターンで参照信号REFを周波数変調する。PLL9によって周波数変調された信号は、LF8によって帯域制限され、VCO7へ入力される。VCO7は、PLL9と連携し、周波数変調された高周波信号を出力する。VCO7から出力される高周波信号には、鋸波のアップチャープ信号又は鋸波のダウンチャープ信号が含まれる。アップチャープ信号は、時間の経過に伴って周波数が高くなる信号である。ダウンチャープ信号は、時間の経過に伴って周波数が低くなる信号である。
 PA6は、高周波信号を所望の電力まで増幅し、増幅した高周波信号を送信アンテナ2へ出力する。送信アンテナ2は、高周波信号を電波であるレーダ波に変換し、変換したレーダ波を空間に放射する。
 高周波回路17は、送信されたレーダ波の物標からの反射波を、アンテナ部16の受信アレイ16aを介して受信し、受信した信号を後段のベースバンド回路18に伝送する機能を有する。
 上記の機能を実現するため、LNA3は、受信した信号を増幅する。MIX4は、LNA3から出力される信号をローカル部17aから出力されるローカル信号を使用してダウンコンバートする。IFA5は、ダウンコンバートされた信号を所望の信号強度に増幅する。なお、FCMレーダでは、ローカル信号は直線的に変調される。これにより、MIX4から出力される信号は、一般的には正弦波信号になる。以下、高周波回路17から出力される信号を「受信信号」と呼ぶ。
 ベースバンド回路18は、高周波回路17から出力される受信信号をデジタル値のベースバンド信号に変換する機能を有する。
 上記の機能を実現するため、BBA11は、高周波回路17から出力される受信信号を増幅する。BPF12は、BBA11が増幅した信号の帯域を制限する。BPF12によって帯域制限された信号は、MUX20を介してADC13に伝送される。MUX20の構成及び動作の詳細については、後述する。
 ADC13は、MUX20から出力されるアナログ信号をデジタル値に変換する。FIR14は、ADC13によって変換されたデジタル値の信号に対して帯域制限及びデシメーション処理を行う。帯域制限及びデシメーション処理されたデジタル値のベースバンド信号は、MCU19に伝送される。
 MCU19は、ベースバンド回路18から出力されるベースバンド信号を使用して、物標までの距離、物標の相対速度、物標の方位といったレーダ情報を得るための演算処理を行う。この演算処理は、FFT15によって実施される。
 次に、実施の形態に係るレーダ装置100が有する動作モードについて説明する。実施の形態に係るレーダ装置100は、遠距離モードと、近距離モードとを有する。遠距離モードは、相対的に遠距離の物標を検出するモードである。近距離モードは、相対的に近距離の物標を検出するモードである。なお、以下において、遠距離モードを「第1のモード」と記載し、近距離モードを「第2のモード」と記載する場合がある。また、第1のモードによる物標の検出処理を「第1の検出処理」と記載し、第2のモードによる物標の検出処理を「第2の検出処理」と記載する場合がある。なお、詳細な内容は後述するが、遠距離モードではADC13は相対的に低速で動作し、近距離モードではADC13は相対的に高速で動作する。
 次に、MUX20の構成、接続及び機能について説明する。図1には、4つのMUX20~20が示されている。即ち、MUX20の数は、受信チャネル数の1/2である。これに対し、LNA3、MIX4、IFA5、BBA11、BPF12、FIR14及びFFT15は、受信アレイ16aにおける各受信アンテナ1の並びに1対1に対応して設けられている。即ち、LNA3、MIX4、IFA5、BBA11、BPF12、FIR14及びFFT15の各部の数は、受信チャネル数と同数である。
 各MUX20は、2つの入力端子20a,20bと、1つの出力端子20cと、を具備する。図1において、各MUX20における入力端子20a,20bの並びは、受信アレイ16aにおける受信アンテナ1の並びに1対1に対応している。
 ベースバンド回路18において、MUX20の入力端子20aはBPF12の出力端子と接続され、MUX20の入力端子20bはBPF12の出力端子と接続される。MUX20の入力端子20aはBPF12の出力端子と接続され、MUX20の入力端子20bはBPF12の出力端子と接続される。MUX20の入力端子20aはBPF12の出力端子と接続され、MUX20の入力端子20bはBPF12の出力端子と接続される。MUX20の入力端子20aはBPF12の出力端子と接続され、MUX20の入力端子20bはBPF12の出力端子と接続される。即ち、MUX20の入力端子20b及びMUX20の入力端子20aには、BPF12及びBPF12から出力される信号が構成要素の並びに反してクロスして入力される。また、MUX20の入力端子20b及びMUX20の入力端子20aには、BPF12及びBPF12から出力される信号が構成要素の並びに反してクロスして入力される。
