WO2017170899A1 - 窒化珪素質焼結体及び切削インサート - Google Patents

窒化珪素質焼結体及び切削インサート Download PDF

Info

Publication number
WO2017170899A1
WO2017170899A1 PCT/JP2017/013325 JP2017013325W WO2017170899A1 WO 2017170899 A1 WO2017170899 A1 WO 2017170899A1 JP 2017013325 W JP2017013325 W JP 2017013325W WO 2017170899 A1 WO2017170899 A1 WO 2017170899A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
particles
maximum
particle size
range
Prior art date
Application number
PCT/JP2017/013325
Other languages
English (en)
French (fr)
Inventor
中山 裕子
小村 篤史
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US16/088,133 priority Critical patent/US11365154B2/en
Priority to JP2017538452A priority patent/JP6457647B2/ja
Priority to DE112017001794.7T priority patent/DE112017001794T5/de
Priority to KR1020187026819A priority patent/KR102097955B1/ko
Priority to CN201780022145.3A priority patent/CN108883996B/zh
Publication of WO2017170899A1 publication Critical patent/WO2017170899A1/ja
Priority to US17/168,426 priority patent/US20210155550A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present disclosure relates to a silicon nitride sintered body including silicon nitride particles that are silicon nitride particles or sialon particles, and a cutting insert including the silicon nitride sintered body.
  • a cutting insert for processing ordinary cast iron, ductile cast iron, heat-resistant alloy, etc. for example, those using a silicon nitride sintered body containing silicon nitride particles or sialon particles are known.
  • Patent Document 1 discloses a technique of a high-toughness silicon nitride-based sintered body that defines the existence ratio of high aspect ratio particles for silicon nitride needle-like crystal particles.
  • Patent Document 2 discloses a technique of a silicon nitride sintered body that focuses on acicular crystal particles of silicon nitride and defines an aspect ratio and a long diameter to achieve high strength.
  • Patent Document 3 discloses a silicon nitride sintered body for a cutting tool in which needle crystal grains of silicon nitride have an average minor axis of 1 ⁇ m or less and an average aspect ratio of 3 or more to achieve cutting tool performance. The technology is disclosed.
  • Patent Document 4 listed below discloses a technique of a silicon nitride-based tool in which fracture toughness is improved by defining an average maximum diameter, an average minor axis diameter, and an aspect ratio in particles of a silicon nitride-based sintered body. .
  • fracture toughness and the like are improved by controlling the structure of the average particle size and maximum particle size of silicon nitride particles, but further improvement is desired.
  • improvement of fracture resistance is desired, but conventional techniques may not always be sufficient. is there.
  • the silicon nitride sintered body in one aspect of the present disclosure relates to a silicon nitride sintered body including silicon nitride particles that are silicon nitride particles or sialon particles.
  • This silicon nitride sintered body has a maximum particle size of 1 ⁇ m or less among all silicon nitride particles when the size of each silicon nitride particle is indicated by the maximum particle size (that is, the maximum particle size).
  • the ratio of the number of silicon nitride particles is 70% by number or more.
  • the silicon nitride sintered body has a maximum number% (that is, maximum number%) which is the maximum value of the number% of silicon nitride particles in the distribution of the number% of silicon nitride particles with respect to the maximum particle size. It is 15% by number or more.
  • the content defined in this one aspect may be referred to as condition 1)
  • the number% represents the ratio of the number in the target range in% with respect to the number of all silicon nitride particles (the same applies hereinafter).
  • the number% with the maximum particle size of 1 ⁇ m or less is 70% by number or more, and the maximum number% is 15% by number or more. Therefore, the atomization and uniform grain organization of the silicon nitride particles serving as the matrix are improved, and the size of the binder phase between fine particles (that is, the region occupied by the binder phase between the silicon nitride particles) is reduced. Therefore, as will be apparent from the experimental examples described later, the strength of the silicon nitride sintered body is increased and the fracture resistance is improved.
  • the ratio of the number of silicon nitride particles having a maximum particle size of 1 ⁇ m or less may be 85% by number or more.
  • the number% with a maximum particle size of 1 ⁇ m or less is 85 number% or more, so that the strength of the silicon nitride sintered body is further increased, as will be apparent from the experimental examples described later.
  • the fracture resistance is further improved.
  • the maximum particle size is divided into each range for each predetermined dimension, and the ratio of the number of silicon nitride particles in each range to the number of all silicon nitride particles, It is good also as number%.
  • the range of the predetermined dimension that is, the width of the dimension
  • the narrower the width the more accurate the distribution of the maximum particle diameter can be obtained.
  • a median value of ⁇ 0.05 ⁇ m that is, a width of 0.1 ⁇ m
  • a silicon nitride-based sintered body according to another aspect of the present disclosure relates to a silicon nitride-based sintered body including silicon nitride particles that are silicon nitride particles or sialon particles.
  • the size of each silicon nitride particle is indicated by the maximum particle size (that is, the maximum particle size), and the maximum particle size is divided into ranges for each predetermined dimension.
  • the ratio of the number of silicon nitride particles in each range to the number of silicon nitride particles is number%.
  • a specific range that is a plurality of ranges that are equal to or higher than the threshold value is set. Further, in this specific range, the range with the smallest maximum particle size is set as the minimum range, and the range with the largest maximum particle size is set as the maximum range.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range are in the range of 0.1 ⁇ m to 2.0 ⁇ m.
  • condition 2 the contents specified in other aspects may be referred to as condition 2.
  • the atomization and uniform grain organization of the silicon nitride particles serving as the matrix are improved, and the size of the bonding phase between the fine particles is reduced. Therefore, as will be apparent from the experimental examples described later, the strength of the silicon nitride sintered body is increased and the fracture resistance is improved.
  • the configuration shown in the column (4) may be combined with the configuration shown in the column (1) or (2). Further, as the range for each predetermined dimension, a range similar to the configuration shown in the column (3) can be adopted.
  • the aspect ratio of silicon nitride particles having a maximum particle size of 7 ⁇ m or more may be 2 or more.
  • the diffusion effect of crack propagation that is, the effect of suppressing the linear growth of cracks: diffraction) Effect
  • fracture toughness is improved and fracture resistance is improved.
  • silicon nitride sintered body silicon nitride is 80% by mass or more, one or more of yttrium or rare earth element is 0.1 to 10% by mass in terms of oxide, and magnesium is 0.2% in terms of MgO. It may be contained up to 6% by mass.
  • silicon nitride sintered body the composition of the silicon nitride sintered body is illustrated.
  • silicon nitride is 90% by mass or more, one or more of yttrium or rare earth elements is 0.3 to 4.5% by mass in terms of oxide, and magnesium is 0 in terms of MgO. It may be contained in an amount of 2 to 3% by mass.
  • silicon nitride sintered body the composition of the silicon nitride sintered body is illustrated.
  • the above-mentioned silicon nitride sintered body contains sialon, contains 1 to 10% by mass of one or more yttrium or rare earth elements in terms of oxide, and 3 to 30% by mass of aluminum in terms of Al 2 O 3 May be.
  • the above-mentioned silicon nitride sintered body contains sialon, contains 1 to 7 mass% of yttrium or rare earth element in terms of oxide, and contains 5 to 25 mass% of aluminum in terms of Al 2 O 3 May be.
  • a cutting insert according to still another aspect of the present disclosure is a cutting insert configured from any of the silicon nitride-based sintered bodies described above.
  • the cutting insert having such a configuration has high fracture resistance as is apparent from experimental examples described later.
  • this cutting insert by using the silicon nitride sintered body having the above-described configuration, for example, when processing of normal cast iron, ductile cast iron, and heat-resistant alloy, there is an effect of high fracture resistance. Therefore, there is a remarkable effect that high-efficiency machining by high feed and long life in machining difficult-to-cut materials are possible.
  • the silicon nitride sintered body containing silicon nitride particles that are silicon nitride particles or sialon particles may be configured as follows.
  • the size of each silicon nitride particle is indicated by the maximum particle size, and the maximum particle size is divided into ranges for each predetermined dimension, and nitriding in each range with respect to the number of all silicon nitride particles.
  • the ratio of the number of silicon particles is defined as number%.
  • 10% with respect to the maximum number%, which is the maximum value of the number% of silicon nitride particles, is set as a threshold value, and a specific range that is a plurality of ranges that are equal to or higher than the threshold value is set. Further, in the specific range, a range having the smallest maximum particle size is set as the minimum range, and a range having the largest maximum particle size is set as the maximum range.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range may be in the range of 0.1 ⁇ m to 2.0 ⁇ m. This configuration also increases the strength of the silicon nitride sintered body and improves the fracture resistance.
  • Silicon nitride particles are particles whose main component is silicon nitride (Si 3 N 4 ), and sialon particles are particles whose main component is sialon.
  • the main component indicates that silicon nitride particles or sialon particles contain silicon nitride or sialon in a range exceeding 50% by volume, respectively. Silicon nitride or sialon may be included in a range exceeding 80% by volume.
  • sialon is a substance in which Al and O are dissolved in silicon nitride.
  • the silicon nitride particles may be particles composed of silicon nitride (however, inevitable impurities may be included).