 MUX20は、BPF12を通過した2つの信号を順次切り替えて多重化してADC13に出力する機能を有する。これにより、MUX20における入力端子20a,20bのうちの何れか一方の端子には、MUX20の切り替え動作によって、受信アンテナ1~1の並びに1対1に対応する受信アンテナに隣接する何れか一方の受信アンテナからの出力信号が入力される構成となる。これにより、ADC13の数もMUX20と同数でよく、受信チャネル数の1/2で済む。なお、以下において、入力端子20aを「第1の入力端子」と記載し、入力端子20bを「第2の入力端子」と記載する場合がある。
 なお、図1では、受信チャネル数を8としているが、受信チャネル数を4としてもよい。また、本実施の形態の効果を最大限に得るには、受信チャネル数が4の自然数倍であることが理想的であるが、4の自然数倍でなくてもよい。例えば、受信チャネル数を6としてもよい。受信チャネル数が6である場合、2つの受信チャネルに属するBPF12とADC13とは、MUX20を用いずに接続することができる。このように構成しても、4つの受信チャネルは、本実施の形態の効果を享受することができる。
 図2は、実施の形態におけるMCU19の機能を実現するハードウェア構成の一例を示すブロック図である。MCU19におけるFFT15の機能を実現する場合には、図2に示すように、演算処理を行うCPU(Central Processing Unit)82と、外部の装置との間の入出力インタフェースである入出力部83と、プログラム格納領域及びデータ格納領域を含むRAM(Random Access Memory)84と、不揮発性メモリであるROM(Read Only Memory)85とを備えたコンピュータ80を用いることができる。CPU82は、マイクロプロセッサ、マイコン、プロセッサ、又はDSP(Digital Signal Processor)といった演算手段であってもよい。
 ROM85には、各種処理のためのプログラム及び各種処理において参照されるデータベースが格納されている。プログラム及びデータベースは、ROM85以外に、読み取り及び書き込みが可能な記録媒体に記録されたものでもよい。記録媒体は、ハードディスク装置、可搬型記録媒体であるCD-ROM、DVDディスク、USBメモリ、又は、半導体メモリであるフラッシュメモリの何れであってもよい。
 プログラムは、RAM84にロードされる。CPU82は、RAM84内のプログラム格納領域にてプログラムを展開し、入出力部83を介して必要な情報の授受を行うことにより、各種処理を実行する。RAM84内のデータ格納領域は、各種処理の実行における作業領域とされる。上述したMCU19の機能及び後述するMCU19の機能は、CPU82を使用して実現される。
 次に、実施の形態の近距離モード及び遠距離モードにおける動作について、図3から図5の図面を参照して説明する。図3は、実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第1の図である。図4は、実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第2の図である。図5は、実施の形態の近距離モード及び遠距離モードにおける動作説明に供する第3の図である。
 前述したように、図1に示すレーダ装置100は、合計8chの受信チャネルを備えている。近距離モードにおいては、水平ビームを広角に広げ、且つ距離方向の分解能を高める観点から、受信1ch~8chの全てを使用せず、受信3ch~6chのみを使用する。一方、遠距離モードにおいては、水平ビームを絞るため、受信1ch~8chの全てを使用する。なお、遠距離モードにおいては、近距離モード程の距離方向の分解能は要求されないため、距離方向の分解能を近距離モードよりも小さくすることができる。
 上記の実施態様により、遠距離モードによる第1の検出処理に寄与する受信アンテナの数は、近距離モードによる第2の検出処理に寄与する受信アンテナの数よりも多くなる。また、受信アレイ16aに属する全ての受信アンテナ1が第1の検出処理に寄与するのに対し、受信アレイ16aに属する一部の受信アンテナ1が第2の検出処理に寄与することになる。また、第2の検出処理に寄与する受信アンテナ1は、受信アレイ16a内において互いに隣接する関係となっている。
 図3には、近距離モード及び遠距離モードで使用される変調信号が示されている。変調信号は、ローカル部17aで生成されるローカル信号である。具体的に、図3の左側には、近距離モードで使用されるN個の鋸波状の変調信号が示されている。図3の右側には、遠距離モードで使用されるN個の鋸波状の変調信号が示されている。これらの変調信号は、送信アンテナ2を介して空間に放射される。
 図3に示されるように、近距離モードで使用される変調信号は、遠距離モードで使用される変調信号よりも、単位時間あたりの周波数偏位が大きくなっている。近距離モード及び遠距離モードで使用される、鋸波の数、即ちN及びNの値は任意である。即ち、N=Nであってもよいし、N≠Nであってもよい。