  • the sialon particles may be particles composed of sialon (however, inevitable impurities may be included).
  • the silicon nitride-based sintered body is a sintered body containing silicon nitride (Si 3 N 4 ) or sialon as a main component (including in a range exceeding 50% by volume). In this silicon nitride sintered body, silicon nitride particles occupy a range exceeding 50% by volume.
  • the maximum particle size indicates the maximum length (size) of the silicon nitride particles (outer diameter).
  • the maximum particle size means the maximum dimension obtained from an image obtained by etching a sintered mirror-polished body and observing it with a scanning electron microscope (that is, SEM observation).
  • rare earth element La, Ce, Sm, Er, Yb etc. are mentioned, for example.
  • the cutting insert 1 of 1st Embodiment has the shape of SNGN120408T02020 by the ISO standard.
  • the cutting insert 1 is composed of a silicon nitride-based sintered body 5 including a large number of silicon nitride particles 3 (see FIG. 2).
  • the silicon nitride sintered body 5 is substantially composed of silicon nitride particles 3 (for example, 80% by volume or more).
  • the maximum particle size (X: see FIG. 2) which is the maximum particle size (that is, the maximum major axis) in each silicon nitride particle 3. ) Is 1 ⁇ m or less, the ratio of the number (that is, number%) is 70 number% or more. For example, the number% having a maximum particle size of 1 ⁇ m or less is 85 number% or more. In addition, in the distribution of the number% of silicon nitride particles with respect to the maximum particle diameter, the maximum value (that is, the maximum number%) of the number% of the silicon nitride particles 3 is 15 number% or more.
  • the maximum particle size corresponding to the maximum number% exists in the range where the maximum particle size is 1 ⁇ m or less. In the first embodiment, the following condition 2 is satisfied.
  • the maximum particle size is divided into each range for each predetermined dimension, and the ratio of the number of silicon nitride particles in each range to the number of all silicon nitride particles is a number%, and the silicon nitride material
  • a specific range which is a plurality of ranges having a number% equal to or greater than the threshold is set with 5% of the maximum number% being the maximum value of the number% of particles as a threshold.
  • a range having the smallest maximum particle size is set as the minimum range, and a range having the largest maximum particle size is set as the maximum range.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range are in the range of 0.1 ⁇ m to 2.0 ⁇ m.
  • the maximum particle size corresponding to the maximum number% exists within the specific range of 5% or more.
  • the median is the case where the maximum particle size is divided into ranges for each predetermined dimension, and the ratio of the number of silicon nitride particles 3 in each range to the number of all silicon nitride particles 3 is set to number%. , The median value in each range.
  • the aspect ratio is “the maximum major axis / the length perpendicular to the maximum major axis” of the silicon nitride particles 3, as shown in FIG.
  • the maximum major axis is the maximum particle diameter X in FIG. 2, and the length orthogonal to the maximum major axis is the minimum minor axis Y in FIG.
  • the maximum particle size is divided into respective ranges for each predetermined dimension (for example, median value ⁇ 0.05 ⁇ m), and the number of all silicon nitride particles 3
  • the ratio of the number of silicon nitride particles 3 in each range to the number% is, for example, the size distribution of the silicon nitride particles 3 is as shown in FIG.
  • the distribution of the size of the silicon nitride particles 3 is actually a histogram showing the number% for each predetermined dimension.
  • the vertex of the median value of each range that is, the number% value
  • the size distribution of the silicon nitride particles 3 is schematically shown so as to be connected to.
  • the width for each predetermined dimension means the bin width in the histogram.
  • the number% which is the ratio (that is, the frequency) of the number of particles having the maximum particle diameter X
  • Number of particles of maximum particle size X% (number of particles of maximum particle size X / total number of particles) ⁇ 100 (1)
  • the “number of particles of the maximum particle size X” is “particles of the maximum particle size X” included in the predetermined size (width). "Number”.
  • the number% where the maximum particle size is 1 ⁇ m or less is 70 number% or more indicates that the sum of the number% in the shaded area (A) in FIG. 4 is 70% or more, for example.
  • the number% where the maximum particle size is 1 ⁇ m or less is 85 number% or more indicates that, for example, the sum of the number% in the shaded area (A) in FIG. 4 is 85% or more.
  • “Maximum number% is 15 number% or more” indicates that the value of Ymax, which is the maximum number% (ie, maximum number%) in FIG. 4, for example, is 15 number% or more. Furthermore, “the maximum particle size corresponding to the median of the minimum range and the maximum particle size corresponding to the maximum median of the maximum range are in the range of 0.1 ⁇ m or more and 2.0 ⁇ m or less” For example, when the distribution of the maximum particle size as shown in FIG. 5 is considered, the median range (C1) in each range of 5% or more of the maximum number% is in the range of 0.1 ⁇ m or more and 2.0 ⁇ m or less. Indicates that it exists.
  • the median value that is, the minimum median value of the range on the smaller maximum particle size side shown in the left side of FIG.
  • the median value (that is, the maximum median value) of the range of the larger maximum particle size shown on the right side of FIG. 5 that is, the hatched portion on the right side of FIG. 5 indicating the maximum range.
  • the range between the diameters is in the range of 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • this minimum median and the maximum median corresponds to the range of C1 (see FIG. 5) within the range of (C) of FIG. To do. That is, this corresponds to the range of Ymax (that is, the maximum number% value) ⁇ 0.05 (that is, 5% of Ymax) or more in FIG.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range are within a range of 0.1 ⁇ m or more and 1.5 ⁇ m or less”, for example, 5 (when 5% in FIG. 5 is considered as 10%), the median range in each range of 10% or more of the maximum number% (B1 in FIG. 4). In the range of 0.1 ⁇ m or more and 1.5 ⁇ m or less.
  • the median value that is, the minimum median value of the range on the smaller maximum particle size side shown in the left side of FIG.
  • the maximum particle size indicated by the median value that is, the maximum median value of the range of the larger maximum particle size shown on the right side of FIG. 5 (that is, the hatched portion on the right side of FIG. 5 which is the maximum range). It is shown that the range between is in the range of 0.1 ⁇ m or more and 1.5 ⁇ m or less.
  • this minimum median and the maximum median corresponds to the range of B1 in the range of (B) of FIG. That is, this corresponds to the range of Ymax (that is, the maximum number% value) ⁇ 0.1 (that is, 10% of Ymax) or more in FIG.
  • silicon nitride powder having a specific surface area BET of 8 to 20 m 2 / g is used as a starting material, Yb 2 O 3 powder having an average particle diameter of 1 ⁇ m, Sm 2 O 3 powder having an average particle diameter of 1 ⁇ m, or Lu 2 having an average particle diameter of 1 ⁇ m.
  • the powder blended as described above is put into a ball mill having an inner wall made of silicon nitride together with ethanol, and silicon nitride balls of ⁇ 2 mm, ⁇ 6 mm, and ⁇ 10 mm (that is, SN balls) are used as grinding media.
  • a mixture (slurry) was prepared by pulverizing and mixing for about 96 to 240 hours using a mixture formulated at a volume ratio of 2: 7 or 0: 0: 10.
  • each silicon nitride ball of ⁇ 2 mm, ⁇ 6 mm, and ⁇ 10 mm was blended at a volume ratio of 0: 0: 10, it was pulverized and mixed for about 168 to 240 hours. That is, when many large silicon nitride balls were used, the pulverization time was lengthened.
  • the slurry was boiled in water, dried, and then passed through a sieve having an opening of 250 ⁇ m to obtain a mixed powder.
  • the mixed powder was press-molded at a pressure of 1000 kgf / cm 2 to obtain a molded product having a tool shape of SNGN120408T02020 according to ISO standards.
  • this compact was molded by cold isostatic pressing (CIP) molding at a pressure of 1500 kgf / cm 2 .
  • CIP cold isostatic pressing
  • the molded body formed by the CIP molding is held in a silicon nitride container at a nitrogen (N 2 ) atmosphere, a heating rate of 10 ° C./min, and 1750 ° C. for 2 hours, and a cooling rate of 20 ° C./min. was fired.
  • N 2 nitrogen
  • the temperature rising rate is slower than 10 ° C./min, the grain growth of silicon nitride particles proceeds, and therefore, 10 ° C./min or more is preferable.
  • a silicon nitride sintered body 5 was obtained by the manufacturing method described above.
  • the cutting insert 1 was obtained by grind
  • the number% of silicon nitride particles 3 having a maximum particle size of 1 ⁇ m or less is 70 number% or more (for example, 85% by number or more).
  • the maximum number% that is, the maximum number% which is the maximum value of the number% of the silicon nitride particles 3 is 15 number% or more.
  • the atomization and uniform grain organization of the silicon nitride particles 3 are improved, and the size of the bonded phase between the fine particles is reduced. Therefore, the strength of the silicon nitride sintered body 5 is increased, and the fracture resistance performance is improved.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range in a specific region that is 5% or more of the maximum number% However, it exists in the range of 0.1 micrometer or more and 2.0 micrometers or less.
  • the atomization and uniform grain organization of the silicon nitride particles 3 are improved, and the size of the bonded phase between the fine particles is reduced. Therefore, also from this point, the strength of the silicon nitride-based sintered body 5 is increased, and the fracture resistance is improved.
  • the aspect ratio of the silicon nitride particles 3 having a maximum particle size of 7 ⁇ m or more is 2 or more. Therefore, since the effect of crack propagation is large, fracture toughness is improved, and fracture resistance is further improved.
  • the cutting insert 11 of 2nd Embodiment has the shape (namely, cylindrical shape) of RNGN120700T02020 by the ISO standard.
  • the cutting insert 11 is composed of a silicon nitride sintered body 15 including a large number of sialon particles 13 (see FIG. 2). That is, the silicon nitride sintered body 15 is substantially composed of sialon particles 13 (for example, 80% by volume or more).
  • the sialon particles 13 have the same shape as the silicon nitride particles 3 of the first embodiment as illustrated in FIG.
  • the silicon nitride sintered body 15 of the second embodiment basically has the same configuration as that of the first embodiment except that the silicon nitride particles 3 are replaced with sialon particles 13.
  • condition 1 and the condition 2 are satisfied as follows.
  • the maximum particle diameter (X: see FIG. 2) which is the maximum diameter (maximum major axis) of each sialon particle 13 in the sialon particles 13 included in the silicon nitride sintered body 15, is 1 ⁇ m or less.
  • the number ratio (that is, number%) of the above is 70 number% or more.
  • the number% having a maximum particle size of 1 ⁇ m or less is 85 number% or more.
  • the maximum value (that is, the maximum number%) of the number% of the sialon particles 13 is 15 number% or more.
  • the maximum particle diameter corresponding to the maximum number% exists in the range where the maximum particle diameter is 1 ⁇ m or less.
  • condition 2 first, a specific range which is a plurality of ranges having a number% equal to or greater than the threshold value is set with 5% of the maximum number% being the maximum value of the number% of sialon particles 13 as a threshold value. In the specific range, the range having the smallest maximum particle size is set as the minimum range, and the range having the largest maximum particle size is set as the maximum range.
  • the maximum particle size corresponding to the median value of the minimum range and the maximum particle size corresponding to the median value of the maximum range are in the range of 0.1 ⁇ m to 2.0 ⁇ m.
  • the maximum particle size corresponding to the maximum number% exists within the specific range of 5% or more.
  • this silicon nitride powder a silicon nitride powder having a specific surface area BET of 8 to 20 m 2 / g was used.
  • ⁇ Crushing method> The pulverization method is the same as in the first embodiment.
  • ⁇ Molding method> The molding method is the same as in the first embodiment. However, it was molded into the shape of RNGN120700T2020.
  • ⁇ Baking method> The firing temperature was 1730 ° C.
  • Other manufacturing conditions are the same as those of the first embodiment, and the silicon nitride based sintered body 15 (and hence the cutting insert 11) of the second embodiment can be manufactured by such a manufacturing method.
  • the number% of the sialon particles 13 having a maximum particle diameter of 1 ⁇ m or less is 70 number% or more.
  • the maximum value (that is, the maximum number%) of the number% of the sialon particles 13 is 15 number% or more.
  • the maximum particle size corresponding to the median of the minimum range and the maximum particle size corresponding to the median of the maximum range in a specific range that is 5% or more of the maximum number%, It exists in the range of 0.1 micrometer or more and 2.0 micrometers or less.
  • the aspect ratio of the sialon particles 13 having a maximum particle size of 7 ⁇ m or more is 2 or more. Therefore, since the effect of crack propagation is large, fracture toughness is improved, and fracture resistance is further improved.
  • This Experimental Example 1 is an experimental example related to the silicon nitride sintered body (accordingly, the cutting insert) of the first embodiment.
  • Experimental Example 1 of the first embodiment a sample of a silicon nitride sintered body (and therefore a cutting insert) containing silicon nitride particles as a main component was prepared, and its fracture resistance and the like were examined.
  • the manufacturing conditions other than the manufacturing conditions shown in Experimental Example 1 are the same as those in the first embodiment.
  • the shape of the cutting insert is SNGN120408T02020 according to the ISO standard.
  • Examples 1 to 10 are samples of the present disclosure
  • Comparative Examples 1 to 8 are comparative examples outside the scope of the present disclosure.
  • the samples of Examples 1 to 10 were prepared by changing the specific surface area BET, grinding media, and grinding time conditions within the ranges shown in Table 1 below among the conditions of the first embodiment. is there.
  • the specific surface area BET was selected in the range of 11 to 17%
  • the grinding time was selected in the range of 96 to 240 hours.
  • the cutting insert of each sample was cut at a plane passing through the center of gravity, the cut surface was mirror-polished, and after etching, observation by a scanning electron microscope (that is, SEM observation) was performed. Specifically, the number of silicon nitride particles present in the field of view in the range of 64 ⁇ m ⁇ 48 ⁇ m near the center of gravity was examined by SEM observation. In addition, the maximum particle diameter X and the minimum minor diameter Y of each silicon nitride particle were examined to obtain individual aspect ratios (ie, X / Y).
  • the frequency of the number is calculated in a width of 0.1 ⁇ m, for example, and the particle size distribution of the maximum particle size as shown in FIG. 4 is obtained. Asked.
  • the measurement In order to improve the measurement accuracy, it is preferable to perform the measurement with two or more visual fields.
  • analysis can be performed using data of all fields of view.
  • data 3 is a minimum and maximum median value of 5% or more (that is, a particle size of 5% of the maximum number%)
  • data 4 is a minimum and maximum median value of 10% or more (that is, maximum). 10% of the particle number).
  • the “aspect ratio of silicon nitride particles having a maximum particle size of 7 ⁇ m or more” is a value obtained by obtaining each aspect ratio for silicon nitride particles having a maximum particle size of 7 ⁇ m or more and describing the minimum value.
  • indicates that the maximum amount of flank wear is the smallest and the feed rate leading to the defect is the largest (that is, the most excellent characteristic). “ ⁇ ” indicates that the flank maximum wear amount is as small as 0.6 mm, and the feed speed to the defect is 1.8 mm / rev. “ ⁇ ” indicates that the flank maximum wear amount is a little as small as 0.8 to 0.9 mm, and the feed rate leading to the breakage is slightly excellent at 1.7 mm / rev. “X” indicates an unfavorable characteristic in which the maximum flank wear amount is 0.9 mm or more and the feed speed to the defect is 1.6 mm / rev or less. “XX” indicates that an initial defect occurred.
  • the flank maximum wear amount is smaller (0.6 mm or less), and the feed rate leading to the defect is larger (1.8 mm / rev or more). Is preferred.
  • the maximum flank wear amount is small (0.9 mm or less), and the feed rate to the chip is large (1.7 mm / rev or more). Is preferred.
  • Comparative Examples 1 to 3 and 7 are not preferable because they have a large amount of flank wear and a small feed rate to the chip. Further, Comparative Examples 4, 5, and 8 are not preferable because initial defects occur. Furthermore, Comparative Example 6 is not preferable because the feed speed to the defect is small.
  • This Experimental Example 2 is an experimental example related to the silicon nitride sintered body (accordingly, the cutting insert) of the second embodiment.
  • a sample of the sialon sintered body (accordingly, the cutting insert) of the second embodiment was produced as a silicon nitride-based sintered body containing the sialon particles of the second embodiment as a main component, and the fracture resistance and the like were examined.
  • the shape of the cutting insert is ISO standard and is RNGN120700T02020.
  • Examples 11 and 12 are samples of the present disclosure
  • Comparative Example 9 is a comparative example outside the scope of the present disclosure.
  • SEM observation was performed on the cutting inserts of the samples prepared in this Experimental Example 2 in the same manner as in Experimental Example 1, and the number of sialon particles existing in the visual field in the range of 64 ⁇ m ⁇ 48 ⁇ m near the center of gravity was determined.
  • the maximum particle diameter X and the minimum minor diameter Y of each sialon particle were examined to determine the individual aspect ratio (ie, X / Y).
  • the frequency of the number was calculated with a width of, for example, 0.1 ⁇ m, and the particle size distribution of the maximum particle size was obtained.
  • data 1 to 5 were obtained from the measurement data regarding the sialon particles obtained by the observation described above. The results are shown in Table 4 below.
  • in the comprehensive evaluation indicates the longest processing distance until flaking (that is, the best characteristic). “ ⁇ ” indicates the next longest processing distance (ie, excellent characteristics) until flaking is reached. “X” indicates that the machining distance until the defect is reached is short (that is, undesirable characteristics).
  • the present disclosure can be applied not only to a silicon nitride sintered body including silicon nitride particles but also to a silicon nitride sintered body including sialon particles.
  • the distribution of silicon nitride particles as shown in FIG. 4 is the same when the silicon nitride particles are sialon particles.
  • sialon that is, the crystalline phase
  • a material including ⁇ , ⁇ , and polytype at a predetermined ratio according to the application. That is, the form of sialon is not particularly limited.
  • the composition of the silicon nitride-based sintered body of the present disclosure includes, for example, 80% by mass or more of silicon nitride, 0.1 to 10% by mass in terms of oxide of one or more of yttrium or a rare earth element, A composition containing 0.2 to 6% by mass of magnesium in terms of MgO can be mentioned. Further, a composition containing 90% by mass or more of silicon nitride, 0.3 to 4.5% by mass in terms of oxide of one or more of yttrium or a rare earth element, and 0.2 to 3% by mass of magnesium in terms of MgO. It is done.
  • a composition containing sialon and containing 1 to 10% by mass of one or more yttrium or rare earth elements in terms of oxide and 3 to 30% by mass in terms of Al 2 O 3 can be given. Further, a composition containing sialon and containing at least one kind of yttrium or rare earth element in an amount of 3 to 7% by mass in terms of oxide and 5 to 25% by mass in terms of Al 2 O 3 can be given.
  • the function which one component in each said embodiment has may be shared by a some component, or the function which a some component has may be exhibited by one component.
  • at least a part of the configuration of each of the embodiments may be added to or replaced with the configuration of the other embodiments.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present invention.