 また、図3において、ハッチングで示される期間は、ADCデータの取得区間である。取得区間は、変調信号の1周期におけるADC13の動作期間である。ADCデータは、ADC13によって変換されたデジタル値を指している。前述したように、近距離モードでは、距離方向の分解能を遠距離モードよりも高くする必要がある。このため、近距離モードでは、より広帯域な受信帯域幅が必要であり、遠距離モードの2倍のサンプリングレートが得られるようにサンプリング処理が行われる。
 図4には、近距離モード及び遠距離モードにおけるMUX20の動作が表形式で示されている。レーダ装置100が近距離モードで動作するとき、MUX20への入力信号は受信3chに常時固定され、MUX20への入力信号は受信4chに常時固定され、MUX20への入力信号は受信5chに常時固定され、MUX20への入力信号は受信6chに常時固定される。これにより、MUX20,20における入力端子20aはオープン端子となり、MUX20,20における入力端子20bはオープン端子となる。オープン端子はスルー端子と言い替えてもよい。図1には、これらの接続状態が示されている。MUX20には入力端子20bを通じて、受信3chに属するBPF12の出力が入力されるため、ADC13の出力は同じ受信3chに属するFIR14に入力される。他も同様であり、ADC13の出力は受信4chに属するFIR14に入力され、ADC13の出力は受信5chに属するFIR14に入力され、ADC13の出力は受信6chに属するFIR14に入力される。
 レーダ装置100が遠距離モードで動作するとき、MUX20は受信1chと受信3chとを切り替える。以下同様に、MUX20は受信2chと受信4chとを切り替え、MUX20は受信5chと受信7chとを切り替え、MUX20は受信6chと受信8chとを切り替える。各MUX20において、2つの受信chの切り替えは、ADC13のサンプリング周波数と同じ速度で行われる。即ち、MUX20において、信号入力をスルーさせる端子は、サンプリング周波数の逆数であるサンプリング周期で交互に切り替えられる。
 以上の動作を纏めたものが図5である。図5には、近距離モード及び遠距離モードにおける受信チャネル総数と、ADC出力のサンプリングレートが示されている。fsはサンプリング周波数である。ADC出力のサンプリングレートは、1chあたりのFIR出力レートと言い替えることができる。受信チャネル総数は、前述した通りであり、遠距離モードは、近距離モードの2倍となる。一方、ADC出力のサンプリングレートは、近距離モードが、遠距離モードの2倍となる。
 ADC13は、近距離モードであるか、遠距離モードであるかに関わらず、常に同じサンプリング周波数fsでサンプリングする。ここで、近距離モードにおいては、ADC13でサンプリングされたデータは、取得したチャネル番号に対応するFIR14に転送される。受信3chのデータであれば、ADC13で取得されたデータが、FIR14に転送される。他も同様である。
 遠距離モードにおいては、サンプリング周期でMUX20への信号入力が切り替えられ、MUX20で受信データが多重化された後にADC13でサンプリングされる。ADC13でサンプリングされたデータは、チャネル番号に対応するFIR14に振り分けられる。受信1ch及び受信3chのデータの場合、ADC13で取得された後に、FIR14とFIR14とにデータが振り分けられる。
 従来は、近距離モードと遠距離モードとの性質を考慮する設計がなされていないため、受信チャネル毎にADCが設けられていた。これに対し、本実施の形態では、近距離モードと遠距離モードとの差異を考慮した設計がなされている。このため、図1に示すように、ADC数を1/2に削減することができる。これにより、受信チャネル数が増加しても、レーダ装置のサイズ、製造コスト及び消費電力の増大を抑制することが可能となる。
 次に、実施の形態に係るレーダ装置100における実施上の着意事項について、図6及び図7の図面を参照して説明する。図6は、実施の形態の近距離モード及び遠距離モードにおけるADC13のサンプリングタイミングを示すタイムチャートである。図7は、実施の形態の近距離モード及び遠距離モードにおけるデータフローを示す図である。
 図6及び図7では、受信1ch及び受信3chにおけるデータが一例として示されている。具体的に、図6の左側には近距離モードにおける受信信号の波形が示され、図6の右側には遠距離モードにおける受信信号の波形が示されている。また、図7の上段部には近距離モードにおけるデータフローが示され、図7の下段部には遠距離モードにおけるデータフローが示されている。図6において、Δtは、各受信チャネルにおけるデータ出力間隔である。
 前述したように、遠距離モードでは、ADC13のサンプリング周期で交互にMUX20のスルー端子が切り替えられる。一方、近距離モードでは、1つの受信チャネルに固定される。このため、図6に示されるように、近距離モードでは、Δt=1/fsとなる。また、遠距離モードでは、受信チャネル間で見れば、Δt=1/fsとなるが、1つの受信チャネルで見れば、Δt=2/fsとなる。従って、1chあたりのFIR出力レートは、遠距離モードでは、近距離モードの1/2となる。また、図7に示されるように、近距離モードにおける1chあたりのFIR出力レートは「fs」となり、遠距離モードにおける1chあたりのFIR出力レートは「fs/2」となる。
 また、MUX20の切替動作により、遠距離モードでは、ADC13のデータ取得タイミングが、図6の右側の波形に示されるように、多重化された受信チャネル間でサンプリング周期分ずれることになる。ADC13において、サンプリング周期分のタイミングずれは、多重化された受信チャネル間で受信信号の位相誤差となる。その結果として、レーダ装置100の物標検出精度に影響を与える。受信アンテナ1を水平方向にアレイ上に配置した場合、水平方向における物標の測角精度が劣化する可能性がある。このため、サンプリング周期分のタイミングずれの補正を行うことが望ましい実施形態となる。以下、タイミングずれ補正処理の実施例を(1)と(2)に分けて2通り示す。(1)及び(2)のうちの何れかの補正処理を適応することで、サンプリング周期分のタイミングずれは補正される。
(1)レーダ信号処理時のMCU補正
 物標までの距離、物標の相対速度、物標の方位といったレーダ情報を得るための演算処理は、FFT15で実施される。ここで、遠距離モードにおいては、前述したように、MUX20の切り替え動作によって、FFT15とFFT15との間においては、サンプリング周期分のタイミングずれが生じる。FFT15とFFT15、FFT15とFFT15、及びFFT15とFFT15間においても同様である。ここでは、このタイミングずれによる位相差を「受信位相差」と呼び、「Δθfs」で表す。FFT15は、多重化される受信チャネル間で生じた受信位相差Δθfsを逆算的にキャンセルする補正処理を行う。この補正処理は、FFT処理後の結果に対して行うことが可能である。なお、近距離モードにおいては、MUX20の切り替え動作を行わないので、受信位相差Δθfsの補正は不要である。
(2)ADCデータ取得後のFIR補正
 前述したように、遠距離モードにおいては、MUX20の切り替え動作に起因する受信位相差Δθfsが生ずる。この受信位相差Δθfsは、FIR14とFIR14、FIR14とFIR14、FIR14とFIR14、及びFIR14とFIR14間でも生じる。FIR14には、タップ数が奇数個と偶数個の場合で比較すると、FIR出力レートの半周期分だけ信号位相がずれるという性質がある。そこで、遠距離モードにおいては、多重化される受信チャネル間でタップ数を奇数個と偶数個とに個別設定するようにすれば、受信位相差Δθfsをキャンセルすることができる。具体的には、FIR14とFIR14との間で、タップ数を奇数個と偶数個とに個別設定する。なお、ここで言う奇数個と偶数個との間の差は1であることは言うまでもない。FIR14とFIR14、FIR14とFIR14、及びFIR14とFIR14間の関係も同様である。なお、近距離モードにおいては、全てのFIR14のタップ数が、同一となるように共通化しておく。このように設定しておけば、受信位相差Δθfsの補正は実施されない。
 以上説明したように、実施の形態に係るレーダ装置は、相対的に遠距離の物標を検出する第1のモードと、相対的に近距離の物標を検出する第2のモードとを有する。アンテナ部、高周波回路及びベースバンド回路には、4の自然数倍の受信チャネルが構成される。そして、ベースバンド信号への変換処理を行う受信チャネルの数である受信チャネル数は第1のモードよりも第2のモードの方が少なく、変換処理の速度は第1のモードよりも第2のモードの方が速い。このように構成すれば、受信チャネル数が増加しても、ADCの増加を抑制することができる。これにより、レーダ装置のサイズ、製造コスト及び消費電力の増大を抑制することが可能となる。
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1~1 受信アンテナ、2,2,22 送信アンテナ、3,3~38 LNA、4,4~4 MIX、5,5~5 IFA、6,6,6 PA、7 VCO、8 LF、9 PLL、10 チャープ信号生成器、11,11~11 BBA、12,12~12 BPF、13,13~13 ADC、14,14~14 FIR、15,15~15 FFT、16 アンテナ部、16a 受信アレイ、16b 送信アレイ、17 高周波回路、17a ローカル部、18 ベースバンド回路、19 MCU、20,20~20 MUX、20a,20b 入力端子、20c 出力端子、21 参照信号源、80 コンピュータ、82 CPU、83 入出力部、84 RAM、85 ROM、100 レーダ装置。

Claims (13)

  1.  レーダ波を空間に放射するアンテナ部と、前記レーダ波の物標からの反射波を、前記アンテナ部を介して受信する高周波回路と、前記高周波回路から出力される受信信号をデジタル値のベースバンド信号に変換するベースバンド回路と、を備えたレーダ装置であって、