Abstract

本開示の一つの局面における窒化珪素質焼結体は、窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体である。この窒化珪素質焼結体は、個々の窒化珪素質粒子の大きさを、それぞれ最大の粒径で示す場合に、全ての窒化珪素質粒子のうち、最大の粒径が1μm以下の窒化珪素質粒子の個数の割合が70個数%以上である。しかも、最大の粒径に対する窒化珪素質粒子の個数%の分布において、窒化珪素質粒子の個数%の最大値である最大の個数%が15個数%以上である。

Description

窒化珪素質焼結体及び切削インサート 関連出願の相互参照
 本国際出願は、2016年3月31日に日本国特許庁に出願された日本国特許出願第2016-72222号に基づく優先権を主張するものであり、日本国特許出願第2016-72222号の全内容を参照により本国際出願に援用する。
 本開示は、窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体及びその窒化珪素質焼結体から構成されている切削インサートに関する。
 例えば、普通鋳鉄、ダクタイル鋳鉄、耐熱合金等を加工する切削インサートとして、例えば、窒化珪素粒子やサイアロン粒子を含む窒化珪素質焼結体を用いたものが知られている。
 下記特許文献1には、窒化珪素の針状結晶粒子について、高アスペクト比粒子の存在割合を規定する高靱性窒化珪素質焼結体の技術が開示されている。
 下記特許文献2には、窒化珪素の針状結晶粒子に着目し、アスペクト比や長径を規定して、高強度化を図った窒化珪素焼結体の技術が開示されている。
 下記特許文献3には、窒化珪素の針状結晶粒子について、平均短径を1μm以下、平均アスペクト比を3以上に規定して、切削工具の性能を図った切削工具用窒化珪素質焼結体の技術が開示されている。
 下記特許文献4には、窒化珪素質焼結体の粒子において、平均最大径、平均短軸径、アスペクト比を規定することにより、破壊靱性を向上した窒化珪素質工具の技術が開示されている。
特公平5-66901号公報 特開2008-285349号公報 特開平5-23921号公報 特許第4190257号公報
 窒化珪素質焼結体に関する技術では、窒化珪素粒子の平均粒径や最大粒子等の組織制御により、破壊靱性等を向上させているが、一層の改善が望まれている。
 つまり、近年では、被削材の難削化への対応や高能率加工等の要求があり、それに伴って耐欠損性能の向上が望まれているが、従来の技術では必ずしも十分ではない場合がある。
 本開示の一局面においては、高い耐欠損性能を有する窒化珪素質焼結体及び切削インサートを提供することが望ましい。
 (1)本開示の一つの局面における窒化珪素質焼結体は、窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体に関するものである。
 この窒化珪素質焼結体は、各窒化珪素質粒子の大きさを、最大の粒径(即ち最大粒径)で示す場合に、全ての窒化珪素質粒子のうち、最大の粒径が1μm以下の窒化珪素質粒子の個数の割合が70個数%以上である。しかも、この窒化珪素質焼結体は、最大の粒径に対する窒化珪素質粒子の個数%の分布において、窒化珪素質粒子の個数%の最大値である最大の個数%(即ち最大個数%)が15個数%以上である。
 (以下、この一つの局面にて規定した内容を条件1と記すこともある)
 なお、個数%とは、全ての窒化珪素粒子の数に対して、目的とする範囲における個数の割合を%で表現したものである(以下同様)。
 この窒化珪素質焼結体では、前記最大粒径が1μm以下の個数%が70個数%以上であり、且つ、前記最大個数%が15個数%以上である。そのため、マトリックスとなる窒化珪素質粒子の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズ(即ち窒化珪素質粒子間における結合相の占める領域)が低減している。よって、後述する実験例からも明らかなように、窒化珪素質焼結体の強度が上がり、耐欠損性能が向上する。
 (2)上述の窒化珪素質焼結体では、最大の粒径が1μm以下の窒化珪素質粒子の個数の割合が85個数%以上としてもよい。
 この窒化珪素質焼結体では、最大粒径が1μm以下の個数%が85個数%以上であるので、後述する実験例からも明らかなように、更に窒化珪素質焼結体の強度が上がり、耐欠損性能が一層向上する。
 (3)上述の窒化珪素質焼結体では、最大の粒径を所定寸法毎の各範囲に区分し、全ての窒化珪素質粒子の個数に対する各範囲の窒化珪素質粒子の個数の割合を、個数%としてもよい。
 この窒化珪素質焼結体では、個数%の設定方法を例示している。
 前記所定寸法の範囲(即ち寸法の幅)は、その幅が狭いほど精度の良い最大粒径の分布が得られるが、実用的には、前記所定寸法としては、例えば前記範囲(即ち幅)の中央値±0.05μm(即ち0.1μmの幅)を採用できる。
 また、前記幅としては、0.1μmに限らず、0.01μm~0.1μmの幅を採用できる。
 (4)本開示の他の局面における窒化珪素質焼結体は、窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体に関するものである。
 この窒化珪素質焼結体については、各窒化珪素質粒子の大きさを、最大の粒径(即ち最大粒径)で示し、最大の粒径を所定寸法毎の各範囲に区分し、全ての窒化珪素質粒子の個数に対する各範囲の窒化珪素質粒子の個数の割合を個数%とする。そして、窒化珪素質粒子の個数%の最大値である最大の個数%に対する5%を閾値として、その閾値以上の個数%となる複数の範囲である特定範囲を設定する。さらに、この特定範囲のうち、最大の粒径が最も小さな範囲を最小範囲とするとともに最大の粒径が最も大きな範囲を最大範囲とする。
 そして、この場合において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内にある。
 (以下、この他の局面にて規定した内容を条件2と記すこともある)
 この窒化珪素質焼結体では、最大の個数%の5%以上となる特定範囲において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内にある。そのため、マトリックスとなる窒化珪素質粒子の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズが低減している。よって、後述する実験例からも明らかなように、窒化珪素質焼結体の強度が上がり、耐欠損性能が向上する。
 なお、前記(4)の欄に示す構成と前記(1)又は前記(2)の欄に示す構成とを組み合わせてもよい。また、前記所定寸法毎の範囲としては、前記(3)の欄に示す構成と同様な範囲を採用できる。
 (5)上述の窒化珪素質焼結体では、最大の粒径が7μm以上の窒化珪素質粒子のアスペクト比が2以上としてもよい。
 この窒化珪素質焼結体では、最大粒径が7μm以上の窒化珪素質粒子のアスペクト比が2以上であるので、クラック進展のディフラクション効果(即ちクラックの直線状の進展を抑制する効果:回折させる効果)が大きい。そのため、破壊靱性が向上し、耐欠損性能が向上する。
 (6)上述の窒化珪素質焼結体では、窒化珪素を80質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.1~10質量%、マグネシウムをMgO換算で0.2~6質量%含有してもよい。
 この窒化珪素質焼結体では、窒化珪素質焼結体の組成を例示している。
 (7)上述の窒化珪素質焼結体では、窒化珪素を90質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.3~4.5質量%、マグネシウムをMgO換算で0.2~3質量%含有してもよい。
 この窒化珪素質焼結体では、窒化珪素質焼結体の組成を例示している。
 (8)上述の窒化珪素質焼結体では、サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で1~10質量%、アルミニウムをAl換算で3~30質量%含有してもよい。
 この窒化珪素質焼結体では、窒化珪素質焼結体の組成を例示している。
 (9)上述の窒化珪素質焼結体では、サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で3~7質量%、アルミニウムをAl換算で5~25質量%含有してもよい。
 この窒化珪素質焼結体では、窒化珪素質焼結体の組成を例示している。
 (10)本開示の更に他の局面における切削インサートは、上述したいずれかの窒化珪素質焼結体から構成されている切削インサートである。
 このような構成の切削インサートは、後述する実験例からも明らかなように、高い耐欠損性能を有している。
 この切削インサートでは、上述した構成の窒化珪素質焼結体を用いることによって、例えば、普通鋳鉄、ダクタイル鋳鉄、耐熱合金の加工を行う場合に、耐欠損性能が高いという効果がある。従って、高送りによる高能率加工化、難削材等に対する加工における長寿命化が可能であるという顕著な効果を奏する。
 なお、窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体において、下記のようにしてもよい。
 つまり、個々の窒化珪素質粒子の大きさを、それぞれ最大の粒径で示すとともに、最大の粒径を所定寸法毎の各範囲に区分し、全ての窒化珪素質粒子の個数に対する各範囲の窒化珪素質粒子の個数の割合を個数%とする。そして、窒化珪素質粒子の個数%の最大値である最大の個数%に対する10%を閾値とし、その閾値以上の個数%となる複数の範囲である特定範囲を設定する。さらに、特定範囲のうち、最大の粒径が最も小さな範囲を最小範囲とするとともに最大の粒径が最も大きな範囲を最大範囲とする。
 この場合において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内にあってもよい。
 この構成によっても、窒化珪素質焼結体の強度が上がり、耐欠損性能が向上する。
 <以下、本開示の各構成について説明する>
 ・窒化珪素粒子とは、窒化珪素(Si)を主成分とする粒子であり、サイアロン粒子とは、サイアロン(sialon)を主成分とする粒子である。ここで主成分とは、窒化珪素粒子又はサイアロン粒子において、窒化珪素又はサイアロンを、それぞれ50体積%を上回る範囲で含むことを示している。なお、窒化珪素又はサイアロンを、それぞれ80体積%を上回る範囲で含んでいてもよい。
 なお、サイアロンとは、周知のように、窒化珪素にAl及びOが固溶した物質である。
 また、窒化珪素粒子は、窒化珪素により構成される粒子であってもよい(但し不可避不純物を含んでいてもよい)。また、サイアロン粒子としては、サイアロンにより構成される粒子であってもよい(但し不可避不純物を含んでいてもよい)。
・窒化珪素質焼結体とは、窒化珪素(Si)又はサイアロン(sialon)を主成分(50体積%を上回る範囲で含む)とする焼結体である。この窒化珪素質焼結体では、窒化珪素質粒子が50体積%を上回る範囲を占めている。
 ・最大の粒径(最大粒径)とは、窒化珪素質粒子の径(外径)のうち最大の長さ(サイズ)を示している。
 ここで、最大の粒径とは、鏡面研磨した焼結体をエッチング処理し、これを走査型電子顕微鏡で観察(即ちSEM観察)した画像から得られる最大の寸法を意味する。
 ・「最大の粒径が7μm以上の窒化珪素質粒子のアスペクト比が2以上」であるとは、窒化珪素質焼結体に含まれる多数の窒化珪素質粒子のうち、最大の粒径が7μm以上の全ての粒子のアスペクト比が2以上であることを示している。
 ・なお、前記希土類元素としては、例えば、La、Ce、Sm、Er、Yb等が挙げられる。
第1実施形態の切削インサートを示す斜視図である。 窒化珪素粒子の最大粒径(最大長径)Xと最小短径Yとを示す説明図である。 第2実施形態の切削インサートを示す斜視図である。 窒化珪素粒子の最大粒径と個数%との関係を示すグラフである。 窒化珪素粒子の最大粒径の分布におけるYmaxの5%以上の最小範囲における中央値と最大範囲における中央値とを示すグラフである。
 1、11…切削インサート
 3…窒化珪素粒子
 5、15…窒化珪素質焼結体
 13…サイアロン粒子
 [1.第1実施形態]
 [1-1.全体構成]
 まず、第1実施形態の窒化珪素質焼結体を用いて構成される切削インサートの構成について説明する。
 図1に示すように、第1実施形態の切削インサート1は、ISO規格でSNGN120408T02020の形状を有している。
 この切削インサート1は、多数の窒化珪素粒子3(図2参照)を含む窒化珪素質焼結体5から構成されている。つまり、この窒化珪素質焼結体5は、ほぼ窒化珪素粒子3(例えば80体積%以上)から構成されている。