     相対的に遠距離の前記物標を検出する第1のモードと、相対的に近距離の前記物標を検出する第2のモードとを有し、
     前記アンテナ部、前記高周波回路及び前記ベースバンド回路には、4以上の受信チャネルが構成され、
     前記ベースバンド信号への変換処理を行う前記受信チャネルの数である受信チャネル数は、前記第1のモードよりも前記第2のモードの方が少なく、
     前記変換処理の速度は、前記第1のモードよりも前記第2のモードの方が速い
     ことを特徴とするレーダ装置。
  2.  前記アンテナ部、前記高周波回路及び前記ベースバンド回路には、4の自然数倍の受信チャネルが構成される
     ことを特徴とする請求項1に記載のレーダ装置。
  3.  前記アンテナ部は、前記物標からの反射波を受信する前記受信チャネル数分の受信アンテナを具備し、
     前記第1のモードによる第1の検出処理に寄与する受信アンテナの数は、前記第2のモードによる第2の検出処理に寄与する受信アンテナの数よりも多い
     ことを特徴とする請求項1又は2に記載のレーダ装置。
  4.  前記受信チャネル数分の前記受信アンテナによって受信アレイが構成され、
     前記受信アレイに属する全ての前記受信アンテナが前記第1の検出処理に寄与し、
     前記受信アレイに属する一部の前記受信アンテナが前記第2の検出処理に寄与する
     ことを特徴とする請求項3に記載のレーダ装置。
  5.  前記第2の検出処理に寄与する前記受信アンテナは、前記受信アレイ内において互いに隣接している
     ことを特徴とする請求項4に記載のレーダ装置。
  6.  前記ベースバンド回路は、
     入力される2つの信号を順次切り替えて多重化して出力するマルチプレクサと、
     前記マルチプレクサから出力されるアナログ信号をデジタル値に変換するアナログデジタル変換器と、
     を備え、
     前記マルチプレクサ及び前記アナログデジタル変換器の数は、前記受信チャネル数の1/2である
     ことを特徴とする請求項4又は5に記載のレーダ装置。
  7.  前記マルチプレクサは、2つの入力端子である第1及び第2の入力端子と、1つの出力端子とを有し、
     前記出力端子には、前記アナログデジタル変換器が接続され、
     前記入力端子には、前記高周波回路から出力される前記受信信号が入力され、
     前記受信チャネル数の1/2の前記マルチプレクサにおける前記入力端子の並びは、前記受信アレイにおける前記受信アンテナの並びに1対1に対応しており、
     前記第1及び第2の入力端子のうちの何れか一方には、前記受信アンテナの並びに1対1に対応する受信アンテナに隣接する何れか一方の受信アンテナからの出力信号が入力される
     ことを特徴とする請求項6に記載のレーダ装置。
  8.  前記第1のモードで動作するとき、前記マルチプレクサは、前記第1及び第2の入力端子に入力される信号を交互に切り替え、
     前記第2のモードで動作するとき、前記マルチプレクサへの信号入力は、前記第1及び第2の入力端子のうちの何れかに固定される
     ことを特徴とする請求項7に記載のレーダ装置。
  9.  前記第1のモードで動作するとき、前記マルチプレクサにおける入力信号の切り替えは、前記受信信号をデジタル値に変換する際のサンプリング周波数の逆数であるサンプリング周期で行われる
     ことを特徴とする請求項8に記載のレーダ装置。
  10.  前記ベースバンド回路は、
     前記アナログデジタル変換器によって変換されたデジタル値の信号に対して帯域制限を行うデジタルフィルタを備え、
     前記第1のモードで動作するとき、前記デジタルフィルタのタップ数は、多重化される受信チャネル間で奇数個と偶数個とに個別設定され、
     前記第2のモードで動作するとき、前記デジタルフィルタのタップ数は、全ての前記デジタルフィルタで同一となるように設定される
     ことを特徴とする請求項8又は9に記載のレーダ装置。
  11.  レーダ情報を得るためのフーリエ変換処理を行う信号処理部を備え、
     前記信号処理部は、前記フーリエ変換処理の結果に対して、多重化される受信チャネル間で生じた受信位相差を逆算的にキャンセルする補正処理を行う
     ことを特徴とする請求項8又は9に記載のレーダ装置。
  12.  前記受信チャネル数が4であるとき、
     前記マルチプレクサとして、第1及び第2のマルチプレクサが具備され、
     前記受信アレイでは、第1から第4の受信アンテナがこの順で配列され、
     前記第1のマルチプレクサの第1の入力端子には前記第1の受信アンテナからの出力信号が入力され、
     前記第1のマルチプレクサの第2の入力端子には前記第3の受信アンテナからの出力信号が入力され、
     前記第2のマルチプレクサの第1の入力端子には前記第2の受信アンテナからの出力信号が入力され、
     前記第2のマルチプレクサの第2の入力端子には前記第4の受信アンテナからの出力信号が入力される