 本第1実施形態では、下記の条件1を満たしている。
 具体的には、窒化珪素質焼結体5に含まれる多数の窒化珪素粒子3については、各窒化珪素粒子3において最大の粒径(即ち最大長径)である最大粒径(X:図2参照)が1μm以下であるものの個数の割合(即ち個数%)が70個数%以上である。例えば、最大粒径が1μm以下の個数%が85個数%以上である。しかも、最大の粒径に対する窒化珪素質粒子の個数%の分布において、窒化珪素粒子3の個数%の最大値(即ち最大個数%)が15個数%以上である。
 なお、この最大粒径が1μm以下の範囲内に、最大個数%(即ち窒化珪素粒子3の分布のピークYmax:図4参照)に対応する最大粒径が存在する。
 また、本第1実施形態では、下記の条件2を満たしている。
 具体的には、最大の粒径を所定寸法毎の各範囲に区分し、全ての窒化珪素質粒子の個数に対する各範囲の窒化珪素質粒子の個数の割合を個数%とし、さらに、窒化珪素質粒子の個数%の最大値である最大の個数%に対する5%を閾値として、その閾値以上の個数%となる複数の範囲である特定範囲を設定する。そして、特定範囲のうち、最大の粒径が最も小さな範囲を最小範囲とするとともに最大の粒径が最も大きな範囲を最大範囲とする。
 この場合において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内に存在する。
 なお、この場合、前記5%以上となる特定範囲内に、最大個数%(即ち分布のピークYmax)に対応する最大粒径が存在する。
 なお、前記中央値とは、最大の粒径を所定寸法毎の各範囲に区分し、全ての窒化珪素粒子3の個数に対する各範囲の窒化珪素粒子3の個数の割合を個数%とした場合に、各範囲における中央値である。
 さらに、最大粒径が7μm以上の窒化珪素粒子3のアスペクト比が全て2以上である。
 ここで、アスペクト比とは、図2に示すように、窒化珪素粒子3の「最大長径/最大長径に直交する長さ」である。なお、最大長径が図2の最大粒径Xであり、最大長径に直交する長さが図2の最小短径Yである。
 [1-2.窒化珪素粒子]
 次に、窒化珪素質焼結体5に含まれる窒化珪素粒子3のサイズに関する分布について説明する。
 窒化珪素質焼結体5に含まれる多数の窒化珪素粒子3について、その最大粒径を所定寸法(例えば中央値±0.05μm)毎の各範囲に区分し、全ての窒化珪素粒子3の個数に対する各範囲の窒化珪素粒子3の個数の割合を個数%とした場合、窒化珪素粒子3のサイズの分布は、例えば図4に示すようになる。
 なお、窒化珪素粒子3のサイズの分布は、実際には所定寸法毎に個数%を示すようなヒストグラムとなるが、図4では例えば各範囲の中央値の頂点(即ち個数%の値)を滑らかに繋ぐようにして、窒化珪素粒子3のサイズの分布を模式的に示してある。なお、前記所定寸法毎の幅が、ヒストグラムにおけるビンの幅を意味している。
 なお、最大粒径Xの粒子の個数の割合(即ち頻度)である個数%は、例えば下記式(1)により求めることができる。
 最大粒径Xの粒子の個数%=(最大粒径Xの粒子個数/全粒子個数)×100・・(1) 
 なお、最大粒径を所定寸法(幅)毎の各範囲に区分する場合には、「最大粒径Xの粒子個数」は、その所定寸法(幅)内に含まれる「最大粒径Xの粒子個数」を示している。
 従って、「最大粒径が1μm以下の個数%が70個数%以上」とは、例えば図4における斜線部分(A)の領域における個数%の和が70%以上であることを示している。
 なお、「最大粒径が1μm以下の個数%が85個数%以上」とは、例えば図4における斜線部分(A)の領域における個数%の和が85%以上であることを示している。
 また、「最大個数%が15個数%以上」とは、例えば図4における最大の個数%(即ち最大個数%)であるYmaxの値が15個数%以上であることを示している。
 さらに、「最小範囲の中央値に対応する最大の粒径と最大範囲の最大の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内にある」とは、例えば図5に示すような最大粒径の分布を考えた場合に、最大個数%の5%以上の各範囲における中央値の範囲(C1)が、0.1μm以上2.0μm以下の範囲内に存在することを示している。
 つまり、図5の左右の斜線部分の領域に関して、図5の左側に示す最大粒径の小さい側の範囲(即ち最小範囲を示す図5の左側の斜線部分)の中央値(即ち最小の中央値)が示す最大粒径と、図5の右側に示す最大粒径の大きい側の範囲(即ち最大範囲を示す図5の右側の斜線部分)の中央値(即ち最大の中央値)が示す最大粒径との間の範囲が、0.1μm以上2.0μm以下の範囲内であることを示している。
 なお、この最小の中央値との最大の中央値との間の範囲を、例えば図4で示した場合には、図4の(C)の範囲内においてC1の範囲(図5参照)に該当する。つまり、図4におけるYmax(即ち最大の個数%の値)×0.05(即ちYmaxの5%)以上となる範囲に該当する。
 なお、「最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上1.5μm以下の範囲内にある」とは、例えば図5に示すような最大粒径の分布を考えた場合(但し図5の5%を10%と考えた場合)、最大個数%の10%以上の各範囲における中央値の範囲(図4のB1の範囲)が、0.1μm以上1.5μm以下の範囲内に存在することを示している。
 つまり、図5の左右の斜線部分の領域に関して、図5の左側に示す最大粒径の小さい側の範囲(即ち最小範囲である図5の左側の斜線部分)の中央値(即ち最小の中央値)が示す最大粒径と、図5の右側に示す最大粒径の大きい側の範囲(即ち最大範囲である図5の右側斜線部分)の中央値(即ち最大の中央値)が示す最大粒径との間の範囲が、0.1μm以上1.5μm以下の範囲内であることを示している。
 なお、この最小の中央値との最大の中央値との間の範囲を、例えば図4で示した場合には、図4の(B)の範囲内のB1の範囲に該当する。つまり、図4におけるYmax(即ち最大の個数%の値)×0.1(即ちYmaxの10%)以上となる範囲に該当する。
 [1-3.製造方法]
 次に、第1実施形態の窒化珪素質焼結体5及び切削インサート1の製造方法を説明する。
 まず、出発原料として、比表面積BET8~20m/gの窒化珪素粉末を用い、平均粒径1μmのYb粉末または平均粒径1μmのSm粉末または平均粒径1μmのLuを2質量%、平均粒径1μmのAl粉末を0.5質量%、平均粒径1μmのMgO粉末を2質量%、残部窒化珪素粉末の割合で配合した。
 次に、上述のように配合された粉末を、エタノールと共に、窒化珪素製の内壁を有するボールミルに入れ、粉砕メディアとして、φ2mm、φ6mm、φ10mmの各窒化珪素ボール(即ちSNボール)を、1:2:7、又は、0:0:10の体積割合で配合したものを用いて、約96~240時間粉砕混合して、混合物(スラリー)を作製した。
 なお、φ2mm、φ6mm、φ10mmの各窒化珪素ボールを、0:0:10の体積割合で配合したものを用いた場合には、約168~240時間粉砕混合した。つまり、大きな窒化珪素ボールを多く用いた場合には、粉砕時間を長くした。
 次に、前記スラリーを、湯煎し、乾燥後、目開き250μmの篩を通して、混合粉末を得た。
 次に、前記混合粉末を、1000kgf/cmの圧力でプレス成形して、ISO規格で工具形状がSNGN120408T02020用の成形体を得た。
 次に、この成形体を、1500kgf/cmの圧力で冷間等方圧加圧(cold isostatics pressing:CIP)成形により成形した。
 続いて、このCIP成形により成形された成形体を、窒化珪素容器の中で、窒素(N)雰囲気、昇温速度10℃/min、1750℃で2時間保持し、降温速度20℃/minにて焼成を行った。なお、昇温速度が10℃/minより遅いと、窒化珪素粒子の粒成長が進むので、10℃/min以上が好ましい。
 また、マイクロポアをなくすために、後工程として、熱間静水圧加圧(hot isostaticspressing:HIP)成形による2次焼成を行ってもよい。
 上述した製造方法によって、窒化珪素質焼結体5を得た。
 その後、窒化珪素質焼結体5の表面を最終的な工具形状(ISO規格でSNGN120408T02020)となるように研磨することにより、切削インサート1を得た。
 [1-4.効果]
 次に、本第1実施形態の効果を説明する。
 第1実施形態の窒化珪素質焼結体5(従って切削インサート1)は、全ての窒化珪素粒子3のうち、最大粒径が1μm以下の窒化珪素粒子3の個数%が70個数%以上(例えば85個数%以上)である。しかも、最大の粒径に対する窒化珪素粒子3の個数%の分布において、窒化珪素粒子3の個数%の最大値である最大の個数%(即ち最大個数%)が15個数%以上である。
 従って、窒化珪素粒子3の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズが低減している。よって、窒化珪素質焼結体5の強度が上がり、耐欠損性能が向上する。
 また、第1実施形態では、最大の個数%の5%以上となる特定領域において、前記最小範囲の中央値に対応する最大の粒径と前記最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内に存在する。
 従って、窒化珪素粒子3の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズが低減している。よって、この点からも、窒化珪素質焼結体5の強度が上がり、耐欠損性能が向上する。
 更に、第1実施形態では、最大粒径が7μm以上の窒化珪素粒子3のアスペクト比が2以上である。従って、クラック進展のディフラクション効果が大きいので破壊靱性が向上し、耐欠損性能が一層向上する。
 [2.第2実施形態]
 [2-1.全体構成]
 次に、第2実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。
 図3に示すように、第2実施形態の切削インサート11は、ISO規格でRNGN120700T02020の形状(即ち円柱形状)を有している。
 この切削インサート11は、多数のサイアロン粒子13(前記図2参照)を含む窒化珪素質焼結体15から構成されている。つまり、この窒化珪素質焼結体15は、ほぼサイアロン粒子13(例えば80体積%以上)から構成されている。
 また、サイアロン粒子13は、前記図2に例示するように、第1実施形態の窒化珪素粒子3と同様な形状である。なお、第2実施形態の窒化珪素質焼結体15は、窒化珪素粒子3がサイアロン粒子13に置き換わった以外は、基本的に第1実施形態と同様な構成を有している。
 詳しくは、下記のように、前記条件1と前記条件2とを満たしている。
 条件1については、この窒化珪素質焼結体15に含まれる多数のサイアロン粒子13について、各サイアロン粒子13において最大の径(最大長径)である最大粒径(X:図2参照)が1μm以下であるものの個数の割合(即ち個数%)が70個数%以上である。例えば、最大粒径が1μm以下の個数%が85個数%以上である。しかも、最大の粒径に対するサイアロン粒子13の個数%の分布において、サイアロン粒子13の個数%の最大値(即ち最大個数%)が15個数%以上である。
 なお、この最大粒径が1μm以下の範囲内に、最大個数%(即ちサイアロン粒子13の分布のピークYmax:図4参照)に対応する最大粒径が存在する。
 また、条件2については、まず、サイアロン粒子13の個数%の最大値である最大の個数%に対する5%を閾値とし、その閾値以上の個数%となる複数の範囲である特定範囲を設定する。そして、その特定範囲のうち、最大の粒径が最も小さな範囲を最小範囲とするとともに最大の粒径が最も大きな範囲を最大範囲とする。
 そして、この場合において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する前記最大の粒径とが、0.1μm以上2.0μm以下の範囲内に存在する。
 なお、この場合、前記5%以上となる特定範囲内に、最大個数%(即ち分布のピークYmax)に対応する最大粒径が存在する。
 さらに、最大粒径が7μm以上のサイアロン粒子13のアスペクト比が全て2以上である。
 [2-2.製造方法]
 次に、第2実施形態の窒化珪素質焼結体15及び切削インサート11の製造方法を説明する。
  なお、第2実施形態の製造方法は、前記第1実施形態と同様な構成が多いので、異なる点を中心にして説明する。
 <出発原料>
 平均粒径1μmのYb粉末を5質量%、平均粒径1μmのAl粉末を2質量%、平均粒径1μmのAlN粉末を8質量%とし、残部は窒化珪素粉末を用いた。この窒化珪素粉末としては、比表面積BET8~20m/gの窒化珪素粉末を用いた。
 <粉砕方法>