     ことを特徴とする請求項7から11の何れか1項に記載のレーダ装置。
  13.  前記受信チャネル数が8であるとき、
     前記マルチプレクサとして、第1から第4のマルチプレクサが具備され、
     前記受信アレイでは、第1から第8の受信アンテナがこの順で配列され、
     前記第1のマルチプレクサの第1の入力端子には前記第1の受信アンテナからの出力信号が入力され、
     前記第1のマルチプレクサの第2の入力端子には前記第3の受信アンテナからの出力信号が入力され、
     前記第2のマルチプレクサの第1の入力端子には前記第2の受信アンテナからの出力信号が入力され、
     前記第2のマルチプレクサの第2の入力端子には前記第4の受信アンテナからの出力信号が入力され、
     前記第3のマルチプレクサの第1の入力端子には前記第5の受信アンテナからの出力信号が入力され、
     前記第3のマルチプレクサの第2の入力端子には前記第7の受信アンテナからの出力信号が入力され、
     前記第4のマルチプレクサの第1の入力端子には前記第6の受信アンテナからの出力信号が入力され、
     前記第4のマルチプレクサの第2の入力端子には前記第8の受信アンテナからの出力信号が入力される
     ことを特徴とする請求項7から11の何れか1項に記載のレーダ装置。
PCT/JP2021/001708 2020-04-10 2021-01-19 レーダ装置 WO2021205705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21784512.2A EP4134704A4 (en) 2020-04-10 2021-01-19 RADAR DEVICE
JP2022514312A JP7337261B2 (ja) 2020-04-10 2021-01-19 レーダ装置
US17/915,556 US20230138631A1 (en) 2020-04-10 2021-01-19 Radar device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020071291 2020-04-10
JP2020-071291 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021205705A1 true WO2021205705A1 (ja) 2021-10-14

Family

ID=78023622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001708 WO2021205705A1 (ja) 2020-04-10 2021-01-19 レーダ装置

Country Status (4)

Country Link
US (1) US20230138631A1 (ja)
EP (1) EP4134704A4 (ja)
JP (1) JP7337261B2 (ja)
WO (1) WO2021205705A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073832A (zh) * 2023-03-03 2023-05-05 上海励驰半导体有限公司 数据处理方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090397A (ja) * 1996-09-17 1998-04-10 Honda Motor Co Ltd 時分割型fmレーダシステム
JP2003161776A (ja) * 2001-09-17 2003-06-06 Denso Corp レーダ装置
JP2007232385A (ja) * 2006-02-27 2007-09-13 Denso It Laboratory Inc 電子走査式レーダ装置
JP6351910B2 (ja) 2016-04-05 2018-07-04 三菱電機株式会社 周波数変調回路、fm−cwレーダおよび高速変調レーダ
US20200191903A1 (en) * 2018-12-13 2020-06-18 Semiconductor Components Industries, Llc Multi-input downconversion mixer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160306034A1 (en) * 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
EP3444628A1 (en) * 2017-08-18 2019-02-20 Nxp B.V. Radar unit, integrated circuit and methods for detecting and mitigating mutual interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090397A (ja) * 1996-09-17 1998-04-10 Honda Motor Co Ltd 時分割型fmレーダシステム