 粉砕方法は、第1実施形態と同様である。
 <成形方法>
 成形方法は、第1実施形態と同様である。但し、RNGN120700T2020の形状に成形した。
 <焼成方法>
 焼成温度は1730℃とした。
 その他の製造条件は第1実施形態と同様であり、このような製造方法によって、第2実施形態の窒化珪素質焼結体15(従って切削インサート11)を製造することができる。
 [2-3.効果]
 第2実施形態の窒化珪素質焼結体15(従って切削インサート11)は、全てのサイアロン粒子13のうち、最大粒径が1μm以下のサイアロン粒子13の個数%が70個数%以上である。しかも、最大の粒径に対するサイアロン粒子13の個数%の分布において、サイアロン粒子13サイアロン粒子13の個数%の最大値(即ち最大個数%)が15個数%以上である。
 従って、サイアロン粒子13の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズが低減している。よって、窒化珪素質焼結体15の強度が上がり、耐欠損性能が向上する。
 また、第2実施形態では、最大の個数%の5%以上となる特定範囲において、最小範囲の中央値に対応する最大の粒径と最大範囲の中央値に対応する最大の粒径とが、0.1μm以上2.0μm以下の範囲内に存在する。
 従って、サイアロン粒子13の微粒化及び均粒組織化が向上しており、微細粒子間結合相サイズが低減している。よって、この点からも、窒化珪素質焼結体15の強度が上がり、耐欠損性能が向上する。
 更に、第2実施形態では、最大粒径が7μm以上のサイアロン粒子13のアスペクト比が2以上である。従って、クラック進展のディフラクション効果が大きいので破壊靱性が向上し、耐欠損性能が一層向上する。
 [3.実験例]
 次に、本開示の効果を確認するために行った実験例について説明する。
 <実験例1>
 本実験例1は、第1実施形態の窒化珪素質焼結体(従って切削インサート)に関する実験例である。
 つまり、第1実施形態の実験例1として、窒化珪素粒子を主成分とする窒化珪素質焼結体(従って切削インサート)の試料を作製し、その耐欠損性等を調べたものである。
 なお、本実験例1で示す製造条件以外は、前記第1実施形態と同様である。また、切削インサートの形状は、ISO規格で、SNGN120408T02020である。
 具体的には、下記表1に製造条件を示すように、実験に用いる試料として、実施例1~10及び比較例1~8の窒化珪素質焼結体を作製し、研磨して切削インサートとした。
 なお、各試料のうち、実施例1~10が本開示の試料であり、比較例1~8が本開示の範囲外の比較例である。
 ここで、実施例1~10の試料は、前記第1実施形態の条件のうち、比表面積BET、粉砕メディア、粉砕時間の条件を、下記表1に示す範囲内で変更して作製したものである。例えば、比表面積BETは11~17%の範囲で選択し、粉砕時間は96~240時間の範囲で選択した。
 なお、表1では、「窒化珪素(Si)原料の比表面積BET」を単に「原料BET」と記し、「SNボールの体積比」を単に「ボール体積比」と記す(下記表3も同様である)。
 なお、φ2mm、φ6mm、φ10mmの各窒化珪素ボールを、0:0:10の体積割合で配合したものを用いた場合には、約168~240時間粉砕混合した。
 また、比較例1~8の試料は、比表面積BET、粉砕メディア、粉砕時間の条件のいずれかを前記実施例1~10の条件の範囲外に変更して作製した。
 そして、各試料の切削インサートに対して、その重心を通る面で切断し、その切断面を鏡面研磨し、エッチング後、走査型電子顕微鏡による観察(即ちSEM観察)を行った。詳しくは、SEM観察によって、重心付近の64μm×48μmの範囲の視野に存在する窒化珪素粒子の個数を調べた。また、各窒化珪素粒子の最大粒径Xと最小短径Yとを調べて個々のアスペクト比(即ちX/Y)を求めた。
 また、上述のようにして測定した各窒化珪素粒子の最大粒径Xについて、例えば0.1μmの幅でその個数の頻度を算出して、前記図4に示すような最大粒径の粒度分布を求めた。
 なお、測定精度を高めるために、測定は2視野以上行うことが好ましい。2視野以上(例えば2視野の)測定を行う場合には、例えば、全ての視野のデータを用いて解析を行うことができる。
 そして、上述した観察によって得られた窒化珪素粒子に関する測定データから、「最大粒径が1μm以下の個数%(即ちデータ1)」と「最大個数%(即ちデータ2)」と「最大個数%の5%以上となる各範囲について最小の中央値に対応する最大の粒径と最大の中央値に対応する最大の粒径との範囲(即ちデータ3)」と、「最大個数%の10%以上となる各範囲について最小の中央値に対応する最大の粒径と最大の中央値に対応する最大の粒径との範囲(即ちデータ4)」と、「最大粒径が7μm以上の窒化珪素粒子のアスペクト比(即ちデータ5)」とを求めた。その結果を、下記表2に記す。
 なお、データ3とは、5%以上の最小と最大の中央値(即ち最大個数%の5%の粒径)であり、データ4とは、10%以上の最小と最大の中央値(即ち最大個数%の10%の粒径)である。
 なお、「最大粒径が7μm以上の窒化珪素粒子のアスペクト比」とは、最大粒径が7μm以上の窒化珪素粒子について各アスペクト比を求め、その最小値を記載したものである。
 更に、各試料を用いて、切削試験を行った。詳しくは、下記の条件で普通鋳鉄の加工(ここでは旋削加工)を行い、フランク最大摩耗量と欠損に到る送り速度を調べた。その結果を下記表2に記す。
 なお、表2では、データ3の「5%以上の最小と最大の中央値」を単に「5%以上の中央値1」と記し、データ4の「10%以上の最小と最大の中央値」を単に「10%以上の中央値2」と記し、データ5の「最大粒径が7μm以上の窒化珪素粒子のアスペクト比」を単に「アスペクト比」と記す(下記表4も同様であるが、表4では、窒化珪素粒子ではなくサイアロン粒子を示している)。また、同表2では、「フランク最大摩耗量」を単に「最大摩耗量」と記し、「欠損に到る送り速度」を単に「欠損送り速度」と記す。
  <加工条件>
  刃先処理 :0.2×20°
  被削材  :FC250(JIS)
  切削速度 :150m/min
  切込み深さ:2.0mm
  送り速度 :0.6mm/revからスタートし、各加工パスごとに
        0.05mm/revずつ増やした
  切削油  :なし(DRY)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、表2において、総合評価の「◎」はフランク最大摩耗量が最も少なく、且つ、欠損に到る送り速度が最も大きいもの(即ち最も優れた特性のもの)を示している。「○」はフランク最大摩耗量が0.6mmと少なく、且つ、欠損に到る送り速度が1.8mm/revの優れた特性のものを示している。「△」はフランク最大摩耗量が0.8~0.9mmとやや少なく、且つ、欠損に到る送り速度が1.7mm/revとやや優れた特性のものを示している。「×」はフランク最大摩耗量が0.9mm以上で、且つ、欠損に到る送り速度が1.6mm/rev以下の好ましくない特性のものを示している。「××」は初期欠損が生じたものを示している。
 この表2から明らかなように、前記条件1を満たす実施例1~5、9、10では、フランク最大摩耗量が少なく(0.9mm以下)、且つ、欠損に到る送り速度が大きく(1.7mm/rev以上)耐欠損性が高いので好適である。
 このうち、実施例1~3、9、10では、フランク最大摩耗量がより少なく(0.6mm以下)、且つ、欠損に到る送り速度がより大きい(1.8mm/rev以上)ので、一層好適である。
 また、前記条件2を満たす実施例1~3、6~10では、フランク最大摩耗量が少なく(0.9mm以下)、且つ、欠損に到る送り速度が大きい(1.7mm/rev以上)ので好適である。
 一方、比較例1~3、7は、フランク摩耗量が多く、且つ、欠損に到る送り速度が小さいので好ましくない。また、比較例4、5、8は、初期欠損が発生しており好ましくない。さらに、比較例6は、欠損に到る送り速度が小さいので好ましくない。
 <実験例2>
 本実験例2は、第2実施形態の窒化珪素質焼結体(従って切削インサート)に関する実験例である。
 つまり、第2実施形態のサイアロン粒子を主成分とする窒化珪素質焼結体として、第2実施形態のサイアロン焼結体(従って切削インサート)の試料を作製し、その耐欠損性等を調べた。なお、切削インサートの形状は、ISO規格で、RNGN120700T02020である。
 具体的には、下記表3に製造条件を示すように、実験に用いる試料として、実施例11、12及び比較例9のサイアロン焼結体を作製し、研磨して切削インサートとした。なお、前記表3に記載されている製造条件等以外については、前記実験例1と同様である。
 なお、各試料のうち、実施例11、12が本開示の試料であり、比較例9が本開示の範囲外の比較例である。
 そして、本実験例2において作製した各試料の切削インサートに対して、前記実験例1と同様にして、SEM観察を行い、重心付近の64μm×48μmの範囲の視野に存在するサイアロン粒子の個数を調べた。また、各サイアロン粒子の最大粒径Xと最小短径Yとを調べて個々のアスペクト比(即ちX/Y)を求めた。
 また、上述のようにして測定した各サイアロン粒子の最大粒径Xについて、例えば0.1μmの幅でその個数の頻度を算出して、最大粒径の粒度分布を求めた。
 そして、上述した観察によって得られたサイアロン粒子に関する測定データから、実験例1と同様に、データ1~5を求めた。その結果を、下記表4に記す。
 更に、各試料を用いて、切削試験を行った。詳しくは、下記の条件で耐熱合金の加工(即ち旋削加工)を行い、フレーキングまたは欠損に到る加工距離を調べた。その結果を下記表4に記す。
  <加工条件>
  刃先処理 :0.2×20°
  被削材  :インコネル718
  切削速度 :180m/min
  切込み深さ:1.5mm
  送り速度 :0.2mm/rev
  切削油  :あり(WET)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、表4において、総合評価の「◎」はフレーキングに到るまでの加工距離が最も長いもの(即ち最も優れた特性のもの)を示している。「○」はフレーキングに到るまでの加工距離が次に長いもの(即ち優れた特性のもの)を示している。「×」は欠損に到るま
での加工距離が短いもの(即ち好ましくない特性のもの)を示している。
 この表4から明らかなように、前記条件1を満たす実施例11、12では、フレーキングに到るまでの加工距離が最も長く好適である。
 一方、比較例9は、欠損に到るまでの加工距離が短いので、好ましくない。
 [4.他の実施形態]
 尚、本開示は前記実施形態になんら限定されるものではなく、本開示を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
 (1)例えば、上述したように、本開示は、窒化珪素粒子を含む窒化珪素質焼結体だけでなく、サイアロン粒子を含む窒化珪素質焼結体についても同様に適用できる。
 また、前記図4に示すような窒化珪素粒子の分布は、窒化珪素質粒子がサイアロン粒子の場合も同様である。
 (2)また、サイアロンの形態(即ち結晶相)としては、α、β、ポリタイプを、例えば用途に応じた所定の比率で含むものを採用できる。即ち、サイアロンの形態については、特に限定しない。
 (3)また、本開示の窒化珪素質焼結体の組成としては、例えば、窒化珪素を80質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.1~10質量%、マグネシウムをMgO換算で0.2~6質量%含有する組成が挙げられる。また、窒化珪素を90質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.3~4.5質量%、マグネシウムをMgO換算で0.2~3質量%含有する組成が挙げられる。また、サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で1~10質量%、アルミニウムをAl換算で3~30質量%含有する組成が挙げられる。また、サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で3~7質量%、アルミニウムをAl換算で5~25質量%含有する組成が挙げられる。
(4)なお、前記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、前記各実施形態の構成の一部を、省略してもよい。また、前記各実施形態の構成の少なくとも一部を、他の前記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。