JP2003161776A (ja) * 2001-09-17 2003-06-06 Denso Corp レーダ装置
JP2007232385A (ja) * 2006-02-27 2007-09-13 Denso It Laboratory Inc 電子走査式レーダ装置
JP6351910B2 (ja) 2016-04-05 2018-07-04 三菱電機株式会社 周波数変調回路、fm−cwレーダおよび高速変調レーダ
US20200191903A1 (en) * 2018-12-13 2020-06-18 Semiconductor Components Industries, Llc Multi-input downconversion mixer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073832A (zh) * 2023-03-03 2023-05-05 上海励驰半导体有限公司 数据处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4134704A4 (en) 2023-09-27
EP4134704A1 (en) 2023-02-15
JP7337261B2 (ja) 2023-09-01
US20230138631A1 (en) 2023-05-04
JPWO2021205705A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP4986454B2 (ja) レーダ装置
CN110133634B (zh) 一种基于频分复用技术的mimo雷达虚拟孔径测角方法
US11762077B2 (en) Method and system for frequency offset modulation range division MIMO automotive radar using I-channel only modulation mixer
JP4602267B2 (ja) 電子走査式レーダ装置
JP4833534B2 (ja) レーダ装置
US8902103B2 (en) Radar apparatus supporting short and long range radar operation
JP3525426B2 (ja) レーダ装置
US6859168B2 (en) Radar apparatus
JP3575694B2 (ja) 走査型fmcwレーダ
US6445339B1 (en) FM-CW radar apparatus
US20060262007A1 (en) Methods and apparatus for automotive radar sensors
EP2876460B1 (en) A vehicle radar with two transmitter antenna arrangements
US11360185B2 (en) Phase coded FMCW radar
JP2016102801A (ja) 三次元検知用2チャンネルモノパルスレーダ
KR20190117902A (ko) 레이더 장치 및 그를 위한 안테나 장치
JP2021021576A (ja) レーダ装置
WO2021205705A1 (ja) レーダ装置
CN114646960A (zh) 用于相干多芯片相控阵列mimo应用的系统和mmic架构
KR20150049070A (ko) Iq 복조기를 사용하는 fmcw 레이더 및 그 동작 방법
US10615958B2 (en) Communication unit, integrated circuit and method for clock distribution and synchronization
JP2001166029A (ja) Dbfレーダ装置
CN112859057A (zh) Mimo雷达设备和用于运行mimo雷达设备的方法
JP2006105968A (ja) レーダ装置
KR101207718B1 (ko) 주파수변조연속파 레이더 시스템
US11022676B2 (en) Filter apparatus and target detection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514312

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021784512

Country of ref document: EP

Effective date: 20221110

NENP Non-entry into the national phase

Ref country code: DE