Claims (10)

  1.  窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体において、
     個々の前記窒化珪素質粒子の大きさを、それぞれ最大の粒径で示す場合に、
     全ての前記窒化珪素質粒子のうち、前記最大の粒径が1μm以下の前記窒化珪素質粒子の個数の割合が70個数%以上であり、
     且つ、前記最大の粒径に対する前記窒化珪素質粒子の個数%の分布において、前記窒化珪素質粒子の個数%の最大値である最大の個数%が15個数%以上である、窒化珪素質焼結体。
  2.  前記最大の粒径が1μm以下の前記窒化珪素質粒子の個数の割合が85個数%以上である、請求項1に記載の窒化珪素質焼結体。
  3.  前記最大の粒径を所定寸法毎の各範囲に区分し、前記全ての窒化珪素質粒子の個数に対する前記各範囲の前記窒化珪素質粒子の個数の割合を、前記個数%とした、請求項1又は2に記載の窒化珪素質焼結体。
  4.  窒化珪素粒子又はサイアロン粒子である窒化珪素質粒子を含む窒化珪素質焼結体において、
     個々の前記窒化珪素質粒子の大きさを、それぞれ最大の粒径で示すとともに、
     前記最大の粒径を所定寸法毎の各範囲に区分し、前記全ての窒化珪素質粒子の個数に対する前記各範囲の前記窒化珪素質粒子の個数の割合を個数%とし、
     さらに、前記窒化珪素質粒子の個数%の最大値である最大の個数%に対する5%を閾値として、該閾値以上の個数%となる複数の前記範囲である特定範囲を設定し、
    該特定範囲のうち、前記最大の粒径が最も小さな範囲を最小範囲とするとともに前記最大の粒径が最も大きな範囲を最大範囲とした場合に、
    前記最小範囲の中央値に対応する前記最大の粒径と前記最大範囲の中央値に対応する前記最大の粒径とが、0.1μm以上2.0μm以下の範囲内にある、窒化珪素質焼結体。
  5.  前記最大の粒径が7μm以上の前記窒化珪素質粒子のアスペクト比が2以上である、請求項1~4のいずれか1項に記載の窒化珪素質焼結体。
  6.  窒化珪素を80質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.1~10質量%、マグネシウムをMgO換算で0.2~6質量%含有する、請求項1~5のいずれか1項に記載の窒化珪素質焼結体。
  7.  窒化珪素を90質量%以上、イットリウムまたは希土類元素の1種以上を酸化物換算で0.3~4.5質量%、マグネシウムをMgO換算で0.2~3質量%含有する、請求項1~5のいずれか1項に記載の窒化珪素質焼結体。
  8.  サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で1~10質量%、アルミニウムをAl換算で3~30質量%含有する、請求項1~5のいずれか1項に記載の窒化珪素質焼結体。
  9.  サイアロンを含み、イットリウムまたは希土類元素の1種以上を酸化物換算で3~7質量%、アルミニウムをAl換算で5~25質量%含有する、請求項1~5のいずれか1項に記載の窒化珪素質焼結体。
  10.  前記請求項1~9のいずれか1項に記載の窒化珪素質焼結体から構成されている、切削インサート。
     
PCT/JP2017/013325 2016-03-31 2017-03-30 窒化珪素質焼結体及び切削インサート WO2017170899A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/088,133 US11365154B2 (en) 2016-03-31 2017-03-30 Silicon nitride-based sintered body and cutting insert
JP2017538452A JP6457647B2 (ja) 2016-03-31 2017-03-30 窒化珪素質焼結体及び切削インサート
DE112017001794.7T DE112017001794T5 (de) 2016-03-31 2017-03-30 Sinterkörper auf Siliziumnitridbasis und Schneideinsatz
KR1020187026819A KR102097955B1 (ko) 2016-03-31 2017-03-30 질화규소질 소결체 및 절삭 인서트
CN201780022145.3A CN108883996B (zh) 2016-03-31 2017-03-30 氮化硅基烧结体及切削镶刀
US17/168,426 US20210155550A1 (en) 2016-03-31 2021-02-05 Silicon nitride-based sintered body and cutting insert

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072222 2016-03-31
JP2016-072222 2016-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/088,133 A-371-Of-International US11365154B2 (en) 2016-03-31 2017-03-30 Silicon nitride-based sintered body and cutting insert
US17/168,426 Division US20210155550A1 (en) 2016-03-31 2021-02-05 Silicon nitride-based sintered body and cutting insert

Publications (1)

Publication Number Publication Date
WO2017170899A1 true WO2017170899A1 (ja) 2017-10-05

Family

ID=59965898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013325 WO2017170899A1 (ja) 2016-03-31 2017-03-30 窒化珪素質焼結体及び切削インサート

Country Status (6)

Country Link
US (2) US11365154B2 (ja)
JP (1) JP6457647B2 (ja)
KR (1) KR102097955B1 (ja)
CN (1) CN108883996B (ja)
DE (1) DE112017001794T5 (ja)
WO (1) WO2017170899A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365154B2 (en) * 2016-03-31 2022-06-21 Ngk Spark Plug Co., Ltd. Silicon nitride-based sintered body and cutting insert

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223865A (ja) * 1994-02-10 1995-08-22 Sumitomo Electric Ind Ltd 窒化ケイ素系焼結体及びその製造方法
JPH08104571A (ja) * 1994-10-04 1996-04-23 Agency Of Ind Science & Technol 窒化ケイ素系セラミックス及びその成形法
JP2008069031A (ja) * 2006-09-13 2008-03-27 Kyocera Corp 窒化珪素質焼結体およびその製造方法
JP2014141359A (ja) * 2013-01-22 2014-08-07 Sumitomo Electric Ind Ltd サイアロン基焼結体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344089B2 (ja) 1973-06-28 1978-11-25
JPS63159259A (ja) 1986-12-24 1988-07-02 日本特殊陶業株式会社 高靭性窒化珪素質焼結体
JPH05139839A (ja) * 1991-03-27 1993-06-08 Nkk Corp 高靱性窒化珪素
JP2851721B2 (ja) 1991-07-17 1999-01-27 京セラ株式会社 切削工具用窒化珪素質焼結体
JPH0566901A (ja) 1991-09-06 1993-03-19 Toshiba Corp プリントサーバ
EP1201623B1 (en) * 2000-10-27 2016-08-31 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the substrate
JP4820505B2 (ja) * 2001-08-27 2011-11-24 株式会社東芝 電子機器用耐摩耗性部材とそれを用いた電子機器用ベアリング
JP4190257B2 (ja) 2001-11-16 2008-12-03 日本特殊陶業株式会社 窒化珪素質工具
KR20030041096A (ko) * 2001-11-16 2003-05-23 니혼도꾸슈도교 가부시키가이샤 질화규소질 소결체 및 질화규소질 공구
JP5031602B2 (ja) * 2007-02-23 2012-09-19 京セラ株式会社 窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法
JP5100201B2 (ja) 2007-05-16 2012-12-19 株式会社東芝 窒化珪素焼結体とそれを用いた摺動部材
JP6537890B2 (ja) 2014-09-26 2019-07-03 日本航空電子工業株式会社 コネクタ
US11365154B2 (en) * 2016-03-31 2022-06-21 Ngk Spark Plug Co., Ltd. Silicon nitride-based sintered body and cutting insert

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223865A (ja) * 1994-02-10 1995-08-22 Sumitomo Electric Ind Ltd 窒化ケイ素系焼結体及びその製造方法
JPH08104571A (ja) * 1994-10-04 1996-04-23 Agency Of Ind Science & Technol 窒化ケイ素系セラミックス及びその成形法
JP2008069031A (ja) * 2006-09-13 2008-03-27 Kyocera Corp 窒化珪素質焼結体およびその製造方法
JP2014141359A (ja) * 2013-01-22 2014-08-07 Sumitomo Electric Ind Ltd サイアロン基焼結体

Also Published As

Publication number Publication date
KR20180112854A (ko) 2018-10-12
KR102097955B1 (ko) 2020-04-07
US20200299199A1 (en) 2020-09-24
US20210155550A1 (en) 2021-05-27
CN108883996A (zh) 2018-11-23
CN108883996B (zh) 2021-04-30
JP6457647B2 (ja) 2019-01-23
US11365154B2 (en) 2022-06-21
DE112017001794T5 (de) 2018-12-13
JPWO2017170899A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
EP3239116B1 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2011059020A1 (ja) 立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体並びにそれらの製造方法
US8927447B2 (en) Ceramic sintered body
WO2012053507A1 (ja) 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具
KR20100014477A (ko) 인서트 및 절삭 공구
JP6457647B2 (ja) 窒化珪素質焼結体及び切削インサート
US5921725A (en) Sintered silicon nitride articles for tools and method of preparation
WO2013011650A1 (ja) 焼結体および切削工具
CN108430950B (zh) 陶瓷烧结体
US11135655B2 (en) CBN sintered compact and cutting tool
JP2011207689A (ja) 複合焼結体
JP7204558B2 (ja) 窒化硼素質焼結体、インサートおよび切削工具
JP6683887B2 (ja) セラミックス焼結体、インサート、切削工具、及び摩擦攪拌接合用工具
KR100528558B1 (ko) 세라믹절삭공구
JP2006016233A (ja) 窒化珪素質焼結体、窒化珪素質工具、切削インサート、及び切削工具
EP1043292A1 (en) Cutting tool and method of manufacturing the same
JP5825962B2 (ja) 窒化珪素質焼結体およびこれを用いた溶湯金属用部材ならびに耐磨耗性部材
JP2015009327A (ja) 切削インサート
JP2008273753A (ja) 炭化硼素質焼結体および防護部材
JPS59232971A (ja) 耐摩耗性のすぐれたサイアロン基セラミツクス
JP4383225B2 (ja) セラミックス焼結体、切削インサート、切削工具およびその製造方法
EP4079429A1 (en) Cutting tool
JP5275744B2 (ja) 切削インサート、窒化珪素切削工具、切削インサートに用いられる窒化珪素焼結体の製造方法
JP2000354901A (ja) 切削工具及びその製造方法
JP2016084245A (ja) 焼結体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538452

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187026819

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026819

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775433

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775433

Country of ref document: EP

Kind code of ref document: A